WO2002091448A1 - Dispositif de croissance a phase gazeuse - Google Patents

Dispositif de croissance a phase gazeuse Download PDF

Info

Publication number
WO2002091448A1
WO2002091448A1 PCT/JP2002/002378 JP0202378W WO02091448A1 WO 2002091448 A1 WO2002091448 A1 WO 2002091448A1 JP 0202378 W JP0202378 W JP 0202378W WO 02091448 A1 WO02091448 A1 WO 02091448A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction vessel
phase growth
introduction pipe
pipe
Prior art date
Application number
PCT/JP2002/002378
Other languages
English (en)
French (fr)
Inventor
Kazuhide Hasebe
Hiroyuki Yamamoto
Takahito Umehara
Masato Kawakami
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to DE60232143T priority Critical patent/DE60232143D1/de
Priority to EP02705147A priority patent/EP1383160B1/en
Priority to KR1020037013793A priority patent/KR100853886B1/ko
Publication of WO2002091448A1 publication Critical patent/WO2002091448A1/ja
Priority to US11/407,354 priority patent/US7651733B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure

Definitions

  • the present invention relates to a vapor phase growth apparatus and a vapor phase growth film forming method for forming a vapor phase growth film on a flat or planar substrate such as a semiconductor wafer by using a plurality of source gases. . Background technology
  • a substrate made of, for example, a semiconductor wafer.
  • a method of forming a vapor grown film such as CVD, a plurality of source gases may be used.
  • the formation of a vapor-phase grown film on a wafer by a plurality of source gases is usually performed by using a reaction vessel having a plurality of gas introduction pipes disposed therein, and placing the wafer in the reaction vessel. It is performed by heating while ejecting the source gas from each of the gas introduction pipes.
  • a straight tube-shaped quartz tube having a gas outlet formed by a circular through-hole on its peripheral wall is generally widely used as a gas introduction tube.
  • a gas outlet formed by a slit-shaped through hole extending in the circumferential direction of the pipe is known.
  • the front direction of the gas ejection port in the gas inlet tube is set so that the source gas is directed along the surface of the wafer toward the center of the wafer. It is set in the direction of the center so that it is ejected.
  • the vapor-phase growth film formed on the surface of the wafer Has considerable in-plane non-uniformity. As a result, there is a problem that it is not possible to form a vapor-grown film having desired characteristics with high uniformity.
  • the organic metal-containing gas is a gas having a high density.
  • the gas ejection port of the gas introduction pipe is a circular port
  • the formed gas phase growth film is in a narrow area in the front direction of the gas ejection port (the direction of the wafer diameter R).
  • the film thickness is significantly reduced as the distance from the gas outlet increases. That is, the non-uniformity is large.
  • a gas inlet pipe was used in which the gas ejection port was formed by a slit-like through hole extending in the plane direction of the wafer.
  • the gas spreads laterally in a range where the distance from the gas ejection port is small.
  • the uniformity of the thickness of the formed vapor-growth film was improved to some extent in the lateral direction orthogonal to the front direction of the gas jet (the direction of the wafer diameter R).
  • the film thickness was significantly reduced. Eventually, it was found that the non-uniformity was large.
  • the present invention has been made on the basis of the above-described findings, and an object of the present invention is to provide a method in which a plurality of source gases including an organic metal-containing gas are applied to the surface of a flat substrate such as a wafer. It is an object of the present invention to provide a vapor phase growth apparatus capable of forming a phase growth film with high uniformity.
  • Another object of the present invention is to provide a method for forming a plurality of organic metal-containing gases on a surface of a flat substrate. It is an object of the present invention to provide a method for forming a vapor-grown film, which can form a vapor-grown film with a high uniformity using a source gas.
  • the present invention has a reaction vessel in which a substrate is disposed, and a first gas introduction pipe in which a gas ejection port opened in the reaction vessel is formed.
  • a first gas introduction unit for supplying the reaction gas into the reaction vessel; and a second gas introduction pipe formed with a gas outlet opening in the reaction vessel, and reacts with the organic metal-containing gas.
  • a second gas inlet for supplying a second gas having a density lower than that of the organic metal-containing gas into the reaction vessel, wherein a gas outlet of the first gas inlet and a gas outlet of the second gas inlet are provided.
  • the gas ejection port is a vapor phase growth apparatus characterized by being disposed along the outer periphery of a substrate disposed in the reaction vessel.
  • the flow of the first gas supplied into the reaction vessel by the first gas introduction section is affected by the flow of the second gas supplied into the reaction vessel by the second gas introduction section.
  • the first gas comprising the organic metal-containing gas can be supplied on the substrate with a sufficiently high uniformity. Therefore, a desired vapor deposition film can be formed on the entire surface of the substrate with high uniformity.
  • the first gas introduced into the reaction vessel from the gas ejection port of the first gas introduction pipe is a second gas introduced into the reaction vessel from the gas ejection port of the second gas introduction pipe. Under the influence of the flow, the gas is diffused along the surface of the substrate.
  • the gas outlet of the first gas introduction pipe has a slit opening in a direction parallel to the surface of the substrate. It is formed by a through hole.
  • the slit-shaped through-hole preferably has an opening angle with respect to the first gas introduction pipe of 30 degrees to 160 degrees.
  • the gas outlet of the first gas introduction pipe is formed by a plurality of slit-shaped portions that open in a direction parallel to the surface of the substrate, and an intermediate wall portion is provided between adjacent slit-shaped portions. Existing.
  • the gas outlet of the second gas introduction pipe is formed by a circular through hole.
  • the front direction of the gas ejection port of the first gas introduction pipe and the front direction of the gas ejection port of the second gas introduction pipe are directed toward the center of the substrate disposed in the reaction vessel. Have been.
  • the angle formed by each front direction of the gas ejection port of the first gas introduction pipe and the gas ejection port of the second gas introduction pipe is 45 degrees or less.
  • a plurality of substrates are arranged at intervals in the vertical direction inside the reaction vessel, and the gas outlet of the first gas introduction pipe is provided at a height of each substrate.
  • a plurality is provided correspondingly, and a plurality of gas outlets of the second gas introduction pipe are also provided corresponding to the height of each substrate.
  • the first gas and the second gas are:
  • the present invention has a reaction vessel in which a substrate is disposed, and a first gas introduction pipe in which a gas ejection port opened in the reaction vessel is formed.
  • a first gas introduction part for supplying the first gas into the reaction vessel, and a second gas introduction pipe formed with a gas outlet opening in the reaction vessel;
  • a second gas inlet for supplying a second gas having a density lower than that of the organic metal-containing gas into the reaction vessel, and a gas outlet of a first gas inlet pipe and a second gas inlet.
  • the gas injection port of the gas introduction pipe is provided along the outer periphery of the substrate disposed in the reaction vessel, using a vapor phase growth apparatus characterized in that a gas phase growth film is formed on the surface of the substrate. Forming a first gas from a gas outlet of a first gas introduction pipe.
  • a step of supplying a first gas into the reaction vessel from a gas outlet of a first gas inlet pipe, and a step of supplying a second gas into the reactor from a gas outlet of a second gas inlet pipe is performed simultaneously.
  • FIG. 1 is a schematic sectional view showing a vapor phase growth apparatus according to one embodiment of the present invention.
  • FIG. 2 is a schematic view of the first gas introduction pipe of FIG. 1 as viewed from the center of the wafer.
  • Fig. 3 (a) is a partially enlarged front view of the first gas introduction pipe in Fig. 2, and Fig. 3 (b) is
  • FIG. 2 is an enlarged cross-sectional view passing through a gas outlet of a second first gas introduction pipe.
  • FIG. 4 is a diagram showing a positional relationship between a slit-shaped gas ejection port of the first gas introduction pipe and a circular gas ejection port of the second gas introduction pipe with respect to the wafer.
  • FIG. 5 (a) is a partially enlarged front view of a first gas introduction pipe having a modification of the gas ejection port
  • FIG. 5 (b) is a gas ejection port of the first gas introduction pipe of FIG. 5 (a).
  • FIG. 6 is a schematic view of the second gas introduction pipe of FIG. 1 as viewed from the center of the wafer.
  • Fig. 7 (a) is a partially enlarged front view of the second gas introduction pipe in Fig. 6, and Fig. 7 (b) is
  • FIG. 6 is an enlarged cross-sectional view passing through a gas outlet of a second gas introduction pipe of No. 6.
  • c 9 is a schematic sectional view showing a vapor phase growth apparatus according to another embodiment of the present invention
  • (a) is a front view of the first gas inlet pipe in a vapor phase growth apparatus of FIG. 8
  • FIG. 9B is a front view of a second gas introduction pipe in the vapor phase growth apparatus of FIG.
  • Figure 10 shows the S r (DP) on the wafer surface obtained in Experimental Example 1.
  • FIG. 3 is an iso-density curve diagram showing a distribution state of M) 2 gas.
  • FIG. 11 is an iso-density curve diagram showing the distribution of oxygen gas on the surface of the wafer obtained in Experimental Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram schematically showing an example of the vapor phase growth apparatus of the present invention.
  • the vapor phase growth apparatus 10 is a batch type vertical vapor phase growth apparatus, and includes a cylindrical reaction vessel 12 extending vertically.
  • the reaction vessel 12 is made of, for example, quartz. C The upper part of the reaction vessel 12 is closed.
  • a cylindrical manifold 13 made of stainless steel is connected to the lower end of the reaction vessel 12.
  • a lid 14 is arranged below the manifold 13. The lid 14 can be moved up and down by a boat elevator (not shown).
  • a wafer boat WB made of, for example, quartz is placed on the lid 14 via a heat retaining tube 15.
  • the substrate on which the vapor deposition film is to be formed is, for example, a semiconductor wafer W made of silicon.
  • a plurality of semiconductor wafers W (substrates) are held in the wafer boat WB at predetermined intervals in the vertical direction. Then, when the lid 14 is raised by the boat elevator, the wafer boat WB is inserted into the reaction vessel 12. As a result, the wafer W held by the wafer boat WB is arranged in the processing area in the reaction vessel 12.
  • the reaction vessel 12 is sized so that a cylindrical gap is formed between the inner surface of the reaction vessel 12 and the outer peripheral edge of the wafer boat WB or the wafer W with the wafer boat WB inserted therein. ing.
  • a gas introduction pipe (to be described later) is provided in the cylindrical space.
  • a cylindrical heater 16 made of, for example, a resistance heating element.
  • the cylindrical heater 16 heats the inside of the reaction vessel 12 and the wafer W placed on the wafer boat WB to a predetermined set temperature.
  • a heat insulating material layer 18 is provided outside the cylindrical heater 16. Further, an outer shell 20 is provided so as to surround the heat insulating material layer 18. If necessary, a heater may be provided above the reaction vessel 12.
  • a plurality of gas supply pipes are provided to supply the source gas into the reaction vessel 12. Specifically, a first gas supply pipe 30 for supplying an organic metal-containing gas and a second gas supply pipe 40 for supplying an oxygen gas are respectively provided in the manifold 13. The side walls are provided so as to extend therethrough at positions adjacent to each other. The first gas supply pipe 30 is connected to a gas source (not shown) of a source gas made of an organic metal-containing gas, which is provided outside the vapor phase growth apparatus 10.
  • a first gas introduction pipe 32 made of, for example, a quartz pipe, which is located in a cylindrical gap formed between the peripheral surface and the outer peripheral edge of the wafer W, is connected and connected.
  • FIG. 2 is a view of the first gas introduction pipe 32 viewed from the center of the wafer.
  • FIG. 3A is a partially enlarged front view of the first gas introduction pipe 32 of FIG. b) is an enlarged cross-sectional view of the first gas inlet pipe 32 of FIG. 2 passing through the gas outlet 35.
  • FIG. 4 is a diagram showing the positional relationship between the slit-shaped gas ejection port of the first gas introduction pipe and the circular gas ejection port of the second gas introduction pipe with respect to the wafer placed in the reaction vessel. It is.
  • the first gas inlet pipe 32 has an inlet pipe part 32 A extending upward in a cylindrical space in the reaction vessel 12, and an inlet pipe part 32 A of this inlet pipe part. It has a jet pipe portion 32B that is curved in a U-shape from the upper end and extends downward.
  • Introductory tube part 3 is curved in a U-shape from the upper end and extends downward.
  • gas jet ports formed by slit-shaped through holes extending in the circumferential direction of the pipe body that is, in the direction of the surface of the wafer W
  • slit jet ports gas jet ports formed by slit-shaped through holes extending in the circumferential direction of the pipe body (that is, in the direction of the surface of the wafer W)
  • Many of the nozzles 35 are formed at appropriate intervals in the length direction of the ejection pipe portion 32B.
  • the front direction indicated by the arrow X faces the center C of the wafer W.
  • the inlet pipe section 32A is omitted, and the jet pipe section 32B is simply shown.
