WO2003016889A1 - Systeme de controle pour fret aerien ou vehicule - Google Patents

Systeme de controle pour fret aerien ou vehicule Download PDF

Info

Publication number
WO2003016889A1
WO2003016889A1 PCT/CN2002/000563 CN0200563W WO03016889A1 WO 2003016889 A1 WO2003016889 A1 WO 2003016889A1 CN 0200563 W CN0200563 W CN 0200563W WO 03016889 A1 WO03016889 A1 WO 03016889A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector arm
conveyor
collimator
accelerator
vertical
Prior art date
Application number
PCT/CN2002/000563
Other languages
English (en)
French (fr)
Inventor
Kejun Kang
Wenhuan Gao
Jianmin Li
Zhiqiang Chen
Yinong Liu
Yuanjing Li
Chuanxiang Tang
Junli Li
Li Zhang
Jianjun Su
Rongxuan Liu
Original Assignee
Tsinghua University
Nuctech Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Nuctech Company Limited filed Critical Tsinghua University
Priority to JP2003521345A priority Critical patent/JP2004538486A/ja
Priority to KR1020037014876A priority patent/KR100675827B1/ko
Priority to DE10297101.3T priority patent/DE10297101B4/de
Publication of WO2003016889A1 publication Critical patent/WO2003016889A1/zh
Priority to US10/774,366 priority patent/US6922461B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G13/00Roller-ways

