WO2003004659A2 - Rekombinationssysteme und verfahren zum entfernen von nukleinsäuresequenzen aus dem genom eukaryotischer organismen - Google Patents

Rekombinationssysteme und verfahren zum entfernen von nukleinsäuresequenzen aus dem genom eukaryotischer organismen Download PDF

Info

Publication number
WO2003004659A2
WO2003004659A2 PCT/EP2002/007281 EP0207281W WO03004659A2 WO 2003004659 A2 WO2003004659 A2 WO 2003004659A2 EP 0207281 W EP0207281 W EP 0207281W WO 03004659 A2 WO03004659 A2 WO 03004659A2
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
strand breaks
dna double
recombination
dna
Prior art date
Application number
PCT/EP2002/007281
Other languages
English (en)
French (fr)
Other versions
WO2003004659A8 (de
WO2003004659A3 (de
Inventor
Holger Puchta
Christian Biesgen
Original Assignee
Sungene Gmbh & Co. Kgaa
Institut für Pflanzengenetik und Kulturpflanzenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2451492A priority Critical patent/CA2451492C/en
Application filed by Sungene Gmbh & Co. Kgaa, Institut für Pflanzengenetik und Kulturpflanzenforschung filed Critical Sungene Gmbh & Co. Kgaa
Priority to JP2003510817A priority patent/JP2004533267A/ja
Priority to AU2002325859A priority patent/AU2002325859B2/en
Priority to MXPA03011844A priority patent/MXPA03011844A/es
Priority to EP02760212.7A priority patent/EP1407034B1/de
Priority to BR0210839-9A priority patent/BR0210839A/pt
Priority to IL15928602A priority patent/IL159286A0/xx
Priority to BRPI0210839-9A priority patent/BRPI0210839B1/pt
Publication of WO2003004659A2 publication Critical patent/WO2003004659A2/de
Publication of WO2003004659A3 publication Critical patent/WO2003004659A3/de
Priority to US10/750,891 priority patent/US7736886B2/en
Priority to ZA2004/00871A priority patent/ZA200400871B/en
Publication of WO2003004659A8 publication Critical patent/WO2003004659A8/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome

