WO2002099901A1 - Method for manufacturing group-iii nitride compound semiconductor device - Google Patents

Method for manufacturing group-iii nitride compound semiconductor device Download PDF

Info

Publication number
WO2002099901A1
WO2002099901A1 PCT/JP2002/005431 JP0205431W WO02099901A1 WO 2002099901 A1 WO2002099901 A1 WO 2002099901A1 JP 0205431 W JP0205431 W JP 0205431W WO 02099901 A1 WO02099901 A1 WO 02099901A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
layer
electrode
compound semiconductor
iii nitride
Prior art date
Application number
PCT/JP2002/005431
Other languages
English (en)
French (fr)
Inventor
Toshiya Uemura
Original Assignee
Toyoda Gosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co., Ltd. filed Critical Toyoda Gosei Co., Ltd.
Priority to KR10-2003-7015853A priority Critical patent/KR100538199B1/ko
Priority to EP02730877A priority patent/EP1394866A4/en
Priority to US10/479,485 priority patent/US7101780B2/en
Publication of WO2002099901A1 publication Critical patent/WO2002099901A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a group III nitride compound semiconductor device.
  • the present invention is suitable as an improvement for an electrode of a group III nitride compound semiconductor light emitting device such as a blue light emitting diode.
  • a translucent electrode is attached to the P-type layer so that current is injected over a wide area of the p-type layer.
  • the light-transmitting electrode is formed by laminating a second electrode layer (for example, Au) on the first electrode layer (for example, Co) to form a light-transmitting electrode forming layer.
  • the heat treatment is performed at a temperature of 00 to 600 ° C.
  • the light-transmitting electrode forming layer and the p-type layer are alloyed, and an limiter contact is secured between the two.
  • the distribution of the constituent elements of the first electrode layer changes.
  • the p seat electrode is formed by laminating a plurality of electrode layers (for example, Cr and Au are sequentially laminated from the lower side), but high-temperature heat treatment is performed in an atmosphere containing oxygen. Then, the lower metal layer partially moved to the surface, where segregation was observed. In this case, there is a possibility that an error may occur in image processing (recognizing the p seat electrode) at the time of wire-to-bonding, in addition to a decrease in the bonding strength to the conductive wire. Disclosure of the invention
  • the present invention has been made to solve the above-mentioned problems, and has the following configuration.
  • a first metal is laminated on a p-type layer made of a group III nitride compound semiconductor to form a first electrode layer, and a second metal having an ionization potential higher than that of the first metal is formed.
  • a method for producing a group III nitride compound semiconductor device comprising:
  • a sufficient limiter contact can be secured between the electrode formed by laminating the first electrode layer and the second electrode layer: and the mold layer. Even when, for example, a p-base electrode is formed on the electrode, the heat treatment condition in an atmosphere containing oxygen is performed at a low temperature (mild condition), so that the oxidation of the p-base electrode surface and the p-base electrode are performed. It is possible to prevent migration of the underlying metal layer and segregation on its surface.
  • FIG. 1 illustrates a layer structure of a light emitting device according to an embodiment of the present invention.
  • FIG. 2 illustrates the layer configuration of the electrodes of the light emitting element of the example.
  • a group III nitride compound semiconductor has a general formula of A 1 X G a ⁇ ⁇ - ⁇ - ⁇ ⁇ (0 ⁇ 1, 0 ⁇ ⁇ 1, 0 ⁇ 0 + ⁇ 1) A 1 ⁇ ,
  • At least a part of the group III elements may be replaced with boron (B), thallium (T1), etc., and at least a part of nitrogen (N) may be substituted with phosphorus (P), arsenic (As), antimony. (S b), bismuth (B i), etc.
  • the group III nitride-based compound semiconductor layer may include any dopant.
  • Si, Ge, Se, Te, C and the like can be used as the n-type impurities.
  • Mg, Zn, Be, Ca, Sr, Ba and the like can be used as the p-type impurity. It is possible, but not essential, to expose the group III nitride compound semiconductor to electron beam irradiation, plasma irradiation, or heating by a furnace after doping with the p-type impurity.
  • the method of forming the group III nitride compound semiconductor layer is not particularly limited.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • HVPE halide vapor deposition
  • group III nitride-based compound semiconductor devices include light-emitting diodes, light-receiving diodes, laser diodes, photovoltaic devices such as solar cells, rectifiers, bipolar devices such as thyristors and transistors, and unipolar devices such as FETs. Examples include electronic devices such as microwave elements.
  • the present invention is also applied to a laminate as an intermediate of these devices.
  • the light-emitting element can have a homo structure, a hetero structure, or a double hetero structure. Furthermore, a quantum well structure (single quantum well structure or multiple quantum well structure) can be adopted.
  • the electrode layer formed on the P-type layer is not particularly limited as long as the ionization potential of the second electrode layer constituent element is higher than that of the first electrode layer constituent element.
  • the constituent element of the first electrode layer is an element having a lower ionization potential than the constituent element of the second electrode layer, and the constituent element of the second electrode layer has an ohmic property to a semiconductor. It is preferable that the element be a better element than the constituent element of the first electrode layer. Due to the first heat treatment containing oxygen, the element distribution in the depth direction from the surface of the semiconductor is such that the constituent elements of the second electrode layer penetrate deeper than the constituent elements of the first electrode layer. . That is, the element distribution of the electrode layer is inverted with respect to the distribution at the time of forming the electrode layer. After the formation of the electrode layer, the constituent elements of the second electrode layer formed on the upper side are on the lower side, and the constituent elements of the first n-electrode layer formed on the lower side are on the upper side.
  • the constituent elements of the first electrode layer are nickel (Ni), coparte (Co), iron (Fe), copper (Cu), chromium (Cr), tantalum (Ta), vanadium (V), manganese (Mn ), Aluminum (Al), and silver (Ag), and have a thickness of 0.5 to 15 nm.
  • the constituent element of the second electrode layer is at least one element of palladium (Pd), gold (Au), iridium (Ir), and platinum (Pt), and has a film thickness of 3.5 to 25 nm. You.
  • the constituent element of the first electrode layer is Co
  • the constituent element of the second electrode layer is Au. In this case, due to the heat treatment, the element distribution in the depth direction from the surface of the semiconductor has a distribution in which Au penetrates deeper than Co.
  • the material for forming the p-pedestal electrode is not particularly limited.For example, a Cr layer as the first metal layer, an Au layer as the second metal layer, and an A1 layer as the third metal layer are sequentially laminated from below. Structure.
  • the first metal layer is an element having a lower ionization potential than the second metal layer so that the first metal layer can be firmly bonded to a layer below the first metal layer.
  • the second metal layer is an element that has good bonding properties with A1 or Au and does not react with the translucent electrode.
  • the third metal layer is preferably made of an element that can be firmly bonded to the protective film.
  • the constituent elements of the first metal layer are nickel (Ni), iron (Fe), copper (Cu), chromium (Cr), tantalum (Ta), vanadium (V), manganese (Mn), cobalt ( Co) is at least a kind of element, and its film thickness is 1 to 300 nm.
  • the constituent element of the third metal layer is at least one element of aluminum (Al), nickel (Ni), and titanium (Ti), and has a thickness of 1 to 30 nm.
  • the constituent element of the second metal layer is gold (Au), and its thickness is set to 0.3 to 3 ⁇ m.
  • the auxiliary electrode can be formed of the same material and by the same method as the p seat electrode. In this case, the P trapping electrode and the pedestal electrode have the same thickness.
  • the pedestal electrode can also be formed separately.
  • the material and thickness of the P auxiliary electrode can be different from those of the p base electrode.
  • the shape of the P seat electrode is not particularly limited as long as it has a sufficient area for bonding the conductive wire by a known method. In order to confirm the position at the time of bonding, it is preferable to adopt a shape different from that of the n pedestal electrode as the p pedestal electrode.
  • the width of the P auxiliary electrode is preferably 1 to 40 x m. It is more preferably 2 to 30 / zm, still more preferably 3 to 25 Aim, still more preferably 3 to 20 ⁇ m, and most preferably 5 to 15 ⁇ m. is there.
  • the peripheral surface of the pedestal electrode is preferably inclined.
  • the first heat treatment step is performed in an atmosphere containing substantially oxygen.
  • the following gases are preferably used. That is, the gas containing oxygen, 0 2, 0 3, C0 , C0 2, N0, N 2 0, N0 2, or may be at least one or these mixed gas of H 2 0. Or, 0 2, 0 3, C0 , C0 2, N0, N 2 0, N0 2, or a mixed gas of at least one inert gas H 2 0, or, 0 2, 0 3, C0 , C0 2, N0, N 2 0, N0 2, or may be a mixed gas of a mixed gas of H 2 0 and an inert gas.
