WO2002072800A1 - Dermis artificial y metodo de obtencion - Google Patents

Dermis artificial y metodo de obtencion Download PDF

Info

Publication number
WO2002072800A1
WO2002072800A1 PCT/ES2002/000087 ES0200087W WO02072800A1 WO 2002072800 A1 WO2002072800 A1 WO 2002072800A1 ES 0200087 W ES0200087 W ES 0200087W WO 02072800 A1 WO02072800 A1 WO 02072800A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
artificial
cells
artificial dermis
dermis
Prior art date
Application number
PCT/ES2002/000087
Other languages
English (en)
French (fr)
Inventor
Jose Luis Jorcano Noval
Fernando Larcher Laguzzi
Alvaro Meana Infiesta
Sara Gomez Llanes
Marcela Del Rio Nechaevsky
Original Assignee
Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.)
Centro Comunitario De Transfusion De Asturias-Cruz Roja Española
Fundacion Marcelino Botin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.), Centro Comunitario De Transfusion De Asturias-Cruz Roja Española, Fundacion Marcelino Botin filed Critical Centro De Investigaciones Energeticas Medioambientales Y Tecnologicas (C.I.E.M.A.T.)
Priority to CA2439387A priority Critical patent/CA2439387C/en
Priority to AU2002235958A priority patent/AU2002235958B2/en
Priority to US10/469,554 priority patent/US7244552B2/en
Priority to AT02702424T priority patent/ATE448295T1/de
Priority to EP02702424A priority patent/EP1375647B1/en
Priority to DE60234323T priority patent/DE60234323D1/de
Priority to DK02702424.9T priority patent/DK1375647T3/da
Priority to JP2002571856A priority patent/JP4235452B2/ja
Publication of WO2002072800A1 publication Critical patent/WO2002072800A1/es
Priority to US11/809,665 priority patent/US20070275461A1/en
Priority to US13/367,548 priority patent/US9168125B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • C12N5/0698Skin equivalents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • A61F2/105Skin implants, e.g. artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/33Fibroblasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/36Skin; Hair; Nails; Sebaceous glands; Cerumen; Epidermis; Epithelial cells; Keratinocytes; Langerhans cells; Ectodermal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin

Definitions

  • the present invention relates to an artificial dermis performed by plasma gelation in the presence of platelets, by the addition of calcium and in which fibroblasts or other dermal cells are seeded.
  • keratinocytes can be sown, which makes it especially useful as artificial skin for the treatment of large burns, chronic ulcers, susceptibility tests to various products etc.
  • genetically modified cells it can be used as a basis for gene therapy.
  • the skin is a tissue composed of two parts, the epithelium or external part and the dermis or internal part on which the epithelium is located. These two parts are clearly differentiated by their characteristics, in the epidermis there is almost no extracellular tissue, while the dermis clearly predominates this component against the cells.
  • the skin is a tissue that can be reconstructed by tissue engineering techniques (Parenteau N, Sci Am, 280: 83-84, 1999). In these techniques, in general, the cellular component is generated "ex vivo" by cell culture techniques. These techniques allow, from a short number of cells extracted from a small skin biopsy, to achieve a large number of cells in a short period of time.
  • tissue engineering of the skin is the design of dermal matrices that mimic as much as possible the natural conditions of the organism and where the cells introduced into it are capable of initiating a complex process, whose purpose is to develop a structure as similar as possible to natural skin.
  • the other important key in the tissue engineering of the skin is the ability of the dermal matrix to facilitate the growth of the cells seeded in it.
  • Fibrin does not interfere with the subsequent development of a correct dermo / epidermal junction between the wound bed and cultured keratinocytes. These characteristics make fibrin widely used as a transport system for keratinocytes (Pellegrini et al, Transplantation 68: 868-879, 1999; Kaiser and Stark, Burns 20. 23-29, 1994). Fibrin and / or gels made after coagulation of plasma proteins Human have been used as a vehicle to transplant previously expanded skin cells "in vitro". (Sadaki I, JP10277143).
  • Fibrin can also be used as a dermal base for the production of large areas of cultured skin (Meana et al, Burns 24: 621-630, 1998). Inside the fibrin gels seeded fibroblasts are capable of growing. At the same time, these fibroblasts behave as authentic inducers of keratinocyte growth, so that by sowing a very limited number of keratinocytes cultured on a fibrin gel and fibroblasts, a stratified confluent epithelium is formed in 8-12 days of culture that mimics the normal human epithelium This ability of fibrin gels to develop epithelial cells has been used in another model of artificial skin (Meana et al, P9701533).
  • fibrin can be used in the presence of other components that increase its stiffness and facilitate its use as a dermal support (Meana A, P9601684.).
  • This ability of fibrin and fibroblast gels to achieve large areas of artificial skin from a minimal skin biopsy is not presented by models based on artificial dermis of different composition. The explanation for this fact is that fibrin-based gels further mimic the physiological mechanism of wound repair (Martin P, Science 276: 75-81, 1997).
  • the manufacture of the dermal matrix based on fibrin concentrates is only an imitation of the physiological process. The true fibrin clot that forms as part of the tissue defense and repair mechanism is performed at the expense of blood plasma.
  • fibrinogen is the soluble precursor of fibrin, the main protein, although not unique to the clot.
  • Plasma extravasation after tissue aggression is one of the ways to trigger the entire coagulation cascade.
  • the so-called extrinsic coagulation pathway When the aggression occurs and the tissue products come into contact with the blood, the so-called extrinsic coagulation pathway is activated, the end result is the activation of the inactive precursor of the thrombin present in the plasma, this thrombin initiates the conversion of fibrinogen in fibrin and later in insoluble fibrin that together with blood cells are part of the fibrin clot, the first link for the healing and subsequent repair of the lesion produced in the organism (Singer and Clark, N Engl J Med, 341: 738- 746, 1999).
  • platelets should be highlighted, these cells are an important reservoir of cytokines, substances responsible for the beginning of the cellular response in the final wound repair process.
  • Platelets also involved in the development of the fibrin clot inside the vessels, it is the so-called intrinsic coagulation pathway, in which a stimulus causes the development of platelet aggregate that will activate a series of plasma proteins that in turn stimulate others by a mechanism to extend the cascade response. In the end we will have thrombin formation that will start clot formation. In both processes, intrinsic and extrinsic coagulation pathway, the presence of calcium free ions is essential to complete its development since some proteins of these pathways depend on this ion to be activated. After the formation of the fibrin clot from the blood plasma, the cytokines, initially released by platelets, will attract other cells, macrophage type, neutrophils ...
  • the epithelial cells are capable of manufacturing multiple substances that cause varied cellular responses in the underlying dermal cells, also the epithelial cells have a marked lytic action on the fibrin clot, since they need to penetrate it and eliminate it in order to reupholster the entire surface of the wound (Singer and Clark, N Eng J Med 341: 738-746, 1999). Once the lesion is covered by the epithelium, the healing process is finished. We can consider that the physiological repair of a wound is based on a fibrin clot rich in plasma cytokines, made from the fibrinogen dissolved in the plasma.
  • This clot will trigger the body's primary repair response and facilitate the terrain for nearby epithelial cells to activate, migrate from the points closest to the wound and permanently close the wound produced.
  • This reparative process has limits, and in those cases where the lesion completely and extensively destroys all the epithelial cells present (broad and deep burns), an artificial supply of epithelium is necessary, either through mesh grafts, cultured keratinocytes, keratinocytes in suspension or cultured artificial skin, so that the process ends (Navsaria et al, TIBTECH 13: 91-100, 1995).
  • the present invention describes the development of an artificial dermis based on the use of human plasma as a fundamental basis of the extracellular matrix.
  • This human plasma is obtained by primary fractionation of whole blood and includes platelets in its composition.
  • the previously cultured dermal fibroblasts are resuspended in the plasma and after coagulation thereof an artificial dermis is obtained.
  • On this artificial dermis subsequently expanded keratinocytes will be seeded "ex vivo".
  • keratinocytes have a behavior "in vitro" similar to that presented "in vivo" in the process of wound repair.
  • the artificial dermis object of the invention comprises a gel produced by the coagulation of human plasma in the presence of platelets, to which previously cultured human fibroblasts have been added. Coagulation occurs by the addition of calcium salts. Alternatively it can be produced by the transformation of the fibrinogen contained in the plasma by exogenous thrombin and Ca ++ ions.
  • this coagulation can be performed in the presence or not of agents that act as antifibrinolytics, with the addition of them being recommended when the fibrinogen is less than 2 mg / ml of gel.
  • the plasma is obtained by light centrifugation of the whole blood extracted by venipuncture in the presence of anticoagulants, preferably agents that chelate the calcium ion. Plasma can also be extracted by plasmapheresis.
  • keratinocytes can be subsequently seeded, these cells seeded at low density on their surface and cultured for 8-12 days, in the presence of any of the different media used in keratinocyte culture; They grow and are capable of forming a stratified epithelium.
  • This skin composed of plasma gel / fibroblasts and autologous cultured epithelium could be used in the definitive epithelization of large burns. Also if used with donor epithelium, it could be used as temporary burn coverage or as a therapy for chronic skin ulcers.
  • This culture system can also be applied to other human epithelia other than the skin allowing other epithelial tissues such as oral mucosa, bladder mucosa to be generated ...
  • This prototype can be transplanted to the bed of a wound, catch on it and definitely epithelize the lesion .
  • this type of gels may need to be fixed previously to a solid support that allows its handling for transplantation.
  • This support can be gauze, petroleum jelly or not.
  • the fixation of the gauze to the gel can be done by using an inert inorganic glue for clinical use or another type of mechanical fixation.
  • a silicone membrane can also be used as a support, in which case this fixation can be carried out by means of an organic fibrin glue.
  • this type of gels can be used without a keratinocyte layer as a temporary cover for skin lesions, providing a dermal basis for the lesion.
  • the advantages of human plasma gels and fibroblasts are as follows: • Easy obtaining of the raw material. Plasma is obtained from human whole blood extracted by venipuncture, usually in the presence of a calcium chelator. To obtain plasma from whole blood, only centrifugation is required. Human plasma could also be obtained from whole blood by the apheresis procedure.
  • the culture of keratinocytes on this type of gels allows to reach in 3-4 weeks from the biopsy taking a total area of cultured skin superior to that achieved by the methods described so far. «The gel has no shrinkage that reduces its surface and its total volume in the first 30 days of cultivation.
  • the cellular growth of both the fibroblasts inside the fibrin and the keratinocytes seeded on its surface is so important that from a minimal biopsy it is possible to obtain enough cells, both for the dermal component and for the epidermal. That is to say that the cellular component of our artificial skin comes exclusively from the patient to whom it will subsequently be transplanted.
  • the use of plasma allows to produce stable gels at a very low concentration of fibrinogen.
  • the concentration of fibrinogen necessary for the gel to maintain its integrity throughout the entire culture phase can be less than 0.5 mg per ml. Even at these concentrations the gels made from plasma are stable and are not rapidly digested by the fibroblasts and keratinocytes seeded therein.
  • the fibrinogen concentration can be reduced even further, so that from 2-3 ml of plasma we can get up to 70-90 cm 2 dermal surface.
  • the total plasma concentration could be further reduced by associating with the plasma gel some structure that serves as a framework (vicril, polylactic acid). polyglycolic ). Another advantage of these gels (when working with minimal amounts of plasma per cm 2 of gel) is that it is possible that the plasma used in the artificial dermis comes from the same patient.
  • these gels can support cells (fibroblasts or other cell lines, including genetically modified cells) with the capacity to produce useful proteins (endothelial growth factors, etc.) in various pathologies.