Definitions

  • the invention relates to recombination systems and methods for removing nucleic acid sequences from the genome of eukaryotic organisms, as well as transgenic organisms - preferably plants - which contain these systems.
  • the aim of biotechnological work on organisms is, among other things, to obtain commercially usable information about the function of certain genes and gene products and to elucidate biosynthetic pathways or disease mechanisms.
  • the information obtained in this way can be used in a variety of ways. They are used, for example, to produce new medicines, to develop alternative, biotechnological production processes or to produce modified plants.
  • the goal of biotechnological work on plants is the production of
  • Plants with advantageous, new properties for example to increase agricultural productivity, to increase the quality of food or to produce certain chemicals or pharmaceuticals (Dunwell JM, J Exp Bot. 2000; 51 Spec No: 487-96).
  • transgenic organisms due to the low efficiency of the methods used (such as, for example, the stable transformation or in particular homologous recombination), a selection of the organisms modified in the desired manner is required.
  • the production of transgenic plants can be achieved by a number of techniques (overview: Potrykus I. and Spangenberg G. ed. (1995) Gene transfer to plants. Springer, Berlin). Above all, the gene transfer mediated by Agrobacterium tumefaciens and the bombardment of plant cells with the "particle gun” play an important role here.
  • a major problem is the fact that transgenic DNA is difficult to remove once it has been stably introduced into an organism.
  • sequence-specific recombinases and two recognition sequences of said recombinases, which flank the sequence to be removed. Exposure of the recombinase to this construct leads to the flanking of the flanked sequence, one of the recognition sequences remaining in the genome of the organism.
  • sequence-specific recombination systems are described, such as the Cre / lox system of Bacteriophagen Pl (Dale EC and Ow DW (1991) Proc Natl Acad Sei USA 88: 10558-10562; Russell SH et al.
  • the recombinase for example Cre or FLP
  • its respective recombination sequences 34 bp lox sequence or 47 bp FRT sequence
  • Reports of successful applications of these systems in plants are limited.
  • David Ow's group was able to show that a selection marker used for plant transformation, which was surrounded by two lox sequences, can be cut out of the plant genome again by Cre expression (Dale EC and Ow DW (1991) Proc Natl Acad Sei USA) 88: 10558 to 10562).
  • a disadvantage of the sequence-specific recombination systems is the reversibility of the reaction, ie there is a balance between excision and integration of the corresponding marker gene. This often leads to mutations being selected, ie as soon as a mutation further interacts the lox recognition segments with the enzvm-b oxii Ler-t ⁇ , _ j ⁇ d-ri_jias __ ( ⁇ n ⁇ _ewoUte) product Balance stripped and fixed. In addition to the Cre-lox system, this also applies to the other sequence-specific recombinases (see above). Another disadvantage is the fact that one of the recognition sequences of the recombinase remains in the genome, that is to say it is modified.
  • the recognition sequence changes or destroys reading frames or genetic carbon control elements such as promoters or enhancers.
  • the recognition sequence remaining in the genome closes another one Use of the Rekombinationsystems example for a second genetic 'modification, since interactions can be ruled out, with the subsequently introduced recognition sequences not. Larger chromosomal rearrangements or deletions can result.
  • Zubko et al. describe a system for deleting nucleic acid sequences from the tobacco genome, the sequence to be deleted being flanked by two 352 bp long attP recognition sequences of the bacteriophage lambda.
  • the deletion of the flanked region takes place independently of the expression of helper proteins in two of eleven transgenic tobacco lines by spontaneous intra- chromosomal recombination between the attP recognition regions.
  • the method has disadvantages in that the recombination or deletion cannot be induced specifically at a specific point in time, but occurs spontaneously.
  • the fact that the method only worked for a small part of the lines indicates that the respective integration locus tends to be instable in the cases in question (Puchta H (2000) Trends in Plant Sei 5: 273-274).
  • WO 96/14408 describes on page 12 in the legend to Figure 32 a method for removing a genetic locus, in which a recognition sequence of the Ho-restriction endonuclease I-Scel is inserted at the respective end of the sequence to be deleted. Treatment with the endonuclease leads to double-strand breaks at both ends of the sequence to be deleted. The free ends then connect by "recombination".
  • the "recombination” cited here can - as can also be seen from the figure - only be an illegitimate one (for example a "non-homologous end-joining” (NHEJ) event), since there are no homologous sequences at the two remaining ends of the genomic DNA , However, illegitimate recombination leads to unpredictable recombination events.
  • NHEJ non-homologous end-joining
  • sequence-specific double strand breaks with the aid of restriction enzymes in eukaryotic genomes, such as yeast (Haber JE (1995) Bioassays 17: 609-620), mammalian cells (Jasin M (1996) Trends Genet. 12: 224-228) or plants (Puchta H ( 1999a) Methods Mol Biol 113: 447-451) is described.
  • Posfai et al. describe a method for exchanging genes in the prokaryote E. coli (Posfai G et al. (1999) Nucleic Acids Res 27 (22): 4409-4415). This results in a recombination in the E. coli genome between the endogenous and the mutated gene, which is induced by a cut with the restriction enzyme I-Scel.
  • the aim and task was to exchange an endogenous gene for a mutated transgene. Recombinations in E.coli are significantly easier and with greater efficiency than in higher eukaryotes (for example described in Kuzminov A (1999) Microbiol Mol Biol Rev. 63 (4): 751-813).
  • Dürrenberger et al. describe the induction of a recombination in chloroplasts of the unicellular green algae Chlamydomonas reinhardtii using the I-Scel homing endonuclease (Dürrenberger F et al. (1996) Nucleic Acid Res 24 (17): 3323-3331).
  • the recombination takes place between the endogenous 23S gene and an inserted 23S CDNA which contains an I-Scel interface. Double-strand breaks are induced by "mating" the corresponding transgenic organism with an organism expressing I-Scel. Recombinations in chloroplasts are much easier and with greater efficiency than in chro osomal DNA higher eukaryotes.
  • the "gene targeting” technique in which one. Targeted integration into the chromosomal DNA of the host organism through homologous recombination should work with acceptable efficiency only with prokaryotes and yeast. The production of corresponding transgenic organisms is only in a few species (such as the mouse) and only possible with great effort (see also Kanaar R Hoeijmakers JH (1997) Genes Funct 1 (3): 165-174).
  • the existing, low efficiency of the homologous recombination (approx. I: lxl0 6 ) is compensated here by the use of 5 complex, sophisticated and limited to the respective species selection techniques (such as the "ES" cell technology). In other species - especially in higher plants - such technologies have not yet been established (Mengiste T and Paszkowski J (1999) Biol Chem.
  • a first subject of the invention relates to a recombination system for removing a DNA sequence from the chromosomal DNA of a eukaryotic cell or organism, characterized in that
  • transgenic recombination construct inserted into the chromosomal DNA of a eukaryotic organism which contains a sequence consisting in the 5 '/ 3' direction
  • a2) a second homology sequence B a second homology sequence B, the homology sequences A and B being of sufficient length and homology to ensure homologous recombination
  • the invention further relates to a method for removing a DNA sequence from the chromosomal DNA of a eukaryotic cell or organism, characterized in that
  • transgenic recombination construct inserted into the chromosomal DNA of a eukaryotic organism which contains a sequence consisting in the 5 '/ 3' direction al) a first homology sequence A and
  • a2) a second homology sequence B a second homology sequence B, the homology sequences A and B being of sufficient length and homology to ensure homologous recombination
  • the invention makes it possible to delete sequences (for example selection markers such as antibiotic or herbicide resistance genes) from the chromosomal DNA of an organism in a precisely predictable manner.
  • sequences for example selection markers such as antibiotic or herbicide resistance genes
  • the sequence to be eliminated is flanked with recognition sequences for the targeted induction of DNA double-strand breaks (for example recognition sequences of rare-cutting restriction enzymes) and combined with homologous sequences in the region of the interfaces.
  • a double-strand break is induced by an enzyme suitable for inducing DNA double-strand breaks on the recognition sequence for the targeted induction of DNA double-strand breaks (for example a sequence-specific nuclease), which results from the homologous recombination of homologous sequences located at the break and thus deletion of any between the sequences localized nucleic acid sequences.
  • the recognition sequence for the targeted induction of DNA double-strand breaks is also deleted, as a result of which the method can be used repeatedly for further controlled genetic changes.
  • transgene means all such constructions which were created by genetic engineering methods and in which either
  • the modification may include, for example, substitutions, additions, deletions, inversions or insertions of one or more nucleotide residues.
  • -Eu-ka-rvoti ⁇ c-hen — Zel 1.e o.der_Organismus generally means any eukaryotic cell or organism as well as cells, tissues, parts or reproductive material (such as seeds or fruits) derived therefrom, in which, when the Recombination construct and the enzyme are suitable for inducing DNA double-strand breaks in the recognition sequence for the targeted induction of DNA double-strand breaks in a reaction space (for example a cell or a compartment thereof), induction of double-strand breaks in the recognition sequence for the targeted induction of DNA double-strand breaks and the homologous recombination between the homology sequences A and B can take place.
  • compartments of a eukaryotic cell such as the cell nucleus, are included.
  • Those cells or organisms which represent or are derived from a multicellular eukaryotic organism and cells, tissues, parts or propagation material (such as seeds or fruits) thereof are particularly preferably included.
  • Cells or organisms which represent or are derived from an animal or plant organism, as well as cells, tissues, parts or reproductive material thereof, are very particularly preferably included.
  • Most preferably included are those cells or organisms that represent a plant organism or are derived from it, as well as cells, tissues, parts or reproductive material thereof. Preferred genera and species are listed below.
  • “Sufficient length” in relation to the homology sequences A and B preferably means sequences of a length of at least
  • base pairs preferably at least 50 base pairs, particularly preferably of at least 100 base pairs, very particularly preferably of at least 250 base pairs, most preferably of at least 500 base pairs.
  • “sufficient homology” preferably means sequences which have a homology within these homology sequences of at least 70%, preferably 80%, preferably at least 90%, particularly preferably at least 95%, very particularly preferably at least 99% , most preferably 100% over a length of at least 20 base pairs, preferably at least 50 base pairs, particularly preferably of at least 100 base pairs, very particularly preferably of at least 250 base pairs, most preferably of at least 500 base pairs.
  • GAP Garnier ⁇ ⁇ a-r se uen-z- ⁇ über
  • GCG Genetics Computer Group
  • Gap Weight 12 Length Weight: 4
  • a2) a second homology sequence B a second homology sequence B, the homology sequences A and B being of sufficient length and sufficient homology to be homologous
  • a further nucleic acid sequence is located between the homology sequences A and B, so that the recombination construct used in the recombination system or method according to the invention is constructed in the 5 '/ 3' direction as follows:
  • a2) a second homology sequence B a second homology sequence B, the homology sequences A and B being of sufficient length and homology to ensure homologous recombination.
  • the recognition sequence for the targeted induction of DNA double-strand breaks can also be behind or in the further nucleic acid sequences — z — 1-o-kalized-t —.
  • a second recognition sequence for the targeted induction of double-strand breaks is present behind the further nucleic acid sequence.
  • This embodiment is particularly advantageous in the case of homology sequences A and B which are further apart or in the case of longer further nucleic acid sequences, since the efficiency of the recombination is increased. That in the recombination system or method according to the invention
  • the recombination construct used in this embodiment is constructed as follows in the 5 '/ 3' direction
  • a2) a second homology sequence B a second homology sequence B, the homology sequences A and B being of sufficient length and homology to ensure homologous recombination.
  • the individual recognition sequences (for example bl or b2) for the targeted induction of DNA double-strand breaks can be identical or different, i.e. they can act as a recognition sequence for a single enzyme for the targeted induction of DNA double-strand breaks or for different ones.
  • the embodiment is preferred in which the recognition sequences for the targeted induction of DNA double-strand breaks function as a recognition sequence for a single enzyme for the targeted induction of DNA double-strand breaks.
  • Components of the recombination construct in the order mentioned using recombination methods familiar to the person skilled in the art and cloning techniques are prepared and then introduced into the chromosomal DNA of a host organism.
  • the host organism can already contain one or more of the essential components of the recombination construct.
  • the recombination construct according to the invention is then produced by introducing a further or more of the essential components of the recombination construct in the correct position in relation to the already existing components in the said organism.
  • the starting organism may already contain one of the homology sequences A or B.
  • the introduction of a construct consisting of a recognition sequence for the targeted induction of DNA double-strand breaks and a second homology sequence B behind the homology sequence A result in one of the recombination constructs according to the invention.
  • the person skilled in the art knows various ways in which the recombination construct according to the invention can be introduced into the chromosomal DNA of a eukaryotic cell or organism.
  • the insertion can be directional (i.e. at a defined insertion location) or non-directional (i.e. random). Appropriate techniques are known to the person skilled in the art and are described below by way of example.
  • Enzyme suitable for the induction of DNA double-strand breaks on the recognition sequence for the targeted induction of DNA double-strand breaks generally means all those enzymes which are capable to generate sequence-specific double-strand breaks in double-stranded DNA.
  • DSBI enzyme for “double stzrand-break inducing enzyme”
  • Restriction endonucleases (type II) preferably homing endonucleases as described in detail below.
  • Recombinases such as Cre / lox; R-RS; FLP / FTR as described above
  • Transposases for example the P-element transposase (Kaufman PD and Rio DC (1992) Cell 69 (l): 27-39) or AcDs (Xiao YL and Peterson T (2000) Mol Gen Genet 263 (1): 22- 29).
  • all transposases or integrases are suitable as long as they have sequence specificity (Hd L et al. (1999) Annu Rev Microbiol. 1999; 53: 245-281; Beall EL, Rio DC (1997) Genes Dev. 11 (16) .2137-2151).
  • Enzymes which induce double-strand breaks in the immune system such as the RAG1 / RAG2 system (Agrawal A et al. (1998) Nature 394 (6695): 744-451).
  • Group II intron endonucleases By modifying the intron sequence, Group II introns can be directed to almost any sequence in double-stranded DNA. The group II introns can then be inserted into these using a reverse splice mechanism (Mohr et al. (2000) Genes & Development 14: 559-573; Guo et al. (2000) Science 289: 452-457). During this reverse splicing mechanism, a double-strand break is introduced into the target DNA, the excised intron RNA cleaving the sense strand, while the protein portion of the group II intron endonuclease hydrolyzes the opposite strand (Guo et al. (1997) EMBO J 16 : 6835-6848).
  • Restriction endonucleases are particularly preferred which have no or only a few recognition sequences - in addition to the recognition sequences present in the transgenic recombination construct - in the chromosomal DNA sequence of a specific, eukaryotic organism. This avoids further double-strand breaks at undesired loci in the genome.
  • Homing endonucleases are therefore particularly preferred (overview: (Beifort M and Roberts RJ (1997) Nucleic Acids Res 25: 3379-3388; Jasin M (1996) Trends Genet. 12: 224-228; Internet: http://rebase.neb.com/rebase/rebase.homing.html). Due to their long recognition sequences, these usually have no or only a few further recognition sequences in the chromosomal DNA of eukaryotic organisms.
  • sequences coding for such homing endonucleases can be isolated, for example, from the chloroplast genome of Chlamydomona (Turmel M et al. (1993) J Mol Biol 232: 446-467). They are small (18 to 26 kD), have a "coding usage" in their open reading frame (ORF) which is directly for nuclear expression in eukaryotes (Monnat RJ Jr et al. (1999) Biochem Biophys Res Com 255: 88- 93) is suitable.
  • homing endonucleases such as F-Scel, F-Scell, F-Suvl, F-Tevl, F-TevII, I-Amal, I-Anil, I-Ceul, I-CeuAIIP, I-Chul, I-Cmoel, I-Cpal, I-CpaII, I-Crel, I-CrepsbIP, I-CrepsbIIP, I-CrepsbIIIP, I-CrepsbIVP, I-Csml, I- Cvul, I-CvuAIP, I-Ddil, I-DdiII, I-Dirl, I-Dmol, I-Hmul, I-HmuII, I-HspNIP, I-Llal, I-Msol, I-Naal, I-NanI, I-Ncl
  • I-SpomCP I-SpomIP, I-SoomllP, I-ScruIP, I-SSP6803I, I-_SJthPhiJP- ⁇
  • F-Scel I-Ceul, I-Chul, I-Dmol, I-Cpal, I
  • homing endonucleases such as I-Ceul, I-Scel, I-Dmol, I-Ppol, PI-PspI or Pl-Scel are very particularly preferred.
  • the enzymes can be purified from their organisms of origin in the manner known to the person skilled in the art and / or the nucleic acid sequence coding for them can be cloned.
  • the sequences of various enzymes are stored in the GenBank.
  • the homing endonucleases I-Scel, I-Cpal, I-CpaII, I-Crel and I-Chul are very particularly preferred.
  • the homing endonucleases according to SEQ ID NO: 2, 4, 6, 8 or 10 are most preferred.
  • artificial DSBI enzymes are chimeric nucleases which are composed of an unspecific nuclease domain and a sequence-specific DNA binding domain consisting of zinc fingers (Bibikova M et al. (2001) Mol Cell Biol. 21: 289-297). These DNA-binding zinc finger domains can be adapted to any DNA sequence. Corresponding methods for producing corresponding zinc finger domains are described and known to the person skilled in the art (Beerli RR et al., Proc Natl Acad Sei US A.
  • the DSBI enzyme is preferred as a fusion protein with a -Ker-n-1-localization sequence - (- NLS.) - chari e.-.-.-_ J3i S-e_ ILS ⁇ ejg _nz enables easier transport into the core and increases efficiency of the recombination system.
  • NLS sequences are known to the person skilled in the art and are described, inter alia, by Jicks GR and Raikhel NV (1995) Annu. Rev. Cell Biol. 11: 155-188.
  • the NLS sequence of the SV40 "large antigen", for example, is preferred for plant organisms.
  • the following NLS sequences are very particularly preferred: NLS1: N-Pro-Lys-Thr-Lys-Arg-Lys-Val-C (SEQ ID NO: 29)
  • NLS2 N-Pro-Lys-Lys-Lys-Arg-Lys-Val-C (SEQ ID NO: 30)
  • the homing endonucleases according to SEQ ID NO: 4, 6, 8 or 10 used in the exemplary embodiments represent fusion proteins from the native nucleases and the NLS2 nuclear localization sequence.
  • the activity of the DSB ⁇ enzyme can be induced.
  • Appropriate methods have been described for sequence-specific recombinases (Angrand PO et al. (1998) Nucl. Acids Res. 26 (13): 3263-3269; Logie C and Stewart AF (1995) Proc Natl Acad Sei USA 92 (13): 5940- 5944; Imai T et al. (2001) Proc Natl Acad Sei USA 98 (1): 224-228).
  • These methods use fusion proteins from the DSBI enzyme and the ligand binding domain of a steroid hormone receptor (e.g. the human androgen receptor, or mutated variants of the human estrogen receptor as described there).
  • Induction can be carried out using ligands such as estradiol, dexamethasone, 4-hydroxytamoxifene or raloxifene.
  • DBSI enzymes are active as dimers (homo- or heterodimers) (I-Crel forms a homodimer; I-SecIV forms a heterodimer (Wernette CM (1998) Biochemical & Biophysical Research Communications 248 (1): 127-333)).
  • Dimerization can be designed to be inducible by, for example, exchanging the natural dimerization domains for the binding domain of a low molecular weight ligand. The addition of a dimeric ligand then causes the fusion protein to dimerize.
  • Corresponding inducible dimerization methods as well as the -He-rs-te-solution-der-dimer-en-JÜqanden si.nc are described (Amara JF et al.
  • “Recognition sequence for the targeted induction of DNA double-strand breaks” generally means those sequences which, under the conditions in the eukaryotic cell or organism used, the recognition and cleavage by the DSBI enzyme allow. As an example, but not by way of limitation, the recognition sequences for the respective DSBI enzymes listed are listed in Table 1 below.
  • the combination of the recombination construct and the DSBI enzyme to form one of the recombination systems or methods according to the invention can be achieved in various ways familiar to the person skilled in the art. So the recombination constructs and the DSBI enzyme For example, the following dimensions can be brought together in an organism, a cell, cell compartment or a tissue:
  • Organisms are produced in the usual way, which carry the recombination cassette inserted into the chromosomal DNA.
  • corresponding plants can preferably be produced by agrobacterium-mediated transformation.
  • the primary transformants containing the recombination cassette are used for the transformation with an expression cassette, which ensures the expression of the DSBI enzyme, or are suitably brought up to homozygosity and then serve as host organism (for example, host plant) for the transformation with an expression cassette, the expression of the DSBI enzyme.
  • host organism for example, host plant
  • in vitro cultures such as Callus or embryogenic cultures are created, established and used for transformation.
  • the transformation with the expression cassette for the DSBI enzyme can take place in a stable or transient manner.
  • master organisms are produced which carry and express the corresponding gene for the DSBI enzyme (or an expression cassette which ensures the expression of the DSBI enzyme).
  • corresponding master plants can preferably be produced by Agrobacterium-mediated transformation.
  • the primary transformants expressing the DSBI enzyme are used for the transformation with the recombination construct or in a suitable manner lead to homozygosity and then serve as a master or host organism (for example a master plant) into which the recombination constructs are introduced.
  • master plants for example, in vitro cultures, such as Callus or embryogenic cultures are created, established and used for transformation.
  • the —gen. — kQdier-end- £ for — the — DSBI enzyme ⁇ (or _ ⁇ _a_expr_easions cassette which ensures the expression of the DSBI enzyme) can be converted into a vector which already has the Recombination cassette carries, be integrated and thereby introduced into plant cells at the same time as the target gene.
  • the gene coding for the DSBI enzyme is preferably inserted between the homology sequences and thus deleted after its function from the chromosomal DNA.
  • the expression of the DSBI enzyme is very particularly preferably inducible (for example under the control of one of the below) described inducible promoters), development-dependent using a development-dependent promoter or DSBI enzymes are used whose activity is inducible in order to avoid cutting the recombination construct immediately after the transformation and before insertion into the genome.
  • the expression cassette which ensures the expression of the DSBI enzyme, can be transformed into the cells at the same time as the recombination construct, but on a separate vector, using the co-transformation.
  • the co-transformation can be stable or transient.
  • the expression of the DSBI enzyme is preferably inducible (for example under the control of one of the inducible promoters described below), development-dependent using a development-dependent promoter, or DSBI enzymes are used whose activity is inducible in order to cut the recombination construct immediately after transformation and before insertion into the genome.
  • Organisms for example plants or animals, which express the DSBI enzyme, can also serve as crossbreeding partners. In the progeny of the cross between organisms which express the DSBI enzyme, on the one hand, and organisms which carry the recombination construct, on the other hand, the desired double-strand breaks and the recombination between the homology sequences occur, the sequences located between the homology sequences possibly being deleted.
  • the DSBI enzyme can also be introduced directly into cells which contain or carry the transgenic recombination construct, for example via microinjection, particle bombardment (biolistic method), polyethylene glycol transfection or liposome-mediated transfection. This embodiment is advantageous since no sequences coding for DSBI enzyme can remain in the genome. A corresponding method is described for example by Segal DJ et al. (1995) Proc Natl Acad Sei USA 92: 806-810.
  • the DSBI enzyme can also be introduced into cells by the introduction of the RNA coding for the DSBI enzyme, generated in vitro (for example via microinjection, particle bombardment (bio- listic procedures) or liposome-mediated transfection). This embodiment is advantageous since no sequences coding for DSBI enzyme can remain in the genome.
  • the DSBI enzyme can be introduced into plant cells as a fusion protein with the VirE2 or VirF protein of an agrobacterium. Corresponding methods have been described, for example, for Cre recombinase (Vergunst AC et al. (2000) Science. 290: 979-982). If the expression cassette for the fusion protein is outside the "border" sequences, it is not inserted into the plant genome. This embodiment is advantageous since no sequences coding for DSBI enzyme can remain in the genome.
  • the recombination system or method according to the invention can be implemented in intact organisms and also in parts, cells or propagation material derived therefrom, particularly preferably in intact plants and also in any plant tissue or plant in vitro cultures including callus.
  • In vitro use using, for example, wheat germ extract or reticolocyte extract is also conceivable.
  • the DSBI enzyme can be generated using an expression cassette which contains the DNA coding for a DSBI enzyme and which is introduced into a eukaryotic cell or organism.
  • the expression cassette for the DSBI enzyme preferably contains a nucleic acid sequence coding for a DSBI enzyme according to SEQ ID NO: 2, 4, 6, 8 or 10 or a functional equivalent thereof which is capable of being used in double-stranded DNA using the im generate essentially the same recognition sequence DNA double-strand breaks.
  • Essentially identical recognition sequences mean those recognition sequences which, although they deviate from the recognition sequence found to be optimal for the particular enzyme, still allow cleavage by the same.
  • the expression cassettes for the DSBI enzyme very particularly preferably contain a nucleic acid sequence according to SEQ ID NO: 1, 3, 5, 7 or 9.
  • Expression cassette means - for example in relation to the
  • Expression cassette for the DSBI enzyme - constructions in which the DNA to be expressed is functionally linked to at least one genetic control element that enables or regulates its expression (ie transcription and or translation).
  • the expression can be stable or transient, constitutive or inducible.
  • direct e.g. transfection, particle bombardment, microinjection
  • indirect methods e.g. agrobacterial infection, virus infection
  • a functional link is generally understood to mean an arrangement in which a genetic control sequence can perform its function in relation to a nucleic acid sequence - for example coding for a DSBI enzyme.
  • Function can, for example, control expression, i.e. Transcription and / or translation of the nucleic acid sequence - for example coding for a DSBI enzyme - mean.
  • Control includes, for example, the initiation, increase, control or suppression of expression, i.e. Transcription and, if necessary, translation.
  • the control in turn, can take place in a tissue-specific or time-specific manner, for example. It can also be inducible, for example, by certain chemicals, stress, pathogens, etc.
  • a functional link is understood to mean, for example, the sequential arrangement of a promoter, the nucleic acid sequence to be expressed - for example coding for a DSBI enzyme - and possibly. further regulatory elements such as a terminator such that each of the regulatory elements can fulfill its function in the expression of the nucleic acid sequence - for example coding for a DSBI enzyme.
  • nucleic acid sequence to be expressed for example coding for a DSBI enzyme - is positioned behind a sequence which acts as a promoter, so that both sequences are covalently linked to one another.
  • the distance between the promoter sequence and the nucleic acid sequence - for example coding for a DSBI enzyme - is preferably less than 200 base pairs, particularly preferably less than 100 base pairs, very particularly preferably less than 50 base pairs.
  • the preparation is preferably carried out by direct fusion of a nucleic acid sequence functioning as a promoter with a. nucleotide sequence to be expressed - for example coding for a DSBI enzyme.
  • the creation of a functional link can be realized by means of common recombination and cloning techniques, as described, for example, in T. Maniatis, EF Fritsch and J.
  • an expression cassette can also be designed so ⁇ * ⁇ "which the (encoding eg a DSBI enzyme) to be expressed nucleic acid sequence, for example, by homologous recombination or by random insertion under control of an endogenous genetic control element, such as a promoter, is brought.
  • ⁇ * ⁇ which the (encoding eg a DSBI enzyme) to be expressed nucleic acid sequence, for example, by homologous recombination or by random insertion under control of an endogenous genetic control element, such as a promoter, is brought.
  • an endogenous genetic control element such as a promoter
  • nucleic acid molecules can also be expressed using artificial transcription factors of the zinc finger protein type (Beerli).
  • genetic control sequences is to be understood broadly and means all those sequences which have an influence on the formation or the function of the expression cassette according to the invention. Genetic control sequences ensure, for example, transcription and, if necessary, trans
  • the expression cassettes according to the invention preferably comprise a promoter 5 'upstream of the particular nucleic acid sequence to be expressed and a terminator sequence 3' downstream as an additional genetic control sequence, and
  • 35 optionally other customary regulatory elements, each functionally linked to the nucleic acid sequence to be expressed.
  • control sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the expression cassette can also have a simpler structure, ie no additional regulation signals are inserted in front of the genes mentioned above and the natural promoter with its regulation is not removed. Instead, the natural control sequence is mutated so that regulation no longer takes place and gene expression is increased.
  • These modified promoters can also be placed in front of the natural genes to increase activity.
  • control sequences are suitable.
  • Advantageous control sequences for the expression cassettes or vectors according to the invention are, for example, in promoters such as cos, tac, trp, tet, phoA, tat, lpp, lac, laclq, T7, T5, T3, gal -, trc, ara, SP6, ⁇ -PR or in the ⁇ -PL promoter, which are advantageously used in gram-negative bacteria.
  • promoters such as cos, tac, trp, tet, phoA, tat, lpp, lac, laclq, T7, T5, T3, gal -, trc, ara, SP6, ⁇ -PR or in the ⁇ -PL promoter, which are advantageously used in gram-negative bacteria.
  • control sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADCl, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S (Franck et al. (1980) Cell 21: 285-294), PRPl (Martini N et al. (1993) Mol Gen Genet. 236 (2-3): 179-186), SSU, OCS, LEB4, USP, STLS1, B33 , NOS; FBPaseP (WO 98/18940) or contained in the ubiquitin or phaseolin promoter.
  • Vectors such as the TK promoter, the RSV 3 'LTR promoter, the CMV promoter, the SV40 "early” or late "promoter are suitable for expression in vertebrates, preferably in mammals.
  • Other promoters are known to the person skilled in the art Promoters suitable for use in vertebrates, preferably in mammals, include, for example, the tet promoter / repressor inducible or repressible by tetracycline or derivatives, the dexethasone inducible MMTV-LTR promoter, the Drosophila minimal Heat shock promoter inducible by Ecdysone or the analog Ponasterone A (within the framework of the pVgRXR expression system; Invitrogen, Inc.).
  • promoter which can control the expression of genes, in particular foreign genes, in plants. Promoters which allow constitutive expression in plants are preferred (Benfey et al. (1989) EMBO J. 8: 2195-2202). In particular, a vegetable one is preferably used
  • the promoter of the 35S transcript of the cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shewmaker et al. (1985) Virology 140: 281-288; Gardner et al. 1986, Plant Mol. Biol. 6,
  • this promoter contains different recognition sequences for transcriptional effectors, which in their entirety lead to permanent and constitutive expression of the introduced gene (Benfey et al. (1989) EMBO
  • Another suitable constitutive promoter is the "Rubisco small subunit (SSU)" promoter (US 4,962,028).
  • SSU Rostunase gene
  • Another example of a suitable promoter is the LeguminB promoter (GenBank Acc.-No .: X03677).
  • Further preferred constitutive promoters are, for example, the promoter of
  • the expression cassettes can also contain an inducible, preferably a chemically inducible promoter (Aoyama T and Chua NH (1997) Plant J 11: 605-612; Caddick MX et al. (1998) Nat. Biotechnol 16: 177-180; Rewiew: Gatz , T ⁇ nnu Rev Plant Physiol
  • Such promoters e.g. the PRPl promoter (Ward et al., Plant. Mol. Biol. 22 (1993), 361-366), a salicylic acid-inducible (WO 95/19443), a benzene-
  • inducible (WO 93/21334) promoter can also be used.
  • nucleic acid coding for the DSBI enzyme is expressed under the control of an inducible promoter. This achieves controlled, controllable expression and deletion - for example in plants - and avoids any problems caused by constitutive expression of a DSBI enzyme.
  • promoters are preferred which are induced by biotic or abiotic stress, such as, for example, the pathogen-inducible promoter of the PRPl gene (Ward et al., Plant Mol Biol 1993, 22: 361-366), the heat-inducible hsp ⁇ O promoter from tomato ( No. 5,187,267), the cold-inducible alpha-amylase promoter from the potato (WO 96/12814) or the wound-induced pinII promoter (EP375091).
  • the pathogen-inducible promoter of the PRPl gene Ward et al., Plant Mol Biol 1993, 22: 361-366
  • the heat-inducible hsp ⁇ O promoter from tomato No. 5,187,267
  • the cold-inducible alpha-amylase promoter from the potato
  • the wound-induced pinII promoter EP37509
  • promoters with specificities for the anthers, ovaries, pollen, meristems, flowers, leaves, stems, roots and seeds.
  • Promoters are particularly preferred which ensure expression in tissues or parts of plants in which the biosynthesis of starch and / or oils or their precursors takes place or in which the products are advantageously accumulated.
  • the biosynthetic site of the starch is the chloroplasts of the leaves or the amyloplasts of the storage organs such as seeds, fruits or tubers. In these organs there are primarily the cells of the endosperm or the cotyledons of the embryo in which the synthesis takes place.
  • preferred promoters are, in addition to the above-mentioned constitutive promoters, in particular seed-specific promoters such as, for example, the promoter of phaseoline (US 5,504,200, Bustos MM et al., Plant Cell.
  • HMWG high molecular weight glutenin
  • AGPase ADP glucose pyrophosphatase
  • promoters that allow seed-specific expression in monocots such as corn, barley, wheat, rye, rice, etc.
  • the promoter of the lpt2 or lptl gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzine gene, etc.) can be used advantageously Prolamin gene, gliadin gene, glutelin gene, zein gene, kasirin gene or secalin gene).
  • pollen-specific promoters such as, for example, the promoter of the B. campestris bgpl gene (GenBank Acc. No. X68210; Xu H et al. (1993) Mol Gen Genet 239 (1-2): 58-65; WO 94/13809), of the Oryza sativa ory s 1 gene (GenBank Acc.-No .: AJ012760; Xu H et al. (1995) Gene 164 (2): 255-259), of the pollen-specific maize gene ZM13 ( Hamilton DA et al. (1998) Plant Mol Biol 38 (4): 663-669; US 5,086,169), of the B. napus gene BplO (GenBank Acc.-No .: X64257; Albani D (1992) Plant J 2 (3 ): 331-342; US 6,013,859).
  • B. campestris bgpl gene GeneBank Acc. No. X68210; Xu
  • Lcgl promoter for cell-specific expression in the male gametes (WO 99/05281; XU H et al. (1999) Proc. Natl. Acad. Sei. USA Vol. 96: 2554-2558) and the promoter of AtDMCl Gens (Klimyuk VI et al. (1997) Plant J. 11 (1): 1-14).
  • promoters are, for example, specific promoters for tubers, storage roots or roots, such as, for example, the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato, the promoter of the starch 'synthase (GBSS1) or the sporamine promoter and fruit-specific promoters , such as the fruit-specific promoter from tomato (EP-A 409625).
  • specific promoters for tubers, storage roots or roots such as, for example, the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato, the promoter of the starch 'synthase (GBSS1) or the sporamine promoter and fruit-specific promoters , such as the fruit-specific promoter from tomato (EP-A 409625).
  • Promoters which are also suitable are those which ensure leaf-specific expression.
  • Promoters which are also suitable are those which ensure leaf-specific expression.
  • the promoter of the cytosolic FBPase from potatoes (WO 98/18940), the SSU promoter (small subunit) from Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the ST-LSI promoter from potatoes (Stockhaus et al. ( 1989) EMBO J 8 (9): 2445-2451). Promoters which control expression in seeds and plant embryos are also preferred.
  • suitable promoters are, for example, fruit-specific promoters, such as the flower-specific promoter from tomato (WO 94/21794), flower-specific Promoters such as the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene (WO 98/22593) or another node-specific promoter as in EP-A 249676 can be used advantageously. 5
  • Genetic control sequences also include further promoters, promoter elements or minimal promoters that can modify the expression-controlling properties. Genetic control sequences can, for example, be the tissue-specific one
  • promoters can be functionally linked to the nucleic acid sequence to be expressed, which enable expression in other plant tissues or in other organisms, such as E. coli bacteria.
  • Genetic control sequences also include the 5 'untranslated region, introns, or the non-coding 3' region
  • Genetic control sequences can also include ribosome binding sequences to initiate translation. This is particularly preferred if the nucleic acid sequence to be expressed does not provide appropriate sequences or if these are not compatible with the expression system.
  • the expression cassette can advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the nucleic acid sequences to be expressed transgenically.
  • the nucleic acid sequences to be expressed transgenically can be contained in one or more copies in the gene construct.
  • Genetic control sequences also mean sequences which code for fusion proteins consisting of a signal peptide sequence.
  • Polyadenylation signals suitable as genetic control sequences are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACHS (Gielen et al., EMBO J. 3 (1984), 835 ff) or functional equivalents thereof.
  • particularly suitable terminator sequences are the OCS (octopine synthase) terminator and the NOS (nopalin synthase) terminator.
  • the recombination constructs according to the invention can comprise further nucleic acid sequences.
  • Such nucleic acid sequences can preferably represent expression cassettes. The following may be mentioned as examples, but not restrictive, for the DNA sequences to be expressed in the expression constructs:
  • Selection markers are usually required to successfully select homologously recombined or transformed cells.
  • the selectable marker introduced with the expression construct gives the successfully recombined or transformed cells resistance to a biocide (for example a herbicide such as phosphinothricin, glyphosate or bromoxynil), a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98/45456) or
  • Antibiotic such as tetracycline, ampicillin, kanamycin, G 418, neomycin bleomycin or hygromycin.
  • the selection marker permits the selection of the transformed cells from untransformed ones (McCormick et al., Plant Cell Reports 5 (1986), 81-84). Particularly preferred selection markers are those which are resistant to Give herbicides. Examples of selection markers are:
  • PPT phosphinothricin acetyl transferases
  • EDP synthase genes which confer resistance to Glyphosat® (N- (phosphonomethyl) glycine
  • NPTII kanamycin or G418 resistance gene
  • the gene D0G R 1 was isolated from the yeast Saccharomyces cerevisiae (EP 0 807 836). It encodes a 2-deoxyglucose-6-phosphate phosphatase that
  • Negative selection markers allow, for example, the selection of organisms with successfully deleted ones
  • TK thymidine kinase (TK) and diphtheria toxin A fragment (DT-A), codA gene coding for a cytosine deaminase (Gleve AP et al. (1999) Plant Mol Biol. 40 (2): 223-35; Pereat RI et al. (1993) Plant Mol. Biol 23 (4): 793-799; Stougaard J; (1993) Plant J 3: 755-761), the cytochrome P450 gene (Koprek et al. (1999) Plant J.
  • reporter genes which code for easily quantifiable proteins and which, by means of their own color or enzyme activity, ensure an assessment of the transformation efficiency, the location or time of expression.
