WO2002080252A1 - Dispositif de traitement au plasma - Google Patents

Dispositif de traitement au plasma Download PDF

Info

Publication number
WO2002080252A1
WO2002080252A1 PCT/JP2002/003111 JP0203111W WO02080252A1 WO 2002080252 A1 WO2002080252 A1 WO 2002080252A1 JP 0203111 W JP0203111 W JP 0203111W WO 02080252 A1 WO02080252 A1 WO 02080252A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
processing
plasma processing
substrate
processing apparatus
Prior art date
Application number
PCT/JP2002/003111
Other languages
English (en)
French (fr)
Inventor
Tadahiro Ohmi
Masaki Hirayama
Shigetoshi Sugawa
Tetsuya Goto
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to EP02708713A priority Critical patent/EP1376670A4/en
Priority to KR1020037012541A priority patent/KR100685248B1/ko
Priority to US10/473,302 priority patent/US20040094094A1/en
Publication of WO2002080252A1 publication Critical patent/WO2002080252A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32238Windows

Definitions

  • the present invention generally relates to a plasma processing apparatus, and more particularly to a microphone mouth-wave plasma processing apparatus.
  • the plasma processing process and the plasma processing apparatus have recently been used in ultra-fine semiconductor devices having a gate length close to or less than 0.1 ju ni, which is called a so-called deep sub-micron element or deep sub-quarter micron element.
  • This is an indispensable technology for the manufacture of high-resolution flat display devices including liquid crystal display devices.
  • Various plasma excitation methods have been used for plasma processing used in the manufacture of semiconductor devices and liquid crystal display devices.
  • the plate-type high-frequency excitation plasma processing method has an inductively coupled plasma processing method. Plasma processing is common.
  • these conventional plasma processing systems have non-uniform plasma formation and limited areas with high electron density, making it difficult to perform a uniform process over the entire surface at high processing speeds, that is, high throughput. Has the following problem.
  • a microwave plasma processing apparatus using a high-density plasma excited by a microphone mouth-wave electric field without using a DC magnetic field has been proposed.
  • a flat antenna (radial line slot antenna) having a large number of slits arranged to generate a uniform microwave wave is used to generate microwaves in a processing vessel, and the microphone mouth is formed.
  • a plasma processing apparatus 3 configured to excite plasma by ionizing gas in a vacuum vessel by a wave electric field.
  • Japanese Patent Application Laid-Open No. 9-63793 refer to Japanese Patent Application Laid-Open No. 9-63793.
  • the microphone mouth-wave plasma excited by such a technique With the microphone mouth-wave plasma excited by such a technique, a high plasma density can be realized over a wide area and area directly below the antenna, and uniform plasma processing can be performed in a short time. Moreover, in the microphone mouth-wave plasma formed by a powerful technique, the plasma is excited by the microphone mouth-wave, so that the number of electrons is low, and damage to the target plate and metal contamination can be avoided. Furthermore, since uniform plasma can be easily excited even on a large-area substrate, it can be easily adapted to a semiconductor device manufacturing process using a large-diameter semiconductor substrate and a large-sized liquid crystal display device.
  • FIGS. 1A and 1B show the configuration of a conventional micro-mouth-wave plasma processing apparatus 100 using a powerful radial line slot antenna.
  • FIG. 1A is a cross-sectional view of the microwave plasma processing unit 300
  • FIG. 1B is a diagram showing the configuration of the radial line slot antenna.
  • a microphone mouth-wave plasma processing apparatus 100 has a processing chamber 101 exhausted from a plurality of exhaust ports 1 16, and a processing target plate is provided in the processing chamber 101.
  • a holding table 1 15 for holding 1 1 4 is formed.
  • a space 101A is formed in the shape of a ring around the holding table 115, and the plurality of exhaust ports 116 are formed in the ring.
  • the processing chamber 101 is formed at regular intervals so as to communicate with the space 101 A, that is, symmetrically with respect to the substrate to be processed, so that the processing chamber 101 and the space 101 A and the air port 116 are connected. The air can be exhausted uniformly.
  • a plate-shaped shower plate 103 having a large number of openings 107 is formed via a sheath wring 109, and a low loss is also provided outside the shower plate 103.
  • a cover plate 102 made of a dielectric is provided via another seal ring 108.
  • a plasma gas passage 104 is formed on the upper surface of the shower plate 103, and each of the plurality of openings 107 is connected to the plasma gas passage 104. It is formed to pass through. Further, a plasma gas supply passage 108 communicating with a plasma gas supply port 105 provided in ⁇ II of the processing vessel 101 is formed inside the knitted shower plate 103. The plasma gas such as Ar or r supplied to the Ml plasma gas supply port 105 is supplied to the tiff self opening 107 via the supply passage 108 and the passage 104. It is supplied at a substantially uniform concentration to the space 107 B immediately below the shower plate 103 inside the processing container 101.
  • a radial line slot antenna having an 1 ⁇ 2lt surface shown in FIG. 1B is further provided on the processing vessel 101, outside the cover plate 102, at a distance of 4 to 5 mm from the cover plate 102. 1 110 is provided.
  • the radial lines antenna 110 is connected to an external microphone mouth wave source (not shown) via a coaxial waveguide 110 A, and the microwave from the microwave source generates a tiff space.
  • the SiifE radial line slot antenna 110 is composed of a flat disk-shaped antenna body 110B connected to the outer waveguide of the tiilE coaxial waveguide 111OA and the antenna body 110B.
  • the antenna body 1 1 includes a plurality of slots 110 a shown in FIG. 1B formed in the opening and a radiation plate 110 C formed with a number of slots 110 b perpendicular thereto.
  • a retardation plate 110D made of a dielectric ⁇ having a constant thickness is inserted between 0B and the 3 ⁇ 4lt plate 110C.
  • the microwaves fed from the coaxial waveguide 110 are separated from the disk-shaped antenna body 110 by the radiation plate 110 C.
  • the laser beam advances while spreading in the radial direction, and at this time, the wavelength is compressed by the action of the retardation plate 110D. Therefore, the slots 110a and 110b are formed concentrically so as to be orthogonal to each other according to the wavelength of the microwave traveling in the ⁇ g direction.
  • a plane wave having circular polarization can be tilted in a direction substantially perpendicular to the tilt plate 110C.
  • an external processing gas source (not shown) is further provided between the shower plate 103 and the processing target 114 in the processing vessel 101.
  • a plurality of nozzles 113 for supplying a processing gas through a processing gas passage 112 formed in the processing vessel 101 are formed.
  • Each of the nozzles 113 discharges the supplied processing gas into a space 101C between the conductor structure 111 and the substrate 114 to be processed.
  • the plasma formed in the space 101B between the nozzles 113 and 113 adjacent to each other in the tiff is supplied from the space 101B to the space. Due to diffusion in 101 C, an opening having a size that allows efficient passage is formed.
  • the processing gas was released from the conductive material 11 1 into the tfris space 101 c via the nozzle 113 as described above.
  • the microwave extracted from the disgusting radial line slot antenna 110 is PUhed by the conductor structure 111, and does not damage the treated object 114.
  • the spaces 101 B and 100 B are not provided.
  • a continuous and stable plasma flow in the radial direction of the shower plate 103 is formed in 1C, enabling extremely uniform plasma processing even if the substrate 114 is a large-diameter scythe.
  • the pressure in the processing vessel 101 decreases, a problem arises in that the plasma density tends to decrease particularly in the peripheral portion of the shower plate 103. For example, when the pressure in the processing vessel 101 drops to 30 OmTorr or less in an Ar atmosphere, the plasma density in the periphery of the shower plate 103 drops significantly.
  • the present invention generally provides a new and useful plasma processing apparatus that solves the conventional problems.
  • a more specific summary of the present invention is to provide a plasma processing device a capable of performing uniform processing over the entire surface of a substrate to be processed, even if the processing is low.
