WO2003045889A1 - Process for producing (meth)acrylic acid - Google Patents

Process for producing (meth)acrylic acid Download PDF

Info

Publication number
WO2003045889A1
WO2003045889A1 PCT/JP2002/012331 JP0212331W WO03045889A1 WO 2003045889 A1 WO2003045889 A1 WO 2003045889A1 JP 0212331 W JP0212331 W JP 0212331W WO 03045889 A1 WO03045889 A1 WO 03045889A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic acid
meth
acid
reaction
producing
Prior art date
Application number
PCT/JP2002/012331
Other languages
English (en)
French (fr)
Inventor
Shuhei Yada
Kenji Takasaki
Yasushi Ogawa
Yoshiro Suzuki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to AU2002355040A priority Critical patent/AU2002355040A1/en
Publication of WO2003045889A1 publication Critical patent/WO2003045889A1/ja
Priority to US10/853,199 priority patent/US20040220427A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation

Definitions

  • the present invention relates to a method for producing (meth) acrylic acid, and more particularly to a method for producing (meth) acrylic acid, which comprises a step of thermally decomposing by-products during the production of (meth) acrylic acid to recover (meth) acrylic acid and the like. About the method.
  • (meth) atalilic acid is a general term for atarilic acid and methacrylic acid, and either one or both may be used.
  • a gas phase oxidation method of propylene is known as a reaction for producing acrylic acid.
  • the conditions of oxidation to acrolein and oxidation to acrylic acid in the next stage are different, so that a two-stage oxidation process in which each is performed in a separate reactor and a one-stage oxidation process There is a process that oxidizes directly to acrylic acid at the same time.
  • FIG 3 is a process diagram of producing acrylic acid by two-stage oxidation.Propylene, water vapor and air are oxidized in two stages through a first reactor and a second reactor filled with a molybdenum-based catalyst, etc. It becomes an acid-containing gas.
  • This acrylic acid-containing gas is brought into contact with water in a collecting tower (condensing tower) to form an aqueous acrylic acid solution, to which an appropriate extracting solvent is added and extracted in an extracting tower.
  • the extracted solvent is extracted in a solvent separating tower.
  • acetic acid is separated in an acetic acid separation tower to obtain crude acrylic acid
  • by-products are separated from the crude acrylic acid in a rectification tower to obtain a purified acrylic acid.
  • JP-B-61-359977 describes a method in which a Michael adduct is decomposed and reacted using a thin-film evaporator, and a decomposition reaction product is distilled off.
  • Japanese Patent Application Laid-Open No. 11-122222 discloses a method of returning acrylic acid obtained by thermally decomposing Michael adduct contained in acrylic acid to a purification column for distilling and recovering acrylic acid. Is described.
  • the decomposition reaction of the Michael adduct was carried out using a thin-film evaporator as described in JP-B-61-35997, at a decomposition temperature of 180 ° C and a pressure of 200 to 250 mmHg.
  • maleic anhydride at a high concentration is mixed in the recovered acrylic acid, and it is not discarded even if recycled to the purification system, accumulates in the system, and is partially converted to maleic acid in this process. Furthermore, it isomerizes to fumaric acid. Due to these acids, slight fluctuations in operation may lead to a decrease in fluidity at the bottom line or troubles in solid deposition, which may hinder stable continuous operation.
  • reactive distillation conditions are adopted so that maleic anhydride can be recovered in high concentration in the recovered acrylic acid, the viscosity of the residue will increase and the fluidity in the extraction pipe will deteriorate, impeding continuous operation. Come.
  • the decomposition reaction of the Michael adduct was carried out by the thermal decomposition method in the liquid phase described in JP-A-11-122, and the recovered acrylic acid was purified using an acrylic acid purification column (acrylic acid was collected from the top of the column). If the product is collected in the same manner as above, the concentration of acrolein, acetic acid, and water in the product may increase in addition to the above-mentioned problem of maleic anhydride, resulting in deterioration of product quality. found.
  • the present invention solves the above-mentioned conventional problems, and comprises a step of thermally decomposing by-products such as a Michael addition reaction product by-produced in the process of producing (meth) acrylic acid to recover (meth) acrylic acid.
  • An object of the present invention is to provide a method for producing (meth) acrylic acid that has a high quality (meth) acrylic acid by preventing impurities from being mixed into a product (meth) acrylic acid.
  • the method for producing (meth) acrylic acid according to the present invention comprises: a (meth) acrylic acid producing reaction step of oxidizing a (meth) acrylic acid producing raw material compound; and a reaction solution from the (meth) acrylic acid producing reaction step.
  • a method for producing (meth) acrylic acid comprising: a distillation step of separating light components into crude (meth) acrylic acid; and a step of thermally decomposing by-products produced in the production step to recover (meth) acrylic acid. Wherein the recovered (meth) ataryl acid is supplied to the distillation step.
  • the decomposition product is returned to the distillation step for separating light components in the (meth) acrylic acid production step, whereby the contamination of the product (meth) acrylic acid with light impurities can be prevented.
  • FIG. 1 is a production process diagram of acrylic acid of the present invention.
  • FIG. 2 is a production process diagram of acrylic acid of the present invention.