Definitions

  • the present invention relates to an automatic scanning type large object radiation detecting system, and more particularly to an air collecting cargo or vehicle inspection system.
  • the present invention allows for one-time inspection of all air cargo or vehicles.
  • packaged goods refers to air cargo loaded in a container, and also refers to air cargo loaded on pallets, pallets or the like in order to allow several items to be simultaneously monitored.
  • the air cargo or vehicle inspection system is one of the inspection equipment used by the customs.
  • the inspection of aviation articles at home and abroad mainly uses unpacking inspection or X-ray inspection.
  • the inspection time for opening the box is long, the daily inspection amount is low, and the inspection cost is high.
  • X-ray machine inspection due to its low ray energy and poor penetrability, mainly by reflection imaging, so the part that can be seen clearly in the image is limited to objects in the range of 20-30 cm from the box wall on one side of the container, image quality and
  • the scope of application cannot meet the requirements of most customs users.
  • Domestic and foreign large-scale container inspection systems using accelerators or cobalt 60 as radiation sources have been developed, such as the large container inspection systems produced by Heymann and British Aerospace.
  • Chinese utility model patent 00233357.0 discloses a fixed container inspection Inspecting the system's chain conveyor, the utility model uses a slab conveyor instead of the original inspection system's dragging device.
  • the slab conveyor is used as a carrier for conveying the object to be inspected through the scanning channel, and a power truck loading container is required for loading and unloading the upper and lower plates.
  • existing inspection systems usually use thick cement walls or large-area forbidden areas to ensure human-machine safety. Therefore, compared with air-contained cargo or vehicle inspection systems, existing systems have a large area of civil engineering. , system engineering cost is high, difficult to repair, container detection efficiency is low.
  • the object of the present invention is to provide an inspection system for an air cargo or vehicle, so as to avoid unpacking inspection and improve efficiency;
  • Another object of the present invention is to provide an inspection system for an air cargo or vehicle that meets the requirements for inspection of air cargo or vehicles by one-time passage as stipulated by the International Aviation Organization;
  • Another object of the present invention is to provide an inspection system for an air cargo or vehicle that is safe
  • Another object of the present invention is to provide an inspection system for an air cargo or vehicle that has a fast inspection speed
  • Another object of the present invention is to provide an inspection system for an air cargo or vehicle having high resolution and high image quality.
  • an air cargo cargo or vehicle inspection system using an accelerator as a radiation source which mainly includes an electron linear accelerator, a detector, a collimator, a transverse detector arm, and a vertical Detector arm, conveyor, radiation shielding wall and «r
  • operation room, equipment control cabin is equipped with scanning control module, image acquisition module and operation detector.
  • the operation room is equipped with operation console and control system, accelerator and collimator.
  • the vertical detector arms are respectively mounted on the accelerator base, the collimator base, and the vertical detector arm base.
  • the structural feature is that the detectors are respectively installed in the transverse detector arm and the vertical detector arm, the accelerator, the collimator, Horizontal detection
  • the arm is in the same plane as the vertical detector arm, the upper end of the collimator supports the transverse detector arm, and the vertical detector arm is connected to the lateral detector arm on the other side of the accelerator, the collimator, the transverse detector arm, and the vertical
  • the detector arm constitutes a stable gantry structure
  • the conveying device is located below the transverse detector arm, vertically passes through the gantry structure
  • the collimator is located between the conveyor and the accelerator
  • the gantry structure and the conveying device form a scanning channel
  • Radiation shielding walls are arranged on both sides of the radiation shielding wall, and the operation room is arranged outside the radiation shielding wall.
  • the conveying device of the present invention is composed of a roller conveyor and a plate conveyor.
  • the roller conveyor is a two-part loading roller and a download roller, and a smooth transition between the upper roller and the plate conveyor.
  • the conveying device disclosed in the present invention can also be independently formed by a roller conveyor or a plate conveyor.
  • the radiation shielding wall adopts a lap joint protection structure
  • the radiation shielding wall material is a steel structure with a lead plate added in the middle
  • the inner and outer wall surfaces are provided with reinforcing rib plates.
  • the collimator transforms the cone X-ray adjustment emitted by the accelerator into a fan plane, and the ray passes through the collimator to become a fan shape perpendicular to the ground, and the detector pen end and the ray plane in the horizontal and vertical detector arms Coplanar.
  • the conveying device transports the detected container through the scanning ray region
  • the X-ray emitted by the electron linac passes through the collimator and forms a fan shape through the container to be inspected, is received by the detector in the horizontal and vertical detector arms, and is converted into an electrical signal.
  • Input to the image acquisition module in « the image acquisition module re-delivers the image signal to the run checker, and all results are displayed by the computer display on the operating room console.
  • the entire detection process is commanded by the console, and the scan control module automatically controls the detection process.
  • the invention adopts an electron linear accelerator as a radiation source, the X-ray energy generated by the electron linear accelerator is much larger than that of the X-ray machine, so that the penetration force to the container is greatly enhanced, the inspection speed and resolution are improved, and the forming is performed.
  • the image is very clear.
  • the use of an electron linac as a radiation source will not generate any radiation once it is powered off, making it safer for humans.
  • the invention adopts a composite type consisting of a plate conveyor and a roller conveyor.
  • the conveying device when scanning, the bottom surface of the air cargo container contacts the outermost roller of the loading roller, and starts the roller conveyor. Under the roller, the air cargo can be easily transported to the slat conveyor.
  • the slab conveyor circulates and drags the airborne cargo through the scanning area.
  • the slat conveyor runs smoothly and guarantees a stable scanned image.
  • the invention adopts a combined radiation shielding wall as a radiation shielding body, and each shielding body adopts a steel structure with a lead-added plate in the middle (except for shielding by a steel plate only), and the inner and outer walls are provided with rib plates to increase the structural strength and rigidity.
  • the shields are overlapped by a stop to eliminate the effect of the air gap on the radiation shielding effect.
  • the shield is transported separately, and there is no problem of super long, super high, and wide.
  • the use of this type of protective facilities greatly reduces the amount of on-site construction and shortens the construction period.
  • the shield wall structure optimizes the X-ray protection design, the system footprint is greatly reduced.
