WO2003044509A1 - Methode et systeme d'analyse thermique - Google Patents

Methode et systeme d'analyse thermique Download PDF

Info

Publication number
WO2003044509A1
WO2003044509A1 PCT/JP2002/012076 JP0212076W WO03044509A1 WO 2003044509 A1 WO2003044509 A1 WO 2003044509A1 JP 0212076 W JP0212076 W JP 0212076W WO 03044509 A1 WO03044509 A1 WO 03044509A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sample
thermal
measured
infrared
Prior art date
Application number
PCT/JP2002/012076
Other languages
English (en)
French (fr)
Inventor
Toshimasa Hashimoto
Junko Morikawa
Original Assignee
The Circle For The Promotion Of Science And Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Circle For The Promotion Of Science And Engineering filed Critical The Circle For The Promotion Of Science And Engineering
Priority to AU2002366137A priority Critical patent/AU2002366137A1/en
Priority to EP02803535A priority patent/EP1450155A1/en
Priority to JP2003546091A priority patent/JPWO2003044509A1/ja
Priority to US10/495,925 priority patent/US20050002435A1/en
Publication of WO2003044509A1 publication Critical patent/WO2003044509A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Definitions

  • the present invention relates to a method and an apparatus for thermally analyzing a substance or a material, and particularly to a method and an apparatus for thermally analyzing a sample by dividing the sample into small portions.
  • thermoelectric elements examples include thermoelectric elements, insulating coatings for ICs, thermal recording paper, heat transfer pastes, thin-film insulation materials, cryopreservation liquids, carbon fiber reinforced composite materials, and the like.
  • thermal recording paper examples include thermoelectric elements, insulating coatings for ICs, thermal recording paper, heat transfer pastes, thin-film insulation materials, cryopreservation liquids, carbon fiber reinforced composite materials, and the like.
  • thermoelectric elements examples include thermoelectric elements, insulating coatings for ICs, thermal recording paper, heat transfer pastes, thin-film insulation materials, cryopreservation liquids, carbon fiber reinforced composite materials, and the like.
  • DSC differential scanning calorimetry
  • DTA differential thermal analysis
  • thermophysical properties of a sample using an infrared radiation thermometer there is JP-A-3-189457.
  • the thermal diffusivity of a film having a film thickness of 1 ⁇ or less is measured by non-contact temperature measurement.
  • the thermal diffusivity of a thin film can be measured.
  • the fact that the physical properties can be measured only by the average value of the area of the measured portion is no different from the above-described DSC or D ⁇ .
  • the distribution of thermal properties at the level of / im order or less of the sample greatly affects the material properties.
  • thermal analysis method a method of determining the distribution of heat conduction by in-plane scanning.
  • An object of the present invention is to provide a method and an apparatus which solve the above-mentioned drawbacks of the prior art and enable a thermal analysis of a small portion of a sample.
  • Another object of the present invention is to analyze the behavior of a temperature wave applied alternately at the same time as the thermal analysis of each minute portion of a sample using an infrared camera, and to analyze information on thermal conductivity and thermal diffusivity. It is an object of the present invention to provide a method and a device which can be simultaneously obtained.
  • the present inventor did not measure the thermal characteristics of the sample region to be measured as an “average value” as in the conventional thermal analysis, but instead measured each 1 mm of the sample region.
  • the thermal analysis method of the present invention is based on the above-mentioned findings. More specifically, at least a part of a sample to be measured is subjected to a temperature change, and a sample in the vicinity including a heating unit based on the temperature change is provided. It measures the thermal properties of minute parts using an infrared sensor.
  • a temperature changing means for giving a temperature change to the sample to be measured
  • an infrared image enlarging means for enlarging a minute portion of the sample
  • a thermal characteristic of the minute portion are measured.
  • a thermal analyzer for measuring the thermal characteristics of a minute portion of the sample based on the temperature change using infrared rays while giving a temperature change to at least a part of the sample. Is provided.
  • the thermal characteristics of the sample area to be measured are not measured as “average value” or “barta” as in the conventional thermal analysis, It is measured as thermal property data (or thermal property data or multiple or two-dimensional collections of “elements”) of each minute part constituting the sample area.
  • thermal property data or thermal property data or multiple or two-dimensional collections of “elements”
  • the main preferred embodiments of the present invention are as follows.
  • FIG. 1 is a schematic perspective view of a sample for explaining the definition of thermal conductivity and the like in the present invention.
  • FIG. 2 is a schematic perspective view of a sample for explaining unsteady heat conduction in the present invention.
  • Fig. 3 is a schematic graph (a) and a schematic phase difference graph (b) showing an example of temperature change measurement when an AC-like temperature change is applied to a sample.
  • FIG. 3 is a schematic cross-sectional view for illustrating the operation.
  • FIG. 5 is a diagram showing an example of a circuit diagram of a thin-film temperature sensor.
  • FIG. 6 is a schematic diagram showing an example of a system that can be used in the method of the present invention.
  • Figure 7 is a schematic diagram showing an example of AC power supply voltage and measurement signal.
  • Figure 8 is a schematic graph showing examples of phase lag (a) and amplitude (b).
  • FIG. 9 is a schematic perspective view showing an arrangement example of a microscope and the like that can be used in the method of the present invention.
  • FIG. 10 is a schematic plan view showing a measurement area (a) of a sample that can be used in the method of the present invention, and an example (b) of an arrangement of an AC heat source.
  • FIG. 11 is a schematic plan view showing an example of a minute portion of a sample that can be used in the method of the present invention.
  • FIG. 12 is a schematic plan view showing an example of the relationship between a sample area (a) usable in the method of the present invention and an enlarged part (b).
  • FIG. 13 is a diagram showing a temperature distribution and a temporal change of the temperature.
  • FIG. 14 is a diagram showing a temperature distribution and a temporal change of the temperature.
  • FIG. 15 is a graph showing the temperature distribution and the time change of the temperature.
  • FIG. 16 is a graph showing a temperature distribution and a temporal change of the temperature.
  • FIG. 17 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 18 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 19 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 20 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 21 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 22 is a diagram showing the change over time in the temperature distribution.
  • FIG. 23 is a diagram showing the change over time in the temperature distribution.
  • FIG. 24 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 25 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 26 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 27 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 28 is a diagram showing a temporal change of the temperature distribution.
  • FIG. 29 is a diagram showing a planar temperature distribution in the cell.
  • FIG. 30 is a graph showing the intracellular temperature distribution as a change in each axial direction.
  • FIG. 31 is a graph showing the intracellular temperature distribution as a change in each axial direction.
  • FIG. 32 is a graph showing the intracellular temperature distribution as a change in each axial direction.
  • FIG. 33 is a graph showing the intracellular temperature distribution as a change in each axial direction.
  • FIG. 34 is a graph showing the intercellular temperature distribution.
  • FIG. 35 is a graph showing the intercellular temperature distribution.
  • FIG. 36 is a diagram showing changes in the temperature distribution and the emissivity intensity on the black body surface.
  • FIG. 37 is a diagram showing changes in the temperature distribution and the emissivity intensity on the black body surface.
  • Figure 38 is a diagram showing the changes in the temperature distribution and emissivity intensity on the black body surface.
  • FIG. 39 is a diagram showing changes in the temperature distribution and the emissivity of the black body surface.
  • FIG. 40 is a diagram showing the temperature distribution of onion cells.
  • FIG. 41 shows the temperature distribution of onion cells.
  • FIG. 42 is a diagram showing a temperature distribution of onion cells.
  • FIG. 43 is a diagram showing a temperature distribution of onion cells.
  • FIG. 44 is a diagram showing the temperature distribution of onion cells.
  • FIG. 45 is a diagram showing the temperature distribution of onion cells.
  • FIG. 46 is a diagram showing a measurement example of the temperature diffusion anisotropy of polyethylene'fipril.
  • FIG. 47 is a diagram showing a measurement example of the temperature diffusion anisotropy of polyethylene fibril.
  • FIG. 48 is a diagram showing an example of measurement of the thermal diffusion anisotropy of polyethylene'fipril.
  • FIG. 49 is a diagram showing a measurement example of the temperature diffusion anisotropy of polyethylene'fipril.
  • FIG. 50 is a diagram showing a measurement example of the temperature diffusion anisotropy of polyethylene fibril.
  • FIG. 51 is a diagram showing a measurement example of the temperature diffusion anisotropy of polyethylene fibril.
  • FIG. 52 is a diagram showing a measurement example of the temperature diffusion anisotropy of polyethylene fibril.
  • FIG. 53 is a diagram showing a measurement example of the thermal diffusion in the film plane direction.
  • FIG. 54 is a diagram showing a measurement example of heat diffusion in the film plane direction.
  • FIG. 55 is a diagram showing a measurement example of the thermal diffusion in the film plane direction.
  • FIG. 56 is a diagram showing a measurement example of a cooling / crystallization process of a water droplet in air.
  • FIG. 57 is a diagram illustrating a measurement example of a cooling / crystallization process of a water droplet in air.
  • FIG. 58 is a schematic cross-sectional view of the configuration of the sandwich sample used in the example.
  • Figure 59 shows the temperature gradient observation results for the sandwich-shaped sample. It is rough.
  • Figure 60 is a graph showing the observation results of the temperature gradient of the sandwich sample.
  • Figure 61 is a three-dimensional graph showing the sample temperature.
  • Figure 62 is a graph showing the temperature of the sample as a differential image in three dimensions.
  • FIG. 63 is a three-dimensional graph showing the temperature of the sample.
  • Figure 64 is a three-dimensional graph showing the temperature of the sample as a differential image.
  • thermo properties there is no particular limitation as long as the measurement of its thermal properties is a useful sample.
  • samples include, for example, organic compounds, polymer compounds, organic dyes, ores, glass, ceramics, metals, water and aqueous solutions, plant cells, animal cells, and the like.
  • the sample to be measured is not particularly limited when only an infrared camera is used.
  • a contact-type temperature sensor is used in combination, a film, sheet, or plate-like poorly conductive substance or a liquid or liquid-like poorly conductive substance is desirable.
  • measurement can be performed by coating an electrode with an insulating thin film that is negligible with respect to the thickness of the measurement, or by compensating for the coating.
  • the following can be exemplified as examples of the substance to be measured. (1) Phenol, Urea, Melamine, Polyester, Epoxy
  • Polyurethane cellulose, polystyrene, polypropylene, polyethylene, vinyldene chloride, polyamide, polyacetal, polycarbonate, polysulfone, ABS, polyphenylene oxide, polyethersulfone, polyaryle High molecular compounds such as poly (acrylonitrile), poly (acrylonitrile), poly (ether ether ketone), poly (ether ketone), polyimide and polyolefin.
  • Organic dyes such as cyanine, phthalocyanine, naphthalocyanine, nickelole complex, spiro compounds, fuecopene, fulgide, imidazole, and normal alcohols such as alkanes, ethanol, methanol, and glycerin; Rings such as benzene, toluene and benzoic acid
  • Biological substances such as vascular endothelial cells, plant epidermal cells, algae, blood, organ tissues, and wood
  • Food products such as cheese, cooking oil, tofu, jelly, and meat
  • Fine ceramics such as quartz glass, fluoride glass, soda glass, soda lime glass, lead glass, alumino borosilicate glass, borosilicate glass, aluminosilicate glass, and the like.
  • Carbon fiber reinforced plastic talc mixed plastic, etc. Composite material.
  • the size of the area is not particularly limited as long as the measurement of the thermal property is a useful area (for example, by adjusting the magnification of an infrared image to be input to the infrared sensor).
  • the size of the area to be measured is usually about ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , and furthermore, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , although it depends on the size of the observation device or measuring device used. It is preferably about 0 ⁇ m. If possible, it may be all subdivisions of the sample to be measured.
  • the measurement may be performed by dividing the area (A) to be measured into a plurality of minute areas (B).
  • the number of minute areas (B) in one area to be measured (A) is preferably 4 or more, and more preferably 100 or more. It is preferably 0 or more (especially 100 000 or more).
  • the number of micro-areas (B) in one area to be measured (A) is not particularly limited, but is usually preferably 64 ⁇ 64 or more, Further, it is preferably at least 128 ⁇ 128 (particularly at least 256 ⁇ 256).
  • a change with time of the region to be measured may be tracked as necessary.
  • the time corresponding to one measurement is preferably 0.5 seconds or less, more preferably 0.05 seconds or less, and particularly preferably 1 millisecond or less. .
  • a difference or a ratio in a temporal change of a thermal property between a plurality of minute parts of the measured thermal property or in one or more minute parts may be obtained.
  • the thermal properties of the microportion can typically be expressed continuously as the change in temperature over time, as a difference from the immediately preceding data, and / or as needed. It is also possible to enhance the sensitivity by drawing only the part with emphasis.
  • the “differential image” technique may be used independently or in combination with these techniques.
  • the temperature change to be applied to at least a part of the sample to be measured is not particularly limited. That is, at least a part of the sample can be given as a uniform or temporal change. Further, if necessary, it may be applied to one or more of the minute portions constituting the sample uniformly or for each minute portion, and / or as a change over time. For example, it is preferable to change the temperature of a minute portion by increasing / decreasing the temperature or decreasing the temperature at a constant rate (FIG. 1). If necessary, besides heating and cooling at a constant rate,
  • an AC change may be given at the same time.
  • the AC is a sine wave, but it is also possible to apply an arbitrary waveform such as a triangular wave or a rectangular wave and analyze it by Fourier transform.
  • Examples of such a temperature change include the following.
  • a part of the sample is irradiated with a laser beam or condensed light to become a point heat source.
  • the point heat source in (2) is used as an intermittent light source with a chopper as an AC point heat source.
  • a metal wire, a ribbon, a metal thin film written on a glass plate, etc. are placed in contact with a part of the sample surface, and an alternating current is applied to generate a sinusoidal or stepped temperature wave.
  • Thermal properties that can be used in the present invention include, for example, temperature, temperature change, temperature distribution, latent heat, state of melting or solidification, phase lag of change, and thermal diffusivity ⁇ thermal conductivity ⁇ volume specific heat;
  • Infrared rays that can be suitably used in the present invention are not particularly limited.
  • This infrared ray is preferably an electromagnetic wave having a wavelength of 3 to 5 ⁇ , and more preferably 0.9 to 12 / zm.
  • This infrared light may be laser light emitted from a semiconductor device or the like, if necessary.
  • the infrared sensor or infrared measuring means that can be used in the present invention is not particularly limited. It is preferable to use a non-contact measurement method (for example, an infrared radiation thermometer) in order to minimize the interference with the measurement of the thermal characteristics of a small part of the sample.
  • a non-contact measurement method for example, an infrared radiation thermometer
  • the infrared detecting device to be used in such an infrared measuring means is not particularly limited as long as the target infrared can be detected, but an apparatus having a device such as CCD is preferable.
  • the number of pixels in such a device is preferably at least 64 ⁇ 64, more preferably at least 128 ⁇ 128 (particularly at least 256 ⁇ 256).
  • infrared image magnifying means or “microscopic system” Is not particularly limited as long as it is a device that enables observation of a minute portion of a sample to be measured by infrared rays (or a device capable of forming a magnified image by infrared rays).
  • This “infrared image magnifying means” does not necessarily need to have a lens or a mirror as an optical element.
  • the magnification under a microscope is preferably 5 times or more, more preferably 10 times or more, and particularly preferably 40 times or more.
  • the temperature controller and / or data processing means that can be used in the present invention is not particularly limited. It is preferable that these are controlled by a computer such as a personal computer as necessary, and / or that the obtained data be processed.
  • the data processing method that can be used in the present invention is not particularly limited.
  • the measured data can be processed as a solid amount or the like, in addition to being processed as a normal analog or digital amount. Further, the infrared measurement data may be combined with any other data. These data may be processed to give two-dimensional data, or the two-dimensional data may be integrated in a “round slice” such as NMR (or MRI) or X-ray CT. Thereby, processing may be performed to give pseudo three-dimensional data.
  • L is defined as the thermal conductivity
  • the proportional constant at this time is defined as the thermal diffusivity.
  • Equation (4) is solved under the following conditions as shown in Fig. 2. (i) The sample temperature changes in alternating current on one surface of the sample to be measured.
  • a 4 is represented.
  • Figures 3 (a) and (b) show schematic diagrams of the data.
  • equation (8) for a sample with a known thickness d, one surface is heated in an alternating current by changing the modulation frequency f, and the phase delay ⁇ 0 of the temperature change on the back surface at that time is measured.
  • the thermal diffusivity ⁇ can be determined.
  • the thermal diffusivity is obtained from the phase difference of the temperature change between the heated surface and the back surface of the sample, so that the error due to the absolute value of the temperature is almost a problem.
  • high-precision measurement is possible.
  • thermal diffusion length Under the condition of "thermally thick” Is called the thermal diffusion length because it has a dimension of length, and is one of the important parameters in this measurement method. As shown in Figs. 4 (a) and (b), the relationship between the sample thickness d and the thermal diffusion length ⁇ is
  • the thermal diffusion length is the wavelength of the temperature change, if it is larger than the thickness of the sample, that is, if it is thermally thin, the entire sample will fluctuate with the same period. In this case, the phase difference of the temperature fluctuation between the front surface and the back surface of the sample approaches 0, and the thermal diffusivity can no longer be obtained from Eq. Therefore, the “thermal” required to satisfy equation (8)
