WO2002052140A1 - Moteur alternatif a combustion interne et son procede d'exploitation - Google Patents

Moteur alternatif a combustion interne et son procede d'exploitation Download PDF

Info

Publication number
WO2002052140A1
WO2002052140A1 PCT/JP2001/010113 JP0110113W WO02052140A1 WO 2002052140 A1 WO2002052140 A1 WO 2002052140A1 JP 0110113 W JP0110113 W JP 0110113W WO 02052140 A1 WO02052140 A1 WO 02052140A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
output
engine
rotation speed
Prior art date
Application number
PCT/JP2001/010113
Other languages
English (en)
French (fr)
Inventor
Masatoshi Suzuki
Toshio Shimada
Ryo Kubota
Masashi Nakamura
Katsunori Takahashi
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to EP01982859A priority Critical patent/EP1344925A4/en
Priority to BRPI0108515-8A priority patent/BR0108515B1/pt
Publication of WO2002052140A1 publication Critical patent/WO2002052140A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0015Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
    • F02D35/0046Controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • F02D31/009Electric control of rotation speed controlling fuel supply for maximum speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2048Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit said control involving a limitation, e.g. applying current or voltage limits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the present invention provides a reciprocating internal combustion engine having an output characteristic of generating a maximum indicated output when the engine speed is a first predetermined speed, wherein a required illustrated output is provided at an engine speed lower than the first predetermined speed.
  • the maximum value of the indicated output (indicated output) represented by the performance curve when the internal combustion engine is fully loaded (or when the throttle valve is fully opened), that is, the maximum indicated output is It is determined depending on the specifications of the members constituting the internal combustion engine, such as the passage diameter of the intake / exhaust system, the diameter of the intake / exhaust valve, the lift amount, the compression ratio, and the like.
  • the maximum indicated output determined in this manner increases as the displacement of the internal combustion engine increases.
  • the engine speed when the indicated output having the same magnitude is generated becomes lower as the displacement of the internal combustion engine is larger.
  • the engine speed at which the maximum indicated output is generated is in the high rotation speed range of the engine rotation speed range in which the internal combustion engine is operated, and the maximum indicated output is the indicated output required by the internal combustion engine. Is the required output shown in FIG.
  • a start clutch that transmits torque of a crankshaft to a power transmission device including a transmission when a predetermined engine speed is reached.
  • a centrifugal clutch having a clutch shaft composed of a centrifugal weight supported swingably on a support shaft is used as the starting clutch, the center of gravity of the clutch is shifted from the support shaft in the rotation direction of the crankshaft.
  • the so-called leading type centrifugal clutch which is located on the leading side, was used.
  • the frictional force between the clutch outer member and the clutch shoe acts to swing the clutch shoe radially outward (hereinafter, a self-locking mechanism). It is called for. Therefore, there is an advantage that the torque transmission performance of the clutch, that is, the clutch capacity can be increased.
  • the rotor of the alternator coupled to the crankshaft of the internal combustion engine is formed integrally with a flywheel for suppressing rotation fluctuation of the crankshaft.
  • a reciprocating internal combustion engine includes mechanical friction loss in each sliding portion such as a crankshaft, a crankpin, a piston, and a valve operating device, and auxiliary devices for driving various auxiliary devices such as an oil pump and a generator.
  • Friction loss power including drive loss is generated. Therefore, the net output of the internal combustion engine is a value obtained by subtracting the friction loss power from the output shown. Since the frictional loss power increases with an increase in the engine speed, the indicated output increases as the engine speed increases, but the frictional loss power also increases at the same time. It is difficult to significantly improve the net fuel consumption rate, which is the unit net output and the fuel consumption rate per unit time, in the high rotation speed range including the rotation speed, and the driving frequency in the high rotation speed range is high. The fuel consumption rate of the internal combustion engine was worse.
  • the self-locking action causes a sudden increase in the pressing force on the clutch shaft, that is, a sudden increase in the load acting on the crankshaft.
  • the decrease in the number of rotations of the crankshaft, and the decrease in the pressing force of the clutch shoe against the clutch outer member due to the decrease in the number of rotations that is, the increase in the number of rotations of the crankshaft due to the decrease in the load acting on the crankshaft
  • vibrations called “judder” tended to occur, and this vibration was transmitted to the occupants through the vehicle body.
  • the present invention has been made in view of such circumstances, and a high rotational speed range of an engine rotational speed range in which an internal combustion engine is operated has a lower rotational speed than an engine rotational speed at which a maximum illustrated output is generated.
  • a high rotational speed range of an engine rotational speed range in which an internal combustion engine is operated has a lower rotational speed than an engine rotational speed at which a maximum illustrated output is generated.
  • the friction loss power at the indicated output of the same magnitude as before is reduced, and the net output is increased. It is an object of the present invention to provide a method of operating a reciprocating internal combustion engine that improves the performance.
  • Another object of the present invention is to provide a reciprocating internal combustion engine that performs the method of operating the reciprocating internal combustion engine. Further, in the reciprocating internal combustion engine, the reciprocating internal combustion engine is generated when a starting clutch including a centrifugal clutch is connected. It is an object of the present invention to reduce the judder and to obtain a flywheel structure capable of easily adjusting the rotational inertia mass without increasing the size of the internal combustion engine.
  • a method of operating a reciprocating internal combustion engine having an output characteristic of generating a maximum indicated output when the engine rotation speed is a first predetermined rotation speed wherein the rotation speed sensor detects the engine rotation speed Providing a forward-reverse internal combustion engine having output reduction means for reducing the engine output, and when the engine rotation speed detected by the rotation speed sensor exceeds a second predetermined rotation speed less than the first predetermined rotation speed, Reducing the output of the internal combustion engine so that the required indicated output of the internal combustion engine is obtained at the second predetermined rotation speed by the output reduction means.
  • the output reduction means that operates when the second predetermined rotation speed is exceeded is requested by the internal combustion engine at the second predetermined rotation speed lower than the first predetermined rotation speed at which the maximum indicated output is obtained.
  • the required illustrated output which is the maximum illustrated output, is obtained.
  • the maximum indicated output is the required indicated output.
  • the internal combustion engine of the present invention has an output characteristic capable of generating a maximum indicated output larger than the required indicated output, and has a larger displacement than the conventional internal combustion engine. Therefore, the second predetermined rotational speed at which the required illustrated output is generated is lower than the engine speed at which the maximum illustrated output is generated in the conventional internal combustion engine, and the friction of the required illustrated output is reduced. Power loss is reduced compared to conventional internal combustion engines.
  • the internal combustion engine is operated in an engine rotation speed range having a high rotation speed range lower than that of a conventional internal combustion engine, so that the internal combustion engine can be operated in a rotation speed range higher than the engine rotation speed range.
  • the internal combustion engine can be composed of components having relatively low rigidity and strength.
  • the required illustrated output is obtained at a lower engine speed as compared with the conventional internal combustion engine, and therefore, even in a high rotational speed range of the rotational speed range in which the internal combustion engine is operated according to the present invention.
  • the frictional loss power decreases, the net output increases, thereby improving the net fuel consumption rate, and improving the fuel consumption rate of the internal combustion engine that is frequently operated in the high rotational speed range.
  • the internal combustion engine since the internal combustion engine is operated in an engine rotation speed range having a high rotation speed range lower than that of a conventional internal combustion engine, the internal combustion engine may be constituted by components having relatively low rigidity and strength.
  • the weight of the internal combustion engine can be reduced, and the fuel consumption rate is also improved in this respect.
  • the engine rotation speed range is divided into three equal parts and divided into a low rotation speed range, a middle rotation speed range, and a high rotation speed range.
  • the second predetermined rotation speed may be a rotation speed belonging to the medium rotation speed range or the low rotation speed range.
  • the engine speed becomes significantly lower than the engine speed at the time when the maximum indicated output of the conventional internal combustion engine is generated, and therefore the high engine speed including the second predetermined engine speed is obtained.
  • the output power shown in the Compared to the internal combustion engine it is greatly reduced and the net output is increased accordingly.
  • the internal combustion engine since the internal combustion engine is operated in an engine rotation speed range having a high rotation speed range that is significantly lower than that of the conventional internal combustion engine, the internal combustion engine can be configured with components having lower rigidity and strength.
  • the internal combustion engine is connected to a manual transmission having a plurality of gears, and the second predetermined number of revolutions can be set corresponding to each gear of the manual transmission.
  • the second predetermined rotation speed is set in accordance with each shift speed of the manual transmission, so that the second predetermined rotation speed in each shift speed is changed after securing the driving force for each shift speed.
  • the driving force at the time of shifting up can be arbitrarily changed.
  • a change in driving force during upshifting can be made smooth, and smooth acceleration operation can be realized.
  • the output reduction means can be performed by stopping the fuel supply to the internal combustion engine. By doing so, the fuel consumption is reduced as compared with, for example, controlling the ignition characteristics to reduce the engine output.
  • the output reduction means can be performed by changing or controlling the ignition characteristics. Changing or controlling the ignition characteristics includes retarding or advancing the ignition timing from the optimal timing, or stopping or thinning out the ignition.
  • the internal combustion engine includes a rotation speed sensor that detects an engine rotation speed, an output reduction unit that reduces engine output, and a control unit, wherein the control unit determines whether the engine rotation speed detected by the rotation speed sensor is When the engine speed exceeds a second predetermined rotation speed that is lower than the first predetermined rotation speed, the engine output of the internal combustion engine can be reduced by the output reduction means.
  • the internal combustion engine is an internal combustion engine for a vehicle, the internal combustion engine including a crankshaft and a starting clutch coupled to the crankshaft and having a clutch outer member, and the starting clutch has exceeded a predetermined engine speed.
  • a trailing-type centrifugal clutch having a clutch shoe composed of a swingable centrifugal weight abutting on the clutch rotor member can be provided.
  • the center of gravity of the clutch shoe is behind the support shaft in the direction of rotation of the crankshaft, so the clutch is brought into contact with the clutch outer member when the clutch is not connected. At times, the frictional force acts to swing the clutch shoe radially inward.
  • the change in the magnitude of the pressing force of the clutch against the clutch member is smaller than that of the leading type, and the pressing force, that is, the crankshaft caused by the increase in the load acting on the crankshaft, is increased.
  • the rotational speed of the clutch shaft due to the decrease in the rotational speed of the clutch shaft due to the decrease in the rotational speed of the clutch shaft that is, the increase in the rotational speed of the crankshaft due to the decrease in the load acting on the crankshaft.
  • the fluctuation width can be reduced.