  • the dimensions of the first gas introduction pipe 32 are not particularly limited, and can be appropriately set according to various conditions.
  • the outer diameter of the ejection pipe portion 32B of the first gas inlet pipe 32 is 16.8 to 17.2 mm
  • the inner diameter is 16.5 to 16.6 mm
  • the wall thickness May be between 0.2 and 0.7 mm.
  • the length of the slit-shaped outlet 35 (the circumferential length of the outlet pipe portion 32B in the pipe) is determined by the size of the opening angle (see FIG. 3 (b)). 0 to: The length may be L60 degrees.
  • the opening width (the width in the longitudinal direction of the pipe section 32B) d is in the range of 0.5 to 2.0 mm. And
  • FIGS. 5 (a) and 5 (b) show a modified example of the slit-shaped outlet 35.
  • FIGS. 5 (a) and 5 (b) are similar to FIGS. 3 (a) and 3 (b), respectively.
  • each of the slit-shaped outlets 35 does not need to be constituted only by a single slit hole, and a plurality of slits are divided in the circumferential direction of the pipe (see FIG. 5).
  • three slit holes S may be formed.
  • the intermediate wall portion M remains between the adjacent slit hole portions S. In this case, large mechanical strength can be obtained because the intermediate wall portion M remains.
  • the second gas supply pipe 40 like the first gas supply pipe 30, is provided to penetrate the peripheral wall of the manifold 13. Then, the second gas supply pipe 40 is connected to an oxygen gas source (not shown) provided outside the vapor phase growth apparatus 10.
  • the distal end of the second gas supply pipe 40 inside the manifold 13 is located in a cylindrical gap formed between the inner peripheral surface of the reaction vessel 12 and the outer peripheral edge of the wafer W.
  • a second gas inlet tube (not shown in FIG. 1) made of, for example, a quartz tube is connected to communicate.
  • FIG. 6 is a view of the second gas introduction pipe 42 as viewed from the center of the wafer.
  • FIG. 7A is an enlarged front view showing the gas ejection port 45 of the second gas introduction pipe 42.
  • FIG. 7B is an enlarged cross-sectional view of the second gas introduction pipe 42 passing through the gas ejection port 45.
  • the second gas introduction pipe 42 includes an introduction pipe section 42 A extending upward in a cylindrical gap in the reaction vessel 12, and a second gas introduction pipe section 42 A. It has an ejection pipe portion 42B that is curved in a U-shape from the upper end and extends downward.
  • the inlet pipe section 42A and the ejection pipe section 42B extend in parallel with each other.
  • the ejection pipe portion 42B and the introduction pipe portion 42A are connected at appropriate locations by a reinforcing bridge member 43.
  • a large number of gas ejection ports 45 (hereinafter referred to as "circular ejection ports") formed by circular through holes are appropriately provided in the length direction of the ejection pipe section 42B. Are formed at intervals.
  • each circular jet port 45 in the jet pipe section 42B has its front direction indicated by arrow Y pointing toward the center C of the wafer W.
  • the introduction pipe section 42A is omitted, and the ejection pipe section 42B is simply shown.
  • the same tube as the above-described first gas introduction pipe 32 can be used as the second gas introduction pipe 42.
  • the size of the circular ejection port 45 can be appropriately set according to various conditions, and for example, the diameter is 0.5 to 5.0 mm.
  • the circular ejection port 45 may be formed, for example, by a plurality of circular through holes arranged in the circumferential direction of the pipe.
  • the ejection pipe portion 32B of the first gas introduction pipe 32 and the ejection pipe portion 42B of the second gas introduction pipe 42 are arranged side by side at a position close to each other along the direction of the outer circumference of.
  • each of the gas jets that is, the slit jets 35 and the circular jets 45, is set so that the front direction thereof is directed to the center C of the wafer W. .
  • inter-jet port angle The angle between the slit-shaped jet port 35 and the circular jet port 45 in the front direction, that is, the angle between the arrow X and the arrow Y in FIG. 4 (hereinafter, referred to as “inter-jet port angle”). It is necessary that 0s are arranged side by side in a small state. In practice, it is important that the size of the inter-ejection angle 0 be 45 degrees or less. In particular, it is preferable that the angle 0 between the ejection ports is 10 degrees or less. In this case, a vapor deposition film with extremely high uniformity can be formed.
  • the lower limit of the angle between the outlets 0 does not exist in principle, but can be determined by the diameter of the outlet tube portion 32B and the outlet tube portion 42B.
  • an exhaust port 19 is provided at a position opposite to a position where first gas supply pipe 30 and second gas supply pipe 40 penetrate. Is set up.
  • a vacuum pump (not shown) is connected to the exhaust port 19 via an exhaust pipe in which a control valve is inserted.
  • a control mechanism (not shown) is provided to control the operating states of the pump and the vacuum pump.
  • This control mechanism can be specifically configured by a microprocessor, a process controller, or the like, and outputs control signals to each part based on a scheduled program. May be provided to control the power supply.
  • a vapor phase growth film can be formed on the surface of the wafer as follows.
  • a wafer boat WB holding a wafer W which is a substrate on which a vapor growth film is to be formed, is placed on the lid 14 at the lowered position. Thereafter, the cover 14 is raised by a boat elevator not shown. As a result, the wafer port WB is inserted into the reaction vessel 12, and the wafer W is placed in the reaction vessel 12. At this time, the lid 14 closes the opening at the lower end of the manifold 13. As a result, the inside of the reaction vessel 12 is closed.
  • the inside of the reaction vessel 12 is set to the set depressurized state via the exhaust port 19 c. Also, the inside of the reaction vessel 12 is heated by the cylindrical heater 16 to the set temperature state Is maintained.
  • the depressurized state and the temperature state can be appropriately selected depending on the type of the target vapor-phase grown film, the type of the raw material gas used, the flow rate thereof, and other conditions.
  • An example of conditions for the atmosphere in the reaction vessel 12 is as follows: the pressure is, for example, 67-670 Pa (0.5-5.0 OT orr), and the temperature is 300-600 ° C. is there. Then, in a state where the set depressurization condition and temperature condition are maintained, a required amount of the raw material gas is supplied through the first gas supply pipe 30 and the second gas supply pipe 40, respectively. A vapor growth film is formed.
  • the source gas supplied via the first gas supply pipe 30 and the second gas supply pipe 40 may vary depending on the type of the target vapor-grown film.
  • an organic metal-containing gas is used as the first gas by the first gas supply pipe 30.
  • the second gas supplied from the second gas supply pipe 40 is capable of reacting with the organic metal-containing gas supplied through the first gas supply pipe 30, and A lower density reaction gas is used.
  • the supply ratio of each source gas can be set according to the conditions under which a vapor-phase growth film in a desired state is formed.