  • the condition “thick” means that a temperature wave of at least one wavelength must exist in the sample.
  • a metal thin film is prepared by sputtering a metal such as gold (Au) on a sample, and the thin metal film is used as an AC heater.
  • a metal such as gold (Au)
  • Au gold
  • an AC heater for example, an AC current modulated by a function / synthesizer is supplied, and an AC-like temperature wave is generated in the sample by Joule heat at that time. Since the Joule heat is maximized at its peak value regardless of whether the current is positive or negative, the cycle of the temperature change at this time is twice as large as the AC current, as shown in equation (10).
  • V is voltage
  • I is current
  • P is the amount of heat generated. Therefore, the actual heating frequency is twice as high as the energizing modulation frequency. According to this method, the heat capacity of the AC heater is negligibly smaller than that of the sample, and the AC heater is formed by directly sputtering the sample. The heat loss during the process can be substantially neglected.
  • a metal such as gold (Au) is sputtered on the back surface of the sample (the surface opposite to the side of the AC heater) as in the case of the heater. It is preferable to form a metal thin film by tapping and use it as a thin film temperature sensor.
  • Figure 5 shows a schematic diagram of the circuit diagram of the thin-film sensor. When the temperature changes on one side of the sample temperature sensor, the resistance of the metal thin film also changes in proportion to the temperature due to its temperature dependence.
  • the thin-film temperature sensor circuit incorporates a DC power supply and a dummy resistor. The AC component of the resistance change of the metal thin film is measured as a voltage change by a lock-in amplifier incorporated in parallel with the temperature sensor. I do.
  • the thermal diffusivity is determined not by the absolute value of the temperature but by the phase difference, so that there is substantially no problem.
  • the heat capacity of the temperature sensor is so small as to be negligible compared to the sample, and the temperature is directly sputtered on the sample, so that the heat loss between the sensor and the sample can be ignored.
  • FIG. 1 An example of a basic system configuration (the measuring device of the present invention) that can be suitably used for the measuring method of the present invention is shown in the schematic diagram of FIG.
  • This system uses a function synthesizer to heat the sample with an alternating current, a DC source to convert the temperature change on the back of the sample into a current, and measures only a specific frequency of the temperature change on the back of the sample.
  • a function synthesizer to heat the sample with an alternating current
  • a DC source to convert the temperature change on the back of the sample into a current
  • a QUICK-IN amplifier a hot 'stage for heating and cooling the sample, and a temperature controller
  • a sample cell for storing the sample on the hot' stage
  • a thin film temperature sensor It consists of a digital multimeter for checking the flowing DC source, etc., and a personal computer for controlling each device and processing data.
  • FIG. 9 is a schematic perspective view showing an example of the arrangement of the sample and the infrared image magnifying means (microscope and the like) which can be suitably used in the present invention.
  • a sample as schematically shown in FIG. 10 (a) can be measured in a measurement region as schematically shown in FIG. 11 (FIG. 10).
  • FIGS. 12 (a) and 12 (b) show an example of a sample enlargement mode.
  • Figures 12 (a) and (b) show an example of the relationship between the sample area and the enlarged part.
  • the measurement size of one point is 7.5 ⁇ m ⁇ 7.5 / xm.
  • thermometer sampling interval 1 frame / sec to 550 frames / sec.
  • thermometer resolution 100 pixels to 50,000 pixels Z per square millimeter
  • Types of contact type AC heat sources gold, platinum, silver, Ni, A1, Cr, Ni, C, Ti, etc.
  • the conductive material that can be suitably used for the AC heat source is not particularly limited as long as it generates heat by Joule heat when a current flows.
  • Such conductive materials include, for example, gold, silver, platinum, copper, iron, zinc, antimony, iridium, chromel, constantan, nickel, aluminum, and chrome. , Nickel, carbon and the like.
  • the thickness of the conductive thin film used for the AC heat source and the resistance thermometer is sufficiently thin compared to the sample to be measured so that the interface with the sample to be measured is negligible, and the heat capacity of the sample is small. It is preferable that it is sufficiently small in comparison with the sample to be measured and completely adhered to the sample to be measured. In such a case, it is presumed that one surface of the sample to be measured itself generates AC heat at the modulation frequency of the AC heat source. (For details of such arrangement and use of the AC heat source, see Patent No. Reference can be made to No. 259 157 0
  • a method for applying an AC temperature wave to a part of the sample a method based on light irradiation and absorption can also be used.
  • a method of applying laser irradiation or focused visible or infrared light as it is or by modulating it with an optical chopper.
  • a temperature wave was generated by applying an alternating current having a frequency of 0.5 Hz to the flat heater electrode obtained as described above.
  • the AC voltage input at this time was 3 Vp-p
  • the resistance of the flat electrode was 48 ohms
  • the waveform was sinusoidal.
  • the shutter speed of the infrared camera was set to 1 ms, the number of frames per second was set to 200, and the number of pixels was set to 128 ⁇ 128.
  • Figures 13 and 14 show the temperature distributions of the wrap and ink ribbon (in the figure, the right part is the gold electrode, the upper left part is the wrap, and the lower left part is the ink ribbon).
  • Fig. 15 and Fig. 16 show the time variation of the temperature at each point in the photograph.
  • the phase lag is delayed, and the relationship between the phase obtained from the heat diffusion equation and the thermal diffusivity is calculated from the ink ribbon.
  • the thermal diffusivity was 0.11 mm 2 s— 1 .
  • Thermal diffusivity of the wrapping was 0. 0 9 mm 2 s one 1.
  • the difference between the two thermal diffusivities can also be confirmed as surface information.
  • the difference between Fig. 13 and Fig. 14 was that the observation time was different, but the calculated thermal diffusivity was the same as the above value.
  • FIG. 29 is an enlarged view of FIG.
  • Fig. 30 and Fig. 31 compare the temperature changes for points selected in the short axis direction inside the cell.
  • Fig. 30 is an example of capturing the coagulation exothermic phenomenon inside the cell
  • Fig. 31 is It is an enlarged view of the rising part.
  • the rise time of latent heat generation and the time to take the first maximum are delayed by several tens of milliseconds. You can see that it is running. From this, the temperature propagation velocity in the short axis direction in the cell is estimated to be about 5 ⁇ m Z ms. This is the ice growth rate.
  • the latent heat profile has a different maximum from the main peak, and at this maximum, it shows almost the same time delay as the main peak.
  • Figures 32 and 33 compare the temperature changes in the longitudinal direction of the cell, and the longer the distance from the start point of latent heat generation (1) to both ends, the longer the rise time of latent heat This is observed. From this, the temperature propagation velocity in the long axis direction in the cell is estimated to be about 1 ⁇ Zms. Latent heat has two or three maxima, with three maxima near the longitudinal edge. In comparison with the results of FIGS. 34 and 35, for example, the third maxima in the graphs (16) in these figures is approximately equal to the time of the maximum in the graph (12), which means that This indicates that this cell is affected by latent heat from the adjacent cell in contact with the end of the long axis.
  • Figures 34 and 35 show the seven surrounding cells that have contact with this cell, as compared to the temperature profile near the center.
  • the temperature at each cell center has multiple maxima, but the time when the maximum is greater is when the cells themselves coagulate, and the times do not coincide between cells. Other maxima are the result of the effects of latent heat on surrounding cells.
  • the time delay between the two adjacent cells that touch the long side to give the maximum was almost constant and about 20 ms.
  • thermocouple (trade name: SPA-001-50, SPCH-001_50, manufactured by OMEGA ENGINEERING INC.) With a diameter of 25 / zm is attached to this pseudo black body surface, and the thermocouple is attached.
  • the temperature was taken into a personal computer (trade name: INSPIRON300, manufactured by DELL) via a predetermined interface (trade name: AT-GPIB, manufactured by NATIONAL INSTRUMENTS).
  • the conditions for capturing the temperature data at this time were as follows.
  • a ceramic heater of lcmxlcm size (trade name, manufactured by Sakaguchi Electric Heat Co., Ltd.) was stuck using a silver paste, and 5.9 V, 0. A current of 11 A was applied to generate heat, and the temperature of the sample was slowly changed from room temperature (about 26 ° C) to around 150 ° C.
  • the shutter speed of the infrared camera was 0.5 ms, the number of frames per second was 120, and the number of pixels was 25 6 X 256.
  • Fig. 36 shows an example of the image on the measurement surface.
  • the left half is the pseudo blackbody plane
  • the lower left is the thermocouple
  • the right half is the tephron plane.
  • the temperature of each part can be considered to be constant at about 1 degree per minute.
  • FIG. 37 shows the temporal change of the emissivity intensity at the position near the thermocouple in the pseudo blackbody plane (+2 in the figure) and at the position (+9) in the tephron plane.
  • Emissivity intensity is blackbody It shows a high tendency in the plane.
  • Figure 38 shows the emissivity in the black body plane and the time change of the temperature due to the thermocouple. No time delay is observed in the rate of change with respect to time.
  • FIG. 37 shows the temporal change of the emissivity intensity at the position near the thermocouple in the pseudo blackbody plane (+2 in the figure) and at the position (+9) in the tephron plane.
  • Emissivity intensity is blackbody It shows a high tendency in the
  • the following onion endothelial cells were placed directly on the planar electrode thus formed, and 0.5 Hz (3 Vp_p, the resistance of the planar electrode was 48 ohms, a waveform sinusoidal wave) with respect to the planar electrode.
  • a temperature wave was generated by alternating current at a frequency of.
  • the entire sample system is cooled from room temperature to about ⁇ 30 ° C. at a cooling rate of about 200 ° C./min.
  • the temperature distribution in the AC temperature field used in Example 1 was measured by the same infrared camera.
  • the shutter speed of the infrared camera was 2 ms, the number of frames was 400 frames / second, and the number of pixels was 128 ⁇ 128.
  • Fig. 40 shows an example of the temperature distribution at a certain moment of an onion cooled while applying an AC temperature.
  • the onion and the flat electrode are in contact with each other on the lower surface of the high temperature area (green color on the left).
  • the image shows when cells near the boundary solidify.
  • Figure 41 shows two points (+13 and +14) in the cell that touch the flat electrode and two points (+7 and +6) in the cell that touch the cell but do not touch the flat electrode. Shows the temperature profile. However, (+14) is not in contact with the plane electrode.
  • the thermal diffusivity calculated from the above equation (Equation 8) was about 0.15 mm 2 s 1 .
  • FIG. 42 and Fig. 43 show how the onion cells generate heat due to latent heat under AC current. Even when an AC temperature is applied, the cells exhibit latent heat generation in cell units during the cooling process, and the generation process does not coagulate in the order of adjacent cells.
  • FIG. 44 shows a profile of the temperature change at the points shown in FIG. It can be seen that the shape is disturbed when the latent heat is generated, regardless of whether it is in contact with the flat electrode or not.
  • Figure 45 shows the change in AC temperature at different positions along the long axis of the cell. It can be seen that even within the same cell, the effect of latent heat differs depending on the location.
  • a flat electrode (lmm x 5 mm, 50 nm thick, 50 nm thick) was placed on a super-oriented polyethylene film prepared as described below in the stretching direction and in the vertical direction by gold sputtering. (Resistor: 50 ohms) and after fixing the lead, press-fixing the above polyethylene film on sapphire glass, and then applying an alternating current with a frequency of 0.05 Hz to 300 Hz. (AC voltage is 3 to 10 Vp_P, waveform is A temperature wave was generated by a sinusoidal wave and its composite wave).
  • the infrared microscope camera (trade name: Radiance HS, manufactured by Raytheon) that measures the temperature distribution has a shutter speed of 1 ms, a frame count of 200 Z-seconds, and a pixel count of 128 x 1 It was 2 8.
  • Sample A super oriented polyethylene film (magnification 50 times) prepared by gel stretching method. The thickness is 20 ⁇ , lcm x lcm square (For details of the super-oriented polyethylene film prepared by this gel stretching method, see J. Mater. Sci., 198, 150, 15, 50 5).
  • Figure 46 shows the temperature distribution of polyethylene fibrils observed with a micro-infrared force camera while applying an AC temperature at room temperature.
  • the part that looks black is the sputtering electrode.
  • the long axis of the plate electrode and the orientation direction of the fiber are perpendicular.
  • the temperature propagates in the direction of the fibrils, and it can be seen that the temperature is not transmitted at the micro interface between the fibrils.
  • Figure 47 shows the temperature profiles of three points (+5, +9, and +18 shown in Fig. 46) and one point (+20) shown in Fig. 46 on the electrode at the same distance in the fibril direction.
  • the sample is homogeneous, it should show the same phase lag at the same distance from the AC heat source, but in Figure 47, the phase lag is the same when the distance is the same, based on the waveform on the electrode. Different, indicating that the thermal diffusivity is anisotropic.
  • Fig. 49 shows an enlarged view of the phase lag distribution at the same distance from the heating surface with the addition of one point (+7) at the same distance.
  • Figure 48 shows the same sample as in Figure 46 taken at different moments under the same conditions. The temperature distribution between the fibrils is clearly observed. The above results show that by observing the temperature distribution of the AC field using a micro-infrared camera, it is possible to quantitatively observe the orientation in the material or the non-uniform heat transfer at the interface of the mouth.
  • FIG. 50 shows the results of the temperature distribution of the fibrils in an AC temperature field when the orientation direction of the fibrils and the long axis direction of the parallel electrode are parallel.
  • the traveling wavefront of the AC temperature field is parallel to the long axis of the electrode.However, the temperature of one fibril parallel to the wavefront is almost uniform, and the temperature field is at the mouth interface between adjacent fibrils. It can be seen that the non-uniformity has occurred.
  • Figure 51 shows the temperature profile at equidistant positions from the parallel electrode, that is, positions within one fibril (+19, +22, +23) and one point (+28) on the electrode. . In this case, within one fibril, they show equal phase delay. An enlarged view of Fig. 51 is shown in Fig. 52. No difference in phase lag within the buoyril is observed.
  • Fi is the Brill direction and fibrils direction when determining the thermal diffusion coefficient of the vertical direction 3.
  • 4 mm 2 s - 1 is in its vertical 0. 6 7 mm 2 s It becomes —1 , indicating that the non-uniformity of heat transfer at the micro interface can be evaluated.
  • Figure 53 shows the two-dimensional temperature distribution in the plane electrode and film plane. Show. In the figure, the lower part is the source of the AC temperature wave generated by the flat electrode. It is observed that the wavefront with respect to the traveling direction of the temperature wave is parallel to the long axis direction of the parallel electrode.
  • Fig. 54 shows an example of measuring the change over time of the AC temperature at positions at different distances from the parallel electrode (+1 to 16 in Fig. 53). It can be seen that the phase is delayed as the distance from the parallel electrode increases. An example showing a linear relationship when the phase delay 0 is plotted against the distance d from the electrode position is shown in FIG. Since the slope of the plot is a function of the thermal diffusivity and the frequency, the thermal diffusivity can be calculated if the frequency is known. The thermal diffusivity in the case of Fig. 55 was calculated to be 0.28 mm 2 s- 1 .
  • r l, i r 2 is the thermal conductivity of the standard sample.
  • the sandwich shaped body obtained as described above is applied to one side surface (the surface of one bismuth / tellurium / selenium sintered body that is not in contact with the ceramic plate).
  • a carbon plate was installed for carbon resistance and soaking.
  • the carbon resistor used at this time had a size of 1.5 ⁇ 1.5 mm, a thickness of 0.1 mm and a resistance value of 100 ohm.
  • the copper plate had a size of l x lmm and a thickness of 0.5 mm. In these, a copper plate is adhered to the above-mentioned side surface of the sandwich-like molded body using a heat-resistant silicone (manufactured by Sunhayato Co., Ltd.). And pasted.
  • An aluminum heat sink (size: ixl mm, thickness: 2 mm) is adhered to the other surface of the sandwich-like molded body using a heat-resistant silicon (manufactured by Sunhat). Was.
  • the carbon resistor was energized (3 volts, 0.1 amps), and the temperature of the copper plate was raised by about 10 ° C and waited for the temperature to stabilize. Minutes).
  • the temperature at this time was determined by the temperature sensor attached to the copper plate using a heat-resistant silicone (manufactured by Sunhayato). The measurement was carried out using a thermometer (manufactured by Thermotech Co., Ltd., trade name: chromel alumel thermocouple).
  • the heat loss per unit area was reduced by reducing the heat loss due to convection to the surroundings and the heat loss due to radiation.
  • FIGS. 59 and 60 the infrared temperature observation results obtained in the steady state are shown in FIGS. 59 and 60.
  • the right side shows heat generation and the left side shows a low-temperature heat sink.
  • the horizontal line in the figure is the line that observed the temperature gradient.
  • the measurement results in Fig. 59 are obtained from several analysis results, and the measurement results in Fig. 60 show average values.
  • the thermal conductivity obtained from the temperature gradient in Fig. 60 was 1.25-1.88 W / mK, which was almost the same as the value known from the conventional steady-state method of 1.60.
  • the temperature of the onion cooling and coagulation process was imaged at high speed as surface information and stored in memory.
  • the temperature display at a certain time during the solidification process is displayed three-dimensionally with the temperature taken along the z-axis on the xy plane (Fig. 61 and Fig. 63), and at the same time, the image one or several frames earlier is displayed. The difference is subtracted, and the image is again plotted three-dimensionally as a differential image (FIGS. 62 and 64).
  • the states are shown after 125 milliseconds (Figs. 61 and 62) and after 3555 milliseconds (Figs. 63 and 64) from the start of imaging.
  • the thermal diffusivity can be measured simultaneously by observing temperature wave diffusion from an AC heat source.
  • the analysis method and the analysis device of the present invention can be used without particular limitation in applications in which thermal characteristic analysis of minute parts by an infrared sensor is useful. Examples of such uses include the following.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

