WO2002080153A1 - Procede d'enregistrement optique - Google Patents

Procede d'enregistrement optique Download PDF

Info

Publication number
WO2002080153A1
WO2002080153A1 PCT/JP2002/002960 JP0202960W WO02080153A1 WO 2002080153 A1 WO2002080153 A1 WO 2002080153A1 JP 0202960 W JP0202960 W JP 0202960W WO 02080153 A1 WO02080153 A1 WO 02080153A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
pulse
upward
waveform
intensity
Prior art date
Application number
PCT/JP2002/002960
Other languages
English (en)
French (fr)
Inventor
Tatsuya Kato
Hajime Utsunomiya
Hideki Hirata
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to EP02713201A priority Critical patent/EP1383116A4/en
Priority to KR10-2003-7012657A priority patent/KR20030083019A/ko
Publication of WO2002080153A1 publication Critical patent/WO2002080153A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/006Overwriting
    • G11B7/0062Overwriting strategies, e.g. recording pulse sequences with erasing level used for phase-change media
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing

Definitions

  • the present invention relates to a method for recording at a high transfer rate on an optical recording medium.
  • Conventional technology
  • phase change type rewritable optical recording media recording is performed by irradiating a laser beam to change the crystal state of the recording layer, and the reflectance change of the recording layer is caused by such a state change. The reproduction is performed by detecting.
  • Phase-change optical recording media have attracted attention because the optical system of the drive unit is simpler than that of magneto-optical recording media.
  • a high-power (recording power) laser beam is applied so that the temperature of the recording layer is raised to a temperature equal to or higher than the melting point. In the portion where the recording power is applied, the recording layer is melted and then rapidly cooled to form an amorphous recording mark.
  • a relatively low power (erasing power) laser beam is irradiated so that the recording layer is heated to a temperature higher than its crystallization temperature and lower than its melting point.
  • the recording mark to which the erasing power is applied is heated to a temperature higher than the crystallization temperature and then gradually cooled, so that the recording mark returns to a crystalline state. Therefore, in a phase change optical recording medium, overwriting is possible by modulating the intensity of a single light beam.
  • a laser beam is not applied in a DC manner corresponding to the length of the recording mark.
  • a laser light emitting element requires a certain period of time from when a driving current is applied to when the light emission intensity reaches the intensity corresponding to the current value, and a laser driver that supplies the driving current to the laser light emitting element requires
  • the recording layer shape is distorted or reduced due to insufficient heating of the recording layer, and as a result, the reproduction signal jitter increases or the reproduction output decreases. Disclosure of the invention
  • an object of the present invention is to solve a problem that occurs when recording at a high transfer rate on an optical recording medium.
  • Another object of the present invention is to provide an optical recording method capable of accurately achieving a required recording pulse strategy.
  • the recording waveform has a plurality of recording pulse portions for forming recording marks, each recording pulse portion has at least one type of upward pulse, and the width of the upward pulse is narrow, so that the When the laser light intensity corresponding to the peak intensity cannot be obtained, the peak intensity of the upward pulse is determined by the original emission intensity of the laser light.
  • Optical recording method in which the value is increased so as to obtain a degree or a value close thereto.
  • the recording waveform includes a plurality of recording pulse section for forming a recording mark, the recording pulse section includes at least an upward pulse one, the rise time of the laser light is T R, the upward When the time width of the pulse is T UP ,
  • each group is divided into at least two groups so that each group contains at least one type of upward pulse, and each group has the same peak intensity of the upward pulse and a group that includes an upward pulse whose T UP is relatively short.
  • the recording waveform includes a plurality of recording pulse section for forming a recording mark, the recording pulse section includes at least an upward pulse one, the rise time of the laser light is T R, the upward When the time width of the pulse is T UP ,
  • An optical recording method in which, when a pulse is present, the peak intensity of the upward pulse is increased so as to obtain the original emission intensity or a value close to the original emission intensity in one laser beam.
  • the recording waveform includes a plurality of recording pulse section for forming a recording mark, the recording pulse section includes at least an upward pulse one, the rise time of the laser light is T R, the upward When the pulse width is T UP ,
  • the above object of the present invention also provides a method of irradiating an optical recording medium with a laser light intensity-modulated based on a recording waveform.
  • An optical recording method for recording data wherein a peak value of an upward pulse included in the recording waveform is set based on each pulse width. Thus it is achieved in recording method.
  • the object of the present invention is also an optical recording method for recording data by irradiating an optical recording medium with one laser beam intensity-modulated based on a recording waveform, wherein the first waveform included in the recording waveform
  • the pulse width of the upward pulse is shorter than the pulse width of the second upward pulse included in the recording waveform
  • the peak value of the first upward pulse is higher than the peak value of the second upward pulse.
  • the object of the present invention is also to record a laser beam intensity-modulated based on a recording waveform including a top pulse, a last pulse and a multi-pulse. This is achieved by an optical recording method for recording data by irradiating a medium, wherein the peak value of the multi-pulse is set higher than the peak value of the top pulse.
  • the pulse width of the multi-pulse is shorter than the pulse width of the top pulse.
  • the peak value of the top pulse is equal to the peak value of the last pulse.
  • FIG. 1 is a block diagram schematically showing a generation path of a laser beam applied to an optical recording medium.
  • FIG. 2 is a schematic sectional view showing an example of the structure of the optical recording medium 10.
  • FIG. 3 is a graph showing a 5T signal and its recording waveform when the EFM plus (8_16) modulation method is adopted.
  • Fig. 4 is a diagram showing a recording strategy when data is recorded using the (1, 7) RLL modulation method, and (a) is a recording strategy when a 2T signal is formed. , (B) is a recording strategy for forming a 3T signal, (c) is a recording strategy for forming a 4T signal, and (d) is a 5T to 8T signal. This is a recording strategy when forming.
  • FIG. 5 is a diagram for explaining a problem in the case where compensation according to the present invention is not performed.
  • (A) and (b) respectively show a (1, 7) 5T signal formed by an RLL modulation method.
  • FIG. 4 is a waveform diagram schematically showing a recording waveform and a light emission waveform in the case of performing the operation.
  • FIG. 6 is a graph schematically showing a laser emission waveform.
  • FIGS. 7A and 7B are diagrams for explaining the effect of compensation according to the present invention.
  • FIGS. 7A and 7B respectively show a recording waveform and a recording waveform when a 5T signal is formed by the (1, 7) RLL modulation method.
  • the emission waveform is a waveform diagram showing schematically is a graph showing the time course of the laser emission intensity in the case N o. 1 Table 1.
  • FIG. 9 is a graph showing the temporal change of the laser emission intensity in case No. 3 in Table 1.
  • FIG. 10 is a graph showing the temporal transition of the laser emission intensity in case No. 4 in Table 1.
  • FIG. 1 is a block diagram schematically showing a generation path of a laser beam applied to an optical recording medium.
  • laser light 20 is generated using a controller 21, a laser driver 22 and a laser light emitting element 23, and the generated laser light 20 is transmitted through an optical system 24.
  • the optical recording medium 10 is irradiated.
  • the controller 21 is a circuit that generates an original signal 21 a having a waveform of the laser light 20, and the original signal 21 a is supplied to the laser driver 22.
  • the waveform of the laser beam 20 is called a “light emission waveform”
  • the current waveform of the original signal 21a is called a “recording waveform”.
  • the laser driver 22 is a circuit that receives the original signal 21a and generates a drive signal 22a based on the original signal 21a.
  • the current waveform of the drive signal 22a corresponds to the recording waveform of the original signal 21a supplied from the controller 21, but the drive operation by the laser driver 22 must have a predetermined delay. Therefore, there is a slight delay with respect to the recording waveform.
  • the current waveform of the drive signal 22a is referred to as "drive current waveform”.
  • the laser light emitting element 23 is an element that receives the drive signal 22 a and generates a laser beam 20 based on the drive signal 22 a, and is not particularly limited, but it is preferable to use a semiconductor laser.
  • FIG. 2 is a schematic sectional view showing an example of the structure of the optical recording medium 10.
  • the optical recording medium 10 includes a substrate 11, a reflective layer 12 provided on the substrate 11, and a second dielectric layer 13 provided on the reflective layer 12.
  • a recording layer 14 provided on the second dielectric layer 13, a recording layer 1 4, a first dielectric layer 15 provided on the first dielectric layer 15 and a light transmitting layer 16 provided on the first dielectric layer 15. 17 are provided.
  • Data recording / reproduction is performed on the optical recording medium 10 having such a structure by irradiating a laser beam from the light transmission layer 17 side.