  • the use of a slat conveyor to accommodate light weight pallets uses a roller conveyor to accommodate the inspection of heavier containers, and a combination of a slat conveyor and a roller conveyor, whether for light cargo or heavy
  • the cargo when passing through the X-ray scanning zone, has no relative motion with the conveyor, so that there is no image blurring caused by cargo vibration.
  • the base By using the base, the on-site installation of the gantry system is increased, and the foundation is not required to be built in advance, thereby improving installation efficiency and reducing installation costs.
  • the inspection system of the present invention is installed on the conveying line of the aeronautical stream, the articles are inspected during the transportation process, and therefore, the efficiency of the air stream transportation is not affected.
  • the invention has the characteristics of reasonable structure, easy installation, convenient use, fast detection speed, high quality of formed image, and no harm to the human body.
  • the present invention can perform a one-time inspection of all air cargoed goods or vehicles, and has a high inspection capability, and a high rate of collection of goods or vehicles.
  • the footprint of the inspection system according to the invention is also small.
  • FIG. 1 is a schematic plan view of a layout of an inspection system in accordance with the present invention.
  • FIG. 2 is a schematic cross-sectional layout of an inspection system in accordance with the present invention.
  • Figure 3 is a schematic view showing the combination of a slat conveyor and a roller conveyor of an inspection system for an air cargo according to the present invention.
  • Fig. 4 is a schematic view showing the principle of a vehicle upper and lower plate conveyor of a vehicle inspection system according to the present invention.
  • an air cargo inspection system using an accelerator as a radiation source mainly includes an electron linear accelerator 1, a collimator 2, a transverse detector arm 8, a vertical detector arm 7, and a slab conveyor 10 and a roller.
  • a composite conveyor consisting of a road conveyor 5, 12, a radiation shielding wall 9 and an equipment compartment 14, an operating room 3.
  • the accelerator 1, the collimator 2, and the vertical detector arm 7 are mounted on the accelerator base 15, the collimator base 18, and the vertical detector arm base 17, respectively.
  • the collimator 2 is located between the conveyor and the accelerator 1, the upper end of the collimator 2 supporting the transverse detector arm 8, and the vertical detector arm 7 being mounted on the other side of the conveyor opposite the accelerator 1.
  • the transverse detector arm 8 is located directly above the conveyor, one end is connected to the vertical detector arm 7 by the connection seat 16, and the other end is supported by the collimator 2 bracket, the collimator 2, the transverse detector arm 8, and the vertical detector arm 7
  • a stable gantry is formed. Under the gantry, a conveyor consisting of the roller conveyors 5, 12 and the slat conveyor 10 drives the airborne cargo through the scanning channel.
  • the scanning control is completed in the operation room 3, and the operation room 3 is mounted with a console.
  • the radiation shielding wall 9 is disposed on both sides of the scanning channel, and adopts a lapped protection structure.
  • the material of the radiation shielding wall 9 is a steel structure in which a lead plate is added in the middle.
  • the operating state has the following function keys to enter the sub-system operation interface: Scan control sub-system, image acquisition sub-system, accelerator sub-system, scanning device sub-system, etc., the touch function keys can enter different sub-systems respectively. Press the "Scan Control Subsystem" function key to enter the scan control sub-system operation interface, observe whether the status is normal, and the scanner ready light is on.
  • the owner presses the "Upload” button 4 on the console, the upload roller path advances, and the container 100 is automatically uploaded to the "Uploading" photoelectric switch 6 position, the upload roller stop stops, the container uploads At the end, the "Upload End” indicator on the console is illuminated and the container is waiting for detection. Then, the loading roller conveyor and the slab conveyor advance at the same time, the container advances, and when the container enters the scanning area, if each sub-system is ready, the safety interlock key switch on the operating console is closed, and the accelerator 1 is taken out for detection, the collimator 2 Convert the cone X-ray adjustment from the accelerator 1 to a fan.
  • the loading roller stops, and the ray passes through the collimator 2 to become a fan shape perpendicular to the ground.
  • the cross detector arm 8 and the vertical detector arm 7 are coplanar with the ray plane.
  • the X-rays emitted by the electron linac 1 pass through the container under test, and are received by the gas or solid detectors in the horizontal and vertical detector arms 8, 7 and converted into electrical signals for input into the scanning channel.
  • the module, the image acquisition module re-delivers the image signal to the run checker, which then passes the signal to the computer in the operating room 3, and the computer monitor in the operating room 3 displays all the results.
  • the accelerator stops popping; when the container reaches the "download photoelectric switch” position 11, the download roller path and the slat conveyor stop moving forward.
  • the container is waiting for download, and the "Wait for download” indicator on the console is illuminated.
  • the download roller path advances, the container is automatically downloaded, and the download roller path is automatically stopped after the container download is completed.
  • the container cannot be stopped during the scanning process. In case of emergency, you can pass: ii
  • the “Stop” button on the console stops the scanning device and turns off the power.
  • the gantry main frame composed of the collimator, the transverse detector arm and the vertical detector arm can also perform the inspection work on the container transfer roller of the current airport.
  • the conveying device of the present invention is composed of a roller conveyor 12 and a slat conveyor 10, and a powerless transition roller 102 is provided between the roller conveyor and the slat conveyor.
  • a pallet 103 is used.
  • the airborne cargo 100 can be easily transported to the slat conveyor by the rollers.
  • the slab conveyor circulates and drags the airborne cargo through the scanning area.
  • the slat conveyor runs smoothly and ensures a stable scanned image.
  • the slat conveyor 10 of the conveyor is disposed on a conveyor line of an aeronautical stream;
  • the vehicle 101 drives or moves off the transition device of the slat conveyor from the conveyor line of the aeronautical stream.
  • the slat conveyor 10 is disposed on the ground, and the transition device is a sloping platform 110 having a slope that transitions from the ground level to the height of the slat conveyor.
  • the slab conveyor 10 is disposed on the ground, and the operation of the vehicle 101 to drive up or down the slat conveyor from the conveying line of the aviation logistics is realized by means of the sloping platform 110, thereby avoiding the construction cost of the pit.
  • the construction cost of the drainage system is avoided, and the daily maintenance cost is also reduced.
  • Such vehicle inspection systems keep construction costs to a minimum.
  • the conveyor may be placed in the pit with the surface flush with the ground, and the transition device is simplified as a transition plate. This will make the vehicle operation more compact.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Control Of Conveyors (AREA)