明 細 書 熱分析方法および熱分析装置 技術分野
本発明は、 物質ないし材料を熱分析するための方法および装置に 関し、 特に、 試料を微小部分に分割して熱分析するための方法およ び装置に関する。 背景技術
高分子、 バイオマテリ アル、 半導体材料、 セラミ ック材料、 金属 材料、 更には近年のナノ ' テク ノ ロジ一を始めとする複合物質ない し材料関連の幅広い技術分野において、 微小領域で所望の物性を発 現することが可能な材料を開発する要請が益々強まっている。 この ような材料の例と しては、 例えば、 熱電素子、 I C用絶縁塗膜、 感 熱記録紙、 伝熱ペース ト、 薄膜断熱材、 生体凍結保存液、 炭素繊維 強化複合材料等が挙げられる。 上記した微小領域で所望の物性を発 現する材料の開発には、 当然ながら、 微細な構造を精密に制御する ことが必要となる。 更には、 このよ うな微細構造を有する材料の開 発には、 該材料の特性を精密に評価する分析技術が不可欠である。 材料の熱的挙動の分析に基づき、 材料特性を評価する方法と して は、 従来より、 D S C (示差走査熱量測定法) 、 D T A (示差熱分 析法) 等が広く用いられて来た。 これらは、 測定すべき試料におけ る熱特性を鋭敏に検出することが可能という優れた特徴を有してい る。
しかしながら、 D S Cないし D T Aによる分析データは、 その性 質上、 D S Cまたは D T A試料セルに収納された数ミ リ グラム程度 の試料についての平均値と して測定されるものとなる。 したがって
、 これらの方法によ り、 試料のサイズの点では 1 m mオーダー以下 の微小部分の熱分析を行うこ とは困難であった。
赤外線放射温度計を利用して試料の熱物性を測定する方法と して 、 特開平 3— 1 8 9 5 4 7号公報がある。 この方法においては、 非 接触で温度測定を行うことにより、 膜厚が 1 μ πι以下のフィルムの 熱拡散率を測定している。 この方法によれば膜厚の薄いものの熱拡 散率を測定できるが、 測定部分の面積の平均値でしか物性を測定で きないことでは、 上記した D S Cないし D Τ Αと変わりはない。 上記したナノテクノ ロジ一等における微細な構造制御が必要な材 料の開発においては、 試料の / i mオーダー以下のレベルにおける熱 的特性の分布が材料特性に大きく影響するが、 従来においては、 A F Mを応用した熱分析法 (熱伝導の分布を面内スキヤンで求める方 法) は存在する。 しかし試料の微小部分の赤外線カメラを利用した 二次元的熱分析を行う方法は存在しなかった。 発明の開示
本発明の目的は、 上記した従来技術の欠点を解消し、 試料の微小 部分の熱分析を可能とする方法および装置を提供するこ とにある。
本発明の他の目的は、 赤外線カメラを利用した試料の微小部分毎 の熱分析と同時に交流的に与えた温度波の挙動を二次元的に解析し 、 熱伝導率 · 熱拡散率の情報を同時に得ることを可能とする方法お よび装置を提供することにある。
本発明者は鋭意研究の結果、 従来の熱分析におけるよ うに、 測定 すべき試料領域の熱的特性を 「平均値」 と して測定するのではなく 、 該試料領域を構成する個々の 1 m m平方以下、 更には 0 . 1 m m 平方以下 (特に 1 0 /z m平方以下) である微小部分の熱的特性デー タ (ないしは熱的特性データの複数もしくは二次元的または擬似三 次元的な集合) と して測定することが、 上記目的の達成のために極 めて効果的なことを見出した。
本発明の熱分析方法は上記知見に基づく ものであり、 より詳しく は、 測定すべき試料の少なく とも一部に温度変化を与えつつ、 該温 度変化に基づく加熱部を含む周辺にある試料の微小部分の熱的特性 を赤外線センサーを利用して測定するものである。
本発明によれば、 更に、 測定すべき試料に温度変化を与えるため の温度変化手段と、 試料の微小部分を拡大するための赤外像拡大手 段と、 該微小部分の熱的特性を測定するための赤外線測定手段とを 少なく とも含み ; 前記試料の少なく とも一部に温度変化を与えつつ 、 該温度変化に基づく試料の微小部分の熱的特性を赤外線を利用し て測定する熱分析装置が提供される。
上記構成を有する本発明の熱分析方法においては、 従来の熱分析 におけるように、 測定すべき試料領域の熱的特性を 「平均値」 ない し 「バルタ」 と して測定するのではなく、 該試料領域を構成する個 々の微小部分の熱的特性データ (ないしは熱的特性データないし 「 エレメ ント」 の複数もしくは二次元的な集合) と して測定している 。 これによ り、 熱的特性測定の迅速化が可能となり、 しかも、 試料 の特定の領域内または μ mオーダ一の微小部分における熱的特性デ ータの微細な m s e cオーダ一程度以下の経時変化を追跡すること も、 極めて容易となる。
本発明における主な好ましい態様を例示すれば、 以下の通りであ る。
( 1 ) 測定すべき試料を一定速度で昇温または降温させつつ、 該 試料の少なく とも一部を顕微システムによ り拡大し、 赤外線放射温 度計により該拡大部分の温度分布を測定する。 ( 2 ) 測定すべき試料および参照試料を一定速度で昇温または降 温させつつ、 該試料および参照試料の少なく とも一部を顕微鏡によ り拡大し、 その際の温度変化を赤外線放射温度計によ り測定し、 試 料および温度と輻射料が較正された参照試料の温度変化の差を比較 することによ り、 試料の D T A分析を行う。
( 3 ) 測定すべき試料を一定速度で昇温または降温させつつ、 該 試料の少なく とも一部を光照射またはジュール発熱で変調温度波を 与え、 その際の温度変化を赤外線放射温度計によ り測定し、 直流部 分の変化から試料の微小部分の潜熱を観測することによ り、 該微小 部分の融解または固化の状態の分析を行い、 また交流分の解析から 熱拡散率を同時に計測する。
( 4 ) 試料の一部に交流熱源を設けて交流状の温度変化を発生さ せつつ、 該試料を一定速度で昇温または隆温させつつ、 試料の微小 部分を顕微鏡で拡大し、 そのときの温度変化を赤外線温度計で測定 しつつ、 別途設置した温度センサ一での試料の微小部分の交流状の 温度変化の位相遅れを求めることによ り試料の微小部分の熱拡散率 を求める。 図面の簡単な説明
図 1 は、 本発明における熱伝導率等の定義を説明するための、 試 料の模式斜視図である。
図 2は、 本発明における非定常の熱伝導を説明するための、 試料 の模式斜視図である。
図 3は、 交流状の温度変化を試料に与えた際の温度変化測定例を 示す模式的なグラフ ( a ) および模式的な位相差グラフ ( b ) であ る。
図 4は、 「熱的に厚い」 、 および 「熱的に薄い」 の概念を説明す るための模式断面図である。
図 5は、 薄膜温度センサーの回路図の例を示す図である。
図 6は 本発明の方法に使用可能なシステムの例を示す模式図で める。
図 7は 交流電源電圧および測定シグナルの例を示す模式的ダラ フである
図 8は 位相遅れ ( a ) および振幅 ( b ) の例を示す模式的グラ フである
図 9は 本発明の方法に使用可能な顕微鏡等の配置例を示す模式 斜視図である。
図 1 0は、 本発明の方法に使用可能な試料の測定領域 ( a ) 、 お よび交流熱源の配置の例 ( b ) を示す模式平面図である。
図 1 1は、 本発明の方法に使用可能な試料の微小部分の例を示す 模式平面図である。
図 1 2は、 本発明の方法に使用可能な試料領域 ( a ) と、 拡大部 分 ( b ) との関係の例を示す模式平面図である。
図 1 3は、 温度分布および温度の時間変化を示す図である。
図 1 4は、 温度分布および温度の時間変化を示す図である。
図 1 5は、 温度分布および温度の時間変化を示すグラフである。 図 1 6は、 温度分布および温度の時間変化を示すグラフである。 図 1 7は、 温度分布の経時的変化を示す図である。
図 1 8は、 温度分布の経時的変化を示す図である。
図 1 9は、 温度分布の経時的変化を示す図である。
図 2 0は、 温度分布の経時的変化を示す図である。
図 2 1は、 温度分布の経時的変化を示す図である。
図 2 2は、 温度分布の経時的変化を示す図である。
図 2 3は、 温度分布の経時的変化を示す図である。 図 2 4は、 温度分布の経時的変化を示す図である。
図 2 5は、 温度分布の経時的変化を示す図である。
図 2 6は、 温度分布の経時的変化を示す図である。
図 2 7は、 温度分布の経時的変化を示す図である。
図 2 8は、 温度分布の経時的変化を示す図である。
図 2 9は、 細胞における温度分布を平面的に示す図である。
図 3 0は、 細胞内温度分布を、 各軸方向の変化で示すグラフであ る。
図 3 1 は、 細胞内温度分布を、 各軸方向の変化で示すグラフであ る。
図 3 2は、 細胞内温度分布を、 各軸方向の変化で示すグラフであ る。
図 3 3は、 細胞内温度分布を、 各軸方向の変化で示すグラフであ る。
図 3 4は、 細胞間温度分布を示すグラフである。
図 3 5は、 細胞間温度分布を示すグラフである。
図 3 6は、 黒体面の温度分布および放射率強度の変化を示す図で め 。
図 3 7は、 黒体面の温度分布および放射率強度の変化を示す図で ある。
図 3 8は、 黒体面の温度分布および放射率強度の変化を示す図で め O。
図 3 9は、 黒体面の温度分布および放射率強度の変化を示す図で ある。
図 4 0は、 タマネギ細胞の温度分布を示す図である。
図 4 1 は、 タマネギ細胞の温度分布を示す図である。
図 4 2は、 タマネギ細胞の温度分布を示す図である。 図 4 3は、 タマネギ細胞の温度分布を示す図である。
図 4 4は、 タマネギ細胞の温度分布を示す図である。
図 4 5は、 タマネギ細胞の温度分布を示す図である。
図 4 6は、 ポリ エチレン ' フィプリルの温度拡散異方性の測定例 を示す図である。
図 4 7は、 ポリ エチレン ' フイブリルの温度拡散異方性の測定例 を示す図である。
図 4 8は、 ポリエチレン ' フィプリルの温度拡散異方性の測定例 を示す図である。
図 4 9は、 ポリ エチレン ' フィプリルの温度拡散異方性の測定例 を示す図である。
図 5 0は、 ポリ エチレン ' フイブリルの温度拡散異方性の測定例 を示す図である。
図 5 1は、 ポリ エチレン ' フイブリルの温度拡散異方性の測定例 を示す図である。
図 5 2は、 ポリ エチレン · フイブリルの温度拡散異方性の測定例 を示す図である。
図 5 3は、 フィルム平面方向の熱拡散の測定例を示す図である。 図 5 4は、 フィルム平面方向の熱拡散の測定例を示す図である。 図 5 5は、 フィルム平面方向の熱拡散の測定例を示す図である。 図 5 6は、 空気中の水滴の冷却 · 結晶化過程の測定例を示す図で ある。
図 5 7は、 空気中の水滴の冷却 · 結晶化過程の測定例を示す図で ある。
図 5 8は、 実施例で用いたサンドィ ツチ状サンプルの構成の模式 断面図である。
図 5 9は、 サン ドィ ツチ状サンプルの温度勾配観測結果を示すグ ラフである。
図 6 0は、 サン ドィ ッチ状サンプルの温度勾配観測結果を示すグ ラフである。
図 6 1 は、 サンプルの温度を三次元的に示すグラフである。
図 6 2は、 サンプルの温度を差分画像と して三次元的に示すダラ フである。
図 6 3は、 サンプルの温度を三次元的に示すグラフである。
図 6 4は、 サンプルの温度を差分画像と して三次元的に示すダラ フである。 発明を実施するための最良の形態
以下、 必要に応じて図面を参照しつつ本発明を更に具体的に説明 する。 以下の記載において量比を表す 「部」 および 「%」 は、 特に 断らない限り質量基準とする。
(試料)
その熱的特性の測定が有用な試料である限り、 特に制限されない 。 このよ うな試料の例と して、 例えば、 有機化合物、 高分子化合物 、 有機色素、 鉱石、 ガラス、 セラ ミ ックス、 金属、 水および水溶液 、 植物細胞、 動物細胞等を挙げるこ とができる。
本発明において好適な被測定試料と しては、 赤外カメ ラのみを用 いた場合は特に制限はない。 接触型温度センサーを併用した場合、 フィルム、 シー トまたは板状の難導電性の物質あるいは液体状また は液体状となしう る難導電性の物質が望ま しい。 また導電性物質の 場合でも測定の厚さに対して無視しう る程の薄さの絶縁薄膜を電極 にコーティ ングするか、 あるいは塗膜分を補正する方法によ り測定 可能である。 測定対象となる物質の例と しては、 以下のものを例示 するこ とができる。 ( 1 ) フエノール、 ユリ ア、 メ ラ ミ ン、 ポリ エステル、 エポキシ
、 ポリ ウ レタン、 セルロース、 ポリ スチレン、 ポリ プロ ピレン、 ポ リ エチレン、 塩化ビニルデン、 ポリ アミ ド、 ポリ アセタール、 ポリ カーボネイ ト、 ポリサルホン、 A B S、 ポリ フエ二レンオキサイ ド 、 ポリエーテルサルホン、 ポリ アリ レー ト、 アタ リノレ、 ァク リノレニ ト リ ノレ、 ポリ アク リル二 ト リ ル、 ポリ エーテルエーテルケ ト ン、 ポ リ エ一テルケ ト ン、 ポリイ ミ ド、 ポリ オレフイ ン等の高分子化合物
( 2 ) シァニン、 フタロシアニン、 ナフタ ロシアニン、 ニッケノレ 錯体、 スピロ化合物、 フエ口セン、 フルギ ド、 イ ミダゾール等の有 機色素、 ノルマル ♦ アルカン類、 エタノール、 メ タノール、 グリ セ リ ン等のアルコール類、 ベンゼン、 トルエン、 安息香酸等の環状類
、 などの有機化合物
( 3 ) 血管内皮細胞、 植物表皮細胞、 藻類、 血液、 臓器組織、 木 材などの生体関連物質
( 4 ) 金属類
( 5 ) チーズ、 食用油、 豆腐、 ゼリー、 肉類などの食品
( 6 ) 食塩水など各種水溶液、 グリ ース、 潤滑油などの液体物質
( 7 ) 珪石、 ダイァモン ド、 コランダム、 ノレビー、 サファイア、 めのう、 雲母、 岩塩、 カオリ ン、 大理石、 石英、 カンラン石、 石膏 、 硫黄、 重晶石、 みょ うばん石、 蛍石、 長石、 滑石、 石綿、 石灰石 、 ドロマイ ト、 方解石、 水晶、 こはく 、 スピネル、 エメ ラル ド、 ト パーズ、 猫目石、 ひすい、 オパール等の鉱石。 石英ガラス、 フ ッ化 物ガラス、 ソーダガラス、 ソ一ダ石灰ガラス、 鉛ガラス、 アルミ ノ ホウケィ酸ガラス、 ホウケィ酸ガラス、 アルミ ノケィ酸塩ガラス、 等のファイ ンセラ ミ ックス等。
( 8 ) 炭素繊維強化プラスチック、 タルク混入プラスチックなど の複合材料。