  • the substrate 11 serves as a substrate for ensuring the mechanical strength required for the optical recording medium 10, and its thickness is preferably set to about 1.2 mm. Further, the material of the substrate 11 is not particularly limited, and polycarbonate can be used.
  • the reflection layer 12 plays a role of reflecting the laser light 20 incident from the light transmission layer 16 side and emitting the laser light again from the light transmission layer 16, and has a thickness of 10 to 300. Preferably, it is set to nm.
  • the material of the reflective layer 12 is not particularly limited, but it is preferable to use an alloy containing silver as a main component.
  • the second dielectric layer 13 mainly serves as a protective layer for the recording layer 14 formed thereon, and has a thickness of 2 to 50 nm. Is preferred. Is not particularly limited as the material of the second dielectric layer 1 3, the use of A 1 2 0 3, Z n S + S i 0 2, C e 0 2, Y 2 0 3, A 1 ⁇ like it can.
  • the recording layer 14 is made of a phase-change material, and data is recorded using the difference between the reflectance in a crystalline state and the reflectance in an amorphous state.
  • the laser light 20 irradiated from the light transmitting layer 16 side changes the recording power (Pw) to the bottom power (P bo).
  • the recording layer 14 is heated to a temperature equal to or higher than the melting point by forming a pulse waveform having the following amplitude, and then rapidly cooled by setting the intensity of the laser beam 20 to the bottom peak (P bo).
  • the region melted by the recording pulse (Pw) changes to an amorphous state, and this becomes a recording mark.
  • a laser beam irradiated from the light transmitting layer 16 side is used.
  • the recording layer 14 is heated to a temperature higher than the crystallization temperature by setting the power of the light 20 to the erasing power (P bi).
  • P bi the erasing power
  • the specific material of the recording layer 14 is not particularly limited, it is preferable to use a SbTe eutectic material such as AgInSbTeGe, etc. .
  • the thickness of the recording layer 14 is preferably set to 5 to 30 nm.
  • the first dielectric layer 15 mainly serves as a protective layer for the recording layer 14, and has a thickness of 10 to 300 nm. It is preferable to set Is not particularly limited as the first dielectric layer 1 5 of material, preferably be used Z n S + S i O 2 les.
  • the light transmitting layer 16 constitutes an incident surface of the laser beam 20, and its thickness is preferably set to 10 to 300 / xm, and is preferably set to 50 to 150 ⁇ . Particularly preferred.
  • the material of the light transmitting layer 16 is not particularly limited, but it is preferable to use an ultraviolet curable resin.
  • the optical recording medium 10 having such a configuration is irradiated with the laser light 20 whose intensity is modulated based on the recording waveform. To record data.
  • the recording of data on the optical recording medium 10 is performed by forming a large number of recording marks by irradiating the laser beam 20, and the length from the start point to the end point of the recording mark, and the length of the next recording mark from the end point.
  • the length up to the start point is the data.
  • the length of each recording mark and the length between recording marks (between edges) are determined by the EFM Plus (8-16) modulation method (also called “8-16 modulation").
  • 3 T ⁇ 11 1 and 14 4 ( ⁇ is the period of the clock), and is set to one of the lengths corresponding to the (1, 7)
  • RLL modulation method also referred to as “17 modulation J”
  • FIG. 3 shows an example of the recording waveform.
  • the recording waveform means a current waveform of the original signal 21a for modulating the intensity of the laser beam 20, as described above.
  • FIG. 3 shows a 5T signal of the NRZI signal and a recording waveform corresponding to the 5T signal when the EFM plus (8-16) modulation method is adopted.
  • the recording waveform shown in FIG. 3 has a recording pulse portion for forming a recording mark corresponding to the 5T signal, and a direct current portion connecting adjacent recording pulse portions.
  • the DC part is used for erasing the recording mark in a recording system that allows overwriting.
  • Iw is the recording current of the original signal 21a
  • Ibi is the bias current of the original signal 21a
  • Ibo is the bottom current of the original signal 21a.
  • the recording pulse section has a structure in which a combination of an upward pulse (intensity I w) and a subsequent downward pulse (intensity I bo) is repeated, and as a whole, rises from I bi and returns to I bi. ing.
  • I w an upward pulse
  • I bo subsequent downward pulse
  • the levels (bottom current I bo) of all downward pulses are set lower than the bias current I bi.
  • the level of the original signal 21a is the recording current Iw
  • the power of the laser beam 20 generated by the laser light emitting element 23 becomes the recording power Pw
  • the level of the original signal 21a is In the case of the bias current I bi
  • the power of the laser light 20 generated by the laser light emitting element 23 becomes the bias power P bi
  • the level of the original signal 21 a becomes the bottom current I b
  • the power of the laser light 20 generated by the laser light emitting element 23 is the bottom power P bo.
  • the laser beam 22 has a laser driver 22 and a laser light emitting element 23 with a predetermined delay in the generation path, the recording waveform of the original signal 21 a and the laser The light emission waveform of light 20 does not completely match.
  • T top is the time width of the first upward pulse (also called top pulse)
  • Tmp is the upward pulse (also called multipulse) sandwiched between the first upward pulse and the last upward pulse.
  • T 1 p is the time width of the last upward pulse (also called the last pulse).
  • the recording pulse section shown in FIG. 3 includes three types of upward pulses when classified by pulse width.
  • the number of upward pulses may be one or two.
  • FIG. 4 is a diagram showing a recording waveform when data is recorded on the optical recording medium 10 using the (1, 7) RLL modulation method, and (3) shows a two-signal signal.
  • (B) is the recording waveform for forming a 3T signal
  • (c) is the recording waveform for forming a 4T signal
  • (d) is the recording waveform for forming a 5T to 8T signal.
  • the original signal 2 The current waveform (recording waveform) of 1a is modulated into three intensities (ternary) consisting of a recording current (Iw), a bias current (Ibi), and a bottom current (Ibo).
  • the intensity of the recording current (I w) is set to such a high level that the phase change material contained in the recording film is melted by the irradiation of the laser beam 20 (P w) generated based on this.
  • the intensity of the bias current (I bi) is such that the phase change material contained in the recording film reaches a temperature higher than the crystallization temperature by the irradiation of the laser beam 20 (P bi) generated based on the bias current (I bi). Is set to such a level. Furthermore, the intensity of the bottom current (I bo) is so low that the molten phase change material is cooled even when the laser beam 20 (P bo) generated based on the current is irradiated. Set to level.
  • the number of upward pulses of the recording waveform is set to "1", and then a cooling pulse is inserted. Is done.
  • the number of upward pulses is defined by the number of times that the current amount of the original signal 21a is increased to the recording current (Iw).
  • the first one of the upward pulses of the recording waveform Preparative Noresu Ppuno ⁇ 0 Noresu, final Panoresu Las preparative Nono 0 Angeles, but a pulse that exists between the bets Ppuparusu and Las Toparusu referred to as multi-pulse, as shown in FIG. 4 (a), the number of upward pulses " If "1", the said no. Nores is a top pulse.
  • the current amount of the original signal 2 la is set to the bias current (I bi) before the timing t 11, and the period from the timing t 11 to the timing t 12 ( T top) is set to the recording current (I w), and during the period (T el) from timing t 12 to timing t 13, it is set to the bottom current (I bo). After t13, it is referred to the bias power (P bi).
  • the number of upward pulses of the recording waveform is set to “2”, after which a cooling pulse is inserted. Is done. As shown in Fig. 4 (b), If the number of direction pulses is "2", these pulses are the top pulse and the last pulse.
  • the current amount of the original signal 2 la is set to the bias current (I bi) before the timing t 21, and the period from the timing t 21 to the timing t 22 ( T top) and the recording current (I w) during the period (T ip) from the timing t 23 to the timing t 24, and the period (T off) and the period from the timing t 22 to the timing t 23 During the period (T el) from the timing t 24 to the timing t 25, the bottom current (I bo) is set, and after the timing t 25, the bias current (I bi) is set.
  • the number of upward pulses of the recording waveform is set to “3”, and then a cooling pulse is inserted.
  • the current amount of the original signal 21 a is set to the bias current (I bi) before the timing t 31, and the timing t 3 2 is set from the timing t 31.
  • the upward pulse number of the recording waveform is set to "4" to "7", respectively. After that, a cooling pulse is inserted. Therefore, the number of multi-pulses is set to “2” to “5” when forming a 5T signal to an 8T signal, respectively. Also in this case, the current amount of the original signal 21a is T top (from timing t41 to timing t42).
  • Tmp period from timing t43 to timing t44, timing t45 to timing t46
  • T1 period timing from timing t47
  • Tc1 the period from timing t48 to timing t49
  • Tc1 the period from timing t48 to timing t49
  • the specific values of the above T top, Tmp, and T ip are determined in consideration of various conditions such as the recording linear velocity.
  • any of T top, Tmp, and T 1 ⁇ In general, such a pulse width is set to be shorter than at least one of the remaining noise widths. Also, the higher the recording linear velocity, the longer the pulse width and the higher the pulse width. In some cases, it is necessary to set a large difference in pulse width between an upward pulse with a short pulse width and a pulse width of 6.5 mZ s in the recording pulse strategy shown in Fig. 4. If