Description

航空集装货物或车辆的检查系统 发明领域
本发明涉及一种自动扫描式大型物体辐射检测系统, 特别 是, 涉及一种航空集装货物或车辆的检查系统。 本发明可以对所 有的航空集装货物或车辆进行一次性通过检查。
本申请中的术语 "集装货物"是指装载在集装箱内的航空货 物, 也指为了使数件物品同时接受监测而装载在托盘、 托板或类 似装置上的航空货物。
背景技术
航空集装货物或车辆检查系统是海关采用的检测设备之一。 目前国内外航空物品的检查主要采用开箱检查或 X光机检查。 开 箱检查检查时间长、 日检量低、 检查成本高。 X光机检查, 由于 其射线能量低, 穿透性差, 主要靠反射成像, 因此图象能看得比 较清楚的部分仅限于集装箱一侧内距箱壁 20 - 30厘米范围的物 体, 图像质量和适用范围不能满足海关多数用户的要求。 国内外 现在已经研制出用加速器或钴 60做辐射源的大型集装箱检查系 统,如德国海曼公司和英国宇航公司生产的大型集装箱检查系统。 它们是在一幢能屏蔽射线的检测通道内, 装有固定不动的、 能产 生高能 X射线的辐射源和能接受穿过集装箱的 X射线的阵列探测 器, 用专用的拖动设备将装有集装箱的车辆拖过检测通道, 集装 箱在 X射线束中通过时, 透过集装箱的 X射线传到探测器中,根 据其强度变化, 反映箱中所装物体的密度分布, 并将射线强度变 换成图象灰度, 即可获得箱内所装物体的透视图象。 这种检测系 统需要十分庞大的拖动系统, 或者用专用的拖动设备将装有集装 箱的车辆拖过检测通道, 或者拖动辐射源、 探测器、 准直器等在 轨道上做往复运动。
中国实用新型专利 00233357.0公开了一种固定式集装箱检 查系统的板链输送机, 该实用新型采用板式输送机代替原检查系 统的拖动设备, 但是, 采用板式输送机作为传送被检物体通过扫 描通道的载体, 需要有动力卡车装载集装箱上下板式输送机, 而 机场通常采用无动力辊道拖车运送集装货物或车辆。 在辐射防护 方面, 现有检测系统通常采用建筑厚水泥墙或划分大面积的禁入 区来保证人机安全, 所以, 对比航空集装货物或车辆检查系统, 现有系统存在土建工程占地面积大、 系统工程造价高、不易维修、 集装箱检测效率低等缺点。
发明概述
本发明的目的是提供一种航空集装货物或车辆的检查系统, 以实现避免开箱检查、 提高效率;
本发明的另一目的是提供一种航空集装货物或车辆的检查 系统, 其可以满足国际航空组织规定的一次性通过就可以对航空 集装货物或车辆进行检查的要求;
本发明的另一目的是提供一种航空集装货物或车辆的检查 系统, 其安全性好;
本发明的另一目的是提供一种航空集装货物或车辆的检查 系统, 其检查速度快;
本发明的另一目的是提供一种航空集装货物或车辆的检查 系统, 其分辨率高、 图像质量高。
为了解决上述问题, 本发明的技术方案采取如下方法实现: 以加速器为辐射源的航空集装货物或车辆检查系统, 它主要包括 电子直线加速器、 探测器、 准直器、 横探测器臂、 竖探测器臂、 传送装置、 辐射屏蔽墙及设 «r、 操作室, 设备舱内安装有扫描 控制模块、 图像获取模块及运行检测器, 操作室内安装有操作台 及控制系统, 加速器、 准直器、 竖探测器臂分别安装在加速器底 座、 准直器底座、 竖探测器臂底座上, 其结构特点是, 探测器分 别安装于横探测器臂及竖探测器臂内, 加速器、 准直器、 横探测 器臂与竖探测器臂位于同一平面内,准直器上端支撑横探测器臂, 竖探测器臂与横探测器臂相连置于加速器的另一侧, 准直器、 横 探测器臂、 竖探测器臂組成稳定的龙门架结构, 传送装置位于横 探测器臂的下方, 垂直穿过龙门架结构, 准直器位于传送装置和 加速器之间, 龙门加结构及传送装置构成扫描通道, 扫描通道的 两侧设置有辐射屏蔽墙, 辐射屏蔽墙外侧设置设^ r及操作室。
本发明中的传送装置由辊道式输送机及板式输送机组成,辊 道式输送机为上载辊道和下载辊道两部分, 上、 下载辊道与板式 输送机之间平稳过渡。
在本发明中所迷的传送装置也可以由辊道式输送机或板式 输送机独立形成。
本发明中辐射屏蔽墙采用搭接式防护结构, 辐射屏蔽墙材料 为中间加设铅板的钢结构, 内、 外墙面设有加强筋板。
本发明在应用时,准直器将加速器发出的锥形 X射线调节变 换为扇面, 射线通过准直器后成为垂直于地面的扇形, 而横、 竖 探测器臂中的探测器笔端与射线平面共面。 当传送装置输送被检 测集装箱经过扫描射线区时, 电子直线加速器发出的 X射线通过 准直器后形成扇形穿过被检集装箱, 由横、 竖探测器臂中的探测 器接收, 转换成电信号输入至设 «中的图像获取模块, 图像获 取模块将图像信号再输送到运行检查器, 由操作室内操作台上的 计算机显示器显示所有结果。而整个检测过程由操作台发出指令, 扫描控制模块自动控制检测过程。
由于本发明采用了以电子直线加速器为辐射源, 它所产生的 X射线能量比 X光机要大得多, 因而其对集装箱的穿透力大大增 强, 提高了检查速度及分辨率, 使成形图像非常清晰。 采用了以 电子直线加速器为辐射源, 一旦断电则不会产生任何辐射, 对人 机更安全。
本发明采用了由板式输送机和辊道式输送机组成的复合式 传送装置, 扫描时, 航空集装货物下底面接触到上载辊道的最外 侧辊子上后, 启动辊道式输送机, 在辊子的带动下, 航空集装货 物可以轻松传送到板式输送机上。 板式输送机与辊道式输送机之 间有无动力过渡辊, 使航空集装货物输送时过渡平稳。 板式输送 机循环运动, 拖动航空集装货物通过扫描区域。 板式输送机运行 平稳, 可以保证获得稳定的扫描图像。
本发明采用组合式辐射屏蔽墙作为辐射防护体,每块屏蔽体 采用中间加铅板的钢结构 (仅用钢板做屏蔽的除外) , 内、 外墙 面设有筋板增加结构强度与刚度。 屏蔽体之间以止口搭接, 消除 空气间隙对辐射屏蔽效果的影响。 另外, 屏蔽体单独运输, 不存 在超长、 超高、 超宽的问题。 采用这种结构的防护设施, 大大减 少现场施工量, 缩短工期。
由于该屏蔽墙结构优化了 X射线的防护设计,使得系统占地 面积大大缩小。
