WO2002055435A1 - Compose intermetallique supraconducteur, alliage supraconducteur et leurs procedes de preparation - Google Patents

Compose intermetallique supraconducteur, alliage supraconducteur et leurs procedes de preparation Download PDF

Info

Publication number
WO2002055435A1
WO2002055435A1 PCT/JP2001/006383 JP0106383W WO02055435A1 WO 2002055435 A1 WO2002055435 A1 WO 2002055435A1 JP 0106383 W JP0106383 W JP 0106383W WO 02055435 A1 WO02055435 A1 WO 02055435A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconductor
intermetallic compound
heating
alloy
raw material
Prior art date
Application number
PCT/JP2001/006383
Other languages
English (en)
French (fr)
Inventor
Jun Akimitsu
Yuji Zenitani
Takahiro Muranaka
Norimasa Nakagawa
Jun Nagamatsu
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to CA002401968A priority Critical patent/CA2401968C/en
Priority to US10/220,272 priority patent/US6956011B2/en
Priority to EP01950044A priority patent/EP1350762B1/en
Priority to DE60136960T priority patent/DE60136960D1/de
Publication of WO2002055435A1 publication Critical patent/WO2002055435A1/ja
Priority to US11/202,335 priority patent/US7172993B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/901Superconductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/785Composition containing superconducting material and diverse nonsuperconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/801Composition
    • Y10S505/805Alloy or metallic