(少なく とも一部)
その熱的特性の測定が有用な領域である限り、 (例えば赤外線セ ンサ一に入力されるべき赤外線像の拡大倍率を調整する等の手段に よ り) その領域のサイズは特に制限されない。 使用する観察装置な いし測定装置のサイズ等にも依存するが、 測定すべき領域のサイズ は、 通常、 Ι Ο Ο Ο ίί Πΐ Χ ΐ Ο Ο Ο μ ΐη程度、 更には Ι Ο μ πι Χ ΐ 0 μ m程度であることが好ましい。 可能な場合には、 測定すべき試 料の細分化された部分すべてであってもよい。
本発明においては、 必要に応じて、 測定すべき領域 (A) を複数 の微小領域 (B) に分けて測定を行ってもよい。 このよ うに測定す べき領域を複数の微小領域に分ける場合、 一つの測定すべき領域 ( A) 中の微小領域 (B ) の数は、 4以上であることが好ましく、 更 には 1 0 0 0以上 (特に 1 0 0 0 0以上) であることが好ましい。 熱的特性の測定が可能である限り、 一つの測定すべき領域 (A) 中 の微小領域 (B) の数は特に制限されないが、 通常は 6 4 X 6 4以 上であることが好ましく、 更には 1 2 8 X 1 2 8以上 (特に 2 5 6 X 2 5 6以上) であることが好ましい。
本発明においては、 必要に応じて、 測定すべき領域の経時的変化 を追跡してもよい。 このよ う に経時的変化を追跡する場合、 一回の 測定に対応する時間は、 0. 5秒以下が好ましく、 更には 0. 0 5 秒以下、 特に 1 ミ リ秒以下であることが好ましい。
発明においては、 必要に応じて、 測定された熱的特性の複数の微 小部分間における、 または 1 または複数の微小部分での熱的特性の 経時的変化における差または比を求めてもよい。 微小部分の熱的性 質は、 代表的には、 温度の経時変化を、 直前のデータとの差と して 連続的に表現することもでき、 および 又は、 必要に応じて、 変化 部分のみを強調して描画し高感度化を図るこ と もできる。 これらの 手法とは独立に、 または組み合わせて、 「微分画像」 の手法を用い てもよい。
(温度変化)
発明において、 測定すべき試料の少なく とも一部に与えるべき温 度変化は、 特に制限されない。 すなわち、 該試料の少なく と も一部 に均一または経時的変化と して与えるこ とができる。 また必要に応 じて、 該試料を構成する微小部分の 1つ以上に均一にまたは微小部 分ごとに、 および 又は経時的変化と して与えてもよい。 例えば、 微小部分の温度変化は一定速度で昇温 · 降温または等温とするこ と が好ましい (図 1 ) 。 必要に応じて、 一定速度の昇温 · 降温の他に
、 交流的変化も同時に与えてもよい。 また、 交流的変化を単独で与 えてよい。 交流は一般に正弦波であるこ とが好ましいが、 三角波 ' 矩形波など、 任意波形を与えてフーリ エ変換で解析することもでき る。
このよ うな温度変化と しては、 例えば、 以下のよ うなものが挙げ られる。
( 1 ) 試料台を一定速度で昇温または降温して、 試料も同一速度 で変化させる。
( 2 ) ( 1 ) とは独立して試料の一部にレーザー光線または集光 した光照射で点熱源とする。
( 3 ) ( 2 ) の点熱源をチョ ッパーで断続光と して交流点熱源と する。
( 4 ) 試料表面の一部に金属ワイヤー、 リ ボン、 ガラス板上に書 いた金属薄膜などを接触設置し、 交流を通電して正弦波状または階 段状の温度波を発生させる。
更には、 例えば試料を冷却しつつ、 通電するこ となど上記 ( 1 ) 〜 ( 4 ) の 2以上を適宜組み合わせて、 該試料に複数の規則性をも つた温度変化を与えることも可能である。
(熱的特性)
本発明において利用可能な熱的特性と しては、 例えば、 温度、 温 度変化、 温度分布、 潜熱、 融解または固化の状態、 変化の位相遅れ 、 および熱拡散率 · 熱伝導率 · 体積比熱 ; 並びにこれらの熱的特性 の経時変化、 交流温度波を用いる場合は周波数依存性または複数の 微小部分間のこれらの熱的特性の差または比からなる群から選ばれ る 1以上の特性が挙げられる。 必要に応じて、 これらのうち 2以上 の特性を組み合わせて測定してもよい。
(赤外線を利用する測定)
本発明において好適に利用可能な赤外線は、 特に制限がない。 こ の赤外線は、 通常、 波長 3〜 5 μ πι、 更には 0. 9〜 1 2 /z mの範 囲の電磁波であることが好ましい。 この赤外線は、 必要に応じて、 半導体デバイス等から放射されるレーザー光であってもよい。
(赤外線センサ一)
本発明において利用可能な赤外線センサーないし赤外線測定手段 は、 特に制限されない。 試料の微小部分における熱的特性の測定を 出来る限り妨害しない点からは、 非接触型の測定手段 (例えば、 赤 外線放射温度計) を利用することが好ましい。
このよ うな赤外線測定手段において使用すべき赤外線検出装置は 、 目的とする赤外線の検出が可能である限り特に制限されないが、 C C D等のデバイスを有する装置が好ましい。 このよ うなデバイス における画素数は、 6 4 X 6 4以上、 更には 1 2 8 X 1 2 8以上 ( 特に 2 5 6 X 2 5 6以上) であることが好ましい。
(赤外像拡大手段)
本発明において、 「赤外像拡大手段」 ないし 「顕微システム」 と は、 測定対象たる試料の微小部分の赤外線による微小部分の観察を 可能とする (ないしは赤外線による拡大像を形成可能な) デバイス である限り、 特に制限されない。 この 「赤外像拡大手段」 は、 必ず しも光学的要素と してのレンズないし鏡を有するこ とを要しない。 顕微鏡による拡大倍率は、 5倍以上であるこ とが好ましく 、 更に は 1 0以上、 特に 4 0倍以上であるこ とが好ましい。
(温度コン ト ローラ · データ処理手段)
本発明において使用可能な温度コン ト ローラおよび 又はデータ 処理手段は、 特に制限されない。 これらは、 必要に応じて、 パーソ ナル . コンピュータ等のコンピュータによ り制御し、 および/又は 得られたデータを処理するこ とが好ましい。
本発明において利用可能なデータ処理方法は、 特に制限されない 。 測定データは、 通常のアナログ量、 デジタル量と して処理する以 外に、 ベタ トル量等と しての処理も可能である。 更に、 赤外線測定 データを、 他の任意のデータ と組み合わせてもよい。 これらのデ一 タは、 二次元的データを与えるよ うに処理してもよく 、 または該ニ 次元的データを N M R (ないし M R I ) や X線 C T等のよ う に 「輪 切り」 状に積算するこ とによ り擬似三次元的データを与えるよ うに 処理してもよい。
(測定原理 · 測定装置)
以下、 本発明において好適に利用可能な測定原理および測定のた めの装置について詳細に説明する。
(熱伝導率 · 熱拡散率の定義)
図 1 に示すよ うな面積 A、 板厚 dの板状の試料において、 試料の 片面が温度 1 、 反対面が温度 T 2 ( T J > Τ 2 ) の定常状態にあ る とき、 板厚方向の試料内部で一次元の熱伝導によってのみ熱量 Q が流れる場合、 この熱量 Qは次式によ り表される。 ΔΤ
Q = λ · (Τ,-Τ,) = λ ■ A ( 1 )
d このときの比例定数; Lが熱伝導率と定義される。
試料内の濃度がi Ad非定常のときを考えた場合、 試料内の温度分布と 温度の時間的変化の間は、 試料の密度を p、 定圧比熱を C p とする と、 以下の熱拡散方程式で表される。
(d1 +が T + T
P
p dt 5x2 d:
( 2 )
ΘΤ 2 T , T
― a +
d
このときの比例定数ひが熱拡散率と して定義される。
熱拡散率 α と熱伝導率 λ とは、 次式に示す関係を有する λ = · C - ρ ( 3 )
(交流状熱的変化の際の測定理論)
本発明において、 交流状熱的変化を試料に与える際の測定理論に ついて説明する。
すなわち、 試料の非定常熱伝導について、 厚み方向 ( X軸方向) のみの一次元で考えると、 前述の熱拡散方程式 ( 2 ) は次式のよう になる。
ΘΤ が T
― ( 4 )
ax,
上記の ( 4 ) 式を、 図 2に示すよ うに以下の条件で解く ( i ) 測定すべき試料片方の面で試料温度が交流状に変化する。
X = 0、 T = T 0 - c o s ( ω t )
( i i ) 温度波は無限に拡散する。
( i i i ) 測定すべき試料が、 下記式に示すように、 熱的に厚い
2 a
d >
ω のとき、 その解は次式によ り表される。
Figure imgf000017_0001
ここで COは変調周波数の角速度であり、 変調周波数を f とすると
、 ω = 2 · π · f で表される。 ( 5 ) 式において、 e x pの項が距 離 Xにおける温度増幅で、 c o s の項が Xにおける位相になる。 し たがって、 試料の厚み dにおける温度の時間による変化は、 次式に よ り表される。 ω
(d ,t ) = T0 ■ e X p d c o s ω d ( 6 )
2 · 2 -α
ここで温度の位相差にのみ着目する と、 位相差△ 0は x = 0の面 と X = dの面での位相の差分なので、 ω
厶 0 = ( 7 )
2 oc 4 となり、 ω = 2 · π ί 力、ら、 π
Δ θ = d+ ( 8 )
a 4 と表される。 図 3 ( a ) および ( b ) に、 データの模式図を示す。 上記 ( 8 ) 式よ り、 厚み dが既知の試料について、 一方の面を変 調周波数 f を変化させて交流状に加熱し、 そのときの裏面における 温度変化の位相遅れ Δ 0 を測定するこ とによって、 熱拡散率 αを求 めるこ とができる。 このよ うに、 交流状の温度変化を試料に与える 測定においては、 試料の加熱面と裏面における温度変化の位相差に よ り熱拡散率を求めるため、 温度の絶対値による誤差がほとんど問 題とならず、 高精度な測定が可能である。
(熱拡散長)
前述した 「熱的に厚い」 という条件における
Figure imgf000018_0001
は長さの次元をもつこ とよ り、 熱拡散長とよばれ、 本測定法におい て重要なパラメーターの一つである。 試料の厚み d と熱拡散長 μの 関係は、 図 4 ( a ) および ( b ) に示すよ う に、
d > μ : 熱的に厚い
ά < μ 熱的に薄い
と定義される。 熱拡散長は温度変化の波長であるため、 それが試料 の厚みよ り大きい、 すなわち熱的に薄い場合、 試料全体が同じ周期 で温度変動を起こ してしま う。 この場合、 試料表面と裏面における 温度変動の位相差は 0に近づき、 熱拡散率は ( 8 ) 式からは求めら れなく なる。 したがって、 ( 8 ) 式が成立するために必要な 「熱的 に厚い」 という条件は、 最低 1波長分以上の温度波が、 試料内に存 在する必要がある という こ とを意味する。
(試料表面の加熱方法)
本発明において、 試料表面に熱源を設げる好ましい一態様につい て、 説明する。
このよ うな態様においては、 試料に金 (A u ) 等の金属をスパッ タ リ ングして金属薄膜を作成し、 それを交流ヒーターと して利用す るこ とが好ま しい。 このよ うな交流ヒーターには、 例えば、 ファン クシヨ ン · シンセサイザ一によ り変調した交流電流が通電され、 そ のときのジュール熱によって試料に交流状の温度波を発生させる。 ジュール熱は電流の正負を問わず、 そのピーク値において最大とな るため、 このときの温度変化の周期は、 ( 1 0 ) 式に示すよ う に交 流電流の 2倍となる。
V = V。 - c o s (oi ' t) : l = l。 ' c o s (oj - t) (.9 )
P = I2 · R
= に ■ R ■ c o s2、o» ■ t )
=( l0 2 ■ R/2)■ (1 + c o s (2 · ω ■ t) ) (1 0)
ここで、 Vは電圧、 I は電流、 Pは発熱量である。 したがって、 実際に加熱する周波数は、 通電する変調周波数の 2倍となる。 こ の 方法による と、 交流ヒーターの熱容量が試料に比べて無視できるほ ど小さ く 、 且つ試料に直接スパ ッタ リ ングするこ とによ り交流ヒー ターを形成しているため、 ヒーターと試料の間の熱損失を実質的に 無視するこ とができる。
(試料の裏面における温度変化の測定方法)
本発明の好ましい一態様においては、 試料の裏面 (交流ヒーター 側と反対の面) に、 ヒータ一と同様に金 (A u ) 等の金属をスパ ッ タ リ ングして金属薄膜を形成し、 それを薄膜温度センサーと して利 用することが好ましい。 図 5に、 薄膜センサーの回路図の模式図を 示す。 試料の温度センサ一側で温度が変化すると、 金属薄膜の抵抗 値もその温度依存性によ り温度に比例して変化する。 薄膜温度セン サ一の回路には、 直流電源とダミー抵抗が組み込んであり、 金属薄 膜の抵抗変化の交流成分を電圧の変化として、 温度センサーと並列 に組み込んだ口 ックイン · アンプによ り測定する。 スパッタ リ ング の条件等によ り、 温度センサーの抵抗値の温度依存性も変化するが 、 温度の絶対値ではなく位相差によ り熱拡散率を求めるため、 実質 的に問題にならない。 この方法によると、 温度センサーの熱容量が 試料に比べて無視できるほど小さ く、 試料に直接スパッタリ ングし ているため、 センサ一と試料の間の熱損失を無視することができる
(基本システム構成)
本発明の測定方法に好適に使用可能な基本的なシステム構成 (本 発明の測定装置) の一例を図 6の模式図に示す。
このシステムは、 試料を交流で加熱するためのフ ァ ンク シ ョ ン · シンセサイザー、 試料の裏面の温度変化を電流に変換するための D Cソース、 試料裏面における温度変化の特定の周波数のみを測定す るための口 ックイ ン · アンプ、 試料を加熱ノ冷却するためのホッ ト ' ステージ、 および温度コ ン ト 口一ラー、 試料をホッ ト ' ステージ に収納するためのサンプル · セル、 薄膜温度センサーに流れる D C ソース等をチェックするためのデジタル ' マルチメーター、 各装置 の制御およびデータ処理を行うためのパーソナル · コンピューター によ り構成される。
この図 6 のシステム構成による測定例を、 図 7および図 8 のダラ フに模式的に示す。 (試料配置等の態様)