  • a gas containing oxygen means a gas of an oxygen atom or a molecule having an oxygen atom. You. Among them, an oxidizing gas atmosphere is preferable.
  • the pressure of the atmosphere at the time of the heat treatment may be at least the pressure at which the gallium nitride-based compound semiconductor does not thermally decompose at the heat treatment temperature.
  • Gas containing oxygen, 0 2 when only the used gas may be introduced at a pressure above the decomposition pressure of nitride Gariumu based compound semiconductor, when used in admixture with other inert gases, All gas and pressure on the decomposition pressure of nitride Gariumu based compound semiconductor, 0 2 gas is sufficient I have proportion of not less than about 1 0 6 for all gases. In short, a very small amount of oxygen-containing gas is sufficient.
  • the upper limit of the amount of the gas containing oxygen is not particularly limited from the viewpoint of electrode alloying characteristics.
  • the heat treatment temperature is preferably lower than 450 ° C. When the heat treatment temperature is equal to or higher than 450 ° C., the above-described problem may occur. A more preferred heat treatment temperature is less than 420 ° C, even more preferably less than 400 ° C.
  • the heat treatment time is not particularly limited as long as migration can occur between the first electrode layer and the second electrode layer, but is preferably 5 minutes to 100 minutes.
  • the time is more preferably from 10 minutes to 500 minutes, and still more preferably from 30 minutes to 300 minutes.
  • the second heat treatment step is performed in an atmosphere containing substantially no oxygen. That is, the heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere without using the oxygen-containing gas used in the first heat treatment step. Specifically, the heat treatment is preferably performed in an inert gas such as N 2 , He, or Ar, a reducing gas such as 3 ⁇ 4, or a mixed gas thereof.
  • an inert gas such as N 2 , He, or Ar
  • a reducing gas such as 3 ⁇ 4, or a mixed gas thereof.
  • the heat treatment temperature is higher than the heat treatment temperature in the first heat treatment step. Thereby, an ohmic contact is obtained between the electrode layer and the p-type layer. If the high-temperature heat treatment is omitted, ohmic contact cannot be obtained between the two (see Table 1, Comparative Example 3). Therefore, the heat treatment conditions required in the second heat treatment step are that the heating temperature and heating time are sufficient to secure ohmic contact between the electrode layer and the p-type layer. It is.
  • the heat treatment temperature is preferably 440 ° C or higher, more preferably 480 ° C or higher, and even more preferably 520 ° C or higher.
  • the heat treatment time is preferably from 0.1 minute to 180 minutes.
  • the time is more preferably from 0.3 minutes to 60 minutes, and even more preferably from 0.5 minutes to 30 minutes.
  • the pressure of the atmosphere in the second heat treatment step may be at least the pressure at which the group II nitride-based compound semiconductor is not thermally decomposed at the heat treatment temperature.
  • the order of performing the first heat treatment step and the second heat treatment step is not particularly limited. Gradually increase the heat treatment temperature in an atmosphere containing an oxygen-containing gas (No.
  • the supply of the oxygen-containing gas may be stopped, and the second heat treatment may be performed from there.
  • Layer including light-emitting layer 4 Layer including InGaN layer
  • Buffer layer 2 On the A1N substrate 1, an n-type layer 3 made of GaN doped with n-type impurities and Si was formed via the buffer layer 2.
  • sapphire was used for the substrate 1, but it is not limited to this, and sapphire, spinel, silicon, silicon carbide, zinc oxide, gallium phosphide, gallium arsenide, magnesium oxide, manganese oxide, III A group nitride-based compound semiconductor single crystal or the like can be used.
  • the buffer layer is formed by MOCVD using A 1 N, but is not limited to this. Examples of materials include GaN, InN, AlGaN, InGaN, and A1N. Use I n G a N etc.
  • MBE molecular beam crystal growth
  • HVPE halide vapor phase epitaxy
  • sputtering ion plating, electron shower, etc.
  • the buffer layer can be omitted.
  • the substrate and the buffer layer can be removed after forming the semiconductor element, if necessary.
  • the n-type layer is formed of G a N, but A 1 G a N, 1 10 & 1 ⁇ or 11 n G a N can be used.
  • the n-type layer is doped with Si as an n-type impurity, but Ge, Se, Te, C, etc. can be used as the n-type impurity.
  • the n-type layer 3 can have a two-layer structure including a low electron concentration n ⁇ layer on the layer 4 side including the light emitting layer and a high electron concentration n + layer on the buffer layer 2 side.
  • the layer 4 including a light emitting layer may include a light emitting layer having a quantum well structure, and the structure of the light emitting element may be a single hetero type, a double hetero type, or a homo junction type.
  • Mold layer 5 may include a wide bandgap group III nitride compound semiconductor layer doped with an acceptor such as magnesium. This is because the electrons injected into layer 4 including the emitting layer! This is to effectively prevent diffusion into the mold layer 5.
  • a p- type layer 5 made of GaN doped with Mg as a p-type impurity was formed on the layer 4 including the light emitting layer.
  • the p-type layer may be made of AlGaN, InGaN or InAlGaN, and the p-type impurities may be Zn, Be, Ca, Sr, B a can also be used.
  • the p-type layer 5 can have a two-layer structure including a low hole concentration p ⁇ layer on the layer 4 side including a layer emitting light and a high hole concentration P + layer on the electrode side.
  • each group III nitride compound semiconductor layer is formed by MOCVD under general conditions.
  • the force is formed by molecular beam crystal growth (MBE), halide vapor deposition (HVPE). Method), sputtering method, ion plating method, electron It can also be formed by a method such as a shower method.
  • a Co layer (1.5 nm) 61 as the first electrode layer and an Au layer (60 nm) 62 as the second electrode layer are sequentially laminated on the entire surface of the wafer by a vapor deposition apparatus.
  • a photoresist is applied uniformly, and the photo-resist is removed from the n-electrode-forming surface 11 and its surroundings by approximately 10 ⁇ width (clearance region) by photolithography, and the portion is etched.
  • the transparent electrode forming materials 61 and 62 are removed to expose the ⁇ -type layer 5. After that, the photoresist is removed.
  • a Cr layer (30 nm) 71, an Au layer (1.5 xm) 72 and an A1 layer (10 nm) 73 are sequentially deposited and laminated to form a p seat electrode forming layer 70.
  • vanadium and aluminum are sequentially laminated, and the n-electrode forming layer is similarly formed by the lift-off method.
  • the sample obtained as described above was heat-treated under the following conditions.
  • Example 1 Kensuke 60 o 2 (1%) ⁇ 2 500 10 ⁇ 2 Low 100 O O
  • the level of the contact resistance is based on the voltage of the device when 2 O mA is applied.
  • the W / B property (wire bonding property) was evaluated based on the ball shear strength.
  • the external appearance was evaluated by observing the surface of the p-pedestal electrode with a microscope. The case where the surface was uniform and homogeneous was rated as ⁇ , and the case where Cr segregation was observed was rated as ⁇ .
  • the first heat treatment is performed at a relatively low temperature in an atmosphere substantially containing oxygen, and the heat treatment is performed at a relatively high temperature in an atmosphere substantially free of oxygen (preferably a reducing atmosphere).
  • the second heat treatment step in any order, both wire bonding characteristics and appearance are improved while maintaining low contact resistance as in Comparative Example 1 (conventional method). You can see that.
  • the present invention by performing the two-step heat treatment proposed in the present invention, it is possible to maintain the ohmic contact between the p-type layer made of a group III nitride-based compound semiconductor and the light-transmitting electrode while maintaining the p-type base.
  • the surface of the electrode is oxidized and the bonding strength between this and the conductive wire is low. It can be prevented from falling down.
  • the present invention is not limited to the description of the embodiment and the example of the above invention. Various modifications are included in the present invention without departing from the scope of the claims and within the scope of those skilled in the art. The following items are disclosed below.
  • a light-transmissive electrode forming layer comprising a second electrode layer comprising:
  • the electrode forming step further includes a step of forming a p-pedestal electrode.
  • the first metal is cobalt (Co), and the second metal is gold (Au).
  • the heat treatment method according to any one of 11 to 16.
  • a first electrode layer containing a first metal is laminated on a p-type layer made of a group III nitride compound semiconductor, and a second metal having a higher ionization potential than the first metal
  • a second electrode layer containing the following was laminated on the first electrode layer to form a light-transmitting electrode forming layer, and the light-transmitting electrode forming layer was heat-treated by the following two heat treatment steps.
  • Group III nitride compound semiconductor light emitting device
  • the group III nitride-based compound semiconductor device according to any one of 21 to 25, wherein the electrode forming step further includes a step of forming a p seat electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