  • the amount of judder can be reduced, and the exciting force exerted on the vehicle by the generated judder becomes small, and the occupant's discomfort due to the transmitted vibration is reduced. Also, when the engine speed is low when the clutch is connected, the weight of the clutch shoe is increased, or even when the size of the clutch shoe is increased, the amount of judder is reduced while securing the appropriate clutch capacity. can do.
  • the reciprocating internal combustion engine includes a driven member connected to a crankshaft and rotationally driven by a motor, and a one-way clutch interposed between the crankshaft and the driven member and having an outer race.
  • the arrester is detachably connected to a connection portion of the mouth of the alternator that rotates integrally with the crankshaft, and is extended radially outward from the connection portion.
  • a flywheel with adjustable mass can be constructed.
  • an additional flywheel can be provided while avoiding an increase in the size of the internal combustion engine, and rotation fluctuation of the crankshaft can be further suppressed.
  • the flywheel race that constitutes the flyhole can be attached to and detached from the mouth of the alternator, so that the rotational inertia mass of the flywheel can be easily adjusted by replacing only the flywheel.
  • the degree of suppression of the rotation fluctuation can be easily adjusted.
  • the outer race has a maximum width in the axial direction outside a predetermined radius, and the coupling portion, which is one end in the axial direction of the rotor of the AC generator, fits inside the predetermined radius. It can be configured to have recesses that are mated. By doing so, the rotational inertia mass can be increased, and the connecting portion, which is one end of the alternator in the axial direction of the rotor, is fitted into the recess of the outer race. The dimension in the axial direction when the outer race and the rotor are connected can be reduced by the amount of the fitting.
  • FIG. 1 is a main part configuration diagram of a reciprocating internal combustion engine that is an embodiment of the present invention.
  • FIG. 2 is a plan sectional view taken on a plane including the rotation axis of the crankshaft of the internal combustion engine of FIG.
  • FIG. 3 is an enlarged plan sectional view of a main part of FIG.
  • FIG. 4 is a view taken along the arrow IV when the side plate of the AC generator and the one-way clutch in FIG. 3 is removed.
  • FIG. 5 is a view on arrow V when the drive plate is removed in FIG.
  • FIG. 6 is a graph showing a comparison between the performance curve of the internal combustion engine of FIG. 1 and the performance curve of a conventional internal combustion engine.
  • a reciprocating internal combustion engine 1 to which the present invention is applied is a single cylinder overhead camshaft type four-cycle reciprocating internal combustion engine mounted on a motorcycle.
  • FIGS. 1 and 2 which are diagrams, a spark-ignition and water-cooled internal combustion engine 1
  • the cylinder 3, the cylinder head 4, and the head force bar (not shown) are sequentially assembled on the upper end of the crankcase 2 to be integrated.
  • a crankshaft 5 is rotatably supported on the crankcase 2 via a pair of main bearings 18 and 19, and a reciprocating motion of a piston 6 slidably fitted in the cylinder 3 is transmitted through a connecting rod 7. It is converted to the rotation of the crankshaft 5.
  • the left end of the crankshaft 5 extending leftward from the main bearing 18 has a driving sprocket 30, a star driven gear 62, and an alternator 31 running leftward from the main bearing 18 ⁇ 1.
  • a drive sprocket 30 is connected to the crankshaft 5 and a cam sprocket 33 is connected to a camshaft 32 rotatably supported by the cylinder head 4.
  • a timing chain 34 is stretched between the sprocket 33 and the camshaft 32 to rotate at a rotation speed of the crankshaft 5 of 12.
  • a cooling water pump 36 is provided at the left end of the camshaft 5 and is drivingly connected to the camshaft 32 via a magnetic coupling 35 using a permanent magnet.
  • the starter driven gear 62 as a driven member which is driven to rotate via the reduction gear 61 from the pinion gear 60a of the star motor 60 is connected to the inner peripheral surface of the boss portion 62a and the crank.
  • the shaft 5 is rotatably supported by the crankshaft 5 via a large number of needles 63 arranged on the outer peripheral surface.
  • the driven gear 62 is coupled to the crankshaft 5 via a well-known cam-type one-way clutch 64. That is, a later-described race 66 of the one-way clutch 64 is integrally rotated with the crankshaft 5 of the AC generator 31 by three ports B screwed into three screw holes H formed in the outer race 66. It is concluded on 31b.
  • the one-way clutch 64 includes a plurality of roller-like cams 67 having cam surfaces disposed between an annular boss portion 62a as an inner race 65 and an annular garage 66, and the cams 67 are mutually connected. It has a cam retainer 68 (Fig. 4) that holds it at a predetermined interval, a pair of side plates 69 and 70 that regulate the axial movement of each cam 67, and a spring 71 that is connected to each cam 67. ing.
  • the rotation of the star motor 60 is transmitted from the pinion gear 60a.
  • the power is transmitted to the driven gear 62 via the reduction gear 61, and further transmitted to the crankshaft 5 via the one-way clutch 64 and the rotor 31b, whereby the crankshaft 5 is driven to rotate.
  • the transmission of the rotation from the crankshaft 5 to the star driving gear 62 is The clutch is disengaged by the one-way clutch 64.
  • the AC generator 31 includes a stay 31a fixed to the generator cover 37, and a bowl-shaped rotor 31b integrally connected to the crankshaft 5 surrounding the outside of the stay 31a.
  • the mouth 31b is keyed in the rotational direction to the crankshaft 5, and has a base 31c fastened by a nut 38 in the axial direction, and a bowl-shaped riveted to a flange 31cl of the base 31c. And a magnet holding portion 31d.
  • the outer race 66 is detachably fastened by a port B to a flange portion 31cl as a connecting portion of the mouth 31b.
  • the outer race 66 is made larger in the radial direction than the conventional outer race by utilizing the space existing outside in the radial direction of the outer race of the conventional one-way clutch, and is more radially outer than the flange portion 31cl. Therefore, the arc race 66 extends to the vicinity of the inner peripheral surface 37a of the generator cover 37, and the outer peripheral surface 66a occupies a position close to the inner peripheral surface 37a.
  • the end face of the outer race 66 on the rotor 31b side in the axial direction has a step of a predetermined width in the axial direction at a position substantially equal to the radius from the rotation axis of the flange portion 31c1 having a predetermined radius. A step 66b is formed.
  • the outer race 66 has an outer portion 66c having a maximum width in the axial direction formed outside the stepped portion 66b over a radial range reaching the outer peripheral surface 66a, and is formed inside the stepped portion 66b.
  • an inner portion 66d whose axial width is smaller than that of the outer portion 66c by the amount of the step is formed over a radial range up to the vicinity of the inner peripheral surface 66e, and the step portion 66b and the inner portion are formed.
  • the portion 66d forms a concave portion 72 into which the flange portion 31cl is fitted.
  • the outer portion 66c of the outer race 66 is located radially outward from the flange portion 31cl, and utilizes the space in the axial direction existing between the one-way clutch 64 and the mouth 31b.
  • the width in the axial direction can be increased, thereby It is possible to increase the mass of the side portion 66c. Therefore, the outer race 66 can be attached to and detached from the rotor 31b of the AC generator 31 that rotates integrally with the crankshaft 5, so that the rotary inertia mass can be adjusted by replacing only the outer race 66, and A flywheel for suppressing rotation fluctuation of the shaft 5 is configured.
  • the outer periphery of the right shaft end of the crankshaft 5 extending in the direction shown in FIG. 2 from the main bearing 19 is rotatably supported by the crankshaft 5 coaxially with the rotation axis L of the crankshaft 5.
  • a cylindrical member 40 is provided, a drive gear 41 is formed on the main bearing 19 side of the cylindrical member 40, and a starting clutch 50 is provided at a right end of the cylindrical member 40.
  • the starting clutch 50 includes a drive plate 51 that rotates integrally with the crankshaft 5, and a bowl-shaped clutch member that is located outside the drive plate 51 and rotates integrally with the tubular member 40. And a centrifugal clutch having a member 52.
  • a clutch shaft 54 composed of three centrifugal weights is supported on three support shafts 53 fixed to the drive plate 51 so as to be swingable.
  • Each clutch shoe 54 has a lining 55 made of a friction material on its outer surface so that the center of gravity of the clutch shoe 54 is located on the delay side in the rotation direction A of the crankshaft 5 with respect to the position of the support shaft 53.
  • this centrifugal clutch is a so-called trailing centrifugal clutch.
  • the starting clutch 50 is configured to be connected when the engine speed N exceeds a predetermined speed.
  • the clutch 54 becomes radially outward around the support shaft 53 against the spring force of the clutch spring 56 due to the generated centrifugal force. Swings and comes into contact with the inner peripheral surface of the clutch gear 52 via the lining 55, and the connection of the starting clutch 50 is started, so that the drive plate 51 and the clutch outer member 52 eventually rotate integrally, The starting clutch 50 is completely connected.
  • the starting clutch 50 is a relatively large remote clutch capable of securing a clutch capacity capable of reliably transmitting torque even when the engine speed N of the internal combustion engine 1 is low.
  • the clutch shoe 54 is made larger than that of the conventional internal combustion engine or provided with a clutch shoe 54 having a larger mass.
  • the driven gear 43 which engages with the drive gear 41, is rotatably supported by a main shaft 44 of a manual transmission M, which is a constantly meshing type gear transmission. Drive-coupled via a damper to a clutch outer member of a transmission clutch C provided at a right end protruding rightward (as viewed in FIG. 2) from the crankcase 2.
  • the variable speed clutch C is a friction type multi-plate clutch having a number of clutch plates that are frictionally engaged or disengaged by a release mechanism operated by a driver.
  • the manual transmission M disposed behind the crankshaft 5 in the crankcase 2 includes a main shaft 44 provided with a main gear group 45 and a counter shaft 46 provided with a counter gear group 47, and a shift operation (not shown).
  • a shift operation (not shown).
  • the shift drum 48 When the shift drum 48 is rotated by the mechanism, the shift fork engaged with the cam groove on the outer periphery of the shift drum 48 appropriately moves on the support shaft in the left-right direction (see FIG. 2), and the main gear group corresponding to the gear shifting operation Gears are shifted by appropriately meshing the gears of the 45 gears and the gears of the gear group 47.
  • a centrifugal strainer 81 formed by being covered by a cover 80 is formed on one side of the drive plate 51 in the axial direction.
  • the centrifugal strainer 81 passes through an oil passage 82 communicating with a main gallery (not shown). Foreign matter mixed into the lubricating oil supplied to the crankshaft 5 is separated by the centrifugal force in the centrifugal strainer 81, and clean lubricating oil passes through an oil passage 83 formed inside the crankshaft 5, such as the crankpin 5a. Supplied to lubrication points. Therefore, the torque of the crankshaft 5 is transmitted from the starting clutch 50 to the driving gear 41 integrated with the tubular member 40, and further through the primary reduction mechanism including the driving gear 41 and the driven gear 43 and the transmission clutch C. , Transmitted to the manual transmission M, Torque, is reached transferred to the rear wheel W R through the counter Yujiku 46 from the secondary reduction mechanism (not shown), the rear wheel W R is rotatably driven (see FIG. 1).
  • a cylinder head 4 that forms a combustion chamber 8 with a piston 6 has an intake port 9 and an exhaust port respectively communicating with the combustion chamber 8.
  • An intake valve 11 that opens and closes an opening of the intake port 9 on the combustion chamber 8 side and an exhaust valve 12 that opens and closes an opening of the exhaust port 10 on the combustion chamber 8 side are provided.
  • the intake valve 11 and the exhaust valve 12 are driven to open at a predetermined opening / closing timing and lift amount in synchronization with the crankshaft 5 by a valve train including a camshaft 32 and a rocker arm (not shown). You.
  • an ignition plug 13 for igniting the air-fuel mixture in the combustion chamber 8 is attached to the cylinder head 4.
  • An intake pipe 14 is connected to an opening on the side of the cylinder head 4 on the upstream side of the intake port 9, and the fuel that supplies fuel toward the intake port 9 to form an air-fuel mixture is formed in the intake pipe 14. While an injection valve 16 is provided, an exhaust pipe 15 is connected to an opening on the side of the cylinder head 4 downstream of the exhaust port 10.
  • An electronic control unit (ECU) 20 which is a control means for controlling the fuel injection amount and the ignition timing, includes a speed sensor 21 for detecting an engine speed N, an opening sensor 22 for detecting a throttle valve opening, and a throttle.
  • a pressure sensor 23 for detecting the intake pressure downstream of the valve, a temperature sensor for detecting the cooling water temperature 2
  • a detection from the various sensors 21 to 25 which are detection means for detecting an operation state of the internal combustion engine 1 such as a gear position switch 25 and the like. Based on these detection signals, fuel is injected from the fuel injection valve 16 at an injection amount according to the engine operating state, and the timing of the generation of high voltage in the ignition coil 17 is controlled to cause ignition.