  • the original signal 21a having the recording waveform as described above is supplied to the laser driver 22 as described above, and the laser driver 22 generates a drive signal 22a based on the signal. . Then, based on the drive signal 22 a, the laser light 20 is generated by the laser light emitting element 23, and is irradiated on the recording layer 14 of the optical recording medium 10 via the optical system 24. As described above, in the region where the recording signal (two signals to eight signals) is to be formed, the phase change material melted by the irradiation of the laser beam 20 (Pw) having the intensity based on the recording current (Iw). Is rapidly cooled by the cooling pulse and becomes amorphous.
  • the phase change material is heated to a temperature equal to or higher than the crystallization temperature by the irradiation of the laser beam 20 (P bi) having the intensity based on the bias current (I bi), and then the laser beam 20 Is gradually cooled by moving away, and becomes a crystalline state.
  • the drive current waveform of the drive signal 22a generated by the laser driver 22 basically corresponds to the recording waveform of the original signal 21a, Since there is a predetermined delay, the recording waveform has a certain delay. Further, since there is a slight delay in the light emitting operation by the laser light emitting element 23, the actual light emitting waveform is slightly delayed from the driving current waveform. For this reason, when the upward pulse width of the recording waveform is set to be extremely short in order to increase the transfer rate, the laser beam 20 corresponding to the upward pulse having a short width attenuates before reaching the peak value. As a result, it becomes impossible to obtain a laser beam 20 that accurately corresponds to the recording pulse strategy.
  • Fig. 5 shows the situation.
  • FIGS. 5 (a) and 5 (b) are waveform diagrams schematically showing a recording waveform and a light emission waveform when a 5T signal is formed by the (1, 7) RLL modulation method.
  • the emission waveform basically corresponds to the recording waveform, but the delay caused by the laser driver 22 and the laser light emitting element 23 (mainly the laser driver 22) As a result, the emission waveform becomes a waveform having a predetermined slope. Therefore, when T mp is shorter than T top and T 1 p in the recording waveform, as shown in FIG. 5 (a), depending on the recording linear velocity, light emission may occur as shown in FIG. 5 (b).
  • the part corresponding to the multipulse in the waveform attenuates before reaching the peak value (P w). When the peak intensity in the emission waveform is low, the recording layer is insufficiently heated.
  • the present invention increases the intensity of the predetermined upward pulse in the recording waveform.
  • the intensity of the upward pulse in the recording waveform is increased, the rising angle of the laser beam 20 becomes steeper, so that a desired peak intensity can be obtained.
  • the intensity of each pulse in the emission waveform can be set to the set value (original peak intensity) or a value close to the set value, so that the same recording / reproducing characteristics as when the transfer rate is low can be obtained. Can be.
  • k is at most 1.5, preferably 1.2, and more preferably 1.0.
  • FIG. 6 is a waveform diagram schematically showing an emission waveform of the laser-light-emitting element 23 driven based on a recording waveform having a single rectangular upward pulse.
  • the rise time is defined as the light emission intensity when the light emission intensity reaches 10% of the peak value (P in FIG. 6) due to the application of a current to the laser light emitting element 23 by the laser driver 22. Defined by the time to reach 90% of the peak value.
  • the fall time is defined as 10% of the peak value from when the emission intensity reaches 90% of the peak value due to the stop (reduction) of the current supply to the laser light emitting device 23 by the laser driver 22. Is defined by the time to decrease to Generally, the rise time is longer than the fall time. The rise time and fall time are dominated by the delay caused by the laser driver 22. Therefore, the drive current waveform by the laser driver 22 substantially matches the light emission waveform shown in FIG.
  • Peak intensity control in the present invention in response to an upward pulse is T UP k T R when emit laser light emitting element 2 3, the strength of the upper facing pulse of the recording waveform (recording current I w), T It carried out by greater than the strength of the upward path Noresu a UP> k T R. That is, higher intensity of the upward pulses of the recording waveform is a T UP ⁇ k T R, to compensate for the peak intensity decrease of the light emission waveform.
  • FIGS. 7A and 7B are diagrams for explaining the effect of compensation according to the present invention.
  • FIGS. 7A and 7B respectively show a recording waveform and a waveform when a 5 T signal is formed by the (1, 7) RLL modulation method.
  • c the light emission waveform is a waveform diagram showing schematically Note that this figure is a diagram to be contrasted with FIG. 5 described above.
  • the pulse intensity corresponding to Tmp corresponds to Ttop and T1. It is set higher than the intensity of the pulse. That is, the relationship between the recording current Iw 'corresponding to Tmp and the recording current Iw corresponding to Ttop and T1p is represented by
  • the portion corresponding to the multipulse in the emission waveform also reaches the peak value (Pw), and the recording layer can be sufficiently heated.
  • T UP in the recording waveform, T UP ⁇ k T If a R and T UP exists two least upward pulse that different phases, these upward pulses, the length of each T UP It is preferable to divide them into at least two groups. In this case, when one upward pulse belongs to each group, the peak intensity may be individually controlled for each pulse according to the pulse width of each pulse. Specifically, the peak value is low in the emission wave-shaped as T UP is shorter, as the T UP of the upward pulses is short Increase peak intensity. As a result, the intensity of each pulse in the emission waveform can be set to its set value (original peak intensity) or a value close thereto.
  • the types of pulse widths are relatively large, complicated control is required to control the pulse intensity for each pulse width, and the load on the controller 21 increases.
  • the number of groups to be controlled is reduced, so that the control can be simplified.
  • the peak intensities of the upward pulses are the same in each group, and the peak intensities of the groups including the upward pulses whose T UP is relatively short, and the peak in the group including the upward pulses whose ⁇ ⁇ ⁇ is relatively long. Make it larger than the strength.
  • the intensity of each pulse in the emission waveform can be set to its set value (original peak intensity) or a value close thereto. Even if not all the pulses have the required peak intensity in the emission waveform, the recording / reproducing characteristics can be improved if the peak intensity is slightly lower or slightly higher than the original peak intensity. .
  • it may be the peak intensity the same in an upward pulse Te to base which is a T UP ⁇ k T R. Peak intensity in this case is Kikusuru larger than the peak intensity of the upward pulses is T UP> k T R.
  • the present invention relates to an upward pulse where T UP ⁇ k T R and T UP > k T
  • the peak intensity does not need to be the same for all upward pulses in the emission waveform.
  • the peak intensity may be set differently for each pulse.
  • the recording waveform may be controlled so that the peak intensity of each pulse in the emission waveform becomes a set value. That is, each pulse of the emission waveform is set to a set value (required original peak intensity) or close to the set value.
  • the peak intensity may be increased in accordance with the pulse width T UP in a predetermined pulse of the recording waveform.
  • the present invention relates to an optical recording medium on which recording is performed by irradiation of a laser beam, and recording / reproduction characteristics of which are affected by a change in intensity of the irradiated laser beam, such as a phase-change optical recording medium and a magneto-optical recording medium. It can be applied without particular restrictions.
  • a reflective layer, a second dielectric layer, a recording layer, a first dielectric layer and a light-transmitting layer are formed on the surface of a disk-shaped polycarbonate substrate with a diameter of 12 Omm and a thickness of 1.2 mm, which is formed simultaneously by injection molding. was formed by the following procedure, and an optical recording disk sample was manufactured.
  • the reflective layer was formed by sputtering in an Ar atmosphere using Ag ⁇ PdiCUj as a target with a thickness of 100 nm.
  • the second dielectric layer had a thickness of 20 nm and was formed by sputtering in an Ar atmosphere using Al 2 O 3 as a target.
  • the recording layer was formed to a thickness of 12 nm by a sputtering method in an Ar atmosphere.
  • the composition of the recording layer is in atomic ratio
  • the first dielectric layer has a thickness of 130 nm and is sputtered in an Ar atmosphere using ZnS (85 mo 1%)-SiO 2 (15 mo 1%) as the target. It was formed by a method.
  • T R and T F are measured by the following procedure.
  • the light output of the laser light-emitting element is displayed on the oscilloscope and the voltage converted by the photoelectric converter, the output is the rise time T R the time to rise up to 90% from 1 0%, output 1 0% to 90%
  • the time of falling to T F was defined as the fall time T F.
  • T F the time that the output rises to 1 0 0% to 0% T R 1.
  • T F i that the output falls from 100% to 0%. .
  • T 1 0.5 ⁇ w
  • Table 1 shows the linear velocities at the time of recording, Ttop, Tmp, and Tip at each linear velocity, and the current values Itop, Imp, and Iip of the original signals corresponding to these, respectively.
  • Itop, Imp and I1p are shown as relative values.
  • FIGS. 8, 9 and 10 are graphs showing laser emission waveforms in cases No. 1, No. 3 and No. 4 in Table 1.
  • the recording of the original signal is performed based on the time width of the upward pulse in the recording waveform and the characteristics of the laser light emitting element. Since the value of the current Iw is set, it is possible to obtain good recording / reproducing characteristics even when performing recording at a high transfer rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