明 細 書
III族窒化物系化合物半導体素子の製造方法 技術分野
本発明は III族窒化物系化合物半導体素子に関する。 例えば、 青色系発光ダイ ォードなどの III族窒化物系化合物半導体発光素子の電極の改良として好適な発 明である。 背景技術
青色系発光ダイォードなどの III族窒化物系化合物半導体発光素子においては、 素子の全面から均一な発光を得るため種々の提案がなされている。
例えば、 P型層に透光性電極を貼って p型層の広範囲な面に渡って電流が注入 されるようにしている。 そのときの透光性電極は第 1の電極層 (例えば Co) の上 に第 2の電極層 (例えば Au) を積層して透光性電極形成層を形成し、 酸素を含む ガス中において 5 0 0〜6 0 0 °Cの温度で熱処理をする。 これにより、 透光性電 極形成層と p型層とが合金化され両者の間にォーミッタコンタクトが確保される こととなる。 なお、 このとき第 1の電極層の構成元素の分布が変化する。
本発明者らの検討によれば、 酸素を含む雰囲気において 5 0 0 °C以上の高い温 度で熱処理をすると、 ϊ>台座電極の表面状態が変化し、 導電性ワイヤーに対する 接合力の信頼性が低下する。
また、 透光性電極と同様に、 p台座電極も複数の電極層を積層して形成される が (例えば、 下側より Cr、 Auを順次積層する)、 酸素を含む雰囲気において高温 熱処理を実行すると、 下側の金属層が一部表面に移動し、 そこで偏析する場合が 見受けられた。 この場合、 導電性ワイヤーに対する接合力低下に加えて、 ワイヤ 一ボンディング時の画像処理 (p台座電極を認識する) に誤りが生じるおそれが ある。 発明の開示
この発明は上記の課題を解決すべくなされたものであり、 その構成は次の通り である。
III 族窒化物系化合物半導体からなる p型層の上に、 第 1の金属を積層して第 1の電極層を形成し、 前記第 1の金属よりも高いイオン化ポテンシャルを有する 第 2の金属を前記第 1の電極層の上に積層して第 2の電極層を形成する電極形成 工程と、
実質的に酸素を含む雰囲気において第 1の温度で熱処理をする第 1の熱処理ェ 程と、
実質的に酸素を含まない雰囲気において前記第 1の温度より高い第 2の温度で 熱処理をする第 2の熱処理工程と、
を含む、 III族窒化物系化合物半導体素子の製造方法。
この発明の製造方法によれば第 1の電極層と第 2の電極層とを積層してなる電 極と: 型層との間に十分なォーミッタコンタクトを確保できる。 当該電極の上に 例えば p台座電極が形成される場合においても、 酸素を含む雰囲気での熱処理条 件が低温 (穏やかな条件) で行われるため、 p台座電極表面の酸化、 および p台 座電極の下地金属層がマイグレーションを起こしてその表面に偏析することを未 然に防止できる。 図面の簡単な説明
図 1はこの発明の実施例の発光素子の層構成を説明する。
図 2は実施例の発光素子の電極の層構成を説明する。 発明を実施するための最良の形態
(III族窒化物系化合物半導体の説明)
この明細書において、 III族窒化物系化合物半導体は一般式として A 1 XG a γ η -χ-γ Ν (0≤Χ≤ 1 , 0≤ Υ≤ 1 , 0≤Χ + Υ≤ 1) で表され、 A 1 Ν、
G a Ν及ぴ I ηΝのいわゆる 2元系、 A l xG a i— ΧΝ、 Α ΐ χ ΐ ι^— ΧΝ及び G a x I n !_XN (以上において 0 < x < 1 ) のいわゆる 3元系を包含する。 III族 元素の少なくとも一部をボロン (B)、 タリウム (T 1) 等で置換しても良く、 ま た、窒素(N) の少なくとも一部もリン (P)、 ヒ素 (A s)、 アンチモン (S b)、 ビスマス (B i ) 等で置換できる。 III 族窒化物系化合物半導体層は任意のドー パントを含むものであっても良い。 n型不純物として、 S i、 G e、 S e、 T e、 C等を用いることができる。 p型不純物として、 Mg、 Z n, B e、 C a、 S r、 B a等を用いることができる。 なお、 p型不純物をドープした後に III族窒化物 系化合物半導体を電子線照射、 プラズマ照射若しくは炉による加熱にさらすこと も可能であるが必須ではない。 ΙΠ 族窒化物系化合物半導体層の形成方法は特に 限定されないが、 有機金属気相成長法 (MOCVD法) のほか、 周知の分子線結 晶成長法 (MBE法)、 ハライド気相成長法 (HVPE法)、 スパッタ法、 イオン プレーティング法、 電子シャワー法等によっても形成することができる。
ここに III族窒化物系化合物半導体素子には、 発光ダイオード、 受光ダイォー ド、 レーザダイオード、 太陽電池等の光素子の他、 整流器、 サイリスタ及びトラ ンジスタ等のバイポーラ素子、 F ET等のュニポーラ素子並びにマイクロウエー ブ素子などの電子デバイスを挙げられる。 また、 これらの素子の中間体としての 積層体にも本発明は適用されるものである。
なお、 発光素子の構成としては、 ホモ構造、 ヘテロ構造若しくはダブルへテロ 構造のものを用いることができる。 さらに量子井戸構造 (単一量子井戸構造若し くは多重量子井戸構造) を採用することもできる。
(電極層の説明)
P型層の上に形成される電極層は第 2の電極層構成元素のイオン化ポテンシャ ルが第 1の電極層構成元素のそれより高いものであれば特に限定されるものでは ない。 電極層に透光性を付与するときは、 以下に説明する金属元素を採用するこ とが好ましい。
第 1の電極層の構成元素は第 2の電極層の構成元素よりもイオン化ポテンシャ ルが低い元素であり、 第 2の電極層の構成元素は半導体に対するォーミック性が 第 1の電極層の構成元素よりも良好な元素とするのが望ましい。 酸素を含んだ第 1の熱処理により、 半導体の表面から深さ方向の元素分布は、 第 2の電極層の構 成元素の方が第 1の電極層の構成元素よりも深く浸透した分布となる。 即ち、 電 極層の元素分布が電極層の形成時の分布に対して反転している。 電極層の形成後 には、 上側に形成した第 2の電極層の構成元素の方が下側になり、 下側に形成し た第 1 n電極層の構成元素の方が上側に存在する。