  • FIG. 3 is a production process diagram of acrylic acid according to a conventional example.
  • (meth) acrylic acid is preferably propane, propylene, (meth) A reaction step in which a gaseous phase oxidation reaction of acrolein, isobutylene, t-butyl alcohol, etc. is carried out, and (meth) acrylic acid and low boiling compounds such as water and acetic acid are separated and crudely separated.
  • a (meth) acrylic acid aqueous solution obtained by quenching the gaseous oxidation reaction product generated in the reaction step with water is mixed with an azeotropic solvent. Separation by azeotropic distillation method ( Figure 1) used or extraction method using solvent
  • acetic acid may be separated after separating water, or water and acetic acid may be separated simultaneously using an azeotropic agent (Fig. 2).
  • Michael adducts are by-products formed during the (meth) acrylic acid production process during the oxidation reaction and various subsequent purification processes, especially at the bottom of each distillation column, which is relatively hot.
  • a compound in which (meth) acrylic acid, acetic acid, or water has been added to a compound having a (meth) acrylic group includes (meth) acrolein and (meth) acrylic acid, and also include compounds to which (meth) acrylic acid has been added by Michael.
  • (meth) acrylic acid is added with (meth) acrylic acid by Michael, / 3-acryloxypropionic acid or 0-methacryloxyisobutyric acid (hereinafter, dimer), and (meth) acrylic acid is added to this dimer by Michael (Meth) acrylic acid trimer (hereinafter referred to as “trimer”), and also an acrylic group such as (meth) acrylic acid tetramer (hereinafter referred to as “tetramer”) to which (meth) acrylic acid has been added to the trimer.
  • trimer Michael (Meth) acrylic acid trimer
  • tetramer an acrylic group such as (meth) acrylic acid tetramer (hereinafter referred to as “tetramer”) to which (meth) acrylic acid has been added to the trimer.
  • carboxylic acids There are carboxylic acids.
  • an aldehyde having a (meth) acryl group in which (meth) acrylic acid is added to (meth) acrolein with Michael is also included
  • Michael adducts include 0-acetoxypropionic acid, 3-hydroxypropionic acid, and diacetates such as dimers, trimers, and tetramers; —hydroxy forms; —hydroxy forms; and j3-acetoxypropanal. , J3-Hydroxypropanal, and acetic acid to aldehydes obtained by adding (meth) acrylic acid to Michael (meth) acrolein, and aldehyde obtained by adding water to Michael.
  • the above aldehydes vary in their proportion depending on the environment in which they are present in the process, but also exist in acetal form.
  • This Michael adduct is concentrated in the bottom liquid of the rectification column for obtaining purified (meth) acrylic acid from the crude (meth) acrylic acid. (T) It is preferable to recover acrylic acid.
  • the Michael adduct is concentrated in the bottom liquid of the rectification column.
  • acrylic acid, polymerization inhibitors used in the process, and oligomers and polymers produced in the process, such as oligomers and polymers, are also used. Substance is contained.
  • any system such as a continuous system, a batch system, a semi-batch system, or an intermittent extraction system can be used for the reaction process for performing the decomposition reaction of the Michael adduct, but the continuous system is preferable.
  • the type of the reactor is not particularly limited, and any type such as a complete mixing tank type stirred tank reactor, a circulation type complete mixing tank reactor, or a simple hollow reactor can be employed.
  • a distillation tower and a condenser may be connected to the upper part of the reactor so that the decomposition reaction can be performed by the reactive distillation method, or the reactor may be integrated with the distillation tower, the condenser, the reboiler and the like.
  • the decomposition reaction temperature is preferably from 140 to 240 ° C, particularly preferably from 160 to 200 ° C.
  • the liquid retention time based on the withdrawn liquid is preferably 0.2 to 50 hours, particularly preferably 0.5 to 2 hours.
  • the reaction time can be regarded as the reaction time, which is the liquid retention time calculated as the withdrawn liquid. For example, when the liquid volume in the reactor is 500 L and the withdrawn liquid volume is 100 L / H, the residence time is 5 hours.
  • the operating pressure is preferably 70 to 130 kPa, but is preferably higher than the vapor pressure of maleic anhydride at the reaction temperature.
  • the operating pressure is preferably 70 to 130 kPa, but is preferably higher than the vapor pressure of maleic anhydride at the reaction temperature.
  • Distillation residues from the reactive distillation are extracted and provided as fuel.
  • the distillate from the reactive distillation is supplied to a distillation column for separating low boiling components such as (meth) acrolein, acetic acid, and water at the top, which are light separation columns in the (meth) acrylic acid purification process .
  • the water is supplied to the acetic acid separation column, and in the case of FIG. 2, the water and the acetic acid are supplied to the distillation column for simultaneous separation.
  • the light-weight separation tower may be an azeotropic distillation tower for separating water.
  • 1 is a flowchart of an acrylic acid production process in which acrylic acid and water are separated from an aqueous acrylic acid solution by distillation, and then acetic acid is separated by distillation.
  • the acrylic acid-containing gas obtained by subjecting propylene and / or lacquer rain to catalytic gas phase oxidation using a molecular oxygen-containing gas is introduced into an acrylic acid collecting tower, and brought into contact with water to form an aqueous acrylic acid solution.