Definitions

  • the present invention can be used for large-scale superconducting power transmission, superconducting power storage, high-performance Josephson devices, superconducting electronics such as high-frequency devices, etc., and particularly has a high superconducting transition temperature and is easy to manufacture TECHNICAL FIELD
  • the present invention relates to a completely novel intermetallic compound superconductor and alloy superconductor excellent in malleability and ductility, and to a method for producing them.
  • superconductors include a superconductor made of a simple metal, a superconductor made of a compound, a superconductor made of an alloy, and a superconductor made of a composite oxide.
  • Pb, Nb, etc. are well known as superconductors made of simple metals, but their superconducting transition temperature is so low that they lack practicality.
  • a superconductor made of composite oxides, L a 2 - Composition of x - x B a x C u 0 4 La system Ru is representative of the composition of the oxide superconductor, Y, B a 2 Cu 3 0 7 Bi-based oxide superconductor represented by the composition of B i 2 S r 2 C a n-: C u felicit0 2n +2 Oxide superconductor, represented by the composition Tl 2 B a C a réelle-i C u respect 0 2 n + 2 , H gl B ai C a C ui 06 + x
  • An Hg-based oxide superconductor represented by the following composition is known.
  • Superconductors composed of these composite oxides have a high superconducting transition temperature, and some of them reach 150 K.
  • a block layer composed of atoms and oxygen (having a different crystal structure from the superconducting layer) has a perovskite structure formed by laminating each other.
  • the crystal structure is extremely complex, it is difficult to mass-produce with good reproducibility.
  • it since it is a composite oxide, it has poor properties such as malleability and ductility. Difficult to use.
  • Nb-Ti alloys are well known as alloy superconductors, and are widely used in superconducting wires and superconducting magnets because of their excellent malleability and ductility.
  • superconductors made of alloys have a low superconducting transition temperature (the best Nb-Ti alloy is about 9 K), and improvement is desired.
  • an object of the present invention is to provide an intermetallic compound superconductor having a high superconducting transition temperature and an alloy superconductor having a high superconducting transition temperature and excellent in malleability and ductility. And Another object of the present invention is to provide a method for producing these superconductors with good reproducibility and low production cost.
  • the intermetallic compound superconductor of the present invention is characterized in that it is an intermetallic compound superconductor composed of magnesium (Mg) and boron (B).
  • the alloy superconductor of the present invention is characterized by containing an intermetallic compound consisting of Mg and B and containing a single or a plurality of metal elements.
  • the intermetallic compound superconductor has a composition represented by a chemical composition formula M gl B 2 , and has a hexagonal A 1 B 2 type crystal structure in which an Mg layer and a B layer are alternately stacked.
  • the alloy superconductor contains an intermetallic compound composed of Mg and B, and has a composition formula of M gn B 2 + y (0 ⁇ x ⁇ 1, —2 ⁇ 0 ⁇ 0 ⁇ 0> ⁇ 0 ⁇ 2 ⁇ 2). ) Is characterized by being an alloy having a composition represented by
  • the intermetallic compound superconductor having this configuration has a superconducting transition temperature (T.) of 39 ⁇ , which is higher than any of the conventionally known intermetallic compound superconductors. It has a much higher superconducting transition temperature than the conventionally known intermetallic compounds having the A 1 B 2 type crystal structure.
  • the alloy superconductor having this configuration has a superconducting transition temperature (T.) of 39 °, and has a higher superconducting transition temperature than any of the conventionally known alloy superconductors. Rich in malleability and ductility.
  • a superconductor having a high superconducting transition temperature can be used as a superconductor such as a high-performance Josephson device or a high-frequency device. And so on. Furthermore, if an alloy superconductor containing an intermetallic compound superconductor composed of magnesium and boron having the above configuration is used, a superconductor having a high superconducting transition temperature and excellent malleability and ductility can be obtained. It can be used for superconducting wires such as conducting power transmission and superconducting power storage, and can be used as a material for superconducting electronics such as high-performance Josephson devices and high-frequency devices.
  • heating in an inert gas is preferably performed at a temperature of 700 to 200 ° C. for several seconds or more.
  • heating in a vacuum is performed at a temperature of 65 to 110 ° C. in a vacuum of 2 ⁇ 10 ⁇ 2 Pa or less for several minutes or more. It is better to do this.
  • the heating in the pressurized inert gas in the method for producing an intermetallic compound superconductor is performed at a temperature of 600 to 110 ° C. under an inert gas pressure of 1 to 200 MPa. It may be heated for several minutes or more.
  • the pressure and heat molding in the method for producing an intermetallic compound superconductor is performed by heating at a temperature of 700 to 140 ° C for several minutes or more while applying a pressure of 0.1 to 6 GPa. You may do it.
  • the heating in the inert gas in the method for producing an alloy superconductor may be performed at a temperature of 700 to 200 ° C. for several seconds or more.
  • the heating in the pressurized inert gas in the method for producing an alloy superconductor is performed at a temperature of 600 to 110 ° C. for several minutes under an inert gas pressure of 1 to 200 MPa. This can also be done.
  • the pressure and heat forming in the manufacturing method of the alloy superconductor is performed by heating at a temperature of 700 to 140 ° C for several minutes or more while applying a pressure of 0.1 to 6 GPa. Is also good.
  • the intermetallic compound superconductor containing magnesium (Mg) and boron (B) of the present invention can be easily produced with good reproducibility. be able to.
  • an alloy superconductor containing an intermetallic compound having the above configuration, an alloy superconductor containing an intermetallic compound can be easily produced with good reproducibility.
  • FIG. 1 is a view showing a crystal structure of an intermetallic compound superconductor comprising magnesium and boron of the present invention.
  • FIG. 2 is a diagram showing a crystal structure of an intermetallic compound superconductor comprising magnesium and boron of the present invention, wherein (a) is a side view and (b) is a plan view.
  • FIG. 3 is a graph showing the results of powder X-ray diffraction measurement of the intermetallic compound superconductor of the present invention.
  • Figure 4 shows the atomic coordinates of Mg and B in the unit cell obtained from the powder X-ray diffraction pattern.
  • FIG. 5 is a graph showing the measurement results of the temperature characteristics of the resistance of the intermetallic compound superconductor comprising magnesium and boron according to the present invention.
  • FIG. 6 is a graph showing the measurement results of the temperature characteristics of the magnetic susceptibility of the intermetallic compound superconductor comprising magnesium and boron of the present invention.
  • FIG. 7 is a graph showing the results of powder X-ray diffraction measurement of the alloy superconductor containing the intermetallic compound of magnesium and boron according to the present invention.
  • FIG. 8 is a graph showing measurement results of temperature characteristics of electric resistance of the alloy superconductor containing the intermetallic compound of magnesium and boron according to the present invention.
  • FIG. 9 is a graph showing the measurement results of the temperature characteristics of the magnetic susceptibility of the alloy superconductor containing the intermetallic compound of magnesium and boron according to the present invention.