根据本发明, 采用板式输送机适应重量轻的托盘货物采用辊 道式输送机适应较重的集装箱的检查, 而采用板式输送机和辊道 式输送机相组合的方式, 不论对轻货物还是重货物, 在通过 X射 线扫描区时, 与传送装置之间都没有相对运动, 从而不会产生由 于货物震动而导致的图像模糊问题。
通过采用底座, 增加了龙门架系统的可现场安装性, 不需预 先建设基础, 因此, 可提高安装效率, 減低安装成本。
由于检查通道的端口为敞开式, 取消了传统的机械大门, 从 而使机械结构进一步简化, 可靠性、 可维护性也随之提高。
由于本发明的检查系统安装在航空物流的输送线上,使物品 在传输过程中就得到检查, 因此, 不影响航空物流传输效率。
总之, 同现有技术相比, 本发明具有结构合理、 安装容易、 使用便捷、 检测速度快、 成形图像质量高、 对人身无任何危害的 特点。 特别是,本发明可以对所有的航空集装货物或车辆进行一次 性通过检查, 检查能力强, 集装货物或车辆通过率高。 另外, 根 据本发明的检查系统的占地尺寸也较小。
对附图的简要说明
图 1是根据本发明的检查系统的平面布局示意图。
图 2是根据本发明的检查系统的横截面布局示意图。
图 3是根据本发明的航空集装货物的检查系统的板式输送机 与辊式输送机的组合方式示意图。
图 4是根据本发明的车辆检查系统的车辆上下板式输送机的 原理示意图。
对推荐实施例的详细说明
参看图 1、 2, 以加速器为辐射源的航空集装货物检查系统, 主要包括电子直线加速器 1、 准直器 2、 横探测器臂 8、 竖探测器 臂 7、 由板式输送机 10与辊道式输送机 5、 12组成的复合传送装 置、 辐射屏蔽墙 9及设备舱 14、 操作室 3。 加速器 1、 准直器 2、 竖探测器臂 7分别安装在加速器底座 15、 准直器底座 18、 竖探测 器臂底座 17上。 准直器 2位于传送装置和加速器 1之间, 准直器 2上端支撑横探测器臂 8,竖探测器臂 7安装于与加速器 1相对的 传送装置的另一侧。 横探测器臂 8位于传送装置的正上方, 一端 以连接座 16与竖探测器臂 7相连, 另一端由准直器 2支架支撑, 准直器 2、横探测器臂 8、 竖探测器臂 7组成稳定的龙门架, 在龙 门架下面, 由辊道式输送机 5、 12和板式输送机 10组成的传送装 置拖动航空集装货物通过扫描通道。扫描控制在操作室 3内完成, 操作室 3安装有操作台。 辐射屏蔽墙 9设置于扫描通道的两侧, 采用搭接式防护结构。 辐射屏蔽墙 9的材料为中间加设铅板的钢 结构。 在应用时, 电源供电准备就绪后, 闭合操作台上的电气拒 内的空气开关, 给各个分系统供电, 扳动电气控制拒控制面板上 的电源钥匙开关, 使其打到闭合位置, 电气控制柜通电, 完成启 动状态; 操作台上有如下进入分系统操作界面的功能键: 扫描控 制分系统、 图像获取分系统、 加速器分系统、 扫描装置分系统等, 触动功能键就可以分别进入不同分系统。按下 "扫描控制分系统" 功能键进入扫描控制分系统操作界面, 观察各项状态是否正常, 此时扫描装置就绪指示灯亮。 在确认无人在辐射区后, 货主按下 操作台上的 "上载" 按钮 4, 上载辊道前进, 集装箱 100 自动上 载到 "上载结束" 光电开关 6位置后, 上载辊道停止前进, 集装 箱上载结束, 操作台上的 "上载结束" 指示灯亮, 集装箱等待检 测。 然后, 上载辊道及板式输送机同时前进, 集装箱前进, 当集 装箱进入扫描区域后, 如果各分系统就绪, 将操作台上的安全联 锁钥匙开关闭合, 加速器 1出束进行检测, 准直器 2将加速器 1 发出的锥形 X射线调节变换为扇面。 此时上载辊道停止, 射线通 过准直器 2后成为垂直于地面的扇形, 横探测器臂 8、 竖探测器 臂 7中探测器笔端与射线平面共面。 电子直线加速器 1发出的 X 射线穿过被测集装箱, 由横、 竖探测器臂 8、 7中的气体或固体探 测器接收后,转换成电信号输入到扫描通道外设备抢 14中的图像 获取模块, 图像获取模块将图像信号再输送到运行检查器, 之后 由运行检查器将信号传递至操作室 3中的计算机内, 由操作室 3 内的计算机显示器显示所有结果。
当集装箱 100出扫描区域以后, 加速器停止出束; 当集装箱 达到 "下载光电开关" 11位置时, 下载辊道和板式输送机停止前 进。 集装箱等待下载, 操作台上的 "等待下载"指示灯亮。 然后, 下载辊道前进, 集装箱自动下载, 集装箱下载完毕后下载辊道自 动停止。 正常情况下集装箱在扫描过程中不能停止, 遇到紧急情 况可以通: ii操作台上的 "停止" 按钮停止扫描装置动作, 关闭电 源。
另外, 按照上述的技术方案, 不仅能够检测航空集装货物, 而且能够检测中、 小型汽车等。 按照上述的技术方案, 准直器、 横探测器臂、 竖探测器臂组 成的龙门架主体架同样能够在现在的机场的集装箱传输辊道上进 行检测工作。
特别是, 如图 3所示, 本发明中的传送装置由辊道式输送机 12及板式输送机 10组成, 辊道式输送机与板式输送机之间有无 动力过渡辊 102。 为了防止板式输送机 10返回带部分的下垂, 采 用了托板 103„
扫描时, 航空集装货物 100在辊子的带动下, 航空集装货物 可以轻松传送到板式输送机上。 板式输送机循环运动, 拖动航空 集装货物通过扫描区域。 板式输送机运行平稳, 可以保证获得稳 定的扫描图像。
如图 4所示, 在用于车辆检查系统的情况下, 所述传送装置 的板式输送机 10, 该输送机设置在航空物流的输送线上; 在该输 送机的两侧分别设有可使车辆 101从航空物流的输送线驶上或驶 下板式输送机的过渡装置。 所述板式输送机 10设置在地面上, 所述过渡装置为一坡台 110, 该坡台 110具有从地面高度过渡到 板式输送机高度的斜面。
这样, 通过板式输送机 10设置在地面上, 借助于坡台 110 以筒单方式实现了车辆 101从航空物流的输送线驶上或驶下板式 输送机的操作, 避免了地坑的建设费用, 避免了排水系统的建设 费用, 也降低了日常维护费用。 这样的车辆检查系统可使建造费 用保持最低的水平。
另外, 在有条件的情况下, 所述输送机可设置在地坑内, 表 面与地面平齐, 所述过渡装置简化为一过渡平板。 这样可使车辆 操作更加筒单。