望ましくは、第 1電極層の構成元素は、ニッケル (Ni)、 コパルト(Co)、鉄 (Fe)、 銅 (Cu)、 クロム(Cr)、 タンタル(Ta)、 バナジウム(V)、 マンガン(Mn)、 アルミユウ ム(Al)、 銀 (Ag)のうち少なくとも一種の元素であり、 その膜厚は 0 . 5〜1 5 n mとする。第 2電極層の構成元素は、パラジウム(Pd)、金 (Au)、ィリジゥム(Ir)、 白金(Pt)のうち少なくとも 1種の元素であり、 その膜厚は 3 . 5〜2 5 n mとす る。最も望ましくは、第 1電極層の構成元素は Coであり、 第 2電極層の構成元素 は Auである。 この場合には、熱処理により、半導体の表面から深さ方向の元素分 布は、 Coよりも Auが深く浸透した分布となる。
( P台座電極の説明)
p台座電極の形成材料も特に限定されるものではないが、 例えば下側から第 1 金属層として C r層、 第 2金属層として A u層及び第 3金属層として A 1層を順 次積層する構造とする。
第 1金属層はその下の層と強固に結合できるように、 第 2の金属層よりもィォ ン化ポテンシャルが低い元素とする。 第 2の金属層は A 1又は A uとのボンディ ング性が良好で、 かつ透光性電極と反応しない元素とする。 第 3金属層は保護膜 と強固に結合できる元素とすることが好ましい。
望ましくは、 第 1金属層の構成元素は、 ニッケル (Ni)、 鉄 (Fe)、 銅(Cu)、 クロ ム (Cr)、 タンタル(Ta)、 バナジウム(V)、 マンガン(Mn)、 コバルト (Co) のうち少 なくとも一種の元素であり、 その膜厚は 1〜3 0 0 n mである。
望ましくは、 第 3金属層の構成元素は、 アルミニウム(Al)、 ニッケル (Ni)、 チ タン(Ti)のうち少なくとも一種の元素であり、 その膜厚は 1〜 3 0 n mである。 望ましくは、 第 2金属層の構成元素は金 (Au)であり、 その膜厚は 0 . 3〜3 μ mでめる。
補助電極を p台座電極と同一材料でかつ同一方法により形成することができ る。 この場合、 P捕助電極と; 台座電極とは同一厚さとなる。
P補助電極と: 台座電極とを別個に形成することもできる。 この場合、 P補助 電極の材質及び厚さを p台座電極のそれと異ならせることもできる。
P台座電極は導電性ワイヤを周知の方法でボンデングするために十分な面積を 有すればその形状は特に限定されない。 ボンディング時の位置確認のためには、 p台座電極として n台座電極と異なる形状を採用することが好ましい。
P補助電極は光を遮蔽するので、 その幅を狭くすることが好ましい。 P補助電 極の幅は 1〜4 0 x mとすることが好ましい。 更に好ましくは 2〜3 0 /z mであ り、 更に更に好ましくは 3 ~ 2 5 Ai mであり、 更に更に更に好ましくは 3〜2 0 μ mであり、 最も好ましくは 5〜 1 5 μ mである。
P台座電極及び Z又は!)補助電極の周囲に HQ凸を設けて、 透光性電極との間の 接触面積を増大させることが好ましい。
台座電極の周面は傾斜していることが好ましい。 台座電極の周面をテーパ状 としておくことにより、 台座電極及び透光性電極の表面に形成される保護膜 (S i 0 2膜等) を当該テーパ状部にもほぼ設計膜厚通りに形成することが可能とな る。
(第 1の熱処理工程の説明)
第 1の熱処理工程は実質的に酸素を含む雰囲気において行われる。 酸素を含む 雰囲気を実現するため次のガスを用いることが好ましい。 即ち、 酸素を含むガス としては、 02、 03、 C0、 C02、 N0、 N20、 N02、 又は、 H20の少なくとも 1種又はこれ らの混合ガスを用いることができる。 又は、 02、 03、 C0、 C02、 N0、 N20、 N02、 又 は、 H20の少なくとも 1種と不活性ガスとの混合ガス、又は、 02、 03、 C0、 C02、 N0、 N20、N02、又は、 H20の混合ガスと不活性ガスとの混合ガスを用いることができる。 要するに酸素を含むガスは、 酸素原子、 酸素原子を有する分子のガスの意味であ る。 なかでも、 酸化性のガス雰囲気が好ましい。
熱処理時の雰囲気の圧力は、 熱処理温度において、 窒化ガリウム系化合物半導 体が熱分解しない圧力以上であれば良い。 酸素を含むガスは、 02ガスだけを用い た場合には、窒化ガリゥム系化合物半導体の分解圧以上の圧力で導入すれば良く、 他の不活性ガスと混合した状態で用いた場合には、 全ガスを窒化ガリゥム系化合 物半導体の分解圧以上の圧力とし、 02ガスは全ガスに対して 1 0—6程度以上の割 合を有しておれば十分である。 要するに、 酸素を含むガスは極微量存在すれば十 分である。 尚、 酸素を含むガスの導入量の上限値は電極合金化の特性からは、 特 に、 制限されるものではない。 要は、 製造が可能である範囲まで使用できる。 熱処理温度は 4 4 0 °C未満とすることが好ましい。 熱処理温度が 4 4 0 °C以上 となると、既述の課題が生じるおそれがある。更に好ましい熱処理温度は 4 2 0 °C 未満であり、 更に更に好ましくは 4 0 0 °C未満である。
熱処理時間は、 第 1の電極層と第 2の電極層との間にマイグレーションを生じ させることができれば特に限定されないが、 5分〜 1 0 0 0分とすることが好ま しい。 更に好ましくは、 1 0分〜 5 0 0分であり、 更に更に好ましくは 3 0分〜 3 0 0分である。
(第 2の熱処理工程の説明)
第 2の熱処理工程は実質的に酸素を含まない雰囲気において行われる。 即ち、 第 1の熱処理工程で用いた酸素含有ガスを用いずに、 非酸化性雰囲気もしくは還 元性雰囲気で熱処理を実行することが好ましい。 具体的には、 N2、 He、 Ar等の不 活性ガスや ¾等の還元性ガス、またはこれらの混合ガス中で熱処理を行うことが 好ましい。
