WO2002101099A1 - High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics - Google Patents

High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics Download PDF

Info

Publication number
WO2002101099A1
WO2002101099A1 PCT/JP2002/005024 JP0205024W WO02101099A1 WO 2002101099 A1 WO2002101099 A1 WO 2002101099A1 JP 0205024 W JP0205024 W JP 0205024W WO 02101099 A1 WO02101099 A1 WO 02101099A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel sheet
temperature
vol
Prior art date
Application number
PCT/JP2002/005024
Other languages
English (en)
French (fr)
Inventor
Tetsuya Mega
Kei Sakata
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to DE60238118T priority Critical patent/DE60238118D1/de
Priority to US10/479,637 priority patent/US7485194B2/en
Priority to KR1020037000867A priority patent/KR100859303B1/ko
Priority to EP02778909A priority patent/EP1394276B1/en
Publication of WO2002101099A1 publication Critical patent/WO2002101099A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Definitions

  • the present invention has a tensile strength of 590 MPa or more, which is suitable mainly for use as structural members of automobiles, suspension members such as wheels, rims and chassis, and strength members such as pumps and door guards.
  • the present invention also relates to a high-strength hot-rolled steel sheet which is used as a hot-rolled sheet and has excellent galling resistance and fatigue resistance.
  • Japanese Patent Application Laid-Open No. 55-28375 discloses a two-phase structure in which hard martensite is dispersed in soft ferrite.
  • a steel sheet has been proposed that enables the yield point to be lowered as compared to that of steel sheets and improves the shape freezing property.
  • JP-A-6-99202 As a technique for improving the press formability by appropriately adjusting the surface roughness of a steel sheet as described above, there is a technique disclosed in, for example, JP-A-6-99202. This technology secures good slidability by adjusting the surface roughness imparted by the control of skin pass rolling to thin steel sheets produced by continuous annealing according to the strength of the steel sheets and press forming. Is to improve the performance.
  • Japanese Patent Application Laid-Open No. 6-99202 mainly deals with a steel sheet having an original small surface roughness, such as a cold-rolled steel sheet and a surface-treated steel sheet. Due to the indentation of the scale during rolling, there is a problem that it is difficult to apply the method to steel sheets with large surface roughness.
  • JP-A-9-1118918 As a technique for adjusting the surface roughness of a steel sheet to provide a hot-rolled steel sheet suitable for use in working such as press working, there is a technique described in JP-A-9-1118918.
  • This technology reduces the surface roughness of at least one side of the steel sheet to 0.8 m or less for Ra, 4.0 ⁇ m or less for Rmax, and 0.7 or less for Rv / Rmax to improve slidability and It is intended to improve ductility.
  • Rv means the distance between the deepest valley and the center line within the measured length of the cross-sectional curve.
  • the steel sheet obtained by this technology has a small deformation amount when forming with a large processing amount like the inner plate of an automobile. There was a risk that mold seizure was likely to occur in large parts, and as a result cracks would occur.
  • the present invention has been developed to solve the above-mentioned problems of the prior art, and has not only excellent press formability, but also excellent mold resistance and good fatigue resistance.
  • the purpose is to propose a high-strength hot-rolled steel sheet with a bow I tensile strength of 590MPa or more, together with its advantageous manufacturing method.
  • the steel is mainly made of a two-phase structure of ferrite and martensite, and the mechanical properties, especially yield
  • the ratio By lowering the ratio, in addition to improving the shape freezing property, it is also easy to deform the surface of the steel sheet, to facilitate the effect of containing hydraulic oil in press forming, and to improve the mold galling resistance. Can be.
  • the distribution of the crystal grain size in the surface layer of the steel sheet is not to be larger than the crystal grain size in the central part of the steel sheet, so that the strength of the surface layer of the steel sheet is improved.
  • the strength can be equal to or higher than the strength of the central part of the steel sheet.
  • the present invention is based on these findings.
  • the gist configuration of the present invention is as follows.
  • It has a steel structure that contains 10 vol% or more and 40 vol% or less and the total of both is 95 vol% or more, and the average ferrite crystal grain size ds in the region from the steel plate surface to the plate thickness 1/4 position,
  • the ratio dsZdc to the average ferrite grain size dc in the region from the 1/4 thickness position to the center of the thickness is 0.3 ⁇ ds / dc ⁇ 1.0, and the surface roughness is the arithmetic average roughness Ra.
  • 1.5 or less resistant steering wheel High tensile strength hot rolled steel sheet with excellent resilience and fatigue resistance.
  • a high tensile strength hot rolled steel sheet with excellent galling resistance and fatigue resistance characterized by a Ra of 1.5 m or less.
  • C 0.02 mass% or more and 0.2 mass% or less
  • Si 0.2 mass% or more and 1.2 mass% or less
  • Mn 1.011 ⁇ 53% or more and 3.011 ⁇ 3% or less
  • Mo 0.1 mass% or more 1.
  • Omass% or less A1 : 0.01 mass% or more, 0.1 lmass% or less, P: 0.03 mass% or less, and S: 0.01 mass% or less, with the balance being a slab heating temperature using a steel slab that has the composition of Fe and unavoidable impurities.
  • the C content exceeds 0.2 mass%, CO gas is generated at the interface between the scale and the base iron, causing scale scratches at the rolling stage, increasing not only the arithmetic average roughness Ra but also the welding. The properties also deteriorate rapidly. Therefore, the C content was limited to the range of 0.0211 ⁇ 33% or more and 0.21 ⁇ 33% or less. More preferably, it is 0.02 mass% or more and 0.12 mass% or less.
  • Si 0.2 mass% or more and 1.2 mass% or less
  • Si is a useful element that has a high solid solution strengthening ability and contributes to an increase in the strength of steel without impairing the yield ratio and the balance between strength and elongation.
  • it is also used as a deoxidizing element during steelmaking to purify steel. Also contributes effectively.
  • carbides such as Fe 3 C is suppressed, facilitating the formation of a two-phase structure composed of ferrite and martensite, and an essential element for lowering the yield ratio. It is. Further, it has the effect of increasing the tensile strength by forming a solid solution in the ferrite and strengthening the soft ferrite grains, thereby improving the fatigue resistance.