  • Another subject of the present invention is:
  • a processing vessel having a holding table for holding the object a ⁇ , an exhaust system coupled to the processing vessel,
  • a microwave window provided as a part of the processing container, on the processing container, so as to face a substrate to be processed on the holding table;
  • a plasma gas supply unit for supplying the plasma gas into the tins processing container
  • a microphone mouth wave antenna provided corresponding to the microphone mouth wave on the processing container
  • an inner surface on a side facing the object-to-be-processed substrate has a distance between a plane corresponding to the surface of the substrate to be processed reduced toward a radially outer side of the microphone mouth wave transmitting window.
  • a plasma treatment device 3 having a concave shape is formed.
  • the present invention by forming a concave surface on the side of the shower plate facing the substrate to be processed, the lower surface of the shower plate where high-density plasma is formed around the substrate to be processed and the surface of the substrate to be processed The gap between them is reduced, and the decrease in plasma density around the shower plate is compensated.
  • plasma treatment at ⁇ gffi such as etching
  • plasma treatment at ⁇ gffi such as etching
  • plasma is stable and uniform near the surface of the substrate to be processed.
  • Plasma is maintained.
  • the ignition of the plasma is promoted by such a structure.
  • Such stabilization of the plasma by forming the concave surface is applicable not only to the configuration in which the processing gas supply unit is provided between the processing target and the plasma gas supply unit, but also to the configuration in which the processing gas supply unit is omitted.
  • a shower plate having a strong concave surface it is possible to use a dense ceramic formed with a plasma gas passage and a number of openings communicating with the plasma gas passage. It is also possible to use a porous ceramic for the shower plate.
  • These shower plates form a part of the processing vessel and are provided in close contact with a dense cover plate constituting a plasma transmission window.
  • the recess may be formed in the microwave window itself, and the plasma gas may be separately introduced into the processing chamber by a tube or the like without using a shower plate.
  • the outer surface facing the concave inner surface is a flat surface, the close contact with the microwave antenna can be easily ensured, and the cooling of the shower plate via the antenna can be achieved. This is advantageous because it becomes possible.
  • Figures 1A and 1B show the configuration of microwave plasma processing using a conventional radial line slot antenna
  • FIGS. 2A and 2B are views showing the configuration of a plasma processing apparatus according to a first embodiment of the present invention
  • FIG. 3 is a view showing the configuration of a processing gas supply structure used in the plasma processing apparatus of FIGS. 2A and 2B. Bottom view;
  • FIG. 4 is a view showing various modifications of the plasma processing apparatus of FIGS. 2A and 2B;
  • FIG. 5 is a view showing a configuration of a plasma processing apparatus according to a second embodiment of the present invention;
  • FIG. 7 is a diagram illustrating a configuration of a plasma processing apparatus according to a third embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration of a plasma processing apparatus according to a fourth embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a configuration of a plasma processing apparatus according to a sixth embodiment of the present invention.
  • FIG. Lo is a diagram showing a configuration of a plasma processing unit a according to a seventh embodiment of the present invention;
  • FIG. 11 is a diagram showing a configuration of a plasma processing according to an eighth embodiment of the present invention.
  • FIGS. 2A and 2B show the configuration of a microphone mouth-wave plasma processing apparatus 10 according to a first embodiment of the present invention.
  • the tiif self-microphone mouth-wave plasma processing Sl device 10 is provided in the processing container 11 and the processing container 11, and preferably holds the substrate to be processed 12 by electrostatic chuck. and a holder 1 3 consisting of a 1 N or a 1 2 0 3 which is formed by hot isostatic E3 ⁇ 4 opening pressure method (HIP), tiif in his own processing container 1 1 air surrounding our holder 1 3
  • the exhaust ports 11 a are formed at equal intervals at 11 A, that is, at at least two places, preferably at three or more places in a substantially axially symmetric relationship with the substrate 12 to be processed on the holding table 13. ing.
  • the processing vessel 11 is evacuated ⁇ 3 ⁇ by an uneven pitch screw pump or the like via a powerful exhaust port 11a.
  • the processing vessel 11 is preferably made of austenitic stainless steel containing A1, and a protective film made of aluminum oxide is formed on the inner wall surface by oxidation.
  • the corresponding parts to SiilS target substrate 1 2 of ⁇ of the processing vessel 1 1 is formed a dense A 1 2 number of nozzle openings 1 4 consists Oa Alpha formed by HIP method
  • a disk-shaped shower plate 14 is formed as a part of the; ⁇ .
  • Such HIP A 1 2 0 3 shower plate 1 4 formed under the law is formed using Y 2 O 3 as a sintering aid, porosity 0.0 substantially air holes Ya pinhole 3% It does not contain, and has a very high thermal conductivity as a ceramic.
  • the shower plate 14 is held by an overhang 11b formed on the inner wall of the processing container 11, and the portion of the overhang 11b that holds the shower plate 14 suppresses abnormal discharge. Therefore, the roundness is formed. Therefore, the plasma gas such as Ar or Kr supplied to the plasma gas inlet 11p sequentially passes through the flow paths 14C and 14B inside the shower plate 14, and then passes through the shower 14A through the opening 14A. It is uniformly supplied into the space 11 B immediately below the plate 14.
  • a disk-shaped slot plate 16 closely formed with the cover plate 15 and formed with a number of slots 16 a and 16 b shown in FIG. 3B, and a disk holding the slot plate 16 Antenna body 17, and a low-loss dielectric material such as Al 2 O 3 , Si 3 N 4 , S i ON or S i O 2, which is provided between the slot plate 16 and the antenna body 17.
  • a radial line slot antenna 20 composed of a slow phase plate 18 is provided.
  • the radial slot line antenna 20 is mounted on the processing vessel 11 via a seal ring 11u, and the radial line slot antenna 20 is connected to an external microphone via a coaxial waveguide 21 having a rectangular or circular cross section.
  • a microwave with a frequency of 2.45 GHz or 8.3 GHz is supplied from a mouth wave source (not shown).
  • the supplied microwaves are radiated from the slots 16 a and 16 b on the slot plate 16 into the processing vessel 11 through the cover plate 15 and the shower plate 14, and are radiated into the space 11 immediately below the shower plate 14.
  • plasma is excited in the plasma gas supplied from the opening 14A.
  • the cover plate 15 and the shower plate 14 are formed of A 1 2 3 and function as an efficient microwave window.
  • the plasma gas is supplied to the flow paths 14 A to 14 C at about 6666 Pa to 13332 Pa (about 50 to: rr).
  • the processing vessel 1 engaging with the slot plate 16 is used.
  • a ring-shaped groove 11 g is formed in a part of the upper surface of the slot plate 1, and the groove 11 g is exhausted through an exhaust port 11 G communicating with the groove, thereby forming the slot plate 1.
  • the gap formed between the cover plate 15 and the cover plate 15 is reduced in pressure, and the radial line slot antenna 20 can be pressed against the cover plate 15 with atmospheric pressure.
  • gaps include the slots 16 a and 16 b formed in the slot plate 16, but other than that, gaps may be formed for various reasons such as minute irregularities on the surface of the cover plate 15. May be done.
  • Such a gap is sealed by a sinorelle ring 11 u between the radial line slot antenna 20 and the processing container 11.
  • the cover plate 1 by filling the gap between the slot plate 16 and the cover plate 15 with an inert gas having a low molecular weight through the exhaust port 11 G and the groove 15 g, the cover plate 1 The heat transfer from 5 to tiff self slot board 16 can be facilitated.
  • the strong inert gas it is preferable to use He having a large thermal conductivity and a high ionizing energy.
  • the pressure is preferably set to about 0.8 atm.
  • a valve 11 V is connected to the exhaust port 11 G for exhausting the groove 15 g and filling the groove 15 g with an inert gas.
