WO2002051767A1 - Verre a glace avec film protecteur et son procede de fabrication - Google Patents

Verre a glace avec film protecteur et son procede de fabrication Download PDF

Info

Publication number
WO2002051767A1
WO2002051767A1 PCT/JP2001/011331 JP0111331W WO02051767A1 WO 2002051767 A1 WO2002051767 A1 WO 2002051767A1 JP 0111331 W JP0111331 W JP 0111331W WO 02051767 A1 WO02051767 A1 WO 02051767A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
gas
sheet
protective film
nozzle
Prior art date
Application number
PCT/JP2001/011331
Other languages
English (en)
French (fr)
Inventor
Toshiaki Hashimoto
Hiroyasu Fukuda
Hitoshi Takahashi
Original Assignee
Nippon Sheet Glass Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co.,Ltd. filed Critical Nippon Sheet Glass Co.,Ltd.
Priority to JP2002552872A priority Critical patent/JPWO2002051767A1/ja
Publication of WO2002051767A1 publication Critical patent/WO2002051767A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass

Definitions

  • the present invention relates to a sheet glass having a protective coating and a method for producing the same.
  • the molten glass is supplied to a molten tin tank called a float bath 1 to reduce the required thickness and width. Molded.
  • the glass passes through the exit part of pass 1 called shield rare "2, and is gradually cooled and cooled in the annealing furnace 3.
  • the glass body 4 becomes a continuous ribbon-shaped glass body 4. The glass body 4 is cut after washing, and the sheet glass is cut. Is manufactured.
  • the metal roller 5 transports the ribbon-shaped glass book 4.
  • Sulfurous acid gas (S 0 2 ) introduced from the nozzle 6 into the annealing furnace 3 smoothes the surface of the roller.
  • the sulfurous acid gas introduced into the annealing furnace 3 reacts with sodium generated from the glass to form a sodium sulfate film on the roller surface.
  • the roller having this coating does not scratch the surface of the glass body 4 when it contacts the glass body 4.
  • a film of sodium sulfate is also formed on the surface of the glass body 4, and this sodium sulfate film is washed and removed in a washing step after the slow cooling.
  • the glass body from which the sodium sulfate coating has been removed may have scratches on the surface of the glass sheet in the transporting and transporting steps, as well as in the subsequent processing steps. Disclosure of the invention
  • An object of the present invention is to prevent a sheet glass from being scratched in a manufacturing process, a subsequent transport, transportation, and a processing process.
  • the glass sheet of the present invention has a glass body, and a protective film formed on the surface of the glass body to prevent the glass body from being scratched.
  • This protective coating is It is formed in a sheet glass manufacturing process for manufacturing sheet glass successively.
  • This protective coating prevents the glass body from being scratched during the manufacturing process and subsequent transport, transport and processing steps.
  • the method for producing a flat glass of the present invention includes a flat glass manufacturing step of continuously producing a flat glass. During manufacturing, a protective film is formed on the surface of the glass body to prevent scratches.
  • the sheet glass is efficiently manufactured because the protective coating is formed during the manufacturing of the sheet glass.
  • FIG. 1 is a schematic plan view showing an embodiment of the method for manufacturing a sheet glass of the present invention.
  • FIG. 2A is a plan view showing an example of a gas blowing nozzle suitable for carrying out the present invention
  • FIG. 2B is a side view of the same.
  • FIG. 3A is a plan view showing another example of a gas blowing nozzle suitable for carrying out the present invention
  • FIG. 3B is a side view of the same.
  • FIG. 4 is a cross-sectional view of the nozzle shown in FIG. 3b, taken along line IV-IV.
  • FIG. 5A is a plan view showing another example of a gas blowing nozzle suitable for carrying out the present invention
  • FIG. 5B is a side view of the same.
  • FIG. 6A is a plan view showing a different example of a gas blowing nozzle suitable for carrying out the present invention
  • FIG. 6B is a side view of the same.
  • FIG. 7 is a schematic cross-sectional view showing an example of the gas heating means.
  • FIG. 8 is a schematic sectional view showing another example of the gas heating means.
  • FIG. 9 is a schematic cross-sectional view showing another embodiment of the method for manufacturing a sheet glass of the present invention.
  • FIG. 10a is a schematic cross-sectional view showing another embodiment of the method for manufacturing a sheet glass of the present invention
  • FIG. 10b is a plan view of the same.
  • FIG. 11a is a schematic cross-sectional view showing a conventional method
  • FIG. 11b is a partially enlarged view of a cross section taken along line BB of FIG. 11a.
  • FIG. 12 is a cross-sectional view showing the scratch generation test apparatus used in the examples. Preferred embodiments of the invention
  • the glass sheet having the protective coating of the present invention is preferably a glass sheet on a line at an outlet of a molding furnace for a float glass sheet production line including a glass melting step, a forming step and a slow cooling step, an inlet of a slow cooling furnace or in a slow cooling furnace.
  • a gas for forming a protective film on the body a protective film for preventing the glass body from being scratched is formed.
  • This gas may be sulfurous acid gas.
  • Sulfurous acid gas forms a protective film of sulfate such as sodium sulfate on the surface of the glass body by reacting with the constituents of glass and the like.
  • the sulfate is preferably a sulfate of an Algari metal or an alkaline earth metal, and more preferably a group consisting of sodium sulfate, lithium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, and barium sulfate. At least one species selected from.
  • the film forming gas may be a gas other than the sulfurous acid gas that is reactive with the chemical components in the glass.
  • the carbonate of an alkali metal such as sodium carbonate and the carbonate of an alkaline earth metal can be formed.
  • a protective coating can also be formed.
  • the temperature of the glass body is preferably from 75 ° C to 200 ° C.
  • the inlet of the lehr, or the inside of the lehr the glass body has a temperature of 200 to 75 ° C.
  • the sulfate protective film must have a thickness that does not easily cause scratches in accordance with the hardness of the glass.
  • the amount of the protective film equivalent to sulfate per side of a 30 mm square plate glass (Hereinafter, it may be simply referred to as “the amount of applied protective film”.) The following ranges are preferable.
  • the protective coating weight is 1. Omg or more.
  • the protective film adhesion amount is 0.5 mg or more.
  • the amount of the protective film attached is preferably 0.4 mg or more.
  • the amount of protective coating applied to soda-lime glass is 1.5 mg or more, the amount of protective coating applied to aluminosilicate glass is 0.7 mg or more, and borosilicate glass is used. Is preferably 0.5 mg or more.
  • soda-lime glass does not have high hardness, it is preferable to use a protective coating of 2. Omg or more in order to reliably prevent scratches in the processing process.
  • the amount of sulfate attached becomes saturated as the amount of sulfurous acid gas sprayed increases, and the formation of a protective film of a certain amount or more is excessive and uneconomical to prevent minute scratches.
  • the amount is preferably equal to or less than the upper limit.
  • the amount of film-forming gas such as sulfurous acid gas used was minimized when forming the protective film, thereby preventing waste of raw material gas and protecting the environment. Above, the occurrence of scratches can be reliably prevented.
  • the sulfate coating amount of the sulfate coating formed by spraying sulfurous acid gas usually varies, and the above-mentioned protective coating coating amount is an average value.
  • the variation of each 30 Omm square sample is within ⁇ 40%, especially ⁇ 20% or less, with respect to the above-mentioned average protective coating amount.
  • the protective coating on both sides of the glass sheet.
  • soda lime float glass sheet (thickness 3mm)
  • sulfur dioxide gas was supplied to the inside of the annealing furnace and inside the glass body at 570 ° C and 450 ° C, respectively.
  • a glass sheet having a sulfate film formed with various amounts of adhesion was manufactured.
  • This flaw generation test device lays a sample plate glass 21 on sand 22 of a tray 23 containing sand (silica sand that has been subjected to particle size selection) 22 and shakes the tray 23 with a shaker 24.
  • the purpose of this study is to examine the degree of scratches caused by the friction between the sand 22 and the sheet glass 21. The number of scratches was counted on the front side (non-tin side of float glass) and the back side (tin side of float glass) for a sample measuring 300 mm square, and the results are shown in Table 1. .
  • the amount of sulfate film attached was determined by dissolving the film on the glass surface in pure water, measuring the amount of sulfate ions in the solution using the turbidity method of JIS K103, and determining the amount of sulfate ions in the solution. The amount of sulfate was converted into the amount of sodium and the amount of sulfate attached to the front surface and the back surface of the sample having a size of 30 mm square.
  • the number of scratches and the amount of sulfate attached were all average values of 10 samples.
  • Aluminosilicate glass float glass (thickness 2 mm in Example 8, thickness 1 mm in Example 9)
  • sulfurous acid gas was supplied at 500 ° C and 450 ° C in the same manner as in Example 1.
  • the glass body was sprayed, the amount of sulfate coating was measured and a flaw generation test was performed in the same manner as in Example 1, and the results are shown in Table 2.
  • Table 2
  • the aluminosilicate glass can obtain a good anti-scratch effect with a smaller amount of sulfate attached than the soda lime glass.
  • Porous silicate glass melted with a rutupo was cast, formed into a plate shape, and polished to prepare a sample having a thickness of 1.1 mm and a square of 100 mm.
  • the prepared sample was heated in an electric furnace at 600 ° C. for 30 minutes, and sulfuric acid gas was flowed into the furnace at a rate of 1 L / hr for 5 minutes.
  • the obtained sheet glass was subjected to measurement of the amount of sulfate coating adhered thereon and a flaw generation test in the same manner as in Example 1, and the results are shown in Table 3.
  • a gas spray nozzle is provided above, below or above Z, and a gas reactive with chemical components in the glass, such as sulfurous acid gas, is blown from the gas spray nozzle toward the lipon-like glass body 4.
  • a gas having a gas blowing portion over a length region substantially equal to the width of the ribbon-shaped glass body 4 conveyed by the roller 5 is used.
  • the blowing nozzle 11 extends above and / or below the ribbon-shaped glass body 4 (below in FIG. 1) in the width direction of the ripon-shaped glass body 4, and a gas supply pipe extends from the gas blowing nozzle 11. It is preferable to blow the reactive gas introduced from 10 toward the ribbon-shaped glass body 4.
  • the gas blowing nozzle 11 is provided on the side surface (the surface facing the rifon-like glass body) of the tubular nozzle body 12A. It is possible to use a nozzle 12 having a large number of gas discharge ports 12B arranged at intervals of. To form a more uniform protective coating, as shown in Figure 3a (top view) and Figure 3b (side view), the side of the tubular nozzle body 13A (the side facing the ribbon-shaped glass body) Alternatively, a nozzle 13 provided with a gas discharge slit 13B may be used. As shown in FIGS.
  • the nozzle 12 provided with a large number of gas discharge ports 12B can spray gas relatively uniformly across the width of the ribbon-shaped glass body. However, since the nozzle 12 does not discharge gas from the region between the adjacent gas discharge ports 12 B, the amount of the protective film deposited on the surface of the ribbon-shaped glass body corresponding to this portion is reduced. Tend.
  • a nozzle 13 provided with a slit 13B can blow a curtain-like uniform gas flow onto the ribo glass body, so that a very uniform protective coating is formed. Can be formed.
  • the discharge speed of the gas tends to vary depending on the position of the slit, that is, the distance from the gas supply pipe 10.
  • the nozzle 13 is connected between the outer pipe (nozzle body) 13A and the inner pipe 14A. It is also possible to adopt a double pipe structure and to arrange a plurality of gas discharge ports 14B side by side at 180 ° offset from the slits 13B of the outer pipe 13A on the side of the inner pipe 14A. . With such a nozzle 13, the reactive gas can be more evenly discharged from the slit 13B.
  • a nozzle 13 ′ in which rising walls 15 A and 15 B for rectification are provided at the edge of the slit 13 B of the outer tube 13 A may be used.
  • the amount of reactive gas required for forming the protective film can be reduced, and adverse effects on the facilities such as the annealing furnace due to the reactive gas can be prevented.
  • the amount of reactive gas leaking to the outside can be reduced, and the working environment can be prevented from deteriorating.
  • the reactive gas is blown onto the lipon-like glass body by providing a branch pipe 1OA in the gas supply pipe 10 and supplying an appropriate amount of the reactive gas. It may be diluted with spraying medium gas (hereinafter sometimes referred to as "diluent gas"). In this case, it is possible to increase the pressure of the gas blown onto the lipon-like glass body to increase the reaction efficiency between the reactive gas and the glass, and to form a more uniform protective film with a small amount of the reactive gas.
  • the nozzles shown in Figs. 5a, 5b, 6a, and 6b differ only in that the gas supply pipe 10 is provided with a branch pipe 1OA, as shown in Figs.
  • FIGS. 5a, 5b, 6a, and 6b members having the same functions as those in FIGS. 2a, 2b, 3a, and 3b are denoted by the same reference numerals.
  • air, nitrogen, carbon dioxide or the like can be used as the diluting gas.
  • an inert gas such as nitrogen is used as the dilution gas to prevent tin contamination due to the reaction between the dilution gas and tin in the float bath.
  • a mixed gas of nitrogen and hydrogen supplied in a float bath it is preferable to use.
  • the diluent gas When diluting a reactive gas with a diluent gas, if the amount of the diluent gas used is too small relative to the reactive gas, the effect of increasing the blowing gas pressure due to the use of the diluent gas cannot be sufficiently obtained. However, the concentration of the reactive gas becomes too low, and the reaction efficiency decreases. Therefore, it is preferable to use the diluent gas in a volume ratio of about 0.2 to 1.0 times the volume of the reactive gas.
  • the gas (reaction It is desirable that at least a portion of the neutralizing gas and / or the diluting gas be heated to a predetermined temperature in advance to prevent the ribbon-like glass body and the rollers from cooling.
  • the reactive gas and dilution gas are passed through a heater 17 containing a heating medium such as a heater 16 and then heated, and then sent to a gas spray nozzle. May be.
  • the reactive gas and the diluent gas are passed through the annealing furnace 3, the reactive gas and the diluting gas are heat-exchanged and heated in the annealing furnace 3, and then sent to the gas spray nozzle. Is also good.