  • organic metal-containing gas (first gas) used for forming the vapor-phase growth film and the reaction gas (second gas) used together therewith include: The following may be mentioned, but are not limited thereto.
  • a vapor growth film made of Sr0 is formed.
  • a vapor-phase growth film made of Ti0 2 is formed.
  • a vapor phase growth film made of T i N is formed.
  • a vapor-phase growth film made of Zr0 2 is formed.
  • a vapor-phase growth film made of Ta 2 0 5 is formed.
  • the first gas supply pipe 30 contains Sr (DPM) 2 gas, for example, 0.3 to: L. 0 s 1
  • the second gas supply pipe 40 is supplied with oxygen gas at a rate of, for example, 1.0 to 10.0 slm, and the inside of the reaction vessel 12 has a pressure of 67 to 670 Pa (0.5 to 5 Pa). 0 Torr) and maintained at a temperature of 300 to 600 ° C.
  • the time required for film formation varies depending on the desired film thickness, but is, for example, 10 to 40 minutes. As a result, a vapor growth film having a thickness of, for example, 5 to 20 nm can be formed.
  • the organic metal-containing gas supplied from the first gas supply pipe 30 reaches the ejection pipe portion 32B of the first gas introduction pipe 32 in the reaction vessel 12, and From each of the slit-shaped outlets 35 formed in the outlet pipe portion 32B, It is ejected along the surface of the wafer W and toward the center C of the wafer W.
  • the oxygen gas supplied from the second gas supply pipe 40 reaches the ejection pipe section 42B of the second gas introduction pipe 42 in the reaction vessel 12, and the ejection pipe section 42 B is ejected from each of the circular ejection ports 45 formed in B along the surface of the wafer W and toward the center C of the wafer W.
  • the slit-shaped ejection port 35 is formed by a slit-shaped through-hole extending in the horizontal direction along the surface of the wafer W, the organic metal-containing gas ejected from the slit-shaped through-hole 35 has a wafer W Along the surface, the light diffuses greatly in the direction (lateral direction) orthogonal to the arrow direction X (front direction).
  • organometallic gases are dense and heavy, because they contain metal elements in their composition. Therefore, it is difficult for the organic metal-containing gas to diffuse far from the slit-shaped outlet 35 in the X direction. For this reason, it has been almost impossible to suppress the nonuniformity of the film thickness in the X direction in the past.
  • oxygen gas is ejected from circular ejection port 45 of second gas introduction pipe 42.
  • Oxygen gas has a low density and is light. Therefore, regardless of the shape of the spout, that is, even if the spout is circular, the oxygen gas spreads greatly along the surface of the wafer W and diffuses with high uniformity.
  • the circular jet port 45 which is an oxygen gas jet port
  • the slit-shaped jet port 35 which is an organic metal-containing gas jet port
  • the organic metal-containing gas discharged from the slit-shaped outlet 35 is affected by the flow of the oxygen gas, that is, is spread and diffused by the diffusion of the oxygen gas.
  • high uniformity of the film thickness can be obtained over a large distance range.
  • both the organic metal-containing gas and the oxygen gas diffuse with high uniformity. Therefore, a highly uniform vapor growth film can be formed in both the film thickness and the film quality.
  • each gas introduction pipe (first gas introduction pipe 32 and And the second gas introduction pipes 42) both have an upwardly extending introduction pipe section (32 A and 42 A) in the reaction vessel 12 and a U-shape from the upper end of the introduction pipe section. It consists of erupting pipe sections (32B and 42B) that are curved and extend downward.
  • the reaction vessel 12 has a so-called single-tube structure, and exhaust for reducing the pressure inside the reaction vessel 12 is performed via the lower exhaust port 19.
  • FIG. 8 is a diagram schematically showing another example of the vapor phase growth apparatus of the present invention.
  • FIG. 9 is a view for explaining a first gas introduction pipe and a second gas introduction pipe in the vapor phase growth apparatus of FIG.
  • the vapor phase growth apparatus 50 of FIG. 8 basically has the same configuration as the vapor phase growth apparatus 10 of FIG. 1, but differs in the following points. That is, in the vapor phase growth apparatus 50, an inner tube 52 having an open top is provided along the inner peripheral wall of the reaction vessel 12 (double tube type). Thus, an annular space 54 is formed between the inner tube 52 and the reaction vessel 12. An exhaust port 19 is connected to a lower portion of the annular space 54.
  • the first gas introduction pipe 56 connected to the first gas supply pipe 30 consists of a straight tubular body extending only upward.
  • the first gas introduction pipe 56 has a slit-shaped jet port 35 formed therein.
  • the second gas introduction pipe 58 connected to the second gas supply pipe 40 is also simply formed of a straight tubular body extending upward.
  • the second gas introduction pipe 58 has a circular ejection port 45 formed therein.
  • the gas outlet of the first gas introduction pipe for introducing the organic metal-containing gas is preferably in such a mode that the organic metal-containing gas diffuses sufficiently large in the lateral direction. That is, the gas outlet of the first gas introduction pipe is preferably formed by the slit-shaped through hole as described above. However, in the present invention, the gas ejection port of the first gas introduction pipe may be formed by a circular through hole.
  • the gas outlet of the second gas introduction pipe for introducing a source gas that is not an organic metal-containing gas a sufficiently wide diffusion state can be obtained even if it is formed by a circular through hole. Therefore, the gas ejection holes of the second gas introduction pipe need not be slit-like through holes, but may be formed as such.
  • the gas ejection port of the first gas introduction pipe has a slit shape, and the gas ejection port of the second gas introduction pipe is a circular ejection port. It is not excluded.
  • FIG. 10 is an iso-density curve diagram showing the distribution of S r (D PM) gas on the surface of the wafer measured in the above experiment.
  • the circle is the outer peripheral contour of the wafer.
  • the numbers a to (!) are indices indicating the degree of distribution of the Sr (DPM) 2 gas in a stepwise manner. The specific values are as follows.
  • FIG. 11 is an iso-density curve diagram showing the distribution of oxygen gas. Each range of a to e in FIG. 11 is as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書 気相成長装置 技 術 分 野
本発明は、 例えば、 半導体ウェハなどの平板状または面状の基板の表面に、 複 数の原料ガスを用いて気相成長膜を形成するための気相成長装置および気相成長 膜形成方法に関する。 背 景 技 術
半導体装置の製造においては、 例えば半導体ウェハなどよりなる基板に対して、 種々の処理が行われる。 例えば C V Dなどの気相成長膜形成方法においては、 複 数の原料ガスが用いられ得る。
特に、 例えばストロンチウム (S r ) およびチタン (T i ) を含有する有機金 属含有ガスと酸素 (02 ) ガスとを用いる C V Dによれば、 シリコンウェハの表 面に S r T i 03 よりなる気相成長膜を形成することができる。 この気相成長膜 は、 その特性から、 例えばキャパシ夕容量絶縁膜などとして有用である。
一般に、 ウェハ上への複数の原料ガスによる気相成長膜の形成は、 通常、 内部 に複数のガス導入管が配設された反応容器を用いて、 この反応容器内にウェハを 配置して、 当該ガス導入管の各々より原料ガスを噴出させながら加熱することに より、 行われている。
そして、 従来の気相成長装置においては、 ガス導入管として、 通常、 直管状の 石英製管体であって、 その周壁に円形貫通孔によるガス噴出口が形成されたもの が広く用いられている。 また、 管体の周方向に伸びるスリット状貫通孔によるガ ス噴出口が形成されたものも知られている。