  • the aqueous acrylic acid solution from this collection tower is supplied to a dehydration tower together with an azeotropic agent, and an azeotropic mixture composed of water and an azeotropic agent is distilled off from the top of the tower, and acrylic acid containing acetic acid from the bottom of the tower. Is obtained.
  • the azeotropic mixture consisting of water and the azeotropic agent distilled from the top of the dehydration tower is introduced into a storage tank, where it is separated into an organic phase mainly consisting of the azeotropic agent and an aqueous phase mainly consisting of water.
  • the organic phase is circulated to the dehydration tower after the addition of the polymerization inhibitor.
  • the aqueous phase is circulated to the acrylic acid collecting tower and used as collected water to be brought into contact with the gas containing acrylic acid.
  • Water is supplied to the water return line as needed.
  • the water may be passed through an azeotropic agent recovery tower (not shown) and then circulated to the acrylic acid collecting tower.
  • the crude acrylic acid extracted from the bottom of the dehydration tower is introduced into an acetic acid separation tower to remove remaining acetic acid, and acetic acid is separated and removed from the top of the tower.
  • the acetic acid from the top contains acrylic acid and some may be returned to the process.
  • Acrylic acid substantially free of acetic acid is obtained from the bottom of the acetic acid separation column.
  • This acrylic acid is introduced into a rectification column to separate and remove high-boiling substances, resulting in high-purity acrylic acid.
  • the bottom liquid of the rectification column (high-boiling substance) is led to the decomposition reactor.
  • Acrylic acid and the like generated by the decomposition reaction are supplied to the acetic acid separation tower.
  • FIG. 2 is a flow sheet showing a method for producing acrylic acid in which the functions of the dehydration column and the acetic acid separation column in FIG. 1 are combined into one and a distillation column is provided.
  • the aqueous acrylic acid solution from the collection tower is introduced into the distillation tower upon addition of an azeotropic agent.
  • Water, acetic acid and azeotrope are distilled from the top of this distillation column, and the azeotrope is returned to the distillation column, Water and acetic acid are returned to the collection tower.
  • Acetic acid is discharged out of the system as a trap tower vent gas.
  • the processing flow of the bottom liquid of the distillation column is the same as the processing flow of the bottom liquid of the acetic acid separation column in FIG. Acrylic acid and the like from the cracking reactor are returned to the distillation column.
  • the present invention was implemented according to the acrylic acid production process shown in FIG. That is, the bottom liquid of the rectification column in the acrylic acid production step in FIG. 2 was thermally decomposed in a decomposition reactor, and the decomposition product was supplied to an azeotropic distillation column.
  • Composition fractionator bottoms for heavies separation Akuriru acid, Akuriru acid 2 1 by weight 0/0, maleic anhydride 7.9 weight 0/0. 3- hydroxycarboxylic acid 1.0 weight 0/0, beta chromatography ⁇ chestnut Loki Cipro acid 5 1.1 wt 0/0, Akuriru acid trimer 2wt 0/0, beta chromatography ⁇ Seto carboxymethyl acid 1. 5% by weight and 15% by weight of other heavy substances were supplied to the decomposition reactor at 22 kg / h.
  • the cracking reactor was a Hastelloy C stirred tank with an inner diameter of 200 mm and a height of 4 O Omm.A distillation column with an inner diameter of 30 mm, a height of 100 Omm, and a 500-mm coil pack filled, and an attached condenser were connected. . A heating medium was supplied to the outer jacket of the reactor to control the reaction temperature to 190 ° C, and the liquid level in the decomposition reactor was controlled so that the liquid residence time based on the extracted liquid was 1 hour. The reaction pressure was kept at 100 kPa. The operation was stable and continuous for 70 hours without any blockage of the piping. The distillate from the cracking reactor was obtained at an average of 16 kg / h.
  • composition was analyzed by gas chromatography is 90.4 by weight acrylic acid 0, maleic acid 3.9 weight 0/0 anhydride, beta chromatography ⁇ chestnut Loki Cipro acid 2.5 weight 0/0, Other heavies 1.5 By weight, acrolein 0.49% by weight and water 0.29% by weight. /.
  • the acetic acid content was 0.93% by weight.
  • the decomposition reaction was carried out using the same raw materials and the same experimental equipment and conditions as in Example 1, except that the decomposition reaction temperature was 180 ° C and the pressure was 27 kPa.
  • the distillate was obtained at an average of 18 kgZh.
  • the composition of the distillate was analyzed by gas chromatography, ⁇ acrylic acid 8 1.0 wt 0/0, maleic anhydride 7.5 weight 0/0, 3- Atari b carboxy propyl propionic acid 7.0 wt%
  • the other heavy materials were 3.0% by weight, and the light components were 0.44% by weight of acrolein, 0.26% by weight of water, and 0.83% by weight of acetic acid.
  • Example 2 The results were the same as in Example 1, except that the distillate from the cracking reactor was supplied to the acrylic acid rectification column.As a result, the concentration of water entrained in the product acrylic acid was 160 ppm, and acrolein was At 260 ppm, acetic acid increased by 490 ppm, which was not an acceptable level.
  • the Michael addition reaction product by-produced in the (meth) acrylic acid production step is thermally decomposed to recover high-purity (meth) acrylic acid at a high rate. Can be collected. Further, according to the present invention, troubles such as clogging caused by maleic acid in the production process can be prevented, and stable continuous operation can be performed.