  • the outer waveguide 21 A is connected to the disk-shaped antenna body 17, and the center conductor 21 B is formed on the slow wave plate 18 It is connected to the slot plate 16 through an opening. Therefore, the microphone mouth wave supplied to the self-coaxial waveguide 21 A travels in a radial direction between the antenna body 17 and the slot plate 16, while passing through the slots 16 a and 16 b. More.
  • Fig. 2 (1) shows the slots 16a and 16b formed on the kitchen plate 16.
  • the slots 16a are arranged concentrically, and corresponding to each slot 16a, a slot 16b orthogonal thereto is also formed concentrically.
  • the slots 16a and 16b are formed by the slots 16 In the direction, they are formed at intervals corresponding to the wavelength of the microphone mouth wave compressed by the fiiia delay plate 18, and as a result, the microwave is converted from the fijf self-slot plate 16 into a substantially plane wave.
  • the microwave radiated in this manner forms a circularly polarized wave including two orthogonally polarized components. I do.
  • the surface of the shower plate 14 on the side facing the processing substrate 12 forms a concave curved surface, and as a result, the shower plate 14
  • the distance between the surface of the shower plate 14 and the plane corresponding to the surface of the substrate 12 to be processed D force is reduced smoothly outward in the ⁇ g direction of the shower plate 14.
  • the concave shape is defined by an axially symmetric curved surface, and the distance D decreases in the peripheral portion of the substrate 12 to be processed. The problem is solved.
  • the plasma processing apparatus 10 does not lower the plasma density below the power-off density even when performing plasma processing that needs to be performed in an ISflE environment, such as dry etching, and maintains plasma stably. It is possible to avoid problems such as disappearance of plasma in the peripheral portion of the processing substrate 12, damage to the substrate due to microphone mouth waves, or reduction in processing speed.
  • a cooling block 19 having a cooling water passage 19A formed thereon is formed on the antenna body 17 itself.
  • the cooling water passage 19A is formed in a spiral shape on the cooling block 19, and is preferably a cooling water in which H 2 gas is bubbled to remove free hydrogen and control the oxidation-reduction potential. Is passed.
  • the processing vessel 11 is disposed between the shower plate 14 and the substrate 12 on the IB holding table 13 in the processing vessel 11.
  • the processing gas injection port 11 1 r provided at the; ⁇ is supplied with a processing gas and is discharged from a number of processing gas nozzle openings 31 B (see FIG. 3).
  • a processing gas supply structure 31 having A is provided in the space 11C between the structure 31 and the processing target 12, a desired uniform S3 ⁇ 4 processing is performed.
  • substrate processing includes plasma oxidation processing, plasma nitriding processing, plasma oxynitriding processing, plasma CVD processing, and the like.
  • fluorocarbon gas such as C 4 F 8 , C 5 F 8 or C 4 F 6 which is easily dissociated, or F type or C 1 type from the processing gas supply structure 31 to the SiilB space 11 C.
  • the reactive ion etching can be performed on the object 12 by supplying an etching gas such as the above and applying a high frequency power of 13 A to the holding table 13. is there.
  • the outer wall of the processing vessel 11 is heated to 150 ° C. so that reaction by-products and the like may be deposited on the inner wall of the processing vessel. Adhesion is avoided, and dry cleaning of 3 ⁇ 4g once a day enables steady and stable cleaning.
  • FIG. 4 is a bottom view showing the configuration of the processing gas supply structure 31 in the configuration of FIG. 2A.
  • the processing gas supply structure 31 is, for example, an A1 alloy containing Mg or an A1 excitation! ], And the lattice-shaped processing gas passage 31 A is connected to the processing gas inlet 11 r at the processing gas supply port 31 R, and has a lower surface formed.
  • the processing gas is uniformly discharged from the multiple processing gas nozzle openings 31B into the space 11C.
  • an opening 31 C is formed between adjacent processing gas passages 31 A through which plasma or a processing gas contained in the plasma passes.
  • the processing gas supply structure 31 is formed of an Mg-containing A1 alloy, it is preferable to form a fluoride film on the surface.
  • the processing gas supply structure 31 is made of A1 added stainless steel, it is desirable to form a passivation film of aluminum oxide on the surface.
  • the electron temperature of the excited plasma is low, so that the incident energy of the plasma is small, and the powerful processing gas supply structure 31 is sputtered to process g3 ⁇ 4l 2 This avoids the problem of metal contamination.
  • the processing gas supply structure 31 can be formed of ceramics such as alumina.
  • the lattice processing gas passage 31A and the processing gas nozzle opening 31B are broken in FIG. It is provided to cover an area larger than the substrate to be processed 12 indicated by the line, and to cover the area.
  • the processing gas such as the source gas and the etching gas is plasma-excited, and the plasma is excited.
  • the processed gas enables uniform processing.
  • the processing is performed by setting the distance between the pentagonal processing gas passages 31A shorter than the wavelength of the microwave.
  • the gas supply structure 31 forms the surface of the microphone mouthpiece.
  • the microphone mouth wave excitation of the plasma occurs only in the space 11 B, and diffuses from the ⁇ excitation space 11 1 in the space 11 C including the surface of the treatment target 12.
  • the processing gas is activated by the generated plasma.
  • the microwave plasma processing apparatus 10 since the supply of the processing gas is uniformly controlled by using the processing gas supply structure 31, excessive dissociation of the processing gas on the surface of the substrate 12 to be processed is prevented. The problem can be solved, and even if a large structure with a high aspect ratio is formed on the surface of the surface 12, desired processing can be performed at the back of the high-aspect structure. It is possible to implement up to. In other words, the microphone mouth-wave plasma processing apparatus 10 is effective for manufacturing many generations of semiconductor devices having different design rules.
  • various oxidizing gas / nitridation gas, source gas and etching gas are introduced from the treatment gas supply structure 13, whereby the surface of the treatment substrate 12 is reduced. Even if the substrate 12 to be processed is a large-diameter substrate, various high-quality films can be uniformly deposited at low temperature on the entire surface, or the surface can be uniformly etched.
  • FIG. 4 shows the configuration of the shower plates 141 to L44 according to various modifications of the shower plate 14.
  • tiff is yourself shower plate 1 4 iota while having a concave conical on the side you face the tiff himself be punished 2, the shower plate 1 4 2 has a concave frustoconical shape I understand. Further ⁇ forms oneself shower plate 1 4 3 In circular recess is stepped flame shape, IiiIE shower plate 1 4 4 Multiple stages flame recess Are formed. Each of these recesses is formed on the axis with respect to the central axis of the shower plate, and a uniform processing power is guaranteed around the central axis.
  • FIG. 5 shows a configuration of a plasma processing apparatus 10A according to a second embodiment of the present invention.
  • the same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the plasma processing unit 10A has a configuration similar to that of the plasma processing unit 10, and the distance D between the substrate to be processed 12 and the shower plate 14 is the same as that of the shower plate.
  • the Ml self-processing gas supply unit 13 has been removed, although it decreases in the radially outward direction of 14.
  • the lower shower plate 31 is not capable of supplying the processing gas separately from the plasma gas to perform the film-forming etching.
  • the oxidizing gas or the nitriding gas together with the plasma gas from the shower plate 14, it is possible to form an oxide film, a nitriding film, or an oxynitride film on the surface of the substrate to be processed.
  • the configuration is simplified and the manufacturing cost can be greatly reduced.
  • the distance D decreases to the peripheral portion of the substrate 12 to be processed, the decrease in the plasma density in the peripheral portion of the substrate 12 to be processed is compensated, and the plasma becomes stable. It is maintained, and it is possible to avoid problems such as disappearance of plasma in the peripheral portion of the substrate to be processed 12, damage due to microwaves, and reduction in processing speed.