  • the annealing furnace 3 is usually provided with a heating means and a cooling means for adjusting the temperature of the ripon glass body 4 conveyed by the rollers 5, for example, a reactive gas and a dilution gas are supplied to the cooling means. Heating can be performed by introducing and exchanging heat. In both cases shown in Figs. 7 and 8, the heated gas is sent to the gas spray nozzle through a pipe with heat retaining means to prevent the temperature of the heated gas from reaching the gas spray nozzle. You may.
  • the preheating temperature of such a blowing gas is appropriately determined depending on the location at which the gas is blown, that is, the temperature of the Ripon glass body to which the gas is blown.
  • the preheating temperature of the blowing gas is 600 to 500 ° C when the gas is blown onto the ribbon-like glass body in the shield layer, and when the gas is blown onto the ripon-like glass body at the entrance of the lehr.
  • the temperature is preferably 500 to 400 ° C., and 400 to 300 ° C. when spraying the ripon glass body at an intermediate position of the annealing furnace.
  • Preheating of such gas reduces the adverse effects of a drop in the temperature of the ribbon glass body when a reactive gas or reactive gas or diluent gas is blown in a shield layer where the temperature of the ribbon glass body is high. can do.
  • only one gas blowing nozzle may be provided, and a reactive gas or a reactive gas and a diluent gas may be blown from only one location onto the ribbon-like glass body.
  • a plurality of gas spray nozzles may be provided, and a reactive gas or a reactive gas and a diluent gas may be sprayed on a plurality of portions of the ribbon-shaped glass body.
  • a uniform protective coating can be formed with a small amount of reactive gas.
  • the number of gas blowing nozzles is not particularly limited, but it is not economically feasible to increase the number excessively. It is preferable to set the following.
  • the gas blowing nozzle is usually provided at a position of 5 to 30 cm above the rifon-like glass body or at a position of 5 to 50 cm below the ripon-like glass body.
  • the partition wall (the rising wall 18A, the rising wall 18A, 18 and a hanging wall 18 8, 18 B) are provided so as to avoid the lipon-like glass body 4 to be conveyed, and a gas blowing nozzle 19 is provided in the protective film forming area H defined by the partition wall.
  • a plurality of the protective films may be provided so that the protective film forming region H is filled with a reactive gas.
  • the reactive gas concentration in the protective film forming region H is increased, the reaction efficiency between the glass and the reactive gas is increased, and the reaction time between the reactive gas and the glass is increased.
  • the protective coating can be efficiently formed on both surfaces of the ribbon-shaped glass body 4.
  • the lipon-like glass body 4 is naturally gradually cooled in the insulated region H.
  • the annealing furnace of the float method is equipped with a heating means 3A and a cooling means 3B (a heat exchanger using cooling air) in the temperature range M where the glass on the upstream side is cooled from the strain point to the annealing point.
  • the glass body 4 is maintained at an appropriate temperature. After the strain point, the surface stress of the glass body 4 only needs to be smaller than the stress that breaks the glass body 4, and there is no particular problem even if such a partition wall is provided.
  • Fig. 10a cross-sectional view
  • Fig. 10b plane view, however, the Ripon-shaped glass body is not shown
  • a gas suction nozzle 21 is provided, and of the gas blown out from the gas blowing nozzle 20, the excess gas that does not reach the lipon-shaped glass body 4 is sucked by the gas suction nozzle 21 and discharged out of the system. May be.
  • the flow of reactive gas from the shield layer 2 to the float path 1 can also be prevented by setting the atmospheric pressure in the float bath 1 to be slightly higher than the atmospheric pressure in the shield layer 2. .
  • a temperature gradient in the transport direction of the ribbon-shaped glass body is usually set inside the annealing furnace. It is effective to combine the air flow that flows from the downstream to the upstream generated by the above, and eject the reactive gas near the surface of the ribbon-shaped glass body.
  • Such a method of the present invention can be applied to soda lime glass, PDP glass having a slower cooling region at a higher temperature, and the like.
  • This sulfate protective film specifically includes sodium sulfate, lithium sulfate, and sulfuric acid. It is formed of one or more of potassium, magnesium sulfate, calcium sulfate, strontium sulfate, and barium sulfate.
  • the protective film formed in the present invention is not limited to a sulfate film, and a protective film of a carbonate such as sodium carbonate is formed using a gas having a reactivity with a chemical component in glass, for example, carbon dioxide. You can also.
  • the nozzle used was 3 cm in diameter and 500 cm in length, and 100 gas outlets with a diameter of 2 mm were provided at equal intervals over the widthwise region of the rifon-like glass body. .
  • the amount of the protective coating (sulfate) deposited on the obtained glass sheet was examined. The results are shown in Table 4.
  • the amount of sulfate protective coating can be determined by dissolving the coating on the glass surface
  • the amount of sulfate ions in the solution was measured using the turbidimetric method of 103, and the amount of sulfate ions was converted to the amount of sodium sulfate.
  • the amount of salt adhered was used.
  • the amount of adhesion was an average value of 10 samples. Comparative Example 3
  • a protective coating was formed in the same manner as in Example 10 except that the conventional nozzle shown in Fig. 11 was used as the sulfurous acid gas spray nozzle, the amount of sulfate attached was examined in the same manner, and the results are shown in Table 4. Indicated.
  • the nozzle used had a diameter of 3.4 cm and a length of 350 cm, and its tip was located at the approximate center of the ribbon-shaped glass body in the width direction. Is discharged.
  • Table 4 shows that the present invention can form a protective film more efficiently than the conventional method.
  • the gas spray nozzle shown in Fig. 5 was used to supply sulfurous acid gas at the entrance to the lehr, 450 ° C from the position 20 cm above the ribbon-like glass body and 50 cm below the ribbon-like glass body. 100 NL / hr, respectively, for a total of 200 NL / hr.
  • the nozzle used had a diameter of 3.4 cm and a length of 500 cm, and 100 gas discharge ports of 2 mm in diameter were provided over the area in the width direction of the ribbon-shaped glass body. It is configured so that air is introduced as gas. The amount of air introduced was 30 NL / hr for 100 NL / hr for sulfurous acid gas per nozzle. With respect to the obtained plate glass, the amount of sulfate attached on the front surface (upper surface) and the back surface (lower surface) was examined in the same manner as in Example 10 and the results are shown in Table 5.
  • Table 5 shows that by diluting sulfurous acid gas with air, it is possible to form a protective film more efficiently.
  • the nozzle used had a diameter of 3.4 cm and a length of 500 cm, and 100 gas outlets with a diameter of 2 mm were provided at equal intervals across the width of the ribbon-shaped glass body. It is configured so that air is introduced from the branch pipe as dilution gas at the flow rate shown in Table 6.
  • the amount of sulfate attached on the back surface (lower surface) was examined in the same manner as in Example 10, and the maximum value and the minimum value of the amount of sulfate attached and the difference were determined. The results are shown in Table 6. .
  • the obtained plate glass was treated with 1% hydrofluoric acid, the appearance after the treatment was observed, and the results are shown in Table 6.
  • This sheet glass was treated in a hydrofluoric acid solution to perform AR (anti-reflection) processing by a liquid layer deposition method that forms a silica film on the surface. At this time, samples were collected three times every 8 hours, and the AR processing yield was checked for each time (300 samples). The results are shown in Table 6. Comparative Example 4
  • Sheet glass was manufactured in the same manner as in Example 12 except that the conventional nozzle shown in Fig. 11 was used as the gas spray nozzle, and the spray amount of sulfurous acid gas and diluent gas was set to the amount shown in Table 6.
  • Table 6 shows the variation in the amount of sulfate attached, the resistance to hydrofluoric acid due to hydrofluoric acid treatment, and the yield of AR processing.
  • the nozzles used were the same as those used in Comparative Example 3.
  • a gas blowing nozzle shown in Fig. 6 was used to supply sulfurous acid gas at the entrance of the lehr, and a repong-like glass body at 580 ° C from a position 5 cm below the ribbon-like glass body
  • the amount of spray shown in Table 7 was sprayed toward.
  • the nozzle used has an outer tube diameter of 3.4 cm, an inner tube diameter of 2.1 cm, and a length of 500 cm, and a gas discharge slit of lmm in width and 460 cm in length in the width direction of the ripon glass body.
  • the inner pipe is provided with 100 gas discharge ports having a diameter of 2 mm at regular intervals on the side of the outer pipe opposite to the side on which the slit is formed. It is configured so that air is introduced as a dilution gas from the branch pipe at the flow rate shown in Table 7.
  • both the sulfurous acid gas supplied to the gas spraying nozzle and the air as the diluting gas were previously heated to 460 ° C. by a heating means as shown in FIG.
  • the conventional nozzle shown in FIG. 11 was used as the sulfurous acid gas spray nozzle, and a protective film was formed in the same manner as in Example 13 except that the sulfuric acid gas was not preheated.
  • the results are shown in Table 7.
  • the nozzle used was 3.4 cm in diameter and 350 cm in length. The tip was located at the approximate center in the width direction of the rifon-like glass body, and the sulfur dioxide gas was passed through the 27 mm diameter opening at the tip. Is discharged.
  • Example 13 and Comparative Example 5 the gas was blown at 50 NL / hr at the inlet of the lehr, and the remaining gas was blown in the region where the temperature of the ribbon glass body in the lehr was 450 ° C. , Sulfurous acid gas spray amount, dilution gas spray amount and preheating temperature The conditions were as shown in Table 8, and the nozzle position was 50 cm below the ribbon-shaped glass body. Otherwise, a protective film was formed in the same manner as in Example 13 and Comparative Example 5, respectively. The sulfated amount of the obtained plate glass was measured in the same manner as in Example 10, and the results are shown in Table 8.
  • Tables 7 and 8 show that preheating the reactive gas allows the protective film to be formed more efficiently.
  • Example 14 a protective coating was formed in the same manner as in Example 14, except that a plurality of gas spray nozzles were provided in the lehr and the gas preheating temperature was set at 350 ° C. The obtained plate glass was examined for sulfate attachment amount in the same manner as in Example 10, and the results are shown in Table 9.
  • the gas blowing nozzles used were the same as those used in Example 14, and the installation positions of the nozzles were as shown in Table 9.
  • Table 9 shows that more efficient formation of the protective film can be achieved by increasing the number of gas spray nozzles in the ribbon glass body and dispersing the sulphite gas spray locations.
  • the nozzle used has an outer pipe diameter of 3.4 cm, an inner pipe diameter of 2.1 cm, and a length of 500 cm. It is provided over the region in the width direction of the glass body.
  • a gas discharge port having a diameter of 2 mm is provided at equal intervals on the side surface of the outer tube of the nozzle opposite to the slit forming side of the outer tube at 100 holes. This nozzle is configured so that dilution gas is introduced from the branch pipe.
  • both the sulfurous acid gas and the diluent gas supplied to the gas spray nozzle were heated to 530 ° C. in advance by a heating means as shown in FIG.
  • the pressure in the atmosphere in the float bath was 24.5 Pa, and the pressure in the shield layer was 17.6 Pa.
  • the obtained plate glass was examined for the amount of sulfate attached in the same manner as in Example 10, and the results are shown in Table 10.
  • Example 17 two conventional nozzles shown in FIG. 11 were used as gas blowing nozzles, and the temperature of the ribbon-like glass body was 60 cm, and the position 50 cm below the ripon-like glass body. Then, a protective film was formed in the same manner as in Example 8 except that two nozzles were arranged facing each other so as to protrude from a side portion of the ripon glass body, and only sulfuric acid gas at room temperature was sprayed from these nozzles. The obtained plate glass was examined for the amount of sulfate attached and the condition in the float path in the same manner as in Example 17, and the results are shown in Table 10.
  • the nozzle used had a diameter of 3.4 cm and a length of 150 cm. The tip of each nozzle was located at approximately one-third in the width direction of the rifon-like glass body. Sulfurous acid gas is discharged from the opening of mm.
  • a thin solid layer mainly composed of soot oxide suspended in water As is clear from Table 10, according to the present invention, tin contamination in the float path can be prevented, and an effective protective film can be formed.
  • the nozzle used had an outer tube diameter of 3.4 cm, an inner tube diameter of 2.1 cm, and a length of 500 cm, and a 1 ram wide, 460 cm long gas discharge slit with a ribbon-like glass body width. It is provided over the region in the direction.
  • the inner pipe of this nozzle has 100 gas outlets with a diameter of 2 mm at equal intervals on the side opposite to the slit forming side of the outer pipe. It is provided in.
  • This nozzle is configured so that air is introduced as dilution gas from the branch pipe.
  • the position of the ribbon glass body at 15 cm above the ribbon glass body at 480 ° C The temperature of the ribbon glass body at 15 cm above the ribbon glass body at the temperature of 430 ° C Ribbon
  • the position of the ribbon glass body 15 cm above the glass body at a temperature of 380 ° C The position of the ribbon glass body 30 cm below the ribbon glass body at a temperature of 480 ° C Ribbon glass body
  • the temperature of the ribbon-shaped glass body 30 cm below the lipon-shaped glass body is at a position of 4300 ° C.
  • the amount of sulfate attached on the front surface (upper surface) and the back surface (lower surface) and the variation thereof were examined. The results are shown in Table 11.
  • Example 18 a protective coating was formed in the same manner as in Example 1S, except that the gas blowing nozzle shown in FIG. 6 was used and the amount of the diluted gas sprayed was as shown in Table 11. .
  • the amount of attached nitrate and its variation were examined in the same manner as in Example 10, and the results are shown in Table 11.
  • a protective film was formed in the same manner as in Example 18 except that the conventional method was used as the protective film forming region in Example 18.
  • the obtained plate glass was examined for sulfate attachment amount and its variation in the same manner as in Example 10, and the results are shown in Table 11.
  • ADVANTAGE OF THE INVENTION According to this invention, generation
  • the present invention is suitable for flat glass products such as glass for liquid crystals, glass for disks, glass for solar cells, and glass for PDP (plasma display), which are not allowed to have fine defects on the glass surface. Can effectively prevent scratches and provide products with high commercial value with good yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Description