  • the plug 13 ignites at an ignition timing according to the engine operating state.
  • FIG. 6 which shows a performance curve at the time of full load of the internal combustion engine (when the throttle valve is fully opened)
  • the internal combustion engine 1 having a set displacement, for example, a displacement of 200 cc is shown in FIG.
  • the two-dot chain line when the engine speed N is 600 rpm, which is the first predetermined speed N1, the maximum illustrated value which is the maximum value of the indiced output of the internal combustion engine 1 It has output characteristics that generate output PM.
  • This maximum indicated output PM is based on the specifications of the members constituting the internal combustion engine 1 (intake and exhaust system passage diameter, intake valve 11 and exhaust valve 12 Diameter, lift, compression ratio, etc.).
  • a solid curve PL indicates a friction loss power curve of the internal combustion engine 1.
  • the required indicated output PS which is the maximum value of the indicated output required for the internal combustion engine 1 is obtained.
  • the second predetermined rotation speed N2 is determined in consideration of the displacement and the maximum indicated output PM, on condition that the required indicated output PS of the internal combustion engine 1 is obtained. Then, it is assumed that the internal combustion engine 1 is operated in a rotation speed range from a stop (the engine rotation speed N is 0 (zero)) to a first predetermined rotation speed N1 as an upper limit value. Assuming that the region is divided into three equal parts and divided into a low rotational speed region, a medium rotational speed region, and a high rotational speed region, in this embodiment, the second predetermined rotational speed N2 belongs to the medium rotational speed region of the internal combustion engine 1. It is the engine speed. This medium rotation speed range belongs to the high rotation speed range of the engine rotation speed range R (FIG. 2) in which the internal combustion engine 1 is operated.
  • FIG. 6 the output characteristic of a conventional reciprocating internal combustion engine having a displacement of approximately 1/2 of the displacement of the internal combustion engine 1 and generating the maximum indicated output Pm equal to the required indicated output PS
  • the friction loss power curve including the friction loss power PLm of the output Pm is shown by the broken line.
  • Figure 6 shows the following. That is, the engine speed at which the required indicated output PS of the internal combustion engine 1 is obtained, that is, the second predetermined speed N2 is equal to or less than 1/2 of the speed N3 when the maximum indicated output Pm is generated in the conventional internal combustion engine.
  • the friction loss power PLM of the required illustrated output PS of the internal combustion engine 1 is represented by 1 of the friction loss power PLm of the maximum indicated output Pm of the conventional internal combustion engine indicated by a broken line. 2 or less.
  • the internal combustion engine 1 has a smaller friction loss power PL among the illustrated outputs of the same magnitude than the conventional internal combustion engine.
  • the sliding portion where mechanical frictional loss occurs is the same, and an auxiliary machine drive loss is generated. Auxiliary equipment was identified.
  • the internal combustion engine 1 having the output characteristic of generating the maximum indicated output PM when the engine speed N is the first predetermined speed N1
  • the internal combustion engine 1 is lower than the first predetermined speed N1.
  • Rotational speed range (Medium rotational speed range when the engine rotational speed range when the first predetermined rotational speed N1 is set as the upper limit is divided into three, and divided into low rotational speed region, medium rotational speed region, and high rotational speed region
  • the output reduction means 26, which operates when the second predetermined rotation speed N2 belonging to the above-mentioned range is exceeded, is provided at the second predetermined rotation speed N2 which is significantly lower than the first predetermined rotation speed N1 at which the maximum indicated output PM is obtained.
  • the required indicated output PS which is the maximum indicated output required for the internal combustion engine 1 is obtained. Since the maximum indicated output is the required indicated output PS in the conventional internal combustion engine, the internal combustion engine 1 has an output characteristic capable of generating the maximum indicated output PM larger than the required indicated output PS.
  • the internal combustion engine has a larger displacement than conventional internal combustion engines.
  • the second predetermined rotational speed N2 at which the required illustrated output PS is generated is significantly lower than the engine speed N3 when the maximum illustrated output Pm is generated in the conventional internal combustion engine.
  • the friction loss power PLM of the output PS is significantly reduced as compared with the conventional internal combustion engine.
  • the friction loss power PL in the illustrated output is significantly reduced as compared with the conventional internal combustion engine. Accordingly, the net output increases accordingly, so that the net fuel consumption rate is greatly improved, and the fuel consumption rate of the internal combustion engine 1 is improved even when the operation frequency in the high rotation speed region is high. Further, since the internal combustion engine 1 is operated in the engine speed range R having a high speed range that is significantly lower than that of the conventional internal combustion engine, the internal combustion engine 1 operates at a speed higher than the engine speed range R. Unlike the conventional internal combustion engine, which consists of components that require high rigidity and high strength in order to withstand operation, Oka IJ Can be configured. As a result, the internal combustion engine 1 can be reduced in weight, Also in this respect, the fuel consumption rate is improved.
  • the output reduction means 26 cuts the fuel supplied to the internal combustion engine 1, so that the ignition timing is controlled to reduce the engine output. Therefore, fuel consumption is reduced and the fuel consumption rate is further improved. Further, although the internal combustion engine 1 is operated in the engine rotation speed range R having a high rotation speed range that is significantly lower than that of the conventional internal combustion engine, the starting clutch 50 provided on the crankshaft 5 and Since the AC generator 31 functions as a rotating inertial mass added to the crankshaft 5, rotation fluctuation of the crankshaft 5 having a low rotation speed is suppressed, and smooth operation is possible.
  • the starting clutch 50 is provided in the conventional internal combustion engine so that torque can be reliably transmitted even at a low rotational speed. Since the size of the centrifugal weight is made larger than that of the conventional internal combustion engine or a centrifugal weight having a larger mass than that of the conventional internal combustion engine, the rotational inertial mass can be increased, and the rotational fluctuation is further suppressed. You.
  • the starting clutch 50 is constituted by a trailing centrifugal clutch, the center of gravity of the clutch shoe 54 is on the side of the rotation direction A of the crankshaft 5 behind the support shaft 53, and the engine speed N is low.
  • the rotation speed of the crankshaft 5 due to the decrease in the rotation speed of the crankshaft 5 and the decrease in the pressing force of the clutch shaft 54 against the clutch member 52 due to the reduction in the rotation speed, that is, the reduction in the load acting on the crankshaft 5 The fluctuation range of the rotation speed due to the repetition of the rise of the vibration can be reduced, the judder can be reduced, and the generated excitation force on the vehicle by the judder becomes smaller, and the transmitted vibration The occupant's discomfort due to is reduced.
  • the second predetermined rotation speed N2 belongs to the medium rotation speed range, and the conventional rotation speed N2 Since the engine speed is less than half of the engine speed N3 when the maximum indicated output Pm is generated in the internal combustion engine, the internal combustion engine 1 is in the engine speed range R that belongs to a lower speed range than the conventional engine. Even when the vehicle is driven, it is possible to increase the weight of the clutch shoe 54 or increase the size of the clutch shoe 54 to secure an appropriate clutch capacity, and to reduce judder.
  • the outer race 66 of the one-way clutch 64 that couples the star driven gear 62 to the crankshaft 5 uses a space that exists radially outside the outer race of the conventional one-way clutch, and uses a space existing outside of the alternator 31.
  • the flywheel 31 is formed by being connected to the flange portion 31 cl of the overnight portion 31 b and extending radially outward from the flange portion 31 cl. The flywheel can be additionally provided while avoiding an increase in the size of the crankshaft, and the rotation fluctuation of the crankshaft 5 can be further suppressed.
  • the flywheel 66 constituting the flyhole can be attached to and detached from the rotor 31b of the AC generator 31, it is easy to adjust the rotational inertia mass of the flywheel by replacing only the flywheel race 66. Therefore, the degree of suppression of the rotation fluctuation can be easily adjusted.
  • the outer race 66 which has been enlarged in the radial direction, uses the space existing in the axial direction outside the radial direction of the flange portion 31c1 of the mouth 31b, and is larger than the predetermined radius at which the stepped portion 66b is formed. Also, since the outer portion 66c formed on the outside has the maximum width in the axial direction, the rotating inertial mass can be further increased while avoiding an increase in the size of the internal combustion engine 1.
  • the second predetermined rotation speed N2 belongs to the medium rotation speed range, and is not more than 1/2 of the engine rotation speed N3 when the maximum indicated output Pm is generated in the conventional internal combustion engine.
  • the engine speed range R which belongs to a lower speed range than before
  • the enlargement of the internal combustion engine 1 is avoided by using the outer race 66 of the one-way clutch 64.
  • the inner side of the predetermined radius and the axial direction of the rotor 31b of the alternator 31 The flange portion 31cl, which is one end portion, is fitted into the concave portion 72 of the outer race 66, and the axial direction when the outer race 66 is connected to the rotor 31b by the amount of the fitting (step difference).
  • the size of the internal combustion engine 1 can be prevented from increasing in size.
  • the second predetermined rotation speed N2 is a rotation speed belonging to the middle rotation speed range.However, the second predetermined rotation speed N2 may be less than the first predetermined rotation speed N1. As described above, it is determined on the basis of the displacement of the internal combustion engine 1 and the maximum indicated output PM. Also according to this, the degree of improvement in the fuel consumption rate and the reduction in the weight of the internal combustion engine 1 as compared with the above embodiment are also determined. However, the same effects as those of the above-described embodiment, such as an improvement in the net fuel consumption rate and a reduction in the weight of the internal combustion engine 1, are achieved.
  • a gear position switch 25 for detecting a shift position of the manual transmission M is provided, and the second predetermined rotation speed N2 has a shift speed from the first speed to the fourth speed.
  • the setting may be made so as to correspond to each shift speed of the transmission M.
  • the second predetermined rotation speed N2 is the highest in the first speed
  • the second predetermined rotation speed N2 in the first speed is the highest
  • the second predetermined rotational speed at each shift speed is set so as to gradually decrease as the gear ratio decreases.
  • the second predetermined number of revolutions N2 is set corresponding to each gear position of the manual transmission M, so that the driving force for each gear position is ensured, and that By changing the second predetermined rotation speed N2, the driving force at the time of shift-up can be arbitrarily changed, thereby smoothing the driving force change at the time of up-shifting and realizing smooth acceleration operation.
  • the output reduction means 26 controls the fuel injection valve 16 to perform the fuel cut.
  • the output reduction means 26 may reduce the fuel injection amount.
  • the engine output of the internal combustion engine 1 may be reduced by greatly retarding or advancing the ignition, or by stopping or thinning out the ignition. .
  • the output reduction when exceeding the second predetermined rotation speed N2 is as shown in FIG.
  • the speed is slower than when the fuel cut is executed, and in these cases, the maximum rotation speed can be regulated by the fuel cut or the stop of the ignition.
  • the second predetermined rotation speed N2 is a low rotation speed in the engine rotation speed range when the first predetermined rotation speed N1 is set to the upper limit.
  • the engine speed N belonging to the range can also be used.
  • the internal combustion engine 1 may be a multi-cylinder, and the vehicle may be a vehicle other than a motorcycle.
  • the recess 72 was formed in the outer race 66.
  • the recess 72 may not be provided, and the predetermined radius is the radius of the flange 31cl of the base 31c of the rotor 31b.
  • the radius of the part 31 cl may be larger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Description