  • the Si content was limited to the range from 0.2 mass% to 1.2 mass%. More preferably, it is 0.6 mass% or more and 1.2 mass% or less.
  • Mn 1.0 mass% or more and 3.0 mass% or less
  • Mn is a useful element that not only effectively contributes to improving the strength of steel, but also improves the hardenability, and is particularly effective in forming a structure in which the second phase becomes a martensite phase. There is also. It also has the effect of precipitating solute S, which causes brittle cracking during hot working, as MnS and rendering it harmless. These effects cannot be expected if the Mn content is less than 1.0 mass%. On the other hand, when the Mn content exceeds 3.0 mass%, various adverse effects such as stabilization of the scale on the steel surface, generation of surface flaws and excessively large surface roughness, and deterioration of weldability are also observed. Effect. Therefore, the Mn content was limited to the range of 1.0 mass% to 3. Omass%. More preferably, it is set to 1.0 mass% or more and 2.5 mass% or less.
  • Mo not only contributes to the improvement of the strength of steel, but also improves the hardenability to facilitate the formation of a structure composed of ferrite and martensite, and improves the galling resistance by lowering the yield ratio. It is a useful element. Mo is also an element that refines crystal grains in steel to improve the balance between strength and elongation and to reduce surface roughness. Generally, in hot-rolled steel sheets, the crystal grain size at the surface layer of the steel sheet tends to be larger than the crystal grain size at the center of the steel sheet. However, the addition of Mo, Ar 3 transformation point rises, further as in child rolling just above Ar 3 transformation point, the crystal grain size of the steel sheet surface layer portion is larger than that of the steel plate center Can be prevented.
  • the surface layer of the steel sheet can be rolled in the two-phase region of 0! And ⁇ , and the center of the steel sheet can be rolled in the A region.
  • Mo content 0.1 mass% or more is required.
  • Mo is contained in excess of 1.0 mass%, bainite will be formed, and further adverse effects such as deterioration of weldability will be caused. Therefore, the Mo content was limited to the range of 0.1 mass% or more and 1. (Mass% or less).
  • A1 0.01 mass% or more and 0.1 lmass% or less Al is an element useful as a deoxidizing agent. However, if the A1 content is less than 0.01 mass%, the effect of the addition becomes poor. On the other hand, even if A1 is contained in excess of 0.1 mass%, the effect will level off, and the cost will increase and the steel sheet will become brittle. Therefore, the A1 content was limited to the range of 0.01 mass% to 0.1 lmass%.
  • P is an element that deteriorates weldability and causes grain boundary embrittlement
  • its content is preferably reduced as much as possible. Deterioration of weldability, etc., becomes noticeable when the P content exceeds 0.03 mass%, so the upper limit of the P content was limited to 0.03 mass%.
  • the lower limit of the P content that can be reduced with the current refining technology without significantly increasing steelmaking costs is about 0.005 mass%.
  • S is an element that significantly deteriorates hot workability and toughness
  • its content is preferably reduced as much as possible. Deterioration of hot workability and the like becomes remarkable when the S content exceeds 0.01 mass%, and in this content range, weldability may be deteriorated. Therefore, the upper limit of the S content was limited to 0.01 mass%.
  • the Si content is more preferably 0.007 mass% or less.
  • the lower limit of the S content that can be reduced without a significant increase in steelmaking cost with the current refining technology is about 0.001 mass%.
  • Cr contributes to the formation of a two-phase structure of ferrite and martensite, suppresses pearlite transformation, stabilizes the austenite phase, which is the second phase during hot rolling, and secures martensite after hot rolling. It is also a useful element.
  • Cr in an amount of 0.1 mass% or more.
  • Cr when Cr is contained in excess of 0.3 mass%, a stable Cr-based oxide phase is formed on the steel sheet surface, descaleability is impaired, the surface roughness of the steel sheet becomes large, and the chemical conversion treatment property is significantly deteriorated. Not only does it have an adverse effect on weldability, but also increases costs. Therefore, the Cr content was limited to the range of 0.3 mass% or less. Ca: 0.001 mass% or more and 0.005 mass% or less
  • Ca is a useful element that has the effect of reducing the shape of the sulfurated product and contributes to the improvement of elongation and fatigue resistance.
  • REM rare earth element
  • REM is also a useful element that has the effect of reducing the form of sulfides and improves elongation and fatigue resistance.
  • a REM content of 0.001 mass% or more is required.
  • the content of REM was limited to the range of 0.001 mass% or more and 0.005111 & 33% or less.
  • the balance other than the above components is Fe and inevitable impurities.
  • the structure of the steel is set to 55% by volume or more of ferrite, so that the main phase is ferrite, and further, martensite is formed in a range of 10% to 40% by volume.
  • the yield ratio is reduced, the deformation at the surface layer of the steel sheet is easily caused, and the pressure at the contact portion between the die and the steel sheet during the press working is reduced, so that the mold galling resistance can be improved.
  • the ferrite content is less than 55 vol%, the above effects cannot be obtained.
  • the content of martensite needs to be 10 vol% or more. However, when the content exceeds 0 vol%, the effect reaches a plateau, and the strength remarkably increases and the ductility decreases.
  • ferrite as a main phase and a two-phase structure of ferrite and martensite as described above.
  • other organizations can tolerate up to 5 vol% payin and the like.
  • the total amount of ferrite and martensite is 95 vol% or more. If the total amount of ferrite and martensite is less than 95 vol%, the influence of other mixed phases increases, and it is difficult to obtain the above-mentioned effects of ferrite and martensite sufficiently.
  • the average grain size is defined as the area from the steel sheet surface to the sheet thickness 1/4 position, that is, the average ferrite crystal grain diameter ds in the surface layer of the steel sheet, and from the sheet thickness 1/4 position to the center of the sheet thickness. It is important that the ratio dsZdc to the average grain size dc of ferrite in the region of the steel sheet, that is, the center of the steel sheet, be greater than 0.3 and less than 1.0. That is, it is important to adjust the distribution of the crystal grains in the thickness direction of the hot-rolled steel sheet so that the crystal grain diameter in the surface layer of the steel sheet does not become larger than the crystal grain diameter in the central part of the steel sheet.