  • the oxidizing process, the nitriding process, the oxynitriding process, and the like of the substrate to be processed 12 can be performed efficiently at a low temperature even if the substrate to be processed is a large-diameter substrate. It can be performed uniformly and at low cost.
  • FIG. 6 shows the configuration of a plasma processing apparatus 10B according to a third embodiment of the present invention.
  • portions corresponding to the portions described above are denoted by the same reference numerals, and description thereof will be omitted.
  • a shower plate 14 P made of a porous ceramic such as sintered alumina is used in place of the shower plate 14.
  • the shower plate 14P does not have the shower opening 14A as in the shower plate 14P, but the plasma gas supply passage 14C connected to the plasma gas supply port 11P.
  • And 14 B are formed, and the supplied plasma gas flows from the plasma gas supply path 14 B through the pores in the porous shower plate 14 P to the obscene space 11 B. , Are released uniformly.
  • the lower surface of the shower plate 14P forms an axially symmetric concave surface, and the distance D between the lower surface of the object and the surface of the substrate 12 to be processed is equal to the circumference of the substrate to be processed. It decreases toward the side. For this reason, in the configuration of FIG. 6, a decrease in the plasma density in the peripheral portion of the substrate to be processed 12 is compensated, the plasma is stably maintained, the plasma disappears in the peripheral portion of the substrate to be processed 12, and This can avoid problems such as damage to the product and, in some cases, reduced processing.
  • various oxidation gas, nitriding gas, raw material gas and etching gas are introduced from the disgusting processing gas supply structure 13 so that the processing substrate 12 is removed. It is possible to uniformly deposit various high-quality films on the entire surface at low temperature, or to etch the surface uniformly.
  • various concave surfaces shown in FIG. 4 can be formed as the concave surfaces of the porous shower plate 14P.
  • FIG. 7 shows a configuration of a plasma processing unit a 10C according to a fourth embodiment of the present invention.
  • a plasma processing apparatus 10C of the present embodiment has a force similar to that of the above-described plasma processing apparatus 10B.
  • the lower shower plate 31 is removed. Further, the entire surface of the overhang portion 11b holding the shower plate 14 is rounded.
  • a processing gas cannot be supplied separately from the plasma gas to perform film-forming etching.
  • an oxide film, a nitride film, or an oxynitride film can be formed on the surface of the substrate to be processed.
  • the lower surface of the shower plate 14P forms an axially symmetric concave surface, and the distance D between the lower surface of the shower plate 14 and the surface of the substrate 12 to be processed is the periphery of the substrate 12 to be processed. Decrease towards the part. For this reason, in the configuration of FIG. 7, a decrease in the plasma density in the peripheral portion of the substrate to be processed 12 is compensated, the plasma is stably maintained, and the plasma disappears in the peripheral portion of the substrate to be processed 12 or the substrate due to microwaves. This can avoid problems such as damage, damage, and a decrease of 3 degrees.
  • the oxidizing process, the nitriding process, the oxynitriding process, etc., of the substrate 12 to be processed are performed at low temperature even if the substrate to be processed is a large-diameter substrate. It can be done efficiently, uniformly and at a low cost.
  • FIG. 4 Various concave surfaces shown in FIG. 4 can be used also in the shower plate 14 # of this embodiment.
  • FIG. 8 shows a configuration of a plasma processing apparatus 10D according to a fifth embodiment of the present invention.
  • the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the porous shower plate 14 ⁇ ⁇ ⁇ ⁇ and the cover plate 15 in the embodiment of FIG. 6 are removed, and a concave surface is provided on the side facing the Sts to be processed 12 instead.
  • a microphone mouth wave transmission window 14 Q made of dense ceramic is provided.
  • the microwave window 14 can be formed of a material having a small dielectric loss, such as alumina treated with HIP.
  • the microphone mouth wave transmitting window 14 Q performs the function of the cover plate 15, but the plasma gas passage 14 C and the opening 14 communicating with the plasma gas passage 14 C in the embodiment of FIG. A is not formed, and a plasma gas introduction portion consisting of a tube 11 P is formed separately in ⁇ of the processing container 11.
  • a plasma gas introduction portion consisting of a tube 11 P is formed separately in ⁇ of the processing container 11.
  • the microwave 3 ⁇ 4ii window 14 Q Is provided with a radial line slot antenna 20 closely. It is preferable that the plasma gas introduction pipe 11 P is symmetrically disposed around the substrate 12 to be processed.
  • the lower surface of the microwave transmitting window 14 Q forms an axially symmetric concave surface, and a distance D between the lower surface and the surface of the substrate 12 is a peripheral portion of the substrate 12. Decreases towards. For this reason, in the configuration of FIG. 8, a decrease in the plasma density in the peripheral portion of the substrate to be processed 12 is compensated, and the plasma is stably maintained. Problems such as damage to the substrate or reduction in processing efficiency can be avoided.
  • the oxidizing process, the nitriding process, the oxynitriding process, and the like of the substrate to be processed 12 can be performed efficiently at a low temperature even if the substrate to be processed is a large-diameter substrate. Moreover, it can be performed uniformly and at low cost. In particular, the configuration for introducing the plasma gas is simplified, which contributes to lower costs.
  • FIG. 4 Various concave surfaces shown in FIG. 4 can be used for the plasma transmission window of this embodiment.
  • FIG. 9 shows a configuration of a plasma processing apparatus 10E according to a sixth embodiment of the present invention.
  • the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the plasma processing apparatus 10E of the present embodiment has a configuration similar to that of the plasma processing apparatus 10D, but the processing gas supply structure 31 is removed.
  • the plasma gas introduction pipe 1 1 K r and A r inert gas and 0 2 gas mixture such as nitriding of the oxidizing gas or NH 3 gas or the N 2 and H 2, such as a gas, such as from P
  • a gas such as from P
  • the distance D between the lower surface of the microphone aperture 14i and the substrate 12 to be processed is reduced in the peripheral portion of the substrate 12 to be processed.
  • Sufficient plasma density is secured in the periphery of the processing substrate 12, and the processing of the Sift self-treatment 2 is performed uniformly.
  • microwave window 14 Q of the present embodiment various concave surfaces shown in FIG. 4 are used.
  • FIG. 10 shows a configuration of a plasma processing unit 10F according to a seventh embodiment of the present invention.
  • the same parts as those described above are denoted by the same reference numerals, and description thereof will be omitted.
  • a dielectric window 14 Q ′ having a uniform thickness is used instead of the dielectric window 14 Q.
  • a radial line slot antenna 20 ′ having a concave surface corresponding to the convex surface is used instead of the flat radianol line slot antenna 20. That is, the radial line slot antenna 20 has a slot plate 16 ′ forming a concave surface, and the slotted plate 16 ′ has a curved delay portion between the antenna main bodies 17, 1 forming a concave surface. It is mounted via phase plates 18 and.
  • FIG. 11 shows a configuration of a plasma processing apparatus 10G according to an eighth embodiment of the present invention.
  • the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the plasma processing apparatus 10 G of the present embodiment has a force similar to that of the plasma processing apparatus S 1 OF of the previous embodiment. It has been removed. Also in the plasma processing apparatus 10 G having such a configuration, it is possible to compensate for a decrease in the plasma density in the peripheral portion of the substrate to be processed 12, and to uniformly perform oxynitridation, oxynitridation, etc. over the entire surface of the substrate to be processed 12. Stable plasma processing can be performed stably.
  • the present invention is not limited to the specific embodiments described above, and various modifications and changes are possible within the scope of the present invention described in the appended claims.