  • Genes coding for reporter proteins are very particularly preferred (see also Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13 (l): 29-44) such as
  • Green fluorescence protein (GFP) (Chui WL et al., Curr Biol 1996, 6: 325-330; Leffel SM et al., Biotechniques. 23 (5): 912-8, 1997; Sheen et al. ( 1995) Plant Journal 8 (5): 777-784; Haseloff et al. (1997) Proc Natl Acad Sei USA 94 (6): 2122-2127; Reichel et al. (1996) Proc Natl Acad Sei USA 93 (12) : 5888-5893; Tian et al. (1997) Plant Cell
  • GUS ⁇ -glucuronidase
  • uidA ⁇ -glucuronidase
  • R-Locus gene product protein that enables the production of anthocyanin pigments (red coloring) in plant tissue -r-eguXier-t — and_so - direct_AnalyBe_jier_Pjrj3mp activity without the addition of additional additives or chromogenic substrates (Dellaporta et al.,
  • Aequorin (Prasher et al. (1985) Biochem Biophys Res Commun 126 (3) -.1259-1268) can be used in calcium-sensitive bioluminescence detection.
  • the recombination construct according to the invention and the vectors which may be derived from them can contain further functional elements.
  • the concept of further functional elements is to be understood broadly. Preferably, all those elements are meant which have an influence on the production, multiplication, function, use or value of the recombination system according to the invention, recombination construct or cells or organisms containing them. Examples of the other functional elements, however, are not restrictive:
  • origins of replication which ensure a multiplication of the expression cassettes or vectors according to the invention in, for example, E. coli.
  • origins of replication which ensure a multiplication of the expression cassettes or vectors according to the invention in, for example, E. coli.
  • examples are ORI (origin of DNA replication), the pBR322 ori or the P15A ori (Sa -. Brook et al .: Molecular Cloning A Laboratory Manual, 2 ed nd Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989. ).
  • MCS Multiple cloning regions
  • elements for example “border sequences”, which enable an agrobacterium-mediated transfer into plant cells for the transfer and integration into the plant genome, such as the right or left border of the T-DNA or the vir region.
  • Vectors can be, for example, plasmids, cosmids, phages, viruses, retroviruses or also agrobacteria.
  • Preferred vectors for expression in E. coli are pQE70, pQE60 and pQE-9 (QIAGEN, Inc.); pBluescript vectors, Phagescript vectors, pNH8A, pNHl6a, pNHl8A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.).
  • Preferred vectors for eukaryotic expression include pWLNEO, pSV2CAT, pOG44, pXTl and pSG (Stratagene Inc.); pSVK3, pBPV, pMSG and pSVL (Pharmacia Biotech, Inc.).
  • inducible vectors examples include pTet-Thia, Potter-Splice, pcDNA4 / T0, pcDNA4 / TO / LacZ, pcDNA6 / TR, pcDNA4 / T0 / Myc-His / LacZ, pcDNA4 / T0 / Myc-His A, pcDNA4 / T0 / Myc -His B, pcDNA4 / TO / Myc-His C, pVgRXR (Invitrogen, Inc.) or the pMAM series (Clontech, Inc .; GenBank Accession No.: U02443).
  • the nucleic acid sequence coding for a DSBI enzyme can be inserted directly into these vectors.
  • Vectors for expression in yeast include, for example, pYES2, pYDl, pTEFl / Zeo, pYES2 / GS, pPICZ, pGAPZ, pGAPZalph, pPIC9,
  • the expression cassette is introduced by means of plasmid vectors.
  • Preferred vectors are those which enable stable integration of the expression cassette into the host genome.
  • Another object of the invention relates to transgenic, eukaryotic organisms which contain the recombination system according to the invention and cells, cell cultures, tissues, parts or propagation material - such as leaves, roots, seeds, fruits, pollen etc. in plant organisms - derived from such organisms.
  • Eukaryotic organism starting or host organism means lower and higher, unicellular and multicellular eukaryotic organisms.
  • Eukaryotic microorganisms such as yeasts, algae or fungi are also included.
  • yeasts are Candida, Saccharomyces, Hansenula or Pichia, Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178) are particularly preferred.
  • Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria or others in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) on page 15, Table 6 described mushrooms.
  • the filamentous Hemiascomycet Ashbya gossypii is particularly preferred.
  • Host or starting organisms preferred according to the invention are furthermore animal organisms and cells or tissues derived therefrom.
  • Animal organisms preferably include vertebrates and invertebrates. Particularly preferred distributors are mammals such as in dogs, cats, sheep, goats, chickens, mice, rats, cattle or horses.
  • Preferred animal cells include CHO, COS, HEK293 cells.
  • Preferred invertebrates include insect cells such as Drosophila S2 and Spodoptera Sf9 or Sf21 cells.
  • Plants are particularly preferred host or starting organisms as transgenic organisms. Included in the scope of the invention are all genera and species of higher and lower plants in the plant kingdom. Also included are the mature plants, seeds, shoots and seedlings, as well as parts derived from them, propagation material (for example seeds or fruits) • and —- ul-tur-en- r —zum — Be s-pie-j ⁇ -Ze- llkultuxen -.— Ripe - plants-ineirit- plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
  • the recombination system according to the invention can preferably be used for the following plant families: Amaranthaceae, Brassica- ceae, Carophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Labiatae, Leguminosae-Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Scrophrophaceae, Saxifragaceae.
  • Examples include, but are not limited to, angiosperms, bryophytes such as hepaticae (liverwort) and musci (mosses); Pteridophytes such as ferns, horsetail and lycopods; Gymnosperms such as conifers, cycads, ginkgo and gnetals; Algae such as Chlorophyceae, Phaeophpyceae, Rhodophyceae, Myxophyceae, Xanthophyceae, Bacillariophyceae (diatoms) and Euglenophyceae.
  • angiosperms bryophytes such as hepaticae (liverwort) and musci (mosses); Pteridophytes such as ferns, horsetail and lycopods; Gymnosperms such as conifers, cycads, ginkgo and gnetals; Algae such as Chlorophycea
  • Plants within the scope of the invention include, by way of example and not limitation, the families of the Rosaceae such as rose, Ericaceae such as rhododendrons and azaleas, Euphorbiaceae such as poinsettias and croton, Caryophyllaceae such as carnations, Solanaceae such as petunias, Gesneriaceae such as the African violet and Balsaminaceae
  • leguminosae such as pea, alfalfa and soy are to be mentioned as examples but not restrictive for flowering plants; Gramineae such as rice, corn, wheat; Solanaceae such as tobacco and others; the Umbelliferae family, especially the genus Daucus (especially the species carota (carrot)) and Apiu (especially the species graveolens dulce (Seiarie)) and others; the family of the Solanacea, especially the genus Lycopersicon, very particularly — the — rt — esc ⁇ lentum _ (.
  • the Gat-tung_S-oJ.an.um- especially the species tuberosum (potato) and melongena (aubergine ) and others more; and the genus Capsicum, especially the species annum (pepper) and others; the Leguminosae family, especially the Glycine genus, especially the Max species (soybean) and others; and the family of the Cruciferae, especially the genus Brassica, especially the species napus (rape), campestris (turnip), oleracea cv Tastie (cabbage), oleracea cv Snowball Y (cauliflower) and oleracea cv Emperor (Broc ⁇ oli); and the genus Arabidopsis, especially the species thaliana and others more; the Compositae family, especially the Lactuca genus, especially the sativa (lettuce) species and others.
  • transgenic plants according to the invention are selected in particular from monocotyledonous crop plants, such as, for example, cereals such as wheat, barley, millet, rye, triticale, maize, rice or oats and sugar cane. Furthermore, the transgenic plants according to the invention are particularly selected from dicotyledonous crop plants, such as, for example
  • Brassicacae such as rapeseed (B.napus), cress, Arabidopsis, cabbage or canola, leguminosae such as soy, alfalfa, pea, bean family or peanut
  • Solanaceae such as potato, tobacco, tomato, eggplant or paprika
  • Asteraceae such as sunflower, tagetes, lettuce or calendula
  • Cucurbitaceae such as melon, pumpkin or zucchini
  • oilseeds such as rapeseed
  • types of nuts, soybeans are particularly preferred.
  • Plant organisms in the sense of the invention are further photosynthetically active capable organisms, such as algae or cyanobacteria, and mosses.
  • Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella.
  • the production of a transformed organism or cell requires that the corresponding DNA be introduced into the corresponding host cell.
  • a variety of methods are available for this process, which is referred to as transformation (see also Keown et al. 1990 Methods in Enzymology 185: 527-537).
  • the DNA can be introduced directly by microinjection or by bombardment with DNA-coated microparticles.
  • the cell can also be permeabilized chemically, for example with polyethylene glycol, so that the DNA can enter the cell by diffusion.
  • the DNA can also be obtained by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes. Electroporation is another suitable method for introducing DNA in which the cells are reversibly permeabilized by an electrical pulse.
  • Calcium phosphate-mediated transfection may be mentioned as preferred general methods. Such methods are familiar to the person skilled in the art and are described, for example, in Davis et al., Basic Methods In Molecular Biology (1986).
  • Any plant tissue can serve as the target material.
  • Expression can also take place in callus, embryogenic tissue or somatic embryos.
  • a transformation can also be carried out by bacterial infection using Agrobacterium tumefaciens or Agrobacterium rhizogenes. These strains contain a plasmid (Ti or Ri plasmid). Part of this plasmid, called T-DNA (transferred DNA), is transferred to the plant after Agrobacterium infection and integrated into the genome of the plant cell.
  • the recombination construct or the expression cassette for the DSBI enzyme is preferably integrated into special plasmids, either into an intermediate vector (English: shuttle or inter ediate vector) or a binary vector.
  • a Ti 5 or Ri plasmid is to be used for the transformation, at least the right boundary, but mostly the right and the left boundary of the Ti or Ri plasmid T-DNA as the flanking region, is connected to the expression cassette to be inserted.
  • Binary vectors are preferably used. Binary vectors can be used.
  • the selection marker gene allows selection of transformed agrobacteria and is, for example, the nptll gene which confers resistance to kanamycin.
  • the Agrobacterium which acts as the host organism in this case, should already contain a plasmid with the vir region. This is for the
  • strains of Agrobacterium tumefaciens are able to transfer genetic material - e.g. the recombination constructs according to the invention - such as the strains EHAlOlCpEHAlOl], EHA105 [pEHAl05], LBA4404 [pAL4404], C58Cl [pMP90] and C58Cl [pGV2260].
  • the strain EHA101 [pEHAlOl] was developed by Hood
  • the agrobacterial strain used for the transformation contains 45, in addition to its disarmed Ti plasmid, a binary plasmid with the T-DNA to be transferred, which usually contains a gene for the selection of the transformed cells and the gene to be transferred contains. Both genes must be equipped with transcriptional and translational initiation and termination signals.
  • the binary plasmid can be transferred into the agrobacterial strain, for example, by electroporation or other transformation methods (Mozo & Hooykaas 1991, Plant Mol. Biol. 16, 917-918). The coculture of the plant explants with the agrobacterial strain usually takes place for two to three days.
  • vectors were or can be used. Basically, a distinction can be made between those vectors that can be used for Agrobacterium-mediated transformation or agroinfection, i.e. contain the recombination constructs or the expression cassette for the expression of the DSBI enzyme within a T-DNA, which even allows the stable integration of the T-DNA into the plant genome.
  • border sequence-free vectors can be used, which can be transformed into the plant cells by particle bombardment, for example, and there can lead to both a transient and a stable expression.
  • T-DNA for the transformation of plant cells has been intensively investigated and described (EP 120516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters BV, Alblasserdam, Chapter V; Fraley et al., Crit. Rev. Plant. Sei ., 4: 1-46 and An et al., EMBO J. 4 (1985), 277-287).
  • Various binary vectors are known and some are commercially available, for example pBIN19 (Clontech Laboratories, Inc. USA).
  • plant explants are co-cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Agrobacterium tumefaciens or Agrobacterium rhizogenes Starting from infected plant material (e.g. leaf, root or stem parts, but also protoplasts or suspensions of plant cells), whole plants can be regenerated using a suitable medium, which can contain, for example, antibiotics or biocides for the selection of transformed cells.
  • the plants obtained can then be screened for the presence of the introduced DNA, here the recombination construct according to the invention or the expression cassette for the DSBI enzyme.
  • the corresponding genotype is generally stable and the corresponding insertion is also found in the subsequent generations.
  • the integrated expression cassette contains a selection marker which gives the transformed plant resistance to a biocide (for example a herbicide) or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricin etc.
  • the selection marker allows the selection of transformed cells from untransformed (McCormick et al., Plant Cell Reports 5 (1986), 81-84). The plants obtained can be grown and crossed in a conventional manner. Two or more generations should be cultivated to ensure that genomic integration is stable and inheritable.
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711).
  • the Agrobacterium -mediated transformation is best suited for dicotyledonous plant cells, whereas the direct transformation techniques are suitable for every cell type.
  • Transformed cells i.e. those which contain the introduced DNA integrated into the DNA of the host cell can be selected by untransformed ones if a selectable marker is part of the introduced DNA.
  • Any gene that can confer resistance to antibiotics or herbicides can act as a marker, for example.
  • Transformed cells that express such a marker gene are able to survive in the presence of concentrations of a corresponding antibiotic or herbicide that kill an untransformed wild type.
  • Various positive and negative selection markers are described above. Examples are the bar gene that confers resistance to the herbicide phosphinothricin (Rathore KS et al., Plant Mol Biol.
  • a complete plant can be obtained using methods known to those skilled in the art. This is based on the example of callus cultures. The formation of shoots and roots can be induced in a known manner from these still undifferentiated cell masses. The sprouts obtained can be planted out and grown. According to the invention, cells, cell cultures, parts derived from the transgenic organisms described above - such as roots, leaves etc., for example in the case of transgenic plant organisms - and transgenic propagation material (such as seeds or fruits).
  • Genetically modified plants according to the invention that can be consumed by humans and animals can also be used, for example, directly or after preparation known per se as food or feed.
  • Another object of the invention relates to the use of the transgenic organisms according to the invention described above and the cells, cell cultures, parts derived therefrom - such as roots, leaves etc. in transgenic plant organisms - and transgenic propagation material such as seeds or fruits for the production of food or feed, pharmaceuticals or fine chemicals.
  • deletion of, for example, antibiotic and / or herbicide resistance is advantageous for reasons of customer acceptance but also for product safety.
  • Fine chemicals means enzymes, vitamins, amino acids, sugars, fatty acids, natural and synthetic flavors, aromas and colors.
  • the production of tocopherols and tocotrienols and carotenoids is particularly preferred.
  • the transformed host organisms are isolated and isolated from the host organisms or from the growth medium using methods known to those skilled in the art.
  • the production of pharmaceuticals, such as antibodies or vaccines, has been described (Hood EE, Jilka JM. (1999) Curr Opin Biotechnol. 10 (4): 382-386; Ma JK and Vine ND (1999) Curr Top Microbiol Immunol. 236 : 275-92).
  • Any homology sequences A and B can be deleted between these localized nucleic acid sequences.
  • the sequence recombined from homology sequences A and B remains in the genome.
  • the method is suitable, for example, for removing selection markers from the chromosomal DNA after the production of a transgenic organism - for example a transgenic plant.
  • FIGS. 2 and 3 The method is shown schematically in FIGS. 2 and 3, the variant with one recognition sequence for the targeted induction of DNA double-strand breaks being shown in FIG. 2 and the variant with two recognition sequences for the targeted induction of DNA double-strand breaks in FIG. 3.
  • the expression construct can be introduced into the organism by homologous recombination.
  • the nucleic acid sequences located between the homology sequences would be deleted.
  • the induced homologous recombination between homology sequences A and B restores the original sequence.
  • the construct is removed from the chromosomal DNA without residue.
  • the method is suitable, for example, for removing selection markers from the chromosomal DNA after the production of a transgenic plant.
  • the system or method according to the invention is suitable for temporarily expressing certain proteins to achieve an advantageous effect and for switching them off again using an induced DSBI enzyme expression or activity by irreversibly removing the corresponding gene from the geno.
  • the method is shown schematically in FIG. 4, the variant with two recognition sequences for the targeted induction of DNA double-strand breaks being shown here.
  • the system can also be implemented with a recognition sequence, however, with larger insertions between the homology sequences A and B, two interfaces are advantageous since the efficiency of the deletion and homologous recombination can be increased further. (Within the further recognition sequences can be localized to be deleted.)
  • homology sequences A and B the homologous recombination of which, for example, restores a complete open reading frame of a protein or a functional promoter, can - depending on the presence of the DSBI enzyme - realize the inducible expression of target proteins.
  • the nucleic acid sequences located between the homology sequences would be deleted. The method is shown schematically in FIGS. 5 and 6, with FIG. 6 showing a special embodiment of the general method shown in FIG. 5, in which the recombination construct is previously inserted into an endogenous gene by homologous recombination and this thereby - depending on the presence of the DSBI enzyme - can be activated inducibly.
  • FIG. 7a illustrates the system of gene activation using a specific exemplary embodiment in which the gene of ⁇ -glucuronidase (GUS) is reconstituted using the system or method according to the invention, which enables a color reaction (see description of FIG. 7a and examples).
  • GUS ⁇ -glucuronidase
  • the recombination construct contains a positive and a negative selection marker (and possibly further nucleic acid sequences to be deleted) such that both markers are deleted when the double-strand breaks are induced.
  • a positive and a negative selection marker and possibly further nucleic acid sequences to be deleted
  • FIG. 10 (B) A corresponding system is shown in Figs. 8 and 9 (A).
  • Homology sequences may be included (FIG. 10 (B)), the expression preferably being under the control of an inducible promoter (Pi) (for example: Aoyama T and Chua NH (1997) Plant J 11: 605-612; Caddick MX et al.
  • the recombination system or method according to the invention can be used for in situ modifications of the host genome.
  • a homology sequence can already be present endogenously in the genome.
  • homology sequence linked to a DSBI enzyme recognition sequence any regulatory or coding sequences located between homology sequences A and B are removed from the genome.
  • the recombination construct comprises regulatory or coding sequences which are removed from the organism again after the deletion.
  • regulatory or coding sequences which are removed from the organism again after the deletion.
  • an endogenous gene can be temporarily regulated in a targeted manner.
  • the efficiency of the recombination system is increased by combination with systems which promote homologous recombination.
  • systems which promote homologous recombination.
  • Such systems have been described and include, for example, the expression of proteins such as RecA or the treatment with PARP inhibitors.
  • PARP inhibitors Puchta H et al. (1995) Plant J. 7: 203-210).
  • the rate of homologous recombination in the recombination constructs after induction of the sequence-specific DNA double-strand break and thus the efficiency of the deletion of the transgene sequences can be increased further.
  • Various PARP inhibitors can be used.
  • Inhibitors such as 3-amine topaz, 8-hydroxy-2-methylquinazolin-4-one (NU1025), 1, 11b-dihydro [2H] benzopyrano [4,3,2-de] isoquinoline- are preferably included.
  • the frequency of different homologous recombination reactions in plants could be increased by expressing the RecA gene from E. coli (Reiss B et al. (1996) Proc Natl Acad Sei USA 93 (7) -.3094-3098).
  • the ratio of homologous to illegitimate DSB repair is also shifted in favor of homologous repair (Reiss B et al. (2000) Proc Natl Acad Sei USA 97 (7): 3358-3363).
  • a further increase of the efficiency 'of the recombination system could be achieved by the simultaneous expression of the RecA gene or other genes increase the homologous recombination (Shalev G et al (1999) Proc Natl Acad Sci USA 96 (13):. 7398-402) can be achieved.
  • the above-mentioned systems for promoting homologous recombination can also be used advantageously where the recombination construct is to be introduced into the genome of a eukaryotic organism by homologous recombination.
  • SEQ ID NO: 2 protein sequence for the I-Scel homing endonuclease.
  • Nucleic acid sequence for fusion protein from I-Chul homing endonuclease and N-terminal nuclear localization sequence are provided.
  • Protein sequence for fusion protein from I-Chul homing endonuclease and N-terminal nuclear localization sequence Protein sequence for fusion protein from I-Chul homing endonuclease and N-terminal nuclear localization sequence.
  • Nucleic acid sequence for fusion protein from I-Crel homing endonuclease and N-terminal nuclear localization sequence are provided.
  • SEQ ID NO: 6 protein sequence for fusion protein from I-Crel homing endonuclease and N-terminal nuclear localization sequence. 7. SEQ ID NO: 7
  • Nucleic acid sequence for fusion protein from I-Cpal homing endonuclease and N-terminal nuclear localization sequence are included in Nucleic acid sequence for fusion protein from I-Cpal homing endonuclease and N-terminal nuclear localization sequence.
  • Protein sequence for fusion protein from I-Cpal homing endonuclease and N-terminal nuclear localization sequence Protein sequence for fusion protein from I-Cpal homing endonuclease and N-terminal nuclear localization sequence.
  • Protein sequence for fusion protein from I-CpaII homing endonuclease and N-terminal nuclear localization sequence.
  • SEQ ID NO: 11 oligonucleotide primer OPN1
  • SEQ ID NO: 12 oligonucleotide primer OPN2
  • SEQ ID NO: 13 oligonucleotide primer OPN3
  • SEQ ID NO: 14 oligonucleotide primer OPN4
  • SEQ ID NO: 15 oligonucleotide primer OPN5
  • SEQ . ID NO: 16 OPN6 oligonucleotide primer
  • SEQ ID NO: 17 oligonucleotide primer OPN7
  • SEQ ID NO: 18 oligonucleotide primer OPN8
  • SEQ ID NO: 19 oligonucleotide primer OPN9
  • SEQ ID NO: 20 oligonucleotide primer OPN10
  • SEQ ID NO: 21 oligonucleotide primer OPN11
  • SEQ ID NO: 23 oligonucleotide primer OPN13
  • SEQ ID NO: 24 oligonucleotide primer OPN14
  • SEQ ID NO: 25 oligonucleotide primer OPN15
  • SEQ ID NO: 26 oligonucleotide primer OPN16
  • SEQ ID NO: 27 oligonucleotide primer OPN17
  • SEQ ID NO: 28 oligonucleotide primer OPN18
  • SEQ ID NO: 29 nuclear localization sequence NLS1 N-Pro-lys-Thr-Lys-Arg-Lys-Val-C
  • SEQ ID NO: 30 nuclear localization sequence NLS2
  • Hl homology sequence
  • a H2 homology sequence
  • B Hl / 2 sequence as a result of the homologous recombination of Hl
  • H2 Sl first recognition sequence for the targeted induction of DNA double-strand breaks
  • N further nucleic acid sequence
  • PS positive selection marker
  • T1 Front part of, for example, a gene or open reading frame
  • T2 Rear part of, for example, a gene or open reading frame
  • STOP Interruption of a gene or open reading frame by, for example, stop codons or displacement of the reading guide.
  • Fig. 1 Representation of the principle of the invention
  • Sequences in the genome can be efficiently eliminated if they are flanked by the homology sequences Hl and H2 and there is an interface (S1) for a DSBI enzyme between the homology sequences.
  • Sequences - here, for example, an expression cassette consisting of a promoter (P) and a ' wele ⁇ ⁇ n ⁇ Nkl _ e ⁇ t ⁇ s " ä ⁇ r ⁇ s " eorerrz — CN) to be expressed ( “ at " spieis - as a selection marker) - can be efficiently eliminated from the chromosomal DNA if they are flanked by the homology sequences Hl and H2 and there is an interface (S1) for a DSBI enzyme between the homology sequences.
  • E DSBI enzyme
  • N-H2 there is formation of double-strand breaks at the interface S1 and the elimination of the between St. and H2 located sequences.
  • the interface S1 can also be located behind or in the expression cassette.
  • Sequences - here, for example, an expression cassette consisting of a promoter (P) and a further nucleic acid sequence (N) to be expressed (for example a selection marker) - can be eliminated particularly efficiently from the chromosomal DNA if they are flanked by the homology sequences Hl and H2 and are An interface (S1 and S2) for a DSBI enzyme is located in front of and behind the nucleic acid sequence to be deleted.
  • the action of the DSBI enzyme (E) on this recombination cassette (H1-S1-P-N-S2-H2) leads to the formation of double-strand breaks at the interfaces S1 and S2 and to the elimination of the sequences located between HI and H2.
  • Sequences - here, for example, an expression cassette consisting of a promoter (P) and a further nucleic acid sequence (N) to be expressed (for example a selection marker) - can be eliminated virtually without a trace from the chromosomal DNA if the recombination construct comprising them beforehand, for example by a homologous recombination in the host genome was inserted.
  • the gene consisting of the sequence sections T1, HI / 2 and T2, is interrupted.
  • the recombination construct is flanked by two parts of the interrupted gene (T1-HI or H2-T2), the middle part (HI or H2) being duplicated to allow homologous recombination.
  • the action of the DSBI enzyme (E) on the interfaces (S1 and S2) leads to the induction of double-strand breaks and
  • Nucleic acid sequences can be expressed inductively by reconstituting the intact gene only by using the recombination system.
  • the gene consisting of the sequence sections Tl, Hl / 2 and T2, is - for example by inserting Stop codons or other interruptions in the reading frame are deactivated in the context of the recombination construct.
  • the recombination construct is flanked by two parts of the interrupted gene (T1-HI or H2-T2), the middle part (HI or H2) being duplicated to allow homologous recombination.
  • the action of the DSBI enzyme (E) on the interfaces (S1 and S2) leads to the induction of double-strand breaks and to the induction of homologous recombination between the homology sequences H1 and H2, which on the one hand deletes the sequences located between H1 and H2 others the intact gene is made.
  • Fig. 6 Preferred embodiment The figure shows a method which is similar to that described in Fig. 5, only that an endogenous gene is to be specifically activated here by introducing the recombination construct, for example by means of a homologous recombination.
  • FIG. 6 The figure illustrates a specific embodiment of the in Fig. 6 described procedure.
  • a recombination construct via Agrobacterium-mediated transfection is introduced. Flanked by the right and left "border sequence" (RB and LB), the construct contains the interrupted reading frame of the GUS gene ( ⁇ -glucuronidase) under the control of the 35S promoter (P) and the nopaline sythase (nos) terminator.
  • the middle region of the GUS gene (U) has been duplicated and represents the
  • codA gene lies as a negative selection marker under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter and the nopaline synthase (nos) terminator, flanked by two recognition sequences of the DSBI enzyme
  • the recombination construct also contains the BAR gene as a positive selection marker under the control of the 35S promoter (P) and 35S terminator.
  • Fig. 7a illustrates this as a result of the action of the DSBI
  • Enzyme formation of double strand breaks and the homologous recombination between the homologous U sequences, which on the one hand deletes the sequences located between the homologous U sequences and on the other hand restores the GUS gene.
  • Fig. 7b represents the same system as described under Fig. 7a.
  • Fig. 7a illustrates the occurrence of double-strand breaks as a result of the action of the DSBI enzyme.
  • Fig. 7a there is no homologous recombination, but an illegitimate one through "non-homologous end-joining". Because of the two interfaces, the area between S1 and S2 is deleted, but the GUS gene is not restored. The length of the Acc65I fragment is thereby reduced from 7.3 kb to 4.4 kb.
  • Fig. 7c The figure again shows the two end products of the processes described under Fig.7a and Fig.7b.
  • the recombination cassettes advantageously comprise both a positive and a negative selection marker (PS or NS), each under the control of a promoter.
  • the positive selection marker is useful for facilitating and demonstrating the introduction of the construct into the genome.
  • the negative selection marker is useful for detecting deletion of the construct from the genome. Both markers are efficiently eliminated from the chromosomal DNA if they are flanked by the homology sequences H1 and H2 and there is an interface (S1 and S2) for a DSBI enzyme in front of and / or behind the nucleic acid sequence to be deleted.
  • Fig. 9 Easily selectable systems for deleting a nucleic acid sequence from the chromosomal DNA of a
  • Organism Each contain a positive selection marker (PS) and negative selection marker (NS) under the control of a promoter (P).
  • PS positive selection marker
  • NS negative selection marker
  • P promoter
  • (B) additionally contains an expression cassette for the DSBI enzyme, the expression preferably under the
  • Fig. 10 The figure illustrates the two constructs (SI-
  • the constructs are introduced via agrobacterium-mediated transfection. Flanked by the right and left "border sequence" (RB and LB), the constructs contain the interrupted reading frame of the GUS gene ( ⁇ -glucuronidase) under the control of the 35S promoter (P) and the nopaline synthase (nos) terminator. The middle region of the GUS gene (U) was duplicated and represents the homology sequences A and B. Between these sequences lie in
  • the recognition sequences of the DSBI enzymes I-Scel, I-Cpal, I-CpaII and I-Cre ⁇ in the case of the SD construct (B), the recognition sequence of the I-Chul enzyme.
  • F-er-ner —- the — recombination-skonsfeeuk-te- still contain the BAR gene as a positive selection marker
  • Fig. 11 Representative histochemical analysis of tobacco calli obtained after induction of double-strand breaks. Blue staining (here dark staining) indicates expression of the ⁇ -glucuronidase gene and thus the elimination of the selection marker by homologous recombination. blue (Dark colors) can be seen in the calluses in the wells A2, A5, A6, B2, Cl, C6 and D2.
  • Fig. 12 PCR analysis to detect homologous recombination. PCR with the primers OPN13 and OPN14 with DNA from tobacco calli.
  • Lanes 1, 2 and 3 show the PCR product (size 0.7 kb), which indicates homologous recombination.
  • the corresponding calli were blue after histochemical staining, the corresponding PCR bands were sequenced to show that the open reading frame (ORF) of the ⁇ -glucuronidase was indeed restored by homologous recombination.
  • ORF open reading frame
  • Lanes 4 and 5 PCR products (1.4 kb) from calli that could not be stained blue, in which the transgene was eliminated by “non-homologous end-joning”.
  • the traces of blots A to D each contain:
  • A HindIII-digested DNA hybridized with a ⁇ -glucuronidase specific sample.
  • oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the cloning steps carried out in the context of the present invention such as e.g. Restriction cleavages, agorose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, multiplication of phages and sequence analysis of recombinant DNA are carried out as in Sambrook et al , (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6.
  • the sequencing of recombinant DNA molecules is carried out with a laser fluorescence DNA sequencer ALF-Express (Pharmacia, Upsala, Sweden) according to the method of Sanger (Sanger et al., Proc. Natl. Acad. Sei. USA 74 (1977), 5463 -5467).
  • the ORFs the —enoonucrese — with the — SL leader “sequence” of a —fianz-en --- virus were linked (CaMV gene V, as is the case with I -Scel has proven; Puchta H (1993) Nucl Acids Res 21: 5034-5040).
  • the ORFs were also preceded by a nuclear localization sequence (NLS2; SEQ ID NO: 30) in order to efficiently bring the protein to the intended site of action. Both elements (leader sequence and nuclear localization sequence) were introduced via the PCR using the oligonucleotide primers used.
  • the ORF of I-Crel (GenBank Acc. No .: X01977) was amplified from a sample of the algal culture 11-32b Chlamydomonas reinhardtii / Smith using the oligonucleotides OPNl and 0PN2 (SEQ ID NO: 11 and 12).
  • OPN2 (SEQ ID NO: 12):
  • reaction mixture is overlaid with approx. 50 ⁇ l silicone oil and exposed to the following temperature program (thermal cycler: MWG Biotech Primus HT; MWG Biotech, Germany):
  • OPN3 (SEQ ID NO: 13):
  • OPN4 (SEQ ID NO: 14):
  • I-CpaII The ORF of I-CpaII was cloned analogously to I-Crel (Genbank Acc.-No: L39865). A sample of the algal culture 9.83 Chlamydomonas segris / King was used for this. The oligonucleotides OPN5 and OPN6 were used for the PCR. The sequence is shown in SEQ ID NO: 9.
  • OPN5 (SEQ ID NO: 15): 5 '-CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC ATG ACC GAT TCT AAA TCT AGA AAC AAC -3 '
  • OPN6 (SEQ ID NO: 16): 5 '-CGG CTC GAG CTA AAG GTG GCC TTT ATT GCC ATC AG-3'
  • OPN7 (SEQ ID NO: 17):
  • the ORF of the individual homing endonucleases was cut out of the respective pGEM-T Easy Vector by Sall restriction digest, gel-electrophoretically purified and in each case into the Sall restriction interface of the binary vector pBinAR (Höfgen and Willmitzer ( 1990) Plant Science 66: 221-230).
  • the expression of the individual enzymes takes place under the control of the 35S promoter and the octopine synthase terminator.
  • the binary I-Scel Expression Vector pCIScel contains a synthetic I-Scel ORF under the control of the CaMV 35S
  • All five plasmids were propagated in E. coli, purified with the QIAfilter Plasmid Midi Kit (Qiagen, Hilden) and transferred to the Agrobacterium strain C58 by electroporation.
  • the plasmid pGU.US (Tinland B et al. (1994) Proc. Natl. Acad. Sci. USA 91: 8000-8004) was used to construct the recombination substrates.
  • the plasmid contains two overlapping halves of the ⁇ -glucuronidase (GUS) gene in the region of the T-DNA, which have an overlap of 557 bp.
  • GUS ⁇ -glucuronidase
  • the BAR gene with promoter and terminator sequences was isolated as an isolated HindIII fragment from the vector pRC (Puchta H et al. (1996) Proc Natl Acad Sei USA
  • pGU.US unikal.e Hindlll section - Advertised by pGU.US.
  • the vector pGU.US was previously cut with HindIII and dephosphorylated with alkaline phosphatase (Calf Intestinal Alkaline Phosphatase (CIP), New England Biolabs, Frankfurt, Germany) to prevent recircularization. The resulting vector is called pGU.US-BAR.
  • the Xbal interface was first removed by a "Klenow-filling-in" reaction.
  • the resulting vector pNE3-XBA was converted into the open reading frame (ORF) of the negative selection marker gene cytosine deaminase (codA) by PCR using the oligonucleotide primers ONP9 (SEQ ID NO: 16) and ONP10 (SEQ ID NO: 17) under the control of the Cauliflower Mosaic Virus (CaMV) 35S Promoters and the Nopalinsythase (nos) terminator amplified.
  • CaMV Cauliflower Mosaic Virus
  • OPN9 (SEQ ID NO: 19): 5 '-CGG CTC TAG AGC GGC CGC CTA GGG ATA ACA GGG TAA TAG AAT CCC
  • OPN10 SEQ ID NO: 20:
  • reaction mixture was covered with about 50 ⁇ l silicone oil and exposed to the following temperature program (thermal cycler: MWG — Bi ⁇ t-ech — Erimus — HT; - WG Biotech, Germany) - ⁇ .
  • the PCR product was digested with Xbal and Notl.
  • the vector pGU-US-BAR was also digested with Xbal and Notl (which led to the deletion of the hygomycin marker gene), the vector fragment was purified by agarose gel electrophoresis and using the QIAquick® Gel Extraction Kit (Qiagen, Hilden, Germany). The ligation of digested PCR fragment and vector resulted in the binary vector pGU.C.USB (see Fig. 7a).
  • the vector contains a marker gene (the cytosine deminase (codA)) on a T-DNA between two I-Scel sites.
  • the I-Scel interfaces are flanked externally by homologous sequence regions of 557 bp of the ⁇ -glucuronidase gene (GUS).
  • GUS ⁇ -glucuronidase gene
  • the GUS gene serves as a marker of the homologous restoration (Swoboda P et al. (1994) EMBO J 13: 481-489). If the gene is restored by homologous recombination, the expression can be detected histochemically. The elimination of the marker gene leads to 5-FC (fluorocytosine) resistant tobacco cells which can then be regenerated to calli (Salomon S and Puchta H (1998) EMBO J 17: 6086-6095).
  • Nicotiana tabacum L. cv. Petite Havana Line SRI seedlings were transformed with the Agrobacterium strain C58, which contained the binary vector pGU.C.USB.
  • the agrobacterial strain which contained the binary plasmid for transformation, was first grown overnight in a shaking culture at 28 ° C. in YEB medium. The agrobacterial suspension was then centrifuged for 10 minutes at 15,000 g and the cells were taken up in 10 mM MgSO 4 so that the final optical density of the suspension corresponded to a value of approximately 0.5. The seedlings were then added to the bacterial suspension in a reaction vessel under sterile conditions and a vacuum of 0.15 at was applied in a sterile desiccator.
  • the seedlings were then applied to MS plates containing BAP (6-benzylaminopurine 5 ⁇ g / ml) and NAA (1-naphthalene acetic acid 0.5 ⁇ g / ml) and for 3 days in a growth chamber (25 ° C., 16 hours light / 8 hours dark rhythm).
  • BAP 6-benzylaminopurine 5 ⁇ g / ml
  • NAA 1-naphthalene acetic acid 0.5 ⁇ g / ml
  • the seedlings were then placed on MS medium which, in addition to NAA and BAP, also contained phosphinotricin (100 ⁇ g / ml), vancomycin (1 ⁇ g / ml) and cefotaxin (0.5 ⁇ g / ml).
  • the seedlings were transferred to freshly prepared plates every 10 days. wear. From time to time, sprouts formed from the resulting calli.
  • Example 5 Induction of gene deletion by introduction of the DSBI enzyme I-Scel
  • the seedlings were additionally incubated on the same medium in the presence of 100 ⁇ g 5-FC and 100 ⁇ g phosphinotricin per ml in order to detect plant cells in which the marker gene to be eliminated (in this case the codA gene) was deleted.
  • the calli growing on the medium were divided into two parts after 6 weeks, one part was used for the regeneration of shoot axes and the other was used for the isolation of DNA and for the ⁇ -glucuronidase assay.
  • the 5-FC-resistant transgenic calli obtained were examined for homologous recombination events by means of histochemical staining. A blue color indicates a ⁇ e ⁇ st: ura7io ⁇ : n ⁇ of the ⁇ callus (see Fig. 11).
  • the histochemical staining of the calli was carried out as in Swoboda et al. , 1994.
  • the calli were placed in staining solution (0.3 mg X-Gluc [Duchefa, Harlem, Nl] per ml 100 mM sodium phosphate buffer pH 7.0; 0.1% Triton; 0.05% NaN 3 ).
  • Vacuum was applied in the desiccator for 15 minutes and then the calli in the solution for 48 hours at 37 ° C incubated. After the staining solution had been poured off, the remaining chlorophyll was removed from the plant material by repeated shaking in 80% ethanol. The blue color obtained indicated the activity of the ⁇ -glucuronidase.
  • the marker gene was successfully eliminated by homologous recombination in approximately a quarter of the cases (FIG. 11, Table 2).
  • connection sites could be isolated from the tobacco genome (Fig. 12; Table 3).
  • the DNA was extracted using the DNeasy Plant Mini Kit (Quiagen,
  • OPN13 (SEQ ID NO: 23):
  • OPN14 (SEQ ID NO: 24):
  • reaction mixture is overlaid with approx. 50 ⁇ l silicone oil and exposed to the following temperature program (thermal cycler: MWG Biotech Primus HT; MWG Biotech, Germany):
  • the DNA was cut with HindIII or Acc65I and subjected to electrophoresis in a 0.8% agarose gel. The DNA in the gel was then transferred to the hybridization membrane 'Hybond N' (Amersham, Little Chalfont, UK) by capillary blotting as described in the manufacturer's instructions.
  • codA or GUS-specific gene fragments were isolated from the starting plasmids (Xbal / Xhol fragment as PNE3; Stougaard, 1993 and Kpnl / Sacl fragment from pGUS23, Puchta and Hohn, 1991, isolated with the QIAquick Gel Extraction Kit [ Qiagen, Hilden]) and with the aid of a "Random Priming Labeling Kit” (Mega prime DNA labeling System RPN1607, Amersham, Little Chalfont, UK) and [ ⁇ - 32 P] dATP (Amersham, Little Chalfont, UK). The hybridizations were carried out at 65 ° C.
  • the plasmid pGU.C.US.B was cut with I-Scel so that the codA gene was cut out of the plasmid.
  • the digested DNA was separated using agarose gel electrophoresis, the larger band was cut out and purified using the QIAquick Gel Extraction Kit (Qiagen, Hilden) and then ligated and transformed into E. coli.
  • the plasmid obtained was then cut with Xbal.
  • the complementary single-stranded oligonucleotides OPN25 and OPN26 were brought into a double-stranded form by briefly heating to 92 ° C. and then cooling and then ligated with the Xbal-cut plasmid.
  • the SI construct obtained (pSI) contains the interfaces for I-Scel, I-Cpal, I-CpaII and I-Crel ((see FIG. 10 (A)).
  • OPN15 SEQ ID NO: 25:
  • OPN16 (SEQ ID NO: 26):
  • the complementary single-stranded oligonucleotides OPN27 and OPN28 were obtained by briefly heating to 92 ° C. and finally
  • the SD construct (pSD) obtained contains the interfaces for
  • OPN17 (SEQ ID NO: 27):
  • OPN18 (SEQ ID NO: 28):
  • transgenic tobacco plants were obtained using both using Agrobacterium transformation