  • intermetallic compound superconductor comprising magnesium and boron of the present invention was formed.
  • the crystal structure will be described.
  • FIG. 1 is a view showing a crystal structure of an intermetallic compound superconductor comprising magnesium and boron according to the present invention.
  • FIGS. 2A and 2B are diagrams for further understanding the crystal structure of FIG. 1, in which FIG. 2A is a side view and FIG. 2B is a plan view.
  • the intermetallic compound superconductor of the present invention is represented by chemical composition formulas M g and B 2 and has a hexagonal A 1 B 2 type crystal structure.
  • FIG. 3 is a view showing the results of powder X-ray diffraction of the intermetallic compound superconductor of the present invention formed by the manufacturing method described below.
  • the X-ray diffraction measurement was performed using a biaxial X-ray diffraction measurement device (RINT 2000, manufactured by RIGAKU).
  • Figure 4 shows the atomic coordinates of Mg and B in the unit cell from the pattern of the powder X-ray diffraction measurement.
  • the B atom is located at the center of the three Mg atoms that are arranged closest together in the ab plane, and in the middle of the array of Mg atoms in the c-axis direction. You can see that it is.
  • the intermetallic compound superconductor of the present invention has a hexagonal A 1 B 2 type crystal structure shown in FIGS. 1 and 2.
  • FIG. 5 is a diagram showing the measurement results of the temperature characteristics of the resistance of the intermetallic compound superconductor composed of magnesium and boron according to the present invention. The measurement of the electric resistance was performed by a four probe method.
  • the intermetallic compound superconductor of the present invention has a superconducting transition temperature of 39 K.
  • FIG. 6 is a diagram showing the measurement results of the temperature characteristics of the magnetic susceptibility of the intermetallic compound superconductor comprising magnesium and boron of the present invention.
  • the magnetic susceptibility was measured using a DC magnetic susceptibility measuring device (magnetic property measuring system manufactured by Dyntam Design Inc., MPMS Series MPMSR2).
  • the low magnetic susceptibility due to magnetic field cooling indicates the presence of an incoming magnetic flux, indicating that it is a type 2 superconductor.
  • FIG. 7 is a view showing the results of powder X-ray diffraction measurement of the alloy superconductor containing the intermetallic compound of magnesium and boron according to the present invention.
  • the alloy superconductor used for the measurement was formed by the manufacturing method described below, and had a composition of Mgi B. 33 .
  • the measurement method is the same as in Fig. 3.
  • the alloy superconductor of the present invention is an alloy superconductor containing an intermetallic compound composed of magnesium and boron.
  • FIG. 8 is a diagram showing the measurement results of the temperature characteristics of the electrical resistance of the alloy superconductor containing the intermetallic compound of magnesium and boron according to the present invention.
  • characteristics near the superconducting transition temperature are enlarged and shown.
  • FIG. 9 is a diagram showing the measurement results of the temperature characteristics of the magnetic susceptibility of the alloy superconductor containing the intermetallic compound of magnesium and boron according to the present invention.
  • the measurement method of the magnetic susceptibility is the same as the measurement in FIG.
  • FIG. 39%, it shows negative magnetic susceptibility, that is, diamagnetism, on the low temperature side.
  • the low magnetic susceptibility due to the magnetic field cooling indicates the presence of the entering magnetic flux, indicating that it is a type 2 superconductor.
  • whether to be an intermetallic compound superconductor or an alloy superconductor is determined by the chemical composition ratio of Mg and B in the mixed raw material powder.
  • the entire mixed powder has a single phase of a hexagonal A 1 B 2 type crystal structure represented by a composition formula of Mg and B 2 . It becomes an intermetallic compound superconductor.
  • Mg powder or MgO powder can be used as the raw material powder of Mg
  • B powder can be used as the raw material powder of B.
  • the first method is to mix Mg powder and B powder with a stirrer to form a mixed powder.
  • the mixed powder of the above is molded into a pellet form in an inert gas atmosphere using a known heating method such as an arc melting method, a plasma arc melting method, or a high frequency melting method. It consists of heating at a temperature of 0.000 ° C. for several seconds or more, and can be easily formed by this method.
  • the Mg powder and the B powder are mixed with a stirrer to form a mixed powder, and the mixed powder is formed into a pellet shape, and is then evacuated to a vacuum of 2 ⁇ 10—2 Pa or less.
  • heating is performed at a temperature of 650 ° C. to 110 ° C. for several minutes or more, and it can be easily formed by this method.
  • Mg powder and B powder are mixed with a stirrer to form a mixed powder, and the mixed powder is formed into a pellet, and the resulting mixture is formed into a HIP press device (for example, Kobe Steel Co., Ltd.). , High-temperature, high-pressure atmosphere furnace), etc., and filled with an inert gas, and heated at a temperature of 600 to 110 ° C for several minutes or more in an inert gas pressure of 1 to 20 OMPa. And can be easily formed by this method.
  • a HIP press device for example, Kobe Steel Co., Ltd.
  • Mg powder and B powder are mixed with a stirrer to form a mixed powder, and the mixed powder is formed into a pellet shape and pressed into a pressing device such as a cubic anvil pressing device. And heating at a temperature of 700 to 140 ° C. for several minutes or more while applying a pressure of 0.1 to 6 GPa, and can be easily formed by this method. High pressure is needed to promote grain boundary bonding, and high temperature is needed to grow the superconducting phase.
  • intermetallic compound superconductor and the alloy superconductor of the present invention are not limited to the above-mentioned sintered polycrystal, but may be a polycrystalline bulk, a large single crystal, or a thin film.
  • the thin film of the intermetallic compound superconductor is prepared by a chemical vapor deposition method using a gas phase source such that the composition ratio of Mg and B is 1: 2, or the composition ratio of Mg and B is 1: 1.
  • : 2 is a tar It can be manufactured using a sputtering method in which a get is formed by sputtering.
  • a metal substrate such as Cu, a ceramic substrate, or a composite substrate in which ceramic is coated on a metal substrate can be used. .
  • An appropriate substrate may be selected according to the application.
  • the composition ratio of Mg which is rich in malleability and ductility, is increased, or the mixture of other metals, which is rich in malleability and ductility, is synthesized.
  • a superconducting alloy with excellent ductility and ductility can be manufactured. This superconducting alloy can be processed into an ultrafine multifilamentary superconducting wire, a superconducting thin wire, or a superconducting alloy wire by using a processing technique such as rolling and extrusion.
  • the intermetallic compound superconductor of the present invention has a high superconducting transition temperature and is easy to manufacture, so that superconducting materials such as high-performance Josephson devices and high-frequency devices can be used. It is extremely useful if used for electronics and other purposes.
  • the alloy superconductor containing the intermetallic compound of the present invention has a high superconducting transition temperature, excellent malleability and ductility, and is easy to manufacture. It is extremely useful if used for superconducting electronics such as power storage, high-performance Josephson devices, and high-frequency devices.