  • the 1/4 thickness position is a position that is 1/4 of the total thickness inside the steel sheet from the steel sheet surface.
  • the strength of steel is inversely proportional to the crystal grain size according to the Whole-Petch equation, so that the crystal grain size at the surface layer of the steel sheet should not be larger than the crystal grain size at the center of the steel sheet, so that the steel surface layer Can be equal to or greater than the strength of the central part of the steel sheet.
  • the surface roughness must be less than 1.5 m in arithmetic mean roughness Ra.
  • the surface roughness here is the surface roughness in a direction at 90 ° to the hot rolling direction. If Ra exceeds 1.5 m, both the galling resistance and the fatigue resistance deteriorate, and even if the structure of the steel sheet is adjusted as described above, the effect of improving the galling resistance and the fatigue resistance can be obtained. Because they cannot do it.
  • a more preferable range of the surface roughness is an arithmetic average roughness Ra of 0.8 m or more and 1 or less.
  • finish rolling finish temperature is at or above the surface temperature (Ar 3 transformation point-100 ° C) and less than the Ar 3 transformation point. I do.
  • the finish rolling end temperature is a surface temperature of (Ar 3 ⁇ 50 ° C.) or more and less than Ar 3 .
  • the thickness of the hot rolled sheet is not particularly limited, it is preferable that the thickness is not less than 2.0 and not more than 5.0.
  • ferrite transformation By cooling to a temperature range of 750 ° C or lower and 700 ° C or higher, ferrite transformation can be promoted, C concentration in the ⁇ phase is promoted, and a martensitic phase is formed. It will be easier.
  • the temperature falls out of the precipitation noise of the ferrite phase and the cooling process, that is, stagnation in the temperature range below 750 ° C and above 700 ° C.
  • the ferrite transformation is delayed, and the two-phase separation of the core is not promoted.
  • a more preferable cooling limitation range is 730 ° C or lower and 720 ° C or higher.
  • the cooling rate is not particularly limited, but it is preferable that the average cooling rate is 15 ° C / S or more and 4CTC / S or less.
  • the staying process may be either a holding process for maintaining a constant temperature, or a so-called slow cooling process for gradually cooling as air cooling or the like within this temperature range.
  • a more preferred residence time is 5 seconds or more and 10 seconds or less.
  • the cooling rate at this time does not need to be particularly limited, but is preferably 15 ° C / S or more and 40 ° C / S or less.
  • the reason why the winding temperature was set to 650 ° C or lower and 500 ° C or higher was as follows. If the temperature exceeds 650 ° C, pearlite is generated, and the formation of martensite is remarkably suppressed, and the desired structure cannot be formed. In addition, scale growth occurs after winding, and the pickling property deteriorates, and the surface roughness of the base iron increases due to excessive oxidation.
  • a more preferable winding temperature range is 600 ° C or lower and 550 ° C or higher.
  • the cooling temperature after that is not particularly limited, but in the present invention, sufficient C enrichment in the austenite phase is achieved by winding in the above temperature range. It is enough.
  • the slab heating temperature before hot rolling is not particularly limited, and is usually The range of 1 to 100 ° C or higher and 1250 ° C or lower is sufficient.
  • the slab heating temperature is set to 1100 ° C or lower, and the finish rolling end temperature is set to the surface temperature (Ar 3 transformation point—100 ° C) or higher (Ar Hot rolling is performed under the following conditions: 3 transformation point + 50 ° C).
  • the slab heating temperature is set to 1100 or less, the grain size can be reduced.
  • the thickness of the scale layer formed on the surface during the slab heating and after the heating and during the transport of the rolling mill can be reduced.
  • irregularities introduced into the steel sheet surface during scale formation are reduced.
  • a scale is formed from the inside of the slab due to the introduction of solute elements such as Fe, Mn, and Si, which diffuse through the r grain boundaries, and oxygen from the atmosphere (atmosphere).
  • solute elements such as Fe, Mn, and Si
  • the diffusion rates of solute elements of Fe, Mn, and Si and oxygen in the a grain boundary increase, and a scale that grows particularly at the a grain boundary is formed. Becomes larger.
  • the temperature exceeds 1100 ° C, the formation of these irregularities becomes remarkable, and it becomes difficult to reduce the arithmetic average roughness Ra to 1.5 ⁇ m or less.
  • the slab heating temperature is reduced to 1100 ° C or lower, the crystal grain size on the surface becomes smaller and the surface roughness becomes smaller. As a result, it is possible to obtain an effect that not only the anti-galling property is improved but also the fatigue characteristics in the bending mode are improved.
  • the slab heating temperature is more preferably set to 1050 ° C or lower.
  • the finish rolling temperature at the time of hot rolling is set to (Ar 3 — 100 ° C) or more (Ar 3 + or less) at the surface temperature, so that the grain size of the surface layer of the steel sheet is smaller than that of the center of the steel sheet.
  • the rolling end temperature is lower than (Ar 3 — 100 ° C) at the surface temperature, ferrite transformation is promoted and coarse grains are formed on the surface.
  • the rolling end temperature exceeds Ar 3 + 50 ° C at the surface temperature, the slab heating temperature is lowered, and even if quenching is performed after rolling, coarsening occurs even in the surface layer, and the surface layer becomes coarse. It is difficult to reduce the grain size ds / dc between the part and the inside of the plate to 1 or less.
  • the cooling rate is the average cooling rate from the end of hot rolling to the end of cooling in a temperature range of 750 ° C to 700 ° C.
  • the cooling rate after hot rolling is not less than (Ar 3 — 100 ° C) and less than Ar 3 , but even if it is Ar 3 or more, Ar 3 +50
  • the temperature is below ° C, the growth of recrystallized r grains after rolling is suppressed, and the supercooling effect accumulates a large amount of strain in the steel, especially near the surface, and introduces many nuclei during the transformation from ⁇ to ⁇ . And has the effect of making ferrite grains fine. Therefore, the crystal grain size at the surface layer of the steel sheet can be made smaller than the crystal grain size at the center of the steel sheet. This improves not only the mold seizure, but also the fatigue resistance in the bending mode.