明 細 書 往復動内燃機関およびその運転方法 技 術 分 野
本発明は、 機関回転数が第 1所定回転数のとき最大図示出力を発生する出力特 性を有する往復動内燃機関において、 前記第 1所定回転数未満の機関回転数にお いて必要図示出力を得るようにした往復動内燃機関およびその運転方法に関する 背 景 技 術
従来、 所定の排気量を有する往復動内燃機関において、 内燃機関の全負荷時 ( またはスロットル弁全開時) の性能曲線で表される図示出力(indicated output) の最大値、 すなわち最大図示出力は、 吸 ·排気系の通路径、 吸 ·排気弁の径およ びリフト量、 圧縮比等の、 内燃機関を構成する部材の諸元に依存して決定される 。 そして、 このようにして決定される最大図示出力は内燃機関の排気量が大きい ほど大きくなる。 また、 排気量の異なる複数の内燃機関を対比すると、 同じ大き さの図示出力を発生するときの機関回転数は、 内燃機関の排気量が大きいほど低 くなる。 また、 最大図示出力が発生する機関回転数は、 内燃機関が運転される機 関回転速度域のうちの高回転速度域にあり、 この最大図示出力が、 該内燃機関に 要求されている図示出力の最大値である必要図示出力となっている。
また、 車両用内燃機関では、 所定の機関回転数に達したときに、 変速機等から 構成される動力伝達装置にクランク軸のトルクを伝達する発進クラツチが設けら れる。 この発進クラッチとして、 支持軸に揺動自在に支持された遠心ウェイトか らなるクラッチシユーを有する遠心式クラッチが使用される場合、 クラッチシュ 一の重心が、 クランク軸の回転方向で支持軸よりも進み側に位置する、 いわゆる リーディング式の遠心式クラッチが使用されていた。 そして、 リーディング式の 遠心式クラッチでは、 クラッチァウタ部材とクラッチシユーとの間の摩擦力がク ラッチシユーを径方向外方に揺動させるように作用する (以下、 セルフロック作 用という。 ) ため、 クラッチでのトルク伝達性能、 すなわちクラッチ容量を高め ることができる利点がある。
さらに、 内燃機関のクランク軸に結合された交流発電機のロータは、 クランク 軸の回転変動を抑制するためのフライホイールと一体に形成されている。
ところで、 往復動内燃機関には、 クランク軸、 クランクピン、 ピストン、 動弁 装置等の各摺動部における機械的摩擦損失と、 オイルポンプ、 発電機等の各種補 機を駆動するための補機駆動損失とからなる摩擦損失動力が発生する。 したがつ て、 該内燃機関の正味出力は、 図示出力から摩擦損失動力を差し引いた値となる 。 そして、 この摩擦損失動力は機関回転数の増加に応じて増加することから、 図 示出力は機関回転数が高くなるほど増加するものの、 同時に摩擦損失動力も増加 するため、 最大図示出力が発生する機関回転数が含まれる高回転速度域において 、 単位正味出力および単位時間当たりの燃料消費率である正味燃料消費率を大幅 に改善することは困難であり、 前記高回転速度域での運転頻度が高い内燃機関で は燃料消費率が悪化していた。
また、 リーディング式の遠心式クラッチでは、 非接続状態からのクラッチの接 続時に、 セルフロック作用により、 クラッチシユーの、 クラッチァゥ夕に対する 押圧力の急増、 すなわちクランク軸に作用する負荷の急増に起因するクランク軸 の回転数の低下と、 その回転数の低下によるクラッチシユーのクラッチァウタ部 材に対する押圧力の減少、 すなわちクランク軸に作用する負荷の減少に起因する クランク軸の回転数の上昇とを繰り返す結果、 ジャダ一と呼ばれる振動が発生し 易く、 この振動が車体を通じて乗員に伝わっていた。 そして、 低い回転速度域を その運転域とする内燃機関では、 発進クラッチが接続状態となる機関回転数も低 くなるため、 適正なクラッチ容量を確保するためには、 クラッチシユーの重量を 増加させたり、 クラッチシユーを大型化する必要があるが、 このことは、 ジャダ 一による車体に対する加振力を大きくして、 伝達される振動が乗員に不快感を与 えることになる。
さらに、 フライホールによるクランク軸の回転変動の抑制の程度を調整するた めには、.フライホイールと共に該フライホイールと一体の交流発電機を交換する 必要があるため、 簡単な調整ができない難点があり、 また低い回転速度域をその 運転域とする内燃機関では、 回転変動を抑制する更なるフライホイールが必要と なることがあるが、 そのような場合には、 新たなフライホイールを設けるスぺ一 スを確保する必要から、 内燃機関が大型化することがあった。
本発明は、 このような事情に鑑みてなされたものであり、 内燃機関が運転され る機関回転速度域のうちの高回転速度域が、 最大図示出力が発生する機関回転数 よりも低い回転数に設定されると共に、 この高回転速度域において必要図示出力 を得ることにより、 従来と同等の大きさの図示出力における摩擦損失動力を従来 よりも減少させて正味出力を増加させ、 正味燃料消費率を改善する往復動内燃機 関の運転方法を提供することを目的とする。
また、 本発明は、 上記往復動内燃機関の運転方法を行う往復動内燃機関を提供 することを目的とし、 さらに、 当該往復動内燃機関において、 遠心式クラッチか らなる発進クラツチの接続時に発生するジャダ一を低減すること、 および内燃機 関を大型化することなく、 回転慣性質量の調整を容易に行えるフライホイール構 造を得ることを目的とする。
発 明 の 開 示
本発明の一態様によれば、 機関回転速度が第 1所定回転数のとき最大図示出力 を発生する出力特性を有する往復動内燃機関の運転方法であって、 機関回転速度 を検出する回転速度センサおよび機関出力を低下させる出力低下手段を有する往 復動内燃機関を与えるステップ、 および回転速度センサにより検出された機関回 転速度が第 1所定回転数未満の第 2所定回転数を越えたとき、 出力低下手段によ り、 第 2所定回転数にて内燃機関の必要図示出力が得られるように、 当該内燃機 関の出力を低下させるステップ、 とからなる往復動内燃機関の運転方法が提供さ れる。
この発明によれば、 第 2所定回転数を越えたとき作動する出力低下手段により 、 最大図示出力が得られる第 1所定回転数よりも低い第 2所定回転数にて、 内燃 機関に要求されている最大の図示出力である必要図示出力が得られる。 そして、 従来の往復動内燃機関では、 最大図示出力が前記必要図示出力となっているため 、 本発明の内燃機関は、 前記必要図示出力よりも大きな最大図示出力を発生し得 る出力特性を有し、 前記従来の内燃機関よりも排気量が大きな内燃機関となって いる。 それゆえ、 前記必要図示出力が発生する第 2所定回転数は、 従来の内燃機 関において最大図示出力が発生するときの機関回転数よりも低い回転数となって 、 前記必要図示出力のうちの摩擦損失動力は、 従来の内燃機関よりも減少する。 したがって、 本発明によれば、 内燃機関がその回転速度域のうちの高回転速度域 で運転されるときにも、 図示出力のうちの摩擦損失動力は、 従来の内燃機関より も減少して、 正味出力が増加する。 また、 本発明によれば、 内燃機関は、 従来の 内燃機関に比べて低い高回転速度域を有する機関回転速度域で運転されるため、 機関回転速度域よりも高い回転速度域での運転にも耐えるようにするために高剛 性、 高強度が要求される構成部品から構成される前記従来の内燃機関とは異なり 、 剛性および強度が比較的低い構成部品により内燃機関を構成することができる このように、 前記必要図示出力が、 従来の内燃機関に比べて低い機関回転数で 得られるため、 本発明により内燃機関が運転される回転速度域のうちの高回転速 度域においても、 図示出力のうちの摩擦損失動力が減少して、 正味出力が増加し 、 それにより、 正味燃料消費率が改善されて、 前記高回転速度域での運転頻度が 高い内燃機関の燃料消費率が改善される。 また、 本発明では、 内燃機関が、 従来 の内燃機関に比べて低い高回転速度域を有する機関回転速度域で運転されるため 、 剛性および強度が比較的低い構成部品により内燃機関を構成することができ、 それにより、 内燃機関の軽量化ができ、 この点でも燃料消費率が改善される。 上記往復動内燃機関の運転方法において、 第 1所定回転数を上限値としたとき の機関回転速度域を三等分して低回転速度域、 中回転速度域および高回転速度域 に分けた場合、 前記第 2所定回転数は、 前記中回転速度域または低回転速度域に 属する回転数とすることができる。
これによつて、 機関回転速度は、 従来の内燃機関の最大図示出力が発生すると きの機関回転速度と比べても大幅に低い回転速度となり、 したがって第 2所定回 転数が含まれる高回転速度域における図示出力のうちの摩擦損失動力も、 従来の 内燃機関に比べて大幅に減少して、 その分、 正味出力が増加する。 また、 内燃機 関が、 従来の内燃機関に比べて大幅に低い高回転速度域を有する機関回転速度域 で運転されるため、 さらに剛性および強度が低い構成部品により内燃機関を構成 することができる。
前記内燃機関は複数の変速段をもつマニュアル変速機に連結し、 第 2所定回転 数は、 マニュアル変速機のそれぞれの変速段に対応して設定することができる。 このように、 マニュアル変速機の各変速段に対応して第 2所定回転数が設定され るので、 変速段毎の駆動力が確保されたうえで、 各変速段における第 2所定回転 数を変更することによりシフトアツプ時の駆動力を任意に変更できる。 その結果 、 シフトアップ時の駆動力変化を滑らかにして、 スムーズな加速運転を実現でき る。 さらに、 減速比の異なるギヤを有する車種に対する駆動力の確保およびシフ トアツプ時の駆動力変化の調整も容易になる。
出力低下手段は、 内燃機関への燃料供給を停止することにより行うことができ る。 このようにすることによって、 例えば点火特性を制御して機関出力を低下さ せる場合に比べて、 燃料消費が少なくなる。 なお、 出力低下手段は、 点火特性を 変化または制御することにより行うこともできる。 点火特性の変化または制御は 、 点火時期を最適時期から遅角または進角させるか、 または点火の停止または間 引き点火を行うことを含む。
内燃機関は、 機関回転数を検出する回転速度センサ、 機関出力を低下させる出 力低下手段、 および制御手段を備えるようにし、 この制御手段は、 前記回転速度 センサにより検出された機関回転数が前記第 1所定回転数未満の第 2所定回転数 を越えたとき、 前記出力低下手段により前記内燃機関の機関出力を低下させるよ うにすることができる。