Description

明 細 書
金属間化合物超伝導体及び合金超伝導体並びにこれらの製造方法 技術分野
本発明は、 大規模な超伝導送電、 超伝導電力貯蔵、 高性能なジョセフソン素子 、 高周波素子等の超伝導エレク トロニクス等に利用でき、 特に、 高い超伝導転移 温度を有し、 製造が容易で、 かつ、 展性、 延性に優れた全く新規な金属間化合物 超伝導体及び合金超伝導体、 並びにそれらの製造方法に関する。 技術背景
従来、 超伝導体には、 単体金属からなる超伝導体、 化合物からなる超伝導体、 合金からなる超伝導体及び複合酸化物からなる超伝導体などが知られている。 単体金属からなる超伝導体には、 Pb、 Nb等が良く知られているが、 超伝導 転移温度が低く実用性に欠ける。
金属間化合物からなる超伝導体には、 Nb3 G e、 Nb G a、 Nb 3 A l、 及び N b 3 S nに代表される A 1 5型結晶構造を有する金属間化合物超伝導体、 及び PbMo6 S8 に代表されるシュブレル型結晶構造を有する金属間化合物超 伝導体などが知られている。 また、 Nb B2 に代表される A 1 B2 型結晶構造を 有する金属間化合物超伝導体も知られているが、 超伝導転移温度 (T。 ) が極め て低い (To = 0. 6 2 K, J o u r n a l o f t h e L e s s - C om m o n Me t a l s, 6 7 (1 9 79) 249— 2 5 5) 。 これらの金属間化 合物超伝導体には、 N b 3 G e (超伝導転移温度:約 2 3 K) のように、 超伝導 転移温度が比較的高いものもあるが、 歪みに弱く、 また脆いと言った欠点を有し ている。
複合酸化物からなる超伝導体には、 L a2x B a x C u 04 の組成に代表され る La系酸化物超伝導体、 Y, B a 2 Cu 3 07-x の組成に代表される Y系酸化 物超伝導体、 B i 2 S r 2 C a n- : C u„ 02n + 2の組成に代表される B i系酸化 物超伝導体、 T l 2 B a C a„- i C u„ 0 2 n + 2の組成に代表される T 1系酸化 物超伝導体、 H g l B a i C a C u i 0 6 + x の組成に代表される H g系酸化物超 伝導体等が知られている。 これらの複合酸化物からなる超伝導体は、 超伝導転移 温度が高く、 なかには 1 5 0 Kに達するものもある。 これらの複合酸化物系超伝 導体は、 八面体型、 ピラミ ツ ド型、 または平面型からなる C u 0 2 超伝導層と、 L a , C a、 Y, B i、 あるいは H g等の原子と酸素とからなるブロック層 (超 伝導層とは結晶構造が異なる) とが、 互いに積層して構成されるべロプスカイ ト 構造を有している。 このように、 結晶構造が極めて複雑であることから、 再現性 よく大量に生産することが困難であり、 また、 複合酸化物であることから、 展性 や延性といった特性に乏しく、 超伝導電線として使用することが難しい。
合金からなる超伝導体には、 N b— T i合金が良く知られており、 展性及び延 性に優れるため、 超伝導電線及び超電導磁石等に広く使用されている。 しかしな がら、 合金からなる超伝導体は、 超伝導転移温度が低く (N b— T i合金で最良 のものでも約 9 Kである) 、 改善が望まれている。
本発明は、 上記課題に鑑み、 超伝導転移温度が高い金属間化合物超伝導体、 及 び超伝導転移温度が高く、 かつ、 展性及び延性に優れた合金超伝導体を提供する ことを目的とする。 さらに本発明は、 再現性よく、 製造コストが低い、 これらの 超伝導体の製造方法を提供することを目的としている。
発明の開示
始めに本発明者らが本発明に至った経緯を概説する。 一般に軽い元素を含有さ せた超伝導物質は超伝導転移温度が上昇すると考えられる。 本発明者らは、 硼素 は軽い元素であり、 かつその結晶は半導体であるため、 他の元素と組み合わせて 化合物にすることで超伝導が出現する可能性は高いと予測した。 種々の遷移金属 元素と硼素の化合物のうち、 A l B 2 型結晶構造をとる T i B 2 では電気抵抗が 非常に小さいことが分かったが、 超伝導特性は示さなかった。 そこで 3種類の元 素の組み合わせを種々試み、 そのうち、 マグネシウム、 遷移金属元素及び硼素の 組み合わせで超伝導特性が確認された。 しかしながらこの超伝導特性は極めて弱 いものであった。 これらの元素の比を種々に変化させて合成したところ、 より強 い超伝導特性が遷移金属元素を含まないマグネシウムと硼素の化合物で得られる ことがわかった。 ところが、 当初はマグネシウムの量がホウ素の量に較べて非常 に大きい化合物で実験していたため、 粉末 X線回折測定からはマグネシウム結晶 の結晶構造に基づく回折線しか観測されず、 超伝導特性の起源はマグネシウムに 硼素が固溶した合金ではないかと考えたのであるが、 マグネシゥムと硼素の組成 比を徐々に変えて実験したところ、 M g , B 2 の組成比で超伝導転位温度が非常 に高く、 かつ強い超伝導特性が観測され、 これが超伝導の実体であることを確認 でき、 本発明に到達したものである。
上記課題を解決するために、 本発明の金属間化合物超伝導体は、 マグネシウム (M g ) とホウ素 (B ) とからなる金属間化合物超伝導体であることを特徵とす る。
また、 本発明の合金超伝導体は、 M gと Bとからなる金属間化合物を含有し、 かつ、 単一の又は複数の金属元素を含有することを特徵としている。
前記金属間化合物超伝導体は、 化学組成式 M g l B 2 で表される組成を有し、 M g層と B層が交互に積層した六方晶 A 1 B 2 型結晶構造を有することを特徵と している。
また、 前記合金超伝導体は、 M gと Bとからなる金属間化合物を含有し、 組成 式 M g n B 2 + y ( 0 < x < 1 , — 2く yく 0及び 0く yく 2 ) で表される組成 を有する合金であることを特徴としている。
この構成による金属間化合物超伝導体は、 超伝導転移温度 (T。 ) 3 9 Κを有 しており、 従来知られているいずれの金属間化合物超伝導体より超伝導転移温度 が高く、 また、 従来知られている A 1 B 2 型結晶構造を持つ金属間化合物よりも 遙かに超伝導転移温度が高い。
また、 この構成による合金超伝導体は、 超伝導転移温度 (T。 ) 3 9 Κを有し ており、 従来知られているいずれの合金超伝導体よりも超伝導転移温度が高く、 かつ、 展性及び延性に富んでいる。
上記構成のマグネシウムとホウ素とからなる金属間化合物超伝導体によれば、 超伝導転移温度 (τ。 ) が高い超伝導体として、 高性能なジョセフソン素子、 高 周波素子等の超伝導ェレクトロニクス等に利用することができる。 さらに、 上記構成のマグネシウムとホウ素とからなる金属間化合物超伝導体を 含有する合金超伝導体を用いれば、 超伝導転移温度が高く、 かつ、 展性、 延性に 優れた超伝導体として、 超伝導送電、 超伝導電力貯蔵等の超伝導電線に使用でき 、 また、 高性能なジョセフソン素子、 高周波素子等の超伝導エレクトロ二クス用 材料として使用できる。
さらに、 本発明による金属間化合物超伝導体の製造方法は、 Mgを含む原料粉 末と Bを含む原料粉末とを、 化学組成比 Mg : B = 1 : 2で混合し、 ペレッ ト状 に成型し、 不活性ガス中で加熱して形成することを特徴とする。
また、 Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B- 1 : 2で混合し、 ペレツ ト状に成型して真空中で加熱して形成することもできる。 さらに、 Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B = 1 : 2で混合し、 ペレツ ト状に成型し、 加圧不活性ガス中で加熱して形成するこ ともできる。
さらにまた、 Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B= 1 : 2で混合し、 ペレツ ト状に成型し、 加圧加熱成形して形成することもで きる。