熱処理温度は第 1の熱処理工程時の熱処理温度より高くする。 これにより、 電 極層と p型層との間にォーミックコンタク トが得られることとなる。 当該高温で の熱処理を省略すると両者の間にォーミックコンタクトが得られない (表 1、 比 較例 3参照)。従って、第 2の熱処理工程で要求される熱処理条件は、電極層と p 型層との間にォーミックコンタク トを確保するのに十分な加熱温度及び加熱時間 である。
熱処理温度は 440°C以上とすることが好ましく、 更に好ましくは 480°C以 上であり、 更に更に好ましくは 5 20°C以上である。
熱処理時間は 0. 1分〜 180分とすることが好ましい。更に好ましくは、 0. 3分〜 60分であり、 更に更に好ましくは 0. 5分〜 30分である。
第 2の熱処理工程における雰囲気の圧力は当該熱処理温度において II I族窒化 物系化合物半導体が熱分解されない圧力以上であればよい。
第 1の熱処理工程と第 2の熱処理工程と実行する順序は特に限定されない。 酸素含有ガスを供給する雰囲気において熱処理温度を徐々に上げていって (第
1の熱処理工程に実行)、 440°Cに達した後は酸素含有ガスの供給を止めそこか ら第 2の熱処理工程を実行するようにしてもよい。 ぐ実施例 >
以下、 この発明の実施例について説明する。
まず、 図 1に示す構成に半導体層を積層した。
組成
P型層 5 p— G a N:Mg
発光する層を含む層 4 I n G a N層を含む層
11型層 3 n -G a N : S i
バッファ層 2 A 1 N 基板 1の上にはバッファ層 2を介して n型不純物して S iをドープした G a N からなる n型層 3を形成した。 ここで、 基板 1にはサファイアを用いたが、 これ に限定されることはなく、 サファイア、 スピネル、 シリコン、 炭化シリコン、 酸 化亜鉛、 リン化ガリゥム、 ヒ化ガリゥム、 酸化マグネシウム、 酸化マンガン、 III 族窒化物系化合物半導体単結晶等を用いることができる。 さらにバッファ層は A 1 Nを用いて MO CVD法で形成されるがこれに限定されることはなく、 材料と しては GaN、 I nN、 A l G aN、 I n G a N及び A 1 I n G a N等を用いる ことができ、製法としては分子線結晶成長法(MBE法)、ハライド系気相成長法 (HVPE法)、 スパッタ法、イオンプレーティング法、電子シャワー法等を用い ることができる。 G a Nを基板として用いた場合は、 当該バッファ層を省略する ことができる。
さらに基板とバッファ層は半導体素子形成後に、 必要に応じて、 除去すること もできる。
ここで n型層は G a Nで形成したが、 A 1 G a N、 1 110 & 1^若しくは 1 1 n G a Nを用いることができる。
また、 n型層は n型不純物して S iをドープしたが、 このほかに n型不純物と して、 G e、 S e、 T e、 C等を用いることもできる。
n型層 3は発光する層を含む層 4側の低電子濃度 n-層とバッファ層 2側の高 電子濃度 n+層とからなる 2層構造とすることができる。
発光する層を含む層 4は量子井戸構造の発光層を含んでいてもよく、 また発光 素子の構造としてはシングルヘテロ型、 ダブルへテロ型及びホモ接合型のものな どでもよい。 ·
発光する層を含む層 4は!)型層 5の側にマグネシウム等のァクセプタをドープ したバンドギヤップの広い III族窒化物系化合物半導体層を含むこともできる。 これは発光する層を含む層 4中に注入された電子が!)型層 5に拡散するのを効果 的に防止するためである。
発光する層を含む層 4の上に p型不純物として Mgをドープした G a Nからな る p型層 5を形成した。 この p型層は A l G a N、 I n G a N又は I n A 1 G a Nとすることもできる、 また、 p型不純物としては Z n、 B e、 C a、 S r、 B aを用いることもできる。
さらに、 p型層 5を発光する層を含む層 4側の低ホール濃度 p—層と電極側の 高ホール濃度 P+層とからなる 2層構造とすることができる。
上記構成の発光ダイォードにおいて、 各 III族窒化物系化合物半導体層は一般 的な条件で MOCVDを実行して形成する力 \分子線結晶成長法(MBE法)、ハ ライド系気相成長法 (HVPE法)、 スパッタ法、 イオンプレーティング法、 電子 シャワー法等の方法で形成することもできる。
その後、 マスクを形成して p型層 5、 発光する層を含む層 4及び n型層 3の一 部を反応性イオンエッチングにより除去し、 n電極 9を形成すべき n電極形成面 1 1を表出させる。 次に、 図 2を参照しながら、 透光性電極形成層 60及び p台座電極形成層 70 の形成方法について説明する。
まず、 ウェハの全面に、 蒸着装置にて、 第 1の電極層としての C o層 (1. 5 nm) 6 1と第 2の電極層としての Au層 ( 60 n m) 6 2を順次積層する。 次 に、 フォトレジストを一様に塗布して、 フォトリソグラフィにより、 n電極形成 面 1 1及びその周囲からほぼ 1 0 μπι幅の部分 (クリアランス領域) でフオトレ ジストを除去して、 エッチングによりその部分の透光性電極形成材料 6 1、 6 2 を除去し、 ρ型層 5を露出させる。 その後、 フォトレジストを除去する。
次に、 リフトオフ法により、 C r層 (30 nm) 7 1、 Au層 (1. 5 xm) 72及び A 1層 ( 1 0 n m) 7 3を順次蒸着積層して p台座電極形成層 70を形 成する。
なお、 バナジウムとアルミニウムとを順次積層して n電極形成層も同様にリフ トオフ法により形成される。
上記のようにして得られた試料を下記条件で熱処理をした。
表 1 熱処理工程 1 熱処理工程 2 熱処理工程 3 コ 卜 光
外 時間 添加ガス キヤり /mix. 時間 添加ガス キヤリ 時間 添加ガス キヤリ 出 II 力
(°c) (分) ァガス c) (分) ァガス (°c) (分) ァガス 7 ί几