  • the fall of the plasma density in the peripheral part of a to-be-processed can be compensated, plasma is maintained even in low pressure processing, and stable plasma processing becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明細書 プラズマ処3¾置 技術分野
本発明は一般にプラズマ処3¾置に係わり、 特にマイク口波プラズマ処 置 に関する。
プラズマ処理工程およびプラズマ処理装置は、 近年のレ、わゆるディープサブミ クロン素子あるいはディープサブクォーターミクロン素子と呼ばれる 0 . 1 ju ni に近い、 あるいはそれ以下のゲート長を有する超微細ィ匕半導体装置の製 、 液 晶表示装置を含む高解 ^^平面表示装置の製造にとって、 不可欠の技術である。 半導体装置や液晶表示装置の製造に使われるプラズマ処 置としては、 従来 より様々なプラズマの励起方式が使われているが、 特に ¥ ^平板型高周波励起プ ラズマ処 置あるレ、は誘導結合型ブラズマ処 a¾置が一般的である。 しかしこ れら従来のプラズマ処理装置は、 プラズマ形成が不均一であり、 電子密度の高い 領域が限定されているため大きな処理速度すなわちスループットで被処 ¾¾¾全 面にわたり均一なプロセスを行うのが困難である問題点を有している。 この問題 は、 特に大径の基板を処理する^に深刻になる。 しかもこれら従来のプラズマ 処 «置では、 電子 が高レゝため被処理 上に形成される半導体素子にダメ ージが生じ、 また処理室壁のスパッタリングによる金属汚染が大きいなど、 レ、く つかの本質的な問題を有している。 このため、 従来のプラズマ処理装置では、 半 導体装置や液晶表示装置のさらなる微細化およびさらなる生産性の向上に る 厳しい要求を満たすことが困難になりつつある。
一方、 従来より直流磁場を用いずにマイク口波電界により励起された高密度プ ラズマを使うマイクロ波プラズマ処 a¾置が提案されている。 例えば、 均一なマ ィク口波を発生するように配列された多数のス口ットを有する平面状のアンテナ (ラジアルラインスロットアンテナ) 力 ら処理容器内にマイクロ波を し、 こ のマイク口波電界により真空容器内のガスを電離してプラズマを励起させる構成 のプラズマ処3¾置が提案されている。例えば特開平 9— 6 3 7 9 3公報を参照。 このような手法で励起されたマイク口波プラズマではアンテナ直下の広レ、領域に わたって高いプラズマ密度を実現でき、 短時間で均一なプラズマ処理を行うこと が可能である。 しかも力かる手法で形成されたマイク口波プラズマではマイク口 波によりプラズマを励起するため電子^ ¾が低く、 被処3¾板のダメージや金属 汚染を回避することができる。 さらに大面積基板上にも均一なプラズマを容易に 励起できるため、 大口径半導体基板を使った半導体装置の製造工程や大型液晶表 示装置の製造にも容易に対応できる。 景. 技術
図 1 A, I Bは、 力かるラジアルラインスロットアンテナを使った従来のマイ ク口波プラズマ処理装置 1 0 0の構成を示す。 ただし図 1 Aはマイクロ波プラズ マ処3¾置 1 0 0の断面図を、 また図 1 Bはラジアルラインスロットアンテナの 構成を示す図である。
図 1 Aを参照するに、 マイク口波プラズマ処理装置 1 0 0は複数の排気ポート 1 1 6から排気される処理室 1 0 1を有し、 前記処理室 1 0 1中には被処 板 1 1 4を保持する保持台 1 1 5が形成されている。 己処理室 1 0 1の均一な排 気を実現するため、 前記保持台 1 1 5の周囲にはリング状に空間 1 0 1 Aが形成 されており、 前記複数の排気ポート 1 1 6を前記空間 1 0 1 Aに連通するように 等間隔で、 すなわち被処理基板に対して軸対称に形成することにより、 前記処理 室 1 0 1を前記空間 1 0 1 Aおよ 気ポート 1 1 6を介して均一に排気するこ とができる。
前記処理室 1 0 1上には、 前記保持台 1 1 5上の被処理基板 1 1 4に対応する 位置に、 l己処理室 1 0 1の; ^の一部として、 低損失誘電体よりなり多数の開 口部 1 0 7を形成された板状のシャワープレート 1 0 3がシースレリング 1 0 9を 介して形成されており、 さらに前記シャワープレート 1 0 3の外側に同じく低損 失誘電体よりなるカバープレート 1 0 2が、 別のシールリング 1 0 8を介して設 けられている。
前記シャワープレート 1 0 3にはその上面にプラズマガスの通路 1 0 4が形成 されており、 前記複数の開口部 1 0 7の各々は前記プラズマガス通路 1 0 4に連 通するように形成されている。さらに、編己シャワープレート 1 0 3の内部には、 処理容器 1 0 1の^ IIに設けられたプラズマガス供給ポート 1 0 5に連通す るプラズマガスの供給通路 1 0 8が形成されており、 Ml己プラズマガス供給ポー ト 1 0 5に供給された A rや r等のプラズマガスは、 前記供給通路 1 0 8力、ら 前記通路 1 0 4を介して tiff己開口部 1 0 7に供給され、 前記開口部 1 0 7力、ら前 記処理容器 1 0 1内部の前記シャワープレート 1 0 3直下の空間 1 0 1 Bに、 実 質的に一様な濃度で放出される。
前記処理容器 1 0 1上には、 さらに前記カバープレート 1 0 2の外側に、 前記 カバープレート 1 0 2から 4〜 5 mm離間して、 図 1 Bに示す ½lt面を有するラ ジアルラインスロットアンテナ 1 1 0が設けられている。 前記ラジアルラインス 口ットアンテナ 1 1 0は外部のマイク口波源 (図示せず) に同軸導波管 1 1 0 A を介して接続されており、 前記マイクロ波源からのマイクロ波により、 tiff己空間
1 0 1 Bに放出されたプラズマガスを励起する。 前記カバープレート 1 0 2とラ ジアルラインスロットアンテナ 1 1 0の放射面との間の隙間は大気により充填さ れている。
SiifEラジアルラインスロットアンテナ 1 1 0は、 tiilE同軸導波管 1 1 O Aの外 側導波管に接続された平坦なディスク状のアンテナ本体 1 1 0 Bと、 前記アンテ ナ本体 1 1 0 Bの開口部に形成された、 図 1 Bに示す多数のスロット 1 1 0 aお よびこれに直交する多数のスロット 1 1 0 bを形成された放射板 1 1 0 Cとより なり、 前記ァンテナ本体 1 1 0 Bと前記 ¾lt板 1 1 0 Cとの間には、 厚さが一定 の誘電 ίΦ¾よりなる遅相板 1 1 0 Dが挿入されている。
力、かる構成のラジアルラインスロットアンテナ 1 1 0では、 前記同軸導波管 1 1 0から給電されたマイクロ波は、 前記ディスク状のアンテナ本体 1 1 0 Βと放 射板 1 1 0 Cとの間を、 半径方向に広がりながら進行するが、 その際に前記遅相 板 1 1 0 Dの作用により波長が圧縮される。 そこで、 このようにして^ g方向に 進行するマイクロ波の波長に対応して前記スロット 1 1 0 aおよび 1 1 0 bを同 心円状に、 力つ相互に直交するように形成しておくことにより、 円偏波を有する 平面波を tilt¾¾lt板 1 1 0 Cに実質的に垂直な方向に ¾ltすることができる。 かかるラジアルラインスロットアンテナ 1 1 0を使うことにより、 前記シャヮ 一プレート 1 0 3直下の空間 1 0 1 Bに均一な高密度プラズマが形成される。 こ のようにして形成された高密度プラズマは電子 が低く、 そのため被処 as板
1 1 4にダメージが生じることがなく、 また処理容器 1 0 1の のスパッタリ ングに起因する金属汚染が生じることもなレ、。
図 1のプラズマ処理装置 1 0 0では、 さらに前記処理容器 1 0 1中、 前記シャ ワープレート 1 0 3と被処 «¾ 1 1 4との間に、外部の処理ガス源 (図示せず) 力、ら前記処理容器 1 0 1中に形成された処理ガス通路 1 1 2を介して処理ガスを 供給する多数のノズル 1 1 3を形成された導 造物 1 1 1が形成されており、 前記ノズル 1 1 3の各々は、 供給された処理ガスを、 前記導体構造物 1 1 1と被 処理基板 1 1 4との間の空間 1 0 1 Cに放出する。 嫌己導体構造物 1 1 1には、 tiff己隣接するノズル 1 1 3と 1 1 3との間に、 前記空間 1 0 1 Bにおいて形成さ れたプラズマを前記空間 1 0 1 Bから前記空間 1 0 1 Cに拡散により、 効率よく 通過させるような大きさの開口部が形成されている。
そこで、 このように前記導 造物 1 1 1から前記ノズル 1 1 3を介して処理 ガスを tfris空間 1 0 1 cに放出した^、 放出された処理ガスは前記空間 1 0 1
Bにおいて形成された高密度プラズマにより励起され、 前記被処理 S¾ l 1 4上 に、 一様なプラズマ処理が、 効率的かつ高速に、 しかも基板および基板上の素子 構造を損傷させることなく、 また基板を汚染することなく行われる。 一方嫌己ラ ジアルラインスロットアンテナ 1 1 0から ¾ltされたマイクロ波は、 かかる導体 構造物 1 1 1により PUhされ、 被処 反 1 1 4を損傷させることはなレゝ。
ところで図 1 A, I Bの従来のプラズマ処 S¾置 1 0 0では、 前記シャワープ レート 1 0 3と被処理基板 1 1 4との間の間隔が狭いため、 前記空間 1 0 1 Bお よび 1 0 1 Cにはシャワープレート 1 0 3の径方向への連続的で安定なプラズマ 流が形成され、 前記被処理基板 1 1 4が大口径鎌であっても非常に均一なブラ ズマ処理が可能になるが、 一方で前記処理容器 1 0 1内の圧力が低下した場合、 特にシャワープレート 1 0 3の周辺部においてプラズマ密度が低下しやすい問題 が生じる。 例えば処理容器 1 0 1内の圧力が A r雰囲気中で 3 0 O mT o r r以 下に低下した場合、 シャワープレート 1 0 3の周辺部においてプラズマ密度が大 きく低下する。 これは処理容器 1 0 1内の圧力が低下した場合、 解離した電子の 拡散が促進され、 処理容器 1 0 1の内壁面で消滅することに起因するものと考え られる。 プラズマのカツトオフ密度は 7. 5 X 1 c m—3であるため、プラズマ 密度がかかるカツトオフ密度以下に低下するとプラズマを維持することができな くなる。 かかるシャワープレート 1 0 3周辺部におけるプラズマ密度の低下は、 処理速度の低下を招くだけでなく、 マイクロ波が被処理 1 1 4に直接に印加 されてしまレ、、 損傷を誘起してしまう問題を生じる。 発明の開示
そこで、 本発明は従来の課題を解決した新規で有用なブラズマ処理装置を提供 することを概括的 とする。
本発明のより具体的な纏は、 低レ、処班にぉレ、ても被処理基板表面全体にわ たり均一な処理が可能なブラズマ処 a¾置を することにある。
本発明の他の課題は、
により画成され、 被処 a ^を保持する保持台を備えた処理容器と、 処理容器に結合された排気系と、
前記処理容器上に、 前記保持台上の被処理基板に対面するように、 前記 の 一部として設けられたマイクロ波 ¾1窓と、
tins処理容器中にブラズマガスを供^るブラズマガス供給部と、
前記処理容器上に、 前記マイク口波に対応して設けられたマイク口波アンテナ とよりなり、
前記マイクロ波翻窓は、 嫌己被処理基板と対面する側の内面が、 前記被処理 基板表面に一 る平面との間の間隔が、 前記マイク口波透過窓の径方向外側に 向って減少する凹面形状を有することを特徴とするプラズマ処3¾置を¾ ^する と あ 。
本発明によれば、 前記シャワープレートの被処理基板に対面する側に凹面を形 成することにより、 被処理基板周辺部において高密度プラズマが形成されるシャ ワープレート下面と被処理基板表面との間の間隔が減少し、 シャワープレート周 辺部におけるプラズマ密度の低下が補償される。 その結果、 エッチングなど {gffi におけるプラズマ処理を行った にも被処理基板表面近傍にぉレヽて安定で均一 なプラズマが維持される。またカゝかる構成により、プラズマの着火も促進される。 かかる凹面形成によるブラズマの安定化は、 被処理 とブラズマガス供給部の 間に処理ガス供給部を設けた構成のみならず、 処理ガス供給部を省略した構成に 対しても適用可能である。
力かる凹面を有するシャワープレートとしては、 プラズマガス通路とこれに連 通した多数の開口部を形成された緻密なセラミック¾¾ "を使うことが可能である 力 前 fE i [密なセラミック部材の代わりに多孔質セラミック を使うことも可 能である。 これらのシャワープレートは、 処理容器 の一部をなしプラズマ透 過窓を構成する緻密なカバープレートに密接して設けられるが、 本発明において はさらにマイクロ波 ¾i窓自体に前記凹部を形成し、 プラズマガスを別途、 シャ ワープレートを使わずに、 管などにより前記処理室中に導入することも可能であ る。
本発明によるシャワープレートあるいはマイクロ波透過窓では、 前記凹面をな す内面に対向する外面が平坦面であると、 マイクロ波ァンテナとの密着が容易に 確保でき、 アンテナを介したシャワープレートの冷却が可能となるため有利であ る。 図面の簡単な説明
図 1 A, I Bは、 従来のラジアルラインスロットアンテナを使ったマイクロ波 プラズマ処 置の構成を示す図;
図 2 A, 2 Bは、本発明の第 1実施例によるブラズマ処 置の構成を示す図; 図 3は、 図 2 A, 2 Bのプラズマ処理装置で使われる処理ガス供給構造の構成 を示す底面図;
図 4は、 図 2 A, 2 Bのプラズマ処理装置の様々な変形例を示す図; 図 5は、 本発明の第 2実施例によるプラズマ処 S¾置の構成を示す図 図 6は、 本発明の第 3実施例によるブラズマ処 a¾置の構成を示す図 図 7は、 本発明の第 4実施例によるブラズマ処 a¾置の構成を示す図 図 8は、 本発明の第 5実施例によるプラズマ処理装置の構成を示す図 図 9は、 本発明の第 6実施例によるブラズマ処鹏置の構成を示す図 図 l oは、 本発明の第 7実施例によるブラズマ処 a¾置の構成を示す図; 図 1 1は、本発明の第 8実施例によるプラズマ処 置の構成を示す図である。 発明を実施するための最良の形態
以下に本発明を実施例をあげて詳細に説明する。
[第 1実施例:]
図 2 A, 2 Bは、 本発明の第 1実施例によるマイク口波プラズマ処理装置 1 0 の構成を示す。
図 2 Aを参照するに、 tiif己マイク口波ブラズマ処 Sl¾置 1 0は処理容器 1 1と、 前記処理容器 1 1内に設けられ、 被処理基板 1 2を静電チヤックにより保持する 好ましくは熱間等方 E¾口圧法 (H I P) により形成された A 1 Nもしくは A 1 20 3よりなる保持台 1 3とを含み、 己処理容器 1 1内には tiif己保持台 1 3を囲む空 間 1 1 Aに等間隔に、 すなわち前記保持台 1 3上の被処理基板 1 2に対して略軸 対称な関係で少なくとも二箇所、 好ましくは三箇所以上に排気ポート 1 1 aが形 成されている。 前記処理容器 1 1は、 力かる排気ポート 1 1 aを介して不等ピッ チ不 頃角スクリューポンプ等により、 排気 · ¾3Εされる。
前記処理容器 1 1は好ましくは A 1を含有するオーステナイトステンレス鋼よ りなり、 内壁面には酸化処理により酸化アルミニウムよりなる保護膜が形成され ている。 また前記処理容器 1 1の^^のうち SiilS被処理基板 1 2に対応する部分 には、 H I P法により形成された緻密な A 1 2Oaよりなり多数のノズル開口部 1 4 Αを形成されたディスク状のシャワープレート 1 4が、 前記;^の一部として 形成される。 かかる H I P法により形成された A 1 203シャワープレート 1 4は Y2O3を焼結助剤として使って形成され、 気孔率が 0 . 0 3 %以下で実質的に気 孔ゃピンホールを含んでおらず、 3 OW/m · 1:に¾^る、 セラミックとしては 非常に大きな熱伝導率を有する。
前記シャワープレート 1 4は前記処理容器 1 1上にシールリング 1 1 sを介し て装着され、 さらに前記シャワープレート 1 4上には同様な H I P処理により形 成された緻密な A 1 203よりなるカバープレート 1 5力 シールリング 1 1 tを 介して設けられている。 前記シャワープレート 1 4の前記カバープレート 1 5と 接する側には前記ノズル開口部 14 Aの各々に連通しブラズマガス流路となる凹 部 14 Bが形成されており、 tiff己凹部 14 Bは tiff己シャワープレート 14の内部 に形成され、 前記処理容器 11の^ IIに形成されたプラズマガス入口 11 pに連 通する別のプラズマガス流路 14 Cに連通している。
前記シャワープレート 14は前記処理容器 11の内壁に形成された張り出し部 11 bにより保持されており、 前記張り出し部 11 bのうち、 前記シャワープレ 一ト 14を保持する部分には異常放電を抑制するために丸みが形成されている。 そこで、 前記プラズマガス入口 11 pに供給された A rや Kr等のプラズマガ スは前記シャワープレート 14内部の流路 14 Cおよび 14 Bを順次通過した後、 前記開口部 14 Aを介して前記シャワープレート 14直下の空間 11 B中に一様 に供給される。
前記カバープレート 15上には、 前記カバープレート 15に密接し図 3 Bに示 す多数のスロット 16 a, 16 bを形成されたディスク状のスロット板 16と、 前記スロッ ト板 16を保持するディスク状のアンテナ本体 17と、 前記スロット 板 16と前記アンテナ本体 17との間に^^された A l2O3, S i3N4, S i ON あるいは S i O2等の低損失誘電 才料ょりなる遅相板 18とにより構成された ラジアルラインスロットアンテナ 20が設けられている。 前記ラジアルスロット ラインァンテナ 20は前記処理容器 11上にシールリング 11 uを介して装着さ れており、 前記ラジアルラインスロットアンテナ 20には矩形あるいは円形断面 を有する同軸導波管 21を介して外部のマイク口波源 (図示せず) より周波数が 2. 45GHzあるいは 8. 3 GHzのマイクロ波が供給される。 供給されたマ イク口波は前記スロット板 16上のスロット 16 a, 16 bから前記カバープレ ート 15およびシャワープレート 14を介して前記処理容器 11中に放射され、 前記シャワープレート 14直下の空間 11 Bにおいて、 前記開口部 14 Aから供 給されたプラズマガス中にプラズマを励起する。 その際、 前記カバープレート 1 5およびシャワープレート 14は A 12Ο3により形成されており、 効率的なマイ クロ波 ¾ 窓として作用する。 その際、 前記プラズマガス流路 14 〜14じに おいてプラズマが励起されるのを回避するため、 前記プラズマガスは、 前記流路 14A〜14 Cにおいて約 6666Pa〜13332Pa (約 50〜: Ι ΟΟΤο r r ) の圧力に保持される。
前記ラジアルラインスロットアンテナ 2 0と前記カバープレート 1 5との密着 性を向上させるため、 本実施例のマイクロ波プラズマ処 a¾置 1 0では前記スロ ット板 1 6に係合する前記処理容器 1 1の上面の一部にリング状の溝 1 1 gが形 成されており、 かかる溝 1 1 gを、 これに連通した排気ポート 1 1 Gを介して排 気することにより、 前記スロット板 1 6とカバープレート 1 5との間に形成され た隙間を減圧し、 大気圧により、 前記ラジアルラインスロットアンテナ 2 0を前 記カバープレート 1 5にしつ力 りと押し付けることが可能になる。 かかる隙間に は、 前記スロット板 1 6に形成されたスロット 1 6 a, 1 6 bが含まれるが、 そ れ以外にもカバープレート 1 5表面の微細な凹凸など様々な理由により隙間が形 成されることがある。 かかる隙間は、 前記ラジアルラインスロットアンテナ 2 0 と処理容器 1 1との間のシーノレリング 1 1 uにより封止されている。