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

Die Erfindung betrifft Rekombinationssysteme und Verfahren zum Entfernen von Nukleinsäuresequenzen aus der chromosomalen DNA eukaryotischer Organismen, sowie transgene Organismen - bevorzugt Pflanzen - die diese Systeme enthalten bzw. mit diesen Verfahren hergestellt wurden.

Description

Rekombinationssysteme und Verfahren zum Entfernen von Nukleinsauresequenzen aus dem Genom eukaryotischer Organismen
Beschreibung
Die Erfindung betrifft Rekombinationssysteme und Verfahren zum Entfernen von Nukleinsauresequenzen aus dem Genom eukaryotischer Organismen, sowie transgene Organismen - bevorzugt Pflanzen - die diese Systeme enthalten.
Ziel der biotechnologischen Arbeiten an Organismen ist unter anderem die Gewinnung von kommerziell verwertbaren Informationen über die Funktion bestimmter Gene und Genprodukte sowie die Auf- klärung von Biosynthesewegen oder Krankheitsmechanismen. Die so gewonnenen Informationen können vielfältig eingesetzt werden. Sie dienen beispielsweise der Erzeugung neuer Medikamente, der Entwicklung von alternativen, biotechnologischen Produktionsverfahren oder der Erzeugung modifizierten pflanzen. Ziel bio- technologischer Arbeiten an Pflanzen ist die Herstellung von
Pflanzen mit vorteilhaften, neuen Eigenschaften zum Beispiel zur Steigerung der landwirtschaftlichen Produktivität, zur Qualitätssteigerung bei Nahrungsmitteln oder zur Produktion bestimmter Chemikalien oder Pharmazeutika (Dunwell JM, J Exp Bot. 2000; 51 Spec No: 487-96) .
Bei der Herstellung transgener Organismen ist aufgrund der geringen Effizienz der verwendeten Methoden (wie beispielsweise der stabilen Transformation oder insbesondere der homologen Rekombination) eine Selektion der in der gewünschten Weise modifizierten Organismen erforderlich. Die Herstellung transgener Pflanzen kann durch eine Reihe von Techniken erreicht werden (Übersicht: Potrykus I. and Spangenberg G. ed. (1995) Gene trans- fer to plants . Springer, Berlin) . Vor allem der mittels Agro- bacterium tumefaciens vermittelte Gentransfer und die Beschießung von Pflanzenzellen mit der "Particle Gun" spielen hierbei eine wichtige Rolle. Ein wesentliches Problem ist die Tatsache, dass transgene DNA., s.obald sie in einen Organismus stabil eingeführt wurden, nur schwer wieder zu entfernen ist. Die bei der Trans- formation zur Selektion verwendeten Antibiotika- oder Herbizidresistenzgene werden in den transgenen Pflanzen belassen, was erheblich zu der mangelnden Akzeptanz dieser "Genfood" Produkte bei den Konsumenten beiträgt . Es wird deshalb seit längerem versucht, Techniken zu entwickeln, mittels derer Fremd-DNA an spezifischen Stellen ins Pflanzengenom integriert bzw. wieder herausgeschnitten werden kann (Ow DW and Medberry SL (1995) Crit Rev in Plant Sei 14:239-261).
Verschiedene Systeme zum gezielten Entfernen von transgen eingefügten Nukleinsauresequenzen sind dem Fachmann bekannt. Sie basieren auf der Verwendung se uenzspezifischer Rekombinasen und zweier Erkennungssequenzen besagter Rekombinasen, die die zu ent- fernende Sequenz flankieren. Einwirkung der Reko binase auf dieses Konstrukt führt zum Herausschneiden der flankierten Sequenz, wobei eine der ErkennungsSequenzen im Genom des Organismus verbleibt. Verschiedene Sequenzspezifische Rekombinationssystemen sind beschrieben wie das Cre/lox-System des Bacteriophagen Pl (Dale EC und Ow DW (1991) Proc Natl Acad Sei USA 88:10558-10562; Russell SH et al . (1992) Mol Gen Genet 234: 49-59; Osborne BI et al. (1995) Plant J. 7, 687-701), das FLP/FRT System der Hefe (Kilby NJ et al . (1995) Plant J 8:637-652; Lyznik LA et al . (1996) Nucleic Acids Res 24:3784-3789), die Gin Rekombinase des Mu Phagen, die Pin Rekombinase aus E. coli oder das R/RS System des pSRl Plasmids (Onouchi H et al.(1995) Mol. Gen. Genet. 247:653-660.; Sugita Ket al . (2000) Plant J. 22:461-469). Hier interagiert die Rekombinase (beispielsweise Cre oder FLP) spezifisch mit ihren jeweiligen Rekombinationssequenzen (34 bp lox-Sequenz bzw. 47 bp FRT-Sequenz) , um die zwischengelagerten Sequenzen zu deletieren oder zu invertieren. Berichte über gelungene Anwendungen dieser Systeme in Pflanzen sind limitiert. So konnte die Gruppe von David Ow zeigen, dass ein für die Pflanzentransformation verwendeter Selektionsmarker, der von zwei lox Sequenzen umgeben war, durch Cre-Expression aus dem Pflanzengenom wieder herausgeschnitten werden kann (Dale EC und Ow DW (1991) Proc Natl Acad Sei USA 88:10558-10562). Ein Nachteil der sequenzspezifischen Rekombinationssysteme ist die Reversibilität der Reaktion, d.h. es herrscht ein Gleichgewicht zwischen Exzision und Integration des entsprechenden Markergens . Dies führt häufig dazu, dass Mutationen selektioniert werden, d.h. sobald eine Mutation die weitere Interaktion der lox-Erkennungs- -seguen-z-e-n—m-i-t—dem-Enzvm-b oxii Ler-t^,_j<d-ri_jias__(ιnα_ewoUte) Produkt dem Gleichgewicht entzogen und fixiert. Neben dem Cre-lox System trifft das auch auf die anderen sequenzspezifische Rekombinasen zu (s.o.). Nachteilig ist ferner die Tatsache, dass eine der ErkennungsSequenzen der Rekombinase im Genom verbleibt, dieses also modifiziert wird. Dies kann Auswirkungen auf die Eigenschaften des Organismus haben, wenn beispielsweise durch die Erkennungssequenz Leseraster oder genetische Kohtrollelemente wie Promotoren oder Enhancer verändert oder zerstört werden. Ferner schließt die im Genom verbleibende Erkennungssequenz eine weitere Verwendung des Rekombinationsystems, beispielsweise für eine zweite genetische' Modifikation, aus, da Wechselwirkungen mit den nachfolgend eingeführten Erkennungssequenzen nicht ausgeschlossen werden können. Größere Chromosomale Umlagerungen oder Deletionen können die Folge sein.
Zubko et al. beschreiben ein System zur Deletion von Nukleinsauresequenzen aus dem Genom von Tabak, wobei die zu deletierende Sequenz von zwei 352 bp langen attP ErkennungsSequenzen des Bakteriophagen Lambda flankiert ist. Die Deletion der flankierten Region erfolgt unabhängig von der Expression von Helferproteinen in zwei von elf transgene Tabaklinien durch spontane intra- chromosomale Rekombination zwischen den attP Erkennungsregionen. Das Verfahren weist Nachteile dahingehend auf, als die Rekombi- nation bzw. die Deletion nicht gezielt zu einem bestimmten Zeitpunkt induziert werden kann, sondern spontan erfolgt. Dass das Verfahren nur bei einem kleinen Teil der Linien funktionierte, deutet darauf hin, dass in den betreffenden Fällen der jeweilige Integrationslokus zur Instabilität neigt (Puchta H (2000) Trends in Plant Sei 5:273-274).
WO 96/14408 beschreibt auf Seite 12 in der Legende zu Abbildung 32 ein Verfahren zur Entfernung eines genetischen Locus, bei dem je eine Erkennungssequenz der Ho ing-Restriktions- endonuklease I-Scel an dem jeweiligen Ende der zu deletierenden Sequenz insertiert wird. Die Behandlung mit der Endonuklease führt hier zu Doppelstrangbrüchen an beiden Enden der zu deletierenden Sequenz. Die freien Enden verbinden sich dann durch "Rekombination" . Die hier zitierte "Rekombination" kann - wie auch aus der Abbildung ersichtlich - nur eine illegitime sein (beispielsweise ein "non-homologous end-joining" (NHEJ) Ereignis) , da an den beiden verbleibenden Enden der genomischen DNA keine homologen Sequenzen vorhanden sind. Eine illegitime Rekombination führt jedoch zu unvorhersagbaren Rekombinations- ereignissen. Dies kann Auswirkungen auf die Eigenschaften des Organismus haben, wenn dadurch beispielsweise Leseraster oder genetische Kontrollelemente wie Promotoren oder Enhancer verändert—ode-r—z-e-r-s-fee-r-t— erden-.—Das_SysJ^em__e f.oxdex_t_zwei_ ErkennungsSequenzen, die das zu deletierende Fragment flankieren.
Die Erzeugung sequenzspezifischer DoppelStrangbrüche mit Hilfe von Restriktionsenzymen in eukaryontischen Genomen, wie Hefe (Haber JE (1995) Bioassays 17:609-620), Säugerzellen (Jasin M (1996) Trends Genet. 12:224-228) oder Pflanzen (Puchta H (1999a) Methods Mol Biol 113:447-451) ist beschrieben. Beschrieben ist die Induktion einer intramolekularen Rekombination auf einer Plasmid DNA in Xenopus Oozyten durch sequenzspezifische Spaltung mit der Endonuklease I-Scel (Segal DJ und Caroll D (1995) Proc Natl Acad Sei USA 92:806-810) oder durch synthestische, chimäre Nukleasen (Bibikova M et al . (2001) Mol Cell Biol 21 (1) :289-297) . Ziel ist die gezielte Rekombination zwischen zwei homologen Sequenzen, zwischen denen eine entsprechende Nuklease-Schnittstelle lokalisiert ist. In beiden Fällen handelt es sich um extrachromosomale Rekombinations- ereignisse, bei denen jeweils nur ein Teil der extrachromosomalen Plasmid~DNA homolog rekombiniert .
Posfai et al . beschreiben ein Verfahren zum Austausch von Genen in dem Prokaryoten E.coli (Posfai G et al . (1999) Nucleic Acids Res 27 (22) :4409-4415) . Dabei kommt es im E.coli Genom zu einer Rekombination zwischen dem endogenen und dem mutierten Gen, die durch einen Schnitt mit dem Restriktionsenzym I-Scel induziert wird. Ziel und Aufgabe war der Austausch eines endogenen Gens gegen ein mutiertes Transgen. Rekombinationen in E.coli verlaufen deutlich einfacherer und mit höherer Effizienz als in höheren Eukaryonten (zum Beispiel beschrieben bei Kuzminov A (1999) Microbiol Mol Biol Rev. 63 (4) : 751-813) .
Dürrenberger et al . beschreiben die Induktion einer Rekombi- nation in Chloroplasten der einzelligen Grünalge Chlamydomonas reinhardtii unter Verwendung der I-Scel Homing-Endonuklease (Dürrenberger F et al. (1996) Nucleic Acid Res 24 (17) : 3323-3331) . Die Rekombination erfolgt zwischen dem endogenen 23S-Gen und einer insertierten 23S-CDNA, die eine I-Scel Schnittstelle ent- hält. Doppelstrangbrüche werden durch "Mating" des entsprechenden transgenen Organismus mit einem I-Scel exprimierenden Organismus induziert. Rekombinationen in Chloroplasten verlaufen deutlich einfacherer und mit höherer Effizienz als in der chro osomalen DNA höheren Eukaryonten. So ist die homologe Rekombination an- scheinend sogar der bevorzugte, normale Weg der DNA Integration in Piastiden (Chloroplasten) (beschrieben bei: Heifetz PB und Tuttle AM (2001) Curr Opinion Plant Biol 4:157-161). Piastiden •haben—ansG ,ei- end_eij3^-s-e^± U^Ä_S S^ernΛ das ihnen homologe Rekombination im Unterschied zum Zellkern ermöglicht und die gezielte Einführung von Fremd-DNA erleichtert (Heifetz PB (2000) Biochimie 82:655-666).
Die "Gene Targeting" Technik, bei der eine. gezielte Integration in die chromosomale DNA des Wirtsorganismus durch homologe Rekombination erreicht werden soll, funktioniert mit akzeptabler Effizienz nur bei Prokaryonten und Hefe. Die Erzeugung entsprechender transgener Organismen ist nur bei wenigen Spezies (wie beispielsweise der Maus) und dort nur mit hohem Aufwand möglich (siehe auch Kanaar R Hoeijmakers JH (1997) Genes Funct 1(3) :165-174) . Die bestehende, geringen Effizienz der homologen Rekombination (ca. I:lxl06) wird hier durch den Einsatz 5 aufwendiger, ausgeklügelter und auf die jeweilige Spezie beschränkter Selektionstechniken (wie beispielsweise der "ES"-Zelltechnologie) kompensiert. In anderen Spezies - vor allem aber in höheren Pflanzen - sind derartige Technologien bis heute nicht etabliert (Mengiste T und Paszkowski J (1999) Biol Chem.
10 380:749-758; Vergunst AC und Hooykaas PJJ (1999) Crit Rev Plant Sei 18:1-31; Puchta H (1999) Methods Mol Biol 113:447-451; Hohn B und Puchta H (1999) Proe Natl Acad Sei USA 96:8321-8323). Versuche bei Pflanzen eine homologe Rekombination zu erreichen, führen in den meisten Fällen zu zufälligen, nicht-homologen
15 ("illegitimen") Insertionsereignissen. Dabei wird die eingebrachte DNA an einer oder mehreren vorher nicht bestimmbaren Stellen im Pflanzengenom integriert. Die Integration erfolgt mittels illegitimer Rekombination (Roth DB und Wilson JH (1988) Illegitimate recombination in mammalian cells . In "Genetic 0 recombination", R. Kucherlapati and G.R. Smith Edts . , American Society of Micorbiology, Washington, USA; S.621-635.) und nicht in Sequenzbereichen, die homolog zur transferierten DNA sind (Puchta H und Hohn B (1996) Trends Plant Sei. 1:340-348). Die Problematik der mangelnden Effizienz der homologen Rekombination, 5 die vor allem bei Pflanzen gravierend ist, ist dem Fachmann allgemein bekannt. Die Ursachen sind Gegenstand aktueller Forschung (ÜberSichtsartikel: Mengiste T und Paszkowski J (1999) Biological Chemistry 380 (7-8) :749-58) . Die Steigerung der Effizienz der homologen Rekombination ist ein lange bestehendes, bislang 0 ungelöstes Bedürfnis in der Pflanzenbiotechnologie.
Eine weiteres, lange bestehendes Bedürfnis der biotechnologischen Forschung, das durch alle bislang etablierten Systeme nicht gelöst wird, ist die Bereitstellung von Systemen und Verfahren, 5 die eine gezielte Entfernung von Nukleinsauresequenzen aus der chromosomalen DNA eines eukaryotisehen Organismus ermöglichen und eine mehrfache Anwendung auf den gleichen Organismus gestatten. Beispielsweise., ist es ein Ziel der pflanzlichen Biotechnologie, bereits gezüchtete HochleistungsSorten mittels gentechnologischer 0 Methoden weiter zu verbessern. Dabei ist es besonders wichtig, überschüssige Transgensequenzen wie Selektionsmarker nach der Transformation zu entfernen. Darüberhinaus böten Verfahren zur vorhersagbaren Eliminationen von Sequenzen beispielsweise aus der chromosomalen DNA eines Organismus weitere wissenschaftlich 5 und wirtschaf lich hochinteressante Anwendungen im Bereich des "genetic engeneering" . Es stellte sich also die Aufgabe, Systeme und Verfahren zu entwickeln, die eine vorhersagbare Elimination definierter Nukleinsauresequenzen aus der chromosomalen DNA eines eukaryotischen Organismus ermöglichen und eine mehrfache, sukzessive Anwendung auf den gleichen Organismus gestatten.
Diese Ausgabe wurde durch Bereitstellung des erfindungsgemäßen Rekombinationssystems in überraschender Weise gelöst.
Ein erster Gegenstand der Erfindung betrifft ein Rekombinationssystem zum Entfernen einer DNA-Sequenz aus der chromosomalen DNA einer eukaryotischen Zelle oder Organismus, dadurch gekennzeichnet, dass
I) ein transgenes Rekombinationskonstrukt insertiert in die chromosomale DNA eines eukaryotischen Organismus, das eine Sequenz enthält bestehend in 5' /3 '-Richtung aus
al) einer ersten Homologiesequenz A und
bl) mindestens eine Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
a2) einer zweiten Homologiesequenz B, wobei die Homologie- Sequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten,
und
II) ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz (bl) zur gezielten Induktion von DNA-Doppelstrangbrüchen oder eine Nukleinsäuresequenz kodierend für ein Enzym geeignet zur Induktion von DNA- DoppelStrangbrüchen an der Erkennungssequenz (bl)
in einer eukaryotischen Zelle oder Organismus zusammen vorliegen.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zum Entfernen einer DNA-Sequenz aus der chromosomalen DNA einer eukaryotischen Zelle oder Organismus, dadurch gekennzeichnet, dass
I) ein transgenes Rekombinationskonstrukt insertiert in die chromosomale DNA eines eukaryotischen Organismus, das eine Sequenz enthält bestehend in 5 ' /3 ' -Richtung aus al) einer ersten Homologiesequenz A und
bl) mindestens eine Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
a2) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten,
und
II) ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz (bl) zur gezielten Induktion von DNA-Doppelstrangbrüchen
in einer eukaryotischen Zelle oder Organismus zusammengebracht werden, und die Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrang- brüchen sowie die homologe Rekombination zwischen den Homologiesequenzen A und B erfolgt.
Die Erfindung ermöglicht es, aus der chromosomalen DNA eines Organismus Sequenzen (beispielsweise Selektionsmarker wie Anti- biotika- oder Herbizidresistenzgene) in einer exakt vorhersagbaren Weise zu deletieren. Dabei wird die zu eliminierende Sequenz mit ErkennungsSequenzen zur gezielten Induktion von DNA-Doppelstrangbrüchen (beispielsweise ErkennungsSequenzen von selten-schneidenden Restriktionsenzymen) flankiert und mit homologen Sequenzen im Bereich der Schnittstellen kombiniert. Die Induktion eines Doppelstrangbruchs erfolgt durch ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen (beispielsweise einer sequenzspezifischen Nuklease) , was infolge die homologe Rekombination von am Bruch gelegenen homologer Sequenzen und damit Deletion etwaiger zwischen den Sequenzen lokalisierten Nukleinsauresequenzen auslöst. Die ErJennunass^quenz zur gezielten Induktion von DNA-Doppelstrangbrüchen wird dabei ebenfalls deletiert, wodurch das Verfahren für weitere kontrollierte genetische Veränderungen wiederholt verwendet werden kann.
Überraschenderweise erfolgt diese induzierte, homologe Rekombination im Kontrast zu den bisherigen Erfahrungen auf dem Gebiet der homologen Rekombination - auch bei Pflanzen - mit hoher Effizienz und Präzision. Die Häufigkeit ist mit der der parallelen nicht-homologen Ereignisse (zum Beispiel "non- homologous end-joining" Ereignisse) vergleichbar (vgl. Beispiel 5) . Dies ist ein bemerkenswerter Befund, der im Widerspruch zu den bisherigen Beobachtungen steht, wonach die homologe Rekombination - vor allem bei Pflanzen - eine untergeordnete, fast zu vernachlässigende Häufigkeit im Vergleich zu den "illegitimen" Ereignissen hat.
Deletiert werden die zwischen den Homolσgiesequenzen A und B lokalisierten Sequenzen. Im Unterschied zu Systemen wie bei- spielsweise dem cre/lox- oder FRT/FLP-Syste ist man für die
Rekombination nicht an bestimmte Sequenzen gebunden. Dem Fachmann ist bekannt, dass jede Sequenz mit einer anderen homolog rekombinieren kann, wenn eine ausreichende Länge und Homologie vorliegt. Durch die sequenzspezifische Induktion der Doppelstrangbrüche wird die Effizienz der homologen Rekombination zwischen den Homologiesequenzen A und B erheblich gesteigert, wenn nicht gar erst ermöglicht.
"Transgen" meint in Bezug auf das Rekombinationskonstrukt alle solche durch gentechnische Methoden zustande gekommene Konstruktionen, in denen sich entweder
a) mindestens eine der Homologiesequenzen A oder B, oder
b) mindestens eine Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen, oder
c) (a) und (b)
sich nicht in ihrer natürlichen, genetischen Umgebung (beispielsweise an ihrem natürlichen chromosomalen Locus) befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste umfassen kann.
-Eu-ka-r-v-o-t-i^c-hen—Zel 1.e o.der_Organismus" meint allgemein jede eukaryotische Zelle oder Organismus sowie von diesen abgeleitete Zellen, Gewebe, Teile oder Vermehrungsgut (wie Samen oder Früchte) , in denen bei gleichzeitigem Vorliegen des Rekombi- nationskonstruktes und des Enzyms geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen in einem Reaktionsraum (beispielsweise einer Zelle oder einem Kompartiment derselben) eine Induktion von Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen sowie die homologe Rekombination zwischen den Homologiesequenzen A und B erfolgen kann. Umfasst sind in einer besonders bevorzugten Ausführungsform Kompartimente einer eukaryotischen Zelle, wie beispielsweise der Zellkern.
Besonders bevorzugt umfasst sind solche Zellen oder Organismen, die einen mehrzelligen eukaryotischen Organismus darstellen oder von diesem abgeleitet sind, sowie Zellen, Gewebe, Teile oder Vermehrungsgut (wie Samen oder Früchte) derselben. Ganz besonders bevorzugt umfasst sind solche Zellen oder Organismen, die einen tierischen oder pflanzlichen Organismus darstellen oder von diesem abgeleitet sind, sowie Zellen, Gewebe, Teile oder Vermehrungsgut derselben. Am meisten bevorzugt umfasst sind solche Zellen oder Organismen, die einen pflanzlichen Organismus dar- stellen oder von diesem abgleitet sind sowie Zellen, Gewebe, Teile oder Vermehrungsgut derselben. Bevorzugte Gattungen und Arten sind weiter unten aufgeführt.
"Ausreichende Länge" meint in Bezug auf die Homologiesequenzen A und B bevorzugt Sequenzen von einer Länge von mindestens
20 Basenpaaren, bevorzugt mindestens 50 Basenpaaren, besonders bevorzugt von mindestens 100 Basenpaaren, ganz besonders bevorzugt von mindestens 250 Basenpaaren, am meistens bevorzugt von mindestens 500 Basenpaaren.
"Ausreichende Homologie" meint in Bezug auf die Homologiesequenzen A und B bevorzugt Sequenzen die eine Homologie innerhalb dieser Homologiesequenzen aufweisen von mindestens 70 %, bevorzugt 80 %, vorzugsweise mindestens 90 %, besonders bevor- zugt mindestens 95 %, ganz besonders bevorzugt mindestens 99 %, am meisten bevorzugt 100% über eine Länge von von mindestens 20 Basenpaaren, bevorzugt mindestens 50 Basenpaaren, besonders bevorzugt von mindestens 100 Basenpaaren, ganz besonders bevorzugt von mindestens 250 Basenpaaren, am meistens bevorzugt von mindestens 500 Basenpaaren.
Unter Homologie zwischen zwei Nukleinsäuren wird die Identität der— kle± τa-r se uen-z-^über—±e-ijeweά-lrS—gesamte—Seuenz-1-änge- verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) unter Einstellung folgender Parameter berechnet wird:
Gap Weight : 12 Length Weight : 4
Average Match: 2,912 Average Mismatch:-2, 003 In einer bevorzugten Ausführungsform ist zwischen den Homologiesequenzen A und B nur eine Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen lokalisiert, so dass das in dem erfindungsgemäßen Rekombinationssystem bzw. Verfahren zum Einsatz kommende Rekombinationskonstrukt wie folgt in 5 ' /3 '-Richtung aufgebaut ist aus
al) einer ersten Homologiesequenz A und
bl) einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
a2) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende Länge und aus- reichende Homologie aufweisen, um eine homologe
Rekombination zu gewährleisten.
In einer bevorzugten Ausführungsform ist zwischen den Homologiesequenzen A und B eine weitere Nukleinsäuresequenz lokalisiert, so dass das in dem erfindungsgemäßen Rekombinationssystem bzw. Verfahren zum Einsatz kommende Rekombinationskonstrukt wie folgt in 5 ' /3 '-Richtung aufgebaut ist aus
al) einer ersten Homologiesequenz A und
bl) einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
c) einer weiteren Nukleinsäuresequenz und
a2) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten.
Die Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen kann auch hinter oder in der weiteren Nukleinsäure- -sequen-z—1-o-ka-lisier-t—sein-.
In einer weiteren bevorzugten Ausführungsform ist hinter die weitere Nukleinsäuresequenz eine zweite Erkennungssequenz zur gezielten Induktion von Doppelstrangbrüchen vorhanden. Vor allem bei weiter auseinanderliegenden Homologiesequenzen A und B bzw. längeren weiteren Nukleinsauresequenzen ist diese Ausführungsform vorteilhaft, da die Effizienz der Rekombination gesteigert wird. Das in dem erfindungsgemäßen Rekombinationssystem bzw. Verfahren zum Einsatz kommende Rekombinationskonstrukt ist nach dieser Ausführungsform wie folgt in 5 ' /3 '-Richtung aufgebaut aus
al) einer ersten Homologiesequenz A und
bl) einer ersten Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
c) einer weiteren Nukleinsäuresequenz und
b2) einer zweiten Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
a2) einer zweiten Homologiesequenz B, wobei die Homologie- Sequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten.
Ferner können neben der zweiten Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen noch weitere Erkennungssequenzen zwischen den Homologiesequenzen A und B vorhanden sein. Die einzelnen ErkennungsSequenzen (zum Beispiel bl oder b2) zur gezielten Induktion von DNA-Doppelstrangbrüchen können identisch oder unterschiedlich sein, d.h. sie können als Erkennungssequenz für ein einzelnes Enzym zur gezielten Induktion von DNA-Doppelstrangbrüchen fungieren oder auch für verschiedene. Dabei ist die Ausführungsform bevorzugt, bei der die ErkennungsSequenzen zur gezielten Induktion von DNA-Doppelstrangbrüchen als Erkennungssequenz für ein einzelnes Enzym zur gezielten Induktion von DNA-Doppelstrangbrüchen fungieren.
Dem Fachmann sind verschiedene Wege bekannt, um zu einem der erfindungsgemäßen Rekombinationskonstrukte zu gelangen. Die Herstellung kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold
Figure imgf000012_0001
und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al . , Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.
Bevorzugt wird das erfindungsgemäße Rekombinationskonstrukt durch Aneinanderfügung der oben aufgeführten wesentlichen
Bestandteile des Rekombinationskonstrukt in der genannten Reihenfolge unter Verwendung dem Fachmann geläufiger Rekombinations- und Klonierungstechniken hergestellt und dann in die chromosomale DNA eines Wirtsorganismus eingeführt .
Dem Fachmann ist jedoch bewusst, dass er zu dem erfindungsgemäßen Rekombinationskonstrukt auch auf andere Weise gelangen kann. So kann der Wirtsorganismus bereits eines oder mehr der wesentlichen Bestandteile des Rekombinationskonstruktes enthalten. Das erfindungsgemäße Rekombinationskonstrukt wird dann durch Einführung eines weiteren oder mehr der wesentlichen Bestandteile des Rekombinationskonstruktes in der richtigen Position zu den bereits vorhandenen Bestandteilen in dem besagten Organismus erzeugt. So kann beispielsweise der AusgangsOrganismus bereits eine der Homologiesequenzen A oder B enthalten. Enthält der Organismus bereits eine Homologiesequenz A, so entsteht durch Einführung eines Konstruktes bestehend aus einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und einer zweiten Homologiesequenz B hinter die Homologiesequenz A eines der erfindungsgemäßen Rekombinationskonstrukte.
Ferner sind dem Fachmann verschiedene Wege bekannt, wie das erfindungsgemäße Rekombinationskonstrukt in die chromosomale DNA eines eukaryotischen Zelle oder Organismus eingeführt werden kann. Dabei kann die Insertion gerichtet (d.h. an einem definiertem Insertionsort) oder ungerichtet (d.h. zufällig) erfolgen. Entsprechende Techniken sind dem Fachmann bekannt und weiter unten beispielhaft beschrieben.
"Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelsträng- brüchen" (infolge "DSBI-Enzym" für "double stzrand-break inducing enzyme" ) meint allgemein all solche Enzyme, die in der Lage sind, sequenzspezifisch Doppelstrangbrüche in doppelsträngige DNA zu erzeugen. Beispielsweise aber nicht einschränkend seien zu nennen:
1. Restriktionsendonukleasen (Typ II) bevorzugt Homing-Endo- nukleasen wie weiter unten im Detail beschrieben.
2. Rekombinasen (wie beispielsweise Cre/lox; R-RS; FLP/FTR wie oben beschrieben)
3. Transposasen zum Beispiel die P-Element Transposase (Kaufman PD und Rio DC (1992) Cell 69(l):27-39) oder AcDs (Xiao YL und Peterson T (2000) Mol Gen Genet 263 (1) : 22-29) . Im Prinzip sind alle Transposasen oder Integrasen geeignet, solange sie eine Sequenzspezifität haben (Hären L et al. (1999) Annu Rev Microbiol. 1999;53:245-281; Beall EL, Rio DC (1997) Genes Dev. 11(16) .2137-2151) .
4. Chimäre Nukleasen wie weiter unten im Detail beschrieben.
5. Enzyme die im Immunsystem Doppelstrangbrüche induzieren wie das RAG1/RAG2 System (Agrawal A et al . (1998) Nature 394(6695) :744-451) .
6. Gruppe II Intron Endonukleasen. Durch Modifikationen der Intronsequenz können Gruppe II Introns zu einer nahezu beliebigen Sequenz in einer Doppelstrang-DNA dirigiert werden. In diese können die Gruppe II Introns dann mittels eines reversen Spleißmechanismus inserieren (Mohr et al . (2000) Genes & Development 14:559-573; Guo et al. (2000) Science 289:452- 457). Während dieses reversen Spleißmechanismus wird in die Ziel-DNA ein Doppelstrangbruch eingeführt, wobei die ausgeschnittene Intron-RNA den Sinn-Strang spaltet, während der Proteinanteil der Gruppe II Intron Endonuklease denn Gegensinn-Strang hydrolysiert (Guo et al. (1997) EMBO J 16: 6835- 6848). Will man wie in der vorliegenden Erfindung lediglich den Doppelstrangbruch induzieren und kein vollständiges reverses Spleißen erzielen, kann man zum Beispiel Gruppe II Intron Endonukleasen benutzen, denen die reverse Transkriptaseaktivität fehlt. Dadurch wird nicht das Erzeugen des Doppelstrangbruches verhindert, aber der reverse Spleißmechanismus kann nicht vollständig ablaufen.
Sowohl natürliche als auch künstlich hergestellte Enzyme sind geeignet.
Bevorzugt sind all solche DSBI-Enzyme, deren Erkennungssequenz bekannt ist und die entweder in Form ihrer Proteine (beispiels- weise durch Aufreinigung) gewonnen oder unter Verwendung ihrer Nukleinsäuresequenz exprimiert werden können.
Besonders bevorzugt sind Restriktionsendonukleasen (Restriktionsenzyme) , die keine oder nur wenige Erkennungssequenzen - neben den im transgenen Rekombinationskonstrukt vorhandenen Erkennungssequenzen - in der chromosomalen DNA-Sequenz eines bestimmten, eukaryotischen Organismus haben. Dies vermeidet weitere Doppelstrangbrüche an unerwünschten Loci im Genom.
Ganz besonders bevorzugt sind deshalb Homing-Endonukleasen (Übersicht: (Beifort M und Roberts RJ (1997) Nucleic Acids Res 25: 3379-3388; Jasin M (1996) Trends Genet. 12:224-228; Internet: http://rebase.neb.com/rebase/rebase.homing.html). Diese haben aufgrund ihrer langen ErkennungsSequenzen meist keine oder nur wenige weitere ErkennungsSequenzen in der chromosomalen DNA eukaryotischer Organismen.
Die für derartige Homing-Endonukleasen kodierenden Sequenzen können beispielsweise aus dem Chloroplastengenom von Chlamy- domonas isoliert werden (Turmel M et al . (1993) J Mol Biol 232: 446-467) . Sie sind klein (18 bis 26 kD) , weisen in ihrem offenen Leseraster (ORF) eine "coding usage" auf, die direkt für nukleare Expression in Eukaryonten (Monnat RJ Jr et al. (1999) Biochem Biophys Res Com 255:88-93) geeignet ist. Ganz besonders bevorzugt sind die Homing-Endonukleasen I-Scel (WO96/14408) , I-SceII (Sarguiel B et al. (1990) Nucleic Acids Res 18:5659-5665), I-SceIII (Sarguiel B et al . (1991) Mol Gen Genet. 255:340-341), I-Ceul (Marshall (1991) Gene 104:241-245), I-Crel (Wang J et al . (1997) Nucleic Acids Res 25: 3767-3776), I-Chul (Cote V et al.(1993) Gene 129:69-76), I-Tevl (Chu et al . (1990) Proc Natl Acad Sei USA 87:3574-3578; Bell-Pedersen et al . (1990) Nucleic Acids Resl8:3763-3770) , I-TevII (Bell-Pedersen et al. (1990) Nucleic Acids Reslδ : 3763-3770) , I-TevIII (Eddy et al . (1991) Genes Dev. 5:1032-1041), Endo Scel (Kawasaki et al . (1991) J Biol Che 266:5342-5347), I-Cpal (Turmel M et al . (1995a) Nucleic Acids Res 23:2519-2525) und I-CpaII (Turmel M et al . (1995b) Mol. Biol. Evol. 12, 533-545) isoliert.
Weitere Homing-Endonukleasen sind unter der oben angegebenen Internet-Adresse aufgeführt, zu nennen sind beispielsweise Homing-Endonukleasen wie F-Scel, F-Scell, F-Suvl, F-Tevl, F-TevII, I-Amal, I-Anil, I-Ceul, I-CeuAIIP, I-Chul, I-Cmoel, I-Cpal, I-CpaII, I-Crel, I-CrepsbIP, I-CrepsbIIP, I-CrepsbIIIP, I-CrepsbIVP, I-Csml, I-Cvul, I-CvuAIP, I-Ddil, I-DdiII, I-Dirl, I-Dmol, I-Hmul, I-HmuII, I-HspNIP, I-Llal, I-Msol, I-Naal, I-NanI, I-NclIP, I-NgrIP, I-NitI, I-Njal, I-Nsp236lP, I-PakI, I-PboIP, I-PcuIP, I-PcuAI, I-PcuVI, I-PgrIP, I-PobIP, I-Porl, I-PorIIP, I-PpbIP, I-Ppol, 1-SPBetaIP, I-Scal, I-Scel, I-SceII, I-SceIII , I-SceIV, I-SceV, I-SceVI, I-SceVII, I-SexIP, I-SneIP,
I-SpomCP, I-SpomIP, I-SoomllP, I-ScruIP, I-SSP6803I, I-_SJthPhiJP-^
I-SthPhiST3P, I-SthPhiS3bP, I-TdeIP, I-Tevl, I-TevII, I-TevIII, I-UarAP, I-UarHGPAlP, I-UarHGPAl3P, I-VinIP, I-ZbilP, PI-MtuI, PI-MtuHIP, PI-MtuHIIP, Pl-PfuI, Pl-PfuII, Pl-Pkol, Pl-PkoII, PI-PspI, PI-Rma43812lP, PI-SPBetalP, Pl-Scel, PI-TfuI, PI-TfuII, PI-Thyl, PI-Tlil, PI-Tlill.
Bevorzugt sind dabei die Homing-Endonukleasen, deren Gensequenzen bereits bekannt sind, wie beispielsweise F-Scel, I-Ceul, I-Chul, I-Dmol, I-Cpal, I-CpaII, I-Crel, I-Csml, F-Tevl, F-TevII, I-Tevl, I-TevII, I-Anil, I-Cvul, I-Ddil, I-Hmul, I-HmuII, I-Llal, I-NanI, I-Msol, I-NitI, I-Njal, I-PakI, I-Porl, I-Ppol, I-Scal, I-Ssp6803I, Pl-Pkol, Pl-PkoII, PI-PspI, PI-TfuI, PI-Tlil.
Ganz besonders bevorzugt sind kommerziell erhältliche Homing- Endonukleasen wie I-Ceul, I-Scel, I-Dmol, I-Ppol, PI-PspI oder Pl-Scel.
Die Enzyme können in der dem Fachmann geläufigen Art und Weise aus ihren HerkunftsOrganismen aufgereinigt und/oder die für sie kodierende Nukleinsäuresequenz kloniert werden. Die Sequenzen verschiedener Enzyme sind in der GenBank hinterlegt .
Ganz besonders bevorzugt sind die Homing-Endonukleasen I-Scel, I-Cpal, I-CpaII, I-Crel und I-Chul. Am meisten bevorzugt sind die Homing-Endonukleasen gemäß SEQ ID NO: 2, 4, 6, 8 oder 10.
Als künstliche DSBI-Enzyme seien beispielhaft chimäre Nukleasen zu nennen, die sich aus einer unspezifischen Nukleasedomäne und einer sequenzspezifischen DNA-Bindungsdomäne bestehend aus Zinkfingern zusammensetzen (Bibikova M et al . (2001) Mol Cell Biol. 21:289-297). Diese DNA-bindenden Zinkfingerdomänen können an jede beliebige DNA-Sequenz angepasst werden. Entsprechende Verfahren zur Herstellung entsprechender Zinkfingerdomänen sind beschrieben und dem Fachmann bekannt (Beerli RR et al . , Proc Natl Acad Sei U S A. 2000; 97 (4) : 1495-1500; Beerli RR, et al . , J Biol Chem 2000; 275(42) :32617-32627; Segal DJ and Barbas CF 3rd. , Curr Opin Chem Biol 2000; 4(1) :34-39; Kang JS and Kim JS, J Biol Chem 2000; 275(12) :8742-8748; Beerli RR et al . , Proc Natl Acad Sei USA 1998; 95(25) :14628-14633; Kim JS et al . , Proc Natl Acad Sei USA 1997; 94(8) :3616-3620; Klug A, J Mol Biol 1999; 293 (2) : 215-218; Tsai SY et al., Adv Drug Deliv Rev 1998;30 (1-3) :23-31; Mapp AK et al . , Proc Natl Acad Sei USA 2000; 97 (8) : 3930-3935 ; Sharrocks AD et al., Int J Biochem Cell Biol 1997; 29 (12) : 1371-1387 ; Zhang L et al., J Biol Chem 2000; 275 (43) :33850-33860) .
Bevorzugt wird das DSBI-Enzym als Fusionsprotein mit einer -Ker-n-1-okalisationssequenz—(-NLS.)—exprimi e .-.-_J3i S-e_ ILS^ejg _nz ermöglicht einen erleichterten Transport in den Kern und steigert die Effizienz des RekombinationsSystems . Verschiedene NLS-Sequenzen sind dem Fachmann bekannt und unter anderem beschrieben bei Jicks GR und Raikhel NV (1995) Annu. Rev. Cell Biol. 11:155-188. Bevorzugt für pflanzliche Organismen ist beispielsweise die NLS-Sequenz des SV40 "large antigen" . Ganz besonders bevorzugt sind die nachfolgenden NLS-Sequenzen: NLS1: N-Pro-Lys-Thr-Lys-Arg-Lys-Val-C (SEQ ID NO: 29)