明細書 保護被膜を有する板ガラス及びその製造方法 技術分野
本発明は、 保護被膜を有する板ガラスと、 その製造方法に関する。 背景技術
フロート法と呼ばれる板ガラスの連続製造方法においては、 図 1 l a及び図 1 1 bに示す如く、 溶融されたガラスがフロートバス 1と称される溶融スズ槽に供 給されて必要な厚みと幅に成形される。 ガラスは、 シールドレア" 2と称される パス 1の出口部分を経て、 徐冷炉 3で徐冷及び冷却されることによって連続した リボン状ガラス体 4となる。 ガラス体 4が洗浄後切断されて板ガラスが製造され る。
金属ローラ 5はリボン状ガラス本 4を搬送する。 ノズル 6より徐冷炉 3内部に 導入された亜硫酸ガス (S 0 2) はローラの表面形状を滑らかにする。 徐冷炉 3 に導入された亜硫酸ガスは、 ガラスから発生するナトリゥムと反応してローラ表 面に硫酸ナトリウム被膜を形成する。 この被膜を有するローラは、 それがガラス 体 4に接触したときに、 ガラス体 4の表面に傷を発生させない。 徐冷炉 3の内部 において、 ガラス体 4表面にも硫酸ナトリウムの被膜が形成されるが、 この硫酸 ナトリウム被膜は、 徐冷後の洗浄工程において洗浄除去される。
硫酸ナトリウム被膜が除されたガラス体は、 搬送や輸送工程、 更にはその後の 加工工程等で板ガラス表面にキズが付くことがある。 発明の開示
本発明は、 製造工程、 その後の搬送、 輸送、 及ぴ加工工程で板ガラスにキズが 付くことを防止することを目的とする。
本発明の板ガラスは、 ガラス体と、 該ガラス体の表面に形成された、 該ガラス 体にキズが付くことを防止するための保護被膜とを有する。 この保護被膜は、 連 続的に板ガラスを製造する板ガラス製造工程において形成される。
この保護被膜は、 製造工程、 その後の搬送、 輸送、 加工工程でガラス体にキズ が付くことを防止する。
本発明の板ガラスの製造方法は、 連続的に板ガラスを製造する板ガラス製造ェ 程を有する。 製造途中において、 ガラス体表面にキズ防止を目的とした保護被膜 が形成される。
本発明の方法は、 保護被膜が板ガラス製造途中で形成されるので板ガラスが効 率的に製造される。 図面の簡単な説明
図 1は、 本発明の板ガラスの製造方法の実施の形態を示す模式的な平面図であ る。
図 2 aは、 本発明の実施に好適なガス吹き付け用ノズルの一例を示す平面図、 図 2 bは同側面図である。
図 3 aは、 本発明の実施に好適なガス吹き付け用ノズルの他の例を示す平面図、 図 3 bは同側面図である。
図 4は、 図 3 bに示すノズルの IV— IV線に沿う断面図である。
図 5 aは、 本発明の実施に好適なガス吹き付け用ノズルの別の例を示す平面図、 図 5 bは同側面図である。
図 6 aは、 本発明の実施に好適なガス吹き付け用ノズルの異なる例を示す平面 図、 図 6 bは同側面図である。
図 7は、 ガスの加熱手段の一例を示す模式的な断面図である。
図 8は、 ガスの加熱手段の他の例を示す模式的な断面図である。
図 9は、 本発明の板ガラスの製造方法の異なる実施の形態を示す模式的な断面 図である。
図 1 0 aは、 本発明の板ガラスの製造方法の別の実施の形態を示す模式的な断 面図、 図 1 0 bは同平面図である。
図 1 1 aは従来法を示す模式的な断面図、 図 1 1 bは図 1 1 aの B— B線に沿 う断面の部分拡大図である。 図 1 2は、 実施例で用いたキズ発生試験装置を示す断面図である。 発明の好ましい形態
本発明の保護被膜を有する板ガラスは、 好ましくは、 ガラスの溶融工程、 成形 工程及び徐冷工程を含むフロート板ガラス製造ライン成形炉の出口、 徐冷炉の入 口又は徐冷炉内において、 ライン上のリポン状ガラス体に対して保護被膜形成の ためのガスを吹き付けることにより、 ガラス体にキズが付くことを防止するため の保護被膜が形成される。 このガスは、 亜硫酸ガスであってもよい。 亜硫酸ガス は、 ガラスの構成成分等との反応で、 ガラス体の表面に硫酸ナトリウム等の硫酸 塩の保護被膜を形成する。
硫酸塩は、 アルガリ金属や、 アルカリ土類金属の硫酸塩が好ましく、 より好ま しくは、 硫酸ナトリウムの他、 硫酸リチウム、 硫酸カリウム、 硫酸マグネシウム、 硫酸カルシウム、 硫酸ストロンチウム、 及ぴ硫酸バリウムよりなる群から選ばれ る少なく とも 1種である。
被膜形成ガスは、 亜硫酸ガス以外の、 ガラス中の化学成分と反応性のあるガス であってもよい。 ガラスの温度及び吹き付けガスの温度が十分に高い領域であれ ば、 被膜形成ガスとして炭酸ガスをガラス体に吹き付けることにより、 炭酸ナト リゥム等のアルカリ金属の炭酸塩やアルカリ土類金属の炭酸塩の保護被膜を形成 することもできる。
亜硫酸ガスを吹き付けて、 硫酸塩の保護被膜を形成する場合、 ガラス体の温度 が 7 5 0〜2 0 0 °Cであることが好ましい。 フロート板ガラス製造ラインの成形 炉出口、 徐冷炉入口又は徐冷炉内では、 ガラス体は 2 0 0〜 7 5 0 °Cの温度を有 する。
硫酸塩保護被膜は、 その厚みがガラスの硬度に応じてキズの発生しにくい厚み であることが必要であり、 3 0 O mm角の板ガラスの片面当たりの保護被膜の硫 酸塩換算の付着量 (以下、 単に 「保護被膜付着量」 と称す場合がある。 ) として、 次のような範囲であることが好ましい。
① 板ガラスがソーダ石灰ガラスである場合: 0 . 3〜6 . O m g
② 板ガラスがアルミノ珪酸塩ガラスである場合: 0 . 3〜3 . 5 m g ③ 板ガラスがホウ珪酸塩ガラスである場合: 0. 1〜3. Omg
ソーダ石灰ガラスの場合、 保護被膜付着量 1. Omg以上であることが好まし い。 アルミノ珪酸塩ガラスの場合は保護被膜付着量 0. 5 mg以上であることが 好ましい。 ホウ珪酸塩ガラスの場合は保護被膜付着量 0. 4mg以上であること が好ましい。
切断以降でのキズをより効果的に防止するためには、 ソーダ石灰ガラスにおい ては保護被膜付着量 1. 5mg以上、 アルミノ珪酸塩ガラスにおいては保護被膜 付着量 0. 7mg以上、 ホウ珪酸塩ガラスにおいては保護被膜付着量 0. 5mg 以上であることが好ましい。
ソーダ石灰ガラスは硬度が高くないので、 加工工程においてキズを確実に防止 するためには 2. Omg以上の保護被膜付着量とするのが好適である。
硫酸塩の付着量は亜硫酸ガスの吹き付け量が増大するにつれて飽和状態になり、 また、 一定の量以上の保護被膜の形成は微小キズ防止には過剰であり不経済であ るため、 保護被膜付着量は上記上限値以下とするのが好ましい。
保護被膜の付着量 (厚み) を適正化することにより、 保護被膜形成に際し、 亜 硫酸ガス等の被膜形成ガスの使用量を必要最低限として、 原料ガスの無駄を防止 し、 環境保護を図った上で、 キズ発生を確実に防止することができる。
連続板ガラス製造工程において、 亜硫酸ガスの吹き付けで形成される硫酸塩被 膜の硫酸塩付着量には、 通常、 ばらつきがあり、 上記の保護被膜付着量は平均値 である。 キズ防止の効果を得るためには 30 Omm角サンプル毎のばらつきが上 記平均保護被膜付着量に対して ±40%以内、 とりわけ、 ± 20%以下であるこ とが好ましい。
搬送、 輸送、 加工工程でのキズの発生を有効に防止するために、 保護被膜は板 ガラスの両面に形成することが好ましい。
以下に実施例、 比較例及び参考例を挙げて本発明の保護被膜を有する板ガラス をより具体的に説明する。
実施例 1〜 7
ソーダライムフロート板ガラス (厚み 3mm) の製造工程において徐冷炉の入 ロ及ぴ内部において亜硫酸ガスをそれぞれ 5 70°Cと 450°Cのガラス体の表面 に吹き付け、 このときの亜硫酸ガスの吹き付け量を変えることにより、 硫酸塩被 膜を種々の付着量で形成した板ガラスを製造した。
この板ガラスについて、 硫酸塩被膜の付着量を測定すると共に、 図 1 2に示す キズ発生試験装置を用いて耐キズ付性を調べた。 このキズ発生試験装置は、 サン プルの板ガラス 2 1を砂 (粒度選別した珪砂) 2 2を入れたトレー 2 3の砂 2 2 上に敷設し、 震摇機 2 4でトレー 2 3に振動を付与して砂 2 2と板ガラス 2 1と の摩擦で発生するキズの多少を調べるものである。 キズは、 3 0 0 mm角の大き さのサンプルに対して、 表面 (フロートガラスの非スズサイド) と裏面 (フロー トガラスのスズサイ ド) とのキズの数をカウントし、 結果を表 1に示した。
また、 硫酸塩被膜の付着量は、 ガラス表面の被膜を純水に溶かし、 J I S K 0 1 0 3の比濁法を用いて、 溶液中の硫酸イオンの量を測定し、 この硫酸イオン 量を硫酸ナトリゥム量に換算して、 3 0 O mm角の大きさのサンプルに対する表 面及び裏面の硫酸塩付着量とした。
なお、 キズの発生数及ぴ硫酸塩付着量はいずれもサンプル 1 0枚の平均値とし た。
比較例 1
ローラによるキズ発生を防止するために、 徐冷炉において、 ローラに向けて亜 硫酸ガスの吹き付けを行っている従来の通常のソーダライムフロート板ガラスの 製造工程で製造され、 その後洗浄により硫酸塩被膜の除去が行われた板ガラスに ついて、 実施例 1·と同様にして硫酸塩被膜の付着量の測定とキズ発生試験を行い、 結果を表 1に示した。
比較例 2
比較例 1において、 未洗浄の板ガラスについて、 実施例 1と同様にして硫酸塩 被膜の付着量の測定とキズ発生試験を行い、 結果を表 1に示した。 硫酸塩付着量 キズカウント数
例 ガラス卤 1
vm / oUOmm^,, UEl/ OOmm¾