  • a more preferred cooling rate after hot rolling is 50 ° CZs or more.
  • the reason for cooling to 75 (TC or lower and 700 ° C or higher), the reason for staying in this temperature range for 2 to 30 seconds or less, and the reason for winding at 650 ° C or lower and 500 ° C or higher are as follows. For the same reason as described above.
  • the steel sheet after hot rolling is subjected to pickling to obtain a pickled hot-rolled steel sheet.
  • the pickling method is not particularly limited, and may be in accordance with a conventional method. Before or after pickling, temper rolling (shape reduction: about 1% or less) for shape correction may be performed if necessary.
  • the cross section in the direction parallel to the rolling direction of the test specimen collected from the obtained hot-rolled sheet was observed for the entire thickness, and electron micrographs were subjected to image analysis to determine the structure fraction of each structure.
  • the volume fraction was evaluated.
  • the average ferrite crystal grain size was determined by taking a photograph with an electron microscope and then following the cutting method of the steel ferrite grain size test method shown in JIS G 0552.
  • ds is from the surface of the steel sheet, that is, from the front side of the steel sheet to the 1/4 position of the sheet thickness. This is the average grain size of ferrite determined for the region of and the region from the back side to the 1/4 position of the plate thickness. Also, dc is the average grain size of ferrite determined from the 1/4 position on the front and back sides of the steel sheet to the center of the sheet thickness, that is, the center of the steel sheet covering 1/2 of the total thickness. It is.
  • the surface roughness of the hot-rolled steel sheet at a direction of 90 ° with respect to the rolling direction was determined as an arithmetic average roughness Ra in accordance with JIS B0601.
  • the tensile test was performed using JIS No. 5 tensile test specimens taken from a direction 90 ° to the rolling direction of the hot-rolled steel sheet after pickling.
  • the stress that does not break after repeated loading 10 7 times is defined as the fatigue strength CTW. It was evaluated by asking. The larger the value of the durability ratio (JwZTS, the better the fatigue resistance at bending), and the target value is 0.55 or more.
  • the chemical conversion property is as follows: After cleaning and degreasing a steel sheet (mass Wo), the test material is immersed in a solution containing a chemical conversion agent (zinc phosphate solution) for a certain period of time, and after washing, the mass (W) is measured.
  • the mass increase per unit area due to the adhesion of zinc phosphate crystals (W—W Q ;) That is, the evaluation was made by calculating the weight of the chemical conversion coating.
  • the target value is 2.0 g / m 2 or more.
  • SRT Slab heating temperature
  • FDT Finish rolling finish temperature
  • CR1 Cooling rate after rolling (average cooling rate from FDT to T1)
  • T1 Cooling finishing temperature after rolling
  • 11 Stay Time
  • T2 End temperature of staying process
  • CR2 Cooling speed after staying process (average cooling speed from T2 to CT)
  • CT Coil winding temperature
  • SRT Heating temperature of slag
  • FDT Finish rolling finish temperature
  • CR1 Cooling speed after rolling (average cooling speed from FDT to T1)
  • T1 Cooling finishing temperature after rolling
  • tl Residence time
  • T2 End temperature of staying process
  • CR 2 Cooling speed after staying process (average cooling speed from T2 to CT)
  • CT Coil winding temperature
  • Phase 2 structure M Martensite phase, B—Bina phase, ⁇ ⁇ pearlite phase
  • the invention examples obtained in accordance with the present invention all have a tensile strength TS of 590 MPa or more, a yield ratio YR of less than 70%, and have a higher mold resistance than other steels. Excellent in heat resistance and fatigue resistance, and also good in chemical conversion treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明 細 書 耐型かじり性および耐疲労特性に優れた高張力熱延鋼板およびその製造方法 技術分野
この発明は、 主に自動車の構造部材、 ホイール、 リムおよびシャシ一など足回 り部材ならびに、 パンパ一およびドアガ一ドバ一などの強度部材等に用いて好適 な、 引張り強さが 590MPa以上で、かつ熱延板のままで使用される、耐型かじり性 および耐疲労特性に優れた高張力熱延鋼板に関するものである。
背景技術
近年、 自動車の車体軽量化の観点から、 自動車の構造部材、 ホイール、 リムお よびシャシ一など足回り部材ならびにバンパーおよびドアガードバ一などの強度 部材等に用いられる熱延鋼板には、 高張力化が求められる。 中でも引張り強さが 590MPa以上の高張力鋼板に対して、 この要請が特に強い。 また、 このような用途 に用いられる熱延鋼板には、 良好な耐疲労特性が要求される。 特に車体重量を支 える足回り部材には、 大きな曲げ変形が鋼板に作用するため、 曲げモードでの耐 疲労特性に優れることが要求される。
また、 一般に、 高張力鋼板は、 降伏点が高く、 また成形時にスプリングパック を起し易いことから、 プレス作業により所定の形状を与えることが難しいとされ ていた。このため、このような問題に対し、例えば特開昭 55— 28375号公報には、 軟質なフェライト中に硬質なマルテンサイトを分散させた 2相組織とすることに より、 引張り強さの程度に比して降伏点を低くすることを可能ならしめ、 形状凍 結性を向上させた鋼板が提案されている。
しカゝしながら、 最近では、 車体軽量化のための鋼板の高強度化や、 車体構成部 位の一体成形化および部品形状の複雑化等に適切に対処するため、 さらなるプレ ス加工性の向上が望まれていた。 一方、 プレス加工性は、 表面粗さに少なからず影響を受けることから、 表面粗 さを調整してプレス加工性を向上させることが検討されている。
上記のような、 鋼板の表面粗さを適切に調整して、 プレス成形性を向上させる 技術としては、 例えば特開平 6— 99202号公報に開示の技術がある。 この技術は、 連続焼鈍によって製造される薄鋼板に対し、 スキンパス圧延の制御により付与さ れる表面粗さを、 鋼板強度に応じて調整することで、 良好な摺動性を確保し、 プ レス成形性を向上させるものである。
しかしながら、特開平 6— 99202号公報に記載された技術は、主に冷延鋼板、表 面処理鋼板のように、 もともとの表面粗さが小さい鋼板を対象としているため、 熱延鋼板のように圧延中のスケール押し込みなどにより、 表面粗さがもともと大 きい鋼板に対しては適用し難いという問題があった。
また、 鋼板の表面粗さを調整してプレス加工などの加工成形用の用途に好適な 熱延鋼板を提供する技術としては、 特開平 9一 118918号公報に記載されているも のがある。 この技術は、 鋼板の少なくとも一方の面の表面粗さを、 Raで 0. 8 m 以下、 Rmaxで 4. 0 ^m以下および Rv/Rmaxで 0. 7以下とすることにより、 摺動性 および延性の向上を図ろうとするものである。なお、 ここで Rvは、 断面曲線の測 定長さ内における最深の谷と中心線までの距離をいう。
しかしながら、この技術では、表面粗さのみで加工性を改善しょうとするため、 この技術により得られる鋼板は、 自動車の内板のような大きな加工量を伴う成形 を行う場合には、 変形量の大きな部分で型かじりが発生し易く、 それに伴い割れ が生じるというおそれがあつた。
発明の開示
この発明は、 従来技術が抱える上記の諸問題を解決すべく開発されたもので、 優れたプレス成形性は勿論のこと、 優れた耐型かじり性を有し、 さらには良好な 耐疲労特性を有する、弓 I張り強さが 590MPa以上の高張力熱延鋼板を、その有利な 製造方法と共に提案することを目的とする。 さて、 発明者らは、 上記の目的を達成すべく鋭意研究を重ねた結果、 以下に述 ベる知見を得た。
a) 鋼成分を適正に調整することならびに熱間圧延条件およびその後の冷却条件 を適正に制御することにより、 鋼を主にフェライトとマルテンサイトとの 2相組 織として、 機械的特性、 特に降伏比を低くすることにより、 形状凍結性の向上に 加え、 鋼板の表面部での変形を容易にさせて、 プレス成形での作動油の封じ込め 効果を容易ならしめ、 耐型かじり性を改善することができる。
b)また、算術平均粗さ Raを小さくするとプレス成形時の摩擦係数が小さくなり、 プレス成形時に型かじりを起こし難くなり、 さらに表面での切り欠き効果が低減 され、 曲げモードでの疲労強度が向上する。
c) さらに、 熱延鋼板の板厚方向における結晶粒径に関し、 鋼板表層部の結晶粒 径が鋼板中心部の結晶粒径よりも大きくならないような分布とすることで、 鋼板 表層部の強度を、 鋼板中心部の強度と同等以上とすることができ、 その結果、 耐 型かじり性が向上し、 ひいてはプレス成形時の割れや表面欠陥の発生を防止する ことができる。
この発明は、 これらの知見に立脚するものである。
この発明の要旨構成は次のとおりである。
1. C: 0.02 mass%以上 0.2mass%以下、 Si: 0.2 mass%以上 1.2mass%以下、 Mn: 1.0 33%以上3.01^33%以下、 Mo: 0.1 mass%以上 1.0mass%以下、 A1: 0.01 mass%以上 0.1mass%以下、 P: 0.03mass%以下および S : 0.01mass%以下を含 有し、 残部は Feおよび不可避的不純物の組成になり、 フェライトを 55vol%以上 含有すると共に、 マルテンサイトを 10 vol%以上 40vol%以下含有し、 両者の合 計が 95 vol %以上となる鋼組織を有し、 鋼板表面から板厚 1/4位置までの領域に おけるフェライトの平均結晶粒径 dsと、板厚 1/4位置から板厚中心までの領域に おけるフェライトの平均結晶粒径 dcとの比 dsZdcが、 0.3<ds/dc≤1.0で、 か つ表面粗さが、算術平均粗さ Raで 1.5 以下であることを特徴とする耐型かじ り性および耐疲労特性に優れた高張力熱延鋼板。
2. C: 0.02 mass%以上 0.2mass%以下、 Si: 0.2 mass%以上 1.2mass%以下、 Mn: 1.0 mass %以上 3. (Mass %以下、 Mo: 0.1 mass%以上 1. Omass%以下、 A1: 0.01 mass%以上 0.1mass%以下、 P: 0.03mass%以下および S : 0.01mass%以下を含 有し、 さらに、 Cr: 0.3mass%以下、 Ca: 0.001 mass%以上 0.005mass%以下およ び REM: 0.001 mass%以上 0.005mass%以下から選ばれる少なくとも 1種を含有し、 残部は Feおよび不可避的不純物の組成になり、フェライトを 55vol%以上含有す ると共に、 マルテンサイトを 10 vol %以上 40 vol %以下含有し、 両者の合計が 95 vol%以上となる鋼組織を有し、 鋼板表面から板厚 1/4位置までの領域におけ るフェライ卜の平均結晶粒径 dsと、板厚 1/4位置から板厚中心までの領域におけ るフェライトの平均結晶粒径 dcとの比 dsZdcが、 0.3く dsZdc≤1.0で、 かつ 表面粗さが、算術平均粗さ Raで 1.5 m以下であることを特徴とする耐型かじ り性および耐疲労特性に優れた高張力熱延鋼板。