前記内燃機関は車両用内燃機関とし、 該内燃機関は、 クランク軸と、 クランク 軸に結合されかつクラッチァウタ部材を有する発進クラッチとを備えるようにし 、 この発進クラッチは、 所定の機関回転速度を越えたときクラッチァウタ部材に 当接する揺動自在な遠心ウェイトからなるクラッチシユーを有するトレ一リング 式遠心式クラッチとすることができる。 トレ一リング式遠心式クラッチでは、 クラッチシユーの重心が、 クランク軸の 回転方向で支持軸よりも遅れ側にあるため、 クラツチの非接続状態からクラッチ シュ一がクラッチアウタ部材に当接するクラッチ接続時に、 摩擦力がクラッチシ ユーを径方向内方に揺動させるように作用する。 したがって、 クラッチシュ一の 、 クラッチァゥ夕部材に対する押圧力の大きさの変化は、 リーディング式のもの に比べて小さくなり、 その押圧力の増加、 すなわちクランク軸に作用する負荷の 増加に起因するクランク軸の回転数の低下と、 その回転数の低下によるクラッチ シユーのクラッチァウタ部材に対する押圧力の減少、 すなわちクランク軸に作用 する負荷の減少に起因するクランク軸の回転数の上昇との繰り返しによる回転数 の変動幅を小さくすることができる。
その結果、 ジャダ一を低減することができ、 発生するジャダ一による車両に対 する加振力は小さいものとなって、 伝達される振動による乗員の不快感が軽減さ れる。 そして、 クラッチ接続時の機関回転数が低い場合にクラッチシユーの重量 を増加させ、 またはクラッチシュ一を大型化させたときにも、 適正なクラッチ容 量を確保したうえで、 ジャダ一を低減することができる。
往復動内燃機関は、 クランク軸に連結され、 かつス夕一夕モータにより回転駆 動される被動部材と、 クランク軸と前記被動部材との間に介在し、 ァウタレース を有する一方向クラッチとを備えるようにし、 ァゥタレ一スは、 前記クランク軸 と一体に回転する交流発電機の口一夕の結合部に着脱可能に結合する共に該結合 部よりも径方向外方に延長させ、 これにより回転慣性質量を調整可能なフライホ —ルを構成することができる。
その結果、 内燃機関の大型化を回避しつつフライホイールを追加して設けるこ とができて、 クランク軸の回転変動を一層抑制することができる。 しかも、 フラ ィホールを構成するァゥ夕レースは交流発電機の口一夕に着脱可能であるので、 フライホイールの回転慣性質量の調整は、 ァゥタレ一スのみを交換することによ り簡単にできて、 回転変動の抑制の程度を容易に調整することができる。
ァウタレースは、 所定半径よりも外側に軸方向での最大幅を有し、 前記所定半径 よりも内側に前記交流発電機のロー夕の軸方向での一端部である前記結合部が嵌 合される凹部を有するように構成できる。 そのようにすることによって、 回転慣 性質量を大きくすることができ、 しかも、 交流発電機のロー夕の軸方向での一端 部である結合部が、 ァウタレースの凹部に嵌合されるので、 その嵌合している分 、 ァウタレースとロータとを結合したときの軸方向での寸法を小さくすることが できる。
その結果、 内燃機関の大型化を回避したうえで、 回転慣性質量を大きくするこ とができて、 回転変動の抑制に効果的なフライホイールを構成できる。 しかも、 所定半径よりも内側で、 交流発電機の口一夕の軸方向での一端部である結合部が ァゥ夕レースの凹部に嵌合されるので、 ァウタレースとロータとを結合したとき の軸方向での寸法が小さくなつて、 この点でも内燃機関の大型化を回避できる。 なお、 この明細書において、 「軸方向」 とは、 クランク軸の回転軸線の方向を 意味し、 「径方向」 とは、 クランク軸の回転軸線を中心とする放射方向を意味す る。
図 面 の 簡 単 な 説 明
図 1は、 本発明の実施例である往復動内燃機関の要部構成図である。
図 2は、 図 1の内燃機関のクランク軸の回転軸線を含む平面での平断面図であ る。
図 3は図 2の要部拡大平断面図である。
図 4は、 図 3において、 交流発電機および一方向クラッチのサイドプレートを 外したときの I V矢視図である。
図 5は、 図 2において、 ドライブプレ一トを外したときの V矢視図である。 図 6は、 図 1の内燃機関の性能曲線と従来の内燃機関の性能曲線とを対比して 示すグラフである。
発明を実施するための最良の形態
以下、 本発明の実施例を図 1ないし図 6を参照して説明する。
図 1に示すように、 本発明が適用される往復動内燃機関 1は、 自動 2輪車に搭 載される、 単気筒の頭上カム軸式 4サイクル往復動内燃機関であり、 その要部構 成図である図 1および図 2を参照すると、 火花点火式、 かつ水冷式の内燃機関 1 は、 クランクケース 2の上端に、 シリンダ 3、 シリンダヘッド 4およびヘッド力 バ一 (図示されず) が順次組み付けられて一体とされる。 クランクケース 2には クランク軸 5が 1対の主軸受 18, 19を介して回転自在に支持され、 シリンダ 3内 に摺動自在に嵌合されたピストン 6の往復動が、 コンロッド 7を介してクランク 軸 5の回転動に変換される。
図 2において、 クランク軸 5の、 主軸受 18から左方に延びる左軸端部には、 主 軸受 18^1から左方に向かって駆動スプロケット 30、 スター夕ドリブンギヤ 62およ び交流発電機 31が順次設けられる。 クランク軸 5には駆動スプロケット 30がー体 に結合され、 またシリンダへッド 4に回転自在に支持されたカム軸 32にカムスプ ロケット 33がー体に結合されており、 駆動スプロケット 30と力ムスプロケット 33 との間には、 タイミングチェーン 34が掛け渡されて、 カム軸 32が、 クランク軸 5 の 1 2の回転数で回転駆動される。 さらに、 カム軸 5の左端には永久磁石を使 用した磁気カップリング 35を介してカム軸 32と駆動結合される冷却水ポンプ 36が 設けられる。
図 3および図 4を併せて参照すると、 スター夕モータ 60のピニオンギヤ 60aか ら、 減速ギヤ 61を介して回転駆動される被動部材としてのスタータドリブンギヤ 62は、 そのボス部 62aの内周面とクランク軸 5の外周面に配置された多数の二一 ドル 63を介して、 クランク軸 5に回転自在に支持される。 そして、 ス夕一夕ドリ ブンギヤ 62は、 周知のカム型の一方向クラツチ 64を介してクランク軸 5に結合さ れる。 すなわち、 一方向クラッチ 64の後述するァウタレース 66は、 ァウタレース 66に形成された 3つのねじ孔 Hに螺合される 3本のポルト Bにより、 交流発電機 31の、 クランク軸 5と一体に回転する口一夕 31bに締結される。
一方向クラッチ 64は、 インナレース 65としての円環状のボス部 62aと、 円環状 のァゥタレ一ス 66との間に配置されたカム面を有する多数のころ状のカム 67と、 カム 67相互を所定間隔に保持するカム保持器 68 (図 4 ) と、 各カム 67の軸方向で の移動を規制する 1対のサイドプレート 69, 70と、 各カム 67に連結されたスプリ ング 71とを備えている。
これにより、 始動時には、 スター夕モータ 60の回転が、 ピニオンギヤ 60aから 減速ギヤ 61を介してス夕一夕ドリブンギヤ 62に伝達され、 さらに一方向クラッチ 64およびロータ 31bを介してクランク軸 5に伝達されて、 クランク軸 5が回転駆 動される。 そして、 内燃機関 1が自力回転を始めて、 クランク軸 5の回転数がス ター夕ドリブンギヤ 62の回転数を上回るようになったとき、 クランク軸 5からス 夕一夕ドリブンギヤ 62への回転の伝達は、 一方向クラッチ 64により遮断される。 また、 交流発電機 31は、 発電機カバー 37に固定されたステ一夕 31aと、 該ステ 一夕 31aの外方を囲んでクランク軸 5に一体に結合された椀状のロータ 31bとを備 える。 口一タ 31bは、 クランク軸 5に対して、 回転方向にキー結合されると共に 、 軸方向にナツ卜 38により締結される基部 31cと、 該基部 31cのフランジ部 31clに リベット結合される椀状の磁石保持部 31dとを有する。 そして、 ァウタレース 66 は、 口一夕 31bの結合部としてのフランジ部 31clに、 ポルト Bにより着脱可能に 締結される。
ところで、 ァウタレース 66は、 従来の一方向クラッチのァウタレースの径方向 外方に存していたスペースを利用して、 従来のァウタレースよりも径方向に大き くされて、 フランジ部 31clよりも径方向外方に延びており、 したがって、 ァゥ夕 レース 66は、 発電機カバー 37の内周面 37a付近まで延びて、 その外周面 66aが内周 面 37aに近接する位置を占める。 また、 ァウタレース 66の、 軸方向でのロータ 31b 側の端面には、 所定半径であるフランジ部 31 c 1の回転軸線しからの半径にほぼ等 しい位置に、 軸方向に所定幅の段差を有する段差部 66bが形成される。 そして、 ァウタレース 66には、 該段差部 66bの外側に、 ァウタレース 66の、 軸方向での幅 が最大となる外側部分 66cが、 外周面 66aに達する径方向範囲にわたって形成され 、 段差部 66bの内側に、 軸方向での幅が外側部分 66cのそれよりも前記段差の分小 さくされた内側部分 66dが、 内周面 66eの近傍にまでの径方向範囲にわたって形成 され、 この段差部 66bおよび内側部分 66dにより、 フランジ部 31clが嵌合される凹 部 72が形成される。
このように、 ァウタレース 66の外側部分 66cは、 フランジ部 31clよりも径方向 外方に位置すると共に、 一方向クラッチ 64と口一夕 31bとの間に存する軸方向で のスペースを利用して、 軸方向での幅を大きくすることができ、 それによつて外 側部分 66cの質量を大きくすることが可能となる。 したがって、 ァウタレース 66 は、 クランク軸 5と一体に回転する交流発電機 31のロータ 31bに着脱可能とされ ることで、 ァウタレース 66のみを交換することにより回転慣性質量の調整が可能 であり、 かつクランク軸 5の回転変動を抑制するためのフライホイールを構成す る。