表面 O. D 1 70
実施例 1
表面 0. D 1 46
表面 1 . 0 90
実施例 2
表面 1 . 2 58
? έ面 1 . 4 41
実施例 3
暴面 1 . 5 29
表 ill 2. 8 l ϋ
実施例 4
2. 4 33
表面 o. 3 2
実施例 5
条面 3. 5 2
表面 o. 9 0
実施例 6
幾面 4. 5 6
我囬 U
実施例 7
裏面 5. 5 1
比較例 1 表面 0 無数
(洗浄品) 裏面 0 無数
比較例 2 表面 0. 2 >400
(术洗/争 裏面 0. 5 250 表 1より、 本発明によれば、 板ガラスのキズの発生を有効に防止し得ることが わ力 る。
実施例 8, 9
アルミノシリケートガラスのフロート板ガラス (実施例 8では厚み 2 mm, 実 施例 9では厚み 1 mm) 製造工程において実施例 1と同様の方法で亜硫酸ガスを 5 3 0 °Cと 4 5 0 °Cのガラス体に吹き付け、 実施例 1と同様にして硫酸塩被膜の 付着量の測定とキズ発生試験を行い、 結果を表 2に示した。 表 2
Figure imgf000009_0001
表 2より明らかなように、 アルミノシリケートガラスでは、 ソーダライムガラ スよりも少ない硫酸塩付着量で良好なキズ防止効果を得ることができる。
参考例 1
ルツポで溶融したポロシリケートガラスをキャストし、 板状にした後に研磨し て 1 . 1 mm厚みの 1 0 0 mm角のサンプルを作成した。 作成したサンプルを用 い、 電気炉にて 6 0 0 °Cで 3 0分加熱後、 炉内に亜硫酸ガスを 1 L / h rの量で 5分間流した。
得られた板ガラスについて実施例 1と同様の方法で硫酸塩被膜の付着量の測定 とキズ発生試験を行い、 結果を表 3に示した。
表 3
Figure imgf000009_0002
表 3より、 ポロシリケートガラスについても硫酸塩被膜によりキズを有効に防 止できることが明らかである。
次に本発明の板ガラスの製造方法について説明する。
本発明の方法において、 板ガラス表面に保護被膜を形成するには、 例えば、 図 1 1に示すようなフロート板ガラスの製造ラインにおいて、 フロートバス 1出口 のシールドレアー 2又は徐冷炉 3内のリポン状ガラス体 4の上方及び Z又は下方 にガス吹き付け用ノズルを設け、 このガス吹き付け用ノズルから亜硫酸ガス等の ガラス中の化学成分と反応性のあるガスをリポン状ガラス体 4に向けて吹き付け る方法が挙げられる。 この場合、 より均質な保護被膜を形成するために、 図 1に示す如く、 ローラ 5 で搬送されるリボン状ガラス体 4の幅とほぼ同等の長さ領域に亘つてガス吹き出 し部分を有するガス吹き付け用ノズル 1 1を、 リボン状ガラス体 4の上方及び/ 又は下方において (図 1では下方)、 リポン状ガラス体 4の幅方向に延在させ、 このガス吹き付け用ノズル 1 1からガス供給配管 1 0から導入した反応性ガスを リボン状ガラス体 4に向けて吹き付けるのが好ましい。
このガス吹き付け用ノズル 1 1 としては、 図 2 a (平面図)、 図 2 b (側面 図) に示す如く、 管状のノズル本体 1 2 Aの側面 (リポン状ガラス体に対向する 面) に所定の間隔で多数のガス吐出口 1 2 Bが並設されたノズル 1 2を用いるこ とができる。 より均質な保護被膜を形成するために、 図 3 a (平面図)、 図 3 b (側面図) に示す如く、 管状のノズル本体 1 3 Aの側面 (リボン状ガラス体に対 向する面) にガス吐出スリット 1 3 Bが設けられたノズル 1 3を用いても良い。 図 2 a, 2 bに示す如く、 多数のガス吐出口 1 2 Bを設けたノズル 1 2では、 リボン状ガラス体の幅方向にわたって比較的均一にガスを吹き付けることができ る。 しかし、 このノズル 1 2では、 隣接するガス吐出口 1 2 B同士の間の領域か らのガス吐出がないために、 この部分に対応するリボン状ガラス体表面の保護被 膜付着量が少なくなる傾向がある。
図 3 a, 3 bに示す如く、 スリット 1 3 Bを設けたノズル 1 3であれば、 幕状 の均一なガス流をリボ^状ガラス体に吹き付けることができるため、 非常に均質 な保護被膜を形成することができる。
このスリット 1 3 Bを設けたノズル 1 3においても、 ガスの吐出速度はスリッ トの位置、 即ち、 ガス供給配管 1 0からの距離によりばらつく傾向がある。 この ばらつきを防止するために、 ノズル 1 3は、 図 3 bの IV— IV線に沿う断面図で ある図 4に示す如く、 外管 (ノズル本体) 1 3 Aと内管 1 4 Aとの二重管構造と し、 内管 1 4 A側面の、 外管 1 3 Aのスリット 1 3 Bと 1 8 0 ° ずらした位置に ガス吐出口 1 4 Bを複数個並設した構成としても良い。 このようなノズル 1 3で あれば、 スリット 1 3 Bからより一層均等に反応性ガスを吐出させることができ る。 このようなノズルにおいて、 図 4 bに示す如く、 外管 1 3 Aのスリット 1 3 Bの縁部に整流用の立上り壁 1 5 A, 1 5 Bを設けたノズル 1 3 'としてもよい。 このようなノズルを用いることにより、 保護被膜の形成に必要な反応性ガスの 使用量を低減することができ、 反応性ガスによる徐冷炉等の設備への悪影響を防 止することができる。 同時に、 外部に漏洩する反応性ガス量を低減することがで き、 作業環境の悪化を防止することができる。
リポン状ガラス体への反応性ガスの吹き付けは、 図 5 a, 5 b、 或いは図 6 a, 6 bに示す如く、 ガス供給配管 1 0に分岐管 1 O Aを設け、 反応性ガスを適当な 吹き付け媒体ガス (以下 「希釈ガス」 と称す場合がある。) で希釈して行っても 良い。 この場合には、 リポン状ガラス体への吹き付けガス圧を高め反応性ガスと ガラスとの反応効率を高めることができ、 少ない反応性ガス量でより一層均質な 保護被膜を形成することができる。 なお、 図 5 a, 5 b, 図 6 a, 6 bに示すノ ズルはガス供給配管 1 0に分岐管 1 O Aが設けられている点のみがそれぞれ図 2 a , 2 b , 図 3 a, 3 bに示すノズルと異なり、 そめ他は同様の構成とされてい る。 この図 5 a, 5 b, 図 6 a, 6 bにおいて、 図 2 a, 2 b , 図 3 a, 3 bと 同一機能を奏する部材には、 それぞれ同一符号を付してある。
この場合、 希釈ガスとしては、 空気、 窒素、 炭酸ガス等を用いることができる。 フロートパスに近いシールドレアー内で保護被膜を形成する場合には、 この希釈 ガスとフロートバスのスズとの反応によるスズの汚染を防止するために、 希釈ガ スとしては、 窒素等の不活性ガス、 或いはフロートバス中に供給されている窒素 と水素の混合気体を用いるのが好ましい。
反応性ガスを希釈ガスで希釈する場合、 反応性ガスに対する希釈ガスの使用量 が少な過ぎると、 希釈ガスを用いたことによる吹き付けガス圧の向上効果を十分 に得ることができず、 多過ぎると、 反応性ガスの濃度が低くなり過ぎて、 反応効 率が低下する。 従って、 希釈ガスは反応性ガスに対する体積比で 0 . 2〜1 . 0 倍程度使用するのが好ましい。
このように希釈ガスを用いて比較的多量のガスをリポン状ガラス体に吹き付け る場合、 ガスの吹き付けによりリポン状ガラス体の温度更にはリポン状ガラス体 を搬送するローラの温度が下がり、 ガラスの反り、 変形、 歪、 ローラの変形とい つた不具合が生じる。
このような問題を解消するために、 リポン状ガラス体に吹き付けるガス (反応 性ガス及び/又は希釈ガス) の少なくとも一部を予め所定の温度に加熱して、 リ ボン状ガラス体やローラの冷却を防止することが望ましい。
このように吹き付けガスの予熱を行う場合、 図 7に示す如く、 ヒーター 1 6等 の加熱媒体を内蔵する加熱器 1 7に反応性ガス及び希釈ガスを通して加熱した後 ガス吹き付け用ノズルに送給しても良い。 図 8に示す如く、 徐冷炉 3内に反応性 ガス及ぴ希釈ガスを通過させて、 反応性ガス及ぴ希釈ガスを徐冷炉 3内で熱交換 して加熱した後ガス吹き付け用ノズルに送給しても良い。
徐冷炉 3には、 ローラ 5で搬送されるリポン状ガラス体 4の温度調整のために、 通常、 加熱手段や冷却手段が設けられているため、 例えばこの冷却手段に反応性 ガス及ぴ希釈ガスを導入して熱交換することにより加熱を行うことができる。 図 7, 8のいずれの場合においても、 加熱後のガスがガス吹き付け用ノズルに 達するまでの温度低下を防止するために、 加熱後のガスは保温手段を有する配管 でガス吹き付け用ノズルに送給しても良い。
このような吹き付けガスの予熱温度は、 ガスを吹き付ける箇所、 即ち、 ガスを 吹き付けるリポン状ガラス体の温度によって適宜決定される。 一般的には、 吹き 付けガスの予熱温度は、 ガスをシールドレアーにおいてリボン状ガラス体に吹き 付ける場合には 6 0 0〜5 0 0 °C、 徐冷炉の入口でリポン状ガラス体に吹き付け る場合には 5 0 0〜4 0 0 °C、 徐冷炉の中間位置でリポン状ガラス体に吹き付け る場合には 4 0 0〜3 0 0 °Cとするのが好ましい。 このようなガスの予熱により、 リボン状ガラス体の温度が高いシールドレアーにおいて反応性ガス或レ、は反応性 ガス及び希釈ガスを吹き付ける場合に、 リボン状ガラス体の温度低下による悪影 響を軽減することができる。