本発明において好適に使用可能な、 試料、 赤外像拡大手段 (顕微 鏡等) の配置の一例を、 図 9の模式斜視図に示す。 この図 9の例に おいては、 例えば、 図 1 0 ( a ) に模式的に示すような試料を、 図 1 1 に模式的に示すような測定領域で測定することができる (図 1 0 ( b ) には、 このような試料に上記した交流熱源を設ける例を模 式的に示す) 。 また、 図 1 2 ( a ) および ( b ) には、 試料の拡大 の態様の一例を示す。
図 1 2 ( a ) および ( b ) に、 試料の領域と、 拡大部分との関係 の一例を示す。 図 1 2 ( b ) に示した拡大部分を 2 5 0 0画素で測 定する場合には、 1点の測定サイズは、 7. 5 μ m X 7. 5 /x mと なる。
(測定条件の例)
図 6のシステム構成において、 好適に使用可能な条件の例は、 以 下の通りである。
( i ) 試料サイズ : ロ 7. 5 !!!〜 2 0 mm
( i i ) 試料厚み : 0. Ι μ π!〜 3 mm
( i i i ) 測定温度範囲 : 2 0 °C〜 3 5 0 °C
(特別な仕様によれば、 — 2 6 9 °C〜 6 0 0 °C)
( 1 ) 昇温 降温速度 = 0. 1で 分〜 2 0 °じ/分 ( 0. 0 1 °C /分〜 2 0 0 0 °CZ分)
( V ) 測定周波数範囲 : 0. 0 1 H z〜 1 0 MH
( V i ) 交流加熱による試料の温度変化 : 0. 1 °C〜 1 0 °C
(他の測定条件)
( 1 ) 測定すべき試料を一定速度で昇温または降温させつつ、 該 試料の少なく とも一部を顕微鏡によ り拡大し、 赤外線放射温度計に よ り該拡大部分の温度分布を測定する態様において好適に使用可能 な条件の例は、 以下の通りである。
( i ) 試料サイズ : ロ 7. 5 / m〜 2 0 mm
、 i i ) 料厚み : Ι μ π!〜 3 mm
( i i i ) 拡大倍率 : 1倍〜 1 0 0倍
( I V ) 測定範囲 : ロ 7. 5 μ π!〜 El l mm
( V ) 赤外線放射温度計サンプリ ング間隔 : 1 フ レーム/秒〜 5 5 0 0フ レーム/秒 特に遅い方は制限がない
( V i ) 赤外線放射温度計分解能 : 1 0 0画素〜 5 0 0 0 0画素 Z 一平方ミ リ 当たり
( 1 1 ) 昇温 降温速度 = 0. 0 5 °CZ分〜 2 0 0 0 °Cノ分
( 2 ) 測定すべき試料および参照試料を一定速度で昇温または降 温させつつ、 該試料および参照試料の少なく とも一部を顕微鏡によ り拡大し、 その際の温度変化を赤外線放射温度計によ り測定し、 測 定試料および参照試料の温度変化の差を比較することにより、 試料 の D T A分析を行う態様において好適に使用可能な条件の例は、 以 下の通りである。
( i ) 較正試料 : サファイア、 窒化ボロン、 ガラス状炭素
( 3 ) ( 2 ) の熱分析を行いながら、 測定すべき試料の一部を交 流状に加熱して、 距離 d離れた位置に到達した温度波の位相差の遅 れから熱拡散率を測定する態様。
( i ) 接触型交流熱源の形成方法 : スパッタ リ ング、 蒸着、 接着等 で金属抵抗または熱電対、 サ一ミ スタを取り付ける。
( i i ) 接触型交流熱源の種類 : 金、 白金、 銀、 N i 、 A 1 、 C r 、 N i 、 C、 T i 等
(導電性物質)
交流熱源に好適に使用可能な導電性物質は、 電流を流すことでジ ユール熱によ り発熱するものである限り、 特に制限されない。 この よ うな導電性物質の例と しては、 例えば、 金、 銀、 白金、 銅、 鉄、 亜鉛、 アンチモン、 イ リ ジウム、 ク ロ メル、 コ ンスタ ンタ ン、 ニク ロ ム、 アルミ ニウム、 ク ローム、 ニッケル、 カ ーボン等が挙げられ る。
また、 それらの交流熱源および抵抗式温度計に用いる導電性薄膜 は、 被測定試料との界面が無視できる程度に、 その厚みは被測定試 料に比べて充分薄く、 その熱容量は被測定試料に比べて充分小さ く 、 被測定試料に完全に密着しているこ とが好ましい。 このよ うな場 合、 被測定試料の一方の面自体が交流熱源の変調周波数で交流発熱 している と推定される (このよ うな交流熱源の配置 · 利用の詳細に 関しては、 例えば特許第 2 5 9 1 5 7 0号を参照するこ とができる
(非接触型交流加熱)
本発明においては、 試料の一部に交流温度波を与える方法と して 、 光照射一吸収による方法も使用可能である。 この場合、 例えば、 レーザー照射、 集光した可視または赤外光をそのままあるいは光チ ョ ッパーで変調して当てる方法が使用可能である。
以下、 実施例によ り本発明を更に具体的に説明する。
実施例
実施例 1
(温度波がフィルムの厚さ方向へ拡散する とき、 その位相遅れの 計測から、 フィルムの厚さ方向の熱拡散率を求める例)
実験方法 : 2 c m X 3 c m程度のパイ レッ クスガラス (厚さ 0 • 5 mm,
コ一ニング 社製、 商品名パイ レッ クス 7 7 4 0 ) 上に、 金スパ ッタ リ ングによ り 、 リ ボン形状の平面ヒータ一電極 ( l mm X 5 m m、 厚さ 5 0 n m、 平面電極の抵抗 5 0オーム) を形成した。 この 際に用いた金スパッタ リ ング条件は、 以下の通り である。
<金スパッタ リ ング条件 >
サンユウ電子 5 mA、 2 k V、 5分
上記によ り得た平面ヒーター電極に、 周波数 0 . 5 H zの交流を 通電するこ とによ り、 温度波を発生させた。 この際に入力した交流 電圧は、 3 V p — p、 平面電極の抵抗 4 8オーム、 波形サイ ン波で めつ に。
試料 : 市販の食品用ラ ップフィルム (ポリ塩化ビニリデン、 厚さ 8 μ πΐ、 ク レハ化学社製、 商品名ク レラ ップ) および市販の熱転写 用イ ンク リ ボン (フイノレム厚さ 6 /z m、 イ ンク層厚さ約 0. 5 μ πι 、 商品名 A L P S MDイ ンク リ ボン) を上記の電極の上に、 食品 用ラップフィルム とィ ンク リ ボンとが互いに重ならないように配置 した。 このよ うに配置した二つの試料を同時に赤外線カメラ (レイ セオン社製、 商品名 Radiance) で計測した。
赤外線カメ ラのシャ ツタ一ス ピー ドを l m s 、 1秒あたりのフ レー ム数を 2 0 0枚、 画素数を 1 2 8 X 1 2 8 と した。
結果 : 図 1 3および図 1 4に、 ラ ップおよびィ ンク リ ボンの温度 分布 (図中、 右の部分が電極の金、 左上部がラップ、 左下がイ ンク リ ボン) を示す。
図 1 5および図 1 6 には写真中の各ポイ ン トにおける温度の時間 変化を示す。 試料上で電極の側と少し離れた点 ( Ι Ο Ο μ πι) では 、 位相遅れが遅れており、 熱拡散方程式から求めた位相と熱拡散率 の関係から、 計算されたイ ンク リ ボンの熱拡散率は、 0. 1 1 m m 2 s — 1 であった。 ラ ップの熱拡散率は、 0. 0 9 mm 2 s 一 1 であった。 この二枚の熱拡散率の差は、 面情報と しても確認できる 。 また、 図 1 3および図 1 4の差は、 観測時間が異なるが、 計算さ れた熱拡散率は上記の値と同じであった。 実施例 2
(植物内皮細胞の冷却過程の解析一細胞間、 細胞内の結晶化速度解 析および温度伝播の解析)
実験方法 : 氷水上においた冷却板の上にペルチェ素子を設置した 試料台に、 スライ ドガラスに密着させたタマネギ内皮細胞の冷却過 程を、 実施例 1 で用いたものと同様の赤外線カメラで計測した。 冷 却過程においては、 室温から— 3 0 °C付近まで、 冷却速度約 2 0 0 °Cノ分で冷却した。 赤外線カメラのシャッタース ピー ドは、 2 m s 、 フ レーム数は 2 0 0枚/秒、 画素数は 1 2 8 X 1 2 8 とした。 試料 : 新鮮なタマネギの外側から、 1層または 2層目の芽および 根の位置からほぼ中心の位置の外皮を採取し、 スライ ドガラス上に 密着させたものを試料と した。 外皮の厚さは約 7 5 μ πι、 細胞 1つ の大きさは、 約 1 0 0 μ πι Χ 3 0 0 mの楕円形であった。
結果 : 図 1 7〜図 2 8にタマネギ細胞を冷却する過程を時系列で 示した。 タマネギに限らず、 水溶液が凝固する時は、 一般に過冷却 を起こし、 結晶化が始まると潜熱によっていつたん昇温する。 これ らの図においては、 明るい個所が凝固をしている部分であり、 温度 が周囲よ り も高い。 凝固が完了すると、 周囲の温度と同じになり、 図では暗くなる。 細胞内、 および隣り合う細胞間の指定した場所で の温度変化を測定した。 図 2 9は、 図 2 0の拡大図である。
図 1 5中の +印の各位置について、 細胞内 (短軸、 長軸方向) お よび細胞間の温度プロフィールを図 3 0〜図 3 3に示した。
図 3 0および図 3 1 は、 細胞内短軸方向に選定した点について、 温度変化を比較したものである (図 3 0は細胞内の凝固発熱現象を 捉えた例であり、 図 3 1 は その立ち上がり部分の拡大図である) 。 潜熱の発生開始点 ( 1 ) から距離が離れるほど、 潜熱発生の立ち 上がり時間ならびに最初の極大をとる時間に数十ミ リ秒の遅れが生 じているこ とがわかる。 これから細胞内短軸方向の温度伝播速度を 見積もると、 およそ 5 μ m Z m s となる。 これは氷の成長速度であ る。 また、 潜熱のプロ フィールは、 主ピーク とは別の極大をもち、 この極大においても、 主ピーク とほぼ同様の時間遅れを示す。
図 3 4および図 3 5の結果と照らし合わせる と、 図 2 9中の ( 1 0 ) および ( 1 1 ) の点の極大の時間にほぼ一致し、 このこ とは、 この細胞が長軸を接する両隣の細胞の潜熱の影響 (これらの熱伝導 による温度上昇) であるこ とを観測している。
図 3 2および 3 3は、 細胞内長軸方向に温度変化を比較したもの であるが、 潜熱の発生開始点 ( 1 ) から両端方向へ距離が離れるほ ど、 潜熱の立ち上がり時間に遅れが生じるこ とが観察される。 これ から細胞内長軸方向の温度伝播速度を見積もる と、 およそ 1 Ο μ πι Z m s となる。 潜熱は、 2つまたは 3つの極大をもち、 長軸方向の 端に近い位置では、 3つの極大を有する。 図 3 4および図 3 5の結 果と照らし合わせる と、 例えばこれらの図のグラフ ( 1 6 ) の 3つ めの極大はグラフ ( 1 2 ) の極大の時間にほぼ等しく 、 このこ とは 、 この細胞が長軸の端と接する隣の細胞からの潜熱の影響を受けて いるこ とを示す。
図 3 4および図 3 5 は、 この細胞と接点を持つ周囲 7つの細胞を 、 ほぼ中心位置の温度プロ ファイルとの比較と して示している。 各 細胞中心の温度はそれぞれ複数の極大を持つが、 もっと も大きい極 大を示す時間は細胞自信が凝固する時であり、 細胞間で時間は一致 していない。 その他の極大は、 周囲の細胞の潜熱の影響の結果であ る。 長辺を接する 2つずつの隣り合う細胞間の、 もっと も大きい極 大を与える時間の遅れ幅は、 ほぼ一定で約 2 0 m s であった。 この よ う に本法では、 細胞内、 細胞間の熱移動に関する情報が細胞単位 で観測 · 解析するこ とができる。 実施例 3
(黒体を用いた温度校正法)
実験方法 : l c m X l c mの大きさのテフ ロ ンシー ト (厚さ 2 0 0 μ m) を測定用試料と した。 その平板状試料 (大きさ : 1 c m X l c m) の一部に、 カーボンスプレー (放射率 0. 9 4 ; 厚さ 1 μ m) でコー ト し、 擬似黒体とする。 この擬似黒体面に、 校正済の直 径 2 5 /z mのク ロメル ' アルメル熱電対 (商品名 : SPAい 001- 50、 S PCH-001_50、 OMEGA ENGINEERING INC. 社製) を取り付け、 該熱電 対から所定のイ ンターフ ェイ ス (商品名 : AT- GPIB、 NATIONAL INST RUMENTS社製) を介して、 パーソナルコンピュータ (商品名 : INSPI RON3 0 0 0、 D E L L社製) に温度を取り込んだ。 この際の温度 データの取り込み条件は、 以下の通りであった。
く温度データの取り込み条件〉 1 O O O p o i n t s Z s
試料の底部 (下側) には、 l c m x l c mの大きさのセラ ミ クス ヒーター (商品名、 坂口電熱社製) を銀ペース トを用いて密着させ 、 直流電源によ り 5. 9 V、 0. 1 1 Aの電流を加えて発熱させ、 試料の温度を室温 (約 2 6 °C) から、 1 5 0 °C付近までゆっく り と 変化させた。
上記熱電対を含む、 擬似黒体面とテフロ ン面の界面近傍を、 実施 例 1で用いたものと同様の赤外線力メ ラで計測した。 赤外線カメ ラ のシャ ッタースピー ド 0. 5 m s 、 1秒あたりのフレーム数 1 2 0 枚、 画素数 2 5 6 X 2 5 6 と した。
結果 : 図 3 6に測定面の画像の例を示す。 図中、 左半分が擬似黒 体面、 左下に熱電対、 右半分がテフロ ン面である。 本測定では、 毎 分 1度程度で各部分の温度は一定とみなすこ とができる。 図 3 7は 、 擬似黒体面内の熱電対近傍位置 (図中 + 2 ) と、 テフロ ン面内の 位置 (+ 9 ) の放射率強度の時間変化を示す。 放射率強度は、 黒体 面内において高い傾向を示す。 図 3 8には、 黒体面内の放射率と熱 電対による温度の時間変化を示す。 両者の時間に対する変化率に時 間的な遅れは観察されない。 図 3 9は、 以上の結果から求めた擬似 黒体面およびテフ ロ ン面の放射率強度と温度の関係のグラフである 。 このよ う に赤外カメラ視野内に擬似黒体をおく ことで、 同時測定 することで高速スキャ ンの場合でも温度を較正することができる。
実施例 4
(植物内皮細胞の冷却過程解析一交流変調温度を与えながら冷却し たときの細胞間、 細胞内の凝固熱および熱拡散率同時観測法) 実験方法 : 氷水で片面を冷却したアルミ製のヒー ト シンク上にぺ ルチェ素子 (商品名 : MO— 4 0 ) を銀ペース トを用いて設置し、 その上のパイ レックスガラス上に金スパッタ リ ングによ り、 平面電 極 ( l mm X 5 mm、 厚さ 5 0 n m、 平面電極の抵抗 5 0オーム ) を取り付けた。