一方、 クランク軸 5の、 主軸受 19から図 2においてお方に延びる右軸端部の外 周には、 クランク軸 5の回転軸線 Lと同軸に、 クランク軸 5に回転自在に支持さ れた筒状部材 40が設けられ、 該筒状部材 40の主軸受 19側には駆動ギヤ 41がー体に 形成され、 筒状部材 40の右側の先端部には発進クラツチ 50が設けられる。
図 2および図 5を参照すると、 発進クラッチ 50は、 クランク軸 5と一体に回転 するドライブプレート 51と、 ドライブプレート 51の外側に位置して筒状部材 40と 一体に回転する椀状のクラッチァゥ夕部材 52とを有する遠心式クラッチからなる 。 該ドライブプレート 51に固定された 3つの支持軸 53には、 3つの遠心ウェイト からなるクラッチシユー 54が、 それぞれ揺動自在に支持されている。 各クラッチ シュ一 54はその外側面に摩擦材からなるライニング 55を有しており、 クラッチシ ユー 54の重心が支持軸 53の位置よりもクランク軸 5の回転方向 Aで遅れ側に位置 するように配置されて、 発進クラッチ 50の接続時に、 摩擦力がクラッチシュ一 54 を径方向内方に揺動させるように作用する。 よって、 この遠心式クラッチは、 い わゆるトレーリング式の遠心式クラッチとなっている。
発進クラッチ 50は、 機関回転数 Nが所定の回転数を越えたときに接続するよう に構成される。 すなわち、 機関回転数 Nが所定の機関回転数を越えたとき、 クラ ツチシュ一 54は、 発生する遠心力により、 クラッチスプリング 56のばね力に抗し て支持軸 53を中心に径方向外方に揺動し、 ライニング 55を介してクラッチァゥ夕 52の内周面に当接して、 発進クラッチ 50の接続が開始され、 やがてドライブプレ ート 51とクラッチァウタ部材 52とが一体に回転するようになり、 発進クラッチ 50 が完全接続状態になる。
そして、 発進クラッチ 50は、 内燃機関 1の機関回転数 Nが低回転数のときにも 確実なトルク伝達が可能なクラツチ容量を確保することが可能な比較的大きな遠 心力がクラッチシユー 54に発生するように、 従来の内燃機関のそれよりも大型の クラッチシユー 54とされるか、 または大きな質量を持つクラッチシュ一 54を備え たものとされる。
前記駆動ギヤ 41と嚙合する被動ギヤ 43は、 常時嚙み合い式のギヤ変速機である マニュアル変速機 Mのメイン軸 44に回転自在に支持され、 該被動ギヤ 43は、 メイ ン軸 44の、 クランクケース 2から右方 (図 2で見て) に突出した右端部に設けら れた変速クラッチ Cのクラッチァウタ部材にダンパを介して駆動連結される。 変 速クラッチ Cは、 運転者により操作されるリレ一ズ機構により摩擦接合または接 合解除がなされる多数のクラッチ板を有する摩擦式多板クラッチである。 多数の クラッチ板がスプリング力により摩擦接合したとき、 クランク軸 5のトルクが、 クラッチァウタ部材を介してメイン軸 44と一体に結合されたクラッチインナ部材 に伝達されて、 変速クラッチ Cが接続状態となり、 一方、 多数のクラッチ板の摩 擦接合が解除されたとき、 クラッチアウタ部材からクラッチィンナ部材へのトル クの伝達が断たれて、 変速クラッチ Cが非接続状態となる。
クランクケース 2内でクランク軸 5の後方に配置される前記マニュアル変速機 Mは、 メインギヤ群 45が設けられたメイン軸 44およびカウンタギヤ群 47が設けら れカウンタ軸 46を備え、 図示されない変速操作機構によりシフトドラム 48が回転 されると、 シフトドラム 48の外周のカム溝に係合したシフトフォークが支持軸上 で左右方向 (図 2において) に適宜移動して、 変速操作に対応したメインギヤ群 45のギヤとカウン夕ギヤ群 47のギヤとが適宜嚙み合って変速が行われる。
なお、 ドライブプレ一ト 51の軸方向の一側には、 カバー 80により覆われて形成 される遠心ストレーナ 81が形成され、 メインギャラリ (図示されず) に連通する 油路 82を経て遠心ストレーナ 81に供給された潤滑油に混入している異物が、 遠心 ストレーナ 81において、 遠心力により分離されて、 清浄な潤滑油がクランク軸 5 の内部に形成された油路 83を経てクランクピン 5a等の潤滑箇所に供給される。 それゆえ、 クランク軸 5のトルクは、 発進クラッチ 50から筒状部材 40と一体の 駆動ギヤ 41に伝達され、 さらに、 駆動ギヤ 41および被動ギヤ 43からなる 1次減速 機構および変速クラッチ Cを介して、 マニュアル変速機 Mに伝達され、 変速後の トルクが、 カウン夕軸 46から 2次減速機構 (図示されず) を介して後輪 WRに伝 達されて、 後輪 WRが回転駆動される (図 1参照) 。
図 1および図 2を再度参照すると、 内燃機関 1において、 ピストン 6との間に 燃焼室 8を形成するシリンダへッド 4には、 燃焼室 8にそれぞれ連通する吸気ポ ート 9および排気ポート 10が設けられ、 さらに吸気ポート 9の燃焼室 8側の開口 を開閉する吸気弁 1 1および排気ポート 10の燃焼室 8側の開口を開閉する排気弁 12 が設けられる。 吸気弁 11および排気弁 12は、 カム軸 32およびロッカアーム (図示 されず) 等から構成される動弁装置により、 クランク軸 5と同期して、 所定の開 閉時期およびリフト量で開弁駆動される。 さらに、 燃焼室 8に臨んで、 燃焼室 8 内の混合気に点火するための点火栓 13がシリンダへッド 4に装着される。
吸気ポート 9の上流側であるシリンダへッド 4側面の開口には吸気管 14が接続 され、 該吸気管 14には、 吸気ポート 9に向かって燃料を供給して混合気を形成す る燃料噴射弁 16が設けられる一方、 排気ポ一ト 10の下流側であるシリンダへッド 4側面の開口には排気管 15が接続される。
燃料噴射量と点火時期とを制御する制御手段である電子制御ュニット (E C U ) 20には、 機関回転数 Nを検出する回転数センサ 21、 スロットル弁開度を検出す る開度センサ 22、 スロットル弁下流の吸気圧力を検出する圧力センサ 23、 冷却水 温を検出する温度センサ 2 ギヤ位置スィツチ 25等の内燃機関 1の運転状態を検 出する検出手段である前記各種センサ 21〜25からの検出信号が入力され、 これら 検出信号に基づいて、 燃料噴射弁 16からは、 機関運転状態に応じた噴射量で燃料 が噴射され、 さらに点火コイル 17での高電圧の発生時期が制御されて、 点火栓 13 により、 機関運転状態に応じた点火時期で点火が行われる。
ここで、 内燃機関の全負荷時 (スロットル弁全開時) の性能曲線を示す図 6を 参照すると、 設定された排気量、 例えば 2 0 0 c cの排気量を有する内燃機関 1 は、 図 6中二点鎖線で示されるように、 機関回転数 Nが第 1所定回転数 N1である 6 0 0 0 r p mのときに、 内燃機関 1の図示出力(ind i cated output)の最大値で ある最大図示出力 PMが発生する出力特性を有している。 この最大図示出力 PMは、 内燃機関 1を構成する部材の諸元 (吸 ·排気系の通路径、 吸気弁 11 ·排気弁 12の 径およびリフト量、 圧縮比等) により決まるものである。 なお、 図 6において、 実線の曲線 P Lは、 内燃機関 1の摩擦損失動力曲線を示している。
そして、 本発明では、 この第 1所定回転数 N1で最大図示出力 PMを発生する出力 特性を有する内燃機関 1において、 第 1所定回転数 N1未満の第 2所定回転数 N2、 例えば 3 5 0 0 r p mにおいて、 内燃機関 1に要求されている図示出力の最大値 である必要図示出力 PSが得られるようにする。 このためには、 回転数センサ 21 ( 図 1 ) で検出される機関回転数 Nが第 2所定回転数 N2を越えたとき、 回転数セン サ 21から電子制御ュニット 20に信号が入力され、 この信号に応じて一連の演算処 理が行われて、 出力低下手段 26から、 燃料噴射弁 16の駆動を停止する信号が燃料 噴射弁 16に出力され、 燃料噴射弁 16からの燃料の供給がカットされ、 その結果、 内燃機関 1の出力が低下させられる。
上記第 2所定回転数 N2は、 内燃機関 1の必要図示出力 PSが得られる回転数であ ることを条件として、 排気量および最大図示出力 PMを考慮して決められる。 そし て、 内燃機関 1が、 停止時 (機関回転数 Nが 0 (ゼロ) ) から上限値としての第 1所定回転数 N1までの回転速度域で運転されると仮定し、 また、 該回転速度域を 三等分して、 低回転速度域、 中回転速度域および高回転速度域に分けたとして、 この実施例では、 第 2所定回転数 N2は、 内燃機関 1の中回転速度域に属する機関 回転数とされる。 この中回転速度域は、 内燃機関 1が運転される機関回転速度域 R (図 2 ) のうちの高回転速度域に属する。
次に、 前述のように構成された実施例の作用および効果について説明する。 図 6を参照すると、 内燃機関 1の排気量の略 1 / 2の排気量をもち、 かつ必要 図示出力 PSと等しい最大図示出力 Pmを発生する従来の往復動内燃機関の出力特性 と、 最大図示出力 Pmのうちの摩擦損失動力 PLmを含む摩擦損失動力曲線とがそれ ぞれ破線で示されている。 図 6からは次のことがわかる。 すなわち、 内燃機関 1 の必要図示出力 PSが得られる機関回転数、 すなわち第 2所定回転数 N2は、 前記従 来の内燃機関において最大図示出力 Pmが発生するときの回転数 N3の 1 / 2以下で あり、 また、 内燃機関 1の必要図示出力 PSのうちの摩擦損失動力 PLMは、 破線で 示される前記従来の内燃機関の最大図示出力 Pmのうちの摩擦損失動力 PLmの 1 2以下である。 そして、 内燃機関 1と前記従来の内燃機関とを比較すると、 同じ 大きさの図示出力のうちの摩擦損失動力 PLは、 内燃機関 1の方が従来の内燃機関 より少なくなつている。 なお、 図 6の摩擦損失動力 PLのデータを得るに当たり、 内燃機関 1と前記従来の内燃機関とにおいて、 機械的摩擦損失が生じる摺動部は 同じ箇所とされ、 また補機駆動損失を生じさせる補機は同一とされた。