本発明においては、 ガス吹き付け用ノズルは 1本だけ設けて 1箇所のみからリ ボン状ガラス体に反応性ガス或いは反応性ガス及び希釈ガスを吹き付けても良い。 ガス吹き付け用ノズルを複数本設け、 リボン状ガラス体の複数箇所に反応性ガス 或いは反応性ガス及び希釈ガスを吹き付けても良い。 ガス吹き付け用ノズルを複 数本設けた場合には、 均質な保護被膜を少ない反応性ガス量で形成することがで きる。 この場合、 ガス吹き付け用ノズルの本数には特に制限はないが、 過度に本 数を多くすることは経済的に見合わないことから上方と、 下方の合計で 1 0 0本 以下とするのが好ましい。
なお、 ガス吹き付け用ノズルは、 通常、 リポン状ガラス体の上方 5〜 3 0 c m の位置、 或いはリポン状ガラス体の下方 5〜 5 0 c mの位置に設けられる。
本発明において、 特に徐冷炉内で保護被膜の形成を行う場合、 図 9に示す如く、 徐冷炉 3内において、 保護被膜形成領域 Hと他の領域を区画する仕切壁 (立ち上 り壁 1 8 A, 1 8 と垂下壁1 8 8, 1 8 B ) を、 搬送されるリポン状ガラス体 4を避けるようにして設け、 この仕切壁で区画された保護被膜形成領域 Hにガス 吹き付け用ノズル 1 9を好ましくは複数本設け、 この保護被膜形成領域 Hに反応 性ガスを充満させるようにしても良い。 このようにして保護被膜形成領域 Hを仕 切ることにより、 保護被膜形成領域 Hの反応性ガス濃度を高め、 ガラスと反応性 ガスとの反応効率を高めると共に、 反応性ガスとガラスとの反応時間を碓保して 効率的に保護被膜をリボン状ガラス体 4の両面に形成することができる。 また、 反応性ガスが供給される領域を限定することにより、 反応性ガスによる徐冷炉の 腐食等の悪影響の及ぶ範囲を限定して、 徐冷炉の劣化を最小限に抑えることがで ぎる。
保護被膜形成領域 Hでは、 リポン状ガラス体 4は、 断熱されたこの領域 H内で 自然に徐冷される。 通常、 フロート法の徐冷炉は、 上流側のガラスの歪点から徐 冷点に冷却される温度域 Mでは、 加熱手段 3 Aや冷却手段 3 B (冷却空気による 熱交換器) を付帯し、 リポン状ガラス体 4を適切な温度に維持している。 歪点以 降においてはガラス体 4の表面応力がガラス体 4を破壊させる応力より小さけれ ば良く、 このような仕切壁を設けても特に問題は発生しない。
反応性ガス領域或いは反応性ガス及ぴ希釈ガスをシールドレアー内でリポン状 ガラス体に吹き付ける場合、 シールドレアーから反応性ガスがフロートバス側へ 流入することによる、 フロートパスの溶融スズの汚染の問題がある。
この問題を解決するために、 図 1 0 a (断面図)、 図 1 0 b (平面図。 ただし リポン状ガラス体は図示を省略した。) に示す如く、 ガス吹き付け用ノズル 2 0 に隣接してガス吸引ノズル 2 1を設け、 ガス吹き付け用ノズル 2 0から吹き出さ せたガスのうち、 リポン状ガラス体 4に到達しない余剰のガスをガス吸引ノズル 2 1で吸引して系外へ排出しても良い。 シールドレアー 2からフロートパス 1への反応性ガスの流入は、 フロートバス 1内の雰囲気圧力をシールドレアー 2内の雰囲気圧力よりも僅かに高く設定して おくことによつても防止することができる。
本発明の方法により、 リボン状ガラス体の表面 (ローラによる搬送面と反対側 の面) に保護被膜を効率的に形成するには、 通常徐冷炉の内部でリボン状ガラス 体の搬送方向の温度勾配により生じている下流から上流に向かって流れる気流に 併合させて、 反応性ガスをリボン状ガラス体の表面近くに噴出する方法が効果的 である。
このような本発明の方法は、 ソーダライムガラスをはじめ、 これよりも更に高 温の徐冷域を有する P D Pガラス等にも適用することができる。
以上の説明では反応性ガスとして亜硫酸ガスを用い、 板ガラスの表面に硫酸塩 保護被膜を形成する場合を例示したが、 この硫酸塩保護被膜は、 具体的には硫酸 ナトリウムの他、 硫酸リチウム、 硫酸カリウム、 硫酸マグネシウム、 硫酸カルシ ゥム、 硫酸ス トロンチウム、 及ぴ硫酸バリウムの 1種又は 2種以上で形成される ものである。 本発明で形成される保護被膜は硫酸塩被膜に限らず、 ガラス中の化 学成分との反応性のあるガス、 例えば炭酸ガスを用いて、 炭酸ナトリウム等の炭 酸塩の保護被膜を形成することもできる。
以下に実施例及び比較例を挙げて本発明の板ガラスの製造方法をより具体的に 説明する。
実施例 1 0
ソーダライムフロート板ガラス (厚み 2 mm) の製造工程において図 2 a, 2 bに示すガス吹き付け用ノズルで亜硫酸ガスを徐冷炉入り口において、 リポン状 ガラス体の下方 5 c mの位置から 5 8 0 °Cのリボン状ガラス体に向かって 2 0 0 N L / h rの吹き付け量で吹き付けた。
用いたノズルは、 直径 3 c m、 長さ 5 0 0 c mであり、 直径 2 mmのガス吐出 口が 1 0 0個、 リポン状ガラス体の幅方向の領域にわたって等間隔で設けられた ものである。
得られた板ガラスの保護被膜 (硫酸塩) 付着量を調べ、 結果を表 4に示した。 硫酸塩保護被膜の付着量は、 ガラス表面の被膜を純水に溶かし、 J I S K O 1 03の比濁法を用いて、 溶液中の硫酸イオンの量を測定し、 この硫酸イオン量 を硫酸ナトリゥム量に換算して、 3 0 Omm角の大きさのサンプルに対する裏面 (下面) の硫酸塩付着量とした。 付着量はサンプル 1 0枚の平均値とした。 比較例 3
亜硫酸ガス吹き付けノズルとして、 図 1 1に示す従来のノズルを用いたこと以 外は実施例 1 0と同様にして保護被膜を形成し、 同様に硫酸塩付着量を調べ、 結 果を表 4に示した。
用いたノズルは直径 3. 4 c m、 長さ 3 50 c mであり、 リボン状ガラス体の 幅方向のほぼ中央部分にその先端が位置し、 先端の直径 2 7 mmの開孔から亜硫 酸ガスを吐出するものである。
表 4
Figure imgf000015_0001
表 4より、 本発明によれば、 従来法に比べて効率的な保護被膜形成を行えるこ とがわかる。
実施例 1 1
ソーダライムフロート板ガラス (厚み 2mm) の製造工程において図 5に示す ガス吹き付け用ノズルで亜硫酸ガスを徐冷炉入り口において、 リボン状ガラス体 の上方 20 c mの位置及ぴ下方 50 c raの位置から 450°Cのリボン状ガラス体 に'向かってそれぞれ 1 00 NL/h r、 合計 200 NL/h rの吹き付け量で吹 き付けた。
用いたノズルは、 直径 3. 4 cm, 長さ 500 cmであり、 直径 2 mmのガス 吐出口が 1 00個リボン状ガラス体の幅方向の領域にわたって設けられたもので あり、 分岐管より希釈ガスとして空気が導入されるように構成されている。 空気 の導入量は 1個のノズル当たり亜硫酸ガス 1 00NL/h rに対して 30 NL/ h r とした。 得られた板ガラスについて、 実施例 1 0と同様にして表面 (上面) 及び裏面 ( 下面) の硫酸塩付着量を調べ、 結果を表 5に示した。
表 5
Figure imgf000016_0001
表 5より、 亜硫酸ガスを空気で希釈することにより、 より一層効率的な保護被 膜形成を行えることがわかる。
実施例 1 2
ソーダライムフロート板ガラス (厚み 3 mm) の製造工程において図 5に示す ガス吹き付け用ノズルで亜硫酸ガスを徐冷炉入り口において、 リポン状ガラス体 の下方 5 c mの位置から 5 8 0 °Cのリポン状ガラス体に向かって表 6に示す吹き 付け量で吹き付けた。
用いたノズルは、 直径 3 . 4 c m, 長さ 5 0 0 c mであり、 直径 2 mmのガス 吐出口が 1 0 0個.、 リボン状ガラス体の幅方向の領域にわたって等間隔で設けら れたものであり、 分岐管より希釈ガスとして空気が表 6に示す流量で導入される ように構成されている。
得られた板ガラスについて、 実施例 1 0と同様にして裏面 (下面) の硫酸塩付 着量を調べ、 硫酸塩付着量の最大値及び最小値とその差を求め、 結果を表 6に示 した。
得られた板ガラスを 1 %のフッ酸で処理し、 処理後の外観を観察し、 結果を表 6に示した。
この板ガラスを珪フッ酸溶液中で処理することにより、 表面にシリカ膜を形成 する液層析出法で A R (反射防止) 加工を施した。 このとき、 サンプルを 8時間 おきに 3回採取し、 各回毎の A R加工の歩留りを調べ (サンプル数 3 0 0個)、 結果を表 6に示した。 比較例 4
ガス吹き付け用ノズルとして図 1 1に示す従来のノズルを用い、 亜硫酸ガス及 ぴ希釈ガスの吹き付け量を表 6に示す量としたこと以外は実施例 1 2と同様にし て板ガラスを製造し、 同様に硫酸塩付着量のばらつき、 フッ酸処理による耐フッ 酸性、 及び A R加工の歩留りを調べ、 結果を表 6に示した。
なお、 用いたノズルは、 比較例 3で用いたものと同様のノズルである。
表 6
Figure imgf000017_0001
表 6より、 従来のノズルよりも本発明に係るノズルを用いた方がばらつきのな い均質な保護被膜を形成することができ、 このため耐食性ゃぞの後の加工工程で の歩留りも良好となることがわかる。
実施例 1 3