  • Figure 1 shows a diagram of the operations necessary for the transplantation of skin to a large burn using the artificial dermis object of the invention. Detailed description of the invention
  • Platelet plasma (2) is obtained from whole blood (4), it is extracted by venipuncture in the presence of a clinical anticoagulant, especially an anticoagulant that acts by chelation of the concentration of ionized Ca ++ that is in the whole blood.
  • Total blood (4) can be obtained in a bag commonly used in Hemotherapy or in the case of small volumes, from blood collected in small Vacutainer ® containers.
  • the plasma with platelets (2) will be obtained by centrifugation, at low speed to obtain a platelet-rich plasma or directly at high speed to obtain a product with a lower component of these cells. Once the blood has been centrifuged, the corresponding plasma fraction will be collected and used directly for gel formation or frozen at -20 ° C for later use.
  • the plasma can be treated with methylene blue to inactivate possible viruses if the plasma is not to be used autologously (that is, obtained from the patient himself).
  • the gel is made from the fibrinogen present in the plasma either by adding human or bovine thrombin and calcium ions, or exclusively using the prothrombin that is present in the plasma itself, by adding Calcium, preferably in the form of chloride calcium to reconstitute the values of ionic calcium that are spontaneously in the plasma and that had been canceled by means of sodium citrate or EDTA used as anticoagulants.
  • Fibrin is the main structural component of the gel but not the only one since in this model fibrin is covalently bound to plasma fibronectin.
  • Human fibroblasts can be used from several sources:
  • the fibroblasts are resuspended in culture medium or in 0.9% sodium chloride solution.
  • the plasma volume is added the plasma volume and subsequently the antifibrinolytic agent.
  • this solution gels in 2 different ways: 1) Adding a solution of 1% calcium chloride dissolved in 0.9% sodium chloride. 2) Adding to the mixture a thrombin solution (between 2 and 4 units) dissolved in 40 mM calcium chloride.
  • a thrombin solution between 2 and 4 units
  • the mixture is introduced into a cell culture flask and left for 30-120 minutes at 37 ° C until complete gel formation. After this time, the gel has solidified and can be covered with complete culture medium.
  • the gels produced are stored at 37 ° C in a 5% CO 2 oven until they are used for keratinocyte culture for a maximum of 14 days. Under the usual culture conditions these gels remain stable and adhered to the base of the culture flask without retraction or loss of volume.
  • the keratinocytes (6) obtained from a primary culture will be added. These cells can be cultured in very different ways, in the presence of feeder cells, using low calcium media or by using fully defined media (Myers et al, Am J Surg 170: 75-83, 1995). Keratinocytes (6) produced with any of these systems can be used on this artificial dermis (1).
  • the gels are ready for clinical use and are assembled and prepared for transplantation.
  • This step can be carried out by means of fixing to a support that allows the transport of the gel without loss or breakage to the place of the transplant, or in the case of gels of great thickness directly avoiding this fixation.
  • a support that allows the transport of the gel without loss or breakage to the place of the transplant, or in the case of gels of great thickness directly avoiding this fixation.
  • gels of reduced volume will be used that will require a solid support (9) to be transplanted. Crops intended for other uses (chronic ulcers) may be managed and transplanted without this fixation. Fixing to this solid support is done using an inorganic glue for clinical use by applying minimal stitches.
  • an extraction will be performed using a 450 ml capacity blood collection bag, containing an anticoagulant / preservative solution (SAG-Mannitol), normally from the so-called triple bags.
  • SAG-Mannitol anticoagulant / preservative solution
  • the whole blood is centrifuged. If we want our platelet-rich plasma (PRP) a gentle centrifugation will be performed (orientative at 1500 g for 5 minutes at 20 ° C). If lower platelet richness (PPP) is desired, centrifugation will be energetic (guidance 2900-3000 g for 10 minutes). After centrifugation, the resulting plasma is separated by normal fractionation of the blood bag. The plasma thus obtained can be used directly, proceed to viral inactivation by treatment with methylene blue.
  • PRP platelet-rich plasma
  • PPP platelet richness
  • This plasma can be stored for at least one year at -20 ° C. If what we need are small volumes of plasma to make small areas of the dermis, the extraction of whole blood will be carried out in sterile vacuum tubes (type Vacutainer R ) or other models of similar characteristics, using as a anticoagulant solution a calcium chelator in conditions saturation (sodium citrate, EDTA) in the proportions recommended by the manufacturer. Some other type of anticoagulant (sodium heparin) can also be used. As required by PPR or PPP, centrifuges at 160 g (PRP) or 400 g (PPP) will be performed for 10 minutes. The plasma fraction with platelets (2) is removed from the tube, trying not to remove the red blood cells.
  • the pellet containing the rest of the cell fraction is then centrifuged at 3,000 g for 10 minutes. After this operation, the plasma is removed and mixed with the supernatant obtained in the previous centrifugation.
  • this culture system is going to be used in the production of dermis intended to be transplanted to the patient where the blood comes from (autologous plasma)
  • treatment with methylene blue can be dispensed with.
  • Whichever method is chosen for obtaining whole blood and plasma separation, fibrinogen dissolved in it will be measured by a commercial method derived from the method initially described by Kraus (Multifibren R U, Dade Behring).
  • Various lines of human fibroblasts (3) will be obtained from human foreskins obtained after programmed phimosis surgery or from a skin biopsy (5).
  • the piece is collected in transport medium (DMEM, 10% fetal bovine serum, 100 u / ml penicillin, 100 ⁇ g / ml streptomycin).
  • transport medium DMEM, 10% fetal bovine serum, 100 u / ml penicillin, 100 ⁇ g / ml streptomycin.
  • DMEM complete culture medium
  • fetal bovine serum fetal bovine serum
  • the cells obtained are placed in a culture flask at a density of 100,000 cells per cm 2 of culture surface.
  • the medium is changed every 72 hours until the cells are confluent.
  • the cells are trypsinized and secondary cultures are carried out in growth rate of two culture bottles by a culture bottle of the previous pass.
  • After the cells show a monolayer of fibroblast-like cells (3) a part of them is frozen, according to usual technique and stored in cryovials in liquid nitrogen.
  • the ideal passes for the use of these fibroblasts are between the 4th and 12th.
  • human fibroblasts (3) of the patient (8) When they are going to be used in the artificial dermis (1) human fibroblasts (3) of the patient (8), the same procedure will be described.
  • the skin biopsy (5) of the patient (8) will be processed as described in the previous section. Once the cells are obtained, part of them will be cultured in DMEM 10% fetal bovine serum at a density of 100,000 cells per cm 2 . The corresponding subcultures will be carried out until we obtain a sufficient number of human fibroblasts (3) for the manufacture of the artificial dermis (1) required by the patient (8).
  • Cultured human fibroblasts (3) are trypsinized, counted and resuspended in culture medium until their immediate use in the artificial dermis (1). Once the basic materials are obtained, the gel is processed.
  • a solution containing basically culture medium, 0.9% sodium chloride solution and human fibroblasts (3) (between 30,000 and 250,000 cells) is prepared, to this solution is added, if the antifibrinolytic is required, (10,000 U of aprotinin, between 5 and 20 mg of tranexamic acid or 200-800 mg of epsilon-aminocaproic acid) and finally 1 ml of 0.04 M CI 2 Ca solution in which between 2 and 4 Ul of thrombin has previously been dissolved.
  • the antifibrinolytic 10,000 U of aprotinin, between 5 and 20 mg of tranexamic acid or 200-800 mg of epsilon-aminocaproic acid
  • 1 ml of 0.04 M CI 2 Ca solution in which between 2 and 4 Ul of thrombin has previously been dissolved.
  • the gel can be made as follows: A solution is prepared containing basically culture medium, 0.9% sodium chloride solution and human fibroblasts (3) (between 30,000 and 250,000 cells), To this solution is added, if necessary, the antifibrinolytic (10,000 U of aprotinin, between 5 and 20 mg of tranexamic acid or 200-800 mg of epsilon-aminocaproic acid) and finally 1 ml of 1% CI 2 Ca solution dissolved in 0.9% sodium chloride. Once these components are mixed, plasma with human platelets (2) is added. The final volume is adjusted to 15 ml by using more or less sodium chloride, depending on the volume of plasma used. The solution is quickly placed in the culture bottle and distributed evenly across its surface. The bottle is left in a CO 2 oven at 37 ° until the clot is produced and the gel polymerizes. If this is done in this way the polymerization of the gel occurs very slowly.
  • the antifibrinolytic 10,000 U of aprotinin, between 5 and 20 mg
  • the approximate final concentration of fibrinogen in the gel is between 0.4 and 2 mg of fibrinogen / ml of gel. Although in some conditions the plasma can be used without prior dilution with sodium chloride solution so that the concentration of fibrinogen could reach up to 4 mg / ml of gel.
  • the initial concentration of human fibroblasts (3) in the gel can be very variable. In general, a concentration of not less than 500 fibroblasts / cm 2 of gel surface is recommended, although it may also be much higher, although an initial number of fibroblasts greater than 4,000 / cm 2 is not recommended , since with higher concentrations the gels They tend to be digested from the 6th-7th day of cultivation, and cannot be processed for transplantation.
  • Keratinocytes are seeded on this gel at an extremely variable density (between 1,500 and 15,000 cells / cm 2 of the dermis) depending on the degree of expansion required.
  • keratinocytes (6) those obtained from a primary culture from skin biopsy (5) can be used.
  • the keratinocyte culture (6) on this gel can be carried out by using any of the keratinocyte culture media and systems that have been previously described, although the best results have been achieved with the media supplemented with fetal bovine serum.
  • the seeded keratinocytes are confluent or preconfluent, usually from the 8th day of culture, the sheet is prepared for transplantation.
  • the gauze will be fixed to the upper surface of the gel (the face where the keratinocytes are) by using an inorganic glue (Cyanoacrylato, Histoacryl R , Braum or other similar characteristics).
  • the cyanoacrylate will be used by applying small drops of it to the edges of the gel, you can also leave various glue points in the center of it.
  • the gel will be detached from the culture bottle.
  • the gauze helps keep the gel containing the dermal base and the top layer of cultured keratinocytes intact. Through this simple preparation, this prototype can be transported without loss of integrity or breakage for more than 16 hours.
  • Table I compares the prior art and the artificial dermis object of the invention in terms of its basic characteristics. TABLE I