さらに前記排気ポート 1 1 Gおよび溝 1 5 gを介して前記スロット板 1 6と前 記カバープレート 1 5との間の隙間に分子量の小さい不活性気体を充填すること により、 前記カバ一プレート 1 5から tiff己スロット板 1 6への熱の輸送を促進す ることができる。 力かる不活性気体としては、 熱伝導率が大きくしかもイオンィ匕 エネルギの高い H eを使うのが好ましい。 前記隙間に H eを充填する場合には、 0. 8気圧程度の圧力に設定するのが好ましい。 図 3の構成では、 前記溝 1 5 g の排気および溝 1 5 gへの不活性気体の充填のため、 前記排気ポート 1 1 Gにバ ルブ 1 1 Vが接続されている。
前記同軸導波管 2 1 Aのうち、 外側の導波管 2 1 Aは前記ディスク状のアンテ ナ本体 1 7に接続され、 中心導体 2 1 Bは、 前記遅波板 1 8に形成された開口部 を介して前記スロット板 1 6に接続されている。 そこで ήίίΐ己同軸導波管 2 1 Aに 供給されたマイク口波は、 前記アンテナ本体 1 7とスロット板 1 6との間を径方 向に進行しながら、 前記スロット 1 6 a, 1 6 bより される。
図 2 Βは廳己ス口ット板 1 6上に形成されたスロット 1 6 a, 1 6 bを示す。 図 2 Bを参照するに、 前記スロット 1 6 aは同心円状に配列されており、 各々 のスロット 1 6 aに対応して、 これに直行するスロット 1 6 bが同じく同心円状 に形成されている。 前記スロット 1 6 a, 1 6 bは、 前記スロット板 1 6の雜 方向に、 fiiia遅相板 l 8により圧縮されたマイク口波の波長に対応した間隔で形 成されており、 その結果マイクロ波は fijf己スロット板 1 6から略平面波となって される。 その際、 前記スロット 1 6 aおよび 1 6 bを相互の直交する関係で 形成しているため、 このようにして放射されたマイクロ波は、 二つの直交する偏 波成分を含む円偏波を形成する。
本実施例のプラズマ処理装置 1 0では、 前記シャワープレート 1 4の前記被処 理基板 1 2に対面する側の表面が凹面形状の湾曲面を形成しており、 その結果前 記シャワープレート 1 4と被処理基板 1 2の表面に一 る平面との間の間隔 D 力 前記シャワープレート 1 4の^ g方向上外方に向って滑らかに減少する。 す なわち前記凹面形状は軸対称な曲面により画成されており、 前記間隔 Dが前記被 処理基板 1 2の周辺部において減少するため、 カゝかる被処理基板周辺部における ブラズマ密度の低下の問題が解消される。
これにより、 前記プラズマ処理装置 1 0ではドライエッチングなど、 ISflE環境 化で行う必要のあるプラズマ処理を行ってもブラズマ密度が力ットオフ密度以下 に低下することがなく、 プラズマが安定に維持され、 被処理基板 1 2周辺部にお けるプラズマの消滅やマイク口波による基板の損傷、 あるいは処理速度の低下な どの問題を回避することができる。
さらに図2八のプラズマ処3¾置1 0では、 l己アンテナ本体 1 7上に、 冷却 水通路 1 9 Aを形成された冷却プロック 1 9が形成されており、 前記冷却プロッ ク 1 9を前記冷却水通路 1 9 A中の冷却水により冷却することにより、 前記シャ ワープレート 1 4に蓄積された熱を、 前記ラジアルラインスロットアンテナ 2 0 を介して吸収する。 前記冷却水通路 1 9 Aは前記冷却ブロック 1 9上においてス パイラル状に形成されており、好ましくは H2ガスをバブリングすることで游酸 素を排除して且つ酸化還元電位を制御した冷却水が通される。
また、 図 2 Aのマイクロ波ブラズマ処理装置 1 0では、 前記処理容器 1 1中、 前記シャワープレート 1 4と IB保持台 1 3上の被処理基板 1 2との間に、 前記 処理容器 1 1の;^に設けられた処理ガス注入口 1 1 rカゝら処理ガスを供給され これを多数の処理ガスノズル開口部 3 1 B (図 3参照) から放出する格子状の処 理ガス通路 3 1 Aを有する処理ガス供給構造 3 1が設けられ、 前記処理ガス供給 構造 3 1と前記被処理 ¾¾ 1 2との間の空間 1 1 Cにおいて、 所望の均一な S¾ 処理がなされる。 かかる基板処理には、 プラズマ酸化処理、 プラズマ窒化処理、 プラズマ酸窒化処理、 プラズマ CVD処理等が含まれる。 また、 前記処理ガス供 給構造 3 1から SiilB空間 1 1 Cに C 4 F 8、 C 5 F 8または C 4 F 6などの解離しやす いフルォロカーボンガスや、 F系あるいは C 1系等のエッチングガスを供給し、 前記保持台 1 3に高周波 ¾¾¾ 1 3 Aから高周波 ¾]£を印加することにより、 前記 被処«¾ 1 2に対して反応性イオンエッチングを行うことが可能である。 本実施例によるマイクロ波ブラズマ処 1 ^置 1 0では、 前記処理容器 1 1の外 壁は 1 5 0° 〇¾¾の に加熱しておくことにより、 処理容器内壁への反応副 生成物等の付着が回避され、 一日に一回 ¾gのドライクリーニング行うことで、 定常的に、 安定して ¾することが可能である。
図 4は、 図 2 Aの構成における処理ガス供給構造 3 1の構成を示す底面図であ る。
図 4を参照するに、 前記処理ガス供給構造 3 1は例えば M gを含んだ A 1合金 や A 1励!]ステンレススチーノ! ^の導電体より構成されており、 前記格子状処理 ガス通路 3 1 Aは前記処理ガス注入口 1 1 rに処理ガス供給ポート 3 1 Rにおい て接続され、 下面形成された多数の処理ガスノズル開口部 3 1 Bから処理ガスを 前記空間 1 1 Cに均一に放出する。 また、 前記処理ガス供給構造 3 1には、 隣接 する処理ガス通路 3 1 Aの間にプラズマやプラズマ中に含まれる処理ガスを通過 させる開口部 3 1 Cを形成されている。 前記処理ガス供給構造 3 1を M g含有 A 1合金により形成する場合には、 表面に弗化物膜を形成しておくのが好ましい。 また前記処理ガス供給構造 3 1を A 1添加ステンレススチールにより形成する場 合には、 表面に酸化アルミニウムの不動態膜を形成しておくのが望ましい。 本発 明によるプラズマ処理装置 1 0では、 励起される励起されるプラズマ中の電子温 度が低いためプラズマの入射エネルギが小さく、 力かる処理ガス供給構造 3 1が スパッタリングされて被処理 g¾ l 2に金属汚染が生じる問題が回避される。 前 記処理ガス供給構造 3 1は、 アルミナ等のセラミックスにより形成することも可 能である。
前記格子状処理ガス通路 3 1 Aおよび処理ガスノズル開口部 3 1 Bは図 4に破 線で示した被処理基板 1 2よりも^大きレ、領域をカバーするように設けられて レ、る。 力、かる処理ガス供給構造 3 1を前記シャワープレート 1 4と被処理 S¾ l 2との間に設けることにより、 原料ガスやエッチングガスなどの処理ガスをブラ ズマ励起し、 カゝかるプラズマ励起された処理ガスにより、 均一に処理することが 可能になる。
SflfE処理ガス供給構造 3 1を金属等の導体により形成する齢には、 前 |5¾子 状処理ガス通路 3 1 A相互の間隔を前記マイクロ波の波長よりも短く設定するこ とにより、 前記処理ガス供給構造 3 1はマイク口波の 面を形成する。 この場 合にはプラズマのマイク口波励起は前記空間 1 1 B中においてのみ生じ、 前記被 処理 1 2の表面を含む空間 1 1 Cにおレ、ては ΙίίΐΞ励起空間 1 1 Βから拡散し てきたプラズマにより、 処理ガスが活性化される。
本実施例によるマイクロ波プラズマ処理装置 1 0では、 処理ガス供給構造 3 1 を使うことにより処理ガスの供給が一様に制御されるため、 処理ガスの被処理基 板 1 2表面における過剰解離の問題を解消することができ、 彼処 «¾ 1 2の表 面にァスぺクト比の大きレヽ構造が形成されている でも、 所望の »及処理を、 かかる高ァスぺクト構造の奥にまで実施することが可能である。 すなわち、 マイ ク口波プラズマ処理装置 1 0は、 設計ルールの異なる多数の世代の半導体装置の 製造に有効である。
図 5のブラズマ処 置 1 0 Bでは、 前記処理ガス供給構造 1 3から様々な酸 化ガスゃ窒化ガス、 原料ガスやエッチングガスを導入することにより、 前言 ^¾処 理基板 1 2の表面の全面に、 前記被処理基板 1 2が大口径基板であっても様々な 高品質膜を低温で、 均一に堆積し、 あるいは前記表面を均一にエッチングするこ とが可能である。
図 4は、 前記シャワープレート 1 4の様々な変形例によるシャワープレート 1 41〜: L 44の構成を示す。
図 4を参照するに、 tiff己シャワープレート 1 4 ιは tiff己被処 2に対面す る側に円錐形状の凹面を有するのに対し、前記シャワープレート 1 42は円錐台形 状の凹面を有するのがわかる。 さらに ήΐη己シャワープレート 1 43では円形の凹部 が段難状を形成しており、 ΙίίΙΕシャワープレート 1 44では複数の段難状凹部 が形成されている。 これらの凹部はいずれも前記シャワープレートの中心軸に対 して軸 に形成されており、 前記中心軸の回りで均一な処理力保証される。
[第 2実施例]
図 5は、 本発明の第 2実施例によるブラズマ処理装置 1 0 Aの構成を示す。 た だし図 5中、 先に説明した部分には同一の参照符号を付し、 説明を省略する。 図 5を参照するに、 プラズマ処 3¾置 1 0 Aは前記プラズマ処 置 1 0と類 似した構成を有し、 前記被処理基板 1 2とシャワープレート 1 4との間隔 Dが、 前記シャワープレート 1 4の半径方向上外方に向って減少するが、 前記プラズマ 処3¾置 1 0 Aでは Ml己処理ガス供給部 1 3が撤去されている。
力、かる構成のプラズマ処理装置 1 0 Bでは、 tilf己下段シャワープレート 3 1力 S 省略されているためプラズマガスとは別に処理ガスを供給して成膜ゃェツチング を行うことはできないが、 前記シャワープレート 1 4からプラズマガスとともに 酸化ガスあるいは窒ィ匕ガスを供給することにより、 被処理基板表面に酸化膜ゃ窒 ィ匕膜、 あるいは酸窒化膜を形成することが可能である。 本実施例のプラズマ処理 装置 1 O Aでは、 構成が簡素化され、 製造費用を大きく低減することが可能であ る。
本実施例にぉレ、ても、 前記間隔 Dが被処理基板 1 2の周辺部にぉレヽて減少する ため、 被処理基板 1 2周辺部におけるプラズマ密度の低下が補償され、 プラズマ が安定に維持され、 被処理基板 1 2周辺部におけるプラズマの消滅やマイクロ波 による の損傷、 あるいは処理速度の低下などの問題を回避することができる。 図 5のブラズマ処理装置 1 0 Aでは、 特に被処理基板 1 2の酸化処理や窒化処 理、 酸窒化処理などを、 前記被処理基板が大口径基板であっても、 低温で、 効率 的に、 しかも均一に、 安い費用で行うことが可能である。
本実施例においても、 前記シャワープレート 1 4の代わりに図 4で説明したシ ャワープレート 1 4 i〜l 43を使うことが可能である。
[第 3実施例]
図 6は本発明の第 3実施例によるブラズマ処理装置 1 0 Bの構成を示す。 ただ し図 6中、 先に説明した部分に対応する部分には同一の参照符号を付し、 説明を 省略する。
図 6を参照するに、 本実施例においては前記シャワープレート 1 4の代わりに 焼結アルミナなど、 多孔質セラミックよりなるシャワープレート 1 4 Pを使う。 前記シャワープレート 1 4 P中にはシャワープレート 1 4中におけるようなシ ャヮ一開口部 1 4 Aは形成されていないが、 プラズマガス供給ポート 1 1 Pに接 続されたブラズマガス供給路 1 4 Cおよび 1 4 Bが形成されており、 供給された プラズマガスは、 前記プラズマガス供給路 1 4 Bから前記多孔質シャワープレー ト 1 4 P中の気孔を通って、 嫌己空間 1 1 Bへと、 一様に放出される。
本実施例においても、 前記シャワープレート 1 4 Pの下面は軸対称な凹面を形 成し、 嫌己下面と被処理基板 1 2の表面との間の間隔 Dは、 被処理 ¾¾ 1 2の周 辺部に向って減少する。 このため、 図 6の構成においては前記被処理基板 1 2の 周辺部におけるプラズマ密度の低下が補償され、 プラズマが安定に維持され、 被 処理基板 1 2周辺部におけるプラズマの消滅やマイクロ波による基板の損傷、 あ るレヽは処 度の低下などの問題を回避することができる。
図 6のプラズマ処 3¾置 1 0 Bでは、 嫌己処理ガス供給構造 1 3から様々な酸 化ガスや窒ィ匕ガス、 原料ガスやエッチングガスを導入することにより、 前記彼処 理基板 1 2の表面の全面に様々な高品質膜を低温で、 均一に堆積し、 あるいは前 記表面を均一にェツチングすることが可能である。
本実施例においても、 前記多孔質シャワープレート 1 4 Pの凹面として、 図 4 に示した様々な凹面を形成することができる。
[第 4実施例]
図 7は、 本発明の第 4実施例によるブラズマ処 a¾置 1 0 Cの構成を示す。 た だし図 7中、 先に説明した部分には同一の参照符号を付し、 説明を省略する。 図 7を参照するに、 本実施例のプラズマ処理装置 1 0 Cは、 先のプラズマ処理 装置 1 0 Bと同様な構成を有する力 前記下段シャワープレート 3 1が撤去され ている。 また、 前記シャワープレート 1 4を保持する前記張り出し部 1 1 bの全 面に丸みが形成されている。 かかる構成のプラズマ処理装置 1 0 Cでは、 前記下段シャワープレート 3 1力 S 省略されているためブラズマガスとは別に処理ガスを供給して成膜ゃェツチング を行うことはできないが、 前記シャワープレート 1 4からプラズマガスとともに 酸化ガスあるいは窒化ガスを供給することにより、 被処理基板表面に酸化膜ゃ窒 ィ匕膜、 あるいは酸窒化膜を形成することが可能である。
本実施例においても、 前記シャワープレート 1 4 Pの下面は軸対称な凹面を形 成し、 Ιίίϊ己下面と被処理基板 1 2の表面との間の間隔 Dは、 被処理 1 2の周 辺部に向って減少する。 このため、 図 7の構成においては前記被処理基板 1 2の 周辺部におけるプラズマ密度の低下が補償され、 プラズマが安定に維持され、 被 処理基板 1 2周辺部におけるプラズマの消滅やマイクロ波による基板の損傷、 あ るレ、は処3¾度の低下などの問題を回避することができる。
図 7のプラズマ処理装置 1 0 Cでは、 特に被処理基板 1 2の酸化処理や窒化処 理、 酸窒ィヒ処理などを、 嫌己被処理基板が大口径基板であっても、 低温で、 効率 的に、 しかも均一に、 安い費用で行うことが可能である。
本実施例のシャワープレート 1 4 Ρにおいても、 図 4に示した様々な凹面を使 うことができる。
[第 5実施例]
図 8は、 本発明の第 5実施例によるプラズマ処理装置 1 0 Dの構成を示す。 た だし図 8中、 先に説明した部分には同一の参照符号を付し、 説明を省略する。 図 8を参照するに、 実施例においては図 6の実施例における多孔質シャワープ レート 1 4 Ρおよびカバープレ一ト 1 5が撤去され、 かわりに前記被処理 St及 1 2に対面する側に凹面を有する緻密なセラミックよりなるマイク口波透過窓 1 4 Qが設けられる。 前記マイクロ波 窓 1 4は、 誘電損失の少なレ、材料、 例えば H I P処理したアルミナなどにより形成することができる。
図 8の構成では、 前記マイク口波透過窓 1 4 Qは前記カバ一プレート 1 5の機 能を果たすが、 図 6の実施例におけるプラズマガス通路 1 4 Cやこれに連通する 開口部 1 4 Aは形成されておらず、 別に処理容器 1 1の^に、 管 1 1 Pよりな るプラズマガス導入部が形成されている。 また前記マイクロ波 ¾ii窓 1 4 Q上に はラジアルラインスロットアンテナ 2 0が密接して設けられている。 前記プラズ マガス導入管 1 1 Pは、 前記被処理基板 1 2の周囲に対称的に配設されるのが好 ましい。
かかる構成では、 l己マイクロ波透過窓 1 4 Qの下面は軸対称な凹面を形成し、 前記下面と被処理基板 1 2の表面との間の間隔 Dは、 被処理基板 1 2の周辺部に 向って減少する。 このため、 図 8の構成においては前記被処理基板 1 2の周辺部 におけるプラズマ密度の低下が補償され、 プラズマが安定に維持され、 被処理基 板 1 2周辺部におけるプラズマの消滅やマイクロ波による基板の損傷、 あるいは 処 ffi ^の低下などの問題を回避することができる。
図 8のプラズマ処理装置 1 0 Dでは、 特に被処理基板 1 2の酸化処理や窒化処 理、 酸窒化処理などを、 前記被処理 が大口径基板であっても、 低温で、 効率 的に、 しかも均一に、 安い費用で行うことが可能である。 特にプラズマガスを導 入するための構成が簡素ィ匕され、 費用の赚に寄与する。
本実施例のブラズマ透過窓にぉレ、ても、 図 4に示した様々な凹面を使うことが できる。
[第 6実施例]
図 9は、 本発明の第 6実施例によるブラズマ処理装置 1 0 Eの構成を示す。 た だし図 9中、 先に説明した部分には同一の参照符号を付し、 説明を省略する。 図 9を参照するに、 本実施例のプラズマ処 S¾置 1 0 Eは先のブラズマ処理装 置 1 0 Dと類似した構成を有するが、 前記処理ガス供給構造 3 1が撤去されてい る。
かかる構成によれば、 前記プラズマガス導入管 1 1 Pより K rや A rなどの不 活性ガスと 02ガスなどの酸化性ガスあるいは N H3ガスあるいは N2と H2の混合 ガスなど窒化性ガスを供給することにより、 前記被処理基板 1 2の表面に高品質 の酸化膜ゃ窒化膜、 あるいは酸窒化膜を、 低温で効率よく形成することが可能に なる。
その際、 本実施例では前記マイク口波 ¾i窓 1 4 Qの下面と被処理基板 1 2と の間の間隔 Dが前記被処理基板 1 2の周辺部において減少しているため、 ΙϋΙΕ被 処理基板 1 2周辺部において十分なプラズマ密度が確保され、 Sift己被処理 2の処理が、 均一に行われる。
本実施例のマイクロ波窓 1 4 Qにおいても、 図 4に示した様々な凹面を使う: とができる。
[第 7実施例]
図 1 0は、 本発明の第 7実施例によるブラズマ処 S¾置 1 0 Fの構成を示す。 ただし図 1 0中、先に説明した部分には同一の参照符号を付し、説明を省略する。 図 1 0を参照するに、 本実施例では前記誘電体窓 1 4 Qの代わりに一様な厚さ の誘電体窓 1 4 Q' により構成されている。
かかる誘電体窓 1 4 Q' では、 凹面を形成する下面に対応して、 上面が凸面を 形成する。 そこで図 1 0のブラズマ処理装置 1 0では、 平坦な前記ラジァノレライ ンスロットァンテナ 2 0の代わりに前記凸面に対応した凹面を有するラジアルラ インスロットアンテナ 2 0 ' を使う。 すなわち、 前記ラジアルラインスロットァ ンテナ 2 0, は凹面を形成するスロット板 1 6 ' を有し、 前記スロッ ト板 1 6 ' 上には凹面を形成するアンテナ本体 1 7, 1 間に湾曲した遅相板 1 8, を介し て装着されている。
力かる構成のプラズマ処理装置 1 0 Fにおレ、ても、 前記被処理 Si反 1 2の周辺 部におけるプラズマ密度の低下を補償でき、 前記処理ガス供給部 3 1より様々な 処理ガスを供給することにより、 被処理基板 1 2の全面にわたり、 酸化ゃ窒化、 酸窒化、 さらに様々な層の堆積およびエッチングなど、 様々なプラズマ処理を、 均一に、 力つ安定に行うことが可能になる。
[第 8実施例]
図 1 1は、 本発明の第 8実施例によるプラズマ処理装置 1 0 Gの構成を示す。 ただし図 1 1中、先に説明した部分には同一の参照符号を付し、説明を省略する。 図 1 1を参照するに、 本実施例のプラズマ処理装置 1 0 Gは先の実施例のブラ ズマ処 S¾置 1 O Fと同様な構成を有する力 本実施例では前記処理ガス供給部 3 1が撤去されている。 かかる構成のプラズマ処理装置 1 0 Gにおいても、 前記被処理基板 1 2の周辺 部におけるプラズマ密度の低下を補償でき、 被処理基板 1 2の全面にわたり、 酸 ィ匕ゃ窒化、 酸窒化などの均一なプラズマ処理を安定に行うことが可能になる。 本発明は上記特定の実施例に限定されるものではなく、 特許請求の範囲に記載 した本発明の要旨内にぉレ、て様々な変形 ·変更が可能である。
産業上の利用可能性
本発明によれば、被処 の周辺部におけるプラズマ密度の低下を補償でき、 低圧処理においてもプラズマが維持され、 安定なプラズマ処理が可能になる。