ソーダライムフロート板ガラス (厚み 3 mm) の製造工程において図 6に示す ガス吹き付け用ノズルで亜硫酸ガスを徐冷炉入り口において、 リボン状ガラス体 の下方 5 c mの位置から 5 8 0 °Cのリポン状ガラス体に向かって表 7に示す吹き 付け量で吹き付けた。 用いたノズルは、 外管の直径 3. 4 cm、 内管の直径 2. 1 cm、 長さ 500 cmであり、 幅 lmm、 長さ 460 cmのガス吐出用スリットがリポン状ガラス 体の幅方向の領域にわたって設けられたものであり、 内管には、 外管のスリット 形成側と反対側の側面に直径 2 mmのガス吐出口が 1 00個等間隔で設けられて いる。 分岐管より希釈ガスとして空気が表 7に示す流量で導入されるように構成 されている。
本実施例では、 ガス吹き付け用ノズルに供給する亜硫酸ガスも希釈ガスとして の空気も、 図 7に示すような加熱手段で予め 460°Cに加熱した。
得られた板ガラスについて、 実施例 1 0と同様にして硫酸塩付着量を調べ、 結 果を表 7に示した。
比較例 5
亜硫酸ガス吹き付けノズルとして、 図 1 1に示す従来のノズルを用い、 亜硫酸 ガスの予熱を行わなかったこと以外は実施例 1 3と同様にして保護被膜を形成し 、 同様に硫酸塩付着量を調べ、 結果を表 7に示した。
なお、 用いたノズルは直径 3. 4 cm、 長さ 350 cmであり、 リポン状ガラ ス体の幅方向のほぼ中央部分にその先端が位置し、 先端の直径 27 mmの開孔か ら亜硫酸ガスを吐出するものである。
表 7
Figure imgf000018_0001
実施例 14、 比較例 6
実施例 1 3及ぴ比較例 5において、 ガスの吹き付けを徐冷炉の入口で 50 NL /h rを使用し、 残りのガスの吹き付けを徐冷炉内のリボン状ガラス体の温度が 450°Cの領域で行い、 亜硫酸ガス吹き付け量、 希釈ガス吹き付け量及ぴ予熱温 度を表 8に示すような条件とし、 ノズルの位置をリボン状ガラス体の下方 5 0 c mとした。 それ以外は実施例 1 3及び比較例 5とそれぞれ同様にして保護被膜の 形成を行った。 得られた板ガラスについて実施例 1 0と同様に硫酸塩付着量を調 ベ、 結果を表 8に示した。
表 8
Figure imgf000019_0001
表 7, 8より、 反応性ガスを予熱することにより、 保護被膜をより一層効率的 に形成することができることがわかる。
実施例 1 5, 1 6
実施例 1 4において、 徐冷炉内に複数のガス吹き付け用ノズルを設け、 ガスの 予熱温度を 3 5 0 °Cとしたこと以外は実施例 1 4と同様にして保護被膜の形成を 行った。 得られた板ガラスについて、 実施例 1 0と同様に硫酸塩付着量を調べ、 結果を表 9に示した。
用いた各ガス吹き付け用ノズルは実施例 1 4で用いたものと同様のものであり 、 各ノズルの設置位置は表 9に示す通りとした。
表 9
Figure imgf000020_0001
表 9より、 リボン状ガラス体内のガス吹き付け用ノズルの本数を多く して亜硫 酸ガスの吹き付け箇所を分散させることにより、 より一層効率的な保護被膜形成 を行えることがわかる。
実施例 1 7
ソーダライムフロート板ガラス (厚み 3 mm) の製造工程において、 図 1 0に 示す如く、 シールドレアー内に図 6に示すガス吹き付け用ノズルを 2本設置した 。 ガス吹き付け用ノズルは、 リボン状ガラス体の下方 3 0 c m、 リポン状ガラス 体温度 6 1 0 °Cの位置と、 リポン状ガラス体の下方 3 0 c m、 リボン状ガラス体 温度 6 0 0 °Cの位置に設置した。 各ガス吹き付け用ノズルの近傍にそれぞれ吸気 ノズルを設けて、 ガス吹き付け用ノズルより リポン状ガラス体に向けて亜硫酸ガ ス及ぴ希釈ガス (窒素) を表 1 0に示す合計量となるように吹き付けた。
用いたノズルは、 外管の直径 3 . 4 c m、 内管の直径 2 . 1 c m、 長さ 5 0 0 c mであり、 幅 l mm、 長さ 4 6 0 c mのガス吐出用スリットがリポン状ガラス 体の幅方向の領域にわたって設けられたものである。 このノズルの內管には、 外 管のスリット形成側と反対側の側面に直径 2 mmのガス吐出口が 1 0 0個等間隔 で設けられている。 このノズルは、 分岐管より希釈ガスが導入されるように構成 されている。
本実施例では、 ガス吹き付け用ノズルに供給する亜硫酸ガスも希釈ガスとして の窒素も、 図 7に示すような加熱手段で予め 5 3 0 °Cに加熱した。
フロートバス内の雰囲気の圧力は 2 4 . 5 P aとし、 シールドレアー内の圧力 は 1 7 . 6 P aとした。 このようにフロートバス側を高圧とすることにより、 シ ールドレアー側からのフロートバス内への亜硫酸ガスの流入を防止した。
得られた板ガラスについて、 実施例 1 0と同様にして硫酸塩付着量を調べ、 結 果を表 1 0に示した。
製造開始から 8時間後のフロートバス内の状況を調べ、 結果を表 1 0に示した 比較例 7
実施例 1 7において、 ガス吹き付け用ノズルとして、 図 1 1に示す従来のノズ ルを 2本用い、 リボン状ガラス体の温度が 6 1 0 の部分でリポン状ガラス体の 下方 5 0 c mの位置に、 2本のノズルをリポン状ガラス体の側辺部分から突出さ せて対向配置し、 このノズルから室温の亜硫酸ガスのみを吹き付けた以外は実施 例 8と同様にして保護被膜を形成した。 得られた板ガラスについて実施例 1 7と 同様に硫酸塩付着量及ぴフロートパス内の状況を調べ、 結果を表 1 0に示した。 なお、 用いたノズルは直径 3 . 4 c m, 長さ 1 5 0 c mであり、 それぞれのノ ズル先端がリポン状ガラス体の幅方向のほぼ 3分の 1部分に位置し、 先端の直径 2 7 mmの開孔から亜硫酸ガスを吐出するものである。
本比較例におけるフロートパス内の圧力及びシールドレアー内の圧力は実施例 1 7と同様とした。 表 1 0
Figure imgf000022_0001
く※) ドロス;ス が汚染されてフロ-トハ'スの溶融スス'表面
に浮遊した酸化スス'を主体とする薄い固層。 表 10より明らかなように、 本発明によれば、 フロートパス内のスズ汚染を防 止して、 効果的な保護被膜形成を行える。
比較例 7では亜硫酸ガス吹き付け量は 50 NL/h rが限界であり、 これ以上 増やすとフロートバス内の出口付近でスズが汚染され、 ガラス品質を維持するこ とができなかった。
実施例 1 8
ソーダライムフロート板ガラス (厚み 3 mm) の製造工程において、 図 9に示 すように、 全長 7 Omの徐冷炉の入口側から 25 mのガラスの歪点以降の部分と 、 入口側から 45mの部分に仕切壁を設け、 長さ 2 Omの領域を保護被膜形成領 域として区画した。
この保護被膜形成領域に図 1 1に示す従来のガス吹き付け用ノズルを 6本、 下 記の位置に配置し、 450°Cに予熱した亜硫酸ガス及び希釈ガスとしての空気を 合計で表 1 1に示す流量で吹き付けた。
用いたノズルは、 外管の直径 3. 4 cm、 内管の直径 2. 1 cm、 長さ 500 c mであり、 幅 1 ram、 長さ 460 c mのガス吐出用スリットがリボン状ガラス 体の幅方向の領域にわたって設けられたものである。 このノズルの内管には、 外 管のスリット形成側と反対側の側面に直径 2 mmのガス吐出口が 100個等間隔 で設けられている。 このノズルは分岐管より、 希釈ガスとして空気が導入される ように構成されている。
[ガス吹き付け用ノズルの設定位置]
リボン状ガラス体の上方 1 5 c mのリボン状ガラス体の温度が 4 8 0 °Cの位置 リボン状ガラス体の上方 1 5 c mのリポン状ガラス体の温度が 4 3 0 °Cの位置 リボン状ガラス体の上方 1 5 c mのリボン状ガラス体の温度が 3 8 0 °Cの位置 リボン状ガラス体の下方 3 0 c mのリポン状ガラス体の温度が 4 8 0 °Cの位置 リボン状ガラス体の下方 3 0 c mのリボン状ガラス体の温度が 4 3 0 °Cの位置 リポン状ガラス体の下方 3 0 c mのリボン状ガラス体の温度が 3 8 0 °Cの位置 得られた板ガラスについて、 実施例 1 0と同様にして表面 (上面) 及び裏面 ( 下面) の硫酸塩付着量とそのばらつきを調べ、 結果を表 1 1に示した。
実施例 1 9
実施例 1 8において、. 図 6に示すガス吹き付け用ノズルを使用し、 希釈ガス吹 き付けが表 1 1に示す量であること以外は実施例 1 Sと同様にして保護被膜形成 を行った。 得られた板ガラスについて、 実施例 1 0と同様に硝酸塩付着量とその ばらつきを調べ、 結果を表 1 1に示した。
比較例 8 ,
実施例 1 8において保護被膜形成領域として従来法を採用したこと以外は実施 例 1 8と同様にして保護被膜の形成を行った。 得られた板ガラスについて、 実施 例 1 0と同様に硫酸塩付着量とそのばらつきを調べ、 結果を表 1 1に示した。
表 1 1
Figure imgf000024_0001
*板力'ラス幅方向の付着量の最大値と最小値の差 表 1 1より、 本発明によれば極めて均質な保護被膜を形成することができるこ とがわかる。 本発明の保護被膜形成領域に本発明のノズルを組み合わせることに より、 更に均質な保護被膜を形成することができることがわかる。 産業上の利用可能性
本発明によれば、 連続板ガラス製造工程でのキズ発生を防止して、 高品質が要 求される分野への適用に好適な板ガラスを提供することができる。
本発明は、 液晶用ガラス、 ディスク用ガラス、 太陽電池用ガラス、 P D P (プ ラズマディスプレイ) 用ガラス等の、 ガラス表面の徼細な欠陥をも許容されない 板ガラス製品に好適であり、 これらの板ガラス製品のキズを有効に防止すること ができ、 商品価値の高い製品を歩留り良く提供することができる。