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Dermis artificial (1) obtenida a partir de plasma con plaquetas (2) y fibroblastos (3) humanos. El plasma con plaquetas (2) se obtiene por fraccionamiento de la sangre total (4) del paciente (8) mediante centrifugación ligera, y los fibroblastos (3) humanos a partir de una biopsia de piel (5). La gelificación se consigue mediante la adición de calcio. Esta dermis artificial (1) permite un crecimiento rápido de los queratinocitos (6) sembrados en su superficie para constituir una piel artificial (7) que es fácilmente trasplantable. Se consiguen grandes superficies de dermis artificial (1) a partir de una pequeña biopsia de piel (5) y de cantidades mínimas de plasma con plaquetas (2), que al estar enriquecido en citoquinas y factores de crecimiento plaquetario potencia la proliferación de las células sembradas, tanto en su interior como en su superficie. La piel artificial (7) asi obtenida puede servir para el tratamiento de grandes quemados, úlceras cutáneas crónicas... o utilizarse, mediante el empleo de células genéticamente modificadas, como base para terapia génica.

Description

DERMIS ARTIFICIAL Y MÉTODO PE OBTENCIÓN Objeto y campo de aplicación
La presente invención se refiere a una dermis artificial realizada por gelificación de plasma en presencia de plaquetas, mediante la adición de calcio y en la que se siembran fibroblastos u otras células dérmicas. En la superficie de esta dermis artificial pueden sembrarse, a su vez, queratinocitos lo que la hace especialmente útil como piel artificial para el tratamiento de grandes quemados, ulceras crónicas, ensayos de susceptibilidad a diversos productos etc . Mediante el empleo de células genéticamente modificadas puede utilizarse como base para terapia génica. Antecedentes de la invención
La piel es un tejido compuesto por dos partes, el epitelio o parte externa y la dermis o parte interna sobre la que está situada el epitelio. Estas dos partes se diferencian claramente por sus características, en la epidermis no existe casi tejido extracelular, mientras que la dermis predomina claramente este componente frente a las células. La piel es un tejido que se puede reconstruir mediante técnicas de ingeniería tisular (Parenteau N, Sci Am, 280: 83-84, 1999). En estas técnicas, en general, el componente celular se genera "ex vivo" mediante técnicas de cultivo celular. Estas técnicas permiten, a partir de un corto número de células extraídas de una pequeña biopsia cutánea, conseguir en un periodo de tiempo corto un gran número de células. Estas células expandidas "ex vivo" pueden ser empleadas en la construcción de grandes superficies de piel artificial. La matriz extracelular no puede ser producida mediante cultivo celular, sino que es previamente diseñada y fabricada fuera del organismo. La matriz extracelular tiene que ser capaz de proporcionar estructuras que faciliten la adhesión de las células dérmicas previamente cultivadas y estimular el crecimiento normal de estas células. Sobre esta matriz artificial, las células comienzan a fabricar las proteínas normales que constituyen la matriz dérmica natural y, al mismo tiempo, van degradando lentamente la estructura original, de manera que a lo largo del tiempo esta matriz artificial suministrada sea sustituida por una verdadera matriz extracelular en todo similar a la natural. Sobre esta matriz artificial se pueden sembrar las células epiteliales previamente cultivadas (queratinocitos en el caso de la piel), donde por nuevas técnicas de cultivo celular estas células son capaces de generar una estructura muy similar al epitelio normal de donde se originaron. En resumen, una de las claves en la ingeniería tisular de la piel es el diseño de matrices dérmicas que imiten lo más posible las condiciones naturales del organismo y donde las células introducidas en la misma sean capaces de iniciar un proceso complejo, cuyo fin es el desarrollar una estructura lo más similar posible a la piel natural. La otra clave importante en la ingeniería tisular de la piel es la capacidad de la matriz dérmica para facilitar el crecimiento de las células sembradas en ella. El desarrollar matrices dérmicas que fomenten el crecimiento de las células tanto dérmicas como epidérmicas, conseguiría que a partir de una mínima biopsia se puedan cultivar grandes superficies de piel artificial. Este hecho tiene especial importancia cuando la piel artificial está destinada a tratamiento de grandes quemados en los que hay que reponer lo más rápidamente posible hasta el 90-95 % de la superficie corporal total a partir de las escasas zonas de piel sana que le quedan al paciente. La escasez de matrices dérmicas capaces de generar estas amplias superficies de piel artificial a partir de mínimas biopsias, constituye una de las limitaciones que presentan muchas matrices dérmicas previamente descritas (Sheridan R and Tompkins, Burns 25:97-103, 1999). Existen varios modelos de dermis artificiales. Algunos de los modelos previamente utilizados se describen sucintamente:
- Colágeno tipo I de procedencia animal, ya que esta proteína es la más abundante de las presentes en la dermis (Maraguchi T et al. Plast Reconstr Surg, 93:537-544, 1994, Muhart et al. Arch Dermatol, 135: 913-918, 1999).
- Condroitin sulfato (Boyce S et al. Surgery , 103: 421-431 , 1988). Nylon asociado o no a una membrana impermeable de Sylastic (Naughton y Mansbridge, Clin Plast Surg, 26:579-586, 1999).
- Poli-lactide/poli-glicolide (Giardino et al, J Trauma 47: 303-308, 1999), estos polímeros forman una red que sirve como estructura donde los fibroblastos prenden, crecen y son capaces de segregar proteínas de la matriz dérmica normal. - Fibrina, esta proteína cuyo precursor el fibrinógeno se obtiene a partir de plasma humano, ha sido utilizada de diversas maneras en el cultivo de queratinocitos. La fibrina proporciona una buena base para el crecimiento de las células epiteliales, por lo que esta proteína ha sido utilizada como soporte inerte sobre el cual cultivar los queratinocitos (Ronfard et al, Burns 17:181-184, 1991) (Broly et al, ES2060803). La fibrina no interfiere con el posterior desarrollo de una correcta unión dermo/epidérmica entre el lecho de la herida y los queratinocitos cultivados. Estas características hacen que la fibrina haya sido ampliamente utilizada como sistema de transporte para los queratinocitos (Pellegrini et al, Transplantation 68:868-879, 1999; Kaiser y Stark, Burns 20. 23-29, 1994). La fibrina y/o los geles realizados tras la coagulación de las proteínas del plasma Humano han sido utilizados como vehículo para trasplantar células cutáneas previamente expandidas "in vitro". (Sadaki I, JP10277143).
La fibrina puede ser también utilizada como base dérmica destinada a la producción de grandes superficies de piel cultivada (Meana et al, Burns 24: 621-630, 1998). En el interior de los geles de fibrina los fibroblastos sembrados son capaces de crecer. Al mismo tiempo estos fibroblastos se comportan como auténticos inductores del crecimiento de los queratinocitos, de forma que sembrando un número muy limitado de queratinocitos cultivados sobre un gel de fibrina y fibroblastos se obtiene en 8-12 días de cultivo un epitelio confluente estratificado que remeda el epitelio humano normal. Esta capacidad de los geles de fibrina para que las células epiteliales se desarrollen ha sido utilizada en otro modelo de piel artificial (Meana et al, P9701533). Además la fibrina puede utilizarse en presencia de otros componentes que aumenten la rigidez de la misma y faciliten su uso como soporte dérmico (Meana A, P9601684.). Esta capacidad de los geles de fibrina y fibroblastos para conseguir grandes superficies de piel artificial a partir de una mínima biopsia cutánea no la presentan los modelos basados en dermis artificiales de composición diferente. La explicación a este hecho es que los geles basados en fibrina imitan más el mecanismo fisiológico de reparación de heridas (Martin P, Science 276: 75-81 ,1997). Sin embargo, la fabricación de la matriz dérmica a base de concentrados de fibrina es solamente una imitación del proceso fisiológico. El verdadero coágulo de fibrina que se forma como parte del mecanismo de defensa y reparación tisular, se realiza a expensas del plasma sanguíneo. En la fracción extracelular de la sangre existen múltiples proteínas, una de ellas, el fibrinógeno, es el precursor soluble de la fibrina, principal proteína, aunque no única del coágulo. La extravasación del plasma tras la agresión de un tejido es una de las maneras de desencadenar toda la cascada de la coagulación. Cuando la agresión se produce y los productos tisulares entran en contacto con la sangre, se activa la denominada vía extrínseca de la coagulación, el resultado final es la activación del precursor inactivo de la trombina presente en el plasma, esta trombina inicia la conversión de fibrinógeno en fibrina y más tarde en fibrina insoluble que unida a células sanguíneas forman parte del coágulo de fibrina, el primer eslabón para la cura y posterior reparación de la lesión producida en el organismo (Singer y Clark, N Engl J Med, 341 :738-746, 1999). De las células que intervienen en la formación del coágulo hay que destacar las plaquetas, estas células son un importante reservorio de citoquinas, sustancias responsables del inicio de la respuesta celular en el proceso de reparación final de las heridas. Las plaquetas también intervienen en el desarrollo del coágulo de fibrina en el interior de los vasos, es la llamada vía intrínseca de la coagulación, en las que un estímulo provoca el desarrollo de agregado plaquetario que activará una serie de proteínas plasmáticas que a su vez estimularan otras mediante un mecanismo de ampliación de la respuesta en cascada. Al final tendremos la formación de trombina que iniciará la formación del coágulo. En ambos procesos, vía intrínseca y extrínseca de la coagulación, la presencia de iones libres de calcio es imprescindible para completar su desarrollo ya que algunas proteínas de estas vías dependen de este ion para que sean activadas. Tras la formación del coágulo de fibrina a partir del plasma sanguíneo, las citoquinas, inicialmente liberadas por las plaquetas, atraerán a otras células, tipo macrófagos, neutrófilos... que iniciarán el proceso de destrucción del coágulo y sustitución de este tejido fibrinoide por el tejido normal previo a la agresión. Estas células a su vez fabricarán otras citoquinas que mantendrán y controlarán la respuesta a la agresión y atraerán al lecho de la herida a fibroblastos dérmicos y células endoteliales, que completarán la respuesta reparadora. Estas nuevas células reparadoras fabricarán otras citoquinas que atraerán a las células epiteliales a la herida para que recubran toda la superficie de la misma. A su vez las células epiteliales son capaces de fabricar múltiples sustancias que provocan respuestas celulares variadas en las células dérmicas subyacentes, también las células epiteliales tienen una marcada acción lítica sobre el coágulo de fibrina, ya que necesitan penetrar en él y eliminarlo para poder tapizar nuevamente toda la superficie de la herida (Singer y Clark, N Eng J Med 341 : 738-746 ,1999). Una vez recubierta la lesión por el epitelio el proceso de curación está finalizado. Podemos considerar que la reparación fisiológica de una herida se basa en un coágulo de fibrina rico en citoquinas plasmáticas, realizado a partir del fibrinógeno disuelto en el plasma. Este coágulo disparará la respuesta reparadora primaria del organismo y facilitará el terreno para que las células epiteliales próximas, se activen, migren desde los puntos más cercanos a la herida y cierren definitivamente la herida producida. Este proceso reparador tiene unos límites, y en aquellos casos en que la lesión destruye de forma completa y amplia todas las células epiteliales presentes (quemaduras amplias y profundas), es necesario un aporte artificial de epitelio, bien mediante injertos en malla, queratinocitos cultivados, queratinocitos en suspensión o piel artificial cultivada, para que el proceso finalice (Navsaria et al, TIBTECH 13: 91- 100, 1995). Si el origen de la reparación de heridas está en el coágulo de fibrina a partir de plasma es posible que un modelo de piel artificial basado en el empleo de plasma humano como fuente principal de la matriz extracelular sea de gran eficacia y pueda fomentar extraordinariamente el crecimiento celular, ya que reconstruye las condiciones fisiológicas del proceso de reparación de heridas del organismo. Descripción de la invención