Description

明 細 書
(メタ) ァクリル酸の製造方法 ぐ技術分野 >
本発明は、 (メタ) アクリル酸の製造方法に係り、 特に (メタ) アクリル酸製造 時の副生物を熱分解して (メタ) アクリル酸等を回収する工程を有する (メタ) ァクリル酸の製造方法に関する。
なお、 本明細書において、 (メタ) アタリル酸は、 アタリル酸とメタクリル酸と の総称であり、 そのいずれか一方でもよく双方でもよい。 ぐ背景技術 >
周知の通り、 アクリル酸を生成させる反応として、 プロピレンの気相酸化法が ある。 このプロピレンを酸化してアクリル酸を得る方法には、 ァクロレインまで の酸化と次の段階のァクリル酸までの酸化の条件が異なるため、 それぞれを別の 反応器で行う二段酸化プロセスと、 一段酸化で直接ァクリル酸まで酸化するプロ セスとがある。
図 3は二段酸化によりアクリル酸を生成させる工程図であり、 プロピレン、 水 蒸気及び空気がモリブデン系触媒等が充填された第一反応器及び第二反応器を経 て二段酸化されてアクリル酸含有ガスとなる。 このァクリル酸含有ガスを捕集塔 (凝縮塔) にて水と接触させてアクリル酸水溶液とし、 これに適当な抽出溶剤を 加えて抽出塔にて抽出し、 溶剤分離塔にて該抽出溶剤を分離する。 次いで、 酢酸 分離塔にて齚酸を分離して粗ァクリル酸とし、 この粗ァクリル酸から精留塔にて 副生物を分離することによりァクリル酸精製物が得られる。
なお、 近年では、 上記のアクリル酸水溶液からのアクリル酸の回収を、 抽出溶 剤を用いて行う溶剤抽出法の代りに、 後述の図 1, 2のように水と共沸溶剤を用 いて蒸留し、 共沸分離塔の塔頂からは水と共沸溶剤との共沸混合物を留出させ、 塔底からァクリル酸を回収する共沸分離法も行われている。 メタクリル酸の場合は、 プロピレンの代りにィソブチレンもしくは t一ブチル アルコールを用い、 同様の酸化プロセスを経てメタクリル酸精製物が得られる。 上記の粗アクリル酸、 粗メタクリル酸を蒸留精製して分離された留分中には、 ミカエル付加物などの有用な副生物が含まれているので、 これを分解してァクリ ル酸等を回収することが行われている。
特公昭 6 1 - 3 5 9 7 7号には、 ミカエル付加物を薄膜蒸発器を用いて分解反 応させながら分解反応生成物を留去させる方法が記載されている。
特開平 1 1— 1 2 2 2 2号には、 ァクリル酸に含まれているミカエル付加物を 熱分解して得たァクリル酸を、 ァクリル酸を留出させて回収する精製塔に戻す方 法が記載されている。
(メタ) ァクリル酸の製造工程で副生する副生物中のミカエル付加反応生成物 を分解して (メタ) アクリル酸を回収する方法においては、 分解によって生じた 軽質不純物が回収 (メタ) アクリル酸中に入り込んでこれを汚染し、 製品 (メタ) ァクリル酸の不純物濃度を高くすることがある。 また、 (メタ) ァクリル酸製造ェ 程において不純物が析出して連続操業を阻害する原因になることがある。
ミカエル付加体の分解反応を特公昭 6 1 - 3 5 9 7 7記載の薄膜蒸発器を用い、 分解温度 1 8 0 °C、 圧力 2 0 0〜2 5 0 mmH gの条件を用いた反応蒸留方式で 行うと、 回収アクリル酸中に高濃度の無水マレイン酸が混入し、 精製系にリサィ クルしても廃棄されず、 系内に蓄積し、 この過程で一部マレイン酸に変化し、 さ らにフマール酸に異性化する。 これらの酸が原因で、 多少の運転の変動により、 塔底ラインでの流動性の低下や固形物の析出のトラブルにつながり、 安定した連 続運転を阻害することがある。 さらに、 無水マレイン酸が高濃度で回収アクリル 酸に回収されるような反応蒸留条件を採用すると、 残渣の粘度が上昇し、 抜き出 し配管での流動性が悪化して、 連続運転に支障をきたす。
また、 ミカエル付加体の分解反応を特開平 1 1— 1 2 2 2 2記載の液相での熱 分解方式で実施し、 回収アクリル酸をアクリル酸の精製塔 (アクリル酸を塔頂か ら留出させて回収するもの) に回収した場合、 上記の無水マレイン酸の問題に加 え、 製品中のァクロレイン、 酢酸、 水濃度が上昇し、 製品品質が悪化することが 判明した。
本発明は、上記従来の問題点を解決し、 (メタ) ァクリル酸の製造工程で副生す るミカエル付加反応生成物等の副生物を熱分解し、 (メタ)ァクリル酸を回収する 工程を有した (メタ) アクリル酸の製造方法において、 製品 (メタ) アクリル酸 中への不純物の混入を防止し、 高品質の (メタ) アクリル酸を製造し得るように することを目的とする。
<発明の開示 >
本発明の (メタ) ァクリル酸の製造方法は、 (メタ) ァクリル酸製造原料化合物 を酸化反応させる (メタ) アクリル酸生成反応工程と、 該 (メタ) アクリル酸生 成反応工程からの反応液から軽質分を分離して粗 (メタ) アクリル酸とする蒸留 工程と、 製造工程で生じる副生物を熱分解して (メタ) アクリル酸を回収するェ 程とを有する (メタ) アクリル酸の製造方法において、 この回収された (メタ) アタリル酸を前記蒸留工程に供給することを特徴とするものである。
前記の通り、 (メタ)ァクリル酸の製造工程で副生するミカエル付加物含有副生 物を熱分解して回収した (メタ) アクリル酸中には不純物として軽質不純物が含 まれている。 本発明では、 この分解生成物を、 (メタ) ァクリル酸製造工程におけ る軽質分分離用の蒸留工程に戻すことにより、 製品 (メタ) アクリル酸への軽質 不純物の混入を防止することができる。
<図面の簡単な説明〉
図 1は、 本発明のアクリル酸の製造工程図である。
図 2は、 本発明のアクリル酸の製造工程図である。
図 3は、 従来例に係るアクリル酸の製造工程図である。
<発明を実施するための最良の形態 >
以下に、 本発明をさらに詳しく説明する。