実施例 1 , 輔 60 o2 (1%) Ν2 500 10 Ν2 低 100 〇 〇 実施例 2 380 60 02(1%) Νζ 500 10 Η2(1%) Ν2 380 60 02(1%) 低 100 〇 〇 実施例 3 500 10 Ν2 60 。2(1%) Νζ 低 100 o 〇 実施例 4 500 10 Η2(1%) Ν2 380 60 02(1%) Ν2 低 100 〇 〇 実施例 5 500 10 Η2(3%) Ν2 380 60 02(1%) Ν2 低 100 〇 〇 実施例 6 380 02(1%) Ν2 440 120 Ν2 低 100 〇 〇 実施例 7 550 3 Ν2 380 60 02(1%) Ν2 低 100 〇 〇 実施例 8 550 3 Η2(1%) Ν2 380 60 ο2 (1%) Ν2 低 100 〇 o 比較例 1 550 3 Ο2(1°/ο) Ν2 低 100 Δ Δ 比較例 2 550 3 Ν2 100 〇 〇 比較例 3 380 60 Οζ(1%) Ν. 380 120 Ν2 100 〇 〇
DO 表 1において、 第一の熱処理工程 (酸素を含む雰囲気において比較的低温での 熱処理) は斜体文字にて表記した。
また、 表 1においてコンタクト抵抗の高低は 2 O mA通電時の素子の電圧を基 準にした。
光出力は実施例及び比較例において殆ど差が出なかった。
W/ B性 (ワイヤーボンディング性) はボールシェア強度を基準に評価した。 外観は p台座電極表面を顕微鏡で観察し、 表面が一様で均質な場合を〇、 C r の偏析が観察された場合を△とした。
表 1より、 実質的に酸素を含む雰囲気において比較的低温で熱処理をする第 1 の熱処理工程と実質的に酸素を含まない雰囲気 (好ましくは還元性雰囲気) にお いて比較的高温で熱処理をする第 2の熱処理工程とを、 その順序を問わず実行す ることにより、 比較例 1 (従来の方法) と同様に低いコンタクト抵抗を維持しつ つ、 ワイヤーボンディング特性及ぴ外観性がともに向上することがわかる。
また、 第 1の熱処理工程を省略すると、 コンタクト抵抗が高くなることがわか る (比較例 2参照)。
第 1の熱処理工程を実施するものの第 2の熱処理工程 (高温での熱処理) を省 略するとやはりコンタクト抵抗が高くなることがわかる (比較例 3参照)。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2 0 0 1年 6月 4日出願の日本特許出願 (特願 2 0 0 1— 1 6 7 8 3 5 ) に基づくものであり、 その内容はここに参照として取り込まれる。 産業上の利用可能性
以上説明したように、 この発明で提案する 2段階の熱処理を実行すれば、 III 族窒化物系化合物半導体からなる p型層と透光性電極とのォーミックコンタク ト を維持しつつ p台座電極の表面が酸化されてこれと導電性ワイヤとの接合力が低 下することを未然に防止できる。 この発明は、 上記発明の実施の形態及び実施例の説明に何ら限定されるもので はない。 特許請求の範囲の記載を逸脱せず、 当業者が容易に想到できる範囲で種 々の変形態様もこの発明に含まれる。 以下、 次の事項を開示する。
1 1 III族窒化物系化合物半導体からなる p型層と、
該!)型層の上に形成されて第 1の金属を含む第 1の電極層及び該第 1の電極層の 上に形成されて前記第 1の金属よりも高いイオン化ポテンシャルを有する第 2の 金属を含む第 2の電極層を備えてなる透光性電極形成層と、 を熱処理する方法で あって、
実質的に酸素を含む雰囲気において第 1の温度で熱処理をする第 1の熱処理ェ 程と、
実質的に酸素を含まない雰囲気において前記第 1の温度より高い第 2の温度で 熱処理をする第 2の熱処理工程と、
を含む、 熱処理方法。
1 2 前記第 1の熱処理工程の後に前記第 2の熱処理工程が実行される、 1 1に 記載の熱処理方法。
1 3 前記第 2の熱処理工程の後に前記第 1の熱処理工程が実行される、 1 1に 記載の熱処理方法。
1 4 前記第 1の温度は 4 4 0 °C未満である、 1 1〜1 3のいずれか記載の熱処 理方法。
1 5 前記第 2の熱処理工程は非酸化性雰囲気あるいは還元性雰囲気で行われる、 1 1〜 1 4のいずれかに記載の熱処理方法。
1 6 前記電極形成工程には p台座電極を形成する工程が更に含まれる、 1 1〜 1 5のいずれかに記載の熱処理方法。
1 7 前記第 1の金属はコバルト (Co) であり、 前記第 2の金属は金 (Au) であ る、 1 1 ~ 1 6のいずれかに記載の熱処理方法。
2 1 III 族窒化物系化合物半導体からなる p型層の上に、 第 1の金属を含む第 1の電極層を積層し、 前記第 1の金属よりも高いィオン化ポテンシャルを有する 第 2の金属を含む第 2の電極層を前記第 1の電極層の上に積層して透光性電極形 成層を形成し、 該透光性電極形成層を下記 2つの熱処理工程により熱処理して得 られた III族窒化物系化合物半導体発光素子、
実質的に酸素を含む雰囲気において第 1の温度で熱処理をする第 1の熱処理工程、 実質的に酸素を含まない雰囲気において前記第 1の温度より高い第 2の温度で熱 処理をする第 2の熱処理工程。
2 2 前記第 1の熱処理工程の後に前記第 2の熱処理工程が実行される、 2 1に 記載の in族窒化物系化合物半導体素子。
2 3 前記第 2の熱処理工程の後に前記第 1の熱処理工程が実行される、 2 1に 記載の III族窒化物系化合物半導体素子。
2 4 前記第 1の温度は 4 4 0 °C未満である、 2 1〜 2 3のいずれか記載の III 族窒化物系化合物半導体素子。
2 5 前記第 2の熱処理工程は非酸化性雰囲気あるいは還元性雰囲気で行われる、 2 1〜 2 4のいずれかに記載の III族窒化物系化合物半導体素子。
2 6 前記電極形成工程には p台座電極を形成する工程が更に含まれる、 2 1〜 2 5のいずれかに記載の III族窒化物系化合物半導体素子。
2 7 前記第 1の金属はコバルト (Co) であり、 前記第 2の金属は金 (Au) であ る、 2 1〜 2 6のいずれかに記載の III族窒化物系化合物半導体素子。