NLS2: N-Pro-Lys-Lys-Lys-Arg-Lys-Val-C (SEQ ID NO: 30)
Die in den Ausführungsbeispielen verwendeten Homing-Endonukleasen gemäß SEQ ID NO : 4, 6, 8 oder 10 stellen Fusionsproteine aus den nativen Nukleasen und der NLS2 Kernlokalisationssequenz dar.
Aufgrund der geringen Größe vieler DSBI-Enzyme (wie beispiels- weise der Homing-Endonukleasen) ist jedoch eine NLS-Sequenz nicht zwingend erforderlich. Diese Enyzme können die Kernporen auch ohne die Unterstützung passieren. Belegt wird dies durch die Effizienz der verwendeten Homing-Endonuklease gemäß SEQ ID NO: 2, die keine Kernlokalisationssequenz umfasst.
In einer weiteren bevorzugten Ausführungsform kann die Aktivität des DSBΪ-Enzyms induziert werden. Entsprechende Verfahren sind für sequenzspezifische Rekombinasen beschrieben (Angrand PO et al. (1998) Nucl. Acids Res. 26 (13 ): 3263-3269 ; Logie C und Stewart AF (1995) Proc Natl Acad Sei USA 92 (13 ): 5940-5944; Imai T et al . (2001) Proc Natl Acad Sei USA 98 (1) :224-228) . Bei diesen Verfahren werden Fusionsproteine aus dem DSBI-Enzym und der Ligandenbindedomäne eines Steroidhormonrezeptors (z.B. des humanen Androgenrezeptors, oder mutierte Varianten des humanen Estrogenrezeptors wie dort beschrieben) eingesetzt. Die Induktion kann mit Liganden wie beispielsweise Estradiol, Dexamethason, 4-Hydroxytamoxifen oder Raloxifen erfolgen.
Manche DBSI-Enyzme sind als Dimer (Homo- oder Heterodimer) aktiv (I-Crel bildet ein Homodimer; I-SecIV bildet ein Heterodimer (Wernette CM (1998) Biochemical & Biophysical Research Communications 248 (1) :127-333) ) . Eine Dimerisisierung kann induzierbar gestaltet werden, indem beispielsweise die natürlichen Dimerisierungsdomänen gegen die Bindungsdomäne eines niedermolekularen Liganden ausgetauscht werden. Zugabe eines dimeren Liganden bewirkt dann Dimerisierung des Fusionsproteins . Entsprechende induzierbare Dimerisierungsverfahren als auch die -He-r-s-te-liung—der—dimer-en-JÜqanden si.nc beschrieben (Amara JF et al. (1997) Proc Natl Acad Sei USA 94(20): 10618-1623; Muthuswamy SK et al. (1999) Mol Cell Biol 19 (10) : 6845-685; Schultz LW und Clardy J (1998) Bioorg Med Chem Lett. 8(l):l-6; Keenan T et al. (1998) Bioorg Med Chem. 6 (8) : 1309-1335) .
"Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrang- brüchen" meint allgemein solche Sequenzen, die unter den Bedingungen in der jeweils verwendeten eukaryotischen Zelle oder Organismus die Erkennung und Spaltung durch das DSBI-Enzym erlauben. Beispielhaft aber nicht einschränkend seien dabei in nachfolgender Tabelle 1 die ErkennungsSequenzen für die jeweiligen aufgeführten DSBI-Enzyme genannt.
Tabelle 1: ErkennungsSequenzen und Herkunftsorganismus von DSBI- Enyzmen ("Λ" gibt innerhalb einer Erkennungssequenz die Schnittstelle des DSBI-Enzyms an.)
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Dabei sind auch kleinere Abweichungen ^Degenerationen) der Erkennungssequenz umfasst, die dennoch eine Erkennung und Spaltung durch das jeweilige DSBI-Enzym ermöglichen. Derartige Abweichungen - auch in Zusammenhang mit unterschiedlichen Rahmenbedingungen wie beispielsweise Calcium oder Magnesium-Konzen- tration - sind beschrieben (Argast GM et al. (1998) J Mol Biol 280: 345-353). Ferner sind Kernsequenzen ( "Gore"-Sequenzen) dieser ErkennungsSequenzen umfasst. Es ist bekannt, dass auch die inneren—rrbeilrer-der^Erkennungs-seβienzen—f-ü-r—ein Doppelstrangbruch genügen und das die äußeren nicht unbedingt relevant sind, jedoch die Effizienz der Spaltung mitbestimmen können. So kann beispielsweise für I-Scel eine 18bp-"Core"-Sequenz definiert werden.
Die Zusammenführung von Rekombinationskonstrukt und DSBI-Enzym zu einem der erfindungsgemäßen Rekombinationssystemen bzw. Verfahren kann auf verschiedene dem Fachmann geläufige Weisen realisiert werden. So können die Rekombinationskonstrukte und das DSBI-Enzym beispielsweise folgender Maßen in einem Organismus, einer Zelle, Zellkompartiment oder einem Gewebe zusammengebracht werden:
1.) Es werden auf dem üblichen Weg Organismen hergestellt, die die Rekombinationskassette in die chromosomale DNA insertiert tragen. Beispielsweise können entsprechende Pflanzen bevorzugt durch Agrobakterien-vermittelte Transformation hergestellt werden. Die die Rekombinationskassette enthaltenden Primärtransformanten werden für die Transformation mit einer Expressionskassette, die die Expression des DSBI-Enzym gewährleistet, eingesetzt oder in geeigneter Weise bis zur Homozygotie geführt und dienen dann als WirtsOrganismus (beispielsweise Wirtspflanze) für die Transformation mit einer Expressionskassette, die die Expression des DSBI-Enzym ge- währleistet. Ausgehend von diesen Wirtspflanzen können beispielsweise in vitro Kulturen, wie z.B. Kallus- oder embryo- gene Kulturen angelegt, etabliert und zur Transformation verwendet werden. Die Transformation mit der Expressionskassette für das DSBI-Enzym kann jeweils stabil oder transient er- folgen.
2. ) Es werden auf dem üblichen Weg sogenannte MasterOrganismen hergestellt, die das entsprechende Gen für das DSBI-Enzym (bzw. eine Expressionskassette, die die Expression des DSBI- Enzym gewährleistet) tragen und exprimieren. Beispielsweise können entsprechende Masterpflanzen bevorzugt durch Agrobakterien-vermittelte Transformation hergestellt werden. Die das DSBI-Enzym exprimierenden Primärtransformanten werden für die Transformation mit dem Rekombinationskonstrukt eingesetzt oder in geeigneter Weise bis zur Homozygotie geführt und dienen dann als Master- bzw. Wirtsorganismus (beispielsweise Masterpflanze) , in die die Rekombinationskonstrukte eingeführt werden. Ausgehend von diesen Masterpflanzen können beispielsweise in vitro Kulturen, wie z.B. Kallus- oder embryogene Kulturen angelegt, etabliert und zur Transformation verwendet werden.
-3--)—Das—Gen.—kQdier-end-£ür—das—DSBI-Enzym ^(bzw_^_eine_-Expr_easions- kassette, die die Expression des DSBI-Enzym gewährleistet) kann in einen Vektor, der bereits die Rekombinationskassette trägt, integriert werden und dadurch zeitgleich mit dem Zielgen in Pflanzenzellen eingeführt werden. Bevorzugt wird das Gen kodierend für das DSBI-Enzym zwischen die Homologiesequenzen insertiert und somit nach Erfüllung seiner Funktion aus der chromosomalen DNA deletiert. Ganz besonders bevorzugt erfolgt in diesem Fall die Expression des DSBI-Enzym induzierbar (beispielsweise unter Kontrolle eines der unten beschriebenen induzierbaren Promotoren) , entwicklungsabhängig unter Verwendung eines entwicklungsabhängigen Promotors oder es werden DSBI-Enzyme eingesetzt, deren Aktivität induzierbar ist, um ein Schneiden des Rekombinationskonstruktes gleich nach der Transformation und vor der Insertion in das Genom zu vermeiden.
4.) Die Expressionskassette, die die Expression des DSBI-Enzym gewährleistet, kann mit Hilfe der Co-Transformation zeit- gleich mit dem Rekombinationskonstrukt, aber auf einem separaten Vektor in die Zellen transformiert werden. Die Co-Transformation kann jeweils stabil oder transient erfolgen. Bevorzugt erfolgt in diesem Fall die Expression des DSBI-Enzyms induzierbar (beispielsweise unter Kontrolle eines der unten beschriebenen induzierbaren Promotoren) , entwicklungsabhängig unter Verwendung eines entwicklungs- abhängigen Promotors oder es werden DSBI-Enzyme eingesetzt, deren Aktivität induzierbar ist, um ein Schneiden des Rekombinationskonstruktes gleich nach der Transformation und vor der Insertion in das Genom zu vermeiden.
5.) Organismem, beispielsweise Pflanzen oder auch Tiere, die das DSBI-Enzym exprimieren, können auch als Kreuzungspartner dienen. In den Nachkommen der Kreuzung zwischen Organismen, die das DSBI-Enzym exprimieren, einerseits und Organismen, die das Rekombinationskonstrukt tragen, andererseits kommt es zu den erwünschten Doppelstrangbrüchen und der Rekombination zwischen den Homologiesequenzen, wobei ggf. die zwischen den Homologiesequenzen lokalisierten Sequenzen deletiert werden.
6. ) Die Expression des DSBI-Enzyms ist auch in einem transienten Transformationsansatz, bei dem die Möglichkeiten 2 bis 4 genutzt werden können, denkbar.
7.) Das DSBI-Enzym kann auch direkt beispielsweise über Mikro- injektion, Partikel-Bombardierung (biolistische Verfahren) , Polyethylenglykol-Transfektion oder Liposomen-vermittelte Transfektion in Zellen eingebracht werden, die das transgene Rekombinationskonstrukt beinhalten bzw. tragen. Diese Ausführungsform ist vorteilhaft, da hier keine DSBI-Enzym kodierenden Sequenzen im Genom verbleiben können. Ein entsprechendes Verfahren ist beispielsweise beschrieben bei Segal DJ et al . (1995) Proc Natl Acad Sei USA 92:806-810.
8. ) Das DSBI-Enzym kann auch durch Einführung der für das DSBI- Enzym kodierenden, in vitro erzeugten RNA in Zellen (beispielsweise über Mikroinjektion, Partikel-Bombardierung (bio- listische Verfahren) oder Liposomen-vermittelte Transfektion) erzeugt werden. Diese Ausführungsform ist vorteilhaft, da hier keine DSBI-Enzym kodierenden Sequenzen im Genom verbleiben können.
9. ) Das DSBI-Enzym kann als Fusionsprotein mit dem VirE2 oder VirF Protein eines Agrobakterium in Pflanzenzellen eingeschleust werden. Entsprechende Verfahren sind beispielsweise für die Cre-Rekombinase beschrieben (Vergunst AC et al . (2000) Science. 290: 979-982). Liegt die Expressionskassette für das Fusionsprotein außerhalb der "Border"-Sequenzen wird sie nicht in das pflanzliche Genom insertiert. Diese Aus ührungsform ist vorteilhaft, da hier keine DSBI-Enzym kodierenden Sequenzen im Genom verbleiben können.
Die Realisierung des erfindungsgemäßen Rekombinationssystems bzw. Verfahrens kann in intakten Organismen als auch in von diesen abgeleiteten Teilen, Zellen oder Vermehrungsgut erfolgen, besonders bevorzugt in intakten Pflanzen als auch in jedem Pflanzengewebe bzw. pflanzlichen in vitro Kulturen einschließlich Kallus. Auch eine in vitro Anwendung unter Einsatz von beispielsweise Weizenkeimextrakt oder Reticolozytenextrakt ist denkbar.
Wie oben beschrieben kann das DSBI-Enzym unter Verwendung einer Expressionskassette, die die DNA kodierend für ein DSBI-Enzym enthält, und in eine eukaryotische Zelle oder Organismus eingebracht wird, erzeugt werden. Dabei enthält die Expressionskassette für das DSBI-Enzym bevorzugt eine Nukleinsäuresequenz kodierend für ein DSBI-Enzym gemäß SEQ ID NO: 2, 4, 6, 8 oder 10 oder ein funktionelles Äquivalent derselben, das in der Lage ist in doppelsträngige DNA unter Nutzung der im wesentlichen gleichen Erkennungssequenz DNA-Doppelstrangbrüche zu erzeugen. Im wesentlichen gleiche ErkennungsSequenzen meint solche Erkennungssequenzen, die zwar Abweichungen von der für das jeweilige Enzym als optimal gefundenen Erkennungssequenz aufweisen, jedoch eine Spaltung durch dasselbe noch erlauben. Ganz besonders bevorzugt enthalten die Expressionskassetten für das DSBI-Enzym eine Nukleinsäuresequenz gemäß SEQ ID NO : 1, 3 , 5 , 7 oder 9.
Expressionskassette meint - zum Beispiel in Bezug auf die
Expressionkassette für das DSBI-Enzym - solche Konstruktionen bei denen die zu exprimierende DNA in funktioneller Verknüpfung mit mindestens einem genetischen Kontrollelement steht, dass ihre Expression (d.h. Transkription und oder Translation) ermöglicht oder reguliert . Dabei kann die Expression zum Beispiel stabil oder transient, konstitutiv oder induzierbar erfolgen. Für die Einführung stehen dem Fachmann verschiedene unten aufgeführte direkte (z.B. Transfektion, Partikelbeschuss, Mikroinjektion) oder indirekte Verfahren (z.B. Agrobakterieninfektion, Virusinfektion) zur Verfügung, die weiter unten aufgeführt werden.
Unter einer funktioneilen Verknüpfung versteht man allgemein eine Anordnung in der eine genetische Kontrollsequenz ihre Funktion in Bezug auf eine Nukleinsäuresequenz - beispielsweise kodierend für ein DSBI-Enzym - ausüben kann. Funktion kann dabei beispielsweise die Kontrolle der Expression d.h. Transkription und/oder Trans- lation der Nukleinsäuresequenz - beispielsweise kodierend für ein DSBI-Enzym - bedeuten. Kontrolle umfasst dabei beispielsweise die Initiierung, Steigerung, Steuerung oder Suppression der Expression d.h. Transkription und ggf. Translation. Die Steuerung wiederum kann beispielsweise gewebe- und oder zeitspezifisch erfolgen. Sie kann auch induzierbar zum Beispiel durch bestimmte Chemikalien, Stress, Pathogene etc. sein.
Unter einer funktioneilen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promoters, der zu exprimierenden Nukleinsäuresequenz - beispielsweise kodierend für ein DSBI-Enzym - und ggf . weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der Nukleinsäuresequenz - beispielsweise kodierend für ein DSBI-Enzym - erfüllen kann.
Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die zu exprimierende Nukleinsäuresequenz - beispielsweise kodierend für ein DSBI-Enzym - hinter eine als Promoter fungierende Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotersequenz und der Nukleinsäuresequenz - beispielsweise kodierend für ein DSBI-Enzym - geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare.
Dem Fachmann sind verschiedene Wege bekannt, um zu einer solchen Expressionskassette zu gelangen. Die Herstellung erfolgt beispielsweise bevorzugt durch direkte Fusion einer als Promoter fungierenden Nukleinsäuresequenz mit einer. zu exprimierenden Nukleotidsequenz - beispielsweise kodierend für ein DSBI-Enzym. Die Herstellung einer funktionellen Verknüpfung kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, 5 NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.
Eine Expressionskassette kann aber auch so konstruiert werden, *" das die zu exprimierende Nukleinsäuresequenz (z.B. kodierend für ein DSBI-Enzym) beispielsweise mittels homologer Rekombination oder auch durch zufällige Insertion unter Kontrolle eines endogenen genetischen Kontrollelementes, beispielsweise eines Promotors, gebracht wird. Solche Konstruktionen sind ebenfalls 15 als Expressionskassetten im Rahmen der Erfindung zu verstehen.
Dem Fachmann ist ferner bekannt, dass Nukleinsäuremoleküle auch unter Verwendung künstlicher Transkriptionsfaktoren vom Typ der Zinkfingerproteine zur Expression gebracht werden können (Beerli
20 RR et al. (2000) Proc Natl Acad Sei USA 97 (4) : 1495-500) . Diese Faktoren können an jeden beliebigen Sequenzbereich adaptiert werden und erlauben eine Expression unabhängig von bestimmten Promotorsequenzen .
25
Der Begriff der "genetischen Kontrollsequenzen" ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemäßen Expressionskassette haben. Genetische Kontrollsequenzen gewährleisten zum Beispiel die Transkription und gegebenenfalls Trans¬
30 lation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen Expressionskassetten 5 ' -stromaufwärts von der jeweiligen zu exprimierenden Nukleinsäuresequenz einen Promotor und 3 '-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie
35 gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktioneil verknüpft mit der zu exprimierenden Nukleinsäuresequenz .
Genetische KontrollSequenzen sind beispielsweise beschrieben bei 0 "Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990)" oder "Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, eds.:Glick and Thompson, Chapter 7, 89-108" sowie den dort aufgewiesenen Zitaten.
45 Beispiele für derartige Kontrollsequenzen sind Sequenzen, an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Kontrollsequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette kann aber auch einfacher aufgebaut sein, das heißt, es werden keine zusätzlichen Regulationssignale vor die vorstehend erwähnten Gene insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Stattdessen wird die natürliche Kontrollsequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert wird. Diese veränderten Promotoren können auch allein vor die natürlichen Gene zur Steigerung der Aktivität gebracht werden.
Je nach nachstehend näher beschriebenen Wirtsorganismus oder Ausgangsorganismus, der durch Einbringen der Expressionskassetten oder Vektoren in einen genetisch veränderten oder transgenen Organismus überführt wird, eignen sich verschiedene Kontrollsequenzen.
Vorteilhafte Kontrollsequenzen für die erfindungsgemäßen Expressionskassetten oder Vektoren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, phoA-, tat-, lpp-, lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden.
Weitere vorteilhafte Kontrollsequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADCl, MFa , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S (Franck et al. (1980) Cell 21:285-294), PRPl (Martini N et al . (1993) Mol Gen Genet. 236(2-3) :179-186) , SSU, OCS, LEB4, USP, STLS1, B33, NOS; FBPaseP (WO 98/18940) oder im Ubiquitin- oder Phaseolin-Promotor enthalten.
Für eine Expression in Vertebraten, bevorzugt in Säugern, sind Vektoren wie der TK-Promotor, der RSV 3' LTR-Promotor, der CMV Promotor, der SV40 "early" oder late" Promotor, geeignet. Weitere Promotoren sind dem Fachmann geläufig. Induzierbare Promotoren geeignet für die Verwendung in Vertebraten, bevorzugt in Säugern, umfassen beispielsweise den Tet-Pro otor/Repressor induzierbar oder reprimierbar durch Tetracylin oder Derivate, den Dexa- ethason-induzierbaren MMTV-LTR Promotor, den Drosophila minimal heat shock Promotor induzierbar durch Ecdysone oder das Analog Ponasterone A (im Rahmen beispielsweise des pVgRXR Expressionssystems; Invitrogen, Inc.).
5 Bevorzugt ist grundsätzlich jeder Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen steuern kann. Bevorzugt sind Promotoren, die eine konstitutive Expression in Pflanzen ermöglichen (Benfey et al.(1989) EMBO J. 8:2195-2202). Vorzugsweise verwendet man insbesondere einen pflanzlichen
10 Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Besonders bevorzugt ist der Promotor des 35S-Transkriptes des Blumenkohlmosaikvirus (Franck et al. (1980) Cell 21:285-294; Odell et al.(1985) Nature 313:810-812; Shewmaker et al. (1985) Virology 140:281-288; Gardner et al. 1986, Plant Mol. Biol. 6,
15 221-228) oder den 19S CaMV Promotor (US 5,352,605 and
WO 84/02913). Dieser Promotor enthält bekanntlich unterschiedliche ErkennungsSequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al . (1989) EMBO
20 J 8:2195-2202). Ein weiterer geeigneter konstitutiver Promotor ist der "Rubisco small subunit (SSU) "-Promotor (US 4,962,028). Ein weiteres Beispiel eines geeigneten Promotors ist der LeguminB-Promotor (GenBank Acc.-No.: X03677). Weitere bevorzugte konstitutive Promotoren sind zum Beispiel der Promotor der
25 Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al . (1995) Plant Mol Biol 29:637-649), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991) .
30
Die Expressionskassetten können auch einen induzierbaren, bevorzugt einen chemisch induzierbaren Promotor enthalten (Aoyama T und Chua NH (1997) Plant J 11:605-612; Caddick MX et al . (1998) Nat. Biotechnol 16:177-180; Rewiew: Gatz, Tλnnu Rev Plant Physiol
35 Plant Mol Biol 1997, 48:89-108), durch den die Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRPl Promotor (Ward et al . , Plant. Mol. Biol. 22 (1993), 361-366), ein durch Salicylsäure induzierbarer (WO 95/19443), ein durch Benzol-
40 sulfonamid-induzierbarer (EP-A-0388186) , ein durch Tetrazyklin- induzierbarer (Gatz et al., (1992) Plant J. 2, 397-404), ein durch Abscisinsäure-induzierbarer (EP-A 335528) , ein durch Salicylsäure induzierbarer (WO 95/19443) bzw. ein durch Ethanol- (Salter MG et al. (1998) Plant J. 16:127-132) oder Cyclohexanon-
45 induzierbarer (WO 93/21334) Promotor können ebenfalls verwendet werden. In einer besonders bevorzugten Ausführungsform wird vor allem die für das DSBI-Enzym kodierende Nukleinsäure unter Kontrolle eines induzierbaren Promotors exprimiert. Damit wird eine kontrollierte, steuerbare Expression und Deletion - beispiels- weise in Pflanzen - erreicht und etwaige Probleme durch eine konstitutive Expression eines DSBI-Enzyms vermieden.
Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRPl-Gens (Ward et al . , Plant Mol Biol 1993, 22: 361-366), der hitzeinduzierbare hspδO-Promoter aus Tomate (US 5,187,267), der kälteinduzierare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814) oder der verwundungs- induzierte pinll-Promoter (EP375091) .
Bevorzugt sind ferner Promotoren mit Spezifitäten für die Antheren, Ovarien, Pollen, Meristem, Blüten, Blätter, Stengel, Wurzeln und Samen.
Ein entwicklungsabhängig regulierter Promotor ist unter anderem bei Baerson et al . beschrieben (Baerson SR, Lamppa GK (1993) Plant Mol Biol 22 (2 ) :255-67) .
Besonders sind solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen die Biosynthese von Stärke und/oder Ölen bzw. dessen Vorstufen stattfindet oder in denen die Produkte vorteilhafterweise akkumuliert werden. Der Biosyntheseort der Stärke sind die Chloroplasten der Blätter bzw. die Amyloplasten der Speicherorgane wie Samen, Früchte oder Knollen. In diesen Organen sind es v.a. die Zellen des Endosperms oder die Kotyledonen des Embryos, in denen die Synthese abläuft. Bevorzugte Promotoren sind insofern neben den oben genannten konstitutiven Promotoren, insbesondere samenspezifische Promotoren wie zum Beispiel der Promotor des Phaseolins (US 5,504,200, Bustos MM et al . , Plant Cell.
1989;1(9) :839-53) , des 2S Albumingens (Joseffson LG et al.(1987) J Biol Chem 262: 12196-12201), des Legumins (Shirsat A et al . (1989) Mol Gen Genet. 215 (2) : 326-331) , des USP (unknown seed protein; Bäumlein H et al . (1991) Molecular & General Genetics 225 (3) :459-67) des Napin Gens (US 5,608,152; Stalberg K, et al . (1996) L. Planta 199: 515-519), des Saccharosebindeproteins (WO 00/26388) oder der Legumin B4-Promotor (LeB4; Bäumlein H et al. (1991) Mol Gen Genet 225:121-128; Baeumlein et al . (1992) Plant Journal 2 (2) : 233-239 ; Fiedler U et al . (1995) Biotechnology (NY) 13 (10) :1090-1093) , derlns Oleosin-Promoter aus Arabidopsis (W09845461), der Bce4-Promoter aus Brassica (WO 91/13980). Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG) , Gliadin, Verzweigungsenzym, ADP Glucose Pyrophosphatase (AGPase) oder die Stärkesynthase . Bevorzugt sind ferner Promotoren, die eine samenspezifische Expression in Monokotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des lpt2 oder lptl-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promoteren des Hordein-Gens , des Glutelin-Gens, des Oryzin-Gens, des Prolamin-Gens , des Gliadin-Gens , des Glutelin- Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens ) .
Bevorzugt als genetische Kontrollelemente sind ferner pollenspezifische Promotoren wie beispielsweise der Promotor des B. campestris bgpl gene (GenBank Acc.-No.- X68210; Xu H et al.(1993) Mol Gen Genet 239 (1-2) :58-65; WO 94/13809), des Oryza sativa ory s 1 Gens (GenBank Acc.-No.: AJ012760; Xu H et al . (1995) Gene 164 (2) :255-259) , des pollen-spezifischen Mais Gens ZM13 (Hamilton DA et al . (1998) Plant Mol Biol 38 (4) : 663-669; US 5,086,169), des B.napus Gens BplO (GenBank Acc.-No.: X64257; Albani D (1992) Plant J 2 (3) : 331-342 ; US 6,013,859).
Ferner sind bevorzugt der Lcgl Promotor für eine zellspezifische Expression in den männlichen Gameten (WO 99/05281; XU H et al. (1999) Proc. Natl. Acad. Sei. USA Vol. 96:2554-2558) und der Promotor des AtDMCl Gens (Klimyuk VI et al. (1997) Plant J. 11(1) :1-14) .
Weitere geeignete Promotoren sind beispielsweise spezifische Promotoren für Knollen, Speicherwurzeln oder Wurzeln, wie beispielsweise der Patatin Promotor Klasse I (B33) , der Promotor des Cathepsin D Inhibitors aus Kartoffel, der Promotor der Stärke' Synthase (GBSS1) oder der Sporamin Promotor sowie fruchtspezifische Promotoren, wie beispielsweise der fruchtspezifische Promotor aus Tomate (EP-A 409625) .
Weiterhin geeignete Promotoren sind solche, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der_cytosolischen FBPase aus Kartoffel (WO 98/18940), der SSU Promotor (small subunit) der Rubisco (Ribulose-1, 5-bisphosphat- carboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8 (9) : 2445-2451) . Bevorzugt sind ferner Promotoren, die eine Expression in Samen und pflanzlichen Embryonen steuern.
Weitere geeignete Promotoren sind beispielsweise fruchtreifungs- spezifische Promotoren, wie beispielsweise der fruchtreifungs- spezifische Promotor aus Tomate (WO 94/21794) , blütenspezifische Promotoren, wie beispielsweise der Phytoen Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593) oder ein anderer Nodien-spezifischer Promotor wie in EP-A 249676 können vorteilhaft verwendet werden. 5
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
10
Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressions- steuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische
15 Expression zusätzlich abhängig von bestimmten Stressfaktoren erfolgen. ' Entsprechende Elemente sind zum Beispiel für Wasser- stress, Abscisinsäure (Lam E und Chua NH (1991) J Biol Chem 266(26) .17131 -17135) und Hitzestress (Schoffl F et al. (1989) Molecular & General Genetics 217 (2-3) .-246-53) beschrieben.
20
Es können ferner weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine Expression in weiteren Pflanzengeweben oder in anderen Organismen, wie zum Beispiel E. coli Bakterien ermöglichen.
25 Als Pflanzenpromotoren kommen im Prinzip alle oben beschriebenen Promotoren in Frage.
Genetische Kontrollsequenzen umfassen ferner auch die 5 '-untranslatierte Region, Introns oder die nichtkodierende 3 '-Region
30 von Genen. Es ist gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5 '-untranslatierte Sequenzen die trans- iente Expression heterologer Gene verstärken können. Sie können ferner die Gewebespezifität fördern (Rouster J et al., Plant J.
35 1998, 15: 435-440.). Umgekehrt unterdrückt die 5 ' -untranslatierte Region des opaque-2 Gens die Expression. Eine Deletion der entsprechenden Region führt zu einer Erhöhung der Genaktivität (Lohmer S et al., Plant Cell 1993, 5:65-73).
40 Genetische Kontrollsequenzen können auch Ribosomenbindungs- sequenzen zur Initiation der Translation umfassen. Dies ist vor allem dann bevorzugt, wenn von der zu exprimierenden Nukleinsäuresequenz entsprechende Sequenzen nicht bereitgestellt werden oder diese mit dem Expressionssystem nicht kompatibel sind.
45 Die Expressionskassette kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktioneil verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3 ' -Ende der transgen zu exprimierenden Nukleinsauresequenzen können zusätzliche vorteilhafte Sequenzen insertiert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimierenden Nukleinsauresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.
Genetische Kontrollsequenzen meint ferner Sequenzen, die für Fusionsproteine bestehend aus einer Signalpeptidsequenz kodieren.
Als genetische Kontrollsequenzen geeignete Polyadenylierungs- Signale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase) -Terminator und der NOS (Nopalin- Synthase) -Terminator .
Wie oben erwähnt können die erfindungsgemäßen Rekombinations- konstrukte weitere Nukleinsauresequenzen umfassen. Solche Nukleinsauresequenzen können bevorzugt Expressionskassetten darstellen. Beispielhaft aber nicht einschränkend für die in den Expressionskonstrukten zu exprimierenden DNA-Sequenzen seien zu nenne :
i) Positive Selektionsmarker:
Selektionsmarker sind in der Regel erforderlich, um erfolgreich homolog rekombinierte oder transformierte Zellen zu selektionieren. Der mit dem Expressionskonstrukt eingebrachte selektionierbaren Marker verleiht den erfolgreich rekombinierten oder transformierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid wie Phosphinothricin, Glyphosat oder Bromoxynil) , einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) oder ein
Antibiotikum, wie zum Beispiel Tetracycline, Ampicillin, Kanamycin, G 418, Neomycin Bleomycin oder Hygromycin, verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen von untransformierten (McCormick et al., Plant Cell Reports 5 (1986), 81-84). Besonders bevorzugte Selektionsmarker sind solche die eine Resistenz gegen Herbizide verleihen. Beispielhaft als Selektionsmarker seien genannt :
- DNA Sequenzen, die für Phosphinothricinacetyltransferasen (PAT) kodieren, welche die freie Aminogruppe des Gluta- minsynthaseinhibitors Phosphinothricin (PPT) acetyliert und damit eine Detoxifizierung des PPT erreicht (de Block et al. 1987, EMBO J. 6, 2513-2518) (auch Bialophos® resistenzgen (bar) genannt)
5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthasegene) , die eine Resistenz gegen Glyphosat® (N- (phosphonomethyl) glycin) verleihen,
- das für das Glyphosat® degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase) ,
das deh Gen (kodierend für eine Dehalogenase, die Dalapon® inaktiviert) ,
- Sulfonylurea- und Imidazolinon inaktivierende Aceto- lactatsynthasen
- bxn Gene, die für Bromoxynil® degradierende Nitrilase- enzy e kodieren
das Kanamycin- bzw. G418- Resistenzgen (NPTII) . Das NPTII Gen codiert für eine Neomycinphosphotransferase, die durch eine Phosphorylierungsreaktion die inhibierende Wirkung von Kanamycin, Neomycin, G418 und Paromomycin reduziert.
das D0GR1-Gen. Das Gen D0GR1 wurde aus der Hefe Saccharo- myces cerevisiae isoliert (EP 0 807 836) . Es codiert für eine 2-Desoxyglukose-6-phosphat Phosphatase, die
Resistenz gegenüber 2-DOG verleiht (Randez-Gil et al. 1995, Yeast 11, 1233-1240).
Negative Selektionsmarker ermöglichen beispielsweise die Selektion von Organismen mit erfolgreich deletierten
Sequenzen, die das Markergen umfassen (Koprek T et al. (1999) The Plant Journal 19 (6) :719-726) . TK thymidine kinase (TK) and diphtheria toxin A fragment (DT-A) , codA Gen kodierend für eine Cytosindeaminase (Gleve AP et al . (1999) Plant Mol Biol. 40 (2) :223-35; Pereat RI et al. (1993) Plant Mol. Biol 23(4): 793-799; Stougaard J; (1993) Plant J 3:755-761), das Cytochrom P450 Gen (Koprek et al. (1999) Plant J. 16:719-726), Gene kodierend für eine Haloalkan Dehalogenase (Naested H (1999) Plant J. 18:571-576), das iaaH Gen (Sundaresan V et al. (1995) Genes & Development 9:1797-1810) oder das tms2 Gen (Fedoroff NV & Smith DL 1993, Plant J 3: 273- 289) .
iii) Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz, des Expressionsortes oder -Zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Gene kodierend für Reporter-Proteine (siehe auch Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(l):29-44) wie
- "green fluorescence protein" (GFP) (Chui WL et al . , Curr Biol 1996, 6:325-330; Leffel SM et al . , Biotechniques . 23(5):912-8, 1997; Sheen et al.(1995) Plant Journal 8(5) :777-784; Haseloff et al.(1997) Proc Natl Acad Sei USA 94(6) :2122-2127; Reichel et al.(1996) Proc Natl Acad Sei USA 93 (12) :5888-5893; Tian et al . (1997) Plant Cell
Rep 16:267-271; WO 97/41228).
Chloramphenicoltransferase,
- Luziferase (Millar et al., Plant Mol Biol Rep 1992 10:324-414; Ow et al . (1986) Science, 234:856-859); erlaubt Bioluminescenzdetektion.
- ß-Galactosidase, kodiert für ein Enzym für das ver- schiedenen chromogene Substrate zur Verfügung stehen.
ß-Glucuronidase (GUS) (Jefferson et al . , EMBO J. 1987, 6, 3901-3907) oder das uidA Gen, das ein Enzym für verschiedene chromogene Substrate kodiert.
R-Locus Genprodukt : Protein, das die Produktion von Antho- cyaninpigmenten (rote Färbung) in pflanzlichen Gewebe -r-eguXier-t—und_so—eine direkte_AnalyBe_jier_Pjrj3mp er- aktivität ohne Zugabe zusätzlicher Hilfsstoffe oder chromogener Substrate ermöglicht (Dellaporta et al.,
In: Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium, 11:263-282, 1988) . ß-Lactamase (Sutcliffe (1978) Proc Natl Acad Sei USA 75:3737-3741), Enzym für verschiedene chromogene Substrate (z.B. PADAC, eine chromogenes Cephalosporin) .
- xylE Genprodukt (Zukowsky et al. (1983) Proc Natl Acad Sei USA 80:1101-1105), Catecholdioxygenase, die chromogene Catechole umsetzen kann.
Alpha-Amylase (Ikuta et al. (1990) Bio/technol. 8:241-242).
- Tyrosinase (Katz et al.(1983) J Gen Microbiol
129:2703-2714), Enzym, das Tyrosin zu DOPA und Dopaquinon oxidiert, die infolge das leicht nachweisbare Melanin bilden.
Aequorin ( Prasher et al.(1985) Biochem Biophys Res Commun 126 (3) -.1259-1268) , kann in der Calcium-sensitiven Bioluminescenzdetektion verwendet werden.
Das erfindungsgemäße Rekombinationskonstrukt und die gegebenenfalls von ihnen abgeleiteten Vektoren können weitere Funktionselemente enthalten. Der Begriff der weitere Funktionselernente ist breit zu verstehen. Bevorzugt sind all solche Elemente ge- meint, die einen Einfluss auf Herstellung, Vermehrung, Funktion, Nutzen oder Wert des erfindungsgemäßen Rekombinationssystems, Rekombinationskonstruktes oder diese beinhaltende Zellen oder Organismen haben. Beispielhaft jedoch nicht einschränkend seien für die weiteren Funktionselemente zu nennen:
iv) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen Expressionskassetten oder Vektoren in zum Beispiel E. coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication) , der pBR322 ori oder der P15A ori (Sa - brook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) .
v) Multiple Klonierungsregionen (MCS) erlauben und erleichtern die Insertion eines oder mehrerer Nukleinsauresequenzen.
vi) Sequenzen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen.
vii) Elemente zum Beispiel "Bordersequenzen", die einen Agro- bakterien-vermittelte Transfer in Pflanzenzellen für die Übertragung und Integration ins Pflanzengenom ermöglichen, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.
All die oben erwähnten Expressionskassetten oder weiteren Funktionselemente können, wie erwähnt, zwischen den Homolgie- sequenzen A und B lokalisiert sein. Sie können aber auch außerhalb von diesen liegen. Dies ist vor allem bei "Bordersequenzen" vorteilhaft .