さらに、 本発明の金属間化合物を含有する合金超伝導体の製造方法は、 Mgを 含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B= 1 - X : 2 +y, (0 <x < 1 , — 2 <y< 0及び 0く yく 2) で混合し、 ペレツ ト状に成型し、 不活性ガス中で加熱して形成することを特徴とする。
上記合金超伝導体の製造方法では、 Mgを含む原料粉末と Bを含む原料粉末と を、 化学組成比 M g : B= l -x : 2 +y, ( 0 < X < 1 , - 2 < y < 0及び 0 <y < 2) で混合し、 ペレツ ト状に成型し、 真空中で加熱して形成することもで きる。
また、 Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B= 1 - X : 2 + y , (0 <χ< 1, - 2 <y< 0及び 0く yく 2 ) で混合し、 ペレツ ト状に成型し、 加圧不活性ガス中で加熱して形成することもできる。
さらにまた、 Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B= 1 - : 2 +y, (0 <χ< 1, - 2 <y< 0及び 0く yく 2 ) で混合し、 ペレツ ト状に成型し、 加圧加熱成形して形成することもできる。
また、 金属間化合物超伝導体の製造方法において、 不活性ガス中の加熱は、 7 0 0〜2 0 0 0 °Cの温度で数秒以上で行えば好ましい。
さらに、 金属間化合物超伝導体の製造方法において、 真空中での加熱は、 2 X 1 0 - 2 P a以下の真空中で、 6 5 0〜1 1 0 0 °Cの温度で数分以上で行えば好ま しい。
また、 金属間化合物超伝導体の製造方法における加圧不活性ガス中の加熱は、 1〜 2 0 0 M P aの不活性ガス圧力中で、 6 0 0〜 1 1 0 0 °Cの温度で数分以上 加熱してもよい。
さらに、 金属間化合物超伝導体の製造方法における加圧加熱成形は、 0 . 1 ~ 6 G P aの圧力を加えながら、 7 0 0〜1 4 0 0 °Cの温度で数分以上加熱するよ うにしてもよい。
また、 合金超伝導体の製造方法における不活性ガス中の加熱は、 7 0 0〜2 0 0 0 °Cの温度で数秒以上加熱してもよい。
さらに、 合金超伝導体の製造方法における真空中での加熱は、 2 X 1 0— 2 P a 以下の真空中で、 6 5 0〜1 1 0 0 °Cの温度で数分以上加熱するようにしてもよ い。
また、 合金超伝導体の製造方法における加圧不活性ガス中の加熱は、 1〜2 0 0 M P aの不活性ガス圧力中で、 6 0 0〜 1 1 0 0 °Cの温度で数分以上で行うこ ともできる。
さらに、 合金超伝導体の製造方法における加圧加熱成形は、 0 . 1〜 6 G P a の圧力を加えながら、 7 0 0〜1 4 0 0 °Cの温度で数分以上加熱するようにして もよい。
上記構成の金属間化合物超伝導体の製造方法によれば、 本発明のマグネシウム (M g ) とホウ素 (B ) とを含む金属間化合物超伝導体を再現性よく、 かつ、 容 易に製造することができる。
また、 上記構成の金属間化合物を含有する合金超伝導体の製造方法によれば、 金属間化合物を含有する合金超伝導体を再現性よく、 かつ、 容易に製造すること ができる。 図面の簡単な説明
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図面に基づいて、 より良く理解されるものとなろう。 なお、 添付図面に示す種々の実施例は本発明 を特定又は限定することを意図するものではなく、 単に本発明の説明及び理解を 容易とするためだけに記載されたものである。
図中、
図 1は、 本発明のマグネシゥムとホウ素とからなる金属間化合物超伝導体の結 晶構造を示す図である。
図 2は、 本発明のマグネシウムとホウ素とからなる金属間化合物超伝導体の結 晶構造を示す図であり、 (a ) は側面図、 (b ) は平面図である。
図 3は、 本発明の金属間化合物超伝導体の粉末 X線回折測定結果を示すグラフ である。
図 4は、 粉末 X線回折測定のパターンから単位胞内の M gと Bの原子座標を求 めたものである。
図 5は、 本発明のマグネシゥムとホウ素とからなる金属間化合物超伝導体の抵 抗の温度特性の測定結果を示すダラフである。
図 6は、 本発明のマグネシウムとホウ素とからなる金属間化合物超伝導体の磁 化率の温度特性の測定結果を示すグラフである。
図 7は、 本発明のマグネシウムとホウ素とからなる金属間化合物を含有する合 金超伝導体の粉末 X線回折の測定結果を示すグラフである。
図 8は、 本発明のマグネシウムとホウ素とからなる金属間化合物を含有する合 金超伝導体の電気抵抗の温度特性の測定結果を示すグラフである。
図 9は、 本発明のマグネシウムとホウ素とからなる金属間化合物を含有する合 金超伝導体の磁化率の温度特性の測定結果を示すグラフである。
発明を実施するための最良の形態
以下、 図面に基づいて本発明の実施の形態を詳細に説明する。
最初に、 本発明のマグネシウムとホウ素とからなる金属間化合物超伝導体の結 晶構造を説明する。
図 1はこの発明のマグネシウムとホウ素とからなる金属間化合物超伝導体の結 晶構造を示す図である。 図 2は図 1の結晶構造をさらに分かり易くするための図 で、 (a ) は側面図、 (b ) は平面図である。
図 1および図 2に示すように、 本発明の金属間化合物超伝導体は、 化学組成式 M g , B 2 で表され、 六方晶 A 1 B 2 型結晶構造を有している。
図 3は、 下記に説明する製造方法によって形成した本発明の金属間化合物超伝 導体の粉末 X線回折結果を示す図である。 X線回折測定は、 二軸 X線回折測定装 置 (R I G A K U社製, R I N T 2 0 0 0 ) を用いて行った。
図 3の粉末 X線回折測定のパターンから、 結晶系が六方晶であり、 空間群 P 6 Zmm mに属することが分かり、 また、 a軸及び b軸長が 3 . 0 8 3 A、 c軸長 が 3 . 5 2 7 Aであることが分かる。
図 4は、 この粉末 X線回折測定のパターンから単位胞内の M gと Bの原子座標 を求めたものである。 図 4から明らかなように、 B原子は、 a b面内で互いに最 密に配列している 3個の M g原子の中心に、 かつ、 c軸方向の M g原子の配列の 中間に位置していることが分かる。
図 3及び図 4から明らかなように、 本発明の金属間化合物超伝導体は、 図 1及 び図 2に示した六方晶 A 1 B 2 型結晶構造を有している。
次に、 本発明のマグネシウムとホウ素とからなる金属間化合物超伝導体の超伝 導特性について説明する。
図 5は、 この発明のマグネシウムとホウ素とからなる金属間化合物超伝導体の 抵抗の温度特性の測定結果を示す図である。 電気抵抗の測定は、 四探針法で行つ た。
図 5から、 温度が低下するに従つて電気抵抗が下がり、 3 9 Kで急峻に電気抵 抗が 0になっていることが分かる。 すなわち、 本発明の金属間化合物超伝導体は 、 超伝導転移温度 3 9 Kを有している。
なお、 超伝導転移温度は、 電気抵抗の立ち下がり温度 T。 0 n s e t、 及び電 気抵抗の立ち上がり温度 T。 z e r oで定義されるが、 本発明の金属間化合物超 伝導体は、 T c 0 n s e t = 3 9 T 0 z e r o = 3 8 Kである。 次に、 本発明の金属間化合物超伝導体の磁化率 (S u s c e p t i b i l i t y) の測定結果を示す。
図 6は、 本発明のマグネシウムとホウ素とからなる金属間化合物超伝導体の磁 化率の温度特性の測定結果を示す図である。 磁化率の測定は、 直流磁化率測定装 置 (力ンタム · デザィン社製磁気特性測定システム, M P M Sシリーズ M P M S R 2) を使用した。