明細書 光記録方法 技術分野
本発明は、光記録媒体に対し高転送レートで記録する方法に関する。 従来の技術
近年、 高密度記録が可能で、 しかも記録情報を消去して書き換える ことが可能な光記録媒体が注目されている。 書き換え可能型の光記録 媒体のうち相変化型のものは、 レーザー光を照射することにより記録 層の結晶状態を変化させて記録を行い、 このような状態変化に伴う記 録層の反射率変化を検出することにより再生を行うものである。 相変 化型の光記録媒体は、 駆動装置の光学系が光磁気記録媒体のそれに比 ベて単純であるため、 注目されている。
相変化型光記録媒体において情報を記録する際には、 記録層が融点 以上まで昇温されるような高パワー (記録パワー) のレーザー光を照 射する。 記録パワーが加えられた部分では記録層が溶融した後、 急冷 され、 非晶質の記録マークが形成される。 一方、 記録マークを消去す る際には、 記録層がその結晶化温度以上であってかつ融点未満の温度 まで昇温されるような比較的低パワー (消去パワー) のレーザー光を 照射する。 消去パワーが加えられた記録マークは、 結晶化温度以上ま で加熱された後、 徐冷されることになるので、 結晶質に戻る。 したが つて、 相変化型光記録媒体では、 単一の光ビームの強度を変調するこ とにより、 オーバーライ トが可能である。
相変化型光記録媒体に記録する際には、 記録マークの長さに対応し てレーザー光を直流的に照射するのではなく、 例えば特開平 9一 7 1
7 6号公報に記載されているように、 記録マーク形状の制御のために パルス列と して照射することが一般的である。 このパルス列の具体的 構成を記録パルスス トラテジと呼ぶ。 近年、 光記録媒体には動画記録など高転送レートでの記録が要求さ れるようになってきている。 転送レートが高いほど記録信号の周波数 は高くなる。 しかも、 上記したようにレーザー光をパルス列で変調し て照射する場合、 パルス列を構成するそれぞれのパルスの時間幅は著 しく短くなる。
一方、 レーザー発光素子は、 駆動電流が印加されてから発光強度が その電流値に対応する強度に達するまでにある程度の時間を要し、 ま た、 レーザー発光素子に駆動電流を供給するレーザードライバは、 駆 動電流を所定値まで上昇させるのにある程度の時間を要する。 したが つて、 転送レートを高くするためにレーザー光を著しく短いパルス波 形としょう と しても、 各パルスに対応するレーザー発光強度は記録パ ヮ一に到達する前に減衰してしまう。 すなわち、 記録パルスス トラテ ジに正確に対応したレーザー発光ができなくなる。 その結果、 記録層 の加熱が不十分となって記録マーク形状が歪んだり小さくなつたり し、 その結果、 再生信号のジッタが大きくなつたり再生出力が低くなつた り してしまう。 発明の開示
したがって、 本発明は、 光記録媒体に高転送レートで記録する際に 生じる問題を解決することを目的とする。
また、 本発明の他の目的は、 求められる記録パルスス トラテジを正 確に実現可能な光記録方法を提供することである。
上記目的は、 下記 ( 1 ) 〜 ( 6 ) の本発明により達成される。
( 1 ) 光記録媒体に対し、 記録波形により強度変調されたレーザ 一光の照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記上向きパルスの幅が狭いことによって、 その上向きパルスのピ —ク強度に対応するレーザー光強度が得られない場合において、 その 上向きパルスのピーク強度を、 前記レーザー光において本来の発光強 度またはこれに近い値が得られるように増大させる光記録方法。
(2 ) 光記録媒体に対し、 記録波形により強度変調されたレーザ 一光の照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記レーザー光の立ち上がり時間を TRと し、 前記上向きパルスの 時間幅を TU Pとしたとき、
前記記録波形に、 TU P≤ k TR (ただし k = l . 5) である上向き パルスと、 TUP〉 k TRである上向きパルスとがそれぞれ少なく とも 1種存在するとき、 TU P≤ k TRである上向きパルスのピーク強度を、 TUP> k TRである上向きパルスのピーク強度より も大きくする光記 録方法。
(3 ) 前記記録波形に、 TUP≤ k TRであってかつ TUPが相異な る上向きパルスが少なく とも 2種存在するとき、 これらの上向きパル スを、 その TUPの長さに応じ、 各グループに少なく とも 1種の上向き パルスが含まれるように少なく とも 2つのグループに分け、 各グルー プにおいて上向きパルスのピーク強度を同一とし、 TU Pが相対的に短 い上向きパルスを含むグループにおけるピーク強度を、 TUPが相対的 に長い上向きパルスを含むグループにおけるピーク強度より大きくす る上記 (2) の光記録方法。
(4) 前記記録波形に、 TUP k TRであってかつ TUPが相異な る上向きパルスが少なく とも 2種存在するとき、 これらの上向きパル スのすべてにおいてピーク強度を同一とする上記( 2) の光記録方法。
(5 ) 光記録媒体に対し、 記録波形により強度変調されたレーザ —光の照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記レーザー光の立ち上がり時間を TRと し、 前記上向きパルスの 時間幅を TU Pとしたとき、
前記記録波形に、 TU P≤ k TR (ただし k = l . 5) である上向き パルスが存在するとき、 この上向きパルスのピーク強度を、 前記レー ザ一光において本来の発光強度またはこれに近い値が得られるように 増大させる光記録方法。
( 6 ) 光記録媒体に対し、 記録波形により強度変調されたレーザ 一光の照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記レーザー光の立ち上がり時間を T Rと し、 前記上向きパルスの 時間幅を T U Pと したとき、
前記記録波形に含まれる上向きパルスのすべてにおいて T U P≤ k T R (ただし k = l . 5 ) であるとき、 これらの上向きパルスを、 T u Ρの長さに応じ、 各グループに少なく とも 1種の上向きパルスが含ま れるように少なく とも 2つのグループに分け、 各グループにおいて上 向きパルスのピーク強度を同一とし、 T U Pが相対的に短い上向きパル スを含むグループにおけるピーク強度を、 T U Pが相対的に長い上向き パルスを含むグループにおけるピーク強度より大きくする光記録方法 c 本発明の前記目的はまた、 記録波形に基づいて強度変調されたレー ザ一光を光記録媒体に照射することによりデータの記録を行う光記録 方法であって、 前記記録波形に含まれる上向きパルスのピーク値をそ れぞれのパルス幅に基づいて設定することを特徴とする光記録方法に よって達成される。
本発明の前記目的はまた、 記録波形に基づいて強度変調されたレー ザ一光を光記録媒体に照射することによりデータの記録を行う光記録 方法であって、 前記記録波形に含まれる第 1 の上向きパルスのパルス 幅が前記記録波形に含まれる第 2の上向きパルスのパルス幅より も短 い場合、 前記第 1 の上向きパルスのピーク値を前記第 2の上向きパル スのピーク値より も高く設定することを特徴とする光記録方法によつ て達成される。
本発明の前記目的はまた、 トップパルス、 ラス トパルス及びマルチ パルスを含む記録波形に基づいて強度変調されたレーザー光を光記録 媒体に照射することによりデータの記録を行う光記録方法であって、 前記マルチパルスのピーク値を前記トップパルスのピーク値より も高 く設定することを特徴とする光記録方法によって達成される。
本発明の好ましい実施態様においては、 前記マルチパルスのパルス 幅が前記トップパルスのパルス幅より も短い。
本発明のさらに好ましい実施態様においては、 前記トップパルスの ピーク値と前記ラス トパルスのピーク値とが等しい。 図面の簡単な説明
図 1は、 光記録媒体に照射されるレーザー光の生成経路を概略的に 示すブロック図である。
図 2は、 光記録媒体 1 0の構造の一例を示す略断面図である。
図 3は、 E FMプラス ( 8 _ 1 6 ) 変調方式を採用した場合におけ る 5 T信号およびその記録波形を示すグラフである。
図 4は、 ( 1, 7 ) R L Lの変調方式を用いてデータの記録を行う場 合の記録ス トラテジを示す図であり、 ( a )は 2 T信号を形成する場合 の記録ス トラテジであり、 (b)は 3 T信号を形成する場合の記録ス ト ラテジであり、 ( c )は 4 T信号を形成する場合の記録ス トラテジであ り、 ( d )は 5 T信号〜 8 T信号を形成する場合の記録ス トラテジであ る。
図 5は、 本発明による補償を行わない場合の問題点を説明するため の図であり、 ( a ) 及び (b ) は、 それぞれ ( 1, 7) R L Lの変調方 式により 5 T信号を形成する場合の記録波形及び発光波形を模式的に 示す波形図である。
図 6は、 レーザー発光波形を模式的に示すグラフである。
図 7は、 本発明による補償の効果を説明するための図であり、 ( a ) 及び ( b) は、 それぞれ ( 1 , 7) R L Lの変調方式により 5 T信号 を形成する場合の記録波形及び発光波形を模式的に示す波形図である c 図 8は、 表 1のケース N o . 1におけるレーザー発光強度の時間的 推移を示すグラフである。 図 9は、 表 1のケース N o . 3におけるレーザー発光強度の時間的 推移を示すグラフである。
図 1 0は、 表 1のケース N o . 4におけるレーザー発光強度の時間 的推移を示すグラフである。 発明の実施の形態
以下、 添付図面を参照しながら、 本発明の好ましい実施態様につい て詳細に説明する。
図 1は、 光記録媒体に照射されるレーザー光の生成経路を概略的に 示すブロック図である。
図 1に示すように、 レーザー光 2 0は、 コントローラ 2 1 、 レーザ 一ドライバ 2 2及びレーザー発光素子 2 3を用いて生成され、 生成さ れたレーザー光 2 0は光学系 2 4を介して光記録媒体 1 0に照射され る。 コントローラ 2 1は、 レーザー光 2 0の波形の原信号 2 1 aを生 成する回路であり、 かかる原信号 2 1 aはレーザードライバ 2 2に供 給される。 本明細書においては、 レーザー光 2 0の波形を 「発光波形」 と呼び、 原信号 2 1 aの電流波形を 「記録波形」 と呼ぶ。 レーザード ライバ 2 2は、 原信号 2 1 aを受けこれに基づいて駆動信号 2 2 aを 生成する回路である。 駆動信号 2 2 aの電流波形は、 コン トローラ 2 1 より供給される原信号 2 1 a の記録波形に対応しているが、 レーザ 一ドライバ 2 2による駆動動作には所定の遅延が存在することから、 記録波形に対して若干の遅れが生じる。 本明細書においては駆動信号 2 2 a の電流波形を 「駆動電流波形」 と呼ぶ。 レーザー発光素子 2 3 は、 かかる駆動信号 2 2 a を受け、 これに基づいてレーザー光 2 0を 生成する素子であり、 特に限定されるものではないが、 半導体レーザ を用いることが好ましい。