Claims

权 利 要 求
1. 一种航空集装货物的检查系统,加速器(1)、准直器(2)、 竖探测器臂(7)分别安装在地面上; 探测器分別安装于横探测器 臂(8)及竖探测器臂(7) 内; 加速器(1) 、 准直器(2) 、 横 探测器臂(8)与竖探测器臂(7)位于同一平面内; 准直器(2) 上端支撑横探测器臂 (8) , 竖探测器臂(7) 与横探测器臂(8) 相连置于加速器(1)的另一侧; 准直器(2)、 横探测器臂(8)、 竖探测器臂(7)组成稳定的龙门架结构, 传送装置位于横探测器 臂(8) 的下方, 垂直于所述龙门架结构; 准直器 (2)位于传送 装置和加速器(1)之间; 龙门架结构及传送装置构成扫描通道, 其特征在于: 传送装置包括辊道式输送机(5, 12)及板 式输送机 (10); 辊道式输送机 ( 5 )和辊道式输送机 ( 12 )分别 设置在板式输送机 (10)的两侧, 辊道式输送机 (5, 12)与板式 输送机 ( 10)设有无动力过渡辊。
2. 如权利要求 1所述的系统, 其特征在于, 加速器 (1) 、 准直器 (2)和竖直探测器(7)分别具有加速器底座(15) 、 准 直器底座 (18) 、 竖探测器臂底座 (17) 。
3. 如权利要求 1所述的系统, 其特征在于, 在扫描通道的两 侧设有辐射屏蔽墙 (9) 。
4. 如权利要求 1所述的系统, 其特征在于, 所迷系统还包括 设备抢 (14)和操作室 (3) , 所迷设备般 (14)和操作室 (3) 相对于扫描通道设置在屏蔽墙(9)的外侧, 所述设 (14) 内 设有扫描控制模块、 图像获取模块及运行检测器; 而所述操作室 内设有操作台及控制系统。
5. 如上述权利要求其中之一所述的系统, 其特征在于, 所述 扫描通道的两端为敞开式, 该扫描通道的两个端口都没有电子传 感报警元件。
6. 一种航空集装箱的检查系统, 加速器(1)、 准直器(2)、 竖探测器臂(7)分别安装在地面上; 探测器分别安装于横探测器 臂(8)及竖探测器臂 (7) 内; 加速器(1) 、 准直器 (2) 、 横 探测器臂(8)与竖探测器臂(7)位于同一平面内; 准直器(2) 上端支撑横探测器臂 (8) , 竖探测器臂(7)与横探测器臂(8) 相连置于加速器(1)的另一侧; 准直器(2)、 横探测器臂(8)、 竖探测器臂(7)组成稳定的龙门架结构, 传送装置位于横探测器 臂 (8)的下方, 垂直于所述龙门架结构; 准直器(2)位于传送 装置和加速器(1)之间; 龙门架结构及传送装置构成扫描通道, 其特征在于, 所述传送装置为辊道式输送机, 其台面高 度等于机场无动力辊道拖车的高度, 该输送机设置在航空物流的 输送线上。
PCT/CN2002/000563 2001-08-14 2002-08-14 Systeme de controle pour fret aerien ou vehicule WO2003016889A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003521345A JP2004538486A (ja) 2001-08-14 2002-08-14 航空貨物や輸送車両の検査システム
KR1020037014876A KR100675827B1 (ko) 2001-08-14 2002-08-14 항공화물용 검사시스템
DE10297101.3T DE10297101B4 (de) 2001-08-14 2002-08-14 Kontrollanlage für Luftfracht oder Fahrzeuge
US10/774,366 US6922461B2 (en) 2001-08-14 2004-02-10 Inspection system for air cargoes or vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN01124111.X 2001-08-14
CNB01124111XA CN1185482C (zh) 2001-08-14 2001-08-14 航空集装箱/托盘货物检查系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/774,366 Continuation US6922461B2 (en) 2001-08-14 2004-02-10 Inspection system for air cargoes or vehicles

Publications (1)

Publication Number Publication Date
WO2003016889A1 true WO2003016889A1 (fr) 2003-02-27

Family

ID=4665510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000563 WO2003016889A1 (fr) 2001-08-14 2002-08-14 Systeme de controle pour fret aerien ou vehicule

Country Status (7)

Country Link
US (1) US6922461B2 (zh)
JP (1) JP2004538486A (zh)
KR (1) KR100675827B1 (zh)
CN (1) CN1185482C (zh)
DE (1) DE10297101B4 (zh)
RU (1) RU2291415C2 (zh)
WO (1) WO2003016889A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050661B3 (de) * 2003-10-16 2005-06-30 Tsinghua University Abschleppwagensystem zur Bestrahlungsabbildung
US7215737B2 (en) 2003-10-16 2007-05-08 Tsinghua University Double-radiant-source framework for container detecting system
US7732127B2 (en) 2002-12-20 2010-06-08 Acea Biosciences, Inc. Dynamic monitoring of cell adhesion and spreading using the RT-CES system
EP2224229A1 (en) * 2007-12-28 2010-09-01 Nuctech Company Limited Arm support structure and radiation imaging system with the arm support structure
CN106932417A (zh) * 2017-03-30 2017-07-07 北京华力兴科技发展有限责任公司 机动式乘用车检查装置