本発明では (メタ) アクリル酸は、 好ましくはプロパン、 プロピレン、 (メタ) ァクロレイン、 イソブチレン、 t 一ブチルアルコール等の接触気相酸化反応させ る反応工程と、 (メタ) アクリル酸と水や酢酸等の低沸点化合物とを分離して粗
(メタ) アクリル酸とする蒸留工程と、 粗 (メタ) アクリル酸を精留する精留ェ 程と、 精留工程の副生物を熱分解する熱分解工程とによって製造される。
上記の水と (メタ) アクリル酸との分離を行うには、 例えば、 反応工程で生じ たガス状酸化反応生成物を水でクェンチしてなる(メタ)ァクリル酸水溶液とを、 共沸溶媒を用いる共沸蒸留法 (図 1 ) で分離するか、 または溶媒を用いる抽出法
(図 3 ) で分離する。 なお、 水を分離した後に酢酸を分離してもよく、 水と酢酸 を同時に共沸剤を用いて分離してもよい (図 2 )。
ミカエル付加物は、 (メタ) ァクリル酸製造工程中、酸化反応およびその後の各 種の精製工程、 特に比較的高温となる各蒸留塔の塔底で生成する副生物であり、
(メタ) アクリル基を持つ化合物に (メタ) アクリル酸、 または酢酸、 または水 がミカエル付加した化合物である。 (メタ)アク リル基を持つ化合物には、 (メタ) ァクロレイン、 (メタ) ァクリル酸が挙げられるが、 さらに (メタ) ァクリル酸が ミカエル付加した化合物も含まれる。 即ち、 (メタ) ァクリル酸に (メタ) ァクリ ル酸がミカエル付加した /3 -ァクリロキシプロピオン酸又は 0 —メタクリロキシ ィソ酪酸 (以下、 ダイマー)、 さらにこのダイマーに (メタ) ァクリル酸がミカェ ル付加した (メタ) アクリル酸 3量体 (以下、 トリマー)、 さらにトリマーに (メ タ) アクリル酸がミカエル付加した (メタ) アクリル酸 4量体 (以下、 テトラマ 一) 等のアクリル基を有するカルボン酸がある。 また、 同様に (メタ) ァクロレ インに (メタ) アクリル酸がミカエル付加した (メタ) アクリル基を有するアル デヒ ドも含まれる。 その他のミカエル付加物として具体的には、 0—ァセトキシ プロピオン酸、 3—ヒ ドロキシプロピオン酸、 さらにはダイマー、 トリマー、 テ トラマ一等の ーァセトキシ体、 —ヒ ドロキシ体、 また、 j3—ァセトキシプロ パナール、 j3—ヒ ドロキシプロパナール、 さらには (メタ) ァクロレインに (メ タ) アクリル酸がミカエル付加したアルデヒ ド類に酢酸、 水がミカエル付加した アルデヒ ドなどがある。 上記のアルデヒ ド体は、 プロセス内でそれらが存在する 環境によって存在割合は異なるが、 ァセタールの形でも存在する。 このミカエル付加物は、 粗 (メタ) アクリル酸から精製 (メタ) アクリル酸を 得るための精留塔の塔底液に濃縮されるので、この精留塔塔底液を熱分解して(メ タ) アクリル酸を回収することが好ましい。 なお、 この精留塔塔底液には、 上記 のミカエル付加物が濃縮されているが、 この他に、 アクリル酸やプロセスで使用 した重合禁止剤、 プロセスで発生したオリゴマーや重合物などの重質物質が含有 される。
本発明において、 ミカエル付加物の分解反応を実施する反応プロセスには、 連 続式、 回分式、 半回分式あるいは間歇抜き出し方式等いかなる方式も採用され得 るが、 連続式が好ましい。 反応器の形式にも特に制限はなく、 完全混合槽型攪拌 槽反応器、 循環型完全混合槽反応器、 または単なる空洞の反応器等のいずれの形 式も採用できる。反応蒸留方式で分解反応ができるよう、反応器の上部に蒸留塔、 凝縮器を接続するか、 反応器とこれら蒸留塔、 凝縮器、 再沸器などを一体化した ものであってもよい。
分解反応温度は 1 4 0〜 2 4 0 °C特に 1 6 0〜 2 0 0 °Cが好ましい。 抜き出し 液基準の液滞留時間は 0 . 2〜 5 0時間特に0 . 5〜 2時間が好ましい。 なお、 分解反応を連続反応で行う場合、 反応時間は抜き出し液で換算した液滞留時間を 反応時間とみなすことができる。 例えば、 反応器内の液容量が 5 0 0 L、 抜き出 し液量が 1 0 0 L /Hの場合、 滞留時間は 5時間となる。
操作圧力は、 7 0〜 1 3 0 k P aが好ましいが、 反応温度での無水マレイン酸 の蒸気圧より高い操作圧力とするのが好ましい。 例えば、 2 0 0 °Cで反応を実施 する場合は、 9 6 k P a以上の操作圧で行うのが無水マレイン酸の蓄積を避ける ために好ましい。
反応蒸留での蒸留残渣は、 抜き出されて燃料などに供される。 反応蒸留での留 出分は (メタ) アクリル酸精製工程中の軽質分分離塔である (メタ) ァクロレイ ン、 酢酸、 水などの低沸点成分を塔頂に分離するための蒸留塔に供給する。 前記 図 3及び次に説明する図 1の場合であれば、 酢酸分離塔に供給し、 図 2の場合で あれば水と酢酸を同時に分離する蒸留塔に供給する。 軽質分の分離塔は、 水を分 離する共沸蒸留塔でもよい。 図 1はァクリル酸水溶液からァクリル酸と水とを蒸留して分離し、 その後酢酸 を蒸留により分離するようにしたァクリル酸製造工程のフローチャートである。 プロピレンおよび またはァク口レインを分子状酸素含有ガスを用いて接触気 相酸化して得たアクリル酸含有ガスは、 アクリル酸捕集塔に導入され、 水と接触 してァクリル酸水溶液となる。
なお、 上記アクリル酸含有ガスには、 N 2, C 0 2, 酢酸、 水なども含有されて いる。 酢酸の一部と、 N 2 , C 0 2は捕集塔の塔頂からベントガスとして抜き出さ れる。