Claims

請求の範囲
1. ; ^により画成され、被処 a¾¾を保持する保持台を備えた処理容器と、 tins処理容器に結合された排気系と、
前記処理容器上に、 前記保持台上の被処理基板に対面するように、 前記 の 一部として設けられたマイク口波観窓、と、
前記処理容器中にブラズマガスを供^ るブラズマガス供給部と、
前記処理容器上に、 前記マイクロ波に对応して設けられたマイクロ波アンテナ とよりなり、
前記マイクロ波透過窓は、 嫌5被処理基板と対面する側の内面が、 前記被処理 基板表面に一致する平面との間の間隔が、 前記マイク口波透過窓の径方向外側に 向つて減少する凹面形状を有することを特徴とするブラズマ処 a¾Mo
2. 前記間隔は、 前記マイク口波透過窓の径方向外側に向つて連続的に減少 することを とする請求項 1記載のプラズマ処 a¾¾o
3. 前記間隔は、 前記マイクロ波翻窓の径方向外側に向って滑らかに減少 することを mとする請求項 2記載のブラズマ処
4. 前記間隔は、 前記マイク口波透過窓の径方向外側に向って直線的に減少 することを mとする請求項 2記載のブラズマ処 a¾go
5. 前記間隔は、 前記マイクロ波透過窓の径方向外側に向って非直線的に減 少することを «とする請求項 2記載のブラズマ処 ¾¾
6. 前記間隔は、 前記マイク口波透過窓の径方向外側に向つて階段状に減少 することを とする請求項 1
Figure imgf000021_0001
7. 前記間隔は、 前記マイクロ波透過窓の周辺部においてのみ、 前記マイク 口波透過窓の径方向外側に向って減少することを特徴とする請求項 1記載のブラ ズマ処難 go
8. 己マイクロ波透過窓は、 前記内面に対向する外面が、 平坦面よりなる こと
Figure imgf000021_0002
9. 前記マイクロ波透過窓は、 内部にプラズマガス通路を有し、 前記処理容 器中にプラズマガスを放出する前記プラズマガス供給部を構成することを糊数と する請求項 1記載のブラズマ処 a¾go
1 0 . 前記マイク口波藤窓は、 前記プラズマガス通路に連通する複数の開 口部を有することを とする請求項 9記載のブラズマ処 S¾go
1 1 . マイク口波 ¾i 窓は、 前記処理容器の の一部を構成するカバープ レートと、 前記カバープレートに密接して設けられ、 flit己プラズマガス通路とこ れに連通する複数の開口部とを有するシャワープレートよりなることを特徴とす る請求項 1 0記載のブラズマ処 a¾Eo
1 2 . 前記マイク口波透過窓は緻密なセラミックよりなることを體とする 請求項 1 0記載のプラズマ処
1 3 . 前記マイク口波透過窓は、 多孔質媒体より構成されることを特徴とす る請求項 9記載のブラズマ処理装
1 4 . 前記マイク口波透過窓は、 嫌己処理容器の一部を構成するカバープレ —トと、 前記カバ一プレートに密接して設けられた多孔質媒体よりなるシャワー プレートとよりなることを «とする請求項 9記載のブラズマ処 a¾go
1 5 . 前記多孔質媒体は、 焼結セラミックよりなることを特徴とする請求項 1 3記載のプラズマ処
1 6 . 前記プラズマガス供給部は、 前記処理容器^^に形成された、 プラズ マガス源に接続可能な管よりなることを特徴とする請求項 1記載のプラズマ処理 装齓
1 7 . 前記マイク口波透過窓は、 緻密なセラミックよりなることを特徴とす る請求項 1 6記載のプラズマ処 « ο
1 8 . さらに、 前記被処理基板と前記プラズマガス源との間に、 処理ガス供 給部を設けたことを ^とする請求項 1記載のプラズマ処
1 9 . 前記処理ガス供給部は、 ブラズマを通過させるブラズマ通路と、 処理 ガス源に接続可能な処理ガス通路と、 前記処理ガス通路に連通した多数のノズル 開口部とを有することを «とする請求項 1
Figure imgf000022_0001
2 0 . さらに前記保持台に接続された高周波 ¾¾¾を含むことを特徴とする請 求項 1記載のプラズマ処艘齓
2 1 . 前記マイクロ波アンテナはラジアルラインスロットアンテナよりなる ことを ¾とする請求項 1記載のプラズマ処 a¾go
PCT/JP2002/003111 2001-03-28 2002-03-28 Dispositif de traitement au plasma WO2002080252A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02708713A EP1376670A4 (en) 2001-03-28 2002-03-28 PLASMA PROCESSING DEVICE
KR1020037012541A KR100685248B1 (ko) 2001-03-28 2002-03-28 플라즈마 처리 장치
US10/473,302 US20040094094A1 (en) 2001-03-28 2002-03-28 Plasma processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001094275A JP2002299240A (ja) 2001-03-28 2001-03-28 プラズマ処理装置
JP2001-94275 2001-03-28