従来の気相成長装置においては、 原料ガスとして有機金属含有ガスを用いる場 合、 ガス導入管におけるガス噴出口の正面方向が、 原料ガスがウェハの表面に沿 つて当該ウェハの中心に向かう方向に噴出されるよう、 当該中心方向に設定され ている。 にもかかわらず、 実際には、 当該ウェハの表面に形成される気相成長膜 は、 面内における不均一性が相当に大きい。 結局、 高い均一性で所期の特性の気 相成長膜を形成することができない、 という問題点がある。
例えば、 ストロンチウム (S r ) やチタン (T i ) を含有する有機金属含有ガ スと酸素ガスとを用いる場合には、 基板の面内において高い均一性で所期の結晶 成長を生じさせることができないために、 目的とする気相成長膜を形成すること ができない。
以上の問題点について研究を重ねた結果、 その原因は、 ウェハの面内における 有機金属含有ガスの分布における不均一性がきわめて大きいからであることが判 明した。
具体的には、 有機金属含有ガスは密度の高いガスである。 このため、 ガス導入 管のガス噴出口が円形口である場合には、 形成される気相成長膜に関して、 当該 ガス噴出口の正面方向 (ウェハの直径 Rの方向とする) では、 狭い領域に或る程 度の均一性が得られる。 しかしながら、 当該正面方向と直交する横方向では、 前 記ガス噴出口からの離間距離が大きくなるに従って、 膜厚が大幅に減少する。 す なわち、 不均一性が大きい状態となる。
そこで、 ガス噴出口がウェハの面方向に伸びるスリツト状貫通孔により形成さ れたガス導入管を用いた。 その結果、 当該ガス噴出口からの距離が小さい範囲で は、 ガスが横方向に拡がる。 このため、 形成される気相成長膜に関して、 ガス噴 出口の正面方向 (ウェハの直径 Rの方向とする) に直交する横方向では膜厚の均 一性が或る程度改善された。 しかし、 前記正面方向においては、 ガス噴出口から の距離が大きくなるに従って、 膜厚が大幅に減少した。 結局、 不均一性が大きい 状態となることが判明した。 発 明 の 要 旨
本発明は、 以上のような知見に基づいてなされものであって,、 その目的は、 ゥ ェハなどの平板状の基板の表面に、 有機金属含有ガスを含む複数の原料ガスによ る気相成長膜を高い均一性で形成することのできる気相成長装置を提供すること にある。
本発明の他の目的は、 平板状の基板の表面に、 有機金属含有ガスを含む複数の 原料ガスによる気相成長膜を高い均一性で形成することのできる気相成長膜形成 方法を提供することにある。
本発明は、 内部に基板が配置される反応容器と、 前記反応容器内にて開口する ガス噴出口が形成された第 1ガス導入管を有し、 有機金属含有ガスよりなる第 1 のガスを前記反応容器内に供給するための第 1ガス導入部と、 前記反応容器内に て開口するガス噴出口が形成された第 2ガス導入管を有し、 前記有機金属含有ガ スと反応すると共に前記有機金属含有ガスよりも密度の小さい第 2のガスを前記 反応容器内に供給するための第 2ガス導入部と、 を備え、 第 1ガス導入管のガス 噴出口と第 2ガス導入管のガス噴出口とは、 前記反応容器内に配置される基板の 外周に沿って配置されていることを特徴とする気相成長装置である。
本発明によれば、 第 1ガス導入部によって反応容器内に供給される第 1のガス の流れが、 第 2ガス導入部によって反応容器内に供給される第 2のガスの流れの 影響を受け得るため、 有機金属含有ガスよりなる第 1のガスは基板上に十分に高 い均一性で供給され得る。 従って、 当該基板の表面に、 その全体にわたって、 高 い均一性で所望の気相成長膜を形成することができる。
好ましくは、 第 1ガス導入管のガス噴出口から前記反応容器内に導入される第 1のガスは、 第 2ガス導入管のガス噴出口から前記反応容器内に導入される第 2 のガスの流れの影響を受けて、 前記基板の面に沿って拡散するようになっている また、 好ましくは、 第 1ガス導入管のガス噴出口は、 前記基板の面に平行な方 向に開口するスリット状貫通孔によって形成されている。 この場合、 前記スリツ ト状貫通孔は、 第 1ガス導入管に対する開き角が、 3 0度乃至 1 6 0度であるこ とが好ましい。
あるいは、 好ましくは、 第 1ガス導入管のガス噴出口は、 前記基板の面に平行 な方向に開口する複数のスリツト状部分によって形成され、 隣接するスリツト状 部分の間には、 中間壁部分が存在している。
また、 好ましくは、 第 2ガス導入管のガス噴出口は、 円形状貫通孔によって形 成されている。
また、 好ましくは、 第 1ガス導入管のガス噴出口の正面方向と第 2ガス導入管 のガス噴出口の正面方向とは、 前記反応容器内に配置される基板の中心に向けら れている。 この場合、 第 1ガス導入管のガス噴出口及び第 2ガス導入管のガス噴 出口の各正面方向がなす角度は、 45度以下であることが好ましい。
また、 好ましくは、 前記反応容器の内部には、 複数の基板が上下方向に間隔を 空けて配置されるようになっており、 第 1ガス導入管のガス噴出口は、 各基板の 高さに対応して、 複数が設けられており、 第 2ガス導入管のガス噴出口も、 各基 板の高さに対応して、 複数が設けられている。
また、 好ましくは、 第 1のガス及び第 2のガスは、
(1) S r 〔 [ (CH3) 3C CO] 2CH〕 2ガス及び 02ガス
(2) T i (0 C3 H,— i) 2 〔 [ (CH3) 3C CO] 2CH〕 2ガス及び 02ガス
(3) T i C 14ガス及び NH3ガス
(4) Z r COC (CH3 ) 34ガス及び 02ガス
(5) T a (0 C2 H5) 5ガス及び 02ガス
のいずれかである。
また、 本発明は、 内部に基板が配置される反応容器と、 前記反応容器内にて開 口するガス噴出口が形成された第 1ガス導入管を有し、 有機金属含有ガスよりな る第 1のガスを前記反応容器内に供給するための第 1ガス導入部と、 前記反応容 器内にて開口するガス噴出口が形成された第 2ガス導入管を有し、 前記有機金属 含有ガスと反応すると共に前記有機金属含有ガスよりも密度の小さい第 2のガス を前記反応容器内に供給するための第 2ガス導入部と、 を備え、 第 1ガス導入管 のガス噴出口と第 2ガス導入管のガス噴出口とは、 前記反応容器内に配置される 基板の外周に沿って配置されていることを特徴とする気相成長装置を用いて、 基 板の表面に気相成長膜を形成する方法であって、 第 1ガス導入管のガス噴出口か ら第 1のガスを前記反応容器内に供給する工程と、 第 2ガス導入管のガス噴出口 から第 2のガスを前記反応容器内に供給する工程と、 を備えたことを特徴とする 方法である。
好ましくは、 第 1ガス導入管のガス噴出口から第 1のガスを前記反応容器内に 供給する工程と、 第 2ガス導入管のガス噴出口から第 2のガスを前記反応容器内 に供給する工程とは、 同時に実施される。 図面の簡単な説明
図 1は、 本発明の一実施の形態に係る気相成長装置を示す概略断面図である。 図 2は、 図 1の第 1のガス導入管をウェハの中心から見た概略図である。
図 3 (a) は、 図 2の第 1のガス導入管の部分拡大正面図、 図 3 (b) は、 図
2の第 1のガス導入管のガス噴出口を通る拡大横断面図である。
図 4は、 ウェハに対する、 第 1のガス導入管のスリット状ガス噴出口、 並びに、 第 2のガス導入管の円形状ガス噴出口の位置関係を示す図である。
図 5 (a) は、 ガス噴出口の変形例を有する第 1のガス導入管の部分拡大正面 図、 図 5 (b) は、 図 5 (a) の第 1のガス導入管のガス噴出口を通る拡大横断 面図である。
図 6は、 図 1の第 2のガス導入管をウェハの中心から見た概略図である。
図 7 (a) は、 図 6の第 2のガス導入管の部分拡大正面図、 図 7 (b) は、 図
6の第 2のガス導入管のガス噴出口を通る拡大横断面図である。
図 8は、 本発明の他の実施の形態に係る気相成長装置を示す概略断面図である c 図 9 (a) は、 図 8の気相成長装置における第 1のガス導入管の正面図であり、 図 9 (b) は、 図 8の気相成長装置における第 2のガス導入管の正面図である。 図 10は、 実験例 1において得られた、 ウェハの表面上における S r (DP
M) 2 ガスの分布状況を示す等密度曲線図である。
図 1 1は、 実験例 1において得られた、 ウェハの表面上における酸素ガスの分 布状況を示す等密度曲線図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明について詳細に説明する。
図 1は、 本発明の気相成長装置の一例を概略的に示す図である。
この気相成長装置 10は、 バッチ式縦型気相成長装置であって、 上下方向に伸 びる円筒状の反応容器 12を備えている。 反応容器 12は、 例えば石英よりなる c 反応容器 12の上部は、 閉塞されている。
円筒状のステンレス鋼からなるマニホ一ルド 13が、 反応容器 12の下端に接 続されている。 このマニホ一ルド 13の下方には、 蓋体 14が配置されている。 この蓋体 1 4は、 ボートエレべ一夕 (図示せず) により上下方向に移動可能とさ れている。
そして、 蓋体 1 4が上昇すると、 マ二ホールド 1 3の下端の開口が閉塞される ようになつている。 これにより、 反応容器 1 2の内部に密閉された反応処理室が 形成される。
蓋体 1 4上には、 保温筒 1 5を介して、 例えば石英からなるウェハボート WB が載置される。 気相成長膜を形成すべき基板は、 例えばシリコンよりなる半導体 ウェハ Wである。 複数枚の半導体ウェハ W (基板) が、 ウェハボート WBに上下 方向に所定の間隔をおいて保持される。 そして、 ボートエレべ一夕によって蓋体 1 4が上昇すると、 ウェハボート WBが反応容器 1 2内に挿入される。 これによ り、 当該ウェハボート WBに保持されたウェハ Wが、 反応容器 1 2内における処 理領域に配置される。
反応容器 1 2は、 その内部にウェハボート WBが挿入された状態で、 反応容器 1 2の内側面とウェハボート W Bまたはウェハ Wの外周縁との間に円筒状空隙が 形成される大きさとされている。 この円筒状空隙内に、 ガス導入管 (後述する) が配設されている。
反応容器 1 2の周囲には、 例えば抵抗発熱体からなる筒状ヒー夕 1 6が設けら れている。 この筒状ヒータ 1 6により、 反応容器 1 2の内部及びウェハボート W B上に配置されたウェハ Wが、 所定の設定温度となるよう加熱される。
筒状ヒー夕 1 6の外側には、 断熱材層 1 8が配設されている。 更に、 アウター シェル 2 0が、 断熱材層 1 8を包囲するように設けられている。 また、 必要に応 じて、 反応容器 1 2の上方にもヒー夕が配設され得る。
反応容器 1 2内に原料ガスを供給するために、 複数のガス供給管が設けられて いる。 具体的には、 有機金属含有ガスを供給するための第 1のガス供給管 3 0と、 酸素ガスを供給するための第 2のガス供給管 4 0とが、 各々、 マ二ホールド 1 3 の側壁を互いに隣接した位置において貫通して伸びるように設けられている。 第 1のガス供給管 3 0は、 当該気相成長装置 1 0の外部に設けられた、 有機金 属含有ガスよりなる原料ガスのガス源 (図示せず) に接続されている。 マニホ一 ルド 1 3の内部における第 1のガス供給管 3 0の先端部には、 反応容器 1 2の内 周面とウェハ Wの外周縁との間に形成される円筒状空隙内に位置する、 例えば石 英管よりなる第 1のガス導入管 3 2の下端部が連通して接続されている。
図 2は、 第 1のガス導入管 3 2をウェハの中心から見た図であり、 図 3 ( a ) は、 図 2の第 1のガス導入管 3 2の部分拡大正面図、 図 3 ( b ) は、 図 2の第 1 のガス導入管 3 2のガス噴出口 3 5を通る拡大横断面図である。
また、 図 4は、 反応容器内に配置されたウェハに対する、 第 1のガス導入管の スリット状ガス噴出口、 並びに、 第 2のガス導入管の円形状ガス噴出口の位置関 係を示す図である。
図 2に示されているように、 第 1のガス導入管 3 2は、 反応容器 1 2内の円筒 状空隙内を上方に伸びる導入管部分 3 2 Aと、 この導入管部分 3 2 Aの上端から U字状に湾曲して下方に伸びる噴出管部分 3 2 Bとを有している。 導入管部分 3
2 Aと噴出管部分 3 2 Bとは、 互いに並行して伸びている。 噴出管部分 3 2 Bと 導入管部分 3 2 Aとは、 適宜の個所において、 補強用ブリッジ部材 3 3によって 連結されている。
噴出管部分 3 2 Bにおいては、 各々管体の周方向 (すなわち、 ウェハ Wの面方 向) に伸びるスリット状貫通孔によって形成されたガス噴出口 (以下、 「スリッ ト状噴出口」 という) 3 5の多数が、 当該噴出管部分 3 2 Bの長さ方向において 適宜の間隔で形成されている。
そして、 図 4に示すように、 ウェハ Wの面に沿って伸びる各スリット状噴出口
3 5は、 矢印 Xで示すその正面方向が、 ウェハ Wの中心 Cを向いている。 なお、 図 4においては、 導入管部分 3 2 Aは省略され、 噴出管部分 3 2 Bが簡略に示さ れている。
第 1のガス導入管 3 2の寸法は特に限定されるものではなく、 種々の条件に応 じて適宜設定することができる。 一例を示すと、 第 1のガス導入管 3 2の噴出管 部分 3 2 Bの外径は 1 6 . 8〜1 7 . 2 mm、 内径は 1 6 . 5 - 1 6 . 6 mm、 肉厚は 0 . 2〜0 . 7 mmとされ得る。 また、 スリット状噴出口 3 5の長さ (噴 出管部分 3 2 Bの管体における周方向の長さ) は、 その開き角ひ (図 3 ( b ) 参 照) の大きさが例えば 3 0〜: L 6 0度となる長さとされ得る。 また、 開口幅 (噴 出管部分 3 2 Bの管体の長さ方向の幅) dは 0 . 5〜2 . 0 mmの範囲の大きさ とされ得る。
図 5 ( a ) 及び図 5 ( b ) は、 スリッ ト状噴出口 3 5の変形例を示す。 図 5 ( a ) および図 5 ( b ) は、 それそれ、 図 3 ( a ) 及び図 3 ( b ) と同様の図で ある。 図 5からも明らかなように、 スリット状噴出口 3 5の各々は、 単一のスリ ット孔のみから構成される必要はなく、 管体の周方向に分割されている複数 (図 5の例では 3つ) のスリット孔部分 Sで形成されてもよい。 例えば図 5の場合、 隣接するスリット孔部分 S間に中間壁部分 Mが残存している。 この場合には、 中 間壁部分 Mが残存していることにより、 大きな機械的強度が得られ得る。
第 2のガス供給管 4 0は、 第 1のガス供給管 3 0と同様に、 マ二ホールド 1 3 の周壁を貫通して配設されている。 そして、 第 2のガス供給管 4 0は、 当該気相 成長装置 1 0の外部に設けられた酸素ガス源 (図示せず) に接続されている。 マ 二ホールド 1 3の内部における第 2のガス供給管 4 0の先端部には、 反応容器 1 2の内周面とウェハ Wの外周縁との間に形成される円筒状空隙内に位置する、 例 えば石英管よりなる第 2のガス導入管 (図 1では示されていない) の下端部が連 通して接続されている。
図 6は、 第 2のガス導入管 4 2をウェハの中心から見た図であり、 図 7 ( a ) は、 第 2のガス導入管 4 2のガス噴出口 4 5部分を示す拡大正面図、 図 7 ( b ) は、 第 2のガス導入管 4 2のガス噴出口 4 5を通る拡大横断面図である。
図 6に示されているように、 第 2のガス導入管 4 2は、 反応容器 1 2内の円筒 状空隙内を上方に伸びる導入管部分 4 2 Aと、 この導入管部分 4 2 Aの上端から U字状に湾曲して下方に伸びる噴出管部分 4 2 Bとを有している。 導入管部分 4 2 Aと噴出管部分 4 2 Bとは、 互いに並行して伸びている。 噴出管部分 4 2 Bと 導入管部分 4 2 Aとは、 適宜の個所において、 補強用ブリッジ部材 4 3によって 連結されている。
噴出管部分 4 2 Bにおいては、 円形状貫通孔によって形成されたガス噴出口 (以下、 「円形噴出口」 という。 ) 4 5の多数が、 当該噴出管部分 4 2 Bの長さ 方向において適宜の間隔で形成されている。
そして、 図 4に示されているように、 噴出管部分 4 2 Bにおける各円形噴出口 4 5は、 矢印 Yで示すその正面方向が、 ウェハ Wの中心 Cを向いている。 なお、 図 4においては、 導入管部分 4 2 Aは省略され、 噴出管部分 4 2 Bが簡略に示さ れている。
ここで、 第 2のガス導入管 4 2の管体としては、 既述の第 1のガス導入管 3 2 と同様のものが用いられ得る。 円形噴出口 4 5の大きさは、 種々の条件に応じて 適宜設定することができるが、 例えば直径が 0 . 5〜5 . O mmとされる。 円形 噴出口 4 5は、 例えば管体の周方向に並ぶ複数の円形貫通孔によって形成するこ ともできる。