図 6から明らかなように、 T。 = 3 9 Κから低温側で負の磁化率、 すなわち反 磁性を示しており、 本発明のマグネシゥムとホウ素とからなる金属間化合物は、 超伝導転移温度 Τ。 = 3 9 Κを有する超伝導体であることが分かる。
図 6において、 零磁場で冷却した場合と Η (印加磁場) = 1 0 O O eで冷却し た場合を示している。 磁場冷却で磁化率が小さいのは、 進入磁束の存在を示して おり、 第 2種超伝導体であることを示している。
次に、 本発明のマグネシゥムとホウ素とからなる金属間化合物を含有する合金 超伝導体について説明する。
図 7は、 本発明のマグネシウムとホウ素とからなる金属間化合物を含有する合 金超伝導体の粉末 X線回折の測定結果を示す図である。 測定に用いた合金超伝導 体は、 下記に説明する製造方法で形成したものであり、 組成 Mgi B。.33を有し ている。 測定方法は図 3の場合と同じである。
図 7において、 回折ピークは、 Mg金属 (六方細密結晶構造) の面指数にすべ て一致しており、 また、 図中に矢印で示した回折角位置に Mg , B2 金属間化合 物に基づく回折強度がわずかに観測されている。 すなわち、 本発明の合金超伝導 体は、 マグネシウムとホウ素とからなる金属間化合物を含有した合金超伝導体で あることが分かる。
つぎに、 本発明のマグネシウムとホウ素とからなる金属間化合物を含有する合 金超伝導体の超伝導特性を説明する。
図 8は、 本発明のマグネシウムとホウ素とからなる金属間化合物を含有する合 金超伝導体の電気抵抗の温度特性の測定結果を示す図である。 この図 8中に超伝 導転移温度付近の特性を拡大して図示している。 図 8から明らかなように、 本発 明のマグネシウムとホウ素とからなる金属間化合物を含有する合金超伝導体は、 超伝導転移温度 T。 = 3 9 Kを有する超伝導体である。
次に、 本発明の合金超伝導体の磁化率 (S u s c e p t i b i 1 i t y) の測 定結果を示す。
図 9は、 本発明のマグネシウムとホウ素とからなる金属間化合物を含有する合 金超伝導体の磁化率の温度特性の測定結果を示す図である。 磁化率の測定法は、 図 6の測定と同じである。
図 9から明らかなように、 T。 = 3 9 Κから低温側で負の磁化率、 すなわち反 磁性を示しており、 本発明のマグネシゥムとホウ素とからなる金属間化合物を含 有する合金超伝導体は、 超伝導転移温度 Τ。 = 3 9 Κを有する超伝導体であるこ , とが分かる。 図 9において、 零磁塲で冷却した場合と Η (印加磁場) = 1 000 eで冷却した場合を示している。 磁場冷却で磁化率が小さいのは、 進入磁束の存 在を示しおり、 第 2種超伝導体であることを示している。
次に、 本発明のマグネシウムとホウ素とからなる金属間化合物超伝導体及びマ グネシゥムとホウ素とからなる金属間化合物を含有する合金超伝導体の製造方法 を説明する。
以下に説明する本発明の製造方法によれば、 金属間化合物超伝導体になるか、 または合金超伝導体になるかは、 混合した原料粉末の Mgと Bの化学組成比によ つて定まる。 すなわち、 化学組成比 Mg : B= 1 : 2で混合されている場合には 、 混合粉全体が、 Mg, B2 の組成式で表される六方晶 A 1 B2 型結晶構造の単 相の金属間化合物超伝導体となる。
また、 混合粉が化学組成比 M g : B= 1 - : 2 +y, (0 <x< 1, - 2 < 7< 0及び0 < <2) で混合されている場合には、 上記の金属間化合物を含有 する合金超伝導体となり、 使用目的に応じて組成比を変えることができる。 例え ば、 Mgの組成比を大きくすれば、 展性及び延性に優れた超伝導電線を製造する ことができる。 Mgの原料粉末には、 Mg粉末又は MgO粉末を使用することが でき、 また、 Bの原料粉末には B粉末を使用できる。
本発明の金属間化合物超伝導体及び合金超伝導体の製造方法として、 いくつか 例を挙げることができる。
第 1の方法は、 Mg粉末、 B粉末を撹拌装置で混合して混合粉末を形成し、 こ の混合粉末をペレツ ト状に成型したものを、 不活性ガス雰囲気中において、 ァ一 ク溶解法、 プラズマアーク溶解法、 又は、 高周波溶解法等の公知の加熱方法を用 いて 7 0 0〜 2 0 0 0 °Cの温度で数秒以上加熱することからなり、 この方法によ つて容易に形成できる。
第 2の方法は、 M g粉末、 B粉末を撹拌装置で混合して混合粉末を形成し、 こ の混合粉末をペレッ ト状に成型したものを、 2 X 1 0— 2 P a以下の真空中で、 6 5 0〜1 1 0 0 °Cの温度で数分以上加熱することからなり、 この方法によって容 易に形成できる。
第 3の方法は、 M g粉末、 B粉末を撹拌装置で混合して混合粉末を形成し、 こ の混合粉末をペレツ ト状に成型したものを、 H I P加圧装置 (例えば、 神戸製鋼 社製, 高温高圧雰囲気炉) 等を用いて、 不活性ガスを充塡し、 1〜2 0 O M P a の不活性ガス圧力中で、 6 0 0〜1 1 0 0 °Cの温度で数分以上加熱することから なり、 この方法によって容易に形成できる。
第 4の方法は、 M g粉末、 B粉末を撹拌装置で混合して混合粉末を形成し、 こ の混合粉末をペレツ ト状に成型したものを、 立方体アンビル加圧装置等の加圧装 置を用いて、 0 . 1〜6 G P aの圧力を加えながら、 7 0 0〜 1 4 0 0 °Cの温度 で数分以上加熱することからなり、 この方法によって容易に形成できる。 高圧力 は、 粒界結合を促進するために必要であり、 高温度は、 超伝導相を成長するため に必要である。
なお、 本発明の金属間化合物超伝導体及び合金超伝導体は、 上記の多結晶焼結 体に限らず、 多結晶バルク体、 大型単結晶、 又は薄膜であってもよい。
公知の鍛造装置、 超高圧加圧加熱合成装置等のバルク体作製装置を用いれば、 軽量、 高硬度及び耐腐食性に優れた多結晶バルク体の金属間化合物超伝導体を製 造できる。
また、 大型単結晶金属間化合物超伝導体は、 再結晶法、 単純引き上げ法、 浮遊 帯域溶融法、 フラックス法等の公知の単結晶育成法を使用し、 適切なるつぼを使 用し、 雰囲気制御を行って製造できる。
また、 金属間化合物超伝導体の薄膜は、 M gと Bの組成比が 1 : 2となるよう な気相源を用いた化学気相蒸着法、 又は、 M gと Bの組成比が 1 : 2であるター ゲッ トをスパッタして形成するスパッタ法を用いて製造できる。 また、 金属間化 合物超伝導体の薄膜を付着させる基板として、 C uなどの金属基板、 セラミック ス基板、 または、 金属基板の上にセラミックスを被覆した複合基材等を用いるこ とができる。 用途に合わせて適宜の基板を選択すればよい。
また、 M gと Bの組成比において、 展性、 延性に富んだ M gの組成比を大きく して、 または、 展性、 延性に富んだ他の金属を混合して合成することによって、 展性、 延性に優れた超伝導合金を製造できる。 この超伝導合金は、 圧延、 押し出 し等の加工技術を使用すれば、 極細多芯形超伝導線材、 超伝導細線、 又は、 超伝 導合金線に加工することができる。 産業上の利用可能性
以上の説明から理解できるように、 本発明の金属間化合物超伝導体は、 超伝導 転移温度が高く、 かつ、 製造が容易であるから、 高性能のジョセフソン素子、 高 周波素子等の超伝導エレク トロニクス等に利用すれば、 極めて有用である。 また、 本発明の金属間化合物を含有する合金超伝導体は、 超伝導転移温度が高 く、 展性、 延性に優れ、 かつ、 製造が容易であるから、 大規模な超伝導送電、 超 伝導電力貯蔵、 高性能なジョセフソン素子、 高周波素子等の超伝導エレク トロ二 クス等に利用すれば、 極めて有用である。
さらに、 本発明の金属間化合物超伝導体の製造方法、 及びその金属間化合物を 含有する合金超伝導体の製造方法を用いれば、 極めて再現性よく、 容易に、 かつ 、 低コストで、 金属間化合物超伝導体並びに金属間化合物を含有する合金超伝導 体を製造することができる。