En la presente invención se describe el desarrollo de una dermis artificial basada en el empleo de plasma humano como base fundamental de la matriz extracelular. Este plasma humano se obtiene por fraccionamiento primario de la sangre total e incluye en su composición plaquetas. Los fibroblastos dérmicos previamente cultivados se resuspenden en el plasma y tras la coagulación del mismo se obtiene una dermis artificial. Sobre esta dermis artificial posteriormente se sembraran los queratinocitos expandidos "ex vivo". En esta dermis artificial los queratinocitos presentan un comportamiento "in vitro" similar al que presentan "in vivo" en el proceso de reparación de las heridas. Se adhieren, migran y crecen de forma que, a partir de unas pocas células sembradas, en 8-12 días de cultivo recubren toda la superficie del gel de plasma y forman un epitelio estratificado. El resultado final es que a partir de un pequeño número inicial de células sembradas obtenemos días más tarde un tejido constituido por 2 partes, una superior, células epiteliales estratificadas y una inferior constituida por una matriz extracelular densamente poblada de fibroblastos. Estos geles se pueden preparar para trasplante utilizando la técnica previamente descrita (Meana et al, P9701533) y fijándolos a un soporte sólido con lo que potencialmente pueden ser empleados en el tratamiento de lesiones cutáneas. También utilizando un volumen mayor de gel que los habituales, estos geles pueden ser utilizados sin fijación a un soporte sólido, lo que reduce aún más la manipulación de los mismos y el coste final. El trasplante en animales de experimentación de esta piel artificial, demuestra que es capaz de prender cuando se coloca sobre una herida y que además desarrolla todas las capas de la piel humana madura, estrato corneo incluido. Los estudios hasta ahora efectuados demuestran también que la epitelización persiste durante toda la vida del animal. Estos resultados experimentales implican que esta piel artificial puede ser utilizada en la epitelización definitiva de pacientes quemados.
La accesibilidad del material empleado en esta dermis así como su sencilla manipulación implica una importante reducción del coste final del producto que ha sido uno de los factores limitantes para el empleo masivo de la piel cultivada en terapéutica (Phillis TJ, Arch Dermatol 135. 977-978, 1999). La dermis artificial objeto de la invención comprende un gel producido por la coagulación del plasma humano en presencia de plaquetas, al que previamente se han añadido fibroblastos humanos cultivados. La coagulación se produce mediante la adición de sales de calcio. Alternativamente puede producirse por la transformación del fibrinógeno contenido en el plasma por trombina exógena e iones Ca++.
Dependiendo de la concentración de fibrinógeno en el gel, esta coagulación puede realizarse en presencia o no de agentes que actúen como antifibrinolíticos, recomendándose la adición de los mismos cuando el fibrinógeno sea inferior a 2 mg/ml de gel. La obtención del plasma se realiza por centrifugación ligera de la sangre total extraída mediante venopunción en presencia de anticoagulantes, preferentemente de agentes que quelan el ion calcio. El plasma también puede ser extraído mediante plasmaféresis. Sobre este gel basado en plasma y fibroblastos cultivados se pueden sembrar posteriormente queratinocitos, estas células sembradas a baja densidad sobre su superficie y cultivadas durante 8-12 días, en presencia de alguno de los diferentes medios que se emplean en el cultivo de queratinocitos; crecen y son capaces de formar un epitelio estratificado. Esta piel compuesta por el gel de plasma/fibroblastos y el epitelio cultivado autólogo podría ser utilizada en la epitelización definitiva de grandes quemados. También si se utiliza con epitelio de donante, podría ser utilizada como cobertura temporal de quemaduras o como terapia en úlceras cutáneas crónicas. Este sistema de cultivo también puede aplicarse a otros epitelios humanos diferentes de la piel permitiendo generar otros tejidos epiteliales tales como mucosa oral, mucosa vesical... Este prototipo puede ser trasplantado al lecho de una herida, prender en el mismo y epitelizar definitivamente la lesión.
Para ser utilizado, este tipo de geles puede precisar ser fijado previamente a un soporte sólido que posibilite su manejo para trasplante. Este soporte puede ser una gasa, vaselinada ó no. La fijación de la gasa al gel puede hacerse mediante el empleo de una cola inorgánica inerte de uso clínico u otro tipo de fijación mecánica. También puede utilizarse una membrana de silicona como soporte, en cuyo caso esta fijación puede realizarse mediante una cola orgánica tipo fibrina. En estas ultimas condiciones este tipo de geles puede utilizarse sin capa de queratinocitos como cobertura temporal de lesiones cutáneas, aportando una base dérmica a la lesión. Las ventajas de los geles de plasma humano y fibroblastos son las siguientes: • Obtención fácil de la materia prima. El plasma se consigue a partir de sangre total humana extraída mediante venopunción, normalmente en presencia de un quelante de calcio. Para obtener plasma a partir de sangre total sólo se precisa una centrifugación. El plasma humano también podría ser obtenido a partir de sangre total mediante el procedimiento de aféresis
• Permiten un crecimiento rápido de los queratinocitos. En el interior del gel de plasma los fibroblastos crecen rápidamente y son capaces de potenciar el crecimiento de los queratinocitos, incluso cuando los fibroblastos están a una concentración inicial extremadamente baja. En los geles de plasma y fibroblastos, estas células crecen segregando sustancias que los convierten en autenticas células "feeder" que dirigen y estimulan el crecimiento de los queratinocitos. El cultivo de queratinocitos sobre este tipo de geles permite alcanzar en 3-4 semanas desde la toma de la biopsia una superficie total de piel cultivada superior a la alcanzada por los métodos descritos hasta ahora. « El gel no presenta retracción alguna que reduzca su superficie y su volumen total en los primeros 30 días de cultivo.
• La posibilidad de sustituir los fibroblastos dérmicos por células de otro origen. En los geles realizados a partir de plasma, la función de los fibroblastos puede ser sustituida por otras células. Las células madre de mesénquima que se encuentran en la médula ósea (Young et al, J Ortho Res 16: 406-413, 1998) pueden ejercer como fibroblastos cuando son sembradas en el interior de estos geles. Otras células que también pueden incrementar el crecimiento de los queratinocitos, son las células endoteliales. El uso de células dérmicas de regiones diferentes a la piel representa una novedosa alternativa sobre todo para los pacientes grandes quemados, en que la disponibilidad de piel para el inicio de los cultivos celulares está seriamente limitada.
• La posibilidad de realizar la cascada de coagulación sin añadir ninguna proteína iniciadora extraña (trombina bovina o humana). El plasma humano, a diferencia de los concentrados de fibrinógeno, tiene todos los componentes de la cascada de la coagulación, incluida la trombina que está presente en forma de su precursor (inactivo) protrombina. La coagulación y por tanto, la formación de la dermis artificial, se puede realizar utilizando exclusivamente la vía intrínseca; mediante la adición de calcio y en presencia de fosfolípidos de origen plaquetario (también presentes como se comenta en el apartado siguiente). La utilización de esta vía para realizar la coagulación hace que se pueda prescindir de trombina extraña, necesaria cuando se trabaja con concentrados de fibrinógeno. Mediante el uso del plasma en presencia de plaquetas es posible, por primera vez, que el origen de todas las proteínas de la dermis artificial procedan exclusivamente del paciente al que posteriormente se trasplantarán. • El enriquecimiento en factores de crecimiento de origen plaquetario. El gel producido a partir de la coagulación directa del plasma posee parte de los factores de crecimiento y adhesión celular de los geles de fibrina, pero también están presentes las citoquinas plaquetarias, ya que tras la centrifugación siempre están presentes una fracción de estás células. Además podemos enriquecer la fracción plaquetaria del plasma modificando los parámetros de centrifugación. La presencia de plaquetas hace que nuestra dermis sea muy rica en PDGF y TGF-B (Anitúa E, Int Oral Maxillofac Implants 14: 529-535, 1999), ambos factores claves en el inicio de la reparación tisular (Marx et al, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 85: 638-646, 1998). Todo esto hace que los geles realizados a partir de plasma humano y plaquetas y poblados de fibroblastos conservan y aumentan la capacidad de los geles de fibrina para obtener grandes superficies de piel artificial cultivadas en un periodo de tiempo relativamente corto, lo que los hace aptos para cultivo de queratinocitos para tratamiento de grandes quemados. El crecimiento celular tanto de los fibroblastos en el interior de la fibrina como de los queratinocitos sembrados en su superficie, es tan importante que a partir de una mínima biopsia es posible obtener células suficientes, tanto para el componente dérmico como para el epidérmico. Es decir que el componente celular de nuestra piel artificial proceda exclusivamente del paciente al que posteriormente va a ser trasplantado. • El uso de plasma permite producir geles estables a una concentración muy baja de fibrinógeno. La concentración de fibrinógeno necesario para que el gel mantenga su integridad durante toda la fase del cultivo puede ser inferior a 0.5 mg por mi. Incluso a estas concentraciones los geles realizados a partir de plasma son estables y no son digeridos rápidamente por los fibroblastos y queratinocitos sembrados en él. También si se asocia a un producto antifibrinolítico (aprotinina, ácido tranexámico, ácido epsilón-aminocaproico) la concentración de fibrinógeno se puede rebajar aún más, con lo que a partir de 2-3 mi de plasma podemos llegar a obtener hasta 70-90 cm2 de superficie dérmica. La concentración total de plasma se podría reducir mas aun asociando al gel de plasma alguna estructura que le sirva de armazón (vicril, ácido poláctico- poliglicólico...). Otra ventaja de estos geles (al trabajar con mínimas cantidades de plasma por cm2 de gel) es que es posible que el plasma utilizado en la dermis artificial proceda del mismo enfermo. El uso de plasma del propio enfermo, unido a la ausencia de proteínas extrañas en la dermis más la posibilidad de que todas las células de la piel artificial procedan del paciente añade una de las grandes novedades a esta invención ya que por primera vez es posible el tratamiento de grandes superficies quemadas, mediante piel artificial en la que todos los componentes que forman parte de la misma procedan del paciente al que previamente se le extrajeron. Es decir, el tratamiento de grandes quemados con una piel artificial completamente autóloga
Por sus características biológicas, estos geles pueden servir de soporte a células (fibroblastos u otras estirpes celulares, incluyendo células genéticamente modificadas) con capacidad de producir proteínas útiles (factores de crecimiento endotelial, etc.) en diversas patologías. Breve descripción de las figuras
La figura 1 muestra un esquema de las operaciones necesarias para el trasplante de piel a un gran quemado utilizando la dermis artificial objeto de la invención. Descripción detallada de la invención
La obtención de los principales componentes de la base dérmica se describe a continuación.
El plasma con plaquetas (2) se obtiene a partir de la sangre total (4), esta es extraída mediante venopunción en presencia de un anticoagulante de uso clínico, especialmente de un anticoagulante que actúe mediante la quelación de la concentración del Ca++ ionizado que hay en la sangre total. La sangre total (4) puede ser obtenida en una bolsa de las utilizadas habitualmente en Hemoterapia o bien en el caso de pequeños volúmenes, a partir de sangre recogida en pequeños contenedores tipo Vacutainer ®. La obtención del plasma con plaquetas (2) se hará mediante centrifugación, a baja velocidad para obtener un plasma muy rico en plaquetas o directamente a alta velocidad para obtener un producto con menor componente de estas células. Una vez centrifugada la sangre, la fracción de plasma correspondiente se recogerá y se utilizará directamente para la formación del gel o bien se congelará a -20°C para una posterior utilización. También previo a dicho almacenamiento el plasma puede ser tratado con azul de metileno para inactivar posibles virus si el plasma no se va a utilizar de forma autóloga (es decir, obtenido del propio paciente). El gel se realiza a partir del fibrinógeno presente en el plasma bien mediante la adición de trombina humana o bovina e iones calcio, o bien exclusivamente utilizando la protrombina que está presente en el propio plasma, mediante la adición de Calcio, preferentemente en forma de cloruro calcico para reconstituir los valores de calcio iónico que espontáneamente hay en el plasma y que habían sido anulados mediante el citrato sódico o el EDTA utilizados como anticoagulantes. La fibrina es el principal componente estructural del gel pero no el único ya que en este modelo la fibrina está covalentemente unida a la fibronectina plasmática. También es importante reseñar que existen otras múltiples proteínas en el plasma humano, albúmina, globulinas, factores de crecimiento, plasminógeno... que intervienen en la formación y estabilidad del gel y en el crecimiento de las células que en él se cultivan. Los fibroblastos humanos pueden utilizarse de varias fuentes:
1 ) Fibroblastos homólogos. Cultivados a partir de prepucios obtenidos por intervenciones de fimosis y/o fibroblastos dérmicos procedentes de adultos sanos. Es necesario contar con la previa autorización del uso de los mismos del paciente o de sus representantes legales.
2) Fibroblastos autólogos. Los obtenidos a partir de una biopsia de piel (5) extraída a un paciente (8) y que serán exclusivamente utilizados en las dermis destinadas a ser implantadas en dicho paciente. El gel se obtiene de la siguiente manera:
Por una parte, se resuspenden los fibroblastos en medio de cultivo o en solución de cloruro sódico 0.9%. A esta solución se le añade el volumen de plasma y posteriormente el agente antifibrinolítico. Una vez preparada esta solución se gelifica mediante 2 formas diferentes: 1 ) Añadiendo una solución de cloruro calcico al 1% disuelto en cloruro sódico al 0.9%. 2) Añadiendo a la mezcla una solución de trombina (entre 2 y 4 unidades) disuelta en cloruro de calcio 40 mM. Mediante la primera vía se utilizan los factores de coagulación presentes en el plasma que se activan por la presencia de Ca. Es un proceso lento que a la larga hará que la protrombina presente en el plasma pase a trombina actuando esta proteína sobre el fibrinógeno que lo transformará a fibrina y posteriormente mediante la acción de otros factores de la coagulación a fibrina insoluble, principal proteína estructural de nuestra dermis. La segunda alternativa es la adición directa de trombina al plasma con lo que el proceso se acelera rápidamente. Como contrapartida se añade al preparado otra proteína de origen humano o bovino con los consiguientes problemas de posible transmisión de enfermedades.
La mezcla se introduce en un frasco de cultivo celular y se deja durante 30-120 minutos a 37°C hasta la completa formación del gel. Al cabo de este tiempo, el gel se ha solidificado pudiendo cubrirse con medio de cultivo completo. Los geles producidos se guardan a 37°C en estufa de CO2 al 5% hasta su utilización para cultivo de queratinocitos un máximo de 14 días. En las condiciones habituales de cultivo estos geles permanecen estables y adheridos a la base del frasco de cultivo sin observarse retracciones ni pérdidas de volumen.
Si se desea obtener un cultivo de piel completa (7), sobre este lecho dérmico se añadirán los queratinocitos (6) obtenidos a partir de un cultivo primario. Estas células pueden cultivarse de muy diferentes maneras, en presencia de células "feeder", utilizando medios bajos en calcio o mediante el empleo de medios completamente definidos (Myers et al, Am J Surg 170: 75-83, 1995). Los queratinocitos (6) producidos con cualesquiera de estos sistemas pueden ser utilizados sobre esta dermis artificial (1 ).
Una vez que los queratinocitos sembrados están preconfluentes o completamente confluentes, los geles están listos para su empleo en clínica y se procede a su montaje y preparación para el trasplante. Este paso puede realizarse mediante fijación a un soporte que permita el transporte del gel sin pérdida ni rotura hasta el lugar del trasplante, o bien en el caso de geles de gran espesor directamente evitando esta fijación. En general, cuando se precisa una gran expansión del cultivo de queratinocitos en un corto periodo de tiempo (grandes quemados) se utilizarán geles de reducido volumen que precisarán de un soporte sólido (9) para ser trasplantados. Los cultivos destinados a otros usos (úlceras crónicas) podrán ser manejados y trasplantados sin esta fijación. La fijación a este soporte sólido se realiza empleando una cola inorgánica de uso clínico mediante la aplicación de mínimos puntos de sutura. Una vez fijado el cultivo al soporte se procede a separarlo de la base del frasco de cultivo mediante tracción manual.
Como fuente de plasma con plaquetas (2) se utiliza sangre total (4) humana extraída por venopunción en presencia de anticoagulantes.
Si se desean obtener grandes volúmenes de plasma a partir de un solo donante se realizará una extracción utilizando una bolsa de extracción de sangre de 450 mi de capacidad, conteniendo una solución anticoagulante/conservante (SAG-Manitol), normalmente de las denominadas bolsas triples. Una vez extraída, la sangre total se centrifuga. Si queremos que nuestro plasma sea rico en plaquetas (PRP) se realizará una centrifugación suave (orientativo a 1500 g durante 5 minutos a 20°C). Si se desea una menor riqueza en plaquetas (PPP) la centrifugación será enérgica (orientativo 2900-3000 g durante 10 minutos) Una vez realizada la centrifugación se separa el plasma resultante mediante el fraccionamiento normal de la bolsa de sangre. El plasma así obtenido se puede emplear directamente, proceder a su inactivación viral mediante tratamiento con azul de metileno. Este plasma se puede conservar al menos durante un año a -20°C. Si lo que precisamos son pequeños volúmenes de plasma para realizar pequeñas superficies de dermis la extracción de la sangre completa se realizará en tubos al vacío estériles (tipo VacutainerR) u otros modelos de similares características, usando como solución anticoagulante un quelante del calcio en condiciones de saturación (citrato sódico, EDTA) en las proporciones recomendadas por el fabricante. También puede utilizarse algún otro tipo de anticoagulante (heparina sódica). Según se requiera PPR ó PPP se realizarán las centrifugaciones a 160 g (PRP) ó a 400 g (PPP) durante 10 minutos. Se retira del tubo la fracción de plasma con plaquetas (2), procurando no extraer los hematíes. Para aumentar el rendimiento en la extracción del plasma, el pellet conteniendo el resto de la fracción celular, se centrifuga entonces a 3.000 g durante 10 minutos. Finalizada esta operación se retira el plasma y se mezcla con el sobrenadante obtenido en la centrifugación anterior. Como normalmente este sistema de cultivo va a ser empleado en la producción de dermis destinadas a trasplantarse al paciente de donde procede la sangre (plasma autólogo) se puede prescindir del tratamiento con azul de metileno. Sea cual sea el método escogido para la obtención de la sangre total y la separación del plasma se medirá el fibrinógeno disuelto en el mismo mediante un método comercial derivado del método inicialmente descrito por Kraus (Multifibren R U, Dade Behring). Diversas líneas de fibroblastos (3) humanos se obtendrán a partir de prepucios humanos obtenidos tras cirugía programada de fimosis o a partir de una biopsia de piel (5). La pieza es recogida en medio de transporte (DMEM, suero fetal de bovino 10%, penicilina 100 u/ml, estreptomicina 100 μg/ml). En el laboratorio se lava 3 veces en PBS estéril y se trocea cuidadosamente, se coloca en 30 mi de solución de tripsina 0.05%- EDTA 0.02 % bajo agitación a 37°C. Cada 30 minutos se recoge la tripsina y se cambia por tripsina fresca. La tripsina es neutralizada mediante la adición de medio de cultivo completo (DMEM, 10% suero bovino fetal). Se repite la operación hasta que no se obtengan más células. Las células obtenidas se colocan en un frasco de cultivo a una densidad de 100.000 células por cm2 de superficie de cultivo. Cada 72 horas se cambia el medio hasta que las células estén confluentes. A la confluencia las células son tripsinizadas y se realizan cultivos secundarios en proporción de crecimiento de dos frascos de cultivo por un frasco de cultivo del pase anterior. A partir de que las células muestren una monocapa de células semejantes a los fibroblastos (3) una parte de las mismas se congelan, según técnica habitual y se guardan en crioviales en nitrógeno líquido. Los pases idóneos para la utilización de estos fibroblastos son entre el 4° y el 12°.
Cuando se vayan a emplear en la dermis artificial (1 ) fibroblastos (3) humanos del propio paciente (8) se procederá del mismo modo descrito. La biopsia de piel (5) del paciente (8) se procesará como se describe en el apartado anterior. Una vez obtenidas las células parte de las mismas se cultivarán en DMEM 10% suero bovino fetal a una densidad de 100.000 células por cm2. Se realizarán los correspondiente subcultivos hasta que consigamos un número suficiente de fibroblastos (3) humanos para la fabricación de la dermis artificial (1) que precise el paciente (8). Los fibroblastos (3) humanos cultivados se tripsinan, se cuentan y se resuspenden en medio de cultivo hasta su inmediata utilización en la dermis artificial (1 ). Una vez obtenidos los materiales básicos se procede a la elaboración del gel.
El cálculo proporcionado es el empleado en la fabricación de una base dérmica suficiente para un frasco de cultivo de 75 cm2. Para otras dimensiones se utilizarán los mismos valores reduciéndolos o ampliándolos proporcionalmente a la superficie del frasco de cultivo. Preparación de la dermis artificial (1 ):
Se prepara una solución que contiene básicamente medio de cultivo, solución de cloruro sódico al 0.9% y fibroblastos (3) humanos (entre 30.000 y 250.000 células), a esta solución se le añade, si precisa el antifibrinolítico, (10.000 U de aprotinina, entre 5 y 20 mg de ácido tranexámico o 200-800 mg de ácido epsilón-aminocaproico) y finalmente 1 mi de solución de CI2Ca 0.04 M en los que previamente se ha disuelto entre 2 y 4 Ul de trombina. Una vez mezclados estos componentes se les añade entre 3 y 6 mi de plasma con plaquetas (2) (dependiendo de la concentración de fibrinógeno). El volumen final se ajusta a 15 mi mediante el uso de más o menos cloruro sódico, dependiendo del volumen de plasma empleado La solución es puesta rápidamente en el frasco de cultivo distribuyéndose homogéneamente por su superficie. El frasco se deja en estufa de CO2 a 37° hasta que el coágulo se produzca y el gel se polimerice.
Como alternativa al uso de trombina exógena, el gel se puede realizar de la siguiente manera: Se prepara una solución que contiene básicamente medio de cultivo, solución de cloruro sódico al 0.9% y fibroblastos (3) humanos (entre 30.000 y 250.000 células), a esta solución se le añade, si precisa, el antifibrinolítico (10.000 U de aprotinina, entre 5 y 20 mg de ácido tranexámico o 200-800 mg de ácido epsilón-aminocaproico) y finalmente 1 mi de solución de CI2Ca al 1% disuelto en cloruro sódico 0.9%. Una vez mezclados estos componentes se les añade el plasma con plaquetas (2) humano. El volumen final se ajusta a 15 mi mediante el uso de más o menos cloruro sódico, dependiendo del volumen de plasma empleado. La solución es puesta rápidamente en el frasco de cultivo distribuyéndose homogéneamente por su superficie. El frasco se deja en estufa de CO2 a 37° hasta que el coágulo se produzca y el gel se polimerice. Si se actúa de esta manera la polimerización del gel se produce muy lentamente.
La concentración final aproximada de fibrinógeno en el gel es de entre 0.4 y 2 mg de fibrinógeno/ml de gel. Aunque en algunas condiciones se puede utilizar el plasma sin previa dilución con solución de cloruro sódico con lo que la concentración de fibrinógeno podría llegar hasta 4 mg/ml de gel.
La concentración inicial de fibroblastos (3) humanos en el gel puede ser muy variable. En general se recomienda una concentración no inferior a los 500 fibroblastos/cm2 de superficie de gel, aunque también puede ser muy superior, aunque no se recomienda un número inicial de fibroblastos superior a 4.000/cm2, ya que con mayores concentraciones los geles tienden a ser digeridos a partir del 6°-7° día de cultivo, no pudiendo ser procesado para trasplante.
Los queratinocitos se siembran sobre este gel a una densidad extremadamente variable (entre 1.500 y 15.000 células/cm2 de dermis) dependiendo del grado de expansión requerido. Como queratinocitos (6) se pueden emplear los obtenidos a partir de un cultivo primario procedente de la biopsia de piel (5). El cultivo de queratinocitos (6) sobre este gel, puede realizarse mediante el empleo de cualquiera de los medios y sistemas de cultivo de queratinocitos que previamente han sido descritos, aunque los mejores resultados se han conseguido con los medios suplementados con suero fetal de bovino. Cuando los queratinocitos sembrados están confluentes o preconfluentes, normalmente a partir del 8° día de cultivo, se prepara la lámina para el trasplante. Para ello es necesario despegar la lamina de piel artificial (7) de la base del frasco de cultivo, bien previa a la fijación a un soporte sólido o bien directamente. La fijación a un soporte sólido (9) se hace necesaria cuando los geles presentan una escasa consistencia (concentración inicial baja en fibrinógeno, grandes expansiones...) que hace que sin la fijación a un soporte sólido el manejo de los mismos para uso clínico sea imposible. Este procedimiento consta de las siguientes etapas: Se retira el último medio de cultivo empleado y se abre el frasco de cultivo. El gel se recubre de una gasa estéril (vaselinada o no) de forma que la gasa recubra exactamente toda la superficie del gel. Mediante un bisturí se despegan los laterales del gel del frasco de cultivo. Una vez efectuada esta maniobra la gasa se fijará a la superficie superior del gel (la cara donde están los queratinocitos) mediante el empleo de un pegamento inorgánico (Cyanoacrylato, Histoacryl R, Braum u otro de similares características). El cyanoacrylato se empleará aplicando pequeñas gotas del mismo a los bordes del gel, también se pueden dejar diversos puntos de pegamento por el centro del mismo. Una vez secado el pegamento y con la ayuda de una espátula se procederá a despegar el gel del frasco de cultivo. La gasa ayuda a mantener íntegro el gel que contiene la base dérmica y la capa superior de queratinocitos cultivados. Mediante esta simple preparación se puede transportar este prototipo sin pérdida de su integridad ni rotura alguna, durante más de 16 horas. En la tabla I se comparan la técnica anterior y la dermis artificial objeto de la invención en cuanto a sus características básicas. TABLA I
Figure imgf000017_0001