以上において、 第 1のガス導入管 3 2の噴出管部分 3 2 Bと、 第 2のガス導入 管 4 2の噴出管部分 4 2 Bとは、 図 4に示されているように、 ウェハ Wの外周の 方向に沿って接近した位置に並んで配置されている。 また、 既述のように、 それ らのガス噴出口すなわちスリット状噴出口 3 5と円形噴出口 4 5とは、 いずれも その正面方向がウェハ Wの中心 Cを向いた状態に設定されている。
そして、 スリット状噴出口 3 5と円形噴出口 4 5とは、 各々の正面方向のなす 角度、 すなわち、 図 4における矢印 Xと矢印 Yとのなす角度 (以下 「噴出口間角 度」 という。 ) 0が小さい状態で並んで配置されていることが必要である。 実際 上、 この噴出口間角度 0の大きさは 4 5度以下であることが重要である。 特に噴 出口間角度 0が 1 0度以下であることが好ましい。 この場合には、 均一性のきわ めて高い気相成長膜を形成することができる。
なお、 噴出口間角度 0の大きさの下限は、 原理的には存在しないが、 噴出管部 分 3 2 Bの管径及び噴出管部分 4 2 Bの管径によって自ずと定まり得る。
また、 図 1を参照して、 マ二ホールド 1 3において、 第 1のガス供給管 3 0お よび第 2のガス供給管 4 0が貫通する位置とは反対側の位置に、 排気口 1 9が設 けられている。 この排気口 1 9には、 調節バルブが介挿された排気管を介して真 空ポンプ (図示せず) が接続されている。
そして、 第 1のガス供給管 3 0によるガスの供給、 第 2のガス供給管 4 0によ るガスの供給、 筒状ヒー夕 1 6の動作、 並びに排気口 1 9に接続された調節バル ブおよび真空ポンプの動作状態を制御するために、 制御機構 (図示せず) が設け られている。 この制御機構は、 具体的には、 マイクロプロセッサやプロセスコン トローラなどにより構成され得て、 予定のプログラムに基づいて制御信号を各部 に供給して制御する機能を有し得る。
上記のような構成を有する気相成長装置 1 0を用いて、 以下のようにして、 ゥ ェハの表面に気相成長膜を形成することができる。
先ず、 気相成長膜が形成されるべき基板であるウェハ Wを保持するウェハボー ト WBが、 降下位置にある蓋体 1 4上に載置される。 その後、 図示されていない ボートエレべ一夕によって、 蓋体 1 4が上昇させられる。 これにより、 ウェハポ —ト WBが反応容器 1 2内に挿入されて、 ウェハ Wが反応容器 1 2内に配置され る。 この時、 蓋体 1 4はマ二ホールド 1 3の下端の開口を閉塞する。 これにより、 反応容器 1 2内が密閉された状態となる。
一方、 反応容器 1 2内は、 排気口 1 9を介して、 設定された減圧状態とされる c また、 反応容器 1 2内は、 筒状ヒータ 1 6によって加熱されて、 設定された温度 状態に維持される。
この減圧状態および温度状態は、 目的とする気相成長膜の種類や用いられる原 料ガスの種類およびそれらの流量、 その他の条件によって適宜選定され得る。 反応容器 1 2内の雰囲気についての条件の一例で 、 圧力が例えば 6 7〜6 7 0 P a ( 0 . 5〜5 . O T o r r ) であり、 温度は 3 0 0〜6 0 0 °Cである。 そして、 設定された減圧条件および温度条件が維持されている状態において、 第 1のガス供給管 3 0および第 2のガス供給管 4 0を介してそれそれ所要量の原 料ガスが供給され、 気相成長膜の形成が行われる。
第 1のガス供給管 3 0および第 2のガス供給管 4 0を介して供給される原料ガ スは、 目的とする気相成長膜の種類によって異なり得る。 本実施の形態では、 第 1のガス供給管 3 0による第 1のガスとして有機金属含有ガスが用いられる。 一 方、 第 2のガス供給管 4 0による第 2のガスとしては、 第 1のガス供給管 3 0を 介して供給される有機金属含有ガスと反応し得て、 かつ、 当該有機金属含有ガス より密度の小さい反応用ガスが用いられる。
各原料ガスの供給割合は、 目的とする状態の気相成長膜が形成される条件に従 つて設定することができる。
気相成長膜を形成するために用いられる有機金属含有ガス (第 1のガス) 、 及 び、 これと共に用いられる反応用ガス (第 2のガス) の具体的な組合せとしては、 下記のものを挙げることができるが、 これらに限定されるものではない。
(1) S r 〔 [ (CH3 ) a CCO] 2 CH〕 2 ガス (以下 「Sr (DPM) 2 ガス」 という。 ) と 02 ガスとの組合せ
この組合せによれば、 S r 0よりなる気相成長膜が形成される。
(2) T i (OC3 Ητ — i) 2 〔 [ (CH3 ) 3 CCO] 2 CH〕 2 ガスと 0
2 ガスとの組合せ
この組合せによれば、 Ti02 よりなる気相成長膜が形成される。
(3) T i C 14 ガスと NH3 ガスとの組合せ
この組合せによれば、 T i Nよりなる気相成長膜が形成される。
(4) Z r 〔OC (CH3 ) 3 〕 4 ガスと 02 ガスとの組合せ
この組合せによれば、 Zr02 よりなる気相成長膜が形成される。
(5) T a (OC2 H5 ) 5 ガスと 02 ガスとの組合せ
この組合せによれば、 Ta 2 05 よりなる気相成長膜が形成される。
以上の組合せの各々は、 それが単独で用いられることは必須でない。 例えば、 上記 (1) と (2) の組合せを併用することができる。 この場合、 Sr (DP M) 2 ガスおよび Ti (OC3 Ητ - i) 2 〔 [ (CH3 ) 3 CCO] 2 CH〕 2 ガスの混合ガスと、 酸素ガスとを用いることにより、 SrTi〇3 よりなる気 相成長膜を形成することができる。
例えば、 上記 (1)の組合せを用いて気相成長膜を形成する場合には、 第 1の ガス供給管 30には、 Sr (DPM) 2 ガスが例えば 0. 3〜: L. 0 s 1 mの割 合で供給され、 第 2のガス供給管 40には酸素ガスが例えば 1. 0〜10. 0s lmの割合で供給され、 反応容器 12内は、 67〜670Pa (0. 5〜5. 0 T o r r)の減圧状態および 300〜600 °Cの温度状態に維持される。
成膜に要する時間は、 目的とする膜厚の大きさによっても異なるが、 例えば、 10〜40分間である。 これにより、 膜厚が例えば 5〜20 nmの気相成長膜が 形成され得る。
以上の気相成長膜の形成においては、 第 1のガス供給管 30より供給された有 機金属含有ガスが、 反応容器 12内の第 1のガス導入管 32の噴出管部分 32B に至り、 当該噴出管部分 32 Bに形成されたスリット状噴出口 35の各々から、 ウェハ Wの面に沿って、 かつ、 ウェハ Wの中心 Cに向かって噴出される。
これと同時に、 第 2のガス供給管 4 0より供給された酸素ガスが、 反応容器 1 2内の第 2のガス導入管 4 2の噴出管部分 4 2 Bに至り、 当該噴出管部分 4 2 B に形成された円形噴出口 4 5の各々から、 ウェハ Wの面に沿って、 かつ、 ウェハ Wの中心 Cに向かって噴出される。
スリツト状噴出口 3 5がウェハ Wの面に沿って水平方向に伸びるスリツト状貫 通孔により形成されているため、 当該スリツ ト状貫通孔 3 5から噴出された有機 金属含有ガスは、 ウェハ Wの面に沿って、 矢印方向 X (正面方向) と直交する方 向 (横方向) にも大きく拡散するようになる。
しかし、 有機金属含有ガスは、 その組成において金属元素を含有するために、 密度が高くて重いものである。 従って、 有機金属含有ガスは、 当該スリツ ト状噴 出口 3 5から X方向において遠くにまで拡散することが困難である。 そのために、 従来においては、 X方向における膜厚の不均一性を抑制することがほとんど不可 能であった。
本実施の形態によれば、 噴出管部分 3 2 Bから有機金属含有ガスが噴出される 時に、 第 2のガス導入管 4 2の円形噴出口 4 5から酸素ガスが噴出される。 酸素 ガスは、 その密度が低くて軽いものである。 このため、 噴出口の形状によらずに、 すなわち、 当該噴出口が円形であっても、 酸素ガスはウェハ Wの表面に沿って大 きく拡がって高い均一性で拡散する。
一方、 酸素ガスの噴出口である円形噴出口 4 5と有機金属含有ガスの噴出口で あるスリット状噴出口 3 5とは、 ウェハ Wの外周方向に沿って互いに接近して並 んで配置されている。 このため、 スリット状噴出口 3 5から吐出される有機金属 含有ガスは、 酸素ガスの流れの作用を受け、 すなわち、 酸素ガスの拡散作用によ つて延展拡散されることとなる。 その結果、 X方向においても、 大きな距離の範 囲において膜厚の高い均一性を得ることができる。
以上の結果、 ウェハ Wの表面においては、 有機金属含有ガスおよび酸素ガスが 両方共に高い均一性で拡散することとなる。 従って、 その膜厚においても、 また 膜質においても、 高い均一性の気相成長膜を形成することができる。
以上の気相成長装置 1 0においては、 各ガス導入管 (第 1のガス導入管 3 2お よび第 2のガス導入管 4 2 ) が、 いずれも、 反応容器 1 2内において、 上方に伸 びる導入管部分 (3 2 Aおよび 4 2 A ) と、 この導入管部分の上端から U字状に 湾曲して下方に伸びる噴出管部分 (3 2 Bおよび 4 2 B ) とにより構成されてい る。 これは、 以下の理由のために好適である。 すなわち、 本実施の形態では、 反 応容器 1 2がいわゆる単管構造であって、 当該反応容器 1 2内を減圧するための 排気が下部の排気口 1 9を介して行われる。 従って、 下方に伸びる噴出管部分 ( 3 2 Bおよび 4 2 B ) を用いることによって、 その長さ方向に適宜の間隔で形 成された各噴出口のレベルの差による噴出圧力の差を小さくすることができるの である。 これにより、 全体としてより均一性の高い噴出状態を得ることができる 図 8は、 本発明の気相成長装置の他の一例を概略的に示す図である。 図 9は、 図 8の気相成長装置における第 1のガス導入管および第 2のガス導入管を説明す るための図である。
図 8の気相成長装置 5 0は、 基本的には、 図 1の気相成長装置 1 0と同様の構 成を有するが、 次の点で異なっている。 すなわち、 気相成長装置 5 0においては、 反応容器 1 2の内周壁に沿って、 上部が開放された内管 5 2が設けられている (二重管型) 。 これにより、 当該内管 5 2と反応容器 1 2との間に環状空間 5 4 が形成されている。 この環状空間 5 4の下部に、 排気口 1 9が接続されている。 そして、 図 9 ( a ) に示すように、 第 1のガス供給管 3 0に接続される第 1の ガス導入管 5 6は、 単に上方に伸びる直管状の管体からなる。 第 1のガス導入管 5 6には、 スリット状噴出口 3 5が形成されている。 また、 図 9 ( b ) に示すよ うに、 第 2のガス供給管 4 0に接続される第 2のガス導入管 5 8も同様に、 単に 上方に伸びる直管状の管体からなる。 第 2のガス導入管 5 8には、 円形状噴出口 4 5が形成されている。
このような二重管型の構成では、 環状空間 5 4を介して反応容器 1 2内の上方 部分から排気が行われる。 このため、 上記のような直管状のガス導入管 5 6およ び 5 8を用いることによって、 既述の図 1乃至図 7に示すと同様に、 その長さ方 向に適宜の間隔で形成された各噴出口のレベルの差による噴出圧力の差を小さく することができる。 これにより、 全体としてより均一性の高い噴出状態を得るこ とができる。 以上、 本発明の気相成長装置および気相成長膜形成方法の実施の形態について 具体的に説明したが、 上記の実施の形態には、 種々変更を加えることができる。 例えば、 上記の気相成長装置はバッチ式のものであるが、 枚葉式の気相成長装 置として構成することができる。
有機金属含有ガスを導入するための第 1のガス導入管のガス噴出口に関しては、 当該有機金属含有ガスが横方向において十分に大きく拡散するような態様である ことが好ましい。 すなわち、 第 1のガス導入管のガス噴出口は、 上記のように、 スリット状貫通孔によって形成されていることが好ましい。 しかしながら、 本発 明において、 第 1のガス導入管のガス噴出口としては、 円形貫通孔によって形成 されたものであってもよい。
一方、 有機金属含有ガスでない原料ガスを導入するための第 2のガス導入管の ガス噴出口に関しては、 それが円形貫通孔によって形成されても、 十分に拡がる 拡散状態が得られる。 従って、 第 2のガス導入管のガス噴出孔は、 スリツト状貫 通孔である必要はないが、 そのように形成されてもよい。
すなわち、 本発明では、 第 1のガス導入管のガス噴出口がスリット状で、 第 2 のガス導入管のガス噴出口が円形噴出口であることが好適であるが、 他の形状の 組合せが排除されるものではない。 実験例 1
図 1に示されている構成を有する気相成長装置を用い、 下記の表 1に示す条件 に従って、 直径 8インチのシリコンウェハの表面に気相成長膜を形成する実験を 行った。
【表 1】
〔気相成長装置〕
( 1 ) 第 1のガス導入管 3 2の噴出管部分 3 2 Bの外径: 1 7 . 0 mm
内径: 1 4 . 0 mm スリット状噴出口 3 5の開き角ひ : 1 2 3度
開口幅 d : 0 . 2 4 mm
( 2 ) 第 2のガス導入管 4 2の噴出管部分 4 2 Bの外径: 1 7 . 0 mm 内径: 14. 0mm 円形噴出口 45の径: 2. 0 mm (3) 噴出口間角度 0 : 10度
〔気相成長膜の形成〕
( 1) 有機金属含有ガス (種類) S r (DPM) ガス
0. 6 s 1 m
(2) 酸素ガス (流量) 5. 0 s 1 m
( 3 ) 酸素ガス:気相成長の条件
反応容器 12内の圧力 100 P a
ί 475°C 図 10は、 上記の実験において測定された、 ウェハの表面上における S r (D PM) ガスの分布状況を示す等密度曲線図である。 図 10において、 円形がゥ ェハの外周輪郭である。 a〜(!の数字は当該 S r (DPM) 2 ガスの分布の程度 を段階的に示す指標である。 その具体的な値は、 以下のとおりである。
a : 2. 40 2. 00 (kg/m2)
b : 2. 00- 1. 60 (k /m2)
c : 1. 60- 1. 20 (kg/m2)
d : 1. 20 0. 80 (k /m2)
すなわち、 図 10の状態では、 最高密度の a段階と最低密度の d段階との間の差 は、 最大でも 1. 60 (kg/m2) 以下であることが理解される。
図 1 1は、 同じく、 酸素ガスの分布状況を示す等密度曲線図である。 図 1 1に おける a~eの各範囲は、 以下のとおりである。
a : 2. 90 2. 85 (kg/m2)
b : 2. 85 2. 80 (kg/m2)
c : 2. 80 2. 75 (kg/m2)
d : 2. 75 2. 70 (kg/m2)
e : 2. 70 2. 65 (kg/m2) 実験例 2
噴出口間角度 0を 40度に変更し、 それ以外は上記実験例 1と全く同様の条件 で、 気相成長膜の形成実験を行った。 その結果、 Sr (DPM) 2 ガスの等密度 曲線図における分布状況は、 以下の 6段階であった。 実験例 1の場合よりも均一 性が低いが、 実用上十分に高い均一性の気相成長膜が形成された。
(1) 3. 20〜2. 80 (kg/m2)
(2) 2. 80〜2. 40 (kg/m2)
(3) 2. 40〜2. 00 (kg/m2)
(4) 2. 00〜: L. 60 (kg/m2)
(5) 1. 60〜: L. 20 (kg/m2)
(6) 1. 20〜0. 80 (kg/m2)
この実験例 2から理解されるように、 噴出口間角度 0の大きさが 40度であつ ても、 所期の比較的均一な気相成長膜を形成することができる。
また、 実験例 1と実験例 2との対比から、 噴出口間角度 0が例えば 10度以下 のように小さい場合に、 より高い均一性の良好な結果が得られることが明らかで ある。 比較実験例
一方、 比較のために、 酸素ガスの供給を停止して S r (DPM) ガスのみを 供給する実験が行われた。 それ以外は上記と同様の条件で、 実験が行われた。 そ の結果、 Sr (DPM) ガスの等密度曲線図における分布状況は、 最高密度の 段階 4. 00〜3. 60 (kg/m2) から最低密度の段階 0. 40〜0. 00
(kg/m2) までの 10段階であった。 すなわち、 最高密度の段階と最低密度の 段階との間の差は最大 3. 60 (kg/m2) ときわめて広範であり、 不均一性が 大きいものであった。
以上のことから、 スリット状噴出口と共に配置された円形噴出口から酸素ガス が噴出されることにより、 Sr (DPM) 2 ガスがウェハ Wの表面に沿って大き く拡散され、 その結果、 十分に高い均一性で気相成長膜が形成されることが明ら かである。