このように、 機関回転数 Nが第 1所定回転数 N1のとき最大図示出力 PMを発生す る出力特性を有する内燃機関 1において、 内燃機関 1が第 1所定回転数 N1未満で あって、 中回転速度域 (第 1所定回転数 N1を上限値としたときの機関回転速度域 を三等分して低回転速度域、 中回転速度域および高回転速度域に分けたときの中 回転速度域) に属する第 2所定回転数 N2を越えたとき作動する出力低下手段 26に より、 最大図示出力 PMが得られる第 1所定回転数 N1よりも大幅に低い第 2所定回 転数 N2にて、 内燃機関 1に要求されている最大の図示出力である必要図示出力 PS が得られる。 そして、 前記従来の内燃機関では最大図示出力 が必要図示出力 PS となっているため、 内燃機関 1は、 必要図示出力 PSよりも大きな最大図示出力 PM を発生し得る出力特性を有することから、 前記従来の内燃機関よりも排気量が大 きな内燃機関となっている。 そして、 必要図示出力 PSが発生する第 2所定回転数 N2は、 前記従来の内燃機関において最大図示出力 Pmが発生するときの機関回転数 N3と比べても大幅に低い回転数であり、 必要図示出力 PSのうちの摩擦損失動力 PL Mは、 前記従来の内燃機関に比べて大幅に減少する。 したがって、 内燃機関 1が 、 その機関回転速度域 Rのうちの高回転速度域で運転されるときにも、 図示出力 のうちの摩擦損失動力 PLは、 前記従来の内燃機関よりも大幅に減少して、 その分 、 正味出力が増加するので、 正味燃料消費率が大幅に改善されて、 前記高回転速 度域での運転頻度が高いときにも内燃機関 1の燃料消費率が改善される。 また、 内燃機関 1は、 前記従来の内燃機関に比べて大幅に低い高回転速度域を有する機 関回転速度域 Rで運転されるため、 該機関回転速度域 Rよりも高い回転速度域で の運転にも耐えるようにするために高剛性、 高強度が要求される構成部品で構成 される前記従来の内燃機関とは異なり、 岡 IJ性および強度が比較的低い構成部品に より内燃機関 1を構成することができる。 その結果、 内燃機関 1を軽量化でき、 この点でも燃料消費率が改善される。
また、 機関回転数が第 2所定回転数 N2を越えたとき、 出力低下手段 26は内燃機 関 1に供給される燃料をカツトするので、 点火時期を制御して機関出力を低下さ せる場合に比べて、 燃料消費が少なくなり、 燃料消費率が一層改善される。 また、 内燃機関 1は前記従来の内燃機関に比べて大幅に低い高回転速度域を有 する機関回転速度域 Rで運転されるにも拘わらず、 クランク軸 5に設けられた発 進クラッチ 50および交流発電機 31が、 クランク軸 5に付加された回転慣性質量と して機能するため、 低回転数のクランク軸 5の回転変動が抑制されて、 スムーズ な運転が可能となる。 さらに、 内燃機関 1は従来の内燃機関に比べて低い回転速 度域で運転されることから、 低回転数においても確実なトルク伝達ができるよう に、 発進クラッチ 50は、 従来の内燃機関のものよりも大型とされたり、 または従 来の内燃機関に比べて大きな質量を有する遠心ウェイトを備えたものとされるの で、 回転慣性質量を増加させることができて、 前記回転変動が一層抑制される。 そのうえ、 発進クラッチ 50はトレーリング式の遠心式クラッチから構成される ので、 クラッチシユー 54の重心はクランク軸 5の回転方向 Aで支持軸 53よりも遅 れ側にあり、 機関回転数 Nが前記所定の機関回転数を越えて、 発進クラッチ 50が 非接続状態からクラッチシュ一 54のライニング 55がクラッチァウタ部材 52に当接 するクラッチ接続時に、 摩擦力がクラッチシユー 54を径方向内方に揺動させるよ うに作用する。 そのため、 クラッチシュ一 54の、 クラッチァウタ部材 52に対する 押圧力の大きさの変化は、 リーディング式のものに比べて小さくなり、 その押圧 力の増加、 すなわちクランク軸 5に作用する負荷の増加に起因するクランク軸 5 の回転数の低下と、 その回転数の低下によるクラッチシユー 54のクラッチァウタ 部材 52に対する押圧力の減少、 すなわちクランク軸 5に作用する負荷の減少に起 因するクランク軸 5の回転数の上昇との繰り返しによる回転数の変動幅を小さく することができて、 ジャダ一を低減することができ、 発生するジャダ一による車 両に対する加振力は小さいものとなって、 伝達される振動による乗員の不快感が 軽減される。
そして、 第 2所定回転数 N2が、 前記中回転速度域に属すると共に、 前記従来の 内燃機関において最大図示出力 Pmが発生するときの機関回転数 N3の 1 / 2以下の 回転数であることにより、 内燃機関 1が従来に比べて低い回転数領域に属する機 関回転速度域 Rにおいて運転される場合にも、 クラッチシユー 54の重量を増加さ せ、 またはクラッチシュ一 54を大型化させて適正なクラッチ容量を確保したうえ で、 ジャダ一を低減することができる。
スター夕ドリブンギヤ 62をクランク軸 5に結合する一方向クラツチ 64のァウタ レース 66は、 従来の一方向クラッチのァウタレースの径方向外方に存したスぺー スを利用して、 交流発電機 31の口一夕 31 bのフランジ部 31 c lに結合されると共に 、 フランジ部 31 c lよりも径方向外方に延びるように形成され、 このァゥ夕レース 66によりフライホイールが構成されるので、 内燃機関 1の大型化を回避しつつフ ライホイ一ルを追加して設けることができて、 クランク軸 5の回転変動を一層抑 制することができる。 しかも、 フライホールを構成するァゥタレ一ス 66は交流発 電機 31のロータ 31 bに着脱可能であるので、 フライホイールの回転慣性質量の調 整は、 ァゥ夕レース 66のみを交換することにより簡単にできて、 回転変動の抑制 の程度を容易に調整することができる。
径方向で大型化されたァウタレース 66は、 口一夕 31 bのフランジ部 31 c 1の径方 向外方で軸方向に存するスペースを利用して、 段差部 66bが形成される前記所定 半径よりも外側に形成される外側部分 66cで軸方向での最大幅を有することから 、 内燃機関 1の大型化を回避したうえで、 回転慣性質量をさらに大きくすること ができる。
それゆえ、 第 2所定回転数 N2が、 前記中回転速度域に属すると共に、 前記従来 の内燃機関において最大図示出力 Pmが発生するときの機関回転数 N3の 1 / 2以下 の回転数であることにより、 内燃機関が従来に比べて低い回転速度域に属する機 関回転速度域 Rにおいて運転される場合にも、 一方向クラッチ 64のァウタレース 66を利用して、 内燃機関 1の大型化を回避したうえで、 フライホイールの増設が 可能であり、 しかも回転慣性質量を大きくすることができて、 クランク軸 5の回 転変動の抑制に効果的なフライホイールを構成できる。
しかも、 前記所定半径よりも内側で、 交流発電機 31のロー夕 31bの軸方向での 一端部であるフランジ部 31clが、 ァウタレース 66の凹部 72に嵌合されるので、 そ の嵌合している分 (段差分) 、 ァゥ夕レース 66とロータ 31bとを結合したときの 軸方向での寸法が小さくなつて、 この点でも内燃機関 1の大型化を回避できる。 以下、 前述した実施例の一部の構成を変更した実施例について、 変更した構成 に関してのみ説明する。
前記実施例では、 第 2所定回転数 N2は、 中回転速度域に属する回転数であった が、 第 2所定回転数 N2は、 第 1所定回転数 N1未満であればよく、 その大きさは、 前述のように、 内燃機関 1の排気量および最大図示出力 PMに基づいて決定され、 これによつても、 前記実施例に比べると、 燃料消費率の改善の程度および内燃機 関 1の軽量化の程度は少なくなるものの、 正味燃料消費率の改善、 内燃機関 1の 軽量化等の、 前記実施例と同種の効果が奏される。
また、 図 1に図示されるように、 マニュアル変速機 Mの変速位置を検出するギ ャ位置スィッチ 25を設けて、 第 2所定回転数 N2が、 1速から 4速までの変速段を 有するマニュアル変速機 Mの各変速段に対応して設定されるようにしてもよい。 その際、 各変速段において必要な駆動力が確保されるように、 各第 2所定回転数 N2は、 減速比が最も大きい 1速での第 2所定回転数 N2が最も高く、 以下、 減速比 が小さくなるにつれて、 各変速段での第 2所定回転数 が順次低くなるように設 定される。
このようにすることで、 マニュアル変速機 Mの各変速段に対応して第 2所定回 転数 N2が設定されるので、 変速段毎の駆動力が確保されたうえで、 各変速段にお ける第 2所定回転数 N2を変更することによりシフトアツプ時の駆動力を任意に変 更でき、 それにより、 シフトアップ時の駆動力変化を滑らかにして、 スムーズな 加速運転を実現できる。 さらに、 減速比の異なるギヤを有する車種に対する駆動 力の確保およびシフトアップ時の駆動力変化の調整も容易になる。
前記実施例では、 出力低下手段 26は、 燃料噴射弁 16を制御して、 燃料カットを 行うものであつたが、 燃料噴射量を減量するものであってもよく、 また点火時期 を最適点火時期から大きく遅角または進角させるか、 または点火の停止または間 引き点火を行うことで、 内燃機関 1の機関出力を低下させるものであってもよい 。 そして、 出力低下手段 26により、 燃料噴射量の減量、 点火時期の遅角または進 角、 点火の間引きがなされた場合には、 第 2所定回転数 N2を越えたときの出力の 低下は、 図 6の一点鎖線で示されるように、 燃料カットを実行したときに比べて 緩やかなものとなり、 さらにこれらの場合、 最高回転数を燃料カットまたは点火 の停止により規制することもできる。
第 2所定回転数 N2は、 内燃機関 1の排気量が大きく、 かつ必要図示出力 PSが小 さいときは、 第 1所定回転数 N1を上限値としたときの機関回転速度域の低回転速 度域に属する機関回転数 Nとすることもできる。 さらに、 内燃機関 1は多気筒で あってもよく、 車両は、 自動 2輪車以外の車両であってよい。
前記実施例では、 ァウタレース 66に凹部 72が形成されたが、 この凹部 72はなく てもよく、 また前記所定半径は、 ロータ 31bの基部 31 cのフランジ部 31 clの半径と されたが、 フランジ部 31 c lの半径よりも大きくてもよい。