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8275091B2 (en) 2002-07-23 2012-09-25 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US7963695B2 (en) 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US8451974B2 (en) 2003-04-25 2013-05-28 Rapiscan Systems, Inc. X-ray tomographic inspection system for the identification of specific target items
US8837669B2 (en) 2003-04-25 2014-09-16 Rapiscan Systems, Inc. X-ray scanning system
US7949101B2 (en) 2005-12-16 2011-05-24 Rapiscan Systems, Inc. X-ray scanners and X-ray sources therefor
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
GB0309385D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray monitoring
GB0309379D0 (en) 2003-04-25 2003-06-04 Cxr Ltd X-ray scanning
US8223919B2 (en) 2003-04-25 2012-07-17 Rapiscan Systems, Inc. X-ray tomographic inspection systems for the identification of specific target items
US8804899B2 (en) 2003-04-25 2014-08-12 Rapiscan Systems, Inc. Imaging, data acquisition, data transmission, and data distribution methods and systems for high data rate tomographic X-ray scanners
US9113839B2 (en) 2003-04-25 2015-08-25 Rapiscon Systems, Inc. X-ray inspection system and method
US6928141B2 (en) 2003-06-20 2005-08-09 Rapiscan, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
CN100541187C (zh) * 2004-11-26 2009-09-16 同方威视技术股份有限公司 一种可ct断层扫描的集装箱检查系统
US7356116B2 (en) * 2004-12-03 2008-04-08 Eg&G Middle East Container inspection system
US8173970B2 (en) 2005-02-04 2012-05-08 Dan Inbar Detection of nuclear materials
US7847260B2 (en) 2005-02-04 2010-12-07 Dan Inbar Nuclear threat detection
US7820977B2 (en) 2005-02-04 2010-10-26 Steve Beer Methods and apparatus for improved gamma spectra generation
US7471764B2 (en) 2005-04-15 2008-12-30 Rapiscan Security Products, Inc. X-ray imaging system having improved weather resistance
US7384194B2 (en) * 2005-12-09 2008-06-10 Ge Security, Inc. Apparatus and method for providing a shielding means for an X-ray detection system
CN101000312B (zh) * 2006-01-11 2010-05-12 清华大学 一种大型航空集装货物检查系统
CN100593488C (zh) * 2006-10-11 2010-03-10 同方威视技术股份有限公司 车辆检查用拖车系统及使用此拖车系统检测系统
US7742568B2 (en) * 2007-06-09 2010-06-22 Spectrum San Diego, Inc. Automobile scanning system
CN101441183B (zh) 2007-11-20 2011-08-24 同方威视技术股份有限公司 一种拖车安全检查系统
GB0803644D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0803641D0 (en) 2008-02-28 2008-04-02 Rapiscan Security Products Inc Scanning systems
GB0809110D0 (en) 2008-05-20 2008-06-25 Rapiscan Security Products Inc Gantry scanner systems
CN101633351B (zh) * 2008-07-23 2012-02-15 同方威视技术股份有限公司 车辆输送装置和具有该车辆输送装置的车辆辐射检测系统
EP2433152B1 (en) * 2009-05-22 2021-07-07 Rapiscan Systems, Inc. Compact mobile cargo scanning system
US8314394B1 (en) 2009-11-04 2012-11-20 Science Applications International Corporation System and method for three-dimensional imaging using scattering from annihilation coincidence photons
CN102107777B (zh) * 2009-12-24 2012-12-12 同方威视技术股份有限公司 车辆输送装置和具有该车辆输送装置的车辆辐射检测系统
US9218933B2 (en) 2011-06-09 2015-12-22 Rapidscan Systems, Inc. Low-dose radiographic imaging system
EP2753920B1 (en) 2011-09-07 2018-04-04 Rapiscan Systems, Inc. X-ray inspection system that integrates manifest data with imaging/detection processing
CN103529061B (zh) * 2012-07-04 2016-03-09 同方威视技术股份有限公司 车载式辐射检查系统
WO2014121097A1 (en) 2013-01-31 2014-08-07 Rapiscan Systems, Inc. Portable security inspection system
CN104345070B (zh) 2013-07-29 2018-03-23 同方威视技术股份有限公司 探测器模块、安装探测器模块的方法及射线检测系统
CN104376887B (zh) * 2013-08-15 2017-05-03 清华大学 辐射防护装置
RO130582B1 (ro) * 2014-01-23 2021-12-30 Mb Telecom Ltd. S.R.L. Sistem şi metodă pentru inspecţia completă şi neintruzivă a aeronavelor
CN105445288B (zh) * 2014-09-02 2019-06-14 同方威视技术股份有限公司 一种新型组合移动式检查系统
GB2564038B (en) 2016-02-22 2021-11-10 Rapiscan Systems Inc Systems and methods for detecting threats and contraband in cargo
CN106053499B (zh) * 2016-07-20 2019-07-05 同方威视技术股份有限公司 射线检查系统和射线检查方法
CN106185226B (zh) * 2016-09-29 2019-05-03 同方威视技术股份有限公司 用于集装物检查系统的检测通道的组合输送装置、及集装物检查系统
CN107640465A (zh) * 2017-09-13 2018-01-30 无锡市航空地面设备有限公司 拼接型布帘门集装箱
CN111483793A (zh) * 2018-10-16 2020-08-04 宋海燕 一种进出口用的具有安检作用的传输设备
CN109383943A (zh) * 2018-11-23 2019-02-26 李佳怡 一种新型防撞击保密物流箱
WO2021046036A1 (en) * 2019-09-04 2021-03-11 Illumina, Inc. Enclosures and corresponding magnetic joints
NL2024325B1 (en) * 2019-09-04 2021-04-13 Illumina Inc Enclosures and corresponding magnetic joints

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599740A (en) * 1983-01-06 1986-07-08 Cable Arthur P Radiographic examination system
GB2193073A (en) * 1986-07-31 1988-02-03 Sollich Gmbh & Co Kg Coating apparatus
US4832559A (en) * 1987-03-25 1989-05-23 Gebhardt Fordertechnik Gmbh Loading and unloading station for commercial vehicles and containers
CN1133440A (zh) * 1995-03-31 1996-10-16 清华大学 自扫描式大型物体辐射检测系统
CN1197209A (zh) * 1998-04-03 1998-10-28 清华大学 车载式γ射线数字辐射成像流动检测站及其阵列探测装置
US6031890A (en) * 1993-04-05 2000-02-29 Heimann Systems Gmbh & Co. Kg Monitoring installation for containers and trucks