図 2は、 光記録媒体 1 0の構造の一例を示す略断面図である。
図 2に示す例による光記録媒体 1 0は、 基板 1 1 と、 基板 1 1上に 設けられた反射層 1 2と、 反射層 1 2上に設けられた第 2の誘電体層 1 3と、 第 2の誘電体層 1 3上に設けられた記録層 1 4と、 記録層 1 4上に設けられた第 1の誘電体層 1 5と、 第 1の誘電体層 1 5上に設 けられた光透過層 1 6によって構成され、 光記録媒体 1 0の中央部分 には孔 1 7が設けられている。 このような構造を有する光記録媒体 1 0に対しては、 光透過層 1 7側からレーザー光を照射することによつ てデータの記録/再生が行われる。
基板 1 1は、 光記録媒体 1 0に求められる機械的強度を確保するた めの基体と しての役割を果たし、 その厚さと しては約 1. 2 mmに設 定することが好ましい。 また、 基板 1 1の材料としては特に限定され ず、 ポリカーボネートを用いることができる。
反射層 1 2は、 光透過層 1 6側から入射されるレーザー光 2 0を反 射し、 再び光透過層 1 6から出射させる役割を果たし、 その厚さと し ては 1 0〜 3 0 0 n mに設定することが好ましい。 反射層 1 2の材料 としては特に限定されないが、 銀を主成分とする合金を用いることが 好ましい。
第 2の誘電体層 1 3は、 主に、 その上方に形成されている記録層 1 4に対する保護層と しての役割を果たし、 その厚さと しては 2〜 5 0 n mに設定することが好ましい。 第 2の誘電体層 1 3の材料としては 特に限定されず、 A 1 203、 Z n S + S i 02、 C e 02、 Y203、 A 1 Ν等を用いることができる。
記録層 1 4は、 相変化材料によって構成され、 結晶状態である場合 の反射率とアモルファス状態である場合の反射率とが異なることを利 用してデータの記録が行われる。 結晶状態である記録層 1 4をァモル ファス状態に変化させるためには、 光透過層 1 6側から照射されるレ 一ザ一光 2 0を記録パワー (Pw) からボトムパワー (P b o) まで の振幅を有するパルス波形とすることによって記録層 1 4を融点以上 の温度に加熱し、 その後、 かかるレーザー光 2 0の強度をボトムパヮ 一 (P b o ) に設定することによって急冷する。 これにより、 記録パ ヮ一 (Pw) によって溶融した領域がアモルファス状態に変化し、 こ れが記録マークとなる。 一方、 アモルファス状態である記録層 1 4を 結晶状態に変化させるためには、 光透過層 1 6側から照射されるレー ザ一光 2 0のパワーを消去パヮ一 (P b i ) に設定することによって 記録層 1 4を結晶化温度以上の温度に加熱する。 これにより、 消去パ ヮー (P b i ) によって結晶化温度以上の温度に加熱された領域は、 その後レーザー光 2 0が遠ざかることにより徐冷されることから、 当 該領域が結晶状態に変化する。
ここで、 記録パワー Pw、 消去パワー P b i及びボトムパワー P b oの関係は、
P w > P b i ≥ P b o
に設定される。 したがって、 レーザー光 2 0のパワーをこのように変 調すれば、 記録層 1 4の未記録領域に記録マークを形成するだけでな く、 既に記録マークが形成されている領域にこれと異なる記録マーク を直接上書き (ダイレク トオーバーライ ト) することが可能となる。 以下に詳述するが、 レーザー光 2 0のパワーをこのように変調するた めには、コントローラ 2 1 より生成される原信号 2 1 aの電流波形(記 録波形) を対応する強度に変調すればよい。
記録層 1 4の具体的な材料と しては、 特に限定されるものではない が A g I n S b T e G e等の S b T e共晶系材料を用いることが好ま しレ、。 また、 記録層 1 4の厚さとしては、 5〜 3 0 n mに設定するこ とが好ましい。
第 1の誘電体層 1 5は、 第 2の誘電体層 1 3と同様、 主に、 記録層 1 4に対する保護層としての役割を果たし、 その厚さと しては 1 0〜 3 0 0 nmに設定することが好ましい。 第 1の誘電体層 1 5の材料と しては特に限定されないが、 Z n S + S i O 2を用いることが好まし レ、。
光透過層 1 6は、 レーザー光 20の入射面を構成し、 その厚さとし ては 1 0〜 3 0 0 /x mに設定することが好ましく、 5 0〜 1 5 0 μ πι に設定することが特に好ましい。 光透過層 1 6の材料と しては特に限 定されないが、 紫外線硬化性樹脂を用いることが好ましい。
上述のように、 本発明では、 このような構成を有する光記録媒体 1 0に対し、 記録波形に基づいて強度変調されたレーザー光 2 0を照射 することによりデータの記録を行う。
光記録媒体 1 0に対するデータの記録は、 レーザー光 2 0の照射に より多数の記録マークを形成することにより行われ、 記録マークの始 点から終点までの長さ及び終点から次の記録マークの始点までの長さ がデータとなる。 各記録マークの長さ及び記録マーク間の長さ (エツ ジ間) は、 E FMプラス ( 8— 1 6 ) 変調方式 (「 8— 1 6変調」 とも 言う) が採用される場合には、 3 T〜 1 1 Τ及び 1 4 Τ (Τは、 クロ ックの周期) に対応する長さのいずれかに設定され、 ( 1, 7 ) R L L の変調方式 (「 1 一 7変調 J とも言う) が採用される場合には、 2 T〜 8 Τに対応する長さのいずれかに設定される。
記録波形の例を、 図 3に示す。 なお、 本明細書において記録波形と は、'上述のとおり、 レーザー光 2 0を強度変調するための原信号 2 1 aの電流波形を意味する。 図 3には、 E FMプラス ( 8— 1 6 ) 変調 方式を採用した場合における N R Z I信号の 5 T信号と、 5 T信号に 対応する記録波形とが示されている。
図 3に示す記録波形は、 5 T信号に対応する記録マークを形成する ための記録パルス部と、 隣り合う記録パルス部を連結する直流部とを 有する。 直流部は、 オーバ一ライ ト可能な記録システムでは記録マ一 クの消去に利用される。 図 3において、 I wは原信号 2 1 aの記録電 流、 I b i は原信号 2 1 aのバイアス電流、 I b oは原信号 2 1 aの ボトム電流である。 記録パルス部は、 上向きパルス (強度 I w) とこ れに続く下向きパルス (強度 I b o ) との組み合わせが繰り返される 構造であり、 全体と しては I b i から立ち上がり、 I b i に戻るもの となっている。 図 3の記録波形では、 すべての下向きパルスのレベル (ボトム電流 I b o ) がバイアス電流 I b i より も低く設定されてい る。 尚、 原信号 2 1 aのレベルが記録電流 I wである場合、 レーザー 発光素子 2 3によ り生成される レーザー光 2 0のパワーは記録パワー P wとなり、原信号 2 1 a のレベルがバイアス電流 I b i である場合、 レーザー発光素子 2 3により生成されるレーザー光 2 0のパワーはバ ィァスパワー P b i となり、 原信号 2 1 a のレベルがボトム電流 I b oである場合、 レーザー発光素子 2 3により生成されるレーザー光 2 0のパワーはボトムパワー P b oとなる。 但し、 以下に詳述するが、 レーザー光 2 0の生成経路には所定の遅延を有するレーザドライバ 2 2及びレーザー発光素子 2 3が存在することから、 原信号 2 1 aの記 録波形とレーザー光 20の発光波形とは完全には一致しない。
図 3において、 T t o pは先頭の上向きパルス (トップパルスとも いう) の時間幅であり、 Tm pは先頭の上向きパルスと最後尾の上向 きパルスとに挟まれた上向きパルス (マルチパルスと もいう) の時間 幅であり、 T 1 pは最後尾の上向きパルス (ラス トパルスともいう) の時間幅である。 これらのパルス幅は、 基準クロック幅 ( 1 T) で規 格化した値で表され、 その具体的な値は、 記録線速度等種々の条件を 考慮して定められるが、 T t o p、 Tmp、 T i pが全て一致するこ とは稀であり、 T t o p、 Tmp、 T 1 pのいずれかのパルス幅が残 りパルス幅の少なく とも一方よりも短く設定されることが一般的であ る。 すなわち、 上向きパルス幅としては、 長いものと短いものが混在 するのが一般的である。
さらに、 記録線速度が高くなるほど、 単純な記録パルスス トラテジ を用いた記録マークの形成は困難となり、 これに関連して、 パルス幅 の長い上向きパルスとパルス幅の短い上向きパノレスとの間のパルス幅 の差を大きく設定する必要が生じる場合がある。
図 3に示す記録パルス部は、 パルス幅で分類したとき 3種の上向き パルスを含む。 なお、 長さの短い信号に対応する記録パルス部では、 上向きパルスの数が 1または 2の場合もある。
図 4は、 光記録媒体 1 0に対し、 ( 1, 7) R L Lの変調方式を用い てデータの記録を行う場合の記録波形を示す図であり、 ( 3 )は 2丁信 号を形成する場合の記録波形、 (b)は 3 T信号を形成する場合の記録 波形、 ( c ) は 4 T信号を形成する場合の記録波形、 ( d ) は 5 T信号 〜8 T信号を形成する場合の記録波形である。
図 4 ( a ) 〜 ( d ) に示すように、 本実施態様では、 ( 1, 7 ) R L Lの変調方式を用いてデータの記録を行う場合においても、 原信号 2 1 aの電流波形 (記録波形) は、 記録電流 ( I w)、 バイアス電流 ( I b i ) 及びボトム電流 ( I b o) からなる 3つの強度 ( 3値) に変調 される。 記録電流 ( I w) の強度と しては、 これに基づいて生成され るレーザー光 2 0 (P w) の照射によって記録膜に含まれる相変化材 料が溶融するような高いレベルに設定される。また、バイアス電流( I b i )の強度と しては、 これに基づいて生成されるレーザー光 2 0 ( P b i ) の照射によって記録膜に含まれる相変化材料が結晶化温度以上 の温度に達するようなレベルに設定される。 さらに、 ボトム電流 ( I b o )の強度と しては、 これに基づいて生成されるレーザー光 2 0 (P b o) が照射されても、 溶融している相変化材料が冷却されるような 低いレベルに設定される。