Claims

請求の範囲
1. ガラス体と、 該ガラス体の表面に形成された、 該ガラス体にキズが付くこ とを防止するための保護被膜とを有しており、
該保護被膜は、 連続的に板ガラスを製造する板ガラス製造工程において形成さ れた
保護被膜を有する板ガラス。
2. 請求項 1において、 該保護被膜が硫酸塩からなることを特徴とする保護被 膜を有する板ガラス。
3. 請求項 1又は 2において、 該保護被膜は、 ガラスを溶融、 成形及ぴ徐冷し て板ガラスを製造する成形炉の出口、 徐冷炉の入口又は徐冷炉内で形成された保 護被膜を有する板ガラス。
4. 請求項 2において、 該板ガラスがソーダ石灰ガラスであり、 300mm角 の板ガラスの片面当たりの該保護被膜の付着量が、 硫酸塩換算で P. 3〜6. 0 mgであることを特徴とする保護被膜を有する板ガラス。
5. 請求項 2において、 該板ガラスがアルミノ珪酸塩ガラスであり、 300m m角の板ガラスの片面当たりの該保護被膜の付着量が、 硫酸塩換算で 0. 3〜3. 5 m gであることを特徴とする保護被膜を有する板ガラス。
6. 請求項 2において、 該板ガラスがホウ珪酸塩ガラスであり、 300mm角 の板ガラスの片面当たりの該保護被膜の付着量が、 硫酸塩換算で 0. 1〜3. 0 mgであることを特徴とする保護被膜を有する板ガラス。
7. 請求項 1ないし 6のいずれか 1項において、 該保護被膜が板ガラスの両面 に形成されていることを特徴とする保護被膜を有する板ガラス。
8. 連続的に板ガラスを製造する板ガラス製造方法において、 製造途中におい てガラス体表面にキズ防止を目的とした保護被膜を形成することを特徴とする板 ガラスの製造方法。
9. 請求項 8において、 保護被膜が硫酸塩からなることを特徴とする板ガラス の製造方法。
1 0. 請求項 8において、 保護被膜が炭酸塩からなることを特徴とする板ガラ スの製造方法。
1 1 . 請求項 8ないし 1 0のいずれか 1項において、 ガラスに含まれる化学成 分と反応性のあるガスを該ガラス体に吹き付けることにより該保護被膜を形成す ることを特徴とする板ガラスの製造方法。
1 2 . 請求項 1 1において、 該ガラス体の上方及び下方の少なくとも一方にノ ズルが配置され、 該ノズルは、 該ガラス体の幅方向に延在しており、 該ノズルは、 少なくとも側面の該ガラス体の幅 ほぼ同等の領域に複数のガス吐出孔を備えて おり、 このノズルにより、 前記反応性ガスを該ガラス体に吹き付けることを特徴 とする板ガラスの製造方法。
1 3 . 請求項 1 1において、 該ガラス体の上方及び下方の少なくとも一方にノ ズルが配置され、 該ノズルは該ガラス体の幅方向に延在しており、 該ノズルは少 なくとも側面の該ガラス体の幅とほぼ同等の領域にガス吐出用のスリットを備え ており、 このノズルにより、 前記反応性ガスを該ガラス体に吹き付けることを特 徴とする板ガラスの製造方法。
1 4 . 請求項 1 1ないし 1 3のいずれか 1項において、'該反応性ガスを吹き付 け媒体ガスで希釈して該ガラス体に吹き付けることを特徴とする板ガラスの製造 方法。
1 5 . 請求項 1 1ないし 1 4のいずれか 1項において、 該ガラス体に吹き付け るガスの少なくとも一部を加熱した後、 該ガラス体に吹き付けることを特徴とす る板ガラスの製造方法。
1 6 . 請求項 1 1ないし 1 5のいずれか 1項において、 前記ノズルをガラス体 の長さ方向の複数箇所に設けることを特徴とする板ガラスの製造方法。
1 7 . 請求項 1 1ないし 1 6のいずれか 1項において、
ガラスを溶融、 成形及ぴ徐冷して板ガラスを製造し、
該徐冷炉内で該保護被膜を形成し、
該徐冷炉内の該保護被膜形成領域と他の領域とを区画する仕切壁を設け、 該仕 切壁で区画された保護被膜形成領域に前記反応性ガスを充満させることを特徴と する板ガラスの製造方法。
PCT/JP2001/011331 2000-12-26 2001-12-25 Verre a glace avec film protecteur et son procede de fabrication WO2002051767A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002552872A JPWO2002051767A1 (ja) 2000-12-26 2001-12-25 保護被膜を有する板ガラス及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-395406 2000-12-26
JP2000395406 2000-12-26

Publications (1)

Publication Number Publication Date
WO2002051767A1 true WO2002051767A1 (fr) 2002-07-04

Family

ID=18860870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011331 WO2002051767A1 (fr) 2000-12-26 2001-12-25 Verre a glace avec film protecteur et son procede de fabrication

Country Status (2)

Country Link
JP (1) JPWO2002051767A1 (ja)
WO (1) WO2002051767A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204295A (ja) * 2006-01-31 2007-08-16 Asahi Glass Co Ltd ディスプレイ基板用ガラス板及びその製造方法
WO2008004480A1 (fr) * 2006-07-07 2008-01-10 Asahi Glass Co., Ltd. Procédés destinés à produire un substrat de verre sans alcali
WO2008004481A1 (fr) * 2006-07-07 2008-01-10 Asahi Glass Co., Ltd. Procédé de production de substrat de verre destiné à du verre de type panneaux plats
WO2008120535A1 (ja) * 2007-04-03 2008-10-09 Asahi Glass Company, Limited 板ガラスの製造方法、板ガラスの緩衝層形成装置及び板ガラスの製造設備
WO2009148141A1 (ja) * 2008-06-06 2009-12-10 旭硝子株式会社 板ガラスの製造装置及び板ガラスの製造方法
CN102092921A (zh) * 2009-12-14 2011-06-15 旭硝子株式会社 浮法玻璃的制造方法和制造装置
JP2011251893A (ja) * 2010-05-31 2011-12-15 Lg Chem Ltd フロートガラスのための徐冷装置及び方法
JP2012091952A (ja) * 2010-10-26 2012-05-17 Hoya Corp ガラスの表面処理法、ガラスの研磨方法および光学素子の製造方法。
JP2013063880A (ja) * 2011-09-20 2013-04-11 Nippon Electric Glass Co Ltd ガラス板
KR101305592B1 (ko) * 2011-07-20 2013-09-09 아사히 가라스 가부시키가이샤 플로트 유리의 제조 방법
WO2013172307A1 (ja) * 2012-05-16 2013-11-21 旭硝子株式会社 板ガラスの製造方法
WO2014077371A1 (ja) 2012-11-16 2014-05-22 旭硝子株式会社 ガラス製造方法及びガラス製造装置
JP2014097916A (ja) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd 薄膜太陽電池用ガラス板及びその製造方法
KR101422162B1 (ko) 2010-06-29 2014-07-22 주식회사 엘지화학 플로트 유리 제조 장치 및 방법
WO2014157004A1 (ja) * 2013-03-26 2014-10-02 旭硝子株式会社 ガラス製品の製造方法
WO2014167842A1 (ja) * 2013-04-08 2014-10-16 日本板硝子株式会社 ガラス板及びガラス板の製造方法
JP2015160804A (ja) * 2014-02-27 2015-09-07 ショット アクチエンゲゼルシャフトSchott AG フロート板ガラスを製造するためのフロート法及びフロート板ガラス
WO2015174324A1 (ja) * 2014-05-12 2015-11-19 旭硝子株式会社 ガラス搬送用搬送ロール及びそれを用いたガラス製造方法、並びにガラス製造装置
WO2015194569A1 (ja) * 2014-06-20 2015-12-23 旭硝子株式会社 ガラス板及びその製造方法
CN107543032A (zh) * 2017-10-18 2018-01-05 蚌埠中建材信息显示材料有限公司 一种超薄玻璃防划伤装置
CN110117152A (zh) * 2018-02-06 2019-08-13 Agc株式会社 浮法玻璃制造方法
US10399894B2 (en) 2013-03-19 2019-09-03 Nippon Sheet Glass Company, Limited Glass sheet and method for producing glass sheet
KR20200130266A (ko) 2018-03-09 2020-11-18 에이지씨 가부시키가이샤 무알칼리 유리 기판
KR20200136263A (ko) * 2019-05-27 2020-12-07 주식회사 엘지화학 판유리 제조 장치
KR20200136262A (ko) * 2019-05-27 2020-12-07 주식회사 엘지화학 판유리 제조 장치
KR20200136264A (ko) * 2019-05-27 2020-12-07 주식회사 엘지화학 판유리 제조 장치
CN112830686A (zh) * 2021-01-21 2021-05-25 四川虹科创新科技有限公司 一种浮法玻璃表面硫膜控制装置及方法
WO2021149396A1 (ja) * 2020-01-20 2021-07-29 Agc株式会社 硫酸塩付きリチウムシリケートガラス板、リチウムシリケートガラス板、及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4411795B1 (ja) * 1966-08-18 1969-05-29
JPS497317A (ja) * 1972-05-12 1974-01-23
JPS59152245A (ja) * 1983-02-14 1984-08-30 Nippon Taisanbin Kogyo Kk ガラス壜表面の耐化学性処理方法
JPS61236635A (ja) * 1985-04-11 1986-10-21 Toyo Glass Kk ガラスの表面処理法
JPH02120256A (ja) * 1988-10-27 1990-05-08 Central Glass Co Ltd ガラス表面の処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4411795B1 (ja) * 1966-08-18 1969-05-29
JPS497317A (ja) * 1972-05-12 1974-01-23
JPS59152245A (ja) * 1983-02-14 1984-08-30 Nippon Taisanbin Kogyo Kk ガラス壜表面の耐化学性処理方法
JPS61236635A (ja) * 1985-04-11 1986-10-21 Toyo Glass Kk ガラスの表面処理法
JPH02120256A (ja) * 1988-10-27 1990-05-08 Central Glass Co Ltd ガラス表面の処理方法