Claims

請 求 の 範 囲
1 . Ill 族窒化物系化合物半導体からなる p型層の上に、 第 1の金属を積 層して第 1の電極層を形成し、 前記第 1の金属よりも高いィォン化ポテンシャル を有する第 2の金属を前記第 1の電極層の上に積層して第 2の電極層を形成する 電極形成工程と、
実質的に酸素を含む雰囲気において第 1の温度で熱処理をする第 1の熱処理ェ 程と、
実質的に酸素を含まない雰囲気において前記第 1の温度より高い第 2の温度で 熱処理をする第 2の熱処理工程と、
を含む、 III族窒化物系化合物半導体素子の製造方法。
2 . 前記第 1の熱処理工程の後に前記第 2の熱処理工程が実行される、 請 求の範囲第 1項に記載の ΠΙ族窒化物系化合物半導体素子の製造方法。
3 . 前記第 2の熱処理工程の後に前記第 1の熱処理工程が実行される、 請 求の範囲第 1項に記載の III族窒化物系化合物半導体素子の製造方法。
4 . 前記第 1の温度は 4 4 0 °C未満である、請求の範囲第 1項に記載の III 族窒化物系化合物半導体素子の製造方法。
5 . 前記第 2の熱処理工程は非酸化性雰囲気あるいは還元性雰囲気で行わ れる、 請求の範囲第 1項に記載の III族窒化物系化合物半導体素子の製造方法。
6 . 前記第 2の温度は 4 4 0 °C以上である、請求の範囲第 1項に記載の III 族窒化物系化合物半導体素子の製造方法。
7 . 前記電極形成工程には!)台座電極を形成する工程が更に含まれる、 請 求の範囲第 1項に記載の III族窒化物系化合物半導体素子の製造方法。
8 . 前記第 1の金属はコバルトであり、 前記第 2の金属は金である、 請求 の範囲第 1項に記載の ΠΙ族窒化物系化合物半導体素子の製造方法。
PCT/JP2002/005431 2001-06-04 2002-06-03 Method for manufacturing group-iii nitride compound semiconductor device WO2002099901A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2003-7015853A KR100538199B1 (ko) 2001-06-04 2002-06-03 Ⅲ족 질화물계 화합물 반도체 장치를 제조하는 방법
EP02730877A EP1394866A4 (en) 2001-06-04 2002-06-03 METHOD FOR PRODUCING A COMPOSED GROUP III NITRIDE SEMICONDUCTOR COMPONENT
US10/479,485 US7101780B2 (en) 2001-06-04 2002-06-03 Method for manufacturing Group-III nitride compound semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001167835A JP3812366B2 (ja) 2001-06-04 2001-06-04 Iii族窒化物系化合物半導体素子の製造方法
JP2001-167835 2001-06-04

Publications (1)

Publication Number Publication Date
WO2002099901A1 true WO2002099901A1 (en) 2002-12-12

Family

ID=19010163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005431 WO2002099901A1 (en) 2001-06-04 2002-06-03 Method for manufacturing group-iii nitride compound semiconductor device

Country Status (7)