このようにして形成した平面電極上に、 下記のタマネギ内皮細胞 を直接設置し、 平面電極に対する 0. 5 H z ( 3 V p _ p、 平面電 極の抵抗 4 8オーム、 波形サイ ン波) の周波数の交流通電によ り温 度波を発生させた。 このように温度波を発生させつつ、 上記ベルチ ェ素子に通電することにより、 試料系全体を室温からー 3 0 °C付近 まで冷却速度約 2 0 0 °C/分で冷却し、 細胞内の交流温度場での温 度分布を実施例 1で用いたものを同様の赤外線カメ ラで計測した。 赤外線カ メ ラのシャ ッ タース ピー ドは、 2 m s、 フ レーム数は 4 0 0枚/秒、 画素数は 1 2 8 X 1 2 8 と した。
試料 : 新鮮なタマネギの外側から、 1層または 2層目の芽および 根の位置からほぼ中心の位置の外皮を採取し、 スライ ドガラス上に 展開したものを試料と した。 厚さは約 7 5 ju m、 細胞 1つの大きさ は、 約 5 0 111 3 0 0 // 111でぁった。 結果 : 図 4 0に、 交流温度を与えながら冷却したタマネギのある 瞬間における温度分布の例を示す。 図中、 温度の高い領域 (左の緑 色) の下面で、 たまねぎと平面電極が接している。 画像では、 その 境界付近の細胞が凝固する時を撮影した。 図 4 1は平面電極に接す る細胞内の 2点 (+ 1 3 と + 1 4 ) と、 その細胞に接しかつ平面電 極に接しない細胞内の 2点 (+ 7 と + 6 ) の温度プロフィールを示 す。 ただし (+ 1 4 ) は平面電極に接していない。 平面電極に接す る位置から、 距離が離れるにしたがい、 位相に遅れが生じ、 上述し た式 (数 8 ) から計算した熱拡散率は、 約 0. 1 5 mm 2 s 1 で あった。
図 4 2および図 4 3は交流通電下でのタマネギ細胞の潜熱による 発熱の様子を示す。 交流温度を加えても、 細胞は冷却過程で細胞単 位の潜熱発生を示し、 またその発生過程は隣り合う細胞の順に凝固 することはない。 図 4 4には、 図 4 2中に記した点の温度変化のプ ロフィールを示す。 平面電極に接する場合も、 接しない場合も潜熱 発生の際に交流温度場に影響し、 形が乱れることがわかる。 図 4 5 には、 細胞内長軸方向に異なる位置での交流温度変化を示す。 同一 細胞内であっても、 潜熱の影響は位置によ り異なることがわかる。
実施例 5
(超配向ポリエチレン—フィブリルのミク ロ界面における温度拡散 異方性の測定)
実験方法 : 下記により作成した超配向ポ リ エチレンフ ィルム上に 、 延伸方向、 ならびにその垂直方向に金スパッ タ リ ングによ り平面 電極 ( l mm X 5 mm、 厚さ 5 0 n m、 平面電極の抵抗 5 0オーム ) および、 リー ド部をと りつけ、 さ らにサファイアガラス上に、 上 記ポリエチレンフィルムを圧着固定した後、 0. 0 5 H zから 3 0 0 H z の周波数の交流通電 (交流電圧は 3〜 1 0 V p _ P、 波形は サイ ン波およびその合成波) によ り、 温度波を発生させた。 温度分 布を測定する顕微赤外カメラ (商品名 : Radiance H S、 レイセオ ン社製) のシャッタースピー ドは、 1 m s 、 フ レーム数は 2 0 0枚 Z秒、 画素数は 1 2 8 X 1 2 8 と した。
試料 : ゲル延伸法によ り作成した超配向ポ リ エチレンフィルム ( 倍率 5 0倍) 。 厚さは 2 0 μ πι、 l c m X l c m角 (このゲル延伸 法によ り作成した超配向ポリ エチレンフィルムの詳細については、 文献 J . Mater. Sci. 、 1 9 8 0、 1 5、 5 0 5 を参照すること ができる) 。
結果 : 図 4 6は、 室温で交流温度を与えながら、 顕微赤外力メ ラ で観察したポリエチレンフィブリルの温度分布を示す。 図中、 黒く 見える部分がスパッタリ ング電極である。 平板電極の長軸とフイブ リルの配向方向は垂直となっている。 温度はフィブリルの方向に伝 播し、 フィブリル間のミ ク ロ界面では、 温度が伝わっていない様子 がわかる。 平板電極からフィブリル方向に等しい距離にある 3点 ( 図 4 6に示す + 5、 + 9、 + 1 8 ) と電極上の 1点 (+ 2 0 ) の温 度プロファイルを図 4 7に示す。 試料が均質の場合には、 交流熱源 から等しい距離においては、 等しい位相遅れを示すはずであるが、 図 4 7では、 電極上の波形を基準とすると、 同じ距離であっても、 位相遅れが異なり、 熱拡散率に異方性があることを示す。 図 4 9で は、 さ らに等距離の 1点 (+ 7 ) を加えて、 発熱面から等距離にお ける位相遅れ分布の拡大図を示したものである。 図 4 8は図 4 6 と 同じ試料を同一条件で異なる瞬間に撮影したものである。 フイブリ ル間の温度分布が明瞭に観察される。 以上の結果は、 顕微赤外カメ ラを用いた交流場の温度分布観察によ り、 材料内の配向あるいはミ ク 口界面の熱伝達不均一などについて、 定量的な観測が可能である こ とを示す。 一方、 フィ ブリ ルの配向方向と平行電極の長軸方向が平行である 場合の交流温度場でのフィブリルの温度分布の結果を図 5 0に示す 。 交流温度場の進行波面は電極の長軸に平行であるが、 その波面に 平行なフィブリル 1本の温度はほぼ均一である様子と、 隣り合う フ イブリル間のミ ク 口界面においては、 温度場の不均一が生じている 様子がわかる。 図 5 1 に平行電極から等距離の位置、 すなわち 1本 のフイブリル内の位置 (+ 1 9、 + 2 2、 + 2 3 ) および電極上の 1点 (+ 2 8 ) の温度プロ フィールを示す。 この場合は、 1本のフ イブリル内では、 等しい位相遅れを示す。 図 5 1 の拡大図を図 5 2 に示す。 ブイブリル内での位相遅れの差は認められない。
図 4 9および図 5 2の結果から、 フィ ブリル方向およびその垂直 方向の熱拡散係数を求める とフイブリル方向には 3. 4 mm 2 s - 1 、 その垂直方向には 0. 6 7 mm 2 s — 1 となり、 ミ クロ界面で の熱伝達の不均一性を評価できるこ とがわかる。
実施例 6
(フィルム平面方向の熱拡散率測定) 試料および実験方法 : ガラス (商品名 : パイ レッ クス 7 7 4 0 、 コ一ユング社製) 上に設置したポリイ ミ ド (厚さ 3. 7 μ πι) 表 面に直接金スパッタ リ ングによ り平面電極 ( l mm X 5 mm、 平面 電極の抵抗 5 0オーム) および、 リ ー ド部をと りつけ、 サファイア ガラス (商品名 : 4 3 6 2 9、 エ ドモン ド社製) 上にァロ ン《 2 0 1 でフィルムを固定した後、 0. 1 H z から 1 0 H z の周波数の交 流通電 (交流電圧は 3〜 5 V p — p、 ) によ り、 温度波を発生させ た。 温度分布を測定すべき赤外線カメ ラ (商品名 : RadianceH S、 レイセオン社製) のシャ ッ タース ピー ドは、 0. 5 m s 、 フ レーム 数は 1 5 0 0枚 秒、 画素数は 6 4 X 6 4 と した。
結果 : 図 5 3は平面電極およびフィルム面内の 2次元温度分布を 示す。 図中、 下の部分が平面電極による交流温度波の発生源である 。 温度波の進行方向に対する波面は平行電極の長軸方向に平行であ る様子が観察される。 平行電極から距離の異なる位置 (図 5 3中、 + 1〜十 6 ) において、 交流温度の時間変化を計測した例を図 5 4 に示す。 平行電極からの距離が離れるほど位相が遅れていく様子が わかる。 位相遅れ厶 0を、 電極位置からの距離 dに対してプロ ッ ト すると直線関係を示す例を図 5 5に示す。 このプロ ッ 卜の勾配は、 熱拡散率と周波数の関数となるから、 周波数が既知であれば熱拡散 率を算出できる。 図 5 5の場合の熱拡散率は 0. 2 8 mm2 s — 1 と計算された。
実施例 7
(空気中の水滴の冷却、 結晶化過程の潜熱の観測)
実験方法 : ドライ アイ ス上においた冷却板の上にペルチェ素子 ( 商品名 : MO— 4 0 ) を銀ペース トを用いて設置し、 室温から一 3 0 °C付近まで、 冷却速度約 2 0 0 °CZ分で冷却する過程で付着し、 冷却結晶化する水滴の凝固潜熱を計測した。 赤外線カメラ (商品名 : RadianceH S、 レイセオン社製) のシャ ッ タース ピー ドは、 l m s 、' フ レーム数は 4 0 0枚 秒、 画素数は 1 2 8 X 1 2 8 と した。 結果 : 図 5 7に水滴の潜熱発生の瞬間をと らえた画像を、 図 5 7 には、 図 5 6に示す位置で潜熱が発生した場合の温度変化のプロフ ィ一ノレを示す。
実施例 8
(ミ ク口な定常熱流の観測と熱伝導率測定)
試料および実験方法 : 図 5 8に示すよ うに、 試料 sが標準試料 r 1、 r 2に挟み込まれ、 一次元定常熱流を仮定できる場合 (真空中 、 一定の断面積) 、 周辺への熱損失の影響が無いとすると、 試料の 熱伝導率え s は、 標準試料内の温度勾配との比から、 次式 ( 1 2 ) によって求められる。
'ΘΤ / ΤΙ
λ aT (12)
ο χ 上記式中、 r l 、 ;i r 2は、 標準試料の熱伝導率である。
標準試料と して厚さ 0. 6 mmのセラ ミ ック板 (商品名マコール ' 石原薬品 (株) 製、 セラミ ックの種類 : S i O 2 · A 1 2 O 3 混 合系) を選び、 熱電材料ビスマス ' テルル ' セレン焼結体 (厚さ 0 . 7 mm ; ビスマス ' テルノレ ' セ レンのモノレ比率 = 4 0 : 5 9. 5 : 0. 5 ) 2個の間に、 このセラ ミ ック板をサン ドイ ッチ状に成形 させた。
上記によ り得られたサン ドィ ッチ状の成形体について、 一方の側 面 (一方のビスマス · テルル · セ レン焼結体の、 セラ ミ ック板に接 触しない側の面) にカーボン抵抗と、 均熱化のための銅板を取り付 けた。 この際に用いたカーボン抵抗は、 大きさ 1 . 5 X 1. 5 mm 、 厚さ 0. 1 mm、 抵抗値 1 0 0オームのものであった。 また、 銅 板は、 大きさ l X l m m、 厚さ 0. 5 mmのものであった。 これら は、 サン ドィ ツチ状の成形体の上記側面に銅板を耐熱性シリ コーン (サンハヤ ト社製) を用いて貼り付け、 更に、 該銅板の表面にカー ボン抵抗を耐熱性シリ コーンを用いて貼り付けた。
サン ドィ ツチ状の成形体他方の面には、 アルミニュームの放熱板 (大きさ i x l mm、 厚さ 2 mm) を、 耐熱性シリ コ一ン (サンハ ャ ト社製) を用いて密着させた。
上記の系で、 カーボン抵抗に通電 ( 3ボル ト、 0. 1 アンペア) して、 銅板の温度が 1 0 °C程度上昇して、 且つ該温度が安定化する のを待った (通電開始から 5分程度) 。 この際の温度は、 該銅板に 耐熱性シリ コーン (サンハヤ ト社製) を用いて取り付けた温度セン サ一 (サーモテ ック社製、 商品名 : ク ロメルアルメル熱電対) によ り測定した。
上記した系では、 マコール、 試料、 マコールの断面積を一定 (約
0. 7 0. 7 mm) と し、 周囲への対流による熱損、 また輻射に よる熱損を小さくすることで、 単位面積あたりの熱流をまとめるこ とができた。
上記測定において、 定常状態で得られた赤外線温度観測結果を図 5 9および図 6 0に示す。 図 5 9および図 6 0において、 右側が発 熱、 左が低温のヒー トシンクである。 図中の横線は、 温度勾配を観 測した線である。 図 5 9の測定結果は、 いく つかの解析結果から得 られたものであり、 図 6 0の測定結果は、 平均的な値を示す。 図 6 0の温度勾配から求めた熱伝導率は, 1 . 2 5— 1. 8 8 W/m K で従来の定常法で知られた値 1. 6 0 とぼぼ一致していた。
加えて、 図 5 9および図 6 0においては、 ヒーターと試料の接触 界面での温度低下が明瞭に観測された。 この結果から、 本発明の測 定方法は、 界面熱抵抗測定にも適していることが判明した。
実施例 9
(三次元表示および微分画像)
試料および実験方法 : 実施例 4に準じた。
結果 : タマネギの冷却凝固過程の温度を面情報と して高速撮影し 、 メ モ リ ー へ保存しておいた。 いま凝固過程のある時刻の温度表示 を、 x y面で z軸に温度を取った 3次元的に表示する (図 6 1およ び図 6 3 ) と同時に、 1 ないし数フ レーム前の画像を差し引き、 差 分画像と してやはり 3次元的に再プロ ッ 卜する (図 6 2および図 6 4 ) 。 こ こでは撮影開始から 1 2 5 ミ リ秒後 (図 6 1および図 6 2 ) と、 3 5 5 ミ リ秒後 (図 6 3および図 6 4 ) の状態を示した。
温度 (図 6 1および図 6 3 ) と微分温度 (図 6 2および図 6 4 ) の両方の図をそれぞれの比較から明らかなよ う に、 微分画像はノィ ズが減少し、 凝固による発熱が、 よ り明確になるこ とが判明した。 更に、 これらの各時間の画像を連続的に描画し、 凝固過程を 3次元 動画と して描く ことも可能であった。
産業上の利用可能性
上述したよ う に本発明によれば、 以下の効果を得るこ とができる
( 1 ) 微小部分を観察するため、 迅速な温度変化の測定が容易であ る。
( 2 ) 微小部分を観察するため、 迅速な赤外線 (熱) 分析が容易で ある。
( 3 ) 必要に応じて、 二次元的 (ないしは擬似三次元的) な赤外線 (熱) 分析が容易である。
( 4 ) 必要に応じて、 交流熱源からの温度波拡散を観測するこ とで 熱拡散率が同時測定できる。
本発明の分析方法および分析装置は、 赤外線センサ一による微小 部分の熱的特性分析が有用な用途に、 特に制限なく利用可能である 。 このよ うな用途と しては、 例えば、 以下のものを挙げるこ とがで きる。
( 1 ) 生体物質等の凍結プロセス (従来はシミ ュ レ一シヨ ンによつ た) 等の詳細な実測に基づく解析 ;
( 2 ) 冷凍食品の凍結解凍プロセス等の詳細な実測に基づく解析 ;
( 3 ) ペルチェ素子の通電による吸発熱をミ ク ロ ンオーダ一で観測 するこ とができる
( 4 ) 複合材ゃ発泡材など複雑な系での伝熱、 融解現象が解明でき る ( 5 ) ミク 口な部分での化学反応に基づく温度変化の追尾
( 6 ) 化学反応、 潜熱などでの発熱の周囲への拡散過程
( 7 ) 応力下での材料の変形または破壊に伴う吸発熱の観察
( 8 ) 物質表面からの水の蒸発過程の熱的な観察