Claims

請 求 の 範 囲
1 . 機関回転速度が第 1所定回転数のとき最大図示出力を発生する出力特性 を有する往復動内燃機関の運転方法であって、 次のステップを含む。
機関回転速度を検出する回転速度センサおよび機関出力を低下させる出力低下 手段を有する往復動内燃機関を与えるステップ、 および
前記回転速度センサにより検出された機関回転速度が前記第 1所定回転数未満 の第 2所定回転数を越えたとき、 前記出力低下手段により、 第 2所定回転数にて 前記内燃機関の必要図示出力が得られるように、 当該内燃機関の出力を低下させ るステップ、
2 . 請求項 1記載の往復動内燃機関の運転方法であって、
前記第 1所定回転数を上限値としたときの機関回転速度域を三等分して低回転 速度域、 中回転速度域および高回転速度域に分けた場合、 前記第 2所定回転数は 、 前記中回転速度域または低回転速度域に属する回転数である。
3 . 請求項 1記載の往復動内燃機関の運転方法であって、
前記内燃機関は複数の変速段をもつマニュアル変速機に連結され、
前記第 2所定回転数は、 前記マニュアル変速機のそれぞれの変速段に対応して 設定される。
4. 請求項 1記載の往復動内燃機関の運転方法であつて、
前記出力低下手段は、 前記内燃機関への燃料供給を停止する。
5 . 請求項 1記載の往復動内燃機関の運転方法であって、
前記出力低下手段は、 前記内燃機関の点火特性を変化させる。
6 . 機関回転速度が第 1所定回転数のとき最大図示出力を発生する出力特性 を有する往復動内燃機関であって、
機関回転速度を検出する回転速度センサと、
機関出力を低下させる出力低下手段と、
制御手段と、 を備え、
前記制御手段は、 前記回転速度センサにより検出された機関回転速度が前記第 1所定回転数未満の第 2所定回転数を越えたとき、 前記出力低下手段を前記内燃 機関の出力を低下させるように作動させる。
7 . 請求項 6記載の往復動内燃機関であって、
前記内燃機関は車両用内燃機関であり、
該内燃機関は、
クランク軸と、
クランク軸に結合されかつクラッチァウタ部材を有する発進クラッチと、 を備 え、
該発進クラッチは、 所定の機関回転速度を越えたとき前記クラッチァウタ部材 に当接する揺動自在な遠心ウェイトからなるクラッチシユーを有するトレーリン グ式遠心式クラッチである。
8 . 請求項 7記載の往復動内燃機関であって、
前記クランク軸に連結され、 かつスター夕モー夕により回転駆動される被動部 材と、
前記クランク軸と前記被動部材との間に介在し、 ァウタレースを有する一方向 クラッチと、 を備え、
前記ァウタレースは、 前記クランク軸と一体に回転する交流発電機のロー夕の 結合部に着脱可能に結合されると共に該結合部よりも径方向外方に延びていて、 これにより回転慣性質量を調整可能なフライホールが構成される。
9 . 請求項 8記載の往復動内燃機関であって、
前記ァウタレースは、 所定半径よりも外側に軸方向での最大幅を有し、 前記所 定半径よりも内側に前記交流発電機のロータの軸方向での一端部である前記結合 部が嵌合される凹部を有する。
PCT/JP2001/010113 2000-12-21 2001-11-20 Moteur alternatif a combustion interne et son procede d'exploitation WO2002052140A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01982859A EP1344925A4 (en) 2000-12-21 2001-11-20 PISTON PISTON ENGINE AND YOUR OPERATION
BRPI0108515-8A BR0108515B1 (pt) 2000-12-21 2001-11-20 método para operar um motor de combustão interna alternado e motor de combustão interna alternado.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-388296 2000-12-21
JP2000388296 2000-12-21
JP2001195348A JP3642418B2 (ja) 2000-12-21 2001-06-27 往復動内燃機関およびその運転方法
JP2001-195348 2001-06-27

Publications (1)

Publication Number Publication Date
WO2002052140A1 true WO2002052140A1 (fr) 2002-07-04

Family

ID=26606237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010113 WO2002052140A1 (fr) 2000-12-21 2001-11-20 Moteur alternatif a combustion interne et son procede d'exploitation

Country Status (10)

Country Link
EP (1) EP1344925A4 (ja)
JP (1) JP3642418B2 (ja)
KR (1) KR100761188B1 (ja)
CN (1) CN100408835C (ja)
AR (1) AR032206A1 (ja)
BR (1) BR0108515B1 (ja)
MY (1) MY134561A (ja)
TR (1) TR200201967T1 (ja)
TW (1) TW536581B (ja)
WO (1) WO2002052140A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309208B2 (en) * 2005-02-22 2007-12-18 General Electric Company Turning gear drive system
JP4859042B2 (ja) * 2006-08-31 2012-01-18 本田技研工業株式会社 アイドルストップ制御装置
US11326533B2 (en) 2016-01-19 2022-05-10 Eaton Intelligent Power Limited Cylinder deactivation and engine braking for thermal management
JP2019525073A (ja) * 2016-08-17 2019-09-05 イートン インテリジェント パワー リミテッドEaton Intelligent Power Limited シリンダ休止における摩擦緩和
US11187162B2 (en) 2016-08-17 2021-11-30 Eaton Intelligent Power Limited Extended coast and controlled deceleration using cylinder deactivation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2279111A (en) 1993-06-18 1994-12-21 Delco Electronics Corp Vehicle wheel slip traction control
US5445121A (en) 1992-11-24 1995-08-29 Yamaha Hatsudoki Kabushiki Kaisha Engine operational control unit
US5559703A (en) 1993-12-14 1996-09-24 Nissan Motor Co., Ltd. Fuel cut and ignition timing control system for controlling acceleration slip
JPH0932602A (ja) * 1995-07-18 1997-02-04 Nissan Motor Co Ltd エンジン出力制御装置
JPH10159973A (ja) * 1996-11-27 1998-06-16 Honda Motor Co Ltd 車両用動力伝達装置
EP1010880A2 (en) * 1998-12-17 2000-06-21 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling internal combustion engine
EP1048845A1 (en) * 1999-04-27 2000-11-02 Honda Giken Kogyo Kabushiki Kaisha Starter/generator for motor vehicles
US6148777A (en) 1997-11-25 2000-11-21 Sanshin Kogyo Kabushiki Kaisha Control for direct injected two cycle engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195849A (ja) * 1992-01-24 1993-08-03 Toyota Motor Corp 内燃機関の燃料カット制御装置
JP4060517B2 (ja) * 2000-07-18 2008-03-12 本田技研工業株式会社 エンジンの回転数制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445121A (en) 1992-11-24 1995-08-29 Yamaha Hatsudoki Kabushiki Kaisha Engine operational control unit
GB2279111A (en) 1993-06-18 1994-12-21 Delco Electronics Corp Vehicle wheel slip traction control
US5559703A (en) 1993-12-14 1996-09-24 Nissan Motor Co., Ltd. Fuel cut and ignition timing control system for controlling acceleration slip
JPH0932602A (ja) * 1995-07-18 1997-02-04 Nissan Motor Co Ltd エンジン出力制御装置
JPH10159973A (ja) * 1996-11-27 1998-06-16 Honda Motor Co Ltd 車両用動力伝達装置
US6148777A (en) 1997-11-25 2000-11-21 Sanshin Kogyo Kabushiki Kaisha Control for direct injected two cycle engine
EP1010880A2 (en) * 1998-12-17 2000-06-21 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling internal combustion engine
EP1048845A1 (en) * 1999-04-27 2000-11-02 Honda Giken Kogyo Kabushiki Kaisha Starter/generator for motor vehicles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1344925A4 *

Also Published As

Publication number Publication date
EP1344925A4 (en) 2010-09-15
CN1404549A (zh) 2003-03-19
AR032206A1 (es) 2003-10-29
JP2002250245A (ja) 2002-09-06
JP3642418B2 (ja) 2005-04-27
BR0108515A (pt) 2003-04-15
CN100408835C (zh) 2008-08-06
MY134561A (en) 2007-12-31
EP1344925A1 (en) 2003-09-17
TW536581B (en) 2003-06-11
KR20020081335A (ko) 2002-10-26
BR0108515B1 (pt) 2009-05-05
KR100761188B1 (ko) 2007-09-21
TR200201967T1 (tr) 2003-05-21

Similar Documents

Publication Publication Date Title
US7178497B2 (en) Inertial torque reaction management with selectively engageable counter rotating component
JP2000034913A (ja) 内燃機関の可変動弁装置
JP2008261268A (ja) 可変バルブタイミング機構の制御装置および制御方法
JP2006342787A (ja) 内燃機関システムの制御装置
JP7425742B2 (ja) 内燃機関の制御方法および制御装置
JP2006291792A (ja) 内燃機関の制御装置
WO2002052140A1 (fr) Moteur alternatif a combustion interne et son procede d'exploitation
JP6680015B2 (ja) ハイブリッド車両の制御装置
JP2008155773A (ja) 車両の制御装置
EP1630455A2 (en) Transmission gear with variable pulley
JP2004036428A (ja) 内燃機関の制御装置
JP2001304005A (ja) 内燃機関の自動運転停止制御
JP2010133336A (ja) 内燃機関の自動停止始動制御装置およびその制御方法並びに自動車
EP1353057A1 (en) Spontaneous intake type internal combustion engine for vehicles
JP6883507B2 (ja) エンジン始動装置及び自動二輪車
US8910607B2 (en) Method and mechanism configured for reducing powertrain rigid body motion during start/stop
JP2004218697A (ja) バランスシャフト付き内燃機関
JP4720581B2 (ja) エンジンの始動装置
JP2008157126A (ja) 内燃機関の制御装置
JP6409559B2 (ja) 車両の制御装置
ZA200205792B (en) Reciprocating internal combustion engine and its operating method.
JPH08105335A (ja) 作動気筒数可変内燃機関を有する車両の運転制御装置
JP5218387B2 (ja) 流体伝達装置
WO2021255891A1 (ja) Mt型ストラドルドビークル
JPH11141362A (ja) 内燃機関の始動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1200200753

Country of ref document: VN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN CO ID IN KR PH TR VN ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2002/05792

Country of ref document: ZA

Ref document number: 200205792

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 1-2002-500021

Country of ref document: PH

Ref document number: IN/PCT/2002/00999/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001982859

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002/01967

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 02070913

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 018052142

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027010788

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027010788

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001982859

Country of ref document: EP