Claims

請 求 の 範 囲
1. マグネシウム (Mg) とホウ素 (B) とからなる金属間化合物である ことを特徵とする、 金属間化合物超伝導体。
2. Mgと Bとからなる金属間化合物を含有し、 かつ、 単一の又は複数の 金属元素を含有する合金であることを特徵とする、 合金超伝導体。
3. 前記金属間化合物超伝導体は、 化学組成式 Mg l B2 で表される組成 を有し、 Mg層と B層が交互に積層した六方晶 A 1 B2 型結晶構造を有すること を特徵とする、 請求項 1に記載の金属間化合物超伝導体。
4. 前記合金超伝導体は、 前記金属間化合物を含有し、 組成式 Mg l-X B 2 + y (0 < x < 1 , — 2く yく 0及び 0く yく 2) で表される組成を有すること を特徴とする、 請求項 2に記載の合金超伝導体。
5. 前記金属間化合物超伝導体は、 超伝導転移温度 (T。 ) 39 Κを有す ることを特徴とする、 請求項 1に記載の金属間化合物超伝導体。
' 6. 前記合金超伝導体は、 超伝導転移温度 (Τ。 ) 39 Κを有することを 特徴とする、 請求項 2に記載の合金超伝導体。
7. Mgを含む原料粉末と Bを含む原料粉末とを化学組成比 M g: B= 1
: 2で混合し、 ペレツ ト状に成型し、 不活性ガス中で加熱して形成することを特 徵とする、 金属間化合物超伝導体の製造方法。
8. Mgを含む原料粉末と Bを含む原料粉末とを化学組成比 M g: B= 1
: 2で混合し、 ペレツ ト状に成型し、 真空中で加熱して形成することを特徵とす る、 金属間化合物超伝導体の製造方法。
9. Mgを含む原料粉末と Bを含む原料粉末とを化学組成比 Mg: B= 1 : 2で混合し、 ペレツ ト状に成型し、 加圧不活性ガス中で加熱して形成すること を特徴とする、 金属間化合物超伝導体の製造方法。
10. Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B = 1 : 2で混合し、 ペレツ ト状に成型し、 加圧加熱成形して形成することを特徴 とする、 金属間化合物超伝導体の製造方法。
1 1. Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B = 1 - : 2 + y , ( 0 < x < 1 , - 2 < y < 0及び 0 < y < 2 ) で混合し、 ぺ レツ ト状に成型し、 不活性ガス中で加熱して形成することを特徵とする、 合金超 伝導体の製造方法。
1 2. Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B = 1 - X : 2 + y , ( 0 < X < 1 , - 2 < y < 0及び 0 < y < 2 ) で混合し、 ぺ レツ ト状に成型し、 真空中で加熱して形成することを特徴とする、 合金超伝導体 の製造方法。
1 3. Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B = 1 - X : 2 + y , ( 0 < X < 1 , — 2く yく 0及び 0 < y < 2 ) で混合し、 ぺ レツ ト状に成型し、 加圧不活性ガス中で加熱して形成することを特徵とする、 合 金超伝導体の製造方法。
1 4. Mgを含む原料粉末と Bを含む原料粉末とを、 化学組成比 Mg : B = 1 - X : 2 + y , ( 0 < < 1 , - 2 < y < 0及び 0く yく 2 ) で混合し、 ぺ レツ ト状に成型し、 加圧加熱成形して形成することを特徴とする、 合金超伝導体 の製造方法。
1 5. 前記不活性ガス中の加熱は、 7 0 0〜2 0 0 0 °Cの温度で数秒以上 行うことを特徴とする、 請求項 7に記載の金属間化合物超伝導体の製造方法。
1 6. 前記真空中での加熱は、 2 X 1 0— 2P a以下の真空中で、 6 5 0〜 1 1 0 0°Cの温度で数分以上行うことを特徴とする、 請求項 8に記載の金属間化 合物超伝導体の製造方法。
1 7. 前記加圧不活性ガス中の加熱は、 1〜 2 0 0 MP aの不活性ガス圧 力中で、 6 0 0〜1 1 0 0°Cの温度で数分以上行うことを特徴とする、 請求項 9 に記載の金属間化合物超伝導体の製造方法。
1 8. 前記加圧加熱成形は、 0. 1~6 GP aの圧力を加えながら、 7 0 0〜1 4 0 0 °Cの温度で数分以上加熱することを特徵とする、 請求項 1 0に記載 の金属間化合物超伝導体の製造方法。
1 9. 前記不活性ガス中の加熱は、 7 0 0〜 2 0 0 0 °Cの温度で数秒以上 行うことを特徵とする、 請求項 1 1に記載の合金超伝導体の製造方法。
2 0. 前記真空中での加熱は、 2 X 1 0— 2P a以下の真空中で、 6 5 0〜 1 1 0 0 °Cの温度で数分以上行うことを特徴とする、 請求項 1 2に記載の合金超 伝導体の製造方法。
2 1 . 前記加圧不活性ガス中の加熱は、 1〜 2 0 0 M P aの不活性ガス圧 力中で、 6 0 0〜1 1 0 0 °Cの温度で数分以上行うことを特徵とする、 請求項 1 3に記載の金属間化合物超伝導体の製造方法。
2 2 . 前記加圧加熱成形は、 0 . 1〜6 G P aの圧力を加えながら、 7 0 0〜1 4 0 0 °Cの温度で数分以上加熱することを特徴とする、 請求項 1 4に記載 の合金超伝導体の製造方法。
PCT/JP2001/006383 2001-01-09 2001-07-24 Compose intermetallique supraconducteur, alliage supraconducteur et leurs procedes de preparation WO2002055435A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002401968A CA2401968C (en) 2001-01-09 2001-07-24 Intermetallic compound superconductors and alloy superconductors, and methods of making them
US10/220,272 US6956011B2 (en) 2001-01-09 2001-07-24 Intermetallic compound superconductors and alloy superconductors, and method for their preparation
EP01950044A EP1350762B1 (en) 2001-01-09 2001-07-24 Intermetallic compound superconductor and alloy superconductor, and method for their preparation
DE60136960T DE60136960D1 (de) 2001-01-09 2001-07-24 Intermetallische, supraleitende verbindung und legierter supraleiter und deren herstellungsverfahren.
US11/202,335 US7172993B2 (en) 2001-01-09 2005-08-12 Intermetallic compound superconductors and alloy superconductors, and methods of making them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-001948 2001-01-09
JP2001001948A JP3575004B2 (ja) 2001-01-09 2001-01-09 マグネシウムとホウ素とからなる金属間化合物超伝導体及びその金属間化合物を含有する合金超伝導体並びにこれらの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10220272 A-371-Of-International 2001-07-24
US11/202,335 Division US7172993B2 (en) 2001-01-09 2005-08-12 Intermetallic compound superconductors and alloy superconductors, and methods of making them

Publications (1)

Publication Number Publication Date
WO2002055435A1 true WO2002055435A1 (fr) 2002-07-18

Family

ID=18870522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006383 WO2002055435A1 (fr) 2001-01-09 2001-07-24 Compose intermetallique supraconducteur, alliage supraconducteur et leurs procedes de preparation

Country Status (8)