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204295A (ja) * 2006-01-31 2007-08-16 Asahi Glass Co Ltd ディスプレイ基板用ガラス板及びその製造方法
KR101107369B1 (ko) * 2006-07-07 2012-01-19 아사히 가라스 가부시키가이샤 무알칼리 유리 기판의 제조 방법
WO2008004480A1 (fr) * 2006-07-07 2008-01-10 Asahi Glass Co., Ltd. Procédés destinés à produire un substrat de verre sans alcali
WO2008004481A1 (fr) * 2006-07-07 2008-01-10 Asahi Glass Co., Ltd. Procédé de production de substrat de verre destiné à du verre de type panneaux plats
JP5239859B2 (ja) * 2006-07-07 2013-07-17 旭硝子株式会社 無アルカリガラス基板の製造方法
JP5157904B2 (ja) * 2006-07-07 2013-03-06 旭硝子株式会社 フラットパネルディスプレイ用ガラス基板の製造方法
KR101126872B1 (ko) 2006-07-07 2012-03-23 아사히 가라스 가부시키가이샤 플랫 패널 유리용 유리 기판의 제조 방법
CN102351418A (zh) * 2006-07-07 2012-02-15 旭硝子株式会社 平板玻璃用玻璃基板
JP5223861B2 (ja) * 2007-04-03 2013-06-26 旭硝子株式会社 板ガラスの製造方法、板ガラスの緩衝層形成装置及び板ガラスの製造設備
WO2008120535A1 (ja) * 2007-04-03 2008-10-09 Asahi Glass Company, Limited 板ガラスの製造方法、板ガラスの緩衝層形成装置及び板ガラスの製造設備
KR101075049B1 (ko) 2007-04-03 2011-10-19 아사히 가라스 가부시키가이샤 판유리의 제조 방법, 판유리의 완충층 형성 장치 및 판유리의 제조 설비
CN102046542B (zh) * 2008-06-06 2013-07-24 旭硝子株式会社 平板玻璃的制造装置及平板玻璃的制造方法
CN102046542A (zh) * 2008-06-06 2011-05-04 旭硝子株式会社 平板玻璃的制造装置及平板玻璃的制造方法
KR101503964B1 (ko) 2008-06-06 2015-03-18 아사히 가라스 가부시키가이샤 판유리의 제조 장치 및 판유리의 제조 방법
WO2009148141A1 (ja) * 2008-06-06 2009-12-10 旭硝子株式会社 板ガラスの製造装置及び板ガラスの製造方法
JP5387920B2 (ja) * 2008-06-06 2014-01-15 旭硝子株式会社 板ガラスの製造装置及び板ガラスの製造方法
CN102092921A (zh) * 2009-12-14 2011-06-15 旭硝子株式会社 浮法玻璃的制造方法和制造装置
TWI480238B (zh) * 2009-12-14 2015-04-11 Asahi Glass Co Ltd Production method and manufacturing apparatus of floating glass
JP2011121834A (ja) * 2009-12-14 2011-06-23 Asahi Glass Co Ltd フロートガラスの製造方法および製造装置
CN103482852A (zh) * 2009-12-14 2014-01-01 旭硝子株式会社 浮法玻璃的制造方法和制造装置
KR101382826B1 (ko) * 2009-12-14 2014-04-08 아사히 가라스 가부시키가이샤 플로트 유리의 제조 방법 및 제조 장치
TWI457296B (zh) * 2010-05-31 2014-10-21 Lg Chemical Ltd 浮法玻璃之退火裝置及其方法
US8769994B2 (en) 2010-05-31 2014-07-08 Lg Chem, Ltd. Annealing apparatus and method for float glass
JP2011251893A (ja) * 2010-05-31 2011-12-15 Lg Chem Ltd フロートガラスのための徐冷装置及び方法
KR101422162B1 (ko) 2010-06-29 2014-07-22 주식회사 엘지화학 플로트 유리 제조 장치 및 방법
JP2012091952A (ja) * 2010-10-26 2012-05-17 Hoya Corp ガラスの表面処理法、ガラスの研磨方法および光学素子の製造方法。
KR101305592B1 (ko) * 2011-07-20 2013-09-09 아사히 가라스 가부시키가이샤 플로트 유리의 제조 방법
JP2013063880A (ja) * 2011-09-20 2013-04-11 Nippon Electric Glass Co Ltd ガラス板
WO2013172307A1 (ja) * 2012-05-16 2013-11-21 旭硝子株式会社 板ガラスの製造方法
JP2014097916A (ja) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd 薄膜太陽電池用ガラス板及びその製造方法
WO2014077371A1 (ja) 2012-11-16 2014-05-22 旭硝子株式会社 ガラス製造方法及びガラス製造装置
CN104812713A (zh) * 2012-11-16 2015-07-29 旭硝子株式会社 玻璃制造方法及玻璃制造装置
US10399894B2 (en) 2013-03-19 2019-09-03 Nippon Sheet Glass Company, Limited Glass sheet and method for producing glass sheet
WO2014157004A1 (ja) * 2013-03-26 2014-10-02 旭硝子株式会社 ガラス製品の製造方法
WO2014167842A1 (ja) * 2013-04-08 2014-10-16 日本板硝子株式会社 ガラス板及びガラス板の製造方法
JPWO2014167842A1 (ja) * 2013-04-08 2017-02-16 日本板硝子株式会社 ガラス板及びガラス板の製造方法
JP2015160804A (ja) * 2014-02-27 2015-09-07 ショット アクチエンゲゼルシャフトSchott AG フロート板ガラスを製造するためのフロート法及びフロート板ガラス
WO2015174324A1 (ja) * 2014-05-12 2015-11-19 旭硝子株式会社 ガラス搬送用搬送ロール及びそれを用いたガラス製造方法、並びにガラス製造装置
EP3159317A4 (en) * 2014-06-20 2018-01-03 Asahi Glass Company, Limited Glass plate and method for manufacturing same
CN106573830A (zh) * 2014-06-20 2017-04-19 旭硝子株式会社 玻璃板及其制造方法
TWI666179B (zh) * 2014-06-20 2019-07-21 日商Agc股份有限公司 Glass plate and manufacturing method thereof
WO2015194569A1 (ja) * 2014-06-20 2015-12-23 旭硝子株式会社 ガラス板及びその製造方法
CN107543032A (zh) * 2017-10-18 2018-01-05 蚌埠中建材信息显示材料有限公司 一种超薄玻璃防划伤装置
CN110117152A (zh) * 2018-02-06 2019-08-13 Agc株式会社 浮法玻璃制造方法
JP2019137562A (ja) * 2018-02-06 2019-08-22 Agc株式会社 フロートガラス製造方法
KR20200130266A (ko) 2018-03-09 2020-11-18 에이지씨 가부시키가이샤 무알칼리 유리 기판
KR20200136262A (ko) * 2019-05-27 2020-12-07 주식회사 엘지화학 판유리 제조 장치
KR20200136263A (ko) * 2019-05-27 2020-12-07 주식회사 엘지화학 판유리 제조 장치
KR20200136264A (ko) * 2019-05-27 2020-12-07 주식회사 엘지화학 판유리 제조 장치
KR102639801B1 (ko) 2019-05-27 2024-02-22 주식회사 엘지화학 판유리 제조 장치
KR102639796B1 (ko) 2019-05-27 2024-02-22 주식회사 엘지화학 판유리 제조 장치
KR102639794B1 (ko) 2019-05-27 2024-02-22 주식회사 엘지화학 판유리 제조 장치
WO2021149396A1 (ja) * 2020-01-20 2021-07-29 Agc株式会社 硫酸塩付きリチウムシリケートガラス板、リチウムシリケートガラス板、及びその製造方法
CN114929640A (zh) * 2020-01-20 2022-08-19 Agc株式会社 带有硫酸盐的锂硅酸盐玻璃板、锂硅酸盐玻璃板及其制造方法
CN114929640B (zh) * 2020-01-20 2024-03-08 Agc株式会社 带有硫酸盐的锂硅酸盐玻璃板、锂硅酸盐玻璃板及其制造方法
CN112830686A (zh) * 2021-01-21 2021-05-25 四川虹科创新科技有限公司 一种浮法玻璃表面硫膜控制装置及方法

Also Published As

Publication number Publication date
JPWO2002051767A1 (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
WO2002051767A1 (fr) Verre a glace avec film protecteur et son procede de fabrication
JP6023791B2 (ja) 化学強化ガラス板およびフラットパネルディスプレイ装置
US9090501B2 (en) Method for reducing warpage of glass substrate caused by chemical strengthening process, and method for producing chemically strengthened glass substrate
TWI480238B (zh) Production method and manufacturing apparatus of floating glass
US3887349A (en) Apparatus for manufacturing ribbon glass having a metal oxide coating
US9023480B2 (en) Glass substrate for chemical strengthening, and method for producing same
JP6635660B2 (ja) フロート板ガラスを製造するためのフロート法及びフロート板ガラス
US20100281920A1 (en) Process and apparatus for producing glass sheet
US4878934A (en) Process and apparatus for coating glass
US4293326A (en) Glass coating
CN101489946A (zh) 无碱玻璃基板的制造方法
US4917717A (en) Apparatus for and process of coating glass
US4728353A (en) Process and apparatus for pyrolytically coating glass
JP2006083059A (ja) 特殊フロートガラス及びその製造方法
EP2825687B1 (en) Chemical vapor deposition process for depositing zinc oxide coatings
GB2026454A (en) Coating glass with tin oxide
JP2021024782A (ja) わずかな結晶割合を有する熱成形された化学的に強化可能なガラス製品、殊に板状の化学的に強化可能なガラス製品、ならびにそれを製造する方法および装置
WO2014123089A1 (ja) ガラス製造方法
WO2015194569A1 (ja) ガラス板及びその製造方法
TW201514119A (zh) 玻璃板
CN116425429B (zh) 一种ag玻璃制造装置
CN114988720B (zh) 气体分配装置及喷涂设备
CN114929640B (zh) 带有硫酸盐的锂硅酸盐玻璃板、锂硅酸盐玻璃板及其制造方法
JP2603672Y2 (ja) 薄膜付ガラス板製造装置
JP2011157234A (ja) 無アルカリガラス基板、並びにその製造方法及び製造装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002552872

Country of ref document: JP

122 Ep: pct application non-entry in european phase