Country Link
US (1) US7101780B2 (ja)
EP (1) EP1394866A4 (ja)
JP (1) JP3812366B2 (ja)
KR (1) KR100538199B1 (ja)
CN (1) CN1263172C (ja)
TW (1) TW560088B (ja)
WO (1) WO2002099901A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069389A1 (en) * 2004-01-15 2005-07-28 Seoul Opto-Device Co., Ltd. Gallium nitride-based iii-v group compound semiconductor device and method of manufacturing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812366B2 (ja) 2001-06-04 2006-08-23 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法
US7557380B2 (en) 2004-07-27 2009-07-07 Cree, Inc. Light emitting devices having a reflective bond pad and methods of fabricating light emitting devices having reflective bond pads
KR100770491B1 (ko) * 2005-03-16 2007-10-25 최운용 플라즈마 처리를 통한 광반도체 투명 전극 제조
JP4952534B2 (ja) * 2007-11-20 2012-06-13 三菱電機株式会社 窒化物半導体発光素子の製造方法
JP5258275B2 (ja) * 2007-12-07 2013-08-07 三菱電機株式会社 窒化物半導体装置およびその製造方法
JP2011204959A (ja) * 2010-03-26 2011-10-13 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体発光素子
JP5554739B2 (ja) * 2011-03-23 2014-07-23 シャープ株式会社 窒化物半導体発光素子の製造方法
JP5879134B2 (ja) * 2012-01-17 2016-03-08 スタンレー電気株式会社 半導体発光素子の製造方法
US20150037917A1 (en) * 2012-04-24 2015-02-05 Panasonic Corporation Method for manufacturing light-emitting element
JP6206159B2 (ja) * 2013-12-17 2017-10-04 三菱電機株式会社 半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845818A2 (en) * 1996-11-29 1998-06-03 Toyoda Gosei Co., Ltd. GaN related compound semiconductor device and process for producing the same
JP2000012899A (ja) * 1998-06-17 2000-01-14 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法
JP2001015811A (ja) * 1999-06-28 2001-01-19 Toyoda Gosei Co Ltd 透光性電極用膜及びiii族窒化物系化合物半導体素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620926B2 (ja) 1995-06-16 2005-02-16 豊田合成株式会社 p伝導形3族窒化物半導体の電極及び電極形成方法及び素子
US6121127A (en) 1996-06-14 2000-09-19 Toyoda Gosei Co., Ltd. Methods and devices related to electrodes for p-type group III nitride compound semiconductors
JP3344257B2 (ja) 1997-01-17 2002-11-11 豊田合成株式会社 窒化ガリウム系化合物半導体及び素子の製造方法
US6268618B1 (en) * 1997-05-08 2001-07-31 Showa Denko K.K. Electrode for light-emitting semiconductor devices and method of producing the electrode
TW386286B (en) * 1998-10-26 2000-04-01 Ind Tech Res Inst An ohmic contact of semiconductor and the manufacturing method
JP3567790B2 (ja) * 1999-03-31 2004-09-22 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
KR100525494B1 (ko) * 1999-04-26 2005-11-01 샤프 가부시키가이샤 P형 ⅲ족 질화물 반도체층 상의 전극 구조 및 그의 제조방법
US6287947B1 (en) * 1999-06-08 2001-09-11 Lumileds Lighting, U.S. Llc Method of forming transparent contacts to a p-type GaN layer
US6133589A (en) * 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction
CN1203596C (zh) * 2000-02-16 2005-05-25 日亚化学工业株式会社 氮化物半导体激光元件
JP3812366B2 (ja) 2001-06-04 2006-08-23 豊田合成株式会社 Iii族窒化物系化合物半導体素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0845818A2 (en) * 1996-11-29 1998-06-03 Toyoda Gosei Co., Ltd. GaN related compound semiconductor device and process for producing the same
JP2000012899A (ja) * 1998-06-17 2000-01-14 Nichia Chem Ind Ltd 窒化物半導体素子の製造方法
JP2001015811A (ja) * 1999-06-28 2001-01-19 Toyoda Gosei Co Ltd 透光性電極用膜及びiii族窒化物系化合物半導体素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1394866A4 *
TOMOYUKI MAEDA ET AL.: "p-gata GaN ni taisuru ohm-sei denkyokuzai no sanso anneal koka", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJUTSU KENKYU HOKOKU, vol. 98, no. 185, 22 July 1998 (1998-07-22), pages 89 - 94, XP002953585 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069389A1 (en) * 2004-01-15 2005-07-28 Seoul Opto-Device Co., Ltd. Gallium nitride-based iii-v group compound semiconductor device and method of manufacturing the same
US7859109B2 (en) 2004-01-15 2010-12-28 Seoul Opto-Device Co., Ltd. Gallium nitride-based III-V group compound semiconductor device and method of manufacturing the same
US8323999B2 (en) 2004-01-15 2012-12-04 Seoul Opto Device Co., Ltd. Gallium nitride-based III-V group compound semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
TW560088B (en) 2003-11-01
US7101780B2 (en) 2006-09-05
JP3812366B2 (ja) 2006-08-23
KR100538199B1 (ko) 2005-12-22
US20040175912A1 (en) 2004-09-09
EP1394866A4 (en) 2007-01-03
CN1263172C (zh) 2006-07-05
JP2002368270A (ja) 2002-12-20
EP1394866A1 (en) 2004-03-03
KR20040007646A (ko) 2004-01-24
CN1513211A (zh) 2004-07-14

Similar Documents

Publication Publication Date Title
US6531383B1 (en) Method for manufacturing a compound semiconductor device
JP3846150B2 (ja) Iii族窒化物系化合物半導体素子および電極形成方法
JP3705016B2 (ja) 透光性電極用膜及びiii族窒化物系化合物半導体素子
JP4023121B2 (ja) n型電極、III族窒化物系化合物半導体素子、n型電極の製造方法、及びIII族窒化物系化合物半導体素子の製造方法
CN102007576A (zh) 氮化物系半导体元件及其制造方法
WO2003107442A2 (en) Electrode for p-type gallium nitride-based semiconductors
JPWO2006109760A1 (ja) 半導体素子およびその製造方法
US6734091B2 (en) Electrode for p-type gallium nitride-based semiconductors
JP2005340860A (ja) 半導体発光素子
JP2001230447A (ja) Iii族窒化物系化合物半導体素子の製造方法
JPH11177134A (ja) 半導体素子の製造方法及び半導体素子、並びに発光素子の製造方法及び発光素子
JP3812366B2 (ja) Iii族窒化物系化合物半導体素子の製造方法
JP3665243B2 (ja) 窒化物半導体素子及びその製造方法
JPH10335705A (ja) 窒化ガリウム系化合物半導体素子及びその製造方法
JP2001015852A (ja) p型のIII族窒化物半導体層上の電極構造とその形成方法
US20050179046A1 (en) P-type electrodes in gallium nitride-based light-emitting devices
JP3765246B2 (ja) Iii族窒化物系化合物半導体発光素子の製造方法
US20040248335A1 (en) Electrode structures for p-type nitride semiconductores and methods of making same
JP4984821B2 (ja) 半導体素子およびその製造方法
KR100737821B1 (ko) 발광 소자 및 그 제조방법
JP4030534B2 (ja) 化合物半導体発光素子およびその製造方法
US20230215985A1 (en) Light-emitting device and method for producing the same
JP3797280B2 (ja) Iii族窒化物系化合物半導体素子の製造方法
KR100348280B1 (ko) 청색 발광 소자 제조방법
JP2002016288A (ja) Iii族窒化物系化合物半導体発光素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10479485

Country of ref document: US

Ref document number: 028111982

Country of ref document: CN

Ref document number: 2002730877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037015853

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002730877

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642