Die Einführung einer erfindungsgemäßen Rekombinationskassette oder eines Expressionskonstruktes für ein DSBI-Enzym in Zellen kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in die diese Konstrukte bzw. Kassetten insertiert werden. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren, Retroviren oder auch Agrobacterien sein.
Als Vektoren zur Expression in E.coli sind bevorzugt pQE70, pQE60 und pQE-9 (QIAGEN, Inc.); pBluesσript Vektoren, Phagescript Vektoren, pNH8A, pNHl6a, pNHl8A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.).
Bevorzugte Vektoren zur eukaryotischen Expression umfassen pWLNEO, pSV2CAT, pOG44, pXTl und pSG (Stratagene Inc.); pSVK3 , pBPV, pMSG und pSVL (Pharmacia Biotech, Inc.). Als induzierbare Vektoren seien pTet-Thia, Potter-Splice, pcDNA4/T0, pcDNA4/TO / LacZ, pcDNA6/TR, pcDNA4/T0/Myc-His /LacZ, pcDNA4/T0/Myc-His A, pcDNA4/T0/Myc-His B, pcDNA4/TO/Myc-His C, pVgRXR (Invitrogen, Inc.) oder die pMAM-Serie (Clontech, Inc.; GenBank Accession No. : U02443) zu nennen. Diese stellen bereits das induzierbare regulatorische Kontrollelement beispielsweise für eine chemisch, induzierbare Expression eines DSBI-Enzyms zur Verfügung. In diese Vektoren kann die Nukleinsäuresequenz kodierend für ein DSBI- Enzym direkt insertiert werden.
Vektoren für die Expression in Hefe umfassen beispielhaft pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ,pGAPZ, pGAPZalph, pPIC9,
gen, Ine . ) .
In einer vorteilhaften Ausführungsform wird die Einführung der Expressionskassette mittels Plasmidvektoren realisiert. Bevorzugt sind solche Vektoren, die eine stabile Integration der Expressionskassette in das Wirtsgenom ermöglichen. Ein anderer Gegenstand der Erfindung betrifft transgene, eukaryotische Organismen, die das erfindungsgemäße Rekombinationssystem enthalten sowie Zellen, Zellkulturen, Gewebe, Teile oder Vermehrungsgut - wie zum Beispiel bei pflanzlichen Organismen Blätter, Wurzeln, Samen, Früchte, Pollen usw. - abgeleitet von solchen Organismen.
Eukaryotischer Organismus, Ausgangs- oder Wirtsorganismus meint niedere und höhere, einzellige und mehrzellige eukaryotische Organismen. Umfasst sind auch eukaryotische Mikroorganismen wie beispielsweise Hefen, Algen oder Pilze.
Bevorzugte Hefen sind Candida, Saccharomyces , Hansenula oder Pichia, besonders bevorzugt sind Saccharomyces cerevisiae oder Pichia pastoris (ATCC Accession No. 201178) .
Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neu- rospora, Fusarium, Beauveria oder weitere in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze. Besonders bevorzugt ist der filamentöse Hemiascomycet Ashbya gossypii .
Erfindungsgemäß bevorzugte Wirts- oder Ausgangsorganismen sind weiterhin tierische Organismen und von diesen abgeleitete Zellen oder Gewebe. Tierische Organismen umfasst bevorzugt Vertebraten und Invertebraten. Besonders bevorzugte Vertrebraten sind Säuger wie in Hund, Katze, Schaf, Ziege, Huhn, Maus, Ratte, Rind oder Pferd. Bevorzugte tierische Zellen umfassen CHO, COS, HEK293 Zellen. Bevorzugte Invertebraten umfassen Insektenzellen wie Drosophila S2 und Spodoptera Sf9 oder Sf21 Zellen.
Als transgene Organismen bevorzugte Wirts- oder Ausgangsorganismen sind vor allem Pflanzen. Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Eingeschlossen sind ferner die reifen Pflanzen, Saatgut, Sprosse und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut (zum Beispiel Samen oder Früchte) •und—-ul-t-u-r-en-r—zum—Be s-pie-j^-Ze-llkultuxen-.—Reife--flanzen-ineirit- Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen EntwicklungsStadium. Das erfindungsgemäße Rekombinationssystem ist bevorzugt für folgende Pflanzenfamilien verwendbar: Amaranthaceae, Brassica- ceae, Carophyllaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Labiatae, Leguminosae-Papilionoideae, Liliaceae, Linaceae, Malva- ceae, Rosaceae, Saxifragaceae, Scrophulariaceae, Solanacea, Tetragoniacea.
Einjährige, mehrjährige, monocotyledone und dicotyledone Pflanzen sind bevorzugte Wirtsorganismen für die Herstellung transgener Pflanzen. Die Verwendung des erfindungsgemäßen Rekombinationssystems bzw. Verfahrens ist ferner vorteilhaft bei allen Schmuckpflanzen, Nutz- oder Zierbäumen, Blumen, Schnittblumen, Sträuchern oder Rasen. Beispielhaft aber nicht einschränkend seien zu nennen Angiospermen, Bryophyten wie zum Beispiel Hepaticae (Leberblümchen) und Musci (Moose) ; Pteridophyten wie Farne, Schachtelhalm und Lycopoden; Gymnospermen wie Koniferen, Cycaden, Ginkgo und Gnetalen; Algen wie Chlorophyceae, Phaeophpyceae, Rhodophyceae, Myxophyceae, Xanthophyceae, Bacillariophyceae (Diatomeen) und Euglenophyceae .
Pflanzen im Rahmen der Erfindung umfassen beispielhaft und nicht einschränkend die Familien der Rosaceae wie Rose, Ericaceae wie Rhododendrons und Azaleen, Euphorbiaceae wie Weihnachtssterne und Kroton, Caryophyllaceae wie Nelken, Solanaceae wie Petunien, Gesneriaceae wie das Usambaraveilchen, Balsaminaceae wie das
Springkraut, Orchidaceae wie Orchideen, Iridaceae wie Gladiolen, Iris, Freesie und Krokus, Compositae wie Ringelblume, Geraniaceae wie Geranien, Liliaceae wie der Drachenbaum, Moraceae wie Ficus, Araceae wie Philodendron und andere mehr.
Beispielhaft aber nicht einschränkend für Blütenpflanzen seien zu nennen die Familien der Leguminosae wie Erbse, Alfalfa und Soja; Gramineae wie Reis, Mais, Weizen; Solanaceae wie Tabak und andere mehr; die Familie der Umbelliferae, besonders die Gattung Daucus (ganz besonders die Art carota (Karrotte) ) und Apiu (ganz besonders die Art graveolens dulce (Seiarie) ) und andere mehr; die Familie der Solanacea, besonders die Gattung Lycopersicon, ganz -besonders—die— rt—escιlentum_(.Tomate.)—und die Gat-tung_S-oJ.an.um-, ganz besonders die Art tuberosum (Kartoffel) und melongena (Aubergine) und andere mehr; und die Gattung Capsicum, ganz besonders die Art annum (Pfeffer) und andere mehr; die Familie der Leguminosae, besonders die Gattung Glycine, ganz besonders die Art max (Sojabohne) und andere mehr; und die Familie der Cruciferae, besonders die Gattung Brassica, ganz besonders die Arten napus (Raps) , campestris (Rübe) , oleracea cv Tastie (Kohl) , oleracea cv Snowball Y (Blumenkohl) und oleracea cv Emperor (Brocσoli) ; und der Gattung Arabidopsis, ganz besonders die Art thaliana und andere mehr; die Familie der Compositae, besonders die Gattung Lactuca, ganz besonders die Art sativa (Salat) und andere mehr.
Die erfindungsgemäßen transgenen Pflanzen sind insbesondere ausgewählt unter monokotylen Kulturpflanzen, wie zum Beispiel Getreidearten wie Weizen, Gerste, Hirse, Roggen, Triticale, Mais, Reis oder Hafer sowie dem Zuckerrohr. Ferner sind die erfindungsgemäßen transgenen Pflanzen insbesondere ausgewählt unter dikotylen Kulturpflanzen, wie zum Beispiel
Brassicacae wie Raps (B.napus) , Kresse, Arabidopsis, Kohlarten oder Canola, Leguminosae wie Soja, Alfalfa, Erbse, Bohnengewächsen oder Erdnuss
Solanaceae wie Kartoffel, Tabak, Tomate, Aubergine oder Paprika, Asteraceae wie Sonnenblume, Tagetes, Salat oder Calendula,
Cucurbitaceae wie Melone, Kürbis oder Zucchini,
sowie Lein, Baumwolle, Hanf, Flachs, Roter Pfeffer, Möhre, Karotte, Zuckerrübe und den verschiedenen Baum-, Nuss- und Weinspecies .
Besonders bevorzugt sind Arabidopsis thaliana, Nicotiana tabacum und Raps sowie alle Gattungen und Arten, die als Nahrungsoder Futtermittel zum Einsatz kommen, wie die beschriebenen Getreidearten, oder sich zur Herstellung von Ölen eignen, wie Ölsaaten (wie zum Beispiel Raps), Nussarten, Soja, Sonnenblume, Kürbis und Erdnuss.
Pflanzliche Organismen im Sinne der Erfindung sind weiterhin weitere photosynthetisch aktive befähigte Organismen, wie zum Beispiel Algen oder Cyanobakterien, sowie Moose.
Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus , Phaedactylum tricornatum, Volvox oder Dunaliella.
Die Herstellung eines transformierten Organismus oder einer transformierten Zelle erfordert, dass die entsprechende DNA in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation bezeichnet .wird, steht eine Vielzahl von Methoden zur Verfügung (siehe auch Keown et al . 1990 Methods in Enzymology 185:527-537). So kann die DNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA- enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektroporation ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisert werden. Als bevorzugte allgemeine Methoden seien zu nennen Calciumphosphat vermittelte Transfektion, DEAE-Dextran vermittelte Transfektion, kationische Lipid-vermittelte Transfektion, Elektroporation, Transduktion, Infektion. Derartige Verfahren sind dem Fachmann geläufig und beispielsweise beschrieben bei Davis et al., Basic Methods In Molecular Biology (1986) .
Bei Pflanzen werden dem Fachmann geläufige Methoden der Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind vor allem die Protoplastentrans- formation durch Polyethylenglykol-induzierte DNA-Aufnähme, bio- listische Verfahren wie die Genkanone ("particle bombardment"
Methode) , die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Sonikation und die Mikroinjektion sowie die Transformation intakter Zellen oder Gewebe durch Mikro- oder Makroinjektion in Gewebe oder Embryonen, Gewebeelektro- poration, Inkubation trockener Embryonen in DNA-haltiger Lösung oder die Vakuuminfiltration von Samen. Im Falle von Injektion oder Elektroporation von DNA in pflanzliche Zellen sind keine besonderen Anforderungen an das verwendete Plasmid gestellt. Einfache Plasmide wie die der pUC-Reihe können verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist es nützlich, das sich auf dem Plasmid ein zusätzliches selektionierbares Markergen befindet.
Jedes Pflanzengewebe kann als Zielmaterial dienen. Ebenso kann die Expression in Kallus, embryogenem Gewebe bzw. somatischen Embryonen erfolgen.
Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium tumefaciens oder Agrobacterium rhizogenes durchgeführt werden. Diese Stämme enthalten ein Plasmid (Ti bzw. Ri Plasmid) . Ein Teil dieses Plasmids, genannt T-DNA (transferred DNA), wird auf die Pflanze nach Agrobacterium-Infektion übertragen und in das Genom der Pflanzenzelle integriert. Das Rekombinationskonstrukt oder die Expressionskassette für das DSBI-Enzym wird bevorzugt in spezielle Plasmide integriert, entweder in einen Zwischenvektor (englisch: Shuttle or inter ediate vector) oder einen binären Vektor. Wenn zum Beispiel ein Ti 5 oder Ri Plasmid zur Transformation verwendet werden soll, ist zumindest die rechte Begrenzung, meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit der einzuführenden Expressionskassette verbunden. Bevorzugt werden binäre Vektoren verwendet. Binäre Vektoren können
10 sowohl in E. coli als auch in Agrobacterium replizieren. Sie enthalten in der Regel ein Selektionsmarkergen und einen Linker oder Polylinker flankiert von der rechten und linken T-DNA Begrenzungssequenz . Sie können direkt in Agrobacterium transformiert werden (Holsters et al.,Mol. Gen. Genet. 163 (1978),
15 181-187) . Das Selektionsmarkergen erlaubt eine Selektion transformierter Agrobakteria und ist zum Beispiel das nptll Gen, das eine Resistenz gegen Kanamycin verleiht. Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Über-
20 tragung der T-DNA auf die pflanzliche Zelle erforderlich. Ein so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden.
Die Anwendung von Agrobakterium tumefaciens für die Trans-
25 formation von Pflanzen unter Verwendung von Gewebekultu- rexplantaten wurde beschrieben von Horsch et al. (Horsch RB (1986) Proc Natl Acad Sei USA 83 (8) :2571-2575) , Fraley et al . (Fraley et al . 1983, Proc. Natl. Acad. Sei. USA 80, 4803-4807) und Bevans et al. (Bevans et al. 1983, Nature 304, 184-187).
30 Viele Stämme von Agrobakterium tumefaciens sind in der Lage, genetisches Material - beispielsweise die erfindungsgemäßen Rekombinationskonstrukte - zu übertragen, wie z.B. die Stämme EHAlOlCpEHAlOl] , EHA105 [pEHAl05] , LBA4404 [pAL4404] , C58Cl[pMP90] und C58Cl[pGV2260] . Der Stamm EHA101 [pEHAlOl] wurde von Hood
35 et al. (Hood EE et al. (1996) J Bacteriol 168 (3) : 1291-1301) , der Stamm EHA105 [pEHAl05] von Hood et al . (Hood et al . 1993, Transgenic Research 2, 208-218), der Stamm LBA4404 [pAL4404] von Hoekema et al . (Hoekema et al. 1983, Nature 303, 179-181), der Stamm C58Cl[pMP90] von Koncz and Seheil (Koncz and Schell 1986,
40 Mol. Gen. Genet. 204, 383-396) und der Stamm C58C1 [pGV2260] von Deblaere et al . (Deblaere et al. 1985, Nucl. Acids Res. 13, 4777-4788) beschrieben.
Der für die Transformation eingesetzte Agrobakterienstamm enthält 45 zusätzlich zu seinem entwaffneten Ti-Plasmid ein binäres Plasmid mit der zu übertragenden T-DNA, die in der Regel ein Gen für die Selektion der transformierten Zellen und das zu übertragende Gen enthält. Beide Gene müssen mit transkriptionalen und trans- lationalen Initiations- und Terminationssignalen ausgestattet sein. Das Binärplasmid kann beispielsweise durch Elektroporation oder andere Transformationsmethoden in den Agrobakterienstamm übertragen werden (Mozo & Hooykaas 1991, Plant Mol. Biol. 16, 917-918) . Die Cokultur der pflanzlichen Explantate mit dem Agrobakterienstamm findet in der Regel für zwei bis drei Tage statt.
Verschiedene Vektoren waren bzw. sind verwendbar. Grundsätzlich kann zwischen solchen Vektoren unterschieden werden, die für die Agrobakterien-vermittelte Transformation bzw. Agroinfektion eingesetzt werden können, d.h. die Rekombinationskonstrukte bzw, die Expressionskassette für die Expression des DSBI-Enzyms, innerhalb einer T-DNA enthalten, was sogar die stabile Integration der T-DNA ins Pflanzengenom zulässt. Außerdem können Bordersequenzfreie Vektoren eingesetzt werden, die beispielsweise durch Partikelbeschuss in die Pflanzenzellen transformiert werden können und dort sowohl zu einer transienten als auch zu einer stabilen Expression führen können.
Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B. V. , Alblasserdam, Chapter V; Fraley et al., Crit. Rev. Plant. Sei., 4:1-46 and An et al . , EMBO J. 4 (1985), 277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBIN19 (Clontech Laboratories, Inc. USA).
Für den Transfer der DNA auf die pflanzliche Zelle werden pflanz- liehe Explantate mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert . Ausgehend von infiziertem Pflanzenmaterial (z.B. Blatt-, Wurzel- oder Stengelteile, aber auch Protoplasten oder Suspensionen von Pflanzenzellen) können ganze Pflanzen unter Verwendung eines geeigneten Mediums, dass zum Beispiel Antibiotika oder Biozide zur Selektion transformierten Zellen enthalten kann, regeneriert werden. Die erhaltenen Pflanzen können dann auf die Präsenz der eingeführten DNA, hier des erfindungsgemäßen Rekombinationskonstruktes oder der Expressionskassette für das DSBI-Enzym, durchmustert werden. Sobald die DNA in das Wirtsgenom integriert ist, ist der entsprechende Genotyp in der Regel stabil und die entsprechende Insertion wird auch in den Nachfolgegenerationen wiedergefunden. In der Regel enthält die integrierte Expressionskassette einen Selektionsmarker, der der transformierten Pflanze eine Resistenz gegen ein Biozid (zum Beispiel ein Herizid) oder ein Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin etc. verleiht. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von untransformierten (McCormick et al . , Plant Cell Reports 5 (1986), 81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr Generationen sollten kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.
Die genannten Verfahren sind beispielsweise in B. Jenes et al . , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993), 128 - 143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al . , Nucl. Acids Res. 12 (1984), 8711).
Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone Pflanzenzellen geeignet, wohingegen die direkten Transformationstechniken sich für jeden Zelltyp eignen.
Transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untrans- formierten selektioniert werden, wenn ein selektionierbarer Marker Bestandteil der eingeführten DNA ist . Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen Antibiotika oder Herbizide zu verleihen vermag. Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder Herbizides zu überleben, die einen untrans- formierten Wildtyp abtöten. Verschiedene positive und negative Selektionsmarker sind weiter oben beschrieben. Beispiel sind das bar Gen, dass Resistenz gegen das Herbizid Phosphinothricin verleiht (Rathore KS et al., Plant Mol Biol. 1993 Mar,-21 (5) : 871-884) , das nptll Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen, das Resistenz gegen Hygromycin verleiht, oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht.
Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann be- kannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus . Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden. Erfindungsgemäß sind ferner von den oben beschriebenen transgenen Organismen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.-, und transgenes Vermehrungsgut (wie Samen oder Früchte).
Von Menschen und Tieren verzehrbare erfindungsgemäße, genetisch veränderte Pflanzen können auch beispielsweise direkt oder nach an sich bekannter Aufbereitung als Nahrungsmittel oder Futtermittel verwendet werden. Hier ist eine Deletion von beispiels- weise Antibiotika- und/oder Herbizidresistenzen, wie sie oft bei der Erzeugung der transgenen Pflanzen eingeführt werden, aus Gründen der Kundenakzeptanz aber auch der Produktsicherheit sinnvoll .
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der oben beschriebenen erfindungsgemäßen, transgenen Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.-, und transgenes Vermehrungsgut wie Samen oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien. Auch hier ist eine Deletion von beispielsweise Antibiotika- und/oder Herbizidresistenzen aus Gründen der Kundenakzeptanz aber auch der ProduktSicherheit vorteilhaft.
Feinchemikalien meint Enzyme, Vitamine, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe breit anwendbar. Besonders bevorzugt ist die Produktion von Tocopherolen und Tocotrienolen sowie Carotinoiden. Die Züchtung der transformierten Wirtsorganismen sowie die Iso- lierung aus den Wirtsorganismen bzw. aus dem Züchtungsmedium erfolgt mit dem Fachmann bekannten Verfahren. Die Produktion von Pharmazeutika, wie zum Beispiel Antikörpern oder Vakkzinen ist beschrieben (Hood EE, Jilka JM. (1999) Curr Opin Biotechnol. 10(4) :382-386; Ma JK und Vine ND (1999) Curr Top Microbiol Immunol.236 : 275-92) .
Ferner bietet das erfindungsgemäße Rekombinationssystem bzw. ¥er-£ahr-en-4£erschiedene_vor:teilha^ die sich mit den im Stand der Technik beschriebenen Deletions- verfahren nicht erreichen lassen. Verschiedene Anwendungsbeispiele sind nachfolgend beispielhaft, aber nicht einschränkend beschrieben: 1. Einfache Deletion einer Nukleinsäuresequenz aus der chromosomalen DNA eines Organismus :
Unter Verwendung beliebiger Homologiesequenzen A und B können zwischen diesen lokalisierten Nukleinsauresequenzen deletiert werden. Die aus den Homologiesequenzen A und B rekombinierte Sequenz verbleibt im Genom. Das Verfahren eignet sich beispielsweise, um Selektionsmarker nach der Herstellung eines transgenen Organismus - beispielsweise einer transgenen Pflanze - wieder aus der chromosomalen DNA zu entfernen.
Das Verfahren ist schematisch in Fig. 2 und 3 dargestellt, wobei in Fig. 2 die Variante mit einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und in Fig. 3 die Variante mit zwei ErkennungsSequenzen zur gezielten Induktion von DNA-Doppelstrangbrüchen wiedergegeben ist.
2. Vollständige Deletion transgen eingeführter heterologer Nukleinsauresequenzen aus der chromosomalen DNA eines Organismus :
Unter Verwendung von Homologiesequenzen A und B, die. zu bestimmten Sequenzen des Organismus homolog sind, kann das Expressionskonstrukt durch homologe Rekombination in den Organismus eingeführt werden. Unter Verwendung des erfindungsgemäßen Rekombinationssystems bzw. Verfahrens würden die zwischen den Homologiesequenzen lokalisierten Nukleinsauresequenzen deletiert werden. Die induzierte homologe Rekombination zwischen Homologiesequenzen A und B stellt die ursprüngliche Sequenz wieder her. Das Konstrukt wird rückstandslos aus der chromosomalen DNA entfernt. Das Verfahren eignet sich beispielsweise, um Selektionsmarker nach der Herstellung einer transgenen Pflanze wieder aus der chromosomalen DNA zu entfernen. Ferner ist das erfindungsgemäße System bzw. Verfahren dazu geeignet bestimmte Proteine zum Erreichen eines vorteilhaften Effektes vorübergehend zu exprimieren und - unter Verwendung einer induzierten DSBI- Enzym Expression oder Aktivität - wieder abzuschalten, indem das entsprechende Gen irreversibel wieder aus dem geno entfernt wird. Das Verfahren ist schematisch in Fig. 4 darge- stellt, wobei hier die Variante mit zwei ErkennungsSequenzen zur gezielten Induktion von DNA-Doppelstrangbrüchen wiedergegeben ist. Das System lässt sich auch mit einer Erkennungssequenz realisieren, bei größeren Insertionen zwischen den Homologiesequenzen A und B sind jedoch zwei Schnittstellen vorteilhaft, da so die Effizienz der Deletion und homologen Rekombination weiter gesteigert werden kann. (Innerhalb des zu deletierenden Sequenzbereiches können weitere Erkennungssequenzen lokalisiert sein.)
3. Induzierte Genaktivierung durch gezielte Deletion von Nukleinsauresequenzen:
Unter Verwendung von Homologieseguenzen A und B, deren homologe Rekombination beispielsweise ein vollständiges offenes Leseraster eines Proteins bzw. einen funktionsfähigen Promotors wiederherstellt, kann - abhängig von der Gegenwart des DSBI-Enzyms - die induzierbare Expression von Zielproteinen realisiert werden. Unter Verwendung des erfindungsgemäßen Rekombinationssystems bzw. Verfahrens würden die zwischen den Homologiesequenzen lokalisierten Nukleinsäure- sequenzen deletiert werden. Das Verfahren ist schematisch in Fig. 5 und 6 dargestellt, wobei in Fig. 6 eine spezielle Ausführungsform von dem in Fig. 5 dargestellten allgemeinen Verfahren wiedergegeben wird, bei dem das Rekombinationskonstrukt zuvor durch homologe Rekombination in ein endogenes Gen insertiert wird und dieses dadurch - abhängig von der Gegenwart des DSBI-Enzyms - induzierbar aktiviert werden kann. Fig. 7a verdeutlicht das System der Genaktivierung an einem konkreten Ausführungsbeispiel, bei dem unter Verwendung des erfindungsgemäßen Systems bzw. Verfahrens das Gen der ß-Glucuronidase (GUS) rekonstituiert wird, was eine Farbreaktion ermöglicht (s. Beschreibung zu Fig. 7a und Beispiele) .
4. Leicht selektionierbares System zur Deletion einer Nuklein- säuresequenz aus der chromosomalen DNA eines Organismus:
In einer bevorzugten Ausführungsform enthält das Rekombinationskonstrukt einem positiven und einem negativen Selektionsmarker (und ggf. weitere zu deletierende Nuklein- säuresequenzen) derart, dass bei Induktion der Doppelstrangbrüche beide Marker deletiert werden. Ein entsprechendes System ist in Fig. 8 und 9 (A) dargestellt. Weiterhin kann auch—die—E-xpressioask-a-sset-fee—ür—das—DSB—Enzym—zwisohexi—dan. Homologiesequenzen enthalten sein (Fig. 10 (B) ) , wobei die Expression bevorzugt unter der Kontrolle eines Induzierbaren Promotors (Pi) (z.B.: Aoyama T und Chua NH (1997) Plant J 11:605-612; Caddick MX et al. (1998) Nat . Biotechnol 16:177-180) realisiert wird. Wie bereits beschrieben können weitere Nukleinsauresequenzen enthalten sein (Fig. 9 (C) ) . Die Expression des DSBI-Enzyms führt in allen Fällen dazu, dass die DNA Sequenzen, die zwischen den beiden Erkennungssequenzen liegen, eliminiert werden und die homologen Sequenzen rekombinieren. Da die Zellen gleichzeitig einen negativen Selektionsmarker verlieren, können die Zellen mit einer erfolgreich realisierten Deletion durch Selektion identifiziert werden (Gleave AP et al.(1999) Plant Mol Biol. 40:223-235) .
Aus den so erhaltenen Zellen können beispielsweise im Falle von Pflanzenzellen die entsprechenden vollständigen Pflanzenregeneriert und vermehrt werden, die nun keinerlei Markergene mehr enthalten.
5. Genetische Manipulation des Wirtsgenoms :
Das erfindungsgemäße Rekombinationssystem bzw. Verfahren kann zu in situ Modifikationen des Wirtsgenoms verwendet werden. So kann beispielsweise eine Homologiesequenzen bereits endogen im Genom vorliegen. Nach Insertion der zweiten
Homologiesequenz verknüpft mit einer DSBI-Enzym-Erkennungs- sequenz werden etwaige zwischen den Homologiesequenzen A und B gelegene regulatorische oder codierende Sequenzen aus dem Genom entfernt.
Gleichzeitig ist es denkbar, dass das Rekombinationskonstrukt regulatorische oder codierende Sequenzen umfaßt, die nach der Deletion wieder aus dem Organismus entfernt werden. So kann ein endogenes Gen beispielsweise vorübergehend gezielt reguliert werden.
In einer weiteren bevorzugten Aus ührungsform wird die Effizienz des Reko binationssystems gesteigert durch Kombination mit Systemen, die die homologe Rekombination fördern. Solche Systeme sind beschrieben und umfassen beispielhaft die Expression von Proteinen wie RecA oder die Behandlung mit PARP-Inhibitoren. Es konnte gezeigt werden, dass die intrachromosomale homologe -Rekombination in Tabake?flanzen durch die Verwendung von PARP- Inhibitoren erhöht werden kann (Puchta H et al. (1995) Plant J. 7:203-210). Durch den Einsatz dieser Inhibitoren kann die Rate der homologen Rekombination in den Rekombinationskonstrukten nach Induktion des sequenzspezifischen DNA-Doppelstrangbruches und damit die Effizienz der Deletion der Transgensequenzen weiter erhöht werden. Verschiedene PARP Inhibitoren können dabei zum Einsatz kommen. Bevorzugt umfasst sind Inhibitoren wie 3-Amin- obenza id, 8-Hydroxy-2-methylquinazolin-4-on (NU1025) , l,llb-Di- hydro-[2H]benzopyrano[4,3,2-de]isoquinolin-3-on (GPl 6150), 5-Aminoisoquinolinon, 3 , 4-Dihydro-5-[4- (l-piperidinyl)butoxy] - l(2H)-isoquinolinon oder die in WO 00/26192, WO 00/29384, WO 00/32579, WO 00/64878, WO 00/68206, WO 00/67734, WO 01/23386 und WO 01/23390 beschriebenen Verbindungen.
Daneben konnten verschiedene homologe Rekombinationsreaktionen in Pflanzen durch die Expression des RecA Gens von E. coli in ihrer Frequenz erhöht werden (Reiss B et al. (1996) Proc Natl Acad Sei USA 93(7) -.3094-3098) . Auch wird bei Anwesenheit des Proteins das Verhältnis von homologer zu illegitimer DSB Reparatur zugunsten der homologen Reparatur verschoben (Reiss B et al. (2000) Proc Natl Acad Sei USA 97 (7) :3358-3363) . Verwiesen sei auch auf die in WO 97/08331 beschriebenen Verfahren zur Steigerung der homologen Rekombination in Pflanzen. Eine weitere Steigerung der Effizienz' des RekombinationsSystem könnte durch die gleichzeitige Expression des RecA Gens oder anderer Gene die die homologe Rekombinationseffizienz erhöhen (Shalev G et al. (1999) Proc Natl Acad Sei USA 96 (13) : 7398-402 ) erreicht werden. Die oben angegebenen Systeme zur Förderung der homologen Rekombination können auch dort vorteilhaft eingesetzt werden, wo das Rekombinationskonstrukt durch homologe Rekombination gezielt in das Genom eines eukaryotischen Organismus eingeführt werden soll.
Sequenzen
1. SEQ ID NO:l
Nukleinsäuresequenz für die I-Scel Homing-Endonuklease .
2. SEQ ID NO: 2 Proteinsequenz für die I-Scel Homing-Endonuklease.
3. SEQ ID NO: 3
Nukleinsäuresequenz für Fusionsprotein aus I-Chul Homing- Endonuklease und N-terminaler Kernlokalisationssequenz .
4. SEQ ID NO: 4
Proteinsequenz für Fusionsprotein aus I-Chul Homing-Endonuklease und N-terminaler Kernlokalisationssequenz.
5. SEQ ID NO: 5
Nukleinsäuresequenz für Fusionsprotein aus I-Crel Homing- Endonuklease und N-terminaler Kernlokalisationssequenz .
6. SEQ ID NO: 6 Proteinsequenz für Fusionsprotein aus I-Crel Homing-Endonuklease und N-terminaler Kernlokalisationssequenz . 7 . SEQ ID NO : 7
Nukleinsäuresequenz für Fusionsprotein aus I-Cpal Homing- Endonuklease und N-terminaler Kernlokalisationssequenz .
5 8 . SEQ ID NO : 8
Proteinsequenz für Fusionsprotein aus I-Cpal Homing-Endonuklease und N-terminaler Kernlokalisationssequenz .
9 . SEQ ID NO -.9
10 Nukleinsäuresequenz für Fusionsprotein aus I-Cpal I Homing-
Endonuklease und N-terminaler Kernlokalisationssequenz .
10 . SEQ ID NO : 10
Proteinsequenz für Fusionsprotein aus I-CpaII Homing-Endo- 15 nuklease und N-terminaler Kernlokalisationssequenz .
11. SEQ ID NO: 11: Oligonukleotid-Primer OPN1
5'-CGG CTC GAG CTA CGG GGA CGA TTT CTT TTT TTC AC-3 '
20 12. SEQ ID NO: 12: Oligonukleotid-Primer OPN2
5' -CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC AT GAA TAC AAA ATA TAA TAA AGA GTT CTT ACT C-3 '
25 13. SEQ ID NO: 13: Oligonukleotid-Primer OPN3
5' -CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC ATG GAC ATT AAT CCT CAA TGG ATT ACA GG- 3'
30 14. SEQ ID NO: 14: Oligonukleotid-Primer OPN4
5' -CGG CTC GAG TTA CTC GCC AGT TTC TTC AAA ACG-3 '
15. SEQ ID NO: 15: Oligonukleotid-Primer OPN5
5' -CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC 35 TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC ATG ACC GAT TCT AAA TCT AGA AAC AAC-3 '
16. SEQ. ID NO: 16: Oligonukleotid-Primer OPN6
5' -CGG CTC GAG CTA AAG GTG GCC TTT ATT GCC ATC AG-3 ' 40
17. SEQ ID NO: 17: Oligonukleotid-Primer OPN7
5' -CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC ATG TCA TTA ACA CAA CAA CAA AAA GAC-3 ' 45 18. SEQ ID NO: 18: Oligonukleotid-Primer OPN8
5'-CGG CTC GAG CTA AAG GTG GCC TTT ATT GCC ATC AG-3 '
19. SEQ ID NO: 19: Oligonukleotid-Primer OPN9
5 5' -CGG CTC TAG AGC GGC CGC CTA GGG ATA ACA GGG TAA TAG AAT CCC ACA AAA ATC TGA GCT TAA CAG 3'
20. SEQ ID NO: 20: Oligonukleotid-Primer OPN10
5' -CGG CTC TAG ACT ATT ACC CTG TTA TCC CTA GGC CCG ATC TAG 10 TAA CAT AGA TGA CAC CGC GCG CG 3'
21. SEQ ID NO: 21: Oligonukleotid-Primer OPNll
5*- CGG AAG CTT CGT CAC CAA TCC CAA TTC GAT CTA C - 3<
15 22. SEQ ID NO: 22: Oligonukleotid-Primer OPN12
5λ- CGG AAG CTT CCA CTT GCA AAG TCC CGC TAG TGC C - 3X
23. SEQ ID NO: 23: Oligonukleotid-Primer OPN13
5 λ- CGG AAG CTT CGT CAC CAA TCC CAA TTC GAT CTA C - 3 v 20
24. SEQ ID NO: 24: Oligonukleotid-Primer OPN14
5V- CGG AAG CTT CCA CTT GCA AAG TCC CGC TAG TGC C - 3λ
25. SEQ ID NO: 25: Oligonukleotid-Primer OPN15
25 5'- CTA GTA CAA AAC GTC GTG AGA CAT TTT AAT CTG AAG GTT TGG CAC CTC GAT GTC GGC TCA TC-3 '
26. SEQ ID NO: 26: Oligonukleotid-Primer OPN16
5' -CTA GGA TGA GCC GTC ATC GAG GTG CCA AAC CTT CAG ATT AAA 30 ATG TCT CAC GAC GTT TTG TA-3 '
27. SEQ ID NO: 27: Oligonukleotid-Primer OPN17
5' -CTA GTC CGA AAA CGC CGT GAG ACA TAT TGG TTA CGA TCC TAA GGT AGC GAA ATT CAC CCG GTA ACT CTG TGC CAG-3 ' 35
28. SEQ ID NO: 28: Oligonukleotid-Primer OPN18
5' -CTA GCT GGC ACA GAG TTA CCG GGT GAA TTT CGC TAC CTT AGG ATC GTA ACC AAT ATG TCT CAC GGC GTT TTC GGA-3 '
40 29. SEQ ID NO: 29: Kernlokalisationssequenz NLS1 N-Pro-lys-Thr-Lys-Arg-Lys-Val-C
30. SEQ ID NO: 30: Kernlokalisationssequenz NLS2
N-Pro-Lys-Lys-Lys-Arg-Lys-Val-C (SEQ ID NO: 30) 45 Abbildungen
Für die Abbildungen gelten allgemein nachfolgende Abkürzungen:
Hl : Homologiesequenz A H2 : Homologiesequenz B Hl/2: Sequenz als Ergebnis der homologen Rekombination aus Hl und H2 Sl : erste Erkennungssequenz zur gezielten Induktion von DNA- Doppelstrangbrüchen
S2 : zweite Erkennungssequenz zur gezielten Induktion von DNA- Doppelstrangbrüchen E : DSBI-Enzym
P: Promotor oder anderes genetisches Kontrollelement N: weitere Nukleinsäuresequenz NS : Negativer Selektionsmarker PS: Positiver Selektionsmarker
Tl : Vorderer Teil beispielsweise eines Gens oder offenen Leserasters T2 : Hinterer Teil beispielsweise eines Gens oder offenen Leserasters STOP: Unterbrechung eines Gens oder offenen Leserasters durch beispielsweise Stop-Kodons oder Verschiebung des Lese- ratsers .
Fig. 1: Darstellung des Prinzips der Erfindung
Sequenzen im Genom können effizient eliminiert werden, wenn sie von den Homologiesequenzen Hl und H2 flankiert sind und sich zwischen den Homologiesequenzen eine Schnittstelle (Sl) für ein DSBI-Enzym befindet. Durch
Einwirkung des DSBI-Enzyms (E) auf diese Rekombinations- kassette (H1-S1-H2) kommt es nach Bildung von Doppelstrangbrüchen an der Schnittstelle Sl und zur Eliminierung der zwischen Hl und H2 gelegenen Sequenzen.
Fig. 2: Bevorzugte Ausführungsform
Sequenzen - hier beispielsweise eine Expressionskassette bestehend aus einem Promotor (P) und einer zu exprimierenden' weleΕ^n~Nkl_e±tτs"äτιr^s"eorerrz—CN)—("bei"spieis=- weise einem Selektionsmarker) - können effizient aus der chromosomalen DNA eliminiert werden, wenn sie von den Homologiesequenzen Hl und H2 flankiert sind und sich zwischen den Homologiesequenzen eine Schnittstelle (Sl) für ein DSBI-Enzym befindet . Durch Einwirkung des DSBI- Enzyms (E) auf diese Rekombinationskassette (Hl-Sl-P-
N-H2) kommt es nach Bildung von Doppelstrangbrüchen an der Schnittstelle Sl und zur Eliminierung der zwischen Hl und H2 gelegenen Sequenzen. Die Schnittstelle Sl kann auch hinter oder in der Expressionskassette lokalisiert sein.
Fig. 3: Bevorzugte Ausführungsform
Sequenzen - hier beispielsweise eine Expressionskassette bestehend aus einem Promotor (P) und einer zu exprimierenden weiteren Nukleinsäuresequenz (N) (beispielsweise einem Selektionsmarker) - können besonders effizient aus der chromosomalen DNA eliminiert werden, wenn sie von den Homologiesequenzen Hl und H2 flankiert sind und sich vor und hinter der zu deletierenden Nukleinsäuresequenz je eine Schnittstelle (Sl und S2) für ein DSBI-Enzym befindet . Durch Einwirkung des DSBI-Enzyms (E) auf diese Rekombinationskassette (H1-S1-P-N-S2-H2) kommt es nach Bildung von Doppelstrangbrüchen an den Schnittstellen Sl und S2 und zur Eliminierung der zwischen Hl und H2 gelegenen Sequenzen.
Fig. 4: Bevorzugte Ausführungsform