Claims

REIVINDICACIONES.
1.- Dermis artificial (1 ) de las que utilizan una matriz obtenida por gelificación de plasma humano, caracterizada por que la citada gelificación se produce en presencia de plaquetas mediante la adición de sales de calcio, y porque en la misma se siembran células dérmicas.
2.- Dermis artificial (1 ) según la reivindicación 1 , caracterizada por que durante la gelificación se añade trombina.
3.- Dermis artificial (1) según la reivindicación 2, caracterizada por que la trombina se añade en una concentración de 0.2 Ul/ml.
4.- Dermis artificial (1 ) según la reivindicación 1 , caracterizada por que las sales de calcio están constituidas por CI2Ca 1 % en disolución de 1 mi por cada 3 a 6 mi de plasma con plaquetas (2).
5.- Dermis artificial (1 ) según la reivindicación 1 , caracterizada por que el plasma con plaquetas (2) sufre una inactivación viral.
6.- Dermis artificial según la reivindicación 1 , caracterizada por que se añade un polímero biocompatible.
7 '.- Dermis artificial según la reivindicación 1 , caracterizada por que las células dérmicas son fibroblastos (3).
8.- Dermis artificial según la reivindicación 1 , caracterizada por que se utilizan células madre de mesénquima como células dérmicas u otro tipo celular (endoteliales...)
9.- Utilización de una dermis artificial (1) según reivindicaciones 1 a 8, caracterizada por el cultivo de queratinocitos (6) humanos en su superficie para constituir una piel artificial (7) apta para el trasplante.
10.- Utilización de una dermis artificial (1), según reivindicaciones 1 a 8, caracterizada por el cultivo de otras células epiteliales (orales, urogenitales...) en su superficie para constituir un epitelio artificial (mucosa oral, mucosa vesical...) apto para el trasplante.
1 - Método de obtención de una dermis artificial (1) caracterizado por comprender las siguientes etapas; obtención de plasma con plaquetas (2), mediante centrifugación ligera de sangre total (4) de un paciente (8) y congelación subsiguiente, cultivo de células dérmicas a partir de una biopsia de piel (5) por métodos conocidos, gelificación del plasma con plaquetas (2), previamente descongelado, mediante la adición de sales de calcio, para obtener una matriz de fibrina, sembrando células dérmicas, por ejemplo fibroblastos (3), en el interior de la fibrina.
PCT/ES2002/000087 2001-03-01 2002-02-28 Dermis artificial y metodo de obtencion WO2002072800A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2439387A CA2439387C (en) 2001-03-01 2002-02-28 Artificial dermis and production method therefor
AU2002235958A AU2002235958B2 (en) 2001-03-01 2002-02-28 Artificial dermis and production method therefor
US10/469,554 US7244552B2 (en) 2001-03-01 2002-02-28 Artificial dermis and production method therefor
AT02702424T ATE448295T1 (de) 2001-03-01 2002-02-28 Künstliche dermis und herstellungsverfahren dafür
EP02702424A EP1375647B1 (en) 2001-03-01 2002-02-28 Artificial dermis and production method therefor
DE60234323T DE60234323D1 (de) 2001-03-01 2002-02-28 Künstliche dermis und herstellungsverfahren dafür
DK02702424.9T DK1375647T3 (da) 2001-03-01 2002-02-28 Kunstig dermis og fremstillingsfremgangsmåde dertil
JP2002571856A JP4235452B2 (ja) 2001-03-01 2002-02-28 人工真皮及びその製造方法
US11/809,665 US20070275461A1 (en) 2001-03-01 2007-05-31 Artificial dermis and method of preparation
US13/367,548 US9168125B2 (en) 2001-03-01 2012-02-07 Artificial dermis and method of preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200100494 2001-03-01
ES200100494A ES2173812B1 (es) 2001-03-01 2001-03-01 Dermis artificial y metodo de obtencion.

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10469554 A-371-Of-International 2002-02-28
US11/809,665 Continuation US20070275461A1 (en) 2001-03-01 2007-05-31 Artificial dermis and method of preparation

Publications (1)

Publication Number Publication Date
WO2002072800A1 true WO2002072800A1 (es) 2002-09-19

Family

ID=8496947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000087 WO2002072800A1 (es) 2001-03-01 2002-02-28 Dermis artificial y metodo de obtencion

Country Status (14)

Country Link
US (3) US7244552B2 (es)
EP (2) EP2165678A1 (es)
JP (3) JP4235452B2 (es)
AR (1) AR032916A1 (es)
AT (1) ATE448295T1 (es)
AU (1) AU2002235958B2 (es)
CA (1) CA2439387C (es)
DE (1) DE60234323D1 (es)
DK (1) DK1375647T3 (es)
EG (1) EG23321A (es)
ES (2) ES2173812B1 (es)
PT (1) PT1375647E (es)
TW (1) TWI258506B (es)
WO (1) WO2002072800A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1545565A1 (en) * 2002-09-06 2005-06-29 DBF Pharmaceuticals, Inc. Methods and compositions for tissue regeneration
WO2006123004A1 (es) 2005-05-16 2006-11-23 Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañon Matriz artificial de gel de fibrina endotelizada superproductora de factores proangiogénicos
JP2007522195A (ja) * 2004-02-13 2007-08-09 インターサイテックス リミティド 創傷治療組成物
ES2551143A1 (es) * 2014-05-13 2015-11-16 Fundación Tekniker Dermis artificial, piel artificial, métodos para su preparación y sus usos
US9844473B2 (en) 2002-10-28 2017-12-19 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US11298453B2 (en) 2003-10-28 2022-04-12 Smith & Nephew Plc Apparatus and method for wound cleansing with actives
US11617823B2 (en) 2004-04-27 2023-04-04 Smith & Nephew Plc Wound cleansing apparatus with stress