この捕集塔からのアクリル酸水溶液は、 共沸剤と共に脱水塔に供給され、 その 塔頂から水及び共沸剤からなる共沸混合物が留出され、 塔底からは酢酸を含むァ クリル酸が得られる。 脱水塔の塔頂から留出した水および共沸剤からなる共沸混 合物は貯槽に導入され、 ここで主として共沸剤からなる有機相と主として水から なる水相とに分離される。 有機相は重合防止剤が添加された後、 脱水塔に循環さ れる。 一方、 水相はアクリル酸捕集塔に循環され、 アクリル酸含有ガスと接触さ せる捕集水として用いられる。 なお、 必要に応じて水返送ラインに対し水が補給 される。 また、 水返送ライン中の水から共沸剤を回収するため、 水を共沸剤回収 塔 (図示せず) に通してから、 アクリル酸捕集塔に循環させてもよい。
脱水塔の塔底から抜き出された粗アクリル酸は、 残存する酢酸を除去するため に酢酸分離塔に導入され、 その塔頂から酢酸が分離除去される。 塔頂からの酢酸 はァクリル酸を含むので、 一部がプロセスへ戻される場合がある。
酢酸分離塔の塔底からは実質的に酢酸を含まないァクリル酸が得られる。 この ァクリル酸は精留塔に導入され高沸点物が分離除去され、 高純度の製品ァクリル 酸となる。 精留塔塔底液 (高沸物) は分解反応器に導かれる。 分解反応により生 じたアクリル酸等は酢酸分離塔へ供給される。
図 2は、 図 1において脱水塔と酢酸分離塔の各機能を一つにまとめて蒸留塔を 設けたアクリル酸製造方法を示すフローシートである。
捕集塔からのァクリル酸水溶液は、共沸剤の添加を受けて蒸留塔に導入される。 この蒸留塔の塔頂からは水、酢酸及び共沸物が留出し、共沸物は蒸留塔に戻され、 水と酢酸は、 捕集塔へ戻される。 酢酸は捕集塔ベントガスとして系外に排出され る。 蒸留塔塔底液の処理フローは図 1の酢酸分離塔底液の処理フローと同じであ る。 分解反応器からのァクリル酸等は蒸留塔に戻される。 ぐ実施例〉
以下に、 本発明について、 実施例および比較例を挙げて詳細に説明する。
実施例 1
図 2に示すアクリル酸製造工程に従って本発明を実施した。 即ち、 図 2のァク リル酸製造工程の精留塔塔底液を分解反応器で熱分解し、 分解生成物を共沸蒸留 塔に供給した。
ァクリル酸の重質分分離のための精留塔塔底液の組成は、 ァクリル酸 2 1重 量0 /0、 無水マレイン酸 7. 9重量0 /0。 ]3—ヒ ドロキシプロピオン酸 1. 0重量0 /0、 βーァクリロキシプロピオン酸 5 1. 1重量0 /0、ァクリル酸トリマー 2重量0 /0、 β ーァセトキシプロピオン酸 1. 5重量%、その他重質物等 1 5重量%で、 22 k g /hで分解反応器に供給した。 分解反応器は、 内径 200mm、 高さ 4 O Omm のハステロィ C製の攪拌槽であり、 上部に内径 30mm、 高さ 100 Ommでコ ィルパックを 500 m m充填した蒸留塔、および付属のコンデンサーを接続した。 反応器の外部ジャケットに熱媒体を供給して反応温度を 1 90°Cに制御し、 抜き 出し液基準の液滞留時間は 1時間となるように分解反応器内の液面を制御した。 反応圧力は 100 k P aに保った。 運転は配管の閉塞等もなく、 70時間にわた つて安定に連続運転ができた。 分解反応器から留出液は平均 1 6 k g / hで得ら れた。 組成をガスクロマトグラフィーで分析した結果は、 アクリル酸 90.4重 量0 、無水マレイン酸 3. 9重量0 /0、 βーァクリロキシプロピオン酸 2. 5重量0 /0、 その他重質物 1. 5重量%で、 軽質分としては、 ァクロレイン 0.49重量%、 水 0. 29重量。/。、 酢酸 0. 9 3重量%であった。 残渣は平均 6 k g/hで得られ、 組成をガスクロマトグラフィ一で分析した結果は、ァクリノレ酸 10. 5重量0 /0、無 水マレイン酸 1 5. 7重量0 /0、 ーァクリロキシプロピオン酸 1 8. 3重量0 /0、 そ の他重質物等 55. 5重量%であった。 製品ァクリル酸の純度の低下はなかった。 比較例 1
分解反応温度が 1 8 0°Cで、 圧力が 2 7 k p aであること以外は実施例 1と同 じ原料と同じ実験装置および同じ条件を用いて分解反応を実施した。
70時間の連続運転の間、 残渣の抜き出しラインが閉塞気味となる トラブルが 2回あったが、 バイパスラインを使用して連続稼動させた。 留出液は平均 1 8 k gZhで得られた。 留出液の組成をガスクロマトグラフィーで分析した結果、 ァ クリル酸 8 1. 0重量0 /0、 無水マレイン酸 7. 5重量0 /0、 ]3—アタリロキシプロピ オン酸 7. 0重量%、 その他重質物 3. 0重量%で、 軽質分としては、 ァクロレ イン 0. 44重量%、 水 0. 2 6重量%、 酢酸 0. 8 3重量%であった。 残渣は平均 4 k g/hで得られ、 その組成をガスクロマトグラフィーで分析した結果、 ァク リル酸 9. 8重量0 /0、 無水マレイン酸 5. 9重量%、 ]3—ァクリロキシプロピオ ン酸 1 9. 6重量%、 その他重質物等 64. 7重量%であった。 比較例 2
実施例 1において、 分解反応器の留出液をァクリル酸精留塔に供給したこと以 外は同様とした結果、 製品ァクリル酸中に同伴される水の濃度は 1 6 0 p pm、 ァクロレインは 2 6 0 p pm、 酢酸は 4 9 0 p p m上昇することになり、 容認で きるレベルではなかった。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2001年 11月 28 日出願の日本特許出願 (特願 2001— 362898) に基づ くものであり、 その内容はここに参照として取り込まれる。 ぐ産業上の利用可能性 >
以上説明したように、本発明によると、 (メタ) ァクリル酸製造工程で副生する ミカエル付加反応生成物を熱分解し、 高純度の (メタ) アクリル酸を高率にて回 収することができる。 また、 本発明によると、 製造工程での特にマレイン酸類 起因する閉塞などのトラブルも防止できて、安定に連続運転ができるようになる,