Country Link
US (2) US6956011B2 (ja)
EP (1) EP1350762B1 (ja)
JP (1) JP3575004B2 (ja)
KR (1) KR100517455B1 (ja)
CN (1) CN1276872C (ja)
CA (1) CA2401968C (ja)
DE (1) DE60136960D1 (ja)
WO (1) WO2002055435A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106373A1 (en) * 2002-06-18 2003-12-24 University Of Wollongong Superconducting material and method of synthesis
EP1429399A2 (en) * 2002-12-11 2004-06-16 Hitachi, Ltd. Superconducting wire rod and method of producing the same
US7018954B2 (en) 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514557B2 (en) * 2001-02-15 2003-02-04 Iowa State University Research Foundation Synthesis of superconducting magnesium diboride objects
JP4499360B2 (ja) * 2001-03-05 2010-07-07 アイトゲネッシーシェ テヒニッシェ ホッホシューレ チューリッヒ MgB2からなる超伝導材料の製造方法
JP4556343B2 (ja) * 2001-04-26 2010-10-06 住友電気工業株式会社 長尺複合体の製造方法
JP2002353528A (ja) * 2001-05-25 2002-12-06 Furukawa Electric Co Ltd:The 磁気シールドおよびその製造方法
JP4676089B2 (ja) * 2001-05-30 2011-04-27 古河電気工業株式会社 MgB2超電導線材の製造方法
JP4016103B2 (ja) * 2003-03-04 2007-12-05 独立行政法人物質・材料研究機構 MgB2超伝導体の製造方法
US7226894B2 (en) 2003-10-22 2007-06-05 General Electric Company Superconducting wire, method of manufacture thereof and the articles derived therefrom
US20060165579A1 (en) * 2005-01-26 2006-07-27 Harry Jones Void-free superconducting magnesium diboride
US8435473B2 (en) 2008-02-18 2013-05-07 Japan Science And Technology Agency Superconducting compound and method for producing the same
KR100970369B1 (ko) * 2008-02-28 2010-07-15 한국원자력연구원 글리세린이 첨가된 MgB₂초전도체 제조방법
JP5518295B2 (ja) * 2008-03-27 2014-06-11 独立行政法人科学技術振興機構 層状化合物からなる超伝導体及びその製造方法
WO2009134567A2 (en) * 2008-03-30 2009-11-05 Hills,Inc. Superconducting wires and cables and methods for producing superconducting wires and cables
US8288321B2 (en) 2008-07-16 2012-10-16 Japan Science And Technology Agency Layered compound, superconductor and method for producing same
JP5421064B2 (ja) * 2009-10-26 2014-02-19 後藤電子 株式会社 高周波高圧高電流電線
CN102568694A (zh) * 2010-12-23 2012-07-11 吴仕驹 高温超导体及其制备方法
JP5520260B2 (ja) * 2011-07-05 2014-06-11 株式会社日立製作所 超電導線材及びその製造方法
KR20160001514A (ko) * 2014-06-27 2016-01-06 삼성전자주식회사 전도성 박막
CN105355913A (zh) * 2015-11-24 2016-02-24 江苏华富储能新技术股份有限公司 高效的含超导材料添加剂的铅蓄电池正极铅膏
CN105375024A (zh) * 2015-11-24 2016-03-02 江苏华富储能新技术股份有限公司 含超导材料添加剂的铅蓄电池负极铅膏的制备方法
CN105390668A (zh) * 2015-11-24 2016-03-09 江苏华富储能新技术股份有限公司 一种含超导材料添加剂的铅蓄电池
CN105355914A (zh) * 2015-11-24 2016-02-24 江苏华富储能新技术股份有限公司 含超导材料添加剂的铅蓄电池正极铅膏的制备方法
CN105449219A (zh) * 2015-11-24 2016-03-30 江苏华富储能新技术股份有限公司 高效的含超导材料添加剂的铅蓄电池负极铅膏
CN105470502A (zh) * 2015-11-24 2016-04-06 江苏华富储能新技术股份有限公司 一种含超导材料添加剂的铅蓄电池正极铅膏
CN105355915A (zh) * 2015-11-24 2016-02-24 江苏华富储能新技术股份有限公司 含超导材料添加剂的铅蓄电池负极铅膏
CN105375025A (zh) * 2015-11-24 2016-03-02 江苏华富储能新技术股份有限公司 含超导材料添加剂的铅蓄电池正极铅膏
CN105428601A (zh) * 2015-11-24 2016-03-23 江苏华富储能新技术股份有限公司 含超导材料添加剂的铅蓄电池负极铅膏的制备方法
CN110431677B (zh) * 2017-02-14 2024-04-02 加州理工学院 铜酸盐超导体及其制造及/或使用方法
CN115417419B (zh) * 2022-08-24 2023-08-29 河南师范大学 一种基于笼目结构的MgB3超导体材料

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.V. TSVYASHCHENKO ET AL.: "Electric field gradients in MgB2 synthesized at high pressure: 111Cd TPDAC study and ab initio calculation", SOLID STATE COMMUNICATIONS, vol. 119, no. 3, 17 July 2001 (2001-07-17), pages 153 - 158, XP002948370 *
D.C. LARHALESTLER ET AL.: "Strongly linked current flow in polycrystalline forms of the superconductor MgB2", NATURE, vol. 410, 8 March 2001 (2001-03-08), pages 186 - 189, XP002948369 *
JUN NAGAMATSU ET AL.: "Superconductivity at 39K in magnesium diboride", NATURE, vol. 410, 1 March 2001 (2001-03-01), pages 63 - 64, XP002948368 *
See also references of EP1350762A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018954B2 (en) 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors
WO2003106373A1 (en) * 2002-06-18 2003-12-24 University Of Wollongong Superconducting material and method of synthesis
US7838465B2 (en) 2002-06-18 2010-11-23 University Of Wollongong Method of synthesis of a superconducting material
EP1429399A2 (en) * 2002-12-11 2004-06-16 Hitachi, Ltd. Superconducting wire rod and method of producing the same
EP1429399A3 (en) * 2002-12-11 2006-03-08 Hitachi, Ltd. Superconducting wire rod and method of producing the same

Also Published As

Publication number Publication date
US20030017949A1 (en) 2003-01-23
US7172993B2 (en) 2007-02-06
CA2401968C (en) 2008-09-23
US20060079402A1 (en) 2006-04-13
KR100517455B1 (ko) 2005-09-28
CN1276872C (zh) 2006-09-27
CN1416405A (zh) 2003-05-07
US6956011B2 (en) 2005-10-18
DE60136960D1 (de) 2009-01-22
JP2002211916A (ja) 2002-07-31
KR20020092376A (ko) 2002-12-11
EP1350762A4 (en) 2005-05-04
CA2401968A1 (en) 2002-07-18
EP1350762B1 (en) 2008-12-10
EP1350762A1 (en) 2003-10-08
JP3575004B2 (ja) 2004-10-06

Similar Documents

Publication Publication Date Title
WO2002055435A1 (fr) Compose intermetallique supraconducteur, alliage supraconducteur et leurs procedes de preparation
Ma Progress in wire fabrication of iron-based superconductors
WO1991019029A1 (en) Oxide superconductor and production thereof
US20040204321A1 (en) Mgb2 based powder for the production of super conductOrs, method for the use and production thereof
JP3089294B2 (ja) 超電導テープ材の製造方法
EP1394112B1 (en) Mgb2 based superconductor having high critical current density and method for preparation thereof
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
US20090048114A1 (en) Alloy superconductor and methods of making the same
JP4048270B2 (ja) MgB2超伝導膜状体とその製造方法
WO1991005087A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
JPH01164707A (ja) 高温超伝導体、その製造方法およびその使用
JP2514049B2 (ja) 超電導膜被覆複合物体
JP2002284519A (ja) 超伝導材料
JPH0769626A (ja) 金属酸化物とその製造方法
JP2789103B2 (ja) 酸化物超電導体およびその製造方法
JP2002274845A (ja) 超伝導材料
JPS63307614A (ja) 高温酸化物超電導体薄膜
Fu Fabrication and characterisation of Bi-2223 current lead
JPH06510157A (ja) テクスチャード超伝導体とその製造方法
Bindi et al. Deposition and characterization of YBCO/CeO/sub 2/thin films prepared by thermal co-evaporation on metallic tapes
JPH0829938B2 (ja) 複合酸化物超電導薄膜とその作製方法
JPH01215722A (ja) 超電導材料及びその製造方法
JPH0412052A (ja) 酸化物超電導体の製造方法
JP2001233614A (ja) 不確定性原理に基づく低異方性高温超伝導体とその製造方法
JPH03112812A (ja) 酸化物超伝導体膜作製用基板とその作製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001950044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2401968

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027011610

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10220272

Country of ref document: US

Ref document number: 018062431

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027011610

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001950044

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027011610

Country of ref document: KR