3. C: 0.02 mass%以上 0.2mass%以下、 Si: 0.2 mass%以上 1.2mass%以下、 Mn: 1.0 mass %以上 3. (Mass %以下、 Mo: 0.1 mass%以上 1.0mass%以下、 A1: 0.01 mass%以上 0.1mass%以下、 P: 0.03mass%以下および S: 0.01mass%以下を含 有し、残部は Feおよび不可避的不純物の組成になる鋼スラブを素材として、仕上 げ圧延終了温度を表面温度で(Ar3_100°C)以上 Ar3未満とする熱間圧延を行った 後、 750°C以下 700°C以上まで冷却し、 ひきつづきこの温度範囲で 2秒以上 30秒 以下滞留させた後、冷却して 650°C以下 500°C以上で巻き取ることを特徴とする耐 型かじり性および耐疲労特性に優れた高張力熱延鋼板の製造方法。
4. C: 0.02mass%以上 0.2mass%以下、 S 0.2 mass%以上 1.2mass%以下、 Mn: 1.0 mass%以上 3. Omass%以下、 Mo: 0.1 mass%以上 1.0mass%以下、 A1: 0.01 mass%以上 0.1mass%以下、 P: 0.03mass%以下および S : 0.01mass%以下を含 有し、 さらに、 Cr: 0.3mass%以下、 Ca: 0.001 mass%以上 0.005mass%以下およ び REM:0.001 mass%以上 0.005mass%以下から選ばれる少なくとも 1種を含有し、 残部は Feおよび不可避的不純物の組成になる鋼スラブを素材として、仕上げ圧延 終了温度を表面温度で (Ar3— 100°C) 以上 Ar3未満とする熱間圧延を行った後、 750°C以下 700°C以上まで冷却し、 ひきつづきこの温度範囲で 2秒以上 30秒以下 滞留させた後、冷却して 650°C以下 500°C以上で巻き取ることを特徴とする耐型か じり性および耐疲労特性に優れた高張力熱延鋼板の製造方法。
5. C: 0.02 mass%以上 0.2mass%以下、 Si: 0.2 mass%以上 1.2mass%以下、 Mn: 1.011^53%以上3.011^3%以下、 Mo: 0.1 mass%以上 1. Omass%以下、 A1: 0.01 mass%以上 0. lmass%以下、 P : 0.03mass%以下および S: 0.01mass%以下を含 有し、残部は Feおよび不可避的不純物の組成になる鋼スラブを素材として、スラ ブ加熱温度を 1100°C以下とし、 仕上げ圧延終了温度を表面温度で (Ar3— 100°C) 以上 (Ar3 + 50°C) 以下とする熱間圧延を行った後、 4(TCZ s以上の冷却速度で 750°C以下 700°C以上まで冷却し、 ひきつづきこの温度範囲で 2秒以上 30秒以下 滞留させた後、冷却して 650°C以下 500°C以上で巻き取ることを特徴とする耐型か じり性および耐疲労特性に優れた高張力熱延鋼板の製造方法。
6. C: 0.02 mass%以上 0.2mass%以下、 Si: 0.2 mass%以上 1.2mass%以下、 Mn: 1.01^33%以上3.01^33%以下、 Mo: 0.1 mass%以上 1.0mass%以下、 A1: 0.01 mass%以上 0, lmass%以下、 P: 0.03mass%以下および S: 0.01mass%以下を含 有し、 さらに、 Cr: 0.3mass%以下、 Ca: 0.001 mass%以上 0.005mass%以下およ び REM:0.001 mass%以上 0.005mass%以下から選ばれる少なくとも 1種を含有し、 残部は Feおよび不可避的不純物の組成になる鋼スラブを素材として、スラブ加熱 温度を 1100°C以下とし、仕上げ圧延終了温度を表面温度で(Ar3_100°C)以上(Ar3 + 50°C) 以下とする熱間圧延を行った後、 40°O/s以上の冷却速度で 750°C以下 700°C以上まで冷却し、 ひきつづきこの温度範囲で 2秒以上 30秒以下滞留させた 後、冷却して 650°C以下 500°C以上で巻き取ることを特徴とする耐型かじり性およ び耐疲労特性に優れた高張力熱延鋼板の製造方法。
以下、 この発明を具体的に説明する。 まず、 この発明において、 素材の成分組成を上記の範囲に限定した理由につい て説明する。
C: 0.02 mass%以上 0.2mass%以下
ま、 引張り強さの向上に有用な元素であり、 所望の引張り強さを得るために は、 少なくとも 0.02 mass%の含有量を必要とする。 しかしながら、 C含有量が 0.2mass %を超えると、 スケールと地鉄の界面に COガスが発生し、 圧延段階でス ケール傷発生の原因となり、算術平均粗さ Raが大きくなるのみならず、溶接性も 急激に劣化する。従って、 C含有量は 0.0211^33%以上0.21^33%以下の範囲に限 定した。 より好ましくは 0.02 mass%以上 0.12mass%以下とする。
Si: 0.2 mass%以上 1.2mass%以下
Siは、 固溶強化能が大きく、 降伏比および強度と伸びのバランスを損なうこと なく、 鋼の強度上昇に寄与する有用元素である。 また、 ァから αへの変態を活性 化してァ相への C濃化を促進するなど、 混合組織の形成には不可欠な元素である ことに加え、製鋼時には脱酸元素として鋼の清浄化にも有効に寄与する。そして、 鋼中にあっては、 Fe3Cなどの炭化物の生成を抑制して、 フェライトとマルテンサ イトとからなる 2相組織の形成を容易とし、 降伏比を低下させる上でも必要不可 欠な元素である。 さらに、 フェライト中に固溶して、 引張強度を上昇させるとと もに、 軟質なフェライト粒を強ィ匕し、 耐疲労特性を向上させる作用もある。
Siによるこれらの効果は、 0.2mass%以上で十分に発揮されるが、 1.2mass%を 超えるとその効果は頭打ちとなり、また鋼表面で剥離し難いスケールが生成され、 表面での傷の発生、 表面粗さの劣化を招来することとなる。 しかも化成処理性も 劣化する。従って、 Si含有量は 0 · 2 mas s %以上 1.2mas s %以下の範囲に限定した。 より好ましくは 0.6 mass%以上 1.2mass%以下とする。
Mn: 1.0 mass%以上 3.0mass%以下
' Mnは、鋼の強度向上に有効に寄与するだけでなく、 焼入れ性を向上させる有用 元素であり、 特に第 2相がマルテンサイト相となる組織とするのに有効な元素で もある。また、熱間加工時の脆性割れの原因となる固溶 Sを MnSとして析出させ、 無害化する効果も有する。 これらの効果は、 Mn含有量が、 1. 0mass %未満では期 待できない。 一方、 Mn含有量が 3. 0mass %を超えると鋼表面でのスケールを安定 化させ、 表面傷を発生させ表面粗さが大きくなりすぎるだけでなく、 溶接性を劣 化させるなど、 種々の悪影響を及ぼす。 従って、 Mn含有量は 1. 0 mass %以上 3. Omass %以下の範囲に限定した。より好ましくは 1. 0 mass %以上 2. 5mass %以下 とする。
Mo: 0. 1 mass %以上 1. Omass %以下
Moは、鋼の強度向上に寄与するのみならず、 焼入れ性を向上させてフェライト とマルテンサイトからなる組織形成を容易ならしめ、 低降伏比とすることで耐型 かじり性を向上させることができる有用元素である。 また、 Moは鋼中の結晶粒を 細粒化して、 強度と伸びのバランスを向上させると共に表面粗さを低減させる効 果を有する元素でもある。 一般に熱延鋼板においては、 鋼板表層部の結晶粒径が 鋼板中心部の結晶粒径に比べて大きくなる傾向にある。 しかしながら、 Moを添加 することにより、 Ar3変態点が上昇し、 さらに Ar3変態点直上で圧延を実施するこ とで、 鋼板表層部の結晶粒径が、 鋼板中心部のそれに比して大きくなることを防 止することができる。 すなわち、 傾向的に、 鋼板表層部は 0!と τの 2相域での圧 延とし、 鋼板中心部はァ域での圧延とすることができるため、 鋼板表層部の結晶 粒を鋼板中心部のそれよりも微細にすることができる。 よって、 耐型かじり性を 向上させることができると共に、 曲げモードでの耐疲労特性を向上させることも できる。
これらの効果を発揮させるには、 0. 1mass%以上の Mo含有量が必要である。 し かしながら、 Moを 1. 0mass %を超えて含有させると、 ベイナイトが形成されるよ うになり、 さらに溶接性の劣化などの悪影響を招く。 従って、 Mo含有量は 0. 1 mass %以上 1. (Mass %以下の範囲に限定した。
A1: 0. 01 mass %以上 0. lmass %以下 Alは、脱酸剤として有用な元素である。しかしながら、 A1含有量が 0.01 mass % に満たないとその添加効果が乏しくなる。 一方、 A1を 0.1mass%を超えて含有さ せても、 その効果が頭打ちとなり、 しかもコストの上昇や、 鋼板の脆化を招く。 従って、 A1含有量は 0.01 mass%以上 0. lmass%以下の範囲に限定した。
P : 0.03mass%以下
Pは、 溶接性を劣化させ、 しかも粒界脆化を引き起こす元素であるため、 その 含有量をできるだけ低減することが好ましい。 溶接性の劣化等は、 P含有量が 0.03mass%を超えると顕著に現れるため、 P含有量の上限値は 0.03mass%に制限 した。 なお、 現状の精練技術で、 製鋼コストの著しい増大を伴わずに低減できる P含有量の下限値は 0.005mass%程度である。
S : 0.01mass%以下
Sは熱間加工性や靭性を著しく劣化させる元素であるため、 その含有量をでき るだけ低減させるのが好ましい。 熱間加工性等の劣化は、 Sの含有量が 0.01mass%を超えると顕著に現れ、 またこの含有量範囲では溶接性を劣化させる おそれもある。 従って、 S含有量の上限値は 0.01mass%に制限した。 なお、 Si 含有量はより好ましくは 0.007mass%以下である。 なお、現状の精練技術では製 鋼コストの著しい増大を伴わずに低減できる S含有量の下限値は 0.001mass%程 度である。
以上、 必須成分について説明したが、 この発明では以下の元素を適宜含有させ ることもできる。
Cr: 0.3mass%以下
は、焼入れ性の向上だけでなく、 固溶元素として鋼の強度上昇にも寄与する 有用元素である。また Crは、フェライトとマルテンサイトの 2相組織の形成に寄 与し、 パーライト変態を抑制して、 熱延時の第 2相であるオーステナイト相を安 定化させ、 熱延後にマルテンサイトを確保する上でも有用な元素である。
これらの効果を得るためには Crを 0.1mass%以上含有させることが好ましい。 しかしながら、 Crを 0.3mass%を超えて含有させると、鋼板表面に安定な Cr系酸 化物相が形成され、 脱スケール性が阻害され鋼板の表面粗さが大きくなり、 また 化成処理性が著しく劣化するだけでなぐ 溶接性にも悪影響を及ぼし、 さらには コストも上昇する。 従って、 Cr含有量は 0.3mass%以下の範囲に限定した。 Ca: 0.001 mass%以上 0.005mass%以下
Caは、 硫ィ匕物の形態を細かくする作用を有し、伸びおよび耐疲労特性の向上に 寄与する有用元素である。
この効果を発揮させるには、 0.001mass%以上の Ca含有量が必要である。 しか しながら、 Caを 0.005%を超えて含有させても、 その効果は頭打ちとなり、 コス トが徒に上昇する他、 逆に鋼の清浄度を劣化させる。 従って、 Ca含有量は 0.001 mass%以上 0.005mass%以下の範囲に限定した。
REM: 0.001 mass%以上 0.005mass%以下
REM (希土類元素) も、 Ca と同様に、 硫化物の形態を細かくする作用を有し、 伸びおよび耐疲労特性を向上させる有用元素である。この効果を発揮させるには、 0.001mass%以上の REM含有量が必要である。 しかしながら、 REMを 0.005mass% を超えて含有させても、 その効果は頭打ちとなり、 コストが上昇する他、 逆に鋼 の清浄度を劣ィ匕させる。 従って、 REM含有量は、 0.001 mass%以上 0.005111&33%以 下の範囲に限定した。
なお、 上記した成分以外の残部は Feおよび不可避的不純物である。
次に、 この発明の高張力鋼板の組織、 平均結晶粒径および表面粗さの限定理由 について、 それぞれ説明する。
この発明鋼板において、 鋼の組織はフェライトを 55vol%以上とすることで、 フェライトを主相とし、 さらにマルテンサイトを 10vol%以上 40vol%以下の範 囲で生成させる。 これにより、 降伏比を低下させ、 鋼板表層部での変形を起こり 易くすると共に、 プレス加工時に型と鋼板との接触部での圧力を低下させて、 耐 型かじり性を向上させることができる。 換言すれば、 フェライトが 55vol %に満たないと、 上記効果を得ることができ ない。 また、 上記効果を得るためには、 マルテンサイトを 10 vol %以上とする必 要もある。 しかしながら、 0 vol %を超えるとその効果は頭打ちとなり、 強度が 著しく上昇して延性が低下する。
なお、 上記効果を得るためには、 上述したとおり、 フェライトを主相とし、 フ エライトとマルテンサイトの 2相組織とすることが好ましい。 しかしながら、 他 の組織として、 ペイナイト等を 5 vol %まで許容することができる。
従って、 フェライトとマルテンサイトとの合計量は、 95 vol %以上となる。 な お、 フェライトとマルテンサイトとの合計量が 95 vol %に満たないと、 混在する 他の相の影響が大きくなり、 上記したフェライト、 マルテンサイトの効果を十分 に得ることが難しくなる。
また、 平均結晶粒径については、 鋼板表面から板厚 1/4位置までの領域、 すな わち鋼板表層部におけるフェライトの平均結晶粒径 dsと、板厚 1/4位置から板厚 中心までの領域、すなわち鋼板中心部におけるフェライトの平均結晶粒径 dcとの 比 dsZdcを、 0. 3より大きく 1. 0以下とすることが肝要である。 すなわち、 熱延 鋼板の結晶粒の板厚方向での分布を、 鋼板表層部の結晶粒径が鋼板中心部の結晶 粒径よりも大きくならないように調整することが肝要である。 なお、 板厚 1/4位 置とは、 鋼板表面から全厚の 1/4だけ鋼板内部にある位置のことである。
一般に、鋼の強度は、ホールーペツチの式により、結晶粒径と反比例するため、 鋼板表層部の結晶粒径を、 鋼板中心部の結晶粒径よりも大きくならないようにす ることによって、 鋼板表層部の強度を鋼板中心部の強度と同等以上とすることが できる。 この結果、 鋼板と金型との間での型かじりを招来することなく、 プレス 成形時の割れや表面欠陥の発生を効果的に防止することができる。
すなわち、上記の平均結晶粒径比 dsZdcが 0. 3以下の場合には、鋼板中心部の 結晶粒が著しく粗大化するので、 鋼板の強度が十分に得られず、 また鋼板表層部 と鋼板中心部とで強度差が大きくなつて、 プレス成形時の金型によるかじりが増 大し、 耐型かじり性が低下する。
一方、 上記比 ds/dcが 1. 0を超えた場合には、鋼板表層部の強度が低下し、や はり耐型かじり性の低下を招く。