Publications (1)

Publication Number Publication Date
WO2002080252A1 true WO2002080252A1 (fr) 2002-10-10

Family

ID=18948500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003111 WO2002080252A1 (fr) 2001-03-28 2002-03-28 Dispositif de traitement au plasma

Country Status (6)

Country Link
US (1) US20040094094A1 (ja)
EP (1) EP1376670A4 (ja)
JP (1) JP2002299240A (ja)
KR (1) KR100685248B1 (ja)
CN (2) CN1306566C (ja)
WO (1) WO2002080252A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036708A1 (fr) * 2001-10-19 2003-05-01 Tokyo Electron Limited Dispositif de traitement de substrat par plasma micro-onde
CN100463120C (zh) * 2003-11-14 2009-02-18 东京毅力科创株式会社 等离子体的点火方法和基板处理方法
CN101505574B (zh) * 2008-02-08 2012-07-04 东京毅力科创株式会社 等离子体处理设备
CN109475037A (zh) * 2018-12-14 2019-03-15 华中科技大学 一种等离子体活性增强法及发生装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540926B2 (ja) * 2002-07-05 2010-09-08 忠弘 大見 プラズマ処理装置
US7779783B2 (en) 2002-08-14 2010-08-24 Tokyo Electron Limited Plasma processing device
JP2004200307A (ja) * 2002-12-17 2004-07-15 Tokyo Electron Ltd プラズマ処理装置
JP4502639B2 (ja) * 2003-06-19 2010-07-14 財団法人国際科学振興財団 シャワープレート、プラズマ処理装置、及び、製品の製造方法
JP4563729B2 (ja) * 2003-09-04 2010-10-13 東京エレクトロン株式会社 プラズマ処理装置
US7879182B2 (en) 2003-12-26 2011-02-01 Foundation For Advancement Of International Science Shower plate, plasma processing apparatus, and product manufacturing method
US6869892B1 (en) * 2004-01-30 2005-03-22 Tokyo Electron Limited Method of oxidizing work pieces and oxidation system
KR100872260B1 (ko) 2004-02-16 2008-12-05 도쿄엘렉트론가부시키가이샤 플라즈마 처리장치 및 플라즈마 처리방법
US8083853B2 (en) 2004-05-12 2011-12-27 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
US8328939B2 (en) 2004-05-12 2012-12-11 Applied Materials, Inc. Diffuser plate with slit valve compensation
JP2005353364A (ja) * 2004-06-09 2005-12-22 Shibaura Mechatronics Corp プラズマ発生装置、プラズマ処理装置及びプラズマ処理方法
JP4915985B2 (ja) * 2006-02-06 2012-04-11 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
KR100980529B1 (ko) * 2006-03-27 2010-09-06 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
JP5461758B2 (ja) * 2006-06-07 2014-04-02 四国計測工業株式会社 マイクロ波化学反応容器および装置
JP2008047869A (ja) 2006-06-13 2008-02-28 Hokuriku Seikei Kogyo Kk シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5069427B2 (ja) * 2006-06-13 2012-11-07 北陸成型工業株式会社 シャワープレート、並びにそれを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
WO2008093389A1 (ja) * 2007-01-29 2008-08-07 Sumitomo Electric Industries, Ltd. マイクロ波プラズマcvd装置
US8142606B2 (en) * 2007-06-07 2012-03-27 Applied Materials, Inc. Apparatus for depositing a uniform silicon film and methods for manufacturing the same
US20080303744A1 (en) * 2007-06-11 2008-12-11 Tokyo Electron Limited Plasma processing system, antenna, and use of plasma processing system
JP5369733B2 (ja) * 2008-02-27 2013-12-18 東京エレクトロン株式会社 プラズマ処理装置
KR20090102955A (ko) * 2008-03-27 2009-10-01 주식회사 유진테크 기판처리장치 및 기판처리방법
FR2930561B1 (fr) * 2008-04-28 2011-01-14 Altatech Semiconductor Dispositif et procede de traitement chimique en phase vapeur.
KR101174277B1 (ko) * 2008-07-09 2012-08-16 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
US8236706B2 (en) * 2008-12-12 2012-08-07 Mattson Technology, Inc. Method and apparatus for growing thin oxide films on silicon while minimizing impact on existing structures
TWI476832B (zh) * 2011-09-28 2015-03-11 Tokyo Electron Ltd 蝕刻方法及裝置
JP5821039B2 (ja) * 2011-11-07 2015-11-24 パナソニックIpマネジメント株式会社 プラズマ処理装置
JP5527490B2 (ja) * 2011-11-11 2014-06-18 東京エレクトロン株式会社 プラズマ処理装置用誘電体窓、およびプラズマ処理装置
KR101356664B1 (ko) * 2012-02-03 2014-02-05 주식회사 유진테크 측방배기 방식 기판처리장치
WO2013146655A1 (ja) * 2012-03-26 2013-10-03 東京エレクトロン株式会社 プラズマ処理装置、および高周波発生器
KR101681182B1 (ko) * 2014-06-30 2016-12-02 세메스 주식회사 기판 처리 장치
US10465288B2 (en) * 2014-08-15 2019-11-05 Applied Materials, Inc. Nozzle for uniform plasma processing
JP6404111B2 (ja) * 2014-12-18 2018-10-10 東京エレクトロン株式会社 プラズマ処理装置
US10358721B2 (en) * 2015-10-22 2019-07-23 Asm Ip Holding B.V. Semiconductor manufacturing system including deposition apparatus
US20180358204A1 (en) * 2017-06-09 2018-12-13 Mattson Technology, Inc. Plasma Strip Tool With Multiple Gas Injection Zones
KR20200030591A (ko) * 2017-08-11 2020-03-20 어플라이드 머티어리얼스, 인코포레이티드 열화학 기상 증착(cvd) 균일성을 개선하기 위한 장치 및 방법들
CN110656317A (zh) * 2019-09-19 2020-01-07 长江存储科技有限责任公司 喷头组件、沉积设备及沉积方法
US11898248B2 (en) * 2019-12-18 2024-02-13 Jiangsu Favored Nanotechnology Co., Ltd. Coating apparatus and coating method
KR102275757B1 (ko) * 2020-08-24 2021-07-09 피에스케이 주식회사 기판 처리 장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126196A (ja) * 1986-11-17 1988-05-30 日本電信電話株式会社 マイクロ波励起によるプラズマ生成源
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
JPH09232099A (ja) * 1996-02-20 1997-09-05 Hitachi Ltd プラズマ処理装置
EP0831680A1 (en) * 1996-03-28 1998-03-25 Sumitomo Metal Industries, Ltd. Device and method for plasma treatment
JPH11111708A (ja) * 1997-09-30 1999-04-23 Tokyo Electron Ltd プラズマ成膜処理方法
JPH11168094A (ja) * 1997-12-03 1999-06-22 Nec Corp プラズマcvd装置
JP2000058294A (ja) * 1998-08-07 2000-02-25 Furontekku:Kk プラズマ処理装置
JP2000073175A (ja) * 1998-08-28 2000-03-07 Anelva Corp 表面処理装置
JP2000294548A (ja) * 1999-04-02 2000-10-20 Canon Inc 誘電体窓を用いたマイクロ波プラズマ処理装置
JP2000331998A (ja) * 1999-05-21 2000-11-30 Hitachi Ltd プラズマ処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439524A (en) * 1993-04-05 1995-08-08 Vlsi Technology, Inc. Plasma processing apparatus
US5556475A (en) * 1993-06-04 1996-09-17 Applied Science And Technology, Inc. Microwave plasma reactor
JP4268231B2 (ja) * 1997-12-12 2009-05-27 忠弘 大見 プラズマ処理装置、表面処理方法および光学部品の製造法
US20020011215A1 (en) * 1997-12-12 2002-01-31 Goushu Tei Plasma treatment apparatus and method of manufacturing optical parts using the same
WO2000074127A1 (fr) * 1999-05-26 2000-12-07 Tokyo Electron Limited Dispositif de traitement au plasma
US6367412B1 (en) * 2000-02-17 2002-04-09 Applied Materials, Inc. Porous ceramic liner for a plasma source

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126196A (ja) * 1986-11-17 1988-05-30 日本電信電話株式会社 マイクロ波励起によるプラズマ生成源
US5234526A (en) * 1991-05-24 1993-08-10 Lam Research Corporation Window for microwave plasma processing device
JPH09232099A (ja) * 1996-02-20 1997-09-05 Hitachi Ltd プラズマ処理装置
EP0831680A1 (en) * 1996-03-28 1998-03-25 Sumitomo Metal Industries, Ltd. Device and method for plasma treatment
JPH11111708A (ja) * 1997-09-30 1999-04-23 Tokyo Electron Ltd プラズマ成膜処理方法
JPH11168094A (ja) * 1997-12-03 1999-06-22 Nec Corp プラズマcvd装置
JP2000058294A (ja) * 1998-08-07 2000-02-25 Furontekku:Kk プラズマ処理装置
JP2000073175A (ja) * 1998-08-28 2000-03-07 Anelva Corp 表面処理装置
JP2000294548A (ja) * 1999-04-02 2000-10-20 Canon Inc 誘電体窓を用いたマイクロ波プラズマ処理装置
JP2000331998A (ja) * 1999-05-21 2000-11-30 Hitachi Ltd プラズマ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1376670A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036708A1 (fr) * 2001-10-19 2003-05-01 Tokyo Electron Limited Dispositif de traitement de substrat par plasma micro-onde
CN100463120C (zh) * 2003-11-14 2009-02-18 东京毅力科创株式会社 等离子体的点火方法和基板处理方法
CN101505574B (zh) * 2008-02-08 2012-07-04 东京毅力科创株式会社 等离子体处理设备
CN109475037A (zh) * 2018-12-14 2019-03-15 华中科技大学 一种等离子体活性增强法及发生装置

Also Published As

Publication number Publication date
CN1306566C (zh) 2007-03-21
CN101005011A (zh) 2007-07-25
KR100685248B1 (ko) 2007-02-22
CN100483620C (zh) 2009-04-29
JP2002299240A (ja) 2002-10-11
US20040094094A1 (en) 2004-05-20
KR20030093283A (ko) 2003-12-06
EP1376670A4 (en) 2005-04-06
EP1376670A1 (en) 2004-01-02
CN1509496A (zh) 2004-06-30

Similar Documents

Publication Publication Date Title
WO2002080252A1 (fr) Dispositif de traitement au plasma
JP4012466B2 (ja) プラズマ処理装置
EP1376669B1 (en) Plasma processing device
EP1300878B1 (en) Device for plasma processing
EP1300877A1 (en) Plasma processing device
JP4540926B2 (ja) プラズマ処理装置
KR100501777B1 (ko) 플라즈마 처리 장치
JP2008243827A (ja) プラズマ処理方法
JP4113896B2 (ja) プラズマ処理装置
JP4113895B2 (ja) プラズマ処理装置
JP4689706B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002708713

Country of ref document: EP

Ref document number: 1020037012541

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028074904

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10473302

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002708713

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642