Claims

求 の 範 囲
1 . 測定すべき試料の少なく とも一部に温度変化を与えつつ、 該 温度変化に基づく試料の微小部分の熱的特性を赤外線センサーを利 用して測定する熱分析方法。
2 . 複数の微小部分ごとの熱的特性を同時測定する請求項 1記載 一一嘖
の熱分析方法。
3 . 赤外線放射温度計または赤外線 C C Dカメラによ り前記測定 を行う請求項 1 または 2記載の熱分析方法。
4 . 前記温度変化が、 試料の一定速度の昇温または降温である請 求項 1 〜 3のいずれかに記載の熱分析方法。
5 . 前記試料の微小部分を、 赤外像拡大手段によ り拡大しつつ、 該部分の測定を行う請求項 1 〜 4のいずれかに記載の熱分析方法。
6 . 前記赤外像拡大手段が、 顕微レンズまたは反射鏡である請求 項 5に記載の熱分析方法。
7 . 前記試料の微小部分と、 同一の昇温または降温変化を与えら れた準黒体と見なすことができる参照試料の微小部分との熱的特性 を比較する請求項 1 〜 7のいずれかに記載の熱分析方法。
8 . 前記試料の一部に、 レーザー光線を含む光照射、 または通電 ジュール発熱による部分ヒーター (熱源) を配置する請求項 1 〜 7 のいずれかに記載の熱分析方法。
9 . 前記部分ヒーターが交流熱源であり、 これによ り交流状の温 度変化を試料の少なく とも一部に与えて、 その拡散を観測する請求 項 1〜 8のいずれかに記載の熱分析方法。
1 0 . 前記熱的特性が、 温度、 温度変化、 温度分布、 潜熱、 融解 または固化の状態、 温度波の位相遅れから求まる熱拡散率、 温度波 の減衰から求まる熱伝導率 ; 並びにこれらの熱的特性の経時変化、 または複数の微小部分間のこれらの熱的特性の差または比からなる 群から選ばれる 1以上の特性である請求項 1〜 9のいずれかに記載 の熱分析方法。
1 1 . 前記部分ヒータ一に局部的交流温度を与え、 該ヒーターか ら距離 d離れた位置に取り付けた接触センサ一、 または赤外計測さ れる微小部分の温度変化から熱拡散率を求める請求項 9の熱分析方 法。
1 2 . 前記局部的交流温度による温度波の周波数を変化させて、 試料の周波数特性を求める請求項 1 1の熱分析方法。
1 3 . 測定すべき試料に温度変化を与えるための温度変化手段と 試料の微小部分を拡大するための赤外像拡大手段と、
該微小部分の熱的特性を測定するための赤外線測定手段とを少な く とも含み ;
前記試料の少なく とも一部に温度変化を与えつつ、 該温度変化に 基づく試料の微小部分の熱的特性を赤外線を利用して測定する熱分 析装置。
1 4 . 前記温度変化手段が、 測定すべき試料に全体を一定速度で 昇温降温する手段と、 該試料に交流的に温度変化を与えるための手 段とを含む請求項 1 3記載の熱分析装置。
1 5 . 前記温度変化に基づく試料の微小部分の熱的特性を赤外線 センサーおよび微小な接触型温度センサーを利用して測定する請求 項 1 3または 1 4記載の熱分析装置。
1 6 . 前記微小な接触型温度センサーが、 熱電対、 サーミスタ、 または金属抵抗温度計から選ばれる請求項 1 3〜 1 5のいずれかに 記載の熱分析装置。
1 7 . 前記微小な接触型温度センサーが、 平板状サンプルの上下 、 平面上の少なく とも 1点以上に取り付けられて、 熱源からの温度 の拡散を計測できるものである請求項 1 5記載の熱分析装置。
1 8 . 更に、 前記温度変化手段によ り試料全体に与えられるべき 温度を制御する温度コ ン ト ローラーを含む請求項 1 3〜 1 7 のいず れかに記載の熱分析装置。
1 9 . 更に、 測定した温度変化に基づき、 潜熱、 比熱、 熱拡散率 、 熱伝導率、 熱抵抗、 熱コンダクタンス、 熱伝達率から選ばれる 1 種以上のデータへの変換を処理するためのデータ処理手段を含む請 求項 1 3〜 1 6のいずれかに記載の熱分析装置。
PCT/JP2002/012076 2001-11-19 2002-11-19 Methode et systeme d'analyse thermique WO2003044509A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002366137A AU2002366137A1 (en) 2001-11-19 2002-11-19 Method for thermal analysis and system for thermal analysis
EP02803535A EP1450155A1 (en) 2001-11-19 2002-11-19 Method for thermal analysis and system for thermal analysis
JP2003546091A JPWO2003044509A1 (ja) 2001-11-19 2002-11-19 熱分析方法および熱分析装置
US10/495,925 US20050002435A1 (en) 2001-11-19 2002-11-19 Method for thermal analysis and system for thermal analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001353755 2001-11-19
JP2001-353755 2001-11-19

Publications (1)

Publication Number Publication Date
WO2003044509A1 true WO2003044509A1 (fr) 2003-05-30

Family

ID=19165716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012076 WO2003044509A1 (fr) 2001-11-19 2002-11-19 Methode et systeme d'analyse thermique

Country Status (6)