さらに、 表面粗さについては、 算術平均粗さ Raで 1. 5 m以下とする必要があ る。 なお、 ここでの表面粗さは熱間圧延方向に対して 90° の方向の表面粗さであ る。 Raが 1. 5 mを超えると、 耐型かじり性、 耐疲労特性がともに劣化し、 上記 のように鋼板の組織調整を行っても、 耐型かじり性、 耐疲労特性の向上の効果を 得ることができないからである。 なお、 より好ましい表面粗さの範囲は、 算術平 均粗さ Raで 0. 8 m以上 1. 以下である。
次に、 この発明の製造方法について説明する。
上記したような成分組成を好適成分組成とした鋼スラブを素材として、 仕上げ 圧延終了温度が表面温度で (Ar3変態点一 100°C) 以上 Ar3変態点未満となる条件 下で熱間圧延を行う。 仕上げ圧延終了温度を、 上記温度範囲とすることにより、 仕上げ圧延の最終スタンドにおいて、 鋼板表層部はその大部分が αとァの 2相域 での圧延、 一方鋼板中心部はその大部分がァ域での圧延となるため、 鋼板表層部 の結晶粒径を鋼板中心部の結晶粒径よりも大きくならないように調整することが できる。 この結果、 耐型かじり性を向上させることができるだけでなく、 曲げモ —ドでの耐疲労特性を改善することができる。 なお、 より好ましい仕上げ圧延終 了温度の範囲は、 表面温度で (Ar3— 50°C) 以上 Ar3未満の範囲である。
なお、 熱延板の厚みは、 特に制限されることはないが、 2. 0腿以上 5. 0腿以下 程度とするのが好適である。
上記の熱間圧延後、 750°C以下 700°C以上の温度範囲まで冷却し、 ひきつづきこ の温度範囲で 2秒以上 30秒以下滞留させた後、 冷却して 650°C以下 500°C以上で 巻き取る。
750°C以下 700°C以上の温度範囲まで冷却することにより、フェライト変態を促 進させることができ、 ァ相中への C濃ィヒが促進され、 マルテンサイト相が生成し 易くなる。 750°Cを超える温度までの冷却あるいは、 iOO 未満の温度までの冷却 では、フェライト相の析出ノ一ズから外れて、緩冷過程、すなわち 750°C以下 700°C 以上の温度域における滞留でのフェライト変態が遅延するため、 ひとァの 2相分 離が促進されない。 なお、 より好ましい冷却限定範囲は、 730°C以下 720°C以上で ある。 また、冷却速度は特に限定する必要はないが、 平均冷却速度で 15°C/S以上 4CTC/S以下とすることが好ましい。
また、 750°C以下 700 以上の温度範囲まで冷却の後、 ひきつづきこの温度範囲 で 2秒以上 30秒以下滞留させることは、 αとァの 2相分離の促進に寄与すること から、 最終的に目的とするフェライ卜とマルテンサイトの複合組織を得る上で重 要である。 滞留時間が 2秒未満では、 ァから αへの 2相分離は進行せず、 ァ中へ の C濃化が不十分で、 続く巻き取り工程での第 2相のマルテンサイト変態が起こ り難くなり、 目的とする組織が得られない。 また、 滞留時間が 30秒を超えると、 フェライト変態が過度に進行し、 ァからひへの 2相分離が促進され、 鋼板表層部 と鋼板中心部とにおける結晶粒径差が大きくなる。 しかもパ一ライト変態が始ま つてパーライトが生成するので、 マルテンサイトの生成は著しく抑制されて、 十 分な量のマルテンサイトが形成されず、 降伏比の上昇およびプレス加工性の低下 を招く。 なお、 この滞留処理については、 一定の温度に保持する保定処理、 また はこの温度範囲内で空冷等として徐冷するいわゆる緩冷処理のいずれであっても よい。 また、 より好ましい滞留時間は、 5秒以上 10秒以下である。
上記の滞留の後、冷却して 650°C以下 500°C以上で巻き取り熱延鋼板とする。な お、 この際の冷却速度は特に限定する必要はないが、 15°C/S以上 40°C/S以下と することが好ましい。ここに、 巻き取り温度を 650°C以下 500°C以上としたのは、 以下の理由による。 650°Cを超えると、パーライトが生成し、 マルテンサイトの生 成が著しく抑制されて、 目的の組織ができなくなる。 加えて、 巻き取り後のスケ ール成長が起こり、 酸洗性が悪くなり、 過剰酸化により地鉄表面の粗さが大きく なる。 また、 500°C未満では、巻き取り温度の低下により、鋼板が波打つような形 状になり易く、 その制御が困難になる。 また、 巻き取り工程で表面キズが発生し 易くなり算術平均粗さ Raが大きくなりすぎる。 さらに、 強度が著しく上昇して、 プレス加工性の顕著な劣化を招き、 加えて組織中にペイナイト相が多量に混在す るようになる場合があり、 マルテンサイトの生成を抑制して、 降伏比の上昇をも たらす。 より好適な巻取り温度範囲は、 600°C以下 550°C以上である。 なお、 その 後の冷却温度については特に制限はないが、 本発明では、 上記の温度範囲での巻 き取りにより、 オーステナイト相への十分な C濃化が達成されているので、 大気 放冷で十分である。
上述したように、 圧延後、 750°C以下 700°C以上で 2秒以上 30秒以下滞留とい う緩冷却過程を経て 650°C以下 50(TC以上で巻き取るという 2段冷却方法により、 αとァの 2相分離が促進され、 aヒ Ύ 2相組織の形成が促進される。
なお、 上記のように熱間圧延時の仕上圧延終了温度を表面温度で(Ar3—100°C) 以上 Ar3未満とする場合、 熱間圧延前のスラブ加熱温度は特に限定されず、 通常 の範囲である 1 100°C以上 1250°C以下程度で十分である。
一方、 スラブ加熱温度を iioo°c以下と低温にすることに加え、 熱間圧延後、
75CT 以下 700 以上までの冷却速度を ^ /7 s以上と速くすることにより、圧延 終了温度が Ar3以上となっても、 鋼板表層部の結晶粒を鋼板中心部の結晶粒径よ りも大きくならないように調整することができることも知見した。
次にこの場合の製造方法について説明する。
上記したような成分組成を好適成分組成とした鋼スラブを素材として、 スラブ 加熱温度を 1 100°C以下とし、仕上圧延終了温度が表面温度で(Ar3変態点— 100°C) 以上(Ar3変態点 + 50°C)以下の条件で熱間圧延を施す。スラブ加熱温度を 1 100 以下とすることで、 ァ粒径を細かくすることができる。 また、 スラブ加熱時およ び加熱後から圧延機搬送中において表面に形成されるスケール層の厚さを低減す ることができる。 さらに、 スケール形成時に鋼板表面に導入される凹凸が小さく なる。 すなわち、 スラブ表面では、 スラブ内から、 r粒界を拡散してくる Fe及び Mn, Si等の溶質元素と、 雰囲気(大気) 中からの酸素の導入によりスケ一ルが形成さ れる。 このとき、 温度が高いほど、 Fe及び Mn, Siの溶質元素および酸素のァ粒 界中の拡散速度が大きく、 特にァ粒界で大きく成長したスケールが形成されるよ うになり、 表面での凹凸が大きくなる。 1100°Cを超えると、 この凹凸の形成が著 しくなり、 算術平均粗さ Raを 1. 5 ^ m以下とすることが困難となる。
従って、 スラブ加熱温度を 1100°C以下と低くすれば、 表面での結晶粒径が小さ くなるとともに表面粗さも小さくなる。 この結果、 耐型かじり性が向上するとと もに、 曲げモードでの疲労特性も向上する効果が得られる。 なお、 スラブ加熱温 度は、 より好ましくは 1050°C以下とする。
熱間圧延時の仕上げ圧延終了温度は、表面温度で(Ar3— 100°C)以上 (Ar3+ 以下とすることにより、 鋼板表層部の結晶粒径を鋼板中心部の結晶粒径よりも大 きくならないようにすることができる。圧延終了温度が表面温度で(Ar3— 100°C) 未満となると、 フェライト変態が促進されて、 表層で粗大粒が形成されるように なる。
また、 圧延終了温度が表面温度で Ar3+ 50°Cを超えると、 スラブ加熱温度を低 温ィ匕し、 圧延後に急冷を行なっても、 表層においてもァ粒の粗大化がおこり、 表 層部と板内部との粒径化 ds/dcを、 1以下にすることは困難である。
上記熱間圧延後、 750 以下 700°C以上の温度範囲まで 40oCZ s以上で冷却する。 なおここで冷却速度は、 熱間圧延終了後、 750°C以下 700°C以上の温度範囲で冷却 を終了するまでの平均冷却速度である。熱間圧延後の冷却速度を 40°C/ s以上と することで、 圧延終了温度が (Ar3— 100°C) 以上 Ar3未満の範囲のみならず、 Ar3 以上でも、 Ar3+ 50°C以下であれば圧延後の再結晶 r粒の成長を抑制するとともに、 過冷却効果により鋼中、 特に表面近傍に歪みを多く蓄積して、 ァから αへの変態 時の核を多く導入し、 フェライト粒を微細にする効果を有する。 従って、 鋼板表 層部の結晶粒径を鋼板中心部の結晶粒径よりも小さくするようにできるので、 耐 型かじり性が向上するとともに、 曲げモ一ドでの耐疲労特性を改善することがで きる。 より好ましい熱間圧延後の冷却速度は、 50°CZ s以上とする。
なお、 75(TC以下 700°C以上の温度範囲まで冷却する理由、 ひきつづきこの温度 範囲で 2秒以上 30秒以下滞留させる理由、 及び 650°C以下 500°C以上で巻き取る 理由等にについては、 上記した理由と同様である。
加えて、 上述した製造方法において、 熱間圧延を行った後の鋼板に酸洗を施し て酸洗熱延鋼板とすることが好ましい。 酸洗方法については、 特に限定されず、 常法に従えばよい。 また酸洗前あるいは酸洗後、 必要に応じ、 形状矯正のための 調質圧延 (圧下率: 1 %以下程度) を行ってもよい。
発明を実施するための最良の形態
表 1に示す種々の成分組成になる鋼を、 表 2に示す条件で熱延鋼板とした。 な お、 熱延鋼板の板厚は 2. 7mmとし、 いずれの熱延鋼板も熱間圧延後に酸洗を行 い、 調質圧延は行わなかった。
かくして得られた熱延鋼板の、 鋼組織、 鋼板中心部および鋼板表層部における フェライト平均結晶粒径およびそれらの比 ds/dc、表面粗さ Ra、ならびに引張り 特性 (降伏強さ (YS)、 引張り強さ (TS)、 伸び (EI)、 降伏比 (YR=YSZTS))、 耐 型かじり性、 耐疲労特性 (耐久比 (疲労強度 と引張り強さ TSとの比))、 化成 処理性 (化成被膜重量) についての調査した結果を表 3に示す。
なお、 各項目については次のようにして評価した。
( 1 ) 鋼組織およびフェライト平均結晶粒径
鋼組織は、 得られた熱延板から採取した試験片の圧延方向に平行な方向の断面 を全厚について観察し、電子顕微鏡写真を画像解析して各組織の組織分率を求め、 これを体積分率として評価した。 また、 フェライト平均結晶粒径は、 電子顕微鏡 で写真撮影した後、 JIS G 0552に示される鋼のフェライト結晶粒度試験方法の切 断法に準拠して求めた。
なお、 dsは、 鋼板表層部、 すなわち鋼板のおもて面側から板厚の 1/4位置まで の領域およびうら面側から板厚の 1/4位置までの領域について求めたフェライト の平均結晶粒径である。 また、 dc は、 鋼板のおもて面側およびうら面側の 1/4 位置から板厚中心位置まで、 すなわち全厚の 1/2にわたる鋼板中心部について求 めたフェライ卜の平均結晶粒径である。
(2) 表面粗さ
熱延鋼板の圧延方向に対して 90° の方向の表面粗さを、 JIS B 0601 に準拠し て、 算術平均粗さ Raとして求めた。
(3) 引張り特性
酸洗後の熱延鋼板の圧延方向に対し 90° の方向より採取した JIS 5号引張試 験片を用い、 引張り試験を行って求めた。
(4) 耐型かじり性
耐型かじり性は、 直径: 33mmの円筒ポンチを使用して、 防鲭油を塗布した鋼板 について、 絞り比 =1.8 の円筒絞り成形を行い、 成形した鋼板について、 金型と のかじり状況を調査し、 目視による 0から 5までの 6段階評点方式で評価した。 なお、 この評点は、 その値が小さいほど優れた結果を示し、 2 以下であれば問題 のないレベルといえる。
(5) 耐疲労特性
完全両振りの平面曲げ疲労試験(HSZ 2275)に準拠し、 107回繰り返し負荷後、 破断しない応力を疲労強度 CTWとして、 疲労強度 CTWと引張り強さ TSとの比であ る耐久比 crwZTSを求めることにより評価した。なお、 この耐久比 (JwZTSは、そ の値が大きいほど曲げ乇一ドでの耐疲労特性が良好であり、目標値は 0.55以上で ある。
(6) 化成処理性
化成処理性は、 試験材である鋼板 (質量 Wo) を、 洗浄 ·脱脂後、 化成剤 (り ん酸亜鉛溶液) を含む溶液中に一定時間浸漬し、 さらに洗浄後、 質量 (W) を測 定し、 りん酸亜鉛結晶の付着による単位面積当たりの質量増加分 (W— WQ;)、 す なわち化成被膜重量を算出することにより評価した。 目標値は、 2. 0g/m2以上であ る。
表 1
Figure imgf000019_0001
製 造 条 件
Ar 3
No. 鋼種 S R T F D T T 1 t 1 T 2 C R 2 C T -100 + 50 備考
CC) CC) (°C/s) CC) (sec) CC) (°C/s) CC) CC) CO CC)
1 A 1100 900 45 710 4 700 25 500 780 880 930 発明例
2 A 1200 830 25 710 3 700 20 630 発明例
3 A 1200 870 25 730 5 700 25 550 発明例
4 A 1200 850 20 750 3 730 25 520 発明例
5 A 1100 900 20 700 3 690 25 500 比較例
6 A 1200 740 15 710 4 700 20 500 比較例
7 A 1200 850 25 720 7 700 30 450 比較例
8 A 1250 920 25 700 3 700 25 530 比較例
9 B 1100 880 50 710 4 700 30 500 760 860 910 発明例
10 B 1200 830 20 700 2 700 30 550 発明例
11 B 1100 920 50 700 3 690 25 500 比較例
12 B 1200 850 15 780 4 750 25 610 比較例
13 B 1200 840 20 750 2 740 10 720 比較例
14 B 1200 810 25 680 10 630 20 520 比較例
15 B 1200 850 20 750 35 700 25 500 比較例
(注) SRT:スラブ加熱温度、 F D T:仕上げ圧延終了温度、 C R 1 :圧延後の冷却速度 (FDTから T 1ま での平均冷却速度)、 T1:圧延後の冷却終了温度、 1 1:滞留時間、 T2:滞留処理の終了温度、 C R 2 :滞留処理後の冷却速度 (T 2から CTまでの平均冷却速度) 、 C T :コイル巻取り温度
t
O
Figure imgf000021_0001
(注) SRT:スラフ'加熱温度、 FDT:仕上げ圧延終了温度、 CR 1 :圧延後の冷却速度 (FDTから T 1まで の平均冷却速度)、 T1:圧延後の冷却終了温度、 t l :滞留時間、 T2:滞留処理の終了温度、 CR 2 : 滞留処理後の冷却速度 (T 2から CTまでの平均冷却速度) 、 CT :コイル巻取り温度
CO
Figure imgf000022_0001
(注)第 2相組織 M:マルテンサ仆相、 B—べィナイ卜相、 P:パーラ仆相
00
DO
Figure imgf000023_0001
(注) 第 2相組織 M :マルテンサイト相、 B—ベイナ仆相、 Ρ··パーライト相
表 3に示したとおり、 この発明に従い得られた発明例はいずれも、 引張り強さ TSが 590MPa以上で、 降伏比 YRが 70%よりも小さく、 また他の鋼に比して、 耐型 かじり性および耐疲労特性に優れ、 さらには化成処理性も良好であった。
なお、 表には示していないが、 発明例はいずれも、 溶接性に問題がないことも 確認されている。
産業上の利用可能性
かくして、 この発明によれば、 優れた耐型かじり性および盲疲労特性を有し、 さらにはィ匕成処理性など他の特性にも優れた高張力鋼板を安定して得ることがで きる。