まず、 図 4 ( a ) に示すように、 光記録媒体 1 0に対して 2 T信号 を形成する場合、 記録波形の上向きパルス数は 「 1」 に設定され、 そ の後、 クーリングパルスが挿入される。 上向きパルス数とは、 原信号 2 1 aの電流量が記録電流 ( I w) まで高められた回数によって定義 される。 本明細書においては、 記録波形の上向きパルスのうち、 先頭 ノヽ。ノレスを ト ップノヽ0ノレス、 最終パノレスをラス トノヽ0ルス、 ト ップパルスと ラス トパルスの間に存在するパルスをマルチパルスと呼ぶが、 図 4 ( a ) に示すように、 上向きパルス数が 「 1」 である場合には、 当該 ノ、。ノレスは ト ップパルスである。
したがって、 2 T信号を形成する場合、 原信号 2 l aの電流量は、 タイミング t 1 1以前においてはバイアス電流( I b i ) に設定され、 タイミング t 1 1からタイ ミング t 1 2までの期間 ( T t o p ) にお いては記録電流 ( I w) に設定され、 タイ ミング t 1 2からタイ ミン グ t 1 3までの期間 (T e l ) においてはボトム電流 ( I b o ) に設 定され、 タイミング t 1 3以降においてはバイアスパワー (P b i ) に 疋される。
また、 図 4 ( b) に示すように、 光記録媒体 1 0に対して 3 T信号 を形成する場合、 記録波形の上向きパルス数は 「 2」 に設定され、 そ の後、 クーリングパルスが挿入される。 図 4 ( b ) に示すように、 上 向きパルス数が 「 2」 である場合には、 これらパルスはトップパルス とラス トパルスである。
したがって、 3 T信号を形成する場合、 原信号 2 l aの電流量は、 タイミング t 2 1以前においてはバイアス電流( I b i ) に設定され、 タイミング t 2 1からタイ ミング t 2 2までの期間 (T t o p ) 及び タイミング t 2 3からタイ ミング t 24までの期間 (T i p) におい ては記録電流 ( I w) に設定され、 タイミング t 2 2からタイミング t 2 3までの期間 ( T o f f ) 及びタイミング t 2 4からタイミング t 2 5までの期間 (T e l ) においてはボトム電流 ( I b o ) に設定 され、 タイ ミング t 2 5以降においてはバイァス電流 ( I b i ) に設 定される。
さらに、 図 4 ( c ) に示すように、 光記録媒体 1 0に対して 4 T信 号を形成する場合、 記録波形の上向きパルス数は 「 3」 に設定され、 その後、 クーリングパルスが挿入される。 したがって、 4 T信号を形 成する場合、 原信号 2 1 aの電流量は、 タイ ミング t 3 1以前におい てはバイアス電流 ( I b i ) に設定され、 タイミング t 3 1からタイ ミング t 3 2までの期間 ( T t o p )、 タイミング t 3 3からタイ ミン グ t 3 4までの期間 (Tm p ) 及びタイミング t 3 5からタイミング t 3 6までの期間 (T i p) においては記録電流 ( I w) に設定され、 タイミング t 3 2からタイミング t 3 3までの期間 ( T o f f )、 タイ ミング t 3 4からタイミング t 3 5までの期間 (T o f f ) 及びタイ ミング t 3 6からタイミング t 3 7までの期間 (T e l ) においては ボトム電流 ( I b o ) に設定され、 タイミング t 3 7以降においては バイアス電流 ( I b i ) に設定される。
そして、 図 4 ( d ) に示すように、 光記録媒体 1 0に対して 5 T信 号〜 8 T信号を形成する場合、 記録波形の上向きパルス数はそれぞれ 「4」 〜 「 7」 に設定され、 その後、 クーリ ングパルスが挿入される。 したがって、 マルチパルスの数は、 5 T信号〜 8 T信号を形成する場 合それぞれ 「 2」 〜 「 5」 に設定される。 この場合も、 原信号 2 1 a の電流量は、 T t o p (タイミング t 4 1からタイ ミング t 4 2まで の期間)、 Tm p (タイ ミング t 4 3からタイ ミング t 4 4までの期間, タイミング t 4 5からタイ ミング t 4 6までの期間等) 及び T 1 の 期間 (タイ ミング t 4 7からタイミング t 4 8までの期間) において は記録電流 ( I w) に設定され、 オフ期間 T o f f (タイミング t 4 2からタイミング t 4 3までの期間、 タイ ミング t 4 6からタイ ミン グ t 4 7までの期間等) 及び冷却期間 T c 1 (タイ ミング t 4 8から タイミング t 4 9までの期間) においてはボトム電流 ( I b o ) に設 定され、 その他の期間においてはバイアス電流 ( I b i ) に設定され る。
ここで、 上記 T t o p、 Tm p、 T i pの具体的な値は、 記録線速 度等種々の条件を考慮して定められるが、 上述のとおり、 T t o p、 Tm p、 T 1 ρのいずれかのパ レス幅が残りノヽ °ノレス幅の少なく とも一 方より も短く設定されることが一般的である。 また、 記録線速度が高 くなるほど、 パルス幅の長い上向きパルスとノヽ。ノレス幅の短い上向きパ ルスとの間のパルス幅の差を大きく設定する必要が生じる場合がある 一例と して、 図 4に示した記録パルスス トラテジにおいて、 記録線速 度を 6. 5 mZ s とする場合には、
T t o p = 0. 5 Tw、
T m p = 0. 4 T w、
T 1 p = 0. 5 T w
に設定され、 記録線速度を 1 4. 6 m/ s とする場合には、
1 t o p = 0. 5 i,w、
T m p = 0. 3 5 T w、
T 1 p = 0. 5 T w
に設定される。
以上のような記録波形を有する原信号 2 1 aは、 上述のとおり、 レ —ザ一ドライ ノく 2 2に供給され、 レーザードライバ 2 2はこれに基づ いて駆動信号 2 2 a を生成する。 そして、 駆動信号 2 2 aに基づき、 レーザー発光素子 2 3によってレーザー光 2 0が生成され、 光学系 2 4を介して光記録媒体 1 0の記録層 1 4に照射される。 以上により、 記録信号 ( 2丁信号〜8丁信号) を形成すべき領域に おいては、 記録電流 ( I w ) に基づく強度のレーザー光 2 0 ( P w ) の照射によって溶融した相変化材料がクーリ ングパルスによって急冷 され、 非晶質状態となる。 一方、 その他の領域においては、 バイアス 電流 ( I b i ) に基づく強度のレーザー光 2 0 ( P b i ) の照射によ つて相変化材料が結晶化温度以上の温度に加熱され、 その後レーザー 光 2 0が遠ざかるにことによって徐冷され、 結晶状態となる。
前述したように、 レーザードライバ 2 2により生成される駆動信号 2 2 a の駆動電流波形は、 基本的に原信号 2 1 a の記録波形に対応し ているが、 レーザードライバ 2 2による駆動動作には所定の遅延が存 在することから、記録波形に対してある程度の遅れが生じる。 さらに、 レーザー発光素子 2 3による発光動作にも若干の遅延が存在すること から、 実際の発光波形も、 駆動電流波形に対して若干遅れてしまう。 このため、 転送レートを高くするために記録波形の上向きパルス幅を 著しく短く設定した場合、 幅の短い上向きパルスに対応するレーザー 光 2 0はピーク値に到達する前に减衰してしまう。 そのため、 記録パ ルスス トラテジに正確に対応したレーザー光 2 0が得られなくなる。 その様子を図 5に示す。
図 5 ( a ) 及び (b ) は、 ( 1 , 7 ) R L Lの変調方式により 5 T信 号を形成する場合の記録波形及び発光波形を模式的に示す波形図であ る。
図 5 ( a ) 及び (b ) に示すように、 発光波形は基本的に記録波形 に対応しているが、 レーザドライバ 2 2及びレーザー発光素子 2 3に よる遅延 (主に、 レーザドライバ 2 2による遅延) の影響により、 発 光波形は所定の傾きをもった波形となる。 このため、 図 5 ( a ) に示 すように、 記録波形における T t o p及び T 1 pに比べて T m pが短 い場合、 記録線速度によっては、 図 5 ( b ) に示すように、 発光波形 のうちマルチパルスに対応する部分がピーク値 (P w ) に達する前に 減衰してしまう。 このように発光波形におけるピーク強度が低いと、 記録層の加熱が不十分となる。 発光波形におけるこのようなピークに達する前の減衰を補償するた めに、 本発明では、 記録波形における所定の上向きパルスの強度を大 きくする。 記録波形における上向きパルスの強度を大きくすると、 レ 一ザ一光 2 0の立ち上がりの角度がより急峻となるため、 所望のピー ク強度まで立ち上げることができる。 これにより、 発光波形のピーク 強度減少を補償することが可能となる。 それにより、 発光波形におけ る各パルスの強度を、 その設定値 (本来のピーク強度) またはこれに 近い値とすることができるので、 転送レー トが低い場合と同等の記録 再生特性を得ることができる。
本発明において、 記録波形における上向きパルスの強度制御は、 以 下のようにして行うことが好ましい。
記録に用いるレーザードライバ 2 2及びレーザー発光素子 2 3の総 合的な立ち上がり時間を T Rとし、 上向きパルスの時間幅 (例えば図 3乃至図 5における T t o p、 T m p、 T i p ) を T U Pとし、 記録パ ルス部に T U P≤ k T Rである上向きパルスが存在する場合、 本発明で はこの上向きパルスの強度を制御する。 kは多く とも 1 . 5であり、 好ましくは 1 . 2であり、 より好ましくは 1 . 0である。
ここで、 レーザードライバ 2 2及びレーザー発光素子 2 3の総合的 な立ち上がり時間および立ち下がり時間について説明する。 図 6は、 矩形である単一の上向きパルスをもつ記録波形に基づいて駆動された レーザ一発光素子 2 3の発光波形を模式的に示す波形図である。 本明 細書において立ち上がり時間とは、 レーザードライバ 2 2によるレー ザ一発光素子 2 3への電流印加によって、 発光強度がピーク値 (図 6 の P ) の 1 0 %となったときから発光強度がピーク値の 9 0 %に達す るまでの時間によって定義される。 一方、 立ち下がり時間とは、 レー ザ一ドライバ 2 2によるレーザー発光素子 2 3への電流供給停止 (減 少) によって発光強度がピーク値の 9 0 %となったときからピーク値 の 1 0 %まで減少するまでの時間によって定義される。 一般に、 立ち 上がり時間は立ち下がり時間より長くなる。 また、 上記立ち上がり時 問及び立ち下がり時間は、 レーザードライバ 2 2による遅延が支配的 であることから、 レーザードライバ 2 2による駆動電流波形は、 図 6 に示す発光波形と略一致する。