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2173812B1 (es) * 2001-03-01 2003-12-16 Ct Investig Energeticas Ciemat Dermis artificial y metodo de obtencion.
JP2004075661A (ja) * 2002-06-18 2004-03-11 Shiseido Co Ltd 表皮基底膜ケアを特徴とする皮膚外用剤、皮膚基底膜構造形成促進剤および人工皮膚の製造方法
CN101061217A (zh) * 2004-02-27 2007-10-24 通用医疗公司 用于毛发生长的方法和组合物
GB0505202D0 (en) 2005-03-14 2005-04-20 Intercytex Ltd Skin equivalent culture
JP2008542252A (ja) 2005-05-26 2008-11-27 インターサイテックス リミティド 同種真皮繊維芽細胞を用いる組織修復
EP1991051A1 (en) * 2006-03-03 2008-11-19 Ciemat A mouse model comprising an engrafted human skin having hypersensitivity to uv-light
US8105380B2 (en) * 2006-10-23 2012-01-31 Stemedica Cell Technologies, Inc. Cellular scaffold
US8709081B2 (en) 2006-10-23 2014-04-29 Stemedica Cell Technologies, Inc. Cellular scaffold
WO2008083223A1 (en) * 2006-12-28 2008-07-10 Isolagen Technologies, Inc. Methods for culturing dermal cells for treatment of skin injuries such as burns
JP5253749B2 (ja) * 2007-03-19 2013-07-31 肇 井上 表皮シートの作製方法および初代培養時における培養容器への上皮幹細胞の接着性付与方法
WO2009051701A2 (en) * 2007-10-15 2009-04-23 Wake Forest University Health Sciences Methods and compositions for printing biologically compatible nanotube composites of autologous tissue
US20110052693A1 (en) * 2008-02-29 2011-03-03 Bunsho Kao Method for producing artificial skin
WO2010086848A2 (en) 2009-01-27 2010-08-05 Alon Kushnir Wound dressings, methods and apparatus for making same and storage and use thereof
JP6010460B2 (ja) * 2009-08-25 2016-10-19 セルビシオ アンダルス デ サルServicio Andaluz De Salud フィブリンおよびアガロース生体材料を用いる組織工学による、人工組織の製造
JP5737860B2 (ja) * 2010-04-30 2015-06-17 テルモ株式会社 ゲル状細胞組成物およびその製造方法
CL2011001870A1 (es) * 2011-08-03 2012-01-27 U Tecnica Federico Santa Maria 28 71% Proceso de preparacion de un gel de fibrina autologo o desde sangre compatible para proliferacion y vehiculizacion celular; gel de fibrina o de sangre compatible; uso del gel de fibrina o de sangre compatible para uso quirurgico.
TWI448310B (zh) * 2012-05-23 2014-08-11 Medical dressings and their coating methods for frozen freeze - dried platelets
TWI448312B (zh) * 2012-05-23 2014-08-11 An implant of freeze - dried platelets and its coating method
GB201303485D0 (en) 2013-02-27 2013-04-10 Alcyomics Ltd Skin model
MX342233B (es) * 2014-02-04 2016-08-24 Alvaro Galue Eduardo Proceso de obtencion de un compuesto de aspersion celular de fibroblastos y queratinocitos humanos en solucion y su uso como agente regenerativo de lesiones cutáneas.
CN105505855A (zh) * 2016-02-04 2016-04-20 关志广 一种具备增殖能力的自体表皮细胞apg凝胶的制作方法
CA3224181A1 (en) * 2016-05-31 2017-12-07 Octapharma Ag Plasma-based films and methods for making and using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373044A1 (fr) * 1988-12-06 1990-06-13 Centre Regional De Transfusion Sanguine De Lille Support biologique pour cultures cellulaires constitué de protéines plasmatiques coagulées par la thrombine, son utilisation pour la culture des kératinocytes, leur récupération et leur transport à des fins d'utilisation thérapeutique
WO1997001533A1 (fr) 1995-06-27 1997-01-16 The Green Cross Corporation Derives d'acide thiocarbamique
ES2117573A1 (es) * 1996-07-19 1998-08-01 Comunitario De Transfusion Del Base dermica especialmente diseñada para el cultivo de queratinocitos.
JPH10277143A (ja) * 1997-04-08 1998-10-20 Tokai Univ 移植片およびその製造方法
ES2132027A1 (es) * 1997-07-04 1999-08-01 Comunitario De Transfusion Del Desarrollo de una piel artificial mediante cultivo de queratinocitos sobre una base de fibrina y fibroblastos humanos y metodo de preparacion de esta piel para trasplante.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485096A (en) * 1982-02-26 1984-11-27 Massachusetts Institute Of Technology Tissue-equivalent and method for preparation thereof
JPS6379588A (ja) * 1986-09-25 1988-04-09 Yasuo Moriya 細胞培養用基材およびその製造方法
DK475386D0 (da) * 1986-10-03 1986-10-03 Weis Fogh Ulla Sivertsen Fremgangsmaade og apparat til fremstilling af biologiske stoffer
PT642301E (pt) * 1992-05-29 2003-06-30 Univ East Carolina Plaquetas de sangue humano fixas secas farmaceuticamente aceitaveis
JP3091113B2 (ja) * 1994-11-22 2000-09-25 科学技術振興事業団 生理活性物質分泌性のハイブリッド型ゲル
US5733545A (en) * 1995-03-03 1998-03-31 Quantic Biomedical Partners Platelet glue wound sealant
WO2000062828A1 (en) * 1996-04-30 2000-10-26 Medtronic, Inc. Autologous fibrin sealant and method for making the same
JPH11246420A (ja) * 1998-02-26 1999-09-14 Sekisui Chem Co Ltd 創傷治癒促進剤
JPH11239609A (ja) * 1998-02-26 1999-09-07 Sekisui Chem Co Ltd 血小板含有生体組織用接着剤
ES2173812B1 (es) * 2001-03-01 2003-12-16 Ct Investig Energeticas Ciemat Dermis artificial y metodo de obtencion.
ES2184623B1 (es) * 2001-06-29 2004-09-16 Centro De Investigaciones Energeticas, Medioambientales Y Tecnologicas (C.I.E.M.A.T.) Piel artificial autologa secretora de leptina y metodo de obtencion.
WO2003041568A2 (en) * 2001-11-15 2003-05-22 University Of Medicine & Dentistry Of New Jersey A three-dimensional matrix for producing living tissue equivalents
US20040126881A1 (en) * 2002-09-06 2004-07-01 Vincent Ronfard Fibrin cell supports and methods of use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373044A1 (fr) * 1988-12-06 1990-06-13 Centre Regional De Transfusion Sanguine De Lille Support biologique pour cultures cellulaires constitué de protéines plasmatiques coagulées par la thrombine, son utilisation pour la culture des kératinocytes, leur récupération et leur transport à des fins d'utilisation thérapeutique
WO1997001533A1 (fr) 1995-06-27 1997-01-16 The Green Cross Corporation Derives d'acide thiocarbamique
ES2117573A1 (es) * 1996-07-19 1998-08-01 Comunitario De Transfusion Del Base dermica especialmente diseñada para el cultivo de queratinocitos.
JPH10277143A (ja) * 1997-04-08 1998-10-20 Tokai Univ 移植片およびその製造方法
ES2132027A1 (es) * 1997-07-04 1999-08-01 Comunitario De Transfusion Del Desarrollo de una piel artificial mediante cultivo de queratinocitos sobre una base de fibrina y fibroblastos humanos y metodo de preparacion de esta piel para trasplante.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 199901, Derwent World Patents Index; AN 1999-003151, XP002957547 *
PHILIPS T J, ARCH DERMATOL, vol. 135, 1999, pages 977 - 978

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449333B2 (en) 2000-09-01 2008-11-11 Dfb Pharmaceuticals, Inc. Methods and compositions for tissue regeneration
US8323638B2 (en) 2002-09-06 2012-12-04 Dfb Technology Holdings, Llc Methods and compositions for tissue regeneration
US7700351B2 (en) 2002-09-06 2010-04-20 Dfb Pharmaceuticals, Inc. Methods and compositions for tissue regeneration
US8679475B2 (en) 2002-09-06 2014-03-25 Smith & Nephew, Inc. Methods and compositions for tissue regeneration
US9173906B2 (en) 2002-09-06 2015-11-03 Smith & Nephew, Inc. Methods and compositions for tissue regeneration
EP1545565A4 (en) * 2002-09-06 2008-04-23 Dbf Pharmaceuticals Inc METHODS AND COMPOSITIONS FOR TISSUE REGENERATION
US7879605B2 (en) 2002-09-06 2011-02-01 Dfb Technology Holdings, Llc Methods and compositions for tissue regeneration
EP2311469A3 (en) * 2002-09-06 2011-06-08 DFB Technology Holdings, LLC Methods and compositions for tissue regeneration
US8137965B2 (en) 2002-09-06 2012-03-20 Dfb Technology Holdings, Llc Methods and compositions for tissue regeneration
EP1545565A1 (en) * 2002-09-06 2005-06-29 DBF Pharmaceuticals, Inc. Methods and compositions for tissue regeneration
US9844473B2 (en) 2002-10-28 2017-12-19 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US10278869B2 (en) 2002-10-28 2019-05-07 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US10842678B2 (en) 2002-10-28 2020-11-24 Smith & Nephew Plc Apparatus for aspirating, irrigating and cleansing wounds
US11298453B2 (en) 2003-10-28 2022-04-12 Smith & Nephew Plc Apparatus and method for wound cleansing with actives
JP2012192206A (ja) * 2004-02-13 2012-10-11 Dfb Technology Holdings Llc 創傷治療組成物
JP2015063555A (ja) * 2004-02-13 2015-04-09 スミス アンド ネフュー オルトペディクス アクチェンゲゼルシャフト 創傷治癒組成物
JP2007522195A (ja) * 2004-02-13 2007-08-09 インターサイテックス リミティド 創傷治療組成物
JP2015134815A (ja) * 2004-02-13 2015-07-27 スミス アンド ネフュー オルトペディクス アクチェンゲゼルシャフト 創傷治療組成物
US9526746B2 (en) 2004-02-13 2016-12-27 Smith & Nephew, Inc. Wound healing composition
US11617823B2 (en) 2004-04-27 2023-04-04 Smith & Nephew Plc Wound cleansing apparatus with stress
WO2006123004A1 (es) 2005-05-16 2006-11-23 Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañon Matriz artificial de gel de fibrina endotelizada superproductora de factores proangiogénicos
ES2551143A1 (es) * 2014-05-13 2015-11-16 Fundación Tekniker Dermis artificial, piel artificial, métodos para su preparación y sus usos

Also Published As

Publication number Publication date
US20120183505A1 (en) 2012-07-19
JP2004522545A (ja) 2004-07-29
EP2165678A1 (en) 2010-03-24
PT1375647E (pt) 2010-02-18
US20070275461A1 (en) 2007-11-29
ES2173812A1 (es) 2002-10-16
EP1375647B1 (en) 2009-11-11
US20040171145A1 (en) 2004-09-02
JP5047047B2 (ja) 2012-10-10
AR032916A1 (es) 2003-12-03
EG23321A (en) 2004-12-29
ES2173812B1 (es) 2003-12-16
EP1375647A1 (en) 2004-01-02
CA2439387A1 (en) 2002-09-19
TWI258506B (en) 2006-07-21
JP5529918B2 (ja) 2014-06-25
JP2012187412A (ja) 2012-10-04
JP2008253788A (ja) 2008-10-23
US7244552B2 (en) 2007-07-17
JP4235452B2 (ja) 2009-03-11
ATE448295T1 (de) 2009-11-15
CA2439387C (en) 2012-04-24
ES2336430T3 (es) 2010-04-13
DE60234323D1 (de) 2009-12-24
US9168125B2 (en) 2015-10-27
DK1375647T3 (da) 2010-03-15
AU2002235958B2 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
ES2336430T3 (es) Dermis artificial y metodo de obtecion.
ES2600793T3 (es) Método para la preparación de plasma rico en plaquetas para usos no procesados y su combinación con las células de piel y hueso
Horch et al. Tissue engineering of cultured skin substitutes
JPH0747043B2 (ja) 合成生体皮膚等価物
JPH11503946A (ja) ヒアルロン酸誘導体を基本とするバイオ適合性物質を支持体として含む人工皮膚
JP2010201179A (ja) ヒト硬膜を修復および再生するための組成物
JP2003517858A (ja) 老齢関連の軟組織の欠陥の増強と修復
KR102597594B1 (ko) 오가노이드의 생체 이식용 조성물
JP2002504412A (ja) 生きたキメラ皮膚置換体
JP3333108B2 (ja) 上皮性組織移植片およびその製造方法
WO2013016836A1 (es) Preparación de gel de fibrina útil como sistema de implante.
JPH11246420A (ja) 創傷治癒促進剤
ES2565856T3 (es) Procedimiento de preparación de estructuras tridimensionales para ingeniería tisular
ES2312228B1 (es) Epidermis cultivada secretora de factores terapeuticos producida por celulas madre de pelo y metodo de obtencion.
ES2551143B1 (es) Dermis artificial, piel artificial, métodos para su preparación y sus usos
RU2731313C1 (ru) Способ восстановления кожного покрова
WO2006123004A1 (es) Matriz artificial de gel de fibrina endotelizada superproductora de factores proangiogénicos
ES2519815T3 (es) Composición para cicatrización de heridas
Bhat et al. Tissues Grafts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2439387

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002571856

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002235958

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002702424

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002702424

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10469554

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002235958

Country of ref document: AU