Claims

請 求 の 範 囲
1. C: 0.02 mass%以上 0.2mass%以下、
Si: 0.2 mass%以上 1.2inass%以下、
Mn: 1.0 mass%以上 3.0mass%以下、
Mo: 0.1 mass%以上 1.0mass%以下、
A1: 0.01 mass%以上 0. lmass%以下、
P : 0.03mass%以下および
S : 0.01mass%以下
を含有し、 残部は Feおよび不可避的不純物の組成になり、
フェライトを 55vol%以上含有すると共に、 マルテンサイトを 10 vol%以上 40vol%以下含有し、 両者の合計が 95 vol%以上となる鋼組織を有し、
鋼板表面から板厚 1/4位置までの領域におけるフェライ卜の平均結晶粒径 ds と、板厚 1/4位置から板厚中心までの領域におけるフェライトの平均結晶粒径 dc との比 dsZdcが、 0.3く ds/dc^l.Oで、 かつ
表面粗さが、算術平均粗さ Raで 1.5 m以下であることを特徴とする耐型かじ り性および耐疲労特性に優れた高張力熱延鋼板。
2. C: 0.02 niass%以上 0.2mass%以下、
Si: 0.2 mass%以上 1.2mass%以下、
Mn: 1.0 mass%以上 3.0mass%以下、
Mo: 0.1 mass%以上 1.0mass%以下、
A1: 0.01 mass%以上 0. lmass%以下、
P: 0.03mass%以下および
S : 0.01mass%以下
を含有し、 さらに、
Cr: 0.3mass%以下、 Ca: 0.001 mass%以上 0.005mass%以下および
REM: 0.001 mass%以上 0.005mass%以下
から選ばれる少なくとも 1種を含有し、残部は Feおよび不可避的不純物の組成に なり、
フェライトを 55vol%以上含有すると共に、 マルテンサイトを 10vol%以上 40 vol %以下含有し、 両者の合計が 95 vol %以上となる鋼組織を有し、
鋼板表面から板厚 1/4位置までの領域におけるフェライトの平均結晶粒径 ds と、板厚 1/4位置から板厚中心までの領域におけるフェライトの平均結晶粒径 dc との比 ds/dcが、 0.3く ds/dc≤1.0で、 かつ
表面粗さが、算術平均粗さ Raで 1.5 m以下であることを特徴とする耐型かじ り性および耐疲労特性に優れた高張力熱延鋼板。
3. C: 0.02 mass%以上 0.2mass%以下、
Si: 0.2 mass%以上 1.2mass%以下、
Mn: 1.0 mass %以上 3.0mass%以下、
Mo: 0.1 mass%以上 1.0mass%以下、
A1: 0.01 mass%以上 0. lmass%以下、
P : 0.03mass%以下および
S : 0.01mass%以下
を含有し、 残部は Feおよび不可避的不純物の組成になる鋼スラブを素材として、 仕上げ圧延終了温度を表面温度で(Ar3—100°C)以上 Ar3未満とする熱間圧延を行 つた後、 750°C以下 700°C以上まで冷却し、ひきつづきこの温度範囲で 2秒以上 30 秒以下滞留させた後、冷却して 650°C以下 500°C以上で巻き取ることを特徴とする 耐型かじり性および耐疲労特性に優れた高張力熱延鋼板の製造方法。
4. C: 0.02 mass%以上 0.2mass%以下、
Si: 0.2 mass%以上 1.2mass%以下、
Mn: 1.0 mass%以上 3.0mass%以下、 Mo: 0.1 mass%以上 1. Omass%以下、
Al: 0.01 mass%以上 0. lmass%以下、
P : 0.03mass%以下および
S : 0.01ma'ss%以下
を含有し、 さらに、
Cr: 0.3mass%以下、
Ca: 0.001 mass%以上 0.005mass%以下および
REM: 0.001 mass%以上 0.005mass%以下
から選ばれる少なくとも 1種を含有し、残部は Feおよび不可避的不純物の組成に なる鋼スラブを素材として、 仕上げ圧延終了温度を表面温度で (Ar3— 100°C) 以 上 Ar3未満とする熱間圧延を行った後、 750°C以下 700°C以上まで冷却し、 ひきつ づきこの温度範囲で 2秒以上 30秒以下滞留させた後、 冷却して 650°C以下 500°C 以上で巻き取ることを特徴とする耐型かじり性および耐疲労特性に優れた高張力 熱延鋼板の製造方法。
5. C : 0.02 mass%以上 0.2mass%以下、
Si: 0.2 mass%以上 1.2mass%以下、
Mn: 1.0 mass%以上 3.0mass%以下、
Mo: 0.1 mass%以上 1. (Mass %以下、
A1: 0.01 mass%以上 0. lmass%以下、
P : 0.03mass%以下および
S : 0.01mass%以下
を含有し、 残部は Feおよび不可避的不純物の組成になる鋼スラブを素材として、 スラブ加熱温度を 1100°C以下とし、 仕上げ圧延終了温度を表面温度で (Ar3— 100°C) 以上 (Ar3+50°C) 以下とする熱間圧延を行った後、 40で/ s以上の冷却 速度で 750°C以下 700°C以上まで冷却し、 ひきつづきこの温度範囲で 2秒以上 30 秒以下滞留させた後、冷却して 650°C以下 500°C以上で巻き取ることを特徴とする 耐型かじり性および耐疲労特性に優れた高張力熱延鋼板の製造方法。
6. C : 0.02 mass%以上 0.2mass%以下、
Si: 0.2 33%以上1.211^33%以下、
Mn: 1.0 mass%以上 3.0mass%以下、
θ: 0.1 11^3%以上1. (]11&33%以下、
A1: 0.01 mass%以上 0. lmass%以下、
P : 0.03mass%以下および
S : 0.01mass%以下
を含有し、 さらに、
Cr: 0.3mass%以下、
Ca: 0.001 mass%以上 0.005mass%以下および
REM: 0.001 mass%以上 0.005mass%以下
から選ばれる少なくとも 1種を含有し、残部は Feおよび不可避的不純物の組成に なる鋼スラブを素材として、 スラブ加熱温度を 1101TC以下とし、 仕上げ圧延終了 温度を表面温度で (Ar3_100°C) 以上 (Ar3+50°C) 以下とする熱間圧延を行った 後、 40°C/s以上の冷却速度で 750°C以下 700°C以上まで冷却し、ひきつづきこの 温度範囲で 2秒以上 30秒以下滞留させた後、 冷却して 650°C以下 500°C以上で巻 き取ることを特徴とする耐型かじり性および耐疲労特性に優れた高張力熱延鋼板 の製造方法。 '
PCT/JP2002/005024 2001-06-07 2002-05-23 High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics WO2002101099A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60238118T DE60238118D1 (de) 2001-06-07 2002-05-23 Hochzugfestes warmgewalztes stahlblech mit hervorragender formwerkzeug-verschleissfestigkeit und ermüdungsfestigkeit
US10/479,637 US7485194B2 (en) 2001-06-07 2002-05-23 High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics
KR1020037000867A KR100859303B1 (ko) 2001-06-07 2002-05-23 내형갤링성 및 내피로특성이 우수한 고장력 열연강판 및그 제조방법
EP02778909A EP1394276B1 (en) 2001-06-07 2002-05-23 High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-171955 2001-06-07
JP2001171955 2001-06-07
JP2002-133843 2002-05-09
JP2002133843A JP4062961B2 (ja) 2001-06-07 2002-05-09 耐型かじり性および耐疲労特性に優れた高張力熱延鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2002101099A1 true WO2002101099A1 (en) 2002-12-19