本発明におけるピーク強度制御は、 TUP k TRである上向きパル スに対応してレーザー発光素子 2 3を発光させる際に、 記録波形の上 向きパルスの強度 (記録電流 I w) を、 TU P> k TRである上向きパ ノレスの強度より大きくすることにより行う。 すなわち、 TUP^ k TR である記録波形の上向きパルスの強度をより高く して、 発光波形のピ ーク強度減少を補償する。 本発明による補償の効果を図面を用いて説 明する。
図 7は、 本発明による補償の効果を説明するための図であり、 ( a ) 及び (b) は、 それぞれ ( 1, 7) R L Lの変調方式により 5 T信号 を形成する場合の記録波形及び発光波形を模式的に示す波形図である c 尚、 本図は、 上述した図 5 と対比されるべき図である。
図 7 ( a ) に示すように、 本例においては、 記録波形における T t o p及び T 1 pに比べて Tm pが短いことから、 Tmpに対応するパ ルスの強度を T t o p及び T 1 に対応するパルスの強度よりも高く 設定している。 すなわち Tm pに対応する記録電流 I w' と、 T t o p及び T 1 pに対応する記録電流 I wとの関係を、
I w > 1 w
に設定している。
これにより、 図 7 ( b ) に示すように、 発光波形のうちマルチパル スに対応する部分もピーク値 (Pw) に達し、 記録層を十分に加熱す ることが可能となる。
本発明では、 記録波形に、 TUP≤ k TRであってかつ TU Pが相異な る上向きパルスが少なく とも 2種存在する場合、 これらの上向きパル スを、 それぞれの TUPの長さに応じて少なく とも 2つのグループに分 けることが好ましい。 この場合、 各グループに上向きパルスが 1つず つ所属する場合には、 各パルスの時問幅に応じてピーク強度を各パル スごとに個別に制御すればよい。 具体的には、 TU Pが短いほど発光波 形におけるピーク値が低くなるため、 上向きパルスの TU Pが短いほど ピーク強度を大きくする。 これにより、 発光波形における各パルスの 強度を、 その設定値 (本来のピーク強度) またはこれに近い値とする ことができる。
しかし、 パルス幅の種類が比較的多い場合、 パルス幅ごとにパルス 強度を制御するためには複雑な制御が必要となり、 コントローラ 2 1 の負担が大きくなる。 これに対し、 上記グループの少なく とも 1つに、 時間幅の相違の小さい複数の上向きパルスを所属させれば、 制御対象 となるグループ数が減るため、 制御を簡略化できる。 この場合、 各グ ループにおいて上向きパルスのピーク強度を同一と し、 T U Pが相対的 に短い上向きパルスを含むグループにおけるピーク強度を、 τ υ ρが相 対的に長い上向きパルスを含むグループにおけるピーク強度より大き くする。 これにより、 発光波形における各パルスの強度を、 その設定 値 (本来のピーク強度) またはこれに近い値とすることができる。 なお、 発光波形において、 すべてのパルスが要求される本来のピ一 ク強度とならなくても、 本来のピーク強度をやや下回る程度またはや や上回る程度であれば、 記録再生特性改善効果は実現する。
また、 制御をさらに簡略化するために、 T U P≤ k T Rであるすベて の上向きパルスにおいてピーク強度を同一と してもよい。 この場合の ピーク強度は、 T U P > k T Rである上向きパルスのピーク強度より大 きくする。
さらに、 本発明は、 T U P≤ k T Rである上向きパルス と T U P > k T
Rである上向きパルスの両方が存在する場合のみならず、 すべての上 向きパルスが T U P k T Rである場合にも適用できる。
本発明では、 発光波形におけるすべての上向きパルスにおいてピー ク強度が同一である必要はない。 記録パルスス トラテジを最適化する 際に、 ピーク強度を各パルスごとに異なった設定とすることがある。 このよ うな記録パルスス トラテジを用いる場合に本発明を適用すると きは、 発光波形における各パルスのピーク強度が設定値となるように 記録波形を制御すればよい。 すなわち、 発光波形の各パルスが設定値 (要求される本来のピーク強度) となるように、 あるいは設定値に近 づく ように、記録波形の所定のパルスにおいてパルス幅 TUPに応じピ ーク強度を大きくすればよい。
なお、 TUPが著しく短くなると、 記録電流 I wを大きく してもピー ク値を完全に補償することが難しくなる。 そのため、 本発明により顕 著な効果を得るためには、 好ましくは
0. 1≤ TUP/TR, より好ましくは
0. 2≤ TUP/TR, さらに好ましくは
0. 3≤TUP/TR
が成立する場合に、 本発明を適用することが望ましい。
本発明は、 レーザー光の照射により記録がなされ、 かつ、 照射され るレーザー光の強度変化によって記録再生特性が影響を受ける光記録 媒体、 例えば、 相変化型光記録媒体や光磁気記録媒体など、 に特に制 限なく適用できる。 実施例
射出成形によりグループを同時形成した直径 1 2 Omm, 厚さ 1. 2 mmのディスク状ポリカーボネート基体の表面に、 反射層、 第 2誘 電体層、 記録層、 第 1誘電体層および光透過層を以下に示す手順で形 成し、 光記録ディスクサンプルを作製した。
反射層は、厚さを 1 O O nmとし、 ターゲッ 卜に A g ^ P d i C U j を用いて A r雰囲気中でスパッタ法により形成した。第 2誘電体層は、 厚さを 2 0 nmと し、 ターゲッ トに A l 2O3を用いて A r雰囲気中で スパッタ法により形成した。 記録層は、 厚さを 1 2 nmとし、 A r雰 囲気中においてスパッタ法により形成した。 記録層の組成は原子比で
A g 0. 5 I n o 5 S b 76T e 1 7G e 6
と した。 第 1誘電体層は、 厚さを 1 3 0 n mとし、 ターゲッ トに Z n S ( 8 5 m o 1 % ) - S i O 2 ( 1 5 m o 1 %) を用いて A r雰囲気 中でスパッタ法により形成した。 光透過層は、 厚さ 1 0 0 μ mと し、 紫外線硬化型樹脂をスピンコート法により塗布後、 紫外線照射により 硬化して形成した。 このようにして作製したサンプルをバルクイレーザーにより初期化 した後、 光記録媒体評価装置 (波長 40 5 n m、 開口率 NA= 0. 8 5) に載せ、 ( 1, 7) R L L変調信号を用いて記録を行った。 この評 価装置における立ち上がり時間 TRと立ち下がり時間 TFとを、表 1に 示す。 なお、 TRおよび TFは、 以下の手順で測定した。 レーザー発光 素子の光出力を光電変換器により電圧変換してオシロスコープに表示 させ、 出力が 1 0 %から 9 0 %まで上昇する時間を立ち上がり時間 T Rと し、 出力が 9 0 %から 1 0 %まで降下する時間を立ち下がり時間 TFとした。 なお、 参考のために、 出力が 0 %から 1 0 0 %まで上昇 する時間 TR 1。。と、 出力が 1 0 0 %から 0 %まで降下する時間 TF i 。。とを、 表 1に併記する。
記録パルスス トラテジは、 T wを検出窓幅として、記録線速度 1 4. 6 m/ sのときは
T t o p = 0. 5 i,w、
T m p = 0. 3 5 Tw、
T 1 p = 0. 5 T w
と し、 それ以外の線速度のときは
T t o p = 0. 5 Tw、
Tmp = 0. 4 丄, w、
T 1 = 0. 5 Τ w
と した。 T wは、 すべての線速度でビッ ト長が 0. 1 3 /i mとなるよ うに、 線速度に応じて変更した。 記録時の線速度と、 各線速度におけ る T t o p、 Tm pおよび T i p と、 これらにそれぞれ対応する原信 号の電流値 I t o p、 I m pおよび I I p とを、 表 1に示す。 なお、 I t o p、 I m pおよび I 1 pは、 相対値で示してある。
記録後、 信号再生を行い、 最長信号 ( 8 T信号) の再生振幅 (電圧 レベル) R F p pを測定した。 また、 タイムインターバルアナライザ によりジッタを測定した。 このジッタは、
σ/Τ w (単位 : %)
により算出したクロックジッタである。 これらの結果を表 1に示す。 ケース 線速度 τΗ TRIOO TF TFIOO Ttop Tmp RFpp ジッタ
No. (m/s) (ns) (ns) (ns) (ns) Itop:Imp:Ilp (mV) (%)
1(比較) 6.5 2.1 3.2 1.8 2.7 6.7 5.3 6.7 1.00:1.00:1.00 133 7.3
2赠) 9.8 2.1 3.2 1.8 2.7 4.4 3.8 4.4 1.00:1.00:1.00 135 7.5
3(比較) 14.6 2.1 3.2 1.8 2.7 3.0 2.1 3.0 1.00:1.00:1.00 110 10.2
4 14.6 2.1 3.2 1.8 2.7 3.0 2.1 3.0 1.15:1.52:1.15 125 8.6
5 14.6 2.1 3.2 1.8 2.7 3.0 2.1 3.0 1.15:1.52:1.28 133 7.9
表 1において、 ケース N o . 1および N o . 2では、 本発明による 補償を行わずに I t o p : I m p : I l pを 1 : 1 : 1 としている。 しかし、 これらのケースは線速度 (転送レート) が低く、 T t o p、 Tm pおよび T i pのいずれも力 S i . 5 TR (= 3. 1 5 n s ) より 大きい。 そのため、 R F p pは十分に大きく、 また、 ジッタは小さレ、。 一方、 ケース N o . 3では、 T t o p、 Tm pおよび T i pのいずれ もが 0 TR (= 3. 1 5 n s ) より短くなる高線速度記録を行い、 しかも本発明による補償を行わなかったため、 R F p pが著しく低く なり、 また、 ジッタも大きくなつている。
これに対し、 線速度をケース N o . 3 と同じとし、 かつ、 各パルス の時間幅に対応するように原信号の電流値を増大させたケース N o . 4および N o . 5では、 R F p pおよびジッタが改善されている。 また、 ケース N o . 5では、 ケース N o . 4に対し I I pを大きく している。 すなわち、 ラス トパルスに対応する原信号の電流値を大き く している。 そのため、 ケース N o . 5はケース N o . 4に比べ、 R F p pおよびジッタがより改善されている。
なお、 図 8、 図 9および図 1 0は、 表 1のケース N o . 1、 N o . 3および N o . 4におけるレーザー発光波形を示すグラフである。 以上説明したように、 本発明においては、 記録波形における上向き パルスの時間幅とレーザー発光素子の特性に基づいて、 原信号の記録 電流 I wの値を設定していることから、 高転送レー 卜での記録を行う 場合であっても良好な記録再生特性を得ることが可能となる。