Claims

請 求 の 範 囲
1 . 内部に基板が配置される反応容器と、
前記反応容器内にて開口するガス噴出口が形成された第 1ガス導入管を有し、 有機金属含有ガスよりなる第 1のガスを前記反応容器内に供給するための第 1ガ ス導入部と、
前記反応容器内にて開口するガス噴出口が形成された第 2ガス導入管を有し、 前記有機金属含有ガスと反応すると共に前記有機金属含有ガスよりも密度の小さ い第 2のガスを前記反応容器内に供給するための第 2ガス導入部と、
を備え、
第 1ガス導入管のガス噴出口と第 2ガス導入管のガス噴出口とは、 前記反応容 器内に配置される基板の外周に沿って配置されている
ことを特徴とする気相成長装置。
2 . 第 1ガス導入管のガス噴出口から前記反応容器内に導入される第 1のガ スは、 第 2ガス導入管のガス噴出口から前記反応容器内に導入される第 2のガス の流れの影響を受けて、 前記基板の面に沿って拡散するようになっている ことを特徴とする請求項 1に記載の気相成長装置。
3 . 第 1ガス導入管のガス噴出口は、 前記基板の面に平行な方向に開口する スリツト状貫通孔によって形成されている
ことを特徴とする請求項 1または 2に記載の気相成長装置。
4 . 前記スリット状貫通孔は、 第 1ガス導入管に対する開き角が、 3 0度乃 至 1 6 0度である
ことを特徴とする請求項 3に記載の気相成長装置。
5 . 第 1ガス導入管のガス噴出口は、 前記基板の面に平行な方向に開口する 複数のスリツト状部分によって形成され、 隣接するスリツト状部分の間には、 中間壁部分が存在している
ことを特徴とする請求項 1または 2に記載の気相成長装置。
6. 第 2ガス導入管のガス噴出口は、 円形状貫通孔によって形成されている ことを特徴とする請求項 1乃至 5のいずれかに記載の気相成長装置。
7. 第 1ガス導入管のガス噴出口の正面方向と第 2ガス導入管のガス噴出口 の正面方向とは、 前記反応容器内に配置される基板の中心に向けられている ことを特徴とする請求項 1乃至 6のいずれかに記載の気相成長装置。
8. 第 1ガス導入管のガス噴出口及び第 2ガス導入管のガス噴出口の各正面 方向がなす角度は、 45度以下である
ことを特徴とする請求項 7に記載の気相成長装置。
9. 前記反応容器の内部には、 複数の基板が上下方向に間隔を空けて配置さ れるようになっており、
第 1ガス導入管のガス噴出口は、 各基板の高さに対応して、 複数が設けられて おり、
第 2ガス導入管のガス噴出口も、 各基板の高さに対応して、 複数が設けられて いる
ことを特徴とする請求項 1乃至 8のいずれかに記載の気相成長装置。
10. 第 1のガス及び第 2のガスは、
(1) S r 〔 [ (CH3 ) 3CCO] 2CH〕 2ガス及び 02ガス
(2) T i (0 C3 H, - i) 2 C [ (CH3 ) 3CCO] 2CH〕 2ガス及び 02ガス
(3) T i C 14ガス及び NH3ガス
(4) Z r 〔OC (CH3 ) 3) 4ガス及び 02ガス
(5) Ta (O C2 H5) 5ガス及び 02ガス
のいずれかである ことを特徴とする請求項 1乃至 9のいずれかに記載の気相成長装置。
1 1. 内部に基板が配置される反応容器と、
前記反応容器内にて開口するガス噴出口が形成された第 1ガス導入管を有し、 有機金属含有ガスよりなる第 1のガスを前記反応容器内に供給するための第 1ガ ス導入部と、
前記反応容器内にて開口するガス噴出口が形成された第 2ガス導入管を有し、 前記有機金属含有ガスと反応すると共に前記有機金属含有ガスよりも密度の小さ い第 2のガスを前記反応容器内に供給するための第 2ガス導入部と、
を備え、
第 1ガス導入管のガス噴出口と第 2ガス導入管のガス噴出口とは、 前記反応容 器内に配置される基板の外周に沿って配置されている
ことを特徴とする気相成長装置を用いて、 基板の表面に気相成長膜を形成する方 法であって、
第 1ガス導入管のガス噴出口から第 1のガスを前記反応容器内に供給する工程 と、
第 2ガス導入管のガス噴出口から第 2のガスを前記反応容器内に供給する工程 と、
を備えたことを特徴とする方法。
1 2. 第 1ガス導入管のガス噴出口から第 1のガスを前記反応容器内に供給す る工程と、 第 2ガス導入管のガス噴出口から第 2のガスを前記反応容器内に供給 する工程とは、 同時に実施される
ことを特徴とする請求項 1 1に記載の方法。
13. 第 1のガス及び第 2のガスは、
( 1) Sr 〔 [ (CH3 ) 3CCO] 2CH〕 2ガス及び 02ガス
(2) T i (OC3 Η7 - i) ι 〔 [ (CHs ) 3CCO] 2CH〕 2ガス及び 02ガス
(3) T i C 14ガス及び NH3ガス (4) Z r 〔OC (CH3 ) 〕 ガス及び 02ガス
(5) T a (0 C2 H5) ガス及び 02ガス のいずれかである
ことを特徴とする請求項 11または 12に記載の方法
PCT/JP2002/002378 2001-04-25 2002-03-13 Dispositif de croissance a phase gazeuse WO2002091448A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60232143T DE60232143D1 (de) 2001-04-25 2002-03-13 Gasphasen-wachstumseinrichtung
EP02705147A EP1383160B1 (en) 2001-04-25 2002-03-13 Gaseous phase growing device
KR1020037013793A KR100853886B1 (ko) 2001-04-25 2002-03-13 기상성장장치 및 이를 이용한 기상성장막 형성방법
US11/407,354 US7651733B2 (en) 2001-04-25 2006-04-20 Method for forming a vapor phase growth film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001128068A JP3980840B2 (ja) 2001-04-25 2001-04-25 気相成長装置および気相成長膜形成方法
JP2001-128068 2001-04-25

Publications (1)

Publication Number Publication Date
WO2002091448A1 true WO2002091448A1 (fr) 2002-11-14