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU142571A1 (ru) * 1961-05-03 1961-11-30 К.П. Андреев Ленточный конвейер
SU608742A1 (ru) * 1976-10-18 1978-05-30 Специализированное Конструкторское Бюро Экскалаторостроения Экскалатор
SU637311A1 (ru) * 1977-07-18 1978-12-15 Специализированное Конструкторское Бюро Экскалаторостроения Пассажирский конвейер
SU831979A1 (ru) * 1979-04-09 1981-05-23 Fetislyamov Zarem A Устройство дл сортировки стеновогоКАМН
JPS5756740A (en) * 1980-09-22 1982-04-05 Mitsubishi Electric Corp Object inspecting device
SU1180461A1 (ru) * 1984-04-21 1985-09-23 Киевский институт автоматики им.ХХУ съезда КПСС Устройство дл контрол и управлени режимом работы роторного комплекса
CN1008135B (zh) * 1985-03-04 1990-05-23 海曼股份公司 集装箱透视装置
CA1253620A (en) * 1985-04-30 1989-05-02 Jon Claesson Method relating to three dimensional measurement of objects
SU1447676A1 (ru) * 1986-06-13 1988-12-30 Проектно-Конструкторское Технологическое Бюро Треста Промышленности Строительных Материалов Устройство дл разрезки глин ного бруса на издели
DE3763460D1 (de) * 1986-11-26 1990-08-02 Heimann Gmbh Roentgenscanner.
DE8703674U1 (de) * 1987-03-11 1988-07-14 Heimann Gmbh, 6200 Wiesbaden Röntgenscanner
EP0412190B1 (de) * 1989-08-09 1993-10-27 Heimann Systems GmbH & Co. KG Vorrichtung zum Durchstrahlen von Gegenständen mittels fächerförmiger Strahlung
US5319547A (en) * 1990-08-10 1994-06-07 Vivid Technologies, Inc. Device and method for inspection of baggage and other objects
DE59006078D1 (de) * 1990-12-21 1994-07-14 Heimann Systems Gmbh & Co Prüfanlage für die Ladung von Fahrzeugen.
NZ237767A (en) * 1992-04-09 1994-09-27 Inst Geolog Nuclear Sciences Luggage scanning by fast neutrons and gamma radiation
US5331118A (en) * 1992-11-27 1994-07-19 Soren Jensen Package dimensional volume and weight determination system for conveyors
RU2073966C1 (ru) * 1993-07-01 1997-02-20 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики Ускоритель заряженных частиц
US5600700A (en) * 1995-09-25 1997-02-04 Vivid Technologies, Inc. Detecting explosives or other contraband by employing transmitted and scattered X-rays
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
MY119352A (en) * 1997-01-17 2005-05-31 Inventio Ag Moving walkway for passengers
RU2130623C1 (ru) * 1997-02-21 1999-05-20 Товарищество с ограниченной ответственностью "Медтех" Устройство для регистрации и формирования рентгеновского изображения
US6218943B1 (en) * 1998-03-27 2001-04-17 Vivid Technologies, Inc. Contraband detection and article reclaim system
US6347132B1 (en) * 1998-05-26 2002-02-12 Annistech, Inc. High energy X-ray inspection system for detecting nuclear weapons materials
CN2432189Y (zh) 2000-05-18 2001-05-30 清华大学 固定式集装箱检查系统的板链输送机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599740A (en) * 1983-01-06 1986-07-08 Cable Arthur P Radiographic examination system
GB2193073A (en) * 1986-07-31 1988-02-03 Sollich Gmbh & Co Kg Coating apparatus
US4832559A (en) * 1987-03-25 1989-05-23 Gebhardt Fordertechnik Gmbh Loading and unloading station for commercial vehicles and containers
US6031890A (en) * 1993-04-05 2000-02-29 Heimann Systems Gmbh & Co. Kg Monitoring installation for containers and trucks
CN1133440A (zh) * 1995-03-31 1996-10-16 清华大学 自扫描式大型物体辐射检测系统
CN1197209A (zh) * 1998-04-03 1998-10-28 清华大学 车载式γ射线数字辐射成像流动检测站及其阵列探测装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732127B2 (en) 2002-12-20 2010-06-08 Acea Biosciences, Inc. Dynamic monitoring of cell adhesion and spreading using the RT-CES system
DE102004050661B3 (de) * 2003-10-16 2005-06-30 Tsinghua University Abschleppwagensystem zur Bestrahlungsabbildung
US7215737B2 (en) 2003-10-16 2007-05-08 Tsinghua University Double-radiant-source framework for container detecting system
EP2224229A1 (en) * 2007-12-28 2010-09-01 Nuctech Company Limited Arm support structure and radiation imaging system with the arm support structure
EP2224229A4 (en) * 2007-12-28 2011-05-18 Nuctech Co Ltd ARM SUPPORT STRUCTURE AND RADIATION IMAGING SYSTEM EQUIPPED WITH ARM SUPPORT STRUCTURE
CN106932417A (zh) * 2017-03-30 2017-07-07 北京华力兴科技发展有限责任公司 机动式乘用车检查装置
CN106932417B (zh) * 2017-03-30 2024-01-16 北京华力兴科技发展有限责任公司 机动式乘用车检查装置

Also Published As

Publication number Publication date
KR100675827B1 (ko) 2007-01-29
CN1185482C (zh) 2005-01-19
RU2004107519A (ru) 2005-03-27
US6922461B2 (en) 2005-07-26
JP2004538486A (ja) 2004-12-24
KR20040043121A (ko) 2004-05-22
RU2291415C2 (ru) 2007-01-10
DE10297101B4 (de) 2015-04-16
US20040213374A1 (en) 2004-10-28
DE10297101T5 (de) 2004-11-04
CN1405555A (zh) 2003-03-26

Similar Documents

Publication Publication Date Title
WO2003016889A1 (fr) Systeme de controle pour fret aerien ou vehicule
US7817775B2 (en) Radiation inspection system
WO2018059201A1 (zh) 用于集装物检查系统的组合输送装置、及集装物检查系统
US7317782B2 (en) Radiation scanning of cargo conveyances at seaports and the like
JP3805254B2 (ja) コンテナ検査装置
CN103558645B (zh) 一种中小型车辆辐射扫描检测装置
GB2420682A (en) Shipping container inspection system with CT scanning function
CN200996943Y (zh) 一种货物检查设备
KR100891765B1 (ko) Ⅹ선 검사 설비
JP2003287507A (ja) X線検査方法
CN203535242U (zh) 一种中小型车辆辐射扫描检测装置
KR20050115286A (ko) 비접촉 화물 검사 및 컨테이너 운반을 위한 다기능 이동플랫폼
JP5475575B2 (ja) X線検査用車両搬送装置
CN101900836B (zh) X射线安全检查系统及物品安全检查的方法
JP5996451B2 (ja) X線検査用車両搬送装置
CN201311401Y (zh) 轿车辐射成像检测系统
JP2015001383A (ja) X線検査用車両搬送装置
KR200403672Y1 (ko) 화물 검사를 위한 컨테이너 차량 이송장치
CN206384480U (zh) 用于集装物检查系统的检测通道的组合输送装置、及集装物检查系统
JPH07223482A (ja) X線検査車両及び装置
CN201440131U (zh) 半挂车车载式辐射检测系统
CN2488063Y (zh) 航空集装箱/托盘货物检查设备
CN220691112U (zh) 一种用于集装箱起重机上中转平台的x光检查系统
CN218866121U (zh) 航空货物扫描检查设备
CN214622395U (zh) 一种数字辐射成像车辆检查系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037014876

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003521345

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10774366

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607