Country Link
US (1) US20050002435A1 (ja)
EP (1) EP1450155A1 (ja)
JP (1) JPWO2003044509A1 (ja)
CN (1) CN1589398A (ja)
AU (1) AU2002366137A1 (ja)
WO (1) WO2003044509A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051744A (ja) * 2006-08-28 2008-03-06 National Institute Of Advanced Industrial & Technology 熱電材料の熱物性値を測定する方法および熱電材料測定装置
US7614716B2 (en) 2003-12-22 2009-11-10 Canon Kabushiki Kaisha Apparatus discriminating type of recording medium and method of discriminating type of recording medium
US7736051B2 (en) 2004-03-30 2010-06-15 Yamatake Corporation Thermoelectric device and mirror surface state detection device
JP2014144468A (ja) * 2013-01-29 2014-08-14 Toyota Motor East Japan Inc 溶接品質保証装置および溶接品質保証方法
JP2015040801A (ja) * 2013-08-23 2015-03-02 独立行政法人物質・材料研究機構 微小熱伝導率測定装置及び測定方法
KR101682309B1 (ko) * 2015-07-29 2016-12-02 경상대학교산학협력단 고분자 중합을 통해 성형한 복합재료의 결함 평가 장치
JP2019086456A (ja) * 2017-11-09 2019-06-06 信越ポリマー株式会社 包装用フィルムの製造方法及び包装用フィルムの判定方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425093B2 (en) * 2003-07-16 2008-09-16 Cabot Corporation Thermography test method and apparatus for bonding evaluation in sputtering targets
WO2005024366A1 (en) * 2003-09-04 2005-03-17 Quartex Temperature measuring apparatus
JP4195935B2 (ja) * 2004-03-01 2008-12-17 独立行政法人産業技術総合研究所 熱物性測定方法及び装置
US7959517B2 (en) * 2004-08-31 2011-06-14 Acushnet Company Infrared sensing launch monitor
JP4774409B2 (ja) * 2004-12-16 2011-09-14 アトランティック ビジネス センター オブ エクセレンス アンド コマーシャライゼイション オブ イノベーション リミテッド 材料をモニタする方法及び装置
US7214941B2 (en) * 2004-12-16 2007-05-08 The Gillette Company Crack detection in razor blades
DE102004061101B3 (de) * 2004-12-18 2006-01-19 Miele & Cie. Kg Verfahren zur Bestimmung des Emissionskoeffizienten ε2 einer zu beheizenden Fläche A2
WO2007028344A1 (fr) * 2005-09-09 2007-03-15 Accelergy Shanghai R & D Center Co., Ltd Procede de detection a haut debit destine aux echantillons solides et systeme correspondant
US7490981B2 (en) * 2005-12-01 2009-02-17 Basf Catalysts Llc Method for determining thermal effusivity and/or thermal conductivity of sheet material
US8055450B2 (en) * 2006-05-18 2011-11-08 Bio-Rad Laboratories, Inc. Method and apparatus for temperature control
DE102006051895A1 (de) 2006-10-31 2008-05-21 Robert Bosch Gmbh Verfahren zur Bewertung von mechanischen Prüfungen einer Beschichtung
FR2924220B1 (fr) * 2007-11-28 2009-12-18 Ct Nat De Machinisme Agricole Dispositif et procede de mesure de proprietes thermophysiques des materiaux
US8911144B2 (en) * 2011-05-17 2014-12-16 Physical Sciences, Inc. Optical coherence tomography (OCT) freeze drying microscopy
FR2983585B1 (fr) * 2011-12-02 2014-01-17 Thales Sa Systeme et procede de sonde d'anemometrie laser a detection coherente continue, mode monoparticule, capable de detecter des conditions givrantes et determiner la severite de givrage
JP2015505035A (ja) * 2011-12-23 2015-02-16 エスゲーエル カーボン ソシエタス ヨーロピアSGL Carbon SE 熱伝導率の測定方法
KR101315772B1 (ko) * 2012-02-29 2013-10-10 현대자동차주식회사 열전도 가시화 분석 시스템 및 방법
CN103512913B (zh) * 2012-06-25 2016-03-30 中国科学院微电子研究所 一种路面状态测定方法及装置
KR101336946B1 (ko) * 2012-11-27 2013-12-04 한국기초과학지원연구원 발열 분포 측정을 이용한 불량 분석 장치 및 방법
CN103235003B (zh) * 2013-04-18 2015-04-08 常州山由帝武节能新材料制造有限公司 真空隔热板导热系数检测装置
BR112016009205B1 (pt) 2013-10-24 2021-03-30 The Regents Of The University Of Michigan Sistema de detecção de gelo e água super-resfriada
US9304081B2 (en) * 2013-10-24 2016-04-05 The Regents Of The University Of Michigan Ice and water detection system
SG10201806086TA (en) * 2014-01-16 2018-08-30 Agency Science Tech & Res System and method for detecting a defective sample
US9791595B2 (en) 2014-03-10 2017-10-17 Halliburton Energy Services Inc. Identification of heat capacity properties of formation fluid
WO2015137915A1 (en) * 2014-03-10 2015-09-17 Halliburton Energy Services Inc. Identification of thermal conductivity properties of formation fluid
JP6212416B2 (ja) * 2014-03-13 2017-10-11 株式会社日立ハイテクサイエンス 熱分析装置用撮像装置、及びそれを備えた熱分析装置
JP6614813B2 (ja) * 2015-06-10 2019-12-04 国立大学法人名古屋大学 配向同定装置、配向同定方法および分布同定装置
CN105092660A (zh) * 2015-06-29 2015-11-25 云南电网有限责任公司电力科学研究院 一种基于电阻温度系数的变压器绕组材质鉴别方法
US10338016B1 (en) 2015-09-28 2019-07-02 Jeffrey Callister Verification of material composition in precious metal object
US10336465B2 (en) 2016-01-08 2019-07-02 The Regents Of The University Of Michigan Ice crystals and volcanic ash detection system
JP6587194B2 (ja) * 2016-02-15 2019-10-09 パナソニックIpマネジメント株式会社 応力分布測定方法及び応力分布測定システム
JP6601748B2 (ja) * 2016-04-06 2019-11-06 株式会社ベテル 熱拡散率測定装置、熱拡散率測定方法およびプログラム
IL262484B2 (en) * 2016-04-22 2023-09-01 Protein Dynamic Solutions Inc Sampling array devices and a system for spectral analysis
CN106645288A (zh) * 2016-09-30 2017-05-10 交通运输部公路科学研究所 桥梁混凝土结构缺陷无损检测系统及其检测方法
EP3363562A1 (de) * 2017-02-16 2018-08-22 Siemens Aktiengesellschaft Verbesserte additive fertigung
WO2018212087A1 (ja) * 2017-05-15 2018-11-22 三菱電機株式会社 欠陥検査装置および欠陥検査方法
PL234170B1 (pl) * 2017-07-18 2020-01-31 Politechnika Slaska Im Wincent Sposób i urządzenie do wyznaczania przewodności cieplnej zwłaszcza materiałów izolacyjnych
WO2019064254A1 (en) * 2017-09-28 2019-04-04 Aksh Optifibre Limited METHOD AND OPTICAL APPARATUS FOR ESTIMATING THE THERMAL DIFFUSIVITY OF DIELECTRIC SOLIDS USING A CCD CAMERA
DE102017127424B3 (de) * 2017-11-21 2019-04-25 Bruker Optik Gmbh Mikroskop
JP7060378B2 (ja) * 2017-12-28 2022-04-26 Koa株式会社 金属皮膜の熱伝導率計測方法
CN108303443B (zh) * 2018-01-09 2020-04-03 中国计量大学 一种薄片材料面向导热性能稳态测试方法
US10621865B2 (en) 2018-03-29 2020-04-14 The Regents Of The University Of Michigan Road condition monitoring system
CN108562380A (zh) * 2018-04-15 2018-09-21 重庆大学 一种粉体发热剂发热功率测试方法
US10508952B1 (en) 2018-10-31 2019-12-17 The Regents Of The University Of Michigan Optimum spectral bands for active vision systems
CN109900738B (zh) * 2019-03-29 2021-05-11 中北大学 基于大功率激光器加热材料的装置及方法
CN110133043A (zh) * 2019-06-04 2019-08-16 武汉科技大学 测量固态材料热导率的方法及系统
WO2021034445A1 (en) * 2019-08-16 2021-02-25 Illumina, Inc. Method for measuring thermal resistance between a thermal component of an instrument and a consumable
NL2023792B1 (en) 2019-08-16 2021-03-24 Illumina Inc Method for measuring thermal resistance at interface between consumable and thermocycler
AT524363B1 (de) * 2020-10-30 2022-06-15 Anton Paar Gmbh Messgerät mit elektrothermischem Wandler zum Einstellen eines thermischen Widerstandes, und Betriebsverfahren
CN112816519A (zh) * 2020-12-29 2021-05-18 中车工业研究院有限公司 一种光热面料综合性能的测量装置和方法
CN112986324A (zh) * 2021-03-05 2021-06-18 南京大学 原子力显微镜联合超快扫描量热仪的分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413446A (en) * 1987-07-08 1989-01-18 Shinku Riko Kk Differential type measurement method for specific heat by alternating current
JPH07103921A (ja) * 1993-10-01 1995-04-21 Shinku Riko Kk 交流カロリメトリによる熱定数測定方法及び装置
JPH10221279A (ja) * 1997-02-05 1998-08-21 Shinku Riko Kk 交流カロリメトリによる熱拡散率測定方法及び装置
JPH10318953A (ja) * 1997-05-14 1998-12-04 Sharp Corp 交流加熱による熱拡散率の測定方法およびこれに用いる測定サンプルの構造
JPH11218509A (ja) * 1998-01-30 1999-08-10 Ichiro Takahashi 熱三定数の点接触式測定方法
JP2000121585A (ja) * 1998-10-13 2000-04-28 Agency Of Ind Science & Technol 微小領域熱物性測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789654A (en) * 1972-08-18 1974-02-05 Nasa Method for determining thermo-physical properties of specimens
US3892125A (en) * 1973-08-24 1975-07-01 Sanki Eng Co Ltd Apparatus for use in measurement of thermal constant of materials
US4027524A (en) * 1976-02-27 1977-06-07 Nasa Apparatus for determining thermophysical properties of test specimens
US4259859A (en) * 1979-05-03 1981-04-07 Yoshihiro Iida Method for determination of thermal properties by arbitrary heating
US5080495A (en) * 1989-08-30 1992-01-14 Mitsui Toatsu Chemicals, Inc. Method and apparatus for measuring thermal diffusivity by ac joule-heating
JP2688012B2 (ja) * 1995-05-12 1997-12-08 工業技術院長 熱拡散率測定方法
US20020018510A1 (en) * 1996-07-31 2002-02-14 Murphy John C. Thermal-based methods for nondestructive evaluation
WO1998015813A1 (en) * 1996-10-09 1998-04-16 Symyx Technologies Infrared spectroscopy and imaging of libraries
US6517238B2 (en) * 2001-01-18 2003-02-11 The United States Of America As Represented By The United States Department Of Energy Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413446A (en) * 1987-07-08 1989-01-18 Shinku Riko Kk Differential type measurement method for specific heat by alternating current
JPH07103921A (ja) * 1993-10-01 1995-04-21 Shinku Riko Kk 交流カロリメトリによる熱定数測定方法及び装置
JPH10221279A (ja) * 1997-02-05 1998-08-21 Shinku Riko Kk 交流カロリメトリによる熱拡散率測定方法及び装置
JPH10318953A (ja) * 1997-05-14 1998-12-04 Sharp Corp 交流加熱による熱拡散率の測定方法およびこれに用いる測定サンプルの構造
JPH11218509A (ja) * 1998-01-30 1999-08-10 Ichiro Takahashi 熱三定数の点接触式測定方法
JP2000121585A (ja) * 1998-10-13 2000-04-28 Agency Of Ind Science & Technol 微小領域熱物性測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JUNKO MORIKAWA, TOSHIMASA HASHIMOTO, MEMBRANE, vol. 25, no. 6, 2000, pages 316 - 317, XP002961735 *
JUNKO MORIKAWA, TOSHIMASA HASHIMOTO: "Netsu sokutei toron koen yoshishu", vol. 37, 5 November 2001 (2001-11-05), pages 22 - 23, XP002961734 *
MASANOBU KOBAYASHI, AKIRA ONO, JAPANESE JOURNAL OF OPTICS, vol. 17, no. 10, 1988, pages 522 - 523, XP002961733 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7614716B2 (en) 2003-12-22 2009-11-10 Canon Kabushiki Kaisha Apparatus discriminating type of recording medium and method of discriminating type of recording medium
US7736051B2 (en) 2004-03-30 2010-06-15 Yamatake Corporation Thermoelectric device and mirror surface state detection device
JP2008051744A (ja) * 2006-08-28 2008-03-06 National Institute Of Advanced Industrial & Technology 熱電材料の熱物性値を測定する方法および熱電材料測定装置
JP4595073B2 (ja) * 2006-08-28 2010-12-08 独立行政法人産業技術総合研究所 熱電材料測定装置
JP2014144468A (ja) * 2013-01-29 2014-08-14 Toyota Motor East Japan Inc 溶接品質保証装置および溶接品質保証方法
JP2015040801A (ja) * 2013-08-23 2015-03-02 独立行政法人物質・材料研究機構 微小熱伝導率測定装置及び測定方法
KR101682309B1 (ko) * 2015-07-29 2016-12-02 경상대학교산학협력단 고분자 중합을 통해 성형한 복합재료의 결함 평가 장치
JP2019086456A (ja) * 2017-11-09 2019-06-06 信越ポリマー株式会社 包装用フィルムの製造方法及び包装用フィルムの判定方法

Also Published As

Publication number Publication date
CN1589398A (zh) 2005-03-02
US20050002435A1 (en) 2005-01-06
EP1450155A1 (en) 2004-08-25
JPWO2003044509A1 (ja) 2005-03-24
AU2002366137A1 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
WO2003044509A1 (fr) Methode et systeme d&#39;analyse thermique
Kim et al. Detection of liquid–vapor–solid triple contact line in two-phase heat transfer phenomena using high-speed infrared thermometry
JP5489789B2 (ja) 試料温度測定装置及び試料温度測定方法
Sakakibara et al. Measurement of temperature field of a Rayleigh-Bénard convection using two-color laser-induced fluorescence
Jiang et al. A new elliptical-beam method based on time-domain thermoreflectance (TDTR) to measure the in-plane anisotropic thermal conductivity and its comparison with the beam-offset method
Hetsroni et al. Infrared temperature measurements in micro-channels and micro-fluid systems
Baba et al. Development of ultrafast laser flash methods for measuring thermophysical properties of thin films and boundary thermal resistances
JP2004325141A (ja) 熱分析方法および熱分析装置
CN109444053B (zh) 瞬态传热显微镜及其进行微区热测量的方法
Song et al. Experimental investigation of evaporation-induced convection in water using laser based measurement techniques
Liu et al. Experimental design
Ryu et al. Quadrupole modelling of dual lock-in method for the simultaneous measurements of thermal diffusivity and thermal effusivity
Balss et al. Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers
Natesan et al. A micro-thermal sensor for focal therapy applications
Ryu et al. Thermal diffusivity of organosuperelastic soft crystals during stress-induced phase transition
Blumm et al. Thermal characterization of liquids and pastes using the flash technique
Guo et al. Microscale heat-flux meter for low-dimensional thermal measurement and its application in heat-loss modified angstrom method
Buongiorno et al. Micro-and nanoscale measurement methods for phase change heat transfer on planar and structured surfaces
Davaji et al. Microscale direct measurement of localized photothermal heating in tissue-mimetic hydrogels
JP2007093509A (ja) 熱物性測定方法及び装置
Ishizaki et al. Microscale mapping of thermal contact resistance using lock-in thermography
Orie et al. Micro-scale thermal diffusivity measurements of banded spherulites of poly-(l-lactic acid) using a thermo-electric micro sensor
Lucas et al. Thermal properties of infrared absorbent gold nanoparticle coatings for MEMS applications
Hänninen Implementing the 3-omega technique for thermal conductivity measurements
Kim et al. Rapid PCR kit: lateral flow paper strip with Joule heater for SARS-CoV-2 detection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003546091

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10495925

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002803535

Country of ref document: EP

Ref document number: 20028229983

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002803535

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002803535

Country of ref document: EP