Family

ID=18976828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002378 WO2002091448A1 (fr) 2001-04-25 2002-03-13 Dispositif de croissance a phase gazeuse

Country Status (7)

Country Link
US (2) US20030186560A1 (ja)
EP (1) EP1383160B1 (ja)
JP (1) JP3980840B2 (ja)
KR (1) KR100853886B1 (ja)
CN (1) CN100399517C (ja)
DE (1) DE60232143D1 (ja)
WO (1) WO2002091448A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001277755A1 (en) * 2000-08-11 2002-02-25 Tokyo Electron Limited Device and method for processing substrate
JP2004296659A (ja) * 2003-03-26 2004-10-21 Hitachi Kokusai Electric Inc 基板処理装置および半導体装置の製造方法
US8460945B2 (en) 2003-09-30 2013-06-11 Tokyo Electron Limited Method for monitoring status of system components
KR100636036B1 (ko) * 2004-11-19 2006-10-18 삼성전자주식회사 티타늄 질화막 형성 방법 및 이를 수행하기 위한 장치
KR100636037B1 (ko) * 2004-11-19 2006-10-18 삼성전자주식회사 티타늄 질화막 형성 방법 및 이를 수행하기 위한 장치
KR100693890B1 (ko) * 2005-04-21 2007-03-12 삼성전자주식회사 반응 장벽막을 갖는 반도체 장치의 제조 방법
KR20120038632A (ko) 2010-10-14 2012-04-24 삼성전자주식회사 태양 전지의 제조 방법
JP5702657B2 (ja) * 2011-04-18 2015-04-15 東京エレクトロン株式会社 熱処理装置
JP6128969B2 (ja) * 2013-06-03 2017-05-17 株式会社日立国際電気 基板処理装置、半導体装置の製造方法およびプログラム
JP6113626B2 (ja) * 2013-10-21 2017-04-12 東京エレクトロン株式会社 プラズマ処理装置
JP6435967B2 (ja) * 2015-03-31 2018-12-12 東京エレクトロン株式会社 縦型熱処理装置
JP6578243B2 (ja) * 2015-07-17 2019-09-18 株式会社Kokusai Electric ガス供給ノズル、基板処理装置、半導体装置の製造方法およびプログラム
CN111243994A (zh) * 2015-07-17 2020-06-05 株式会社国际电气 气体供给喷嘴、衬底处理装置及半导体器件的制造方法
JP6441494B2 (ja) 2015-09-28 2018-12-19 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
KR102043876B1 (ko) 2016-02-09 2019-11-12 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치 및 반도체 장치의 제조 방법
JP6710149B2 (ja) * 2016-11-21 2020-06-17 東京エレクトロン株式会社 基板処理装置
JP6924614B2 (ja) * 2017-05-18 2021-08-25 株式会社Screenホールディングス 基板処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149064A (en) * 1976-06-07 1977-12-10 Nippon Telegr & Teleph Corp <Ntt> Device for ipitaxial growth
EP0308946A2 (en) * 1987-09-22 1989-03-29 Nec Corporation Chemical vapor deposition apparatus for obtaining high quality epitaxial layer with uniform film thickness
JPH01150319A (ja) * 1987-12-07 1989-06-13 Fujitsu Ltd 半導体薄膜形成装置
JP2000294511A (ja) * 1999-04-09 2000-10-20 Ftl:Kk 半導体装置の製造装置
US6204194B1 (en) * 1998-01-16 2001-03-20 F.T.L. Co., Ltd. Method and apparatus for producing a semiconductor device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756511A (en) * 1971-02-02 1973-09-04 Kogyo Kaihatsu Kenyusho Nozzle and torch for plasma jet
US4263872A (en) * 1980-01-31 1981-04-28 Rca Corporation Radiation heated reactor for chemical vapor deposition on substrates
US4807562A (en) * 1987-01-05 1989-02-28 Norman Sandys Reactor for heating semiconductor substrates
JPH01235236A (ja) 1988-03-15 1989-09-20 Nec Corp 気相成長装置
US5015330A (en) * 1989-02-28 1991-05-14 Kabushiki Kaisha Toshiba Film forming method and film forming device
US5383984A (en) * 1992-06-17 1995-01-24 Tokyo Electron Limited Plasma processing apparatus etching tunnel-type
JP3024449B2 (ja) * 1993-07-24 2000-03-21 ヤマハ株式会社 縦型熱処理炉及び熱処理方法
JP3373990B2 (ja) * 1995-10-30 2003-02-04 東京エレクトロン株式会社 成膜装置及びその方法
JP2973971B2 (ja) * 1997-06-05 1999-11-08 日本電気株式会社 熱処理装置及び薄膜の形成方法
US6003152A (en) 1997-06-30 1999-12-14 Sun Microsystems, Inc. System for N-bit part failure detection using n-bit error detecting codes where n less than N
US20030049372A1 (en) * 1997-08-11 2003-03-13 Cook Robert C. High rate deposition at low pressures in a small batch reactor
JP4083331B2 (ja) 1998-01-16 2008-04-30 株式会社エフティーエル 半導体装置の製造装置
WO2000031261A2 (en) * 1998-11-25 2000-06-02 Cadus Pharmaceutical Corporation Methods and compositions for identifying effectors of the formyl peptide receptor like-1 (fprl-1) receptor
JP4426671B2 (ja) * 1998-11-27 2010-03-03 東京エレクトロン株式会社 熱処理装置及びその洗浄方法
US6383300B1 (en) * 1998-11-27 2002-05-07 Tokyo Electron Ltd. Heat treatment apparatus and cleaning method of the same
JP3823597B2 (ja) 1999-04-09 2006-09-20 富士ゼロックス株式会社 画像形成装置
JP2000311862A (ja) * 1999-04-28 2000-11-07 Kokusai Electric Co Ltd 基板処理装置
KR100394571B1 (ko) * 1999-09-17 2003-08-14 삼성전자주식회사 화학기상증착용 튜브
KR100360401B1 (ko) * 2000-03-17 2002-11-13 삼성전자 주식회사 슬릿형 공정가스 인입부와 다공구조의 폐가스 배출부를포함하는 공정튜브 및 반도체 소자 제조장치
JP2001274107A (ja) * 2000-03-28 2001-10-05 Nec Kyushu Ltd 拡散炉
KR100458982B1 (ko) * 2000-08-09 2004-12-03 주성엔지니어링(주) 회전형 가스분사기를 가지는 반도체소자 제조장치 및 이를이용한 박막증착방법
US6435865B1 (en) * 2001-07-30 2002-08-20 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for positioning gas injectors in a vertical furnace
US20030164143A1 (en) * 2002-01-10 2003-09-04 Hitachi Kokusai Electric Inc. Batch-type remote plasma processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149064A (en) * 1976-06-07 1977-12-10 Nippon Telegr & Teleph Corp <Ntt> Device for ipitaxial growth
EP0308946A2 (en) * 1987-09-22 1989-03-29 Nec Corporation Chemical vapor deposition apparatus for obtaining high quality epitaxial layer with uniform film thickness
JPH01150319A (ja) * 1987-12-07 1989-06-13 Fujitsu Ltd 半導体薄膜形成装置
US6204194B1 (en) * 1998-01-16 2001-03-20 F.T.L. Co., Ltd. Method and apparatus for producing a semiconductor device
JP2000294511A (ja) * 1999-04-09 2000-10-20 Ftl:Kk 半導体装置の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1383160A4 *

Also Published As

Publication number Publication date
US20060257568A1 (en) 2006-11-16
JP3980840B2 (ja) 2007-09-26
CN100399517C (zh) 2008-07-02
EP1383160B1 (en) 2009-04-29
KR100853886B1 (ko) 2008-08-25
CN1526160A (zh) 2004-09-01
US7651733B2 (en) 2010-01-26
DE60232143D1 (de) 2009-06-10
US20030186560A1 (en) 2003-10-02
KR20030092093A (ko) 2003-12-03
JP2002324788A (ja) 2002-11-08
EP1383160A4 (en) 2005-11-16
EP1383160A1 (en) 2004-01-21

Similar Documents

Publication Publication Date Title
WO2002091448A1 (fr) Dispositif de croissance a phase gazeuse
JP4487338B2 (ja) 成膜処理装置及び成膜処理方法
EP1386981B1 (en) A thin film-forming apparatus
US5458685A (en) Vertical heat treatment apparatus
KR100497748B1 (ko) 반도체소자 제조용 원자층 증착 장치 및 원자층 증착 방법
KR950012910B1 (ko) 기상성장장치
KR100870807B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
CN100419971C (zh) 衬底处理装置以及半导体器件的制造方法
US7579276B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US20090250004A1 (en) Gas Head and Thin-Film Manufacturing Apparatus
US20110031593A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and semiconductor device
US20110203524A1 (en) Ald film-forming apparatus and method of fabricating semiconductor device
JPH09181065A (ja) 堆積チャンバ
CN109671611B (zh) 半导体器件的制造方法、衬底处理装置及记录介质
US7462245B2 (en) Single-wafer-processing type CVD apparatus
EP1454346A1 (en) Method and apparatus for chemical vapor ddeposition capable of preventing contamination and enhancing film growth rate
JPH021116A (ja) 熱処理装置
JP3968869B2 (ja) 成膜処理方法及び成膜処理装置
JP2013147708A (ja) TiSiN膜の成膜方法および記憶媒体
TWI807192B (zh) 氣體導入構造、熱處理裝置及氣體供給方法
US6194030B1 (en) Chemical vapor deposition velocity control apparatus
KR20130113659A (ko) 박막 제조 방법
JP7079340B2 (ja) 半導体装置の製造方法、基板処理装置、及びプログラム
JP2012136743A (ja) 基板処理装置
WO2013105389A1 (ja) TiSiN膜の成膜方法および記憶媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10381908

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002705147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037013793

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028087976

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002705147

Country of ref document: EP