Sequenzen - hier beispielsweise eine Expressionskassette bestehend aus einem Promotor (P) und einer zu exprimierenden weiteren Nukleinsäuresequenz (N) (beispielsweise einem Selektionsmarker) - können quasi spurenlos aus der chromosomalen DNA eliminiert werden, wenn das sie umfassende Rekombinationskonstrukt zuvor beispielsweise durch eine homologe Rekombination in das Wirtgenom insertiert wurde. Dabei wird das Gen, bestehend aus den Sequenzabschnittem Tl, Hl/2 und T2, unterbrochen. Das Rekombinationskonstrukt ist flankiert von zwei Teilen des unterbrochenen Gens (Tl-Hl bzw. H2-T2), wobei der mittlere Teil (Hl oder H2) dupliziert wurde, um die homologe Rekombination zu erlauben. Durch Einwirkung des DSBI-Enzyms (E) auf die Schnittstellen (Sl und S2) kommt es zur Induktion von Doppelstrangbrüchen und zur
Induktion der homologen Rekombination zwischen den Homologiesequenzen Hl und H2, wodurch zum einen die
Figure imgf000051_0001
zum anderen das Ausgangsgen wieder hergestellt wird.
Fig. 5: Bevorzugte Ausführungsform
Nukleinsauresequenzen (hier ein Gen mit der Sequenz T1-H1/2-T2 unter Kontrolle eines Promotors P) können induzierbar exprimiert werden, indem das intakte Gen erst durch Anwendung des Rekombinationssystems rekonstituiert wird. Das Gen, bestehend aus den Sequenzabschnitten Tl, Hl/2 und T2, ist - beispielsweise durch Insertion von Stop-Kodons oder anderen Unterbrechungen des Leserasters im Rahmen des Rekombinationskonstruktes- inaktiviert. Das Rekombinationskonstrukt ist flankiert von zwei Teilen des unterbrochenen Gens (Tl-Hl bzw. H2-T2) , wobei der mittlere Teil (Hl oder H2) dupliziert wurde, um die homologe Rekombination zu erlauben. Durch Einwirkung des DSBI-Enzyms (E) auf die Schnittstellen (Sl und S2) kommt es zur Induktion von Doppelstrangbrüchen und zur Induktion der homologen Rekombination zwischen den Homologiesequenzen Hl und H2, wodurch zum einen die zwischen Hl und H2 gelegenen Sequenzen deletiert werden, zum anderen das intakte Gen hergestellt wird.
Fig. 6: Bevorzugte Ausführungsform Die Abbildung stellt ein Verfahren dar, das dem in Fig. 5 beschriebenen gleicht, nur das hier gezielt ein endogenes Gen aktiviert werden soll, indem das Rekombinationskonstrukt beispielsweise durch eine homologe Rekombination eingeführt wird.
Fig. 7a: Ausführungsbeispiel
Die Abbildung verdeutlicht eine konkrete Ausführungsform des in Fig . 6 beschriebenen Ver ahrens . Es wird ein Rekombinationskonstrukt über Agrobakterium vermittelte Transfektion eingeführt. Flankiert von der rechten und der linken "Bordersequenz" (RB bzw. LB) enthält das Konstrukt das unterbrochene Leseraster des GUS-Gens (ß-Glucuronidase) unter der Kontrolle des 35S Promotors (P) und des Nopalinsythase (nos) Terminator. Die mittlere Region des GUS-Gens (U) wurde dupliziert und stellt die
Homolgiesequenzen A und B dar. Zwischen diesen Sequenzen liegt als negative Selektionsmarker das codA-Gen unter Kontrolle des Cauliflower Mosaic Virus (CaMV) 35S Promoters und des Nopalinsynthase (nos) Terminators, flankiert von zwei ErkennungsSequenzen des DSBI-Enzyms
(Sl und S2) . Ferner enthält das Rekombinationskonstrukt noch als positiven Selektionsmarker das BAR-Gen unter Kontrolle des 35S Promoters (P) und 35S Terminators.
Fig.7a verdeutlicht das infolge der Einwirkung des DSBI-
Enzyms Entstehen von DoppelStrangbrüchen und der homologen Rekombination zwischen den homologen U-Sequenzen, wodurch zum einen die zwischen den homologen U-Sequenzen gelegenen Sequenzen deletiert werden, zum anderen das GUS-Gen wieder hergestellt wird. Die Länge des Acc65I-
Fragmentes wird dadurch von 7 , 3 kb auf 3 , 7 kb verkürzt . Fig.7b: Stellt das gleiche wie unter Fig.7a beschriebene System dar. Fig.7a verdeutlicht das infolge der Einwirkung des DSBI-Enzyms Entstehen von Doppelstrangbrüchen. Im Unterschied zu Fig.7a erfolgt hier keine homologe Reko bi- nation, sondern eine illegitime durch "non-homologous end-joining" . Aufgrund der beiden Schnittstellen wird zwar der zwischen Sl und S2 gelegene Bereich deletiert , das GUS-Gen wird jedoch nicht wieder hergestellt. Die Länge des Acc65I-Fragmentes wird dadurch von 7,3 kb auf 4,4 kb verkürzt.
Fig. 7c: Die Abbildung stellt nochmals die beiden Endprodukte der unter den Fig.7a und Fig.7b beschriebenen Abläufe dar. A: Ergebnis der homologen Rekombination; Acc65I-Fragment hat eine Länge von 3,7 kb; das mit den Primern OPN13 und 0PN14 (verdeutlicht durch die Pfeile) ampli- fizierte Fragment hat eine Größe von 0,7 kb. B: Ergebnis der illegitimen Rekombination ("non-homologous end-joining"); Acc65I-Fragment hat eine Länge von 4,4 kb; das mit den Primern 0PN13 und OPN14 (verdeutlicht durch die Pfeile) amplifizierte Fragment hat eine Größe von 1,4 kb.
Fig. 8: Bevorzugte Ausführungsform Vorteilhafterweise umfassen die Rekombinationskassetten sowohl einen positiven als auch einen negativen Selektionsmarker (PS bzw. NS) jeweils unter Kontrolle eines Promotors. Der positive Selektionsmarker ist nützlich, um die Einführung des Konstruktes in das Genom zu erleichtern und nachzuweisen. Der negative Selektionsmarker ist nützlich, um die Deletion des Konstruktes aus dem Genom nachzuweisen. Beide Marker werden effizient aus der chromosomalen DNA eliminiert, wenn sie von den Homologiesequenzen Hl und H2 flankiert sind und sich vor und/oder hinter der zu deletierenden Nukleinsäuresequenz je eine Schnittstelle (Sl und S2) für ein DSBI-Enzym befindet. Durch Einwirkung des DSBI-Enzyms (E) auf diese Rekombinationskassette kommt es nach Bildung von Doppe1s-t-r-angbr-üchen—an—den—Schnittsteilen—S-l—und-Λoder— §2- und zur Eliminierung der zwischen Hl und H2 gelegenen
Sequenzen.
Die Einwirkung eines der genannten DSBI-Enzyms bewirkt gezielte Doppelstrangbrüche und induziert die homologe Rekombination zwischen den homologen U-Sequenzen, wodurch zum einen die zwischen den homologen U-Sequenzen gelegenen Sequenzen deletiert werden, zum anderen das GUS-Gen wieder hergestellt wird.
Fig.9: Leicht selektionierbare Systeme zur Deletion einer Nukleinsäuresequenz aus der chromosomalen DNA eines
Organismus . Die Konstrukte enthalten einen positiven Selektionsmarker (PS) und negativen Selektionsmarker (NS) jeweils unter Kontrolle eines Promotors (P) .
(B) enthält zusätzlich eine Expressionskassette für das DSBI-Enzym, wobei die Expression bevorzugt unter der
Kontrolle eines induzierbaren Promotors (Pi) realisiert wird.
(C) Weitere Nukleinsauresequenzen können enthalten sein. Die Expression des DSBI-Enzyms führt in allen Fällen dazu, dass die DNA Sequenzen, die zwischen den beiden
ErkennungsSequenzen liegen, eliminiert werden und die homologen Sequenzen rekombinieren. Da die Zellen gleichzeitig einen negativen Selektionsmarker verlieren, können die Zellen mit einer erfolgreich realisierten Deletion durch Selektion identifiziert werden (Gleave AP et al.(1999) Plant Mol Biol. 40:223-235).
Fig. 10: Die Abbildung verdeutlicht die beiden Konstrukte (SI-
Konstrukt (A) und SD-Konstrukt (B) ) , die verwendet wurde, um den Nachweis zu führen, dass mit verschiedenen
Restriktionsenzymen die homologe Rekombination durch Doppelstrangbrüche induziert werden kann. Die Konstrukte werden über Agrobakterium vermittelte Transfektion eingeführt . Flankiert von der rechten und der linken "Border- sequenz" (RB bzw. LB) enthalten die Konstrukte das unterbrochene Leseraster des GUS-Gens (ß-Glucuronidase) unter der Kontrolle des 35S Promotors (P) und des Nopalin- synthase (nos) Terminator. Die mittlere Region des GUS- Gens (U) wurde dupliziert und stellt die Homologiesequen- zen A und B dar. Zwischen diesen Sequenzen liegen im
Falle des SI-Konstruktes (A) die ErkennungsSequenzen der DSBI-Enzyme I-Scel, I-Cpal, I-CpaII und I-Creϊ, im Falle des SD-Konstruktes (B) die Erkennungssequenz des I-Chul -Enzyms-.—F-er-ner—-enthalten—die—Rekombi-na-tion-skonsfeeuk-te- noch als positiven Selektionsmarker das BAR-Gen unter
Kontrolle eines Promotors (P) .
Fig. 11: Repräsentative histochemische Analyse von nach Induktion von Doppelstrangbrüchen erhaltenen Tabakkalli . Blau- färbung (hier Dunkelfärbung) zeigt Expression des ß-Glucuronidasegens und damit die Eliminierung des Selektionsmarkers durch homologe Rekombination an. Blau (Dunkelfärbungen) sind bei den Kalli in den Vertiefungen A2, A5, A6, B2, Cl, C6 und D2 zu sehen.
Fig. 12: PCR Analyse zum Nachweis der homologen Rekombination. PCR mit den Primer OPN13 und OPN14 mit DNA aus Tabakkalli.
In den Spuren 1, 2 und 3 ist das PCR Produkt (Größe 0,7 kb) , das homologe Rekombination anzeigt, zu sehen. Die entsprechenden Kalli waren nach histochemischer Färbung Blau, die entsprechenden PCR Banden wurden sequenziert, um zu zeigen, dass das offene Leseraster (ORF) der ß-Glucuronidase tatsächlich durch homologe Rekombination restauriert wurde.
Spur 4 und 5: PCR Produkte (1,4 kb) von nicht blau- anfärbaren Kalli bei dem das Transgen durch "non-homo- logous end-joning" eliminiert wurde.
Fig. 13: Southern Blots, die die vollständige Elimination der entsprechenden Transgensequenz anzeigen.
Die Spuren der Blots A bis D beinhalten jeweils:
Spur Linie Beschreibung
1 GU.C.USB 1 Ausgangslinie
2 GU.C.USB 1-61 "non-homologous end-joning"
3 GU.C.USB 1-83 homologe Rekombination
4 GU.C.USB 3 Ausgangslinie
5 GU.C.USB 3-1 "non-homologous end-joning" 6 GU.C.USB 3-3 homologe Rekombination
7 GU.C.USB 7 Ausgangslinie
8 GU.C.USB 7-14 "non-homologous end-joning"
9 GU.C.USB 7-34 homologe Rekombination
A: Hindlll-verdaute DNA, die mit einer ß-Glucuronidase spezifischen Probe hybridisiert wurde.
B: Hindlll-verdaute DNA, die mit einer codA spezifischen
Probe hybridisiert wur e.
C: Acc65I-verdaute DNA, die mit einer ß-Glucuronidase spezifischen Probe hybridisiert wurde.
D: Acc65I-verdaute DNA, die mit einer codA spezifischen Probe hybridisiert wurde.
Die Analyse zeigt, dass nach Induktion von DNA- Doppelstrangbrüchen mittels Expression des Restriktionsenzyms sowohl mit homologe Rekombination (Spuren 3, 6 und 9) als auch mit illegitime (Spuren 2, 5 und 8) auftreten kann, wobei stets die zwischen den Restriktionsschnittstellen liegende Transgensequenz (codA) aus dem Pflanzengenom eliminiert wurde.
Beispiele
Allgemeine Methoden:
Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungs- schritte wie z.B. Restriktionsspaltungen, Agorosegelelektro- phorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA werden wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer ALF-Express (Pharmacia, Upsala, Schweden) nach der Methode von Sanger (Sanger et al . , Proc. Natl. Acad. Sei. USA 74 (1977), 5463-5467).
Beispiel 1 : Klonierung der Homing-Endonukleasen
Die offenen Leseraster (ORFs) der Ho ing Endonukleasen I-Crel (Wang J et al. (1997) Nucleic Acids Res 25: 3767-3776), I-Chul (Cote V et al.(1993) Gene 129:69-76), I-Cpal (Turmel M et al . (1995a) Nucleic Acids Res 23:2519-2525) und I-CpaII (Turmel M et al. (1995b) Mol. Biol. Evol. 12, 533-545) wurden aus den entsprechenden Chlamydomonas Stämmen kloniert.
Um die optimale Translation des Gens zu gewährleisten wurden die ORFs—der—Enoonukrlaesen—mit-der—SLLeader-''-—Sequenz—eines—-fianz-en--- virus verbunden (CaMV Gen V, wie es sich bei I-Scel bewährt hat; Puchta H (1993) Nucl Acids Res 21:5034-5040). Auch wurde den ORFs eine Kernlokalisationssequenz (NLS2; SEQ ID NO: 30) vorangestellt um das Protein effizient an den beabsichtigten Wirkungsort zu bringen. Beide Elemente (Leader-Sequenz und Kernlokalisations- sequenz) wurden über die PCR durch die verwendeten Oligonukleotid-Primer eingebracht . Zur Isolierung der offenen Leseraster (ORFs) der Endukleasen aus Chlamydomonas wurden von der Sammlung für Algenkultur in Göttingen (Universität Göttingen. Experimentelle Phykologie und Sammlung von Algenkulturen, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Untere Karspüle 2, D-37073 Göttingen) die Algenkulturen Chlamydomonas reinhardtii/Smith (Stamm Nr. ll-32b) , Chlamydomonas applanata/Lucksch (Stamm Nr.: 11-9) und Chlamydomonas segris/King (Stamm Nr.: 9.83) bezogen. Die Kulturen wurden mit Hilfe einer Schüttelkultur in MS Medium angezogen und DNA mit Hilfe des DNeasy Plant Maxi Kit (Qiagen, Hilden) gewonnen.
Aus einer Probe der Algenkultur 11-32b Chlamydomonas reinhardtii/ Smith wurde mit Hilfe der Oligonukleotide OPNl und 0PN2 (SEQ ID NO: 11 und 12) der ORF von I-Crel (GenBank Acc.-No.: X01977) amplifiziert.
OPNl (SEQ ID NO: 11) :
5' -CGG CTC GAG CTA CGG GGA CGA TTT CTT TTT TTC AC- 3'
OPN2 (SEQ ID NO: 12):
5'- CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC AT GAA TAC AAA ATA TAA TAA AGA GTT CTT ACT C 3'
Für die PCR-Reaktion wurden 2 μl (entsprechend ungefähr 100 ng DNA) der DNA-Präparation eingesetzt. In einem Gesamtvolumen von 50 μl werden gemäß den Angaben des Herstellers (Life Technologies) zusammengegeben:
5 μl 10X PCR Buffer [200 mM Tris-HCl (pH 8,4), 500 mM KC1] 1,5 μl 50 mM MgCl2
1 μl 10 mM dNTP Mix (jeweils 10 mM dATP, dCTP, dGTP und dTTP) 1 μl Primer OPNl (10 μM)
1 μl Primer 0PN2 (10 μM) 0,4 μl Taq DNA polymerase (5 U/μl)
2 μl DNA-Präparation
38,1 μl autoklaviertes, distilliertes Wasser
Das Reaktionsgemisch wird mit ca. 50 μl Silikonöl überschichtet und nachfolgendem Temperaturprogramm ausgesetzt (Thermocycler: MWG Biotech Primus HT; MWG Biotech, Deutschland) :
1 Zyklus mit 180 sec bei 95°C 30 Zyklen mit 92°C für 60 sec, 54°C für 60 sec und 72°C für 3 min.
1 Zyklus mit 72°C für 5 min. Das PCR-Fragment wurde über Agarosegelelektrophorese und unter Verwendung des QIAquick® Gel Extraction Kits (Qiagen, Hilden, Deutschland) aufgereinigt und in den pGEM-T Easy Vector (Promega, Madison, USA) kloniert. Anschließendend wurde eine Sequenzanalyse mit dem DNA-Sequenzierungsgerät ALF-Express (Pharmacia, Upsala, Schweden) durchgeführt. Die Sequenz ist in SEQ ID NO: 5 dargestellt.
Analog wie für I-Crel wurde auch die Klonierung des ORF von I-Cpal aus der Algenkultur 9.83 Chlamydomonas segris/King (Genbank Acc.-No.: L36830) durchgeführt. Für die PCR wurden die Oligonukleotiden OPN3 und OPN4 verwendet. Die Sequenz ist in SEQ ID NO: 7 dargestellt.
OPN3 (SEQ ID NO: 13):
5' -CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC ATG GAC ATT AAT CCT CAA TGG ATT ACA GG- 3'
OPN4 (SEQ ID NO: 14) :
5' -CGG CTC GAG TTA CTC GCC AGT TTC TTC AAA ACG-3 '
Analog wie für I-Crel wurde auch die Klonierung des ORF von I-CpaII durchgeführt (Genbank Acc.-No: L39865) . Dazu wurde eine Probe der Algenkultur 9.83 Chlamydomonas segris/King verwendet. Für die PCR wurden die Oligonukleotiden OPN5 und OPN6 verwendet . Die Sequenz ist in SEQ ID NO: 9 dargestellt.
OPN5 (SEQ ID NO: 15) : 5' -CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC ATG ACC GAT TCT AAA TCT AGA AAC AAC-3 '
OPN6 (SEQ ID NO: 16) : 5' -CGG CTC GAG CTA AAG GTG GCC TTT ATT GCC ATC AG-3 '
Analog wie für I-Crel wurde auch die Klonierung des ORF von I-Chul aus der Algenkultur Nr. 11-9 Chlamydomonas applanata/
Figure imgf000058_0001
wurden die Oligonukleotiden 0PN7 und 0PN8 verwendet. Die Sequenz ist in SEQ ID NO: 3 dargestellt.
OPN7 (SEQ ID NO: 17) :
5' -CGG CTC GAG TAC CTA GAA TAC AAA GAA GAG GAA GAA GAA ACC TCT ACA GAA GAA GCC ATG GGT CCA AAG AAA AAG AGA AAG GTT ATC ATG TCA TTA ACA CAA CAA CAA AAA GAC-3 ' OPN8 ( SEQ ID NO : 18 ) :
5 ' -CGG CTC GAG CTA AAG GTG GCC TTT ATT GCC ATC AG-3 ' )
Der ORF der einzelnen Homing-Endonukleasen (mit dem Kernlokali- sationssignal) wurde jeweils aus den jeweiligen pGEM-T Easy Vector durch Sall Restriktionsverdaus herausgeschnitten, gel- elektrophoretisch aufgereinigt und jeweils in die Sall Restriktionsschnittstelle des binären Vektors pBinAR (Höfgen und Will- mitzer (1990) Plant Science 66:221-230) kloniert. Die Expression der einzelnen Enzyme erfolgt unter Kontrolle des 35S Promotors und des Octopine Synthase Terminators.
Der binäre I-Scel Expression Vector pCIScel (Puchta H et al . (1996) Proc. Natl. Acad. Sei. USA 93:5055-5060) enthält einen synthetischen I-Scel ORF unter der Kontrolle des CaMV 35S
Promotors (Puchta H et al . (1993) Nucl Acids Res 21: 5034-5040) zwischen den T-DNA "Borders".
Alle fünf Plasmide wurden in E. coli vermehrt, mit dem QIAfilter Plasmid Midi Kit (Qiagen, Hilden) aufgereinigt und mittels Elektroporation in den Agrobakteriumstamm C58 überführt.
Beispiel 2: Herstellung des Konstruktes pGU.I.USB
Zur Konstruktion der Rekombinationssubstrate wurde das Plasmid pGU.US (Tinland B et al. (1994) Proc. Natl. Acad. Sei. USA 91:8000-8004) verwendet. Das Plasmid enthält im Bereich der T-DNA zwei überlappende Hälften des ß-Glucuronidase (GUS) Gens, die eine Überlappung von 557 bp aufweisen. Zwischen den GUS Sequenzen ist in eine unikale Xbal Schnittstelle ein Hygromycin-Gen integriert .
In einem ersten Schritt wurde das BAR Gen mit Promotor und Terminatorsequenzen als isoliertes Hindlll Fragment aus dem Vektor pRC (Puchta H et al. (1996) Proc Natl Acad Sei USA
93:5055-5060) herausgeschnitten, über Agarosegelelektrophorese vom der Vektorsequenz abgetrennt, aus dem Gel ausgeschnitten, mit Hilfe des QIAquick® Gel Extraction Kits (Qiagen, Hilden, Deutsch- land) isoliert .und_danach._in_die—unikal.e Hindlll Schnitts-telle- von pGU.US inseriert. Dazu wurde zuvor der Vektor pGU.US mit Hindlll geschnitten und mit Alkalischer Phosphatase (Calf Intestinal Alkaline Phosphatase (CIP) , New England Biolabs, Frankfurt, Deutschland) zur Verhinderung der Rezirkularisierung dephosphoryliert. Der entstehende Vektor trägt die Bezeichnung pGU.US-BAR. In dem Vektor pNE3 (Stougaard J (1993) Plant J 3:755-761) wurde zunächst die Xbal Schnittstelle durch eine "Klenow-filling-in" Reaktion entfernt. Aus dem resultierenden Vektor pNE3-XBA wurde mittels PCR unter Verwendung der Oligonukleotidprimer ONP9 (SEQ ID NO: 16) und ONP10 (SEQ ID NO: 17) das offene Leseraster (ORF) des negativen Selektionsmarkergens Cytosindeaminase (codA) unter der Kontrolle des Cauliflower Mosaic Virus (CaMV) 35S Promoters und des Nopalinsythase (nos) Terminator ampifiziert. Durch die verwendeten Oligonukleotidprimer OPN9 und OPN10 wurde an beiden Enden des Amplifikats je eine I-Scel Schnittstelle (in Fettdruck in den unten angegebenen Sequenzen hervorgehoben) und eine Notl bzw. Xbal Schnittstelle angefügt.
OPN9 (SEQ ID NO: 19) : 5' -CGG CTC TAG AGC GGC CGC CTA GGG ATA ACA GGG TAA TAG AAT CCC
ACA AAA ATC TGA GCT TAA CAG 3'
OPN10 (SEQ ID NO: 20) :
5' -CGG CTC TAG ACT ATT ACC CTG TTA TCC CTA GGC CCG ATC TAG TAA CAT AGA TGA CAC CGC GCG CG 3'
Für die PCR-Reaktion wurden 2 μl (entsprechend ungefähr 100 ng) einer Plasmidpräparation von pNE3-XBA eingesetzt. In einem Gesamtvolumen von 50 μl wurden gemäß den Angaben des Herstellers (Life Technologies) zusammengegeben:
5 μl 10X PCR Buffer [200 mM Tris-HCl (pH 8,4), 500 mM KC1] 1,5 μl 50 mM MgCl2
1 μl 10 mM dNTP Mix (jeweils 10 mM dATP, dCTP, dGTP und dTTP) 1 μl Primer OPNl (10 μM)
1 μl -Primer OPN2 (10 μM)
0,4 μl Taq DNA Polymerase (5 U/μl)
2 μl Plasmidpräparation von pNE3-XBA
38,1 μl autoklaviertes, destilliertes Wasser
Das Reaktionsgemisch wurde mit ca. 50 μl Silikonöl überschichtet und nachfolgendem Temperaturprogramm ausgesetzt (Thermocycler : MWG—Biαt-ech—Erimus—HT;— WG Biotech, Deutschland)-^.
1 Zyklus mit 180 sec bei 95°C
25 Zyklen mit 92°C für 60 sec, 54°C für 60 sec und 72°C für 3 min.
1 Zyklus mit 72°C für 5 min. Das PCR-Produkt wurde mit Xbal und Notl verdaut. Der Vektor pGU-US-BAR wurde ebenfalls mit Xbal und Notl verdaut (was zur Deletion des Hygomycin Markergen führte) , das Vektorfragment über Agarosegelelektrophorese und unter Verwendung des QIAquick® Gel Extraction Kits (Qiagen, Hilden, Deutschland) aufgereinigt . Die Ligation von verdautem PCR-Fragment und Vektor führte zu dem binären Vektor pGU.C.USB (siehe Fig. 7a). Der Vektor enthält auf einer T-DNA zwischen zwei I-Scel Schnittstellen ein Markeregen (die Cytosindeminase (codA) ) . Die I-Scel Schnittstellen werden nach außen hin von homologen Sequenzbereichen von 557 bp des ß-Glucuronidasegens (GUS) flankiert. Das GUS-Gen dient als Marker der homologen Restauration (Swoboda P et al . (1994) EMBO J 13:481- 489) . Wird das Gen durch homologe Rekombination restauriert, kann die Expression histochemisch nachgewiesen werden. Die Elimination des Markergens führt zu 5-FC (Fluorocytosin) resistenten Tabakzellen die dann zu Kalli regeneriert werden können (Salomon S und Puchta H (1998) EMBO J 17:6086-6095).
Beispiel 3: Pflanzentransformation mit pGU.I.USB
Nicotiana tabacum L. cv. Petite Havana Line SRI Sämlinge wurden mit dem Agrobacterium Stamm C58 transformiert, der den binären Vector pGU.C.USB enthielt.
Dazu wurden, wie bei Puchta H. (1999) Methods Mol Biol 113: 447-451, beschrieben, Samen unter sterilen Bedingungen auf angefeuchteten Filterpapier ausgebracht und die Sämlinge nach 2 Wochen geerntet (25°C, 16 Stunden Licht/8 Stunden Dunkel Rhythmus) .
Zur Inokulation wurde der Agrobakterienstamm, der das binäre Plasmid zur Transformation enthielt, zuerst über Nacht in einer Schüttelkultur bei 28°C in YEB Medium angezogen. Die Agro- bakteriensuspension wurde dann für 10 Minuten bei 15.000 g ab- zentrifugiert und die Zellen in 10 mM MgS0 aufgenommen, so dass die endgültige optische Dichte der Suspension einem Wert von ungefähr 0,5 entsprach. In einem Reaktionsgefäß wurden dann unter sterilen Bedingungen die Sämlinge in die Bakteriensuspension geben und in einem sterilen Exsikkator ein Vakuum von 0,15 at angelegt. Nach 10 Minuten wurden die Sämlinge dann auf MS Platten ausgebracht, die BAP (6-Benzylaminopurin 5 μg/ml) und NAA (1-Naphthalenessigsäure 0,5 μg/ml) enthielten, und für 3 Tage in einer Wachstumskammer (25°C, 16 Stunden Licht/8 Stunden Dunkel Rhythmus) belassen. Die Sämlinge wurden danach auf MS Medium gebracht, das neben NAA und BAP noch Phosphinotricin (100 μg/ml) , Vancomycin (1 μg/ml) und Cefotaxin (0,5 μg/ml) enthielt. Alle 10 Tage wurden die Sämlinge auf frisch-bereite Platten über- tragen. Aus den entstehenden Kalli bildeten sich mit der Zeit Sprösslinge. Diese Sprösslinge wurden - sobald sie eine gewisse Größe erreicht hatten (1 bis 2 cm) - vom Kallusmaterial abgeschnitten und in Magentaboxen eingesetzt, die MS Medium mit Phosphinotricin, Vancomycin und Cefotaxin enthielten (Konzentrationen wie oben) . Die Sprösslinge bildeten nach kurzer Zeit Wurzeln und wurden nach 2 bis 4 Wochen in Erde umgesetzt. Im Gewächshaus wurden die Pflanzen zum Blühen gebracht, geselbstet und gewartet bis die entstandenen Samen in den Kapseln reiften. Danach wurden die Samen für die Segregationsanalysen auf MS Medium, das 300 μg Phosphinotricin (zur positiven Selektion) bzw. 500 μg 5-FC (Fluorocytosin;zur negativen Selektion) per ml enthielt, ausgebracht. Durch Ermittlung des Verhältnis der resistenten zu sensitiven Sämlingen (3:1 bei positiver Selektion bzw. 1:3 bei negativer Selektion) konnte gezeigt werden, dass bei den drei ausgewählten Linien die Rekombinationskonstrukte an einem Locus insertiert waren.
Beispiel 5 : Induktion der Gendeletion durch Einführung des DSBI- Enzyms I-Scel
In den Experimenten wurden Fl Sämlinge der transgenen Linien GU.C.USB 1, 3 and 7, die je eine Kopie der im Fig. 2 dargestellten T-DNA GU.C.USB enthielten, mit einem I-Scel transient exprimierenden Agrobakterienstamm, der das Plasmid pCIScel enthielt (Puchta H et al. (1996) Proc Natl Acad Sei USA 93, 5055-5060) , auf die oben beschriebene Art (siehe auch Puchta, 1999b) inokuliert. Die Sämlinge wurden nach 3 Tagen auf MS Medium mit BAP und NAA (Konzentrationen wie oben) Medium auf das gleichen Medium zusätzlich in Gegenwart von 100 μg 5-FC and 100 μg Phosphinotricin per ml inkubiert, um Pflanzenzellen zu detek- tieren, bei denen das zu eliminierende Markergen (in diesem Falle das codA Gen) deletiert wurde. Die auf dem Medium wachsenden Kalli wurden nach 6 Wochen in zwei Teile geteilt, ein Teil wurde zur Regeneration von Sprossachsen verwendet der andere wurde zur Isolierung von DNA und zum ß-Glucuronidase Assay verwendet. Die erhaltenen 5-FC resistenten transgenen Kalli wurden auf homologe Rekombinationsereignisse hin mittels histochemischer Färbung untersucht . Dabei deutet eine Blaufärbung eine κe~st:ura7io~:n~des~ Kallus an (s. Fig. 11).
Die histochemische Färbung der Kalli wurde wie bei Swoboda et al . , 1994 beschrieben durchgeführt. Dazu wurden die Kalli in Färbelösung (0.3 mg X-Gluc [Duchefa, Harlem, Nl] pro ml 100 mM Natriumphosphatpuffer pH 7,0; 0,1 % Triton; 0,05 % NaN3) gebracht. Es wurde im Exsikkator für 15 Minuten Vakuum angelegt und anschließend wurden die Kalli in der Lösung für 48 Stunden bei 37°C inkubiert . Nach Abgießen der Färbelösung wurde durch mehrmaliges Schütteln in 80% Ethanol das verbleibende Chlorophyll aus dem Pflanzenmaterial entfernt. Die erhaltene Blaufärbung zeigte die Aktivität der ß-Glucuronidase an.
Bei ungefähr einem Viertel der Fälle wurde das Markergen durch homologe Rekombination erfolgreich eliminiert (Fig. 11, Tabelle 2) .
Tabelle 2. Zahl der 5-FC resistenten Tabak Kalli nach transienter DSB Induktion
Figure imgf000063_0001
Molekulare Analysen bestätigten den Sachverhalt: Da die Linie GU.C.USB 1 eine einzelne Kopie des Transgens enthielt, wurden die Kalli direkt mittels PCR auf Rekombinationsereignisse hin untersucht .
Eine statistisch ausgewählter Teil der Kalli wurde dann mittels PCR auf der molekularen Ebene untersucht. Durch die molekulare Analyse mit dem Primerpaaren
OPN11 (SEQ ID NO: 21)
5λ- CGG AAG CTT CGT CAC CAA TCC CAA TTC GAT CTA C - 3λ und
0PN12 (SEQ ID NO: 22)
5 Λ - CGG AAG CTT CCA CTT GCA AAG TCC CGC TAG TGC C - 3 x
konnten die neugebildeten Verknüpfungsstellen aus dem Tabakgenom isoliert werden (Fig. 12; Tabelle 3).
Tabelle 3. Molekulare Analyse von Rekombinationsereignissen mittels PCR
Figure imgf000063_0002
Es wurden drei 0,7 kb PCR Fragmente ausgewählt und sequenziert. Die Sequenzierung ergab in allen drei Fällen die funktionelle Sequenz des ß-Glucuronidasegens, d.h. die Restaurierung des Gens ist tatsächlich durch homologe Rekombination fehlerfrei erfolgt.
Bei der Sequenzierung von fünf 1,4 kb PCR Banden ergab sich, dass diese Banden nach Ausschneiden des codA Genes durch Reparatur der beiden I-Scel Schnittstellen entstanden sind (durch "non-homologous end-joining" NHEJ) , ohne dass homologe Rekombination erfolgte. Dabei kam es meist zu kleineren Deletionen an der I-Scel Schnittstelle.
Per Southern Blot wurde gezeigt, dass es bei den Rekombinanten mit den 0,7 bzw. 1,4 kb Banden - wie erwartet zur vollständigen Eliminierung der zwischen den I-Scel Schnittstellen liegenden Sequenz kam. Es konnte keinerlei codA spezifische DNA mehr im Genom der regenerierten Pflanzen nachgewiesen werden (Fig. 13 B und D Spuren 2 und 3 ) .
Die DNA wurde mit Hilfe des DNeasy Plant Mini Kit (Quiagen,
Hilden) isoliert. Zur Detektion der Rekombinationsprodukte wurde genomische DNA mittels PCR unter Verwendung der Oligonukleotide OPN13 und OPN14 analysiert.
OPN13 (SEQ ID NO: 23):
5 ' - CGG AAG CTT CGT CAC CAA TCC CAA TTC GAT CTA C - 3 x
OPN14 (SEQ ID NO: 24) :
5 * - CGG AAG CTT CCA CTT GCA AAG TCC CGC TAG TGC C - 3 x
5 μl 10X PCR Buffer [200 mM Tris-HCl (pH 8,4), 500 mM KC1]
1,5 μl 50 mM MgCl
1 μl 10 mM dNTP Mix (jeweils 10 mM dATP, dCTP, dGTP und dTTP)
1 μl Primer OPNl (10 μM) 1 μl Primer OPN2 (10 μM)
0,4 μl Taq DNA poly erase (5 U/μl)
2 μl DNA-präparation
38,1 μl autoklaviertes , destilliertes Wasser
Das Reaktionsgemisch wird mit ca. 50 μl Silikonöl überschichtet und nachfolgendem Temperaturprogramm ausgesetzt (Thermocycler: MWG Biotech Primus HT; MWG Biotech, Deutschland) :
1 Zyklus mit 180 sec bei 95°C 30 Zyklen mit 92°C für 60 sec, 54°C für 60 sec und 72°C für 3 min. 1 Zyklus mit 72°C für 5 min. Die Sequenzierung der PCR Produkte wurde mit dem "ABI Pris Dye Terminator Cycle Sequencing Reaction Kit" (PE Applied Biosystems, Weiterstadt) durchgeführt.
Zum Southern Blotting wurde die DNA mit Hindlll oder Acc65I geschnitten und einer Elektrophorese in einem 0.8 % Agarosegel unterworfen. Die im Gel befindliche DNA wurde dann mittels Kapillarblottings, wie in der Anleitung des Herstellers beschrieben, auf die Hybridisierungsmembran 'Hybond N' (Amersham, Little Chalfont, UK) übertragen. Für die molekulare Hybridisierung wurden codA bzw. GUS spezifische Genfragmente aus den Ausgangsplasmiden isoliert (Xbal/Xhol Fragment als PNE3 ; Stou- gaard, 1993 und Kpnl/Sacl Fragment aus pGUS23, Puchta and Hohn, 1991, isoliert mit dem QIAquick Gel Extraction Kits [Qiagen, Hilden] ) und mit Hilfe eines "Random Priming Labeling Kit" (Mega- prime DNA labeling System RPN1607, Amersham, Little Chalfont, UK) und [α-32P]dATP (Amersham, Little Chalfont, UK) markiert. Die Hybridisierungen wurden bei 65° C durchgeführt.
Da bei den Linien GU.C.USB 3 und GU.C.USB 7 jeweils 2 genetisch gelinkte Transgenkopien integriert waren, wurden bei diesen Linien eine repräsentative Anzahl von Pflanzen aus Kallus regeneriert, DNA gewonnen und dann per Southern Blot untersucht (Tabelle 4) .
Bei Acc65I deutet die Anwesenheit einer GUS-spezifischen Bande von 3,7 kb auf eine homologe Rekombination, die einer 4,4 kb Bande auf ein NHEJ-Ereignis ("non-homologous end-joining"; NHEJ) hin (Fig. 7b und c; Fig. 13 C) .
Tabelle 4. Molekulare Analyse von Rekombinationsereignissen mittels Southern Blots
Figure imgf000065_0001
Interessanterweise wurde in allen Fällen die gleiche Art von Verknüpfung bei beiden Transgenkopien gefunden. Es traten also - mit anderen Worten - entweder nur homologe Rekombinationen oder nur NHEJ-Ereignisse auf. In keinem Fall lagen beide Möglichkeiten parallel vor, d.h. beispielsweise eine homologe Rekombination an dem einem Transgen und ein NHEJ-Ereignis an dem anderen. Es wurden bei beiden Linien auch PCR Analysen durchgeführt und jeweils drei 0,7 kb große PCR Fragmente ausgewählt und sequenziert. Die Sequenzierung ergab in allen drei Fällen die funktioneile Sequenz des ß-Glucuronidasegens, d.h. die Restaurierung des Gens ist tatsächlich durch homologe Rekombination erfolgt .
Bei der Sequenzierung von insgesamt neun 1,4 kb länger PCR Banden der zwei Linien ergab sich weiterhin, dass diese Banden tat- sächlich nach Ausschneiden des codA Genes durch Reparatur der beiden I-Scel Schnittstellen entstanden sind (durch "non- homologous end-joining" NHEJ) . Dabei kam es wiederum meist zu kleineren Deletionen an der I-Scel Schnittstelle.
Per Southern Blot wurde gezeigt, dass es bei dem Rekombinanten wie erwartet zur vollständigen Eliminierung der zwischen den I-Scel Schnittstellen liegenden Sequenz kam. Es konnte keinerlei codA spezifische DNA mehr im Genom der regenerierten Pflanzen nachgewiesen werden (Fig. 13 B und D Spuren 5, 6 und 8, 9) .
Beispiel 5 :
Es wurden verschiedene transgene Tabakpflanzenlinien hergestellt, die zwischen den Hälften des ß-Glucuronidasegens (Anordnung wie oben beschrieben) neben einer I-Scel Schnittstelle mittels
Klonierung synthetischer Oligonukleotide auch Schnittstellen für die oben aufgeführten Restriktionsenzyme aufwiesen (Fig. 10) . Sämlinge dieser Tabaklinie wurden dann jeweils im direkten Vergleich mit Agrobakterien inokkuliert, die entweder I-Scel oder das entsprechende Enzym in Pflanzenzellen exprimieren können. Die entstehenden Kalli wurden dann nach 2 Wochen histochemisch gefärbt. Die Ergebnisse sind in Tabelle 4 dargestellt.
Das Plasmid pGU.C.US.B wurde mit I-Scel geschnitten, so dass das codA Gen aus dem Plasmid herausgeschnitten wurde. Die verdaute DNA wurde mittels Agarosegelelektrophorese aufgetrennt, die größere Bande wurde ausgeschnitten und mittels des QIAquick Gel Extraktion Kits (Qiagen, Hilden) aufgereinigt und anschließend ligiert und in E. coli transformiert. Das erhalten Plasmid wurde dann mit Xbal geschnitten.
Die komplementären einzelsträngigen Oligonukleotide OPN25 und OPN26 wurden durch kurzes Erhitzen auf 92°C und abschließendes Abkühlen in eine doppelsträngige Form gebracht und daran anschließend mit dem Xbal geschnittenen Plasmid ligiert. Das erhaltene SI-Konstrukt (pSI) enthält die Schnittstellen für I-Scel, I-Cpal, I-CpaII und I-Crel ( (s. Fig. 10 (A) ) . OPN15 (SEQ ID NO: 25) :
5'- CTA GTA CAA AAC GTC GTG AGA CAT TTT AAT CTG AAG GTT TGG CAC
CTC GAT GTC GGC TCA TC-3 '
OPN16 (SEQ ID NO: 26):
5' -CTA GGA TGA GCC GTC ATC GAG GTG CCA AAC CTT CAG ATT AAA ATG TCT CAC GAC GTT TTG TA-3 '
Die komplementären einzelsträngigen Oligonukleotide OPN27 und OPN28 wurden durch kurzes Erhitzen auf 92°C und abschließendes
Abkühlen in eine doppelsträngige Form gebracht und daran anschließend mit dem Xbal geschnittenen Plasmid ligiert. Das erhaltene SD-Konstrukt (pSD) enthält die Schnittstellen für
I-Scel und I-Chul (s. Fig. 10 (B) ) .
OPN17 (SEQ ID NO: 27) :
5' -CTA GTC CGA AAA CGC CGT GAG ACA TAT TGG TTA CGA TCC TAA GGT
AGC GAA ATT CAC CCG GTA ACT CTG TGC CAG-3 '
OPN18 (SEQ ID NO: 28) :
5' -CTA GCT GGC ACA GAG TTA CCG GGT GAA TTT CGC TAC CTT AGG ATC GTA ACC AAT ATG TCT CAC GGC GTT TTC GGA-3 '
Es wurden wie bereits weiter oben beschrieben mittels Agro- bacterium Transformation transgene Tabakpflanzen mit beiden
Konstrukten hergestellt. Dabei wurden für die weiteren Versuche Linien verwendet, die an nur einem Lσcus transgene Sequenzen enthielten. Diese Linien wurden durch die 3:1 Segregation in Phosphinotricin- resistente und nicht resistente Pflanzen er- mittelt. Die geselbsteten Sämlinge wurden dann mit Agrobakterium- stämmen inokuliert, die eines der vier Konstrukte zur Expression der Res riktionsendonukleasen bzw. als Vektorkontrolle das Plasmid BinAR oder als positiv Kontrolle eine 1:1 Mischung aus BinAR und CISce-I enthielten. Die Inokulationen wurden wie oben beschrieben durchgeführt (Puchta H (1999) Methods Mol. Biol.
113:447-451) und zur Selektion wurden die Sämlinge auf MS Medium mit 100 μg Kanamycin pro ml, das auch BAP und NAA, Vancomycin und Cefotaxin (Tönz"entt^tron^τrττie— ben)—enthielt—über—mehrere- Wochen kultiviert. Die entstehenden Kalli wurden dann, wie oben beschrieben einer histochemischen ß-Glucuronidasefärbung unterworfen.
Mit allen vier getesteten Restriktionsenzymen konnte eine Induktion der homologen Rekombination in der gleichen Größen- Ordnung hervorgerufen werden wie mit I-Scel (das hier in einer Coinokulation mit dem Selektionsvektor pBinAR [AR] eingesetzt wurde) (Tabelle 5) . Damit ist gezeigt, dass bei Verwendung von beliebigen Restriktionsendonukleasen effizient homologer Rekombination induziert werden kann.
Tabelle 5. Induktion der homologen Rekombination in Pflanzen mittels verschiedener Endonukleasen I-Crel, I-Cpal, I-CpaII und I-Chul. [Sektoren/Kalli] meint die Anzahl von blaugefärbten Arealen in den resistenten Kalli.
Figure imgf000068_0001