Claims

請 求 の 範 囲
1 . (メタ) アクリル酸製造原料化合物を酸化反応させる (メタ) アタリ ル酸生成反応工程と、
該 (メタ) アクリル酸生成反応工程からの反応液から軽質分を分離して粗 (メ タ) アクリル酸とする蒸留工程と、
前記反応工程及び蒸留工程で生じる副生物を熱分解して (メタ) アクリル酸を 回収する工程と、
この回収された (メタ) アクリル酸を前記蒸留工程に供給する工程とを有する (メタ) アクリル酸の製造方法であって、
前記副生物の熱分解温度が 1 4 0〜 2 4 0 °Cであり、
前記熱分解の圧力が 7 0〜 1 3 0 k P aであることを特徴とする (メタ) ァク リル酸の製造方法。
2 . 請求の範囲第 1項において、 前記蒸留工程で得られる粗 (メタ) ァク リル酸を精留する精留工程を有しており、
前記副生物はこの精留工程の精留塔の塔底液であることを特徴とする (メタ) ァクリル酸の製造方法。
3 . 請求の範囲第 1項又は第 2項において、 前記副生物は、 ミカエル付加 物を含有することを特徴とする (メタ) アクリル酸の製造方法。
4 . 請求の範囲第 3項において、 ミカエル付加物は (メタ) アクリル酸の アクリル基に水、 酢酸又は (メタ) アクリル酸が付加した化合物であることを特 徴とする (メタ) アクリル酸の製造方法。
PCT/JP2002/012331 2001-11-28 2002-11-26 Process for producing (meth)acrylic acid WO2003045889A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002355040A AU2002355040A1 (en) 2001-11-28 2002-11-26 Process for producing (meth)acrylic acid
US10/853,199 US20040220427A1 (en) 2001-11-28 2004-05-26 Process for producing (meth)acrylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001362898A JP2003160532A (ja) 2001-11-28 2001-11-28 (メタ)アクリル酸の製造方法
JP2001-362898 2001-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/853,199 Continuation US20040220427A1 (en) 2001-11-28 2004-05-26 Process for producing (meth)acrylic acid