Claims

請求の範囲
1. 光記録媒体に対し、 記録波形により強度変調されたレーザー光の 照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記上向きパルスの幅が狭いことによって、 その上向きパルスのピ ーク強度に対応するレーザー光強度が得られない場合において、 その 上向きパルスのピーク強度を、 前記レーザー光において本来の発光強 度またはこれに近い値が得られるように増大させる光記録方法。
2. 光記録媒体に対し、 記録波形により強度変調されたレーザー光の 照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記レーザー光の立ち上がり時間を TRと し、 前記上向きパルスの 時間幅を TU Pと したとき、
前記記録波形に、 TU P≤ k TR (ただし k = l . 5 ) である上向き パルスと、 TU P> k TRである上向きパルスとがそれぞれ少なく とも 1種存在するとき、 TU P≤ k TRである上向きパルスのピーク強度を、 TU P> k TRである上向きパルスのピーク強度より も大きくする光記 録方法。
3. 前記記録波形に、 TU P≤ k TRであってかつ TU Pが相異なる上向 きパルスが少なく とも 2種存在するとき、 これらの上向きパルスを、 その TU Pの長さに応じ、各グループに少なく とも 1種の上向きパルス が含まれるように少なく とも 2つのグループに分け、 各グループにお いて上向きパルスのピーク強度を同一と し、 TU Pが相対的に短い上向 きパルスを含むグループにおけるピーク強度を、 Tu pが相対的に長い 上向きパルスを含むグループにおけるピーク強度より大きくする請求 項 2の光記録方法。
4. 前記記録波形に、 Tup≤ k TRであってかつ TUPが相異なる上向 きパルスが少なく とも 2種存在するとき、 これらの上向きパルスのす ベてにおいてピーク強度を同一とする請求項 2の光記録方法。
5. 光記録媒体に対し、 記録波形により強度変調されたレーザー光の 照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記レーザー光の立ち上がり時間を Τκと し、 前記上向きパルスの 時間幅を TU Pと したとき、
前記記録波形に、 TUP^ k TR (ただし k = l . 5) である上向き パルスが存在するとき、 この上向きパルスのピーク強度を、 前記 ザ一光において本来の発光強度またはこれに近い値が得られるように 増大させる光記録方法。
6. 光記録媒体に対し、 記録波形により強度変調されたレーザー光の 照射により記録を行う方法であって、
前記記録波形は、 記録マークを形成するための記録パルス部を複数 有し、 各記録パルス部は、 上向きパルスを少なく とも 1種有し、 前記レーザー光の立ち上がり時間を TRと し、 前記上向きパルスの 時間幅を Tupと したとき、
前記記録波形に含まれる上向きパルスのすべてにおいて TU P^ k TR (ただし k = l . 5 ) であるとき、 これらの上向きパルスを、 Τυ ρの長さに応じ、 各グループに少なく とも 1種の上向きパルスが含ま れるように少なく とも 2つのグループに分け、 各グループにおいて上 向きパルスのピーク強度を同一と し、 TUPが相対的に短い上向きパル スを含むグループにおけるピーク強度を、 TU Pが相対的に長い上向き パルスを含むグループにおけるピーク強度より大きくする光記録方法。
7 . 記録波形に基づいて強度変調されたレーザー光を光記録媒体に照 射することによりデータの記録を行う光記録方法であって、 前記記録 波形に含まれる上向きパルスのピーク値をそれぞれのパルス幅に基づ いて設定することを特徴とする光記録方法。
8 . 記録波形に基づいて強度変調されたレーザー光を光記録媒体に照 射することによりデータの記録を行う光記録方法であって、 前記記録 波形に含まれる第 1 の上向きパルスのパルス幅が前記記録波形に含ま れる第 2の上向きパルスのパルス幅よりも短い場合、 前記第 1の上向 きパルスのピーク値を前記第 2の上向きパルスのピーク値より も高く 設定することを特徴とする光記録方法。
9 . ト ップパルス、 ラス トパルス及びマルチパルスを含む記録波形に 基づいて強度変調されたレーザ一光を光記録媒体に照射することによ りデータの記録を行う光記録方法であって、 前記マルチパルスのピー ク値を前記トップパルスのピーク値よりも高く設定することを特徴と する光記録方法。
1 0 . 前記マルチパルスのパルス幅が前記トップパルスのパルス幅よ り も短いことを特徴とする請求項 9に記載の光記録方法。
1 1 . 前記ト ップパルスのピーク値と前記ラス トパルスのピーク値と が等しいことを特徴とする請求項 9または 1 0に記載の光記録方法。
PCT/JP2002/002960 2001-03-28 2002-03-27 Procede d'enregistrement optique WO2002080153A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02713201A EP1383116A4 (en) 2001-03-28 2002-03-27 OPTICAL RECORDING METHOD
KR10-2003-7012657A KR20030083019A (ko) 2001-03-28 2002-03-27 광기록 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001093743A JP4491985B2 (ja) 2001-03-28 2001-03-28 光記録方法
JP2001-93743 2001-03-28

Publications (1)

Publication Number Publication Date
WO2002080153A1 true WO2002080153A1 (fr) 2002-10-10

Family

ID=18948041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002960 WO2002080153A1 (fr) 2001-03-28 2002-03-27 Procede d'enregistrement optique

Country Status (7)

Country Link
US (1) US7177254B2 (ja)
EP (1) EP1383116A4 (ja)
JP (1) JP4491985B2 (ja)
KR (1) KR20030083019A (ja)
CN (1) CN1272776C (ja)
TW (1) TW569200B (ja)
WO (1) WO2002080153A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123252A (ja) * 2001-10-09 2003-04-25 Hitachi Ltd 情報記録方法および情報記録装置
WO2004013845A1 (en) * 2002-08-03 2004-02-12 Samsung Electronics Co., Ltd. Information storage medium and method of recording and/or reproducing with respect to the medium
KR100750109B1 (ko) * 2003-02-15 2007-08-21 삼성전자주식회사 정보 저장매체
US20050069002A1 (en) * 2003-09-25 2005-03-31 Hisashi Senga Laser driving device
US7916582B2 (en) * 2004-05-11 2011-03-29 Samsung Electronics Co., Ltd. Optical recording medium, recording/reproducing apparatus and method, initialization method, and reinitialization method
US7663990B2 (en) * 2004-05-21 2010-02-16 Samsung Electronics Co., Ltd. Optical recording medium having access control area and method for recording or reproducing thereof
JP2008517414A (ja) 2004-10-19 2008-05-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光記録用のマスタ基板にデータを書き込む方法
JP4778287B2 (ja) 2005-09-29 2011-09-21 株式会社日立製作所 情報記録方法及び装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229426A (ja) * 1988-03-09 1989-09-13 Matsushita Electric Ind Co Ltd 光学情報の記録方法
JPH08287465A (ja) * 1995-04-13 1996-11-01 Ricoh Co Ltd 相変化型光ディスク用記録方法
US5732061A (en) * 1990-06-29 1998-03-24 Hitachi, Ltd. Recording method using trial write test pattern
US6137816A (en) * 1997-09-09 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Power source control apparatus for laser diode

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2702923B2 (ja) * 1987-04-24 1998-01-26 株式会社日立製作所 情報の記録方法及び情報記録装置
JP2669532B2 (ja) * 1988-05-20 1997-10-29 株式会社日立製作所 光ディスク装置
JP2680039B2 (ja) * 1988-06-08 1997-11-19 株式会社日立製作所 光情報記録再生方法及び記録再生装置
JPH076441A (ja) * 1993-06-17 1995-01-10 Ricoh Co Ltd 光磁気記録方法
JP3171103B2 (ja) 1995-03-31 2001-05-28 三菱化学株式会社 光記録方法および光記録媒体
JPH0964441A (ja) * 1995-08-23 1997-03-07 Fujitsu Ltd 発光素子駆動装置
JP4027422B2 (ja) * 1996-02-16 2007-12-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光情報担体の記録方法および装置
US6751513B1 (en) * 1996-02-16 2004-06-15 Koninklijke Philips Electronics N.V Method and device for recording an optical information carrier
KR100505796B1 (ko) * 1997-02-14 2005-10-19 코닌클리케 필립스 일렉트로닉스 엔.브이. 광기록매체의기록방법및기록장치
JP3323782B2 (ja) * 1997-09-09 2002-09-09 株式会社日立製作所 情報の記録方法
JP2000215449A (ja) * 1999-01-27 2000-08-04 Taiyo Yuden Co Ltd 光情報記録方法及びその装置
US6396971B1 (en) * 1999-03-29 2002-05-28 T Squared G, Inc Optical digital waveform generator
JP4268312B2 (ja) * 1999-04-28 2009-05-27 パナソニック株式会社 光学的記録再生装置
JP2000322740A (ja) * 1999-05-12 2000-11-24 Ricoh Co Ltd 光記録媒体及びその記録方法
JP2001134943A (ja) * 1999-11-05 2001-05-18 Yamaha Corp 光ディスク記録装置のプッシュプル信号処理回路およびウォブル抽出回路ならびにプリピット検出回路
EP1117094B1 (en) * 2000-01-17 2012-11-21 Mitsubishi Kagaku Media Co., Ltd. Recording method for phase-change recording medium
JP3730084B2 (ja) * 2000-05-19 2005-12-21 パイオニア株式会社 光制御回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229426A (ja) * 1988-03-09 1989-09-13 Matsushita Electric Ind Co Ltd 光学情報の記録方法
US5732061A (en) * 1990-06-29 1998-03-24 Hitachi, Ltd. Recording method using trial write test pattern
JPH08287465A (ja) * 1995-04-13 1996-11-01 Ricoh Co Ltd 相変化型光ディスク用記録方法
US6137816A (en) * 1997-09-09 2000-10-24 Mitsubishi Denki Kabushiki Kaisha Power source control apparatus for laser diode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1383116A4 *

Also Published As

Publication number Publication date
US7177254B2 (en) 2007-02-13
JP4491985B2 (ja) 2010-06-30
US20030063540A1 (en) 2003-04-03
EP1383116A4 (en) 2008-02-13
CN1272776C (zh) 2006-08-30
JP2002298349A (ja) 2002-10-11
CN1535464A (zh) 2004-10-06
TW569200B (en) 2004-01-01
EP1383116A1 (en) 2004-01-21
KR20030083019A (ko) 2003-10-23

Similar Documents

Publication Publication Date Title
KR940001997B1 (ko) 광학정보의 기록방법 및 기록장치
KR100551917B1 (ko) 광기록 방법, 광기록장치 및 광기록매체
US7068591B2 (en) Information recording method and optical recording medium therefor
JP2001250230A (ja) 光情報記録方法、光情報記録装置及び光情報記録媒体
WO2002080153A1 (fr) Procede d'enregistrement optique
JP3790673B2 (ja) 光記録方法、光記録装置および光記録媒体
US20050105438A1 (en) Optical information recording method and optical information recording apparatus
US20040114488A1 (en) Information recording apparatus and information recording method
JP2574379B2 (ja) 光学的情報記録消去方法
JP2001060319A (ja) 情報記録再生方法、情報記録再生装置及び情報記録媒体
JP2000132836A (ja) 光記録方法
RU2264665C2 (ru) Способ и устройство для записи меток в информационном слое носителя оптической записи
US20060262697A1 (en) Medium and method for providing a desirable direct overwriting characteristic for optical data recorded at different linear recording velocities
JPH11110822A (ja) 光記録媒体およびその記録再生方法
JP3277733B2 (ja) 光ディスクへの光学的情報の記録方法および記録装置
US6560182B1 (en) Optical recording method
JP3866598B2 (ja) 光情報記録方法および媒体
JP2001143266A (ja) 光記録方法
JP2003030836A (ja) 情報の記録方法、情報記録媒体及び情報記録装置
JPH10172146A (ja) 光学情報の記録装置
WO2003079336A1 (fr) Dispositif d'enregistrement et procede d'enregistrement
JP2002307828A (ja) 光学的情報記録媒体
JP2004199756A (ja) 情報記録再生方法
JP2002203317A (ja) 光記録方法、光記録装置および光記録媒体
JP2002358651A (ja) 情報記録再生装置および相変化型光ディスク

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 028073843

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037012657

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002713201

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002713201

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002713201

Country of ref document: EP