Claims

Patentansprüche
1. Rekombinationssystem, dadurch gekennzeichnet, dass
I) ein transgenes Rekombinationskonstrukt insertiert in die chromosomale DNA eines eukaryotischen Organismus, das eine Sequenz enthält bestehend in 5' /3 '-Richtung aus
al) einer ersten Homologiesequenz A und
bl) mindestens eine Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
a2) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende
Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten,
und
II) ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz (b) zur gezielten Induktion von DNA-Doppelstrangbrüchen oder eine Nukleinsäuresequenz kodierend für ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz (b)
in einer eukaryotischen Zelle oder Organismus zusammen vorliegen.
2. RekombinationsSystem gemäß Anspruch 1, dadurch gekennzeichnet, dass das Rekombinationskonstrukt wie folgt aufgebaut ist
al) einer ersten Homologiesequenz A und
bl) einer Erkennungssequenz zur gezielten Induktion von DNA—Doppel-s-trangb-rü-s-hen-i-nd-
c) einer weiteren Nukleinsäuresequenz und
a2) einer zweiten Homologiesequenz B; wobei die Homologiesequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten.
Fig. + Sequ
3. RekombinationsSystem gemäß Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Rekombinationskonstrukt wie folgt aufgebaut ist
al) einer ersten Homologiesequenz A und
bl) einer ersten Erkennungssequenz zur gezielten Induktion von DNA-DoppelStrangbrüchen und
c) einer weiteren Nukleinsäuresequenz und
b2) einer zweiten Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
al) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten.
4. RekombinationsSystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Rekombinationskonstrukt oder die weitere Nukleinsäuresequenz mindestens eines der Elemente beinhaltet ausgewählt aus der Gruppe bestehend aus
i) Positiven Selektionsmarkern
ii) Negativen Selektionsmarkern
iii) Reportergenen
iv) Replikationsursprüngen
v) Multiple Klonierungsregionen
vi) "Border"-Sequenzen für Agrobakterium-Transfektion
vii) Sequenzen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermögüchen-
viii) Expressionskassette für ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen
5. Rekombinationssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen ausgewählt ist aus der Gruppe bestehend aus Restriktionsendonukleasen, Homing-Endonukleasen, Gruppe II Intron Endonukleasen, Rekombinasen, Transposasen, Chimäre Nukleasen.
6. Rekombinationssystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen ausgewählt ist aus der Gruppe der Homing-Endonukleasen bestehend aus F-Scel, F-Scell, F-Suvl, F-Tevl, F-TevII, I-Amal, I-Anil, I-Ceul, I-CeuAIIP, I-Chul, I-Cmoel, I-Cpal, I-Cpall, I-Crel, I-CrepsblP, 1-CrepsbIIP, I-CrepsbIIIP, I-CrepsbIVP, I-Csml, I-Cvul, I-CvuAIP, I-Ddil, I-DdiII, I-Dirl, I-Dmol, I-Hmul, I-HmuII, I-HspNIP, I-Llal, I-Msol, I-Naal, I-NanI, I-NclIP, I-NgrIP, I-NitI, I-Njal, I-Nsp236lP, I-PakI, I-PboIP, I-PcuIP, I-PcuAI, I-PcuVI, I-PgrIP, I-PobIP, I-Porl,
1-PorIIP, I-PpblP, I-Ppol, I-SPBetaIP, I-Scal, I-Scel, I-Scell, I-SceIII , I-SceIV, I-SceV, I-SceVI, I-SceVII, I-SexIP, I-SneIP, I-SpomCP, I-SpomIP, I-SpomIIP, I-SquIP, I-Ssp6803I, I-SthPhiJP, I-SthPhiST3P, I-SthPhiS3bP, I-TdeIP, I-Tevl, I-TevII, I-TevIII, I-UarAP, I-UarHGPAlP,
I-UarHGPAl3P, I-VinIP, I-ZbiIP, PI-MtuI, PI-MtuHIP, PI-MtuHIIP, Pl-PfuI, Pl-PfuII, Pl-Pkol, Pl-PkoII, PI-PspI, PI-Rma43812IP, PI-SPBetalP, Pl-Scel, PI-TfuI, PI-TfuII, PI-Thyl, PI-Tlil und PI-Tlill.
7. RekombinationsSystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen ausgewählt ist aus der Gruppe der Homing-Endonukleasen bestehend aus den Enzymen gemäß SEQ ID NO: 2, 4, 6, 8 und 10.
8. RekombinationsSystem nach einem der Ansprüche 1 bis 7, dadurch—gekimz-eichnet-,—dass_das—Enzym—geeignet zair Tnd ktion_ von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen unter Verwendung einer Expressionskassette realisiert wird, die eine für das besagte Enzym kodierende Nukleinsäuresequenz beinhaltet .
9. Rekombinationssystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen unter Ver- wendung einer Expressionskassette realisiert wird, die eine für das besagte Enzym kodierende Nukleinsäuresequenz gemäß SEQ ID NO: 1, 3, 5, 7 oder 9 beinhaltet.
10. Verfahren zum Entfernen einer DNA-Sequenz aus der chromo- somalen DNA einer eukaryotischen Zelle oder Organismus, dadurch gekennzeichnet, dass
I) ein transgenes Rekombinationskonstrukt insertiert in die chromosomale DNA eines eukaryotischen Organismus, das eine Sequenz enthält bestehend in 5 ' /3 ' -Richtung aus
al) einer ersten Homologiesequenz A und
bl) mindestens eine Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
a2) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten,
und
II) ein Enzym geeignet zur Induktion von DNA-Doppelstrang- brüchen an der Erkennungssequenz (b) zur gezielten
Induktion von DNA-Doppelstrangbrüchen
in einer eukaryotischen Zelle oder Organismus zusammengebracht werden, und die Induktion von DNA-Doppelstrang- brüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen sowie die homologe Rekombination zwischen den Homologiesequenzen A und B erfolgt.
11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, dass das Rekombinationskonstrukt wie folgt aufgebaut ist
al) einer ersten Homologiesequenz A und
bl) einer Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und c) einer weiteren Nukleinsäuresequenz und
a2) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende Länge und aus- reichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten.
12. Verfahren gemäß Anspruch 10 oder 11, dadurch gekennzeichnet, dass das Rekombinationskonstrukt wie folgt aufgebaut ist
al) einer ersten Homologiesequenz A und
bl) einer ersten Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
c) einer weiteren Nukleinsäuresequenz und
b2) einer zweiten Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen und
a2) einer zweiten Homologiesequenz B, wobei die Homologiesequenzen A und B eine ausreichende Länge und ausreichende Homologie aufweisen, um eine homologe Rekombination zu gewährleisten.
13. Verfahren nach einem der Ansprüche 10 bis 12 , dadurch gekennzeichnet, dass das Rekombinationskonstrukt oder die weitere Nukleinsäuresequenz mindestens eines der Elemente beinhaltet ausgewählt aus der Gruppe bestehend aus
i) Positiven Selektionsmarkern
ii) Negativen Selektionsmarkern
iii) Reportergenen
iv) ReplikationsurSprüngen
v) Multiple Klonierungsregionen
vi) "Border"-Sequenzen für Agrobakterium-Transfektion
vii) Sequenzen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen viii) Expressionskassette für ein Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppeis rangbrüchen
14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen ausgewählt ist aus der Gruppe bestehend aus Restriktionsendonukleasen, Homing-Endonukleasen, Rekombinasen, Transposasen, Chimäre Nukleasen.
15. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA-DoppelStrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen ausgewählt ist aus der Gruppe der Homing-Endonukleasen bestehend aus F-Scel, F-Scell, F-Suvl, F-Tevl, F-TevII, I-Amal, I-Anil, I-Ceul, I-CeuAIIP, I-Chul, I-Cmoel, I-Cpal, I-CpaII, I-Crel, I-CrepsblP, I-CrepsbIIP, 1-CrepsbIIIP, I-CrepsbIVP, I-Csml, I-Cvul, I-CvuAIP, I-Ddil, I-DdiII, I-Dirl, I-Dmol, I-Hmul, I-HmuII, I-HspNIP, I-Llal, I-Msol, I-Naal, I-NanI, I-NclIP, I-NgrIP, I-NitI, I-Njal, I-Nsp236lP, I-PakI, I-PboIP, I-PcuIP, I-PcuAI, I-PcuVI, I-PgrIP, I-PobIP, I-Porl,
I-PorIIP, I-PpblP, I-Ppol, I-SPBetaIP, I-Scal, I-Scel, I-SceII, I-SceIII , I-SceIV, I-SceV, I-SceVI, I-SceVII, I-SexIP, I-SneIP, I-SpomCP, I-SpomlP, I-SpomIIP, I-SquIP, I-Ssp6803I, I-SthPhiJP, I-SthPhiST3P, I-SthPhiS3bP, I-TdeIP, I-Tevl, I-TevII, I-TevIII, I-UarAP, I-UarHGPAlP,
I-UarHGPAl3P, I-VinIP, I-ZbiIP, PI-MtuI, PI-MtuHIP, PI-MtuHIIP, Pl-PfuI, Pl-PfuII, Pl-Pkol, Pl-PkoII, PI-PspI, PI-Rma43812lP, PI-SPBetalP, Pl-Scel, PI-TfuI, PI-TfuII, PI-Thyl, PI-Tlil und PI-Tlill.
16. Verfahren nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA- Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Iridurlct orr^^n-DNA^Dopp~eistran^br der Gruppe der Homing-Endonukleasen bestehend aus den Enzymen gemäß SEQ ID NO: 2, 4, 6, 8 und 10.
17. Verfahren nach einem der Ansprüche 10 bis 16, dadurch gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen unter Verwendung einer Expressionskassette realisiert wird, die eine für das besagte Enzym kodierende Nukleinsäuresequenz beinhaltet .
18. Verfahren nach einem der Ansprüche 10 bis 17, dadurch 5 gekennzeichnet, dass das Enzym geeignet zur Induktion von DNA-Doppelstrangbrüchen an der Erkennungssequenz zur gezielten Induktion von DNA-Doppelstrangbrüchen unter Verwendung einer Expressionskassette realisiert wird, die eine für das besagte Enzym kodierende Nukleinsäuresequenz gemäß 10 SEQ ID NO: 1, 3, 5, 7 oder 9 beinhaltet.
19. Organismus enthaltend ein Rekombinationssystem gemäß einem der /Ansprüche 1 bis 9.
15 20. Organismus nach Ansprüche 19 ausgewählt aus der Gruppe bestehend aus Hefen, Algen, Pilze, tierischen oder pflanzlichen Organismen.
21. Organismus nach Anspruch 19 oder 20 ausgewählt aus der Gruppe 20 der pflanzlichen Organismen.
22. Organismus nach einem der Ansprüche 19 oder 22, wobei der pflanzliche Organismus ausgewählt ist aus der Gruppe bestehend aus Arabidopsis thaliana, Tabak, Weizen, Roggen,
25 Gerste, Hafer, Raps, Mais, Kartoffel, Zuckerrübe, Soja, Sonnenblume, Kürbis oder Erdnuss.
23. Zellkulturen, Organe, Gewebe, Teile oder transgenes Vermehrungsgut abgeleitet von einem Organismus nach den
30 Ansprüchen 19 bis 22.
24. Verwendung eines Organismus nach einem der Ansprüche 19 bis 22 oder von diesem abgeleitete Zellkulturen, Organe, Gewebe, Teile oder transgenes Vermehrungsgut nach Anspruch 23 als
35 Nahrungs-, Futtermittel oder Saatgut oder zur Herstellung von Pharmazeutika oder Feinchemikalien.
40
45
PCT/EP2002/007281 2001-07-04 2002-07-02 Rekombinationssysteme und verfahren zum entfernen von nukleinsäuresequenzen aus dem genom eukaryotischer organismen WO2003004659A2 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BR0210839-9A BR0210839A (pt) 2001-07-04 2002-07-02 Sistema de recombinação, método para remover uma sequência de dna do dna cromossÈmico de uma célula ou organismo eucarióticos, organismo, cultura de célula, órgão, tecido, parte ou material de propagação transgênico, e, uso de um organismo ou de uma cultura de célula, órgão, tecido, parte ou material de propagação transgênico
JP2003510817A JP2004533267A (ja) 2001-07-04 2002-07-02 真核生物のゲノムから核酸配列を除去するための組換え系及び方法
AU2002325859A AU2002325859B2 (en) 2001-07-04 2002-07-02 Recombination systems and a method for removing nucleic acid sequences from the genome of eukaryotic organisms
MXPA03011844A MXPA03011844A (es) 2001-07-04 2002-07-02 Sistemas de recombinacion y procedimiento para eliminar secuencias de acido nucleico del genoma de organismos eucariotas.
EP02760212.7A EP1407034B1 (de) 2001-07-04 2002-07-02 Rekombinationssysteme und verfahren zum entfernen von nukleinsäuresequenzen aus dem genom eukaryotischer organismen
CA2451492A CA2451492C (en) 2001-07-04 2002-07-02 Recombination systems and a method for removing nucleic acid sequences from the genome of eukaryotic organisms
IL15928602A IL159286A0 (en) 2001-07-04 2002-07-02 Recombination systems and a method for removing nucleic acid sequences from the genome of eukaryotic organisms
BRPI0210839-9A BRPI0210839B1 (pt) 2001-07-04 2002-07-02 Sistema para recombinações múltiplas e sucessivas no mesmo organismo ou dna genômico, e, método para remover uma seqüência de dna do dna cromossômico de uma célula vegetal ou organismo vegetal
US10/750,891 US7736886B2 (en) 2001-07-04 2004-01-05 Recombination systems and methods for eliminating nucleic acid sequences from the genome of eukaryotic organisms
ZA2004/00871A ZA200400871B (en) 2001-07-04 2004-02-03 Recombination systems and a method for removing nucleic acid sequences from the genome of eukaryotic organisms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10131786.7 2001-07-04
DE10131786A DE10131786A1 (de) 2001-07-04 2001-07-04 Rekombinationssysteme und Verfahren zum Entfernen von Nukleinsäuresequenzen aus dem Genom eukaryotischer Organismen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/750,891 Continuation-In-Part US7736886B2 (en) 2001-07-04 2004-01-05 Recombination systems and methods for eliminating nucleic acid sequences from the genome of eukaryotic organisms

Publications (3)

Publication Number Publication Date
WO2003004659A2 true WO2003004659A2 (de) 2003-01-16
WO2003004659A3 WO2003004659A3 (de) 2003-09-25
WO2003004659A8 WO2003004659A8 (de) 2004-04-22

Family

ID=7690173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007281 WO2003004659A2 (de) 2001-07-04 2002-07-02 Rekombinationssysteme und verfahren zum entfernen von nukleinsäuresequenzen aus dem genom eukaryotischer organismen

Country Status (12)

Country Link
US (1) US7736886B2 (de)
EP (1) EP1407034B1 (de)
JP (1) JP2004533267A (de)
CN (1) CN100451123C (de)
AR (2) AR034687A1 (de)
AU (1) AU2002325859B2 (de)
BR (2) BRPI0210839B1 (de)
CA (1) CA2451492C (de)
DE (1) DE10131786A1 (de)
IL (1) IL159286A0 (de)
MX (1) MXPA03011844A (de)
WO (1) WO2003004659A2 (de)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090581A1 (en) * 2004-03-17 2005-09-29 Basf Plant Science Gmbh Improved constructs for marker excision based on dual-function selection marker
WO2006032426A2 (en) * 2004-09-23 2006-03-30 Basf Plant Science Gmbh Recombination cassettes and methods for sequence excision in plants
EP1669456A2 (de) 2004-12-11 2006-06-14 SunGene GmbH Expressionskasseten für meristembevorzugte Expression in Pflanzen
WO2006074956A1 (en) * 2005-01-14 2006-07-20 Bayer Bioscience N.V. Improved plant transformation methods
WO2006105946A2 (en) * 2005-04-04 2006-10-12 Bayer Bioscience N.V. Methods and means for removal of a selected dna sequence
WO2006133983A1 (en) 2005-04-19 2006-12-21 Basf Plant Science Gmbh Starchy-endosperm and/or germinating embryo-specific expression in mono-cotyledonous plants
WO2008099013A1 (en) 2007-02-16 2008-08-21 Basf Plant Science Gmbh Nucleic acid sequences for regulation of embryo-specific expression in monocotyledonous plants
WO2008145731A1 (en) * 2007-05-31 2008-12-04 Basf Plant Science Gmbh Method of excising a nucleic acid sequence from a plant genome
WO2008148559A1 (en) 2007-06-05 2008-12-11 Bayer Bioscience N.V. Methods and means for exact replacement of target dna in eukaryotic organisms
EP2025756A1 (de) 2003-11-18 2009-02-18 Bayer BioScience N.V. Verbesserte gezielte DNA Insertion in Pflanzen
EP2036984A2 (de) 2002-07-26 2009-03-18 BASF Plant Science GmbH Revertierung der negativ-selektiven Wirkung von negativen Markerproteinen als Selektionsverfahren
US8071383B2 (en) 2006-03-17 2011-12-06 Basf Plant Science Gmbh D-amino acid selection for soybean
US8273956B2 (en) 2006-05-18 2012-09-25 Biogemma S.A.S. Method for performing homologous recombination in plants
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
US8338157B2 (en) 2008-03-11 2012-12-25 Precision Biosciences, Inc. Rationally-designed meganuclease variants of lig-34 and I-crei for maize genome engineering
US8367890B2 (en) 2006-09-28 2013-02-05 Bayer Cropscience N.V. Methods and means for removal of a selected DNA sequence
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
US8912392B2 (en) 2007-06-29 2014-12-16 Pioneer Hi-Bred International, Inc. Methods for altering the genome of a monocot plant cell
EP2893025A4 (de) * 2012-09-07 2016-08-31 Dow Agrosciences Llc Manipulierte transgene integrationsplattform (etip) für gen-targeting und merkmalsbündelung
WO2017205665A1 (en) 2016-05-25 2017-11-30 Cargill, Incorporated Engineered nucleases to generate deletion mutants in plants
EP3501268A1 (de) 2017-12-22 2019-06-26 Kws Saat Se Regeneration von pflanzen in der gegenwart von histondeacetylaseinhibitoren
EP3508581A1 (de) 2018-01-03 2019-07-10 Kws Saat Se Regenerierung von genetisch modifizierten pflanzen
WO2019138083A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
EP3545756A1 (de) 2018-03-28 2019-10-02 KWS SAAT SE & Co. KGaA Regeneration von pflanzen in gegenwart von inhibitoren der histonmethyltransferase ezh2
EP3567111A1 (de) 2018-05-09 2019-11-13 KWS SAAT SE & Co. KGaA Gen für resistenz gegen ein pathogen der gattung heterodera
WO2019238832A1 (en) 2018-06-15 2019-12-19 Nunhems B.V. Seedless watermelon plants comprising modifications in an abc transporter gene
WO2019238908A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for enhancing genome engineering efficiency
WO2019238909A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant
WO2019238911A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant ii
EP3623379A1 (de) 2018-09-11 2020-03-18 KWS SAAT SE & Co. KGaA Gen zur modifizierung von rhizomania-virus (bnyvv)-resistenz
WO2020142598A2 (en) 2019-01-04 2020-07-09 Cargill, Incorporated Engineered nucleases to generate mutations in plants
WO2020157573A1 (en) 2019-01-29 2020-08-06 The University Of Warwick Methods for enhancing genome engineering efficiency
EP3708651A1 (de) 2019-03-12 2020-09-16 KWS SAAT SE & Co. KGaA Verbesserung der pflanzenregeneration
WO2020260682A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
WO2021093943A1 (en) 2019-11-12 2021-05-20 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
US11174493B2 (en) 2016-05-26 2021-11-16 Nunhems B.V. Seedless fruit producing plants
EP4019639A1 (de) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Förderung der regeneration und transformation in beta vulgaris
EP4019638A1 (de) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Förderung der regeneration und transformation in beta vulgaris

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102055B1 (en) * 1997-11-18 2006-09-05 Pioneer Hi-Bred International, Inc. Compositions and methods for the targeted insertion of a nucleotide sequence of interest into the genome of a plant
AU760113C (en) * 1997-11-18 2004-04-22 Pioneer Hi-Bred International, Inc. Compositions and methods for genetic modification of plants
WO2009095742A1 (en) * 2008-01-31 2009-08-06 Cellectis New i-crei derived single-chain meganuclease and uses thereof
US20100151556A1 (en) * 2002-03-15 2010-06-17 Cellectis Hybrid and single chain meganucleases and use thereof
DE60316124T3 (de) * 2002-03-15 2018-03-22 Cellectis Hybride and einzelkettige meganukleasen und deren anwendungen
AU2004208031B2 (en) * 2003-01-28 2009-10-08 Cellectis Use of meganucleases for inducing homologous recombination ex vivo and in toto in vertebrate somatic tissues and application thereof.
US7476729B2 (en) * 2003-10-24 2009-01-13 Institut Curie Dbait and uses thereof
EP1733040B1 (de) 2004-04-02 2010-09-08 DSM IP Assets B.V. Filamentöse pilzmutanten mit verbesserter homologer rekombinationseffizienz
WO2007011733A2 (en) 2005-07-18 2007-01-25 Pioneer Hi-Bred International, Inc. Modified frt recombination sites and methods of use
JP5937292B2 (ja) 2005-10-18 2016-06-22 デューク大学 配列特異性およびdna−結合親和度が変更された、合理設計メガヌクレアーゼ
WO2007115886A1 (en) * 2006-04-08 2007-10-18 Dsm Ip Assets B.V. Improved method for homologous recombination in eukaryotic cells
US9267132B2 (en) 2007-10-08 2016-02-23 Synthetic Genomics, Inc. Methods for cloning and manipulating genomes
JP2011505809A (ja) * 2007-12-07 2011-03-03 プレシジョン バイオサイエンシズ,インク. ヒトゲノムのDNase高感受性領域に見出される認識配列を有する合理的に設計されたメガヌクレアーゼ
US20100071083A1 (en) * 2008-03-12 2010-03-18 Smith James J Temperature-dependent meganuclease activity
CA2722797A1 (en) * 2008-04-28 2009-11-05 Precision Biosciences, Inc. Fusion molecules of rationally-designed dna-binding proteins and effector domains
CA2730921A1 (en) 2008-07-14 2010-01-21 Precision Biosciences, Inc. Recognition sequences for i-crei-derived meganucleases and uses thereof
CN102421897B (zh) 2009-03-06 2015-12-16 合成基因组股份有限公司 用于克隆和操作基因组的方法
US20110269119A1 (en) 2009-10-30 2011-11-03 Synthetic Genomics, Inc. Encoding text into nucleic acid sequences
GEP20176628B (en) 2010-01-22 2017-02-27 Sangamo Biosciences Inc Targeted genomic alteration
KR101137819B1 (ko) 2010-06-28 2012-06-27 대한민국 백합나무의 배발생조직 증식방법
US20130164850A1 (en) * 2010-08-02 2013-06-27 David Sourdive Method for targeted genomic events in algae
US8993837B2 (en) 2010-08-13 2015-03-31 Pioneer Hi-Bred International, Inc Chimeric promoters and methods of use
US7919605B1 (en) 2010-08-30 2011-04-05 Amyris, Inc. Nucleic acids, compositions and methods for the excision of target nucleic acids
JP5740955B2 (ja) * 2010-12-10 2015-07-01 三菱レイヨン株式会社 ロドコッカス属細菌の形質転換のためのランダム遺伝子導入用ツール
CN102559704B (zh) * 2010-12-23 2014-08-27 中国科学院上海生命科学研究院 一种在丙酮丁醇梭菌中敲除基因的方法
US10030245B2 (en) 2011-03-23 2018-07-24 E I Du Pont De Nemours And Company Methods for producing a complex transgenic trait locus
AU2012291873B2 (en) * 2011-07-29 2016-03-10 Cambridge Epigenetix Limited Methods for detection of nucleotide modification
MX2014008243A (es) 2012-01-06 2015-02-20 Pioner Hi Bred International Inc Un metodo para seleccionar plantas por elementos geneticos que inducen la partenogenesis en plantas.
CN102703426A (zh) * 2012-05-21 2012-10-03 吴江汇杰生物科技有限公司 构建核酸库的方法、试剂及试剂盒
WO2015026887A1 (en) 2013-08-22 2015-02-26 E. I. Du Pont De Nemours And Company A soybean u6 polymerase iii promoter and methods of use
US20180265877A1 (en) 2015-10-16 2018-09-20 Pioneer Hi-Bred International, Inc. Methods and compositions for agrobacterium comprising negative selection markers
US20180004537A1 (en) 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Molecular State Machines
US11359234B2 (en) 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
EP3555285A4 (de) 2016-12-14 2020-07-08 Dow AgroSciences LLC Rekonstruktion von stellenspezifischen nukleasebindungsstellen
CN111534538B (zh) * 2020-05-11 2022-02-01 山西大学 一种快速筛选非转基因定点突变植物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527695A (en) * 1993-01-29 1996-06-18 Purdue Research Foundation Controlled modification of eukaryotic genomes
US5792632A (en) * 1992-05-05 1998-08-11 Institut Pasteur Nucleotide sequence encoding the enzyme I-SceI and the uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395959B1 (en) * 1992-05-05 2002-05-28 Institut Pasteur Nucleotide sequence encoding the enzyme I SceI and the use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792632A (en) * 1992-05-05 1998-08-11 Institut Pasteur Nucleotide sequence encoding the enzyme I-SceI and the uses thereof
US5527695A (en) * 1993-01-29 1996-06-18 Purdue Research Foundation Controlled modification of eukaryotic genomes

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AGGARWAL A.K. ET AL.: "Novel site-speific DNA endonucleases" CURRENT OPINION IN STRUCTURAL BIOLOGY, Bd. 8, 1998, Seiten 19-25, XP002236854 *
PUCHTA H. ET AL.: "Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, USA, Bd. 93, Mai 1996 (1996-05), Seiten 5055-5060, XP002236852 *
See also references of EP1407034A2 *
SIEBERT R. ET AL.: "Efficient Repair of Genomic Double-Strand Breaks by Homologous Recombination between Directly Repeated Sequences in the Plant Genome" THE PLANT CELL, Bd. 14, Mai 2002 (2002-05), Seiten 1121-1131, XP002236853 *

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036984A2 (de) 2002-07-26 2009-03-18 BASF Plant Science GmbH Revertierung der negativ-selektiven Wirkung von negativen Markerproteinen als Selektionsverfahren
US8653326B2 (en) 2003-11-18 2014-02-18 Bayer Cropscience N.V. Targeted DNA insertion in plants
US7598365B2 (en) 2003-11-18 2009-10-06 Bayer Bioscience N.V. Targeted DNA insertion in plants
EP2025756A1 (de) 2003-11-18 2009-02-18 Bayer BioScience N.V. Verbesserte gezielte DNA Insertion in Pflanzen
WO2005090581A1 (en) * 2004-03-17 2005-09-29 Basf Plant Science Gmbh Improved constructs for marker excision based on dual-function selection marker
AU2005224324B2 (en) * 2004-03-17 2009-12-24 Basf Plant Science Gmbh Improved constructs for marker excision based on dual-function selection marker
WO2006032426A3 (en) * 2004-09-23 2006-07-20 Basf Plant Science Gmbh Recombination cassettes and methods for sequence excision in plants
WO2006032426A2 (en) * 2004-09-23 2006-03-30 Basf Plant Science Gmbh Recombination cassettes and methods for sequence excision in plants
AU2005287547B2 (en) * 2004-09-23 2010-09-02 Basf Plant Science Gmbh Recombination cassettes and methods for sequence excision in plants
EP1669456A2 (de) 2004-12-11 2006-06-14 SunGene GmbH Expressionskasseten für meristembevorzugte Expression in Pflanzen
WO2006074956A1 (en) * 2005-01-14 2006-07-20 Bayer Bioscience N.V. Improved plant transformation methods
WO2006105946A2 (en) * 2005-04-04 2006-10-12 Bayer Bioscience N.V. Methods and means for removal of a selected dna sequence
WO2006105946A3 (en) * 2005-04-04 2007-04-05 Bayer Bioscience Nv Methods and means for removal of a selected dna sequence
US8148607B2 (en) * 2005-04-04 2012-04-03 Bayer Cropscience N.V. Methods and means for removal of a selected DNA sequence
AU2006232828B2 (en) * 2005-04-04 2011-01-27 Bayer Cropscience Nv. Methods and means for removal of a selected DNA sequence
WO2006133983A1 (en) 2005-04-19 2006-12-21 Basf Plant Science Gmbh Starchy-endosperm and/or germinating embryo-specific expression in mono-cotyledonous plants
US8071383B2 (en) 2006-03-17 2011-12-06 Basf Plant Science Gmbh D-amino acid selection for soybean
US8455715B2 (en) 2006-05-18 2013-06-04 Biogemma S.A.S. Method for performing homologous recombination in plants
US8273956B2 (en) 2006-05-18 2012-09-25 Biogemma S.A.S. Method for performing homologous recombination in plants
US8367890B2 (en) 2006-09-28 2013-02-05 Bayer Cropscience N.V. Methods and means for removal of a selected DNA sequence
WO2008099013A1 (en) 2007-02-16 2008-08-21 Basf Plant Science Gmbh Nucleic acid sequences for regulation of embryo-specific expression in monocotyledonous plants
WO2008145731A1 (en) * 2007-05-31 2008-12-04 Basf Plant Science Gmbh Method of excising a nucleic acid sequence from a plant genome
AU2008257506B2 (en) * 2007-05-31 2013-09-05 Basf Plant Science Gmbh Method of excising a nucleic acid sequence from a plant genome
WO2008148559A1 (en) 2007-06-05 2008-12-11 Bayer Bioscience N.V. Methods and means for exact replacement of target dna in eukaryotic organisms
US8765448B2 (en) 2007-06-05 2014-07-01 Bayer CropScience, N.V. Methods and means for exact replacement of target DNA in eukaryotic organisms
US8912392B2 (en) 2007-06-29 2014-12-16 Pioneer Hi-Bred International, Inc. Methods for altering the genome of a monocot plant cell
US8338157B2 (en) 2008-03-11 2012-12-25 Precision Biosciences, Inc. Rationally-designed meganuclease variants of lig-34 and I-crei for maize genome engineering
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
US9670496B2 (en) 2011-08-22 2017-06-06 Bayer Cropscience N.V. Methods and means to modify a plant genome
US10538774B2 (en) 2011-08-22 2020-01-21 Basf Agricultural Solutions Seed, Us Llc Methods and means to modify a plant genome
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
EP2893025A4 (de) * 2012-09-07 2016-08-31 Dow Agrosciences Llc Manipulierte transgene integrationsplattform (etip) für gen-targeting und merkmalsbündelung
US10640779B2 (en) 2012-09-07 2020-05-05 Dow Agrosciences Llc Engineered transgene integration platform (ETIP) for gene targeting and trait stacking
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
WO2017205665A1 (en) 2016-05-25 2017-11-30 Cargill, Incorporated Engineered nucleases to generate deletion mutants in plants
US11174493B2 (en) 2016-05-26 2021-11-16 Nunhems B.V. Seedless fruit producing plants
US11761018B2 (en) 2016-05-26 2023-09-19 Nunhems B.V. Seedless fruit producing plants
WO2019122360A1 (en) 2017-12-22 2019-06-27 Kws Saat Se Regeneration of plants in the presence of histone deacetylase inhibitors
US11700805B2 (en) 2017-12-22 2023-07-18 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of histone deacetylase inhibitors
EP3501268A1 (de) 2017-12-22 2019-06-26 Kws Saat Se Regeneration von pflanzen in der gegenwart von histondeacetylaseinhibitoren
EP4234701A2 (de) 2018-01-03 2023-08-30 Basf Se Regenerierung von genetisch modifizierten pflanzen
WO2019134884A1 (en) 2018-01-03 2019-07-11 Kws Saat Se Regeneration of genetically modified plants
EP3508581A1 (de) 2018-01-03 2019-07-10 Kws Saat Se Regenerierung von genetisch modifizierten pflanzen
WO2019138083A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
EP3545756A1 (de) 2018-03-28 2019-10-02 KWS SAAT SE & Co. KGaA Regeneration von pflanzen in gegenwart von inhibitoren der histonmethyltransferase ezh2
WO2019185849A1 (en) 2018-03-28 2019-10-03 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2
EP3567111A1 (de) 2018-05-09 2019-11-13 KWS SAAT SE & Co. KGaA Gen für resistenz gegen ein pathogen der gattung heterodera
WO2019238909A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant
WO2019238908A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for enhancing genome engineering efficiency
WO2019238911A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant ii
WO2019238832A1 (en) 2018-06-15 2019-12-19 Nunhems B.V. Seedless watermelon plants comprising modifications in an abc transporter gene
EP3623379A1 (de) 2018-09-11 2020-03-18 KWS SAAT SE & Co. KGaA Gen zur modifizierung von rhizomania-virus (bnyvv)-resistenz
WO2020053313A1 (en) 2018-09-11 2020-03-19 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
WO2020142598A2 (en) 2019-01-04 2020-07-09 Cargill, Incorporated Engineered nucleases to generate mutations in plants
WO2020157573A1 (en) 2019-01-29 2020-08-06 The University Of Warwick Methods for enhancing genome engineering efficiency
WO2020182971A1 (en) 2019-03-12 2020-09-17 KWS SAAT SE & Co. KGaA Improving plant regeneration
EP3708651A1 (de) 2019-03-12 2020-09-16 KWS SAAT SE & Co. KGaA Verbesserung der pflanzenregeneration
EP3757219A1 (de) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Verbesserte pflanzenregeneration und -umwandlung unter verwendung des grf1-booster-gens
WO2020260682A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
WO2021093943A1 (en) 2019-11-12 2021-05-20 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
EP4019639A1 (de) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Förderung der regeneration und transformation in beta vulgaris
EP4019638A1 (de) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Förderung der regeneration und transformation in beta vulgaris
WO2022136535A1 (en) 2020-12-22 2022-06-30 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
WO2022136557A1 (en) 2020-12-22 2022-06-30 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in plants

Also Published As

Publication number Publication date
US20050172365A1 (en) 2005-08-04
IL159286A0 (en) 2004-06-01
EP1407034B1 (de) 2016-09-07
AU2002325859B2 (en) 2008-05-29
CA2451492A1 (en) 2003-01-16
US7736886B2 (en) 2010-06-15
AR086031A2 (es) 2013-11-13
BR0210839A (pt) 2004-07-13
BRPI0210839B1 (pt) 2019-02-26
EP1407034A2 (de) 2004-04-14
CA2451492C (en) 2014-12-16
MXPA03011844A (es) 2005-03-07
WO2003004659A8 (de) 2004-04-22
CN100451123C (zh) 2009-01-14
AR034687A1 (es) 2004-03-03
DE10131786A1 (de) 2003-01-16
WO2003004659A3 (de) 2003-09-25
CN1628174A (zh) 2005-06-15
JP2004533267A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
EP1407034B1 (de) Rekombinationssysteme und verfahren zum entfernen von nukleinsäuresequenzen aus dem genom eukaryotischer organismen
EP2155881B1 (de) Verfahren zur exzision einer nukleinsäuresequenz aus einem pflanzengenom
JP5944320B2 (ja) 最適化エンドヌクレアーゼおよびその使用
JP5922029B2 (ja) キメラエンドヌクレアーゼおよびその使用
AU2005287547B2 (en) Recombination cassettes and methods for sequence excision in plants
DE112010004584T5 (de) Chimäre Endonukleasen und Anwendungen davon
WO2003054189A2 (de) Verfahren zur transformation von pflanzlichen plastiden
AU2014308899A1 (en) Methods for producing genetic modifications in a plant genome without incorporating a selectable transgene marker, and compositions thereof
CN113939594A (zh) 用于植物细胞的细胞重编程的胚发生因子
AU2005224324A1 (en) Improved constructs for marker excision based on dual-function selection marker
EP1409697A1 (de) Expressionskassetten zur transgenen expression von nukleinsäuren
EP1711612B1 (de) Expressionskassetten zur bidirektionalen transgenen expression von nukleinsäuren in pflanzen
WO2003008596A2 (de) Expressionskassetten zur transgenen expression von selektionsmarkern
WO2003054201A1 (de) Verfahren zur transformation von pflanzlichen plastiden
EP4019638A1 (de) Förderung der regeneration und transformation in beta vulgaris
ZA200400871B (en) Recombination systems and a method for removing nucleic acid sequences from the genome of eukaryotic organisms
Swyers Development of an Amenable System for Site-Specific Addition to a Maize Chromosome

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 159286

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2002760212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002760212

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/011844

Country of ref document: MX

Ref document number: 2451492

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003510817

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002325859

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 028133757

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10750891

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004/00871

Country of ref document: ZA

Ref document number: 200400871

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 2002760212

Country of ref document: EP

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 03/2003 UNDER (71) REPLACE "INSTITUT FUR PFLANZENGENETIK" BY "INSTITUT FUR PFLANZENGENETIK UND KULTURPFLANZENFORSCHUNG"

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642