Family

ID=26616479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005024 WO2002101099A1 (en) 2001-06-07 2002-05-23 High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics

Country Status (7)

Country Link
US (1) US7485194B2 (ja)
EP (1) EP1394276B1 (ja)
JP (1) JP4062961B2 (ja)
KR (1) KR100859303B1 (ja)
CN (1) CN1237189C (ja)
DE (1) DE60238118D1 (ja)
WO (1) WO2002101099A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502272B2 (ja) * 2005-12-14 2010-07-14 株式会社神戸製鋼所 加工性および疲労特性に優れる熱延鋼板及びその鋳造方法
US20140202677A1 (en) * 2011-09-16 2014-07-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Original plate material for heat-exchanging plate and heat-exchanging plate using the same
DE102013004905A1 (de) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl
JP6219199B2 (ja) * 2014-02-27 2017-10-25 株式会社神戸製鋼所 熱交換用プレートとなる元板材、及びその元板材の製造方法
JP5707547B1 (ja) * 2014-03-07 2015-04-30 株式会社宝機材 高張力鋼グレーチングにおける主部材の選択方法
EP3124654B1 (en) * 2014-03-28 2020-07-29 Abel Co., Ltd. Stainless steel plate
JP2015169071A (ja) * 2014-10-15 2015-09-28 株式会社宝機材 高張力鋼グレーチングの製造方法
JP6179584B2 (ja) * 2015-12-22 2017-08-16 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法
EP3584337B1 (en) * 2017-02-17 2020-12-23 JFE Steel Corporation High strength hot-rolled steel sheet and method for producing same
EP3831972B1 (en) 2018-07-31 2023-04-05 JFE Steel Corporation High-strength hot-rolled steel sheet and method for manufacturing same
DE102020134719A1 (de) 2020-12-22 2022-06-23 Aktiebolaget Skf Verfahren zum Herstellen eines Zielobjekthalters für eine Sensorlagereinheit und zugehörige Sensorlagereinheit
DE102020134720A1 (de) * 2020-12-22 2022-06-23 Aktiebolaget Skf Verfahren zum Herstellen eines Zielobjekthalters für eine Sensorlagereinheit
CN115558760A (zh) * 2022-09-14 2023-01-03 首钢京唐钢铁联合有限责任公司 一种降低电镀锌板表面色差缺陷的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145717A (ja) * 1986-12-09 1988-06-17 Kobe Steel Ltd 低降伏比高張力鋼板の製造方法
JPH0699202A (ja) 1992-09-21 1994-04-12 Kawasaki Steel Corp プレス成形性に優れた高張力薄鋼板
JPH06264185A (ja) * 1993-03-09 1994-09-20 Sumitomo Metal Ind Ltd 疲労特性の優れた熱延鋼板およびその製造方法
JPH07150291A (ja) 1993-12-01 1995-06-13 Kobe Steel Ltd 疲労特性に優れた加工用高強度熱延鋼板
JPH09118918A (ja) 1995-10-23 1997-05-06 Kawasaki Steel Corp 摺動性および延性に優れる熱延鋼板ならびにその製造方法
JPH09143612A (ja) 1995-11-21 1997-06-03 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
JPH10195588A (ja) 1996-12-27 1998-07-28 Kawasaki Steel Corp 成形性と耐衝突特性に優れる熱延高張力鋼板およびその製造方法
JPH11100641A (ja) * 1997-09-29 1999-04-13 Kawasaki Steel Corp 耐衝突特性と成形性に優れる複合組織熱延鋼板およびその製造方法
JPH11279693A (ja) * 1998-03-27 1999-10-12 Nippon Steel Corp 焼付硬化性に優れた良加工性高強度熱延鋼板とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4466842A (en) * 1982-04-03 1984-08-21 Nippon Steel Corporation Ferritic steel having ultra-fine grains and a method for producing the same
JPH0949026A (ja) 1995-08-07 1997-02-18 Kobe Steel Ltd 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法
JPH10176239A (ja) 1996-10-17 1998-06-30 Kobe Steel Ltd 高強度低降伏比パイプ用熱延鋼板及びその製造方法
JP3039862B1 (ja) * 1998-11-10 2000-05-08 川崎製鉄株式会社 超微細粒を有する加工用熱延鋼板
EP1195447B1 (en) 2000-04-07 2006-01-04 JFE Steel Corporation Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145717A (ja) * 1986-12-09 1988-06-17 Kobe Steel Ltd 低降伏比高張力鋼板の製造方法
JPH0699202A (ja) 1992-09-21 1994-04-12 Kawasaki Steel Corp プレス成形性に優れた高張力薄鋼板
JPH06264185A (ja) * 1993-03-09 1994-09-20 Sumitomo Metal Ind Ltd 疲労特性の優れた熱延鋼板およびその製造方法
JPH07150291A (ja) 1993-12-01 1995-06-13 Kobe Steel Ltd 疲労特性に優れた加工用高強度熱延鋼板
JPH09118918A (ja) 1995-10-23 1997-05-06 Kawasaki Steel Corp 摺動性および延性に優れる熱延鋼板ならびにその製造方法
JPH09143612A (ja) 1995-11-21 1997-06-03 Kobe Steel Ltd 降伏比の低い高強度熱延鋼板部材
JPH10195588A (ja) 1996-12-27 1998-07-28 Kawasaki Steel Corp 成形性と耐衝突特性に優れる熱延高張力鋼板およびその製造方法
JPH11100641A (ja) * 1997-09-29 1999-04-13 Kawasaki Steel Corp 耐衝突特性と成形性に優れる複合組織熱延鋼板およびその製造方法
JPH11279693A (ja) * 1998-03-27 1999-10-12 Nippon Steel Corp 焼付硬化性に優れた良加工性高強度熱延鋼板とその製造方法

Also Published As

Publication number Publication date
CN1514883A (zh) 2004-07-21
JP2003055740A (ja) 2003-02-26
US7485194B2 (en) 2009-02-03
US20040231393A1 (en) 2004-11-25
EP1394276B1 (en) 2010-10-27
DE60238118D1 (de) 2010-12-09
EP1394276A1 (en) 2004-03-03
EP1394276A4 (en) 2006-01-18
KR20030015890A (ko) 2003-02-25
CN1237189C (zh) 2006-01-18
JP4062961B2 (ja) 2008-03-19
KR100859303B1 (ko) 2008-09-19

Similar Documents

Publication Publication Date Title
CN109642288B (zh) 高强度钢板及其制造方法
TWI429759B (zh) 加工性和耐衝擊特性優異之高強度熔融鍍鋅鋼板及其製造方法
TWI409343B (zh) 成形性優異之高強度冷軋鋼板及高強度熔融鍍鋅鋼板暨其等之製造方法
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
KR101225246B1 (ko) 성형성이 우수한 자동차용 고강도 냉연 복합조직강판 및 그 제조 방법
WO2001092593A1 (fr) Tole d&#39;acier laminee a froid presentant d&#39;excellentes proprietes de rheodurcissement par vieillissement, et procede de production
WO2013114850A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
JP2008291304A (ja) 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法
WO2011152017A1 (ja) 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
CN114686777A (zh) 具有良好耐老化性的扁钢产品及其制造方法
WO2013084478A1 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板の製造方法
JP6079726B2 (ja) 高強度鋼板の製造方法
WO2012060294A1 (ja) 深絞り性および焼付硬化性に優れる高強度冷延鋼板とその製造方法
JP6795122B1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2016157258A1 (ja) 高強度鋼板およびその製造方法
WO2022172540A1 (ja) 高強度鋼板およびその製造方法
JP4062961B2 (ja) 耐型かじり性および耐疲労特性に優れた高張力熱延鋼板およびその製造方法
CN116507753A (zh) 延展性优异的超高强度钢板及其制造方法
CN116848282A (zh) 热成型用钢材、热成型部件及它们的制造方法
JP2003073775A (ja) 形状凍結性と成形後の耐久疲労特性に優れた高張力熱延鋼板およびその製造方法
JP5310920B2 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板
JP5071125B2 (ja) 角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板およびその製造方法ならびに製品形状に優れた自動車用部品
CN117751204A (zh) 冷轧钢板及其制造方法
JP6780804B1 (ja) 高強度鋼板およびその製造方法
JP4826694B2 (ja) 薄鋼板の耐疲労特性改善方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020037000867

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037000867

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002778909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 028113721

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002778909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10479637

Country of ref document: US