Publications (1)

Publication Number Publication Date
WO2003045889A1 true WO2003045889A1 (en) 2003-06-05

Family

ID=19173326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012331 WO2003045889A1 (en) 2001-11-28 2002-11-26 Process for producing (meth)acrylic acid

Country Status (5)

Country Link
US (1) US20040220427A1 (ja)
JP (1) JP2003160532A (ja)
CN (1) CN1264799C (ja)
AU (1) AU2002355040A1 (ja)
WO (1) WO2003045889A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105721A1 (en) 2004-04-29 2005-11-10 Lg Chem, Ltd. Method for recovering acrylic acid

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002344613A1 (en) * 2001-10-30 2003-06-10 Mitsubishi Chemical Corporation Method for purifying (meth)acrylic acid
EP1688407B1 (en) * 2003-11-28 2017-01-25 Mitsubishi Chemical Corporation Method of purifying (meth)acrylic acid
KR100932467B1 (ko) 2005-12-06 2009-12-17 니폰 쇼쿠바이 컴파니 리미티드 아크릴산의 제조방법
JP5715318B2 (ja) * 2005-12-06 2015-05-07 株式会社日本触媒 アクリル酸の製造方法
US8242308B2 (en) * 2006-09-15 2012-08-14 Arkema Inc. Process for producing acrylic acid
WO2009054688A2 (en) * 2007-10-23 2009-04-30 Lg Chem, Ltd. Method for collecting (meth)acrylic acid and apparatus for collecting (meth)acrylic acid
EP2275400B1 (en) * 2008-04-27 2017-01-11 Nippon Shokubai Co., Ltd. Process for producing acrylic acid, and process for producing hydrophilic resin and process for producing water absorptive resin using the process
CN103861310A (zh) * 2014-04-03 2014-06-18 泰兴市裕廊化工有限公司 一种高纯度醋酸精馏的制备系统
US10968160B2 (en) * 2016-12-22 2021-04-06 Eastman Chemical Company Separation of propionic acid from acrylic acid via azeotropic distillation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053560A1 (de) * 1999-03-06 2000-09-14 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317926A (en) * 1978-01-19 1982-03-02 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for preparing and recovering acrylic acid
JPH1112222A (ja) * 1997-06-25 1999-01-19 Nippon Shokubai Co Ltd アクリル酸の回収方法
DE60001867T2 (de) * 1999-01-29 2004-01-22 Mitsubishi Chemical Corp. Verfahren zur Reinigung von Acrylsäure
JP4048076B2 (ja) * 2001-07-10 2008-02-13 株式会社日本触媒 ミカエル型付加物の分解方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000053560A1 (de) * 1999-03-06 2000-09-14 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105721A1 (en) 2004-04-29 2005-11-10 Lg Chem, Ltd. Method for recovering acrylic acid
US7612231B2 (en) 2004-04-29 2009-11-03 Lg Chem, Ltd. Method for recovering acrylic acid
US8308913B2 (en) 2004-04-29 2012-11-13 Lg Chem, Ltd. Apparatus for recovering acrylic acid

Also Published As

Publication number Publication date
US20040220427A1 (en) 2004-11-04
CN1592731A (zh) 2005-03-09
CN1264799C (zh) 2006-07-19
JP2003160532A (ja) 2003-06-03
AU2002355040A1 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JP3938646B2 (ja) アクリル酸の製造方法
EP0890569B1 (en) Method for producing methyl methacrylate
US6242643B1 (en) Method for preparing aromatic carboxylic acids, aromatic aldehydes, and aromatic alcohols
JP5715318B2 (ja) アクリル酸の製造方法
KR100564192B1 (ko) 아크릴산 및 메타크릴산의 제조 방법
JP4520637B2 (ja) アクリル酸の製造方法
US7109374B2 (en) Method for the continuous extraction of (meth)acrylic acid
EP3063117B1 (en) Process for preparing methyl methacrylate
WO2003045889A1 (en) Process for producing (meth)acrylic acid
RU2021251C1 (ru) Способ получения этилакрилата
JP6135565B2 (ja) (メタ)アクリル酸の製造方法
JP2003183221A (ja) アクリル酸を回収するための抽出方法
EP0102642A1 (en) Process for purifying methacrylic acid
US20080281124A1 (en) Method For Purifying (Meth)Acrylic Acid Obtained By Oxidizing a Gaseous Substrate
US6265625B1 (en) Isolation of glycols
JP2001501175A (ja) 混合物から純粋(メタ)アクリル酸を蒸留分離する方法
JPS60115531A (ja) ブタジエンの製造法
EP0132450B1 (en) Method of purifying methacrylic acid
WO2003057660A1 (fr) Procede de decomposition d&#39;un sous-produit de la production d&#39;ester(meth)acrylique
JP2003226667A (ja) (メタ)アクリル酸類製造時の副生物の分解方法
JPS6353175B2 (ja)
TW201323398A (zh) 用於生產丙烯酸及丙烯酸酯之製程
JP2003226668A (ja) (メタ)アクリル酸エステル製造時の副生物の分解方法
JPH01249743A (ja) メタクリル酸のメタクリル酸メチルとしての回収方法
JPH041153A (ja) バレルアルデヒドの精製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028234022

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10853199

Country of ref document: US

122 Ep: pct application non-entry in european phase