WO2002049581A1 - Reaktionsträges dentalglas - Google Patents

Reaktionsträges dentalglas Download PDF

Info

Publication number
WO2002049581A1
WO2002049581A1 PCT/EP2001/014721 EP0114721W WO0249581A1 WO 2002049581 A1 WO2002049581 A1 WO 2002049581A1 EP 0114721 W EP0114721 W EP 0114721W WO 0249581 A1 WO0249581 A1 WO 0249581A1
Authority
WO
WIPO (PCT)
Prior art keywords
dental
glass
cement
weight
ions
Prior art date
Application number
PCT/EP2001/014721
Other languages
English (en)
French (fr)
Inventor
Stefan Hoescheler
Markus Mikulla
Gabriele Rackelmann
Volker Bambach
Original Assignee
3M Espe Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Espe Ag filed Critical 3M Espe Ag
Priority to DE50105493T priority Critical patent/DE50105493D1/de
Priority to JP2002550925A priority patent/JP2004516260A/ja
Priority to AT01271196T priority patent/ATE289792T1/de
Priority to US10/451,222 priority patent/US7264665B2/en
Priority to AU2002219182A priority patent/AU2002219182A1/en
Priority to EP01271196A priority patent/EP1343452B1/de
Publication of WO2002049581A1 publication Critical patent/WO2002049581A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61K6/889Polycarboxylate cements; Glass ionomer cements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Definitions

  • the invention relates to the use of inert glasses in dental compositions, in particular dental cements, preferably polyelectrolyte cements, which can be used without pretreatment of the glass powder surface.
  • Glasses are used in the dental field, particularly in the area of filling materials, as well as fastening cements and composites for crowns, bridges and inlyas.
  • Reactive glasses i.e. Glasses that take part in a chemical reaction are used in so-called polyelectrolyte cements, in particular glass ionomer cements.
  • Such polyelectrolyte cements usually comprise three components, a polyacid, in particular a carboxylic acid-containing substance, preferably in liquid form, a glass powder and water. If the three components are combined and mixed with each other, the reaction takes place with the formation of a solid that hardens over time (cement reaction).
  • raw materials are used in the manufacture of glasses, which are used in particular in glass ionomer cements. These are oxides, such as Si0 2 , Al2O3, CaO, fluorides, such as CaF 2 , SrF 2 , cryolite, hydroxides, such as Al (OH) 3, phosphates, such as ⁇ IP0, P 2 O 5 or calcium phosphates.
  • silicates such as mullite or carbonates such as Na 2 C0 3 , CaC0 3 or other mineral natural raw materials can also be used. In principle, all raw materials can also be used in a form containing water of crystallization.
  • glasses for glass ionomer cements can usually be assigned to one of the following systems, with P 2 0 5 and Na 2 0 in some cases being little or nonexistent: Si0 2 - AI2O3 - CaO - (P2O5) - (Na 2 0) - F
  • the glasses that are used in dental cements are generally fluoroaluminosilicate glasses.
  • the acid solubility of the glass is a prerequisite for its use as a component of a polyelectrolyte cement.
  • An acid-soluble glass structure is created when silicon is partially replaced by aluminum.
  • the replacement of silicon with aluminum is only possible in the presence of basic oxides in order to balance the charge of the 3-valent aluminum ion in places of the 4-valent silicon ion.
  • the glass structure is broken up and, in particular, the ions with network-changing properties are released at least partially as so-called cross-linking ions.
  • the crosslinking manifests itself in an increasing hardening of the cement over time. All at least divalent basic ions, but also the Al 3+ is able to form such polymeric structures. A distinction is usually made between the processing time - the point in time at which the dentist can still process the paste paste and the hardening time - the point in time after which post-processing with rotating dental instruments is possible. It has been shown that conventional glasses, which contain, for example, Ca 2+ and Al 3+ as crosslinking ions , are untreated too reactive and set too quickly with the polyacid because of their high solubility, so that the dental cement which forms cannot be processed properly.
  • the processing time and the curing time can be determined with a viscometer, as described in EP 0 023 013 A.
  • a viscometer as described in EP 0 023 013 A.
  • the reaction rate of the glasses which react too quickly due to their composition is adjusted to the desired level by depleting their surface of reactive ions.
  • EP 0 023 013 A describes the use of a calcium aluminum fluorosilicate glass powder for glass ionomer cements, to which further oxides may be added if they do not impair the properties of the glass.
  • the surface of the glass has to be deactivated in order to obtain a usable glass for a dental cement. Deactivation is a process in which the reaction rate of a glass powder with an acid is slowed down by a surface treatment and the desired processing times of the cement are thus set.
  • the surface can also be deactivated by other relatively complex surface treatments, such as by coating the surface, for example with a polymer.
  • this surface treatment of the glasses represents a complex process step.
  • powder agglomerations can occur during the washing or tempering processes, which have a disadvantageous effect on the cement properties.
  • a glass for a bone cement is known from DE 38 06 448 A, which comprises the elements Si, Al, Ca, Sr, F, Na and P and can be made X-ray visible by adding La 2 ⁇ 3 . It is emphasized that the amount of additives must not impair the properties.
  • the glass powder described in DE 38 04 469 A is essentially free of alkali ions and alkaline earth ions - with the exception of strontium, which is to be used in an amount of 15 to 40% by weight.
  • DE 20 65 824 B2 describes a fluoroaluminosilicate glass powder for self-curing medical cements
  • An object of the present invention is to provide a glass for a dental cement, in particular a reactive glass for a polyelectrolyte cement, which is easy to manufacture. Another task can be seen in using the glass directly after the grinding process without using complex processes such as surface treatment, acid washing, coating and / or tempering. The reactivity and thus the processing and curing time then only depend on the glass composition and the grain distribution and can be produced in a simple, reproducible manner.
  • This object is achieved by a dental composition containing a glass as described in the claims and the use of certain ions as crosslinking ions in a glass.
  • the invention also relates to curable compositions, in particular cements, in particular polyelectrolyte cements, which contain these glasses.
  • Crosslinking in the sense of the invention is understood to mean a reaction in which polyacids and at least divalent ions interact with one another in a chelation reaction, preferably an acid-base-like reaction, and lead to the formation of a polymeric network.
  • the filling and fastening materials mentioned essentially mean cements, and in particular polyelectrolyte cements.
  • the glass described is preferably a reactive component and not a conventional filler, in contrast to the glasses used in the composite sector, which are pure fillers and do not participate in a reaction.
  • Glasses for cements generally contain strongly basic ions, such as Li + , Na + , K + , Ca 2+ , Sr 2 "1" , Ba 2+ , Zn 2+ . It has now been shown that by completely or partially replacing the strongly basic ions with weakly basic ions, such as Sc 3+ , Y 3+ , La 3+ such as Ce 3 + / 4 + or other 2, 3, 4-valent ions the lanthanide series and / or Ga 2+ or ln 2+ , glasses are obtained which set much more slowly with polyacids.
  • strongly basic ions such as Li + , Na + , K + , Ca 2+ , Sr 2 "1" , Ba 2+ , Zn 2+ .
  • Such glasses can surprisingly be used to produce dental cements which have a setting behavior which is desired by the dentist essentially without the usual surface treatment of the glass powder. It has also been shown that the setting times can be set in a wide range via the glass composition.
  • Lanthanide series in glasses used in dental cements is one Controlled setting reaction of the dental cement, in particular a glass ionomer cement, can be achieved without the glass having to be surface-treated before it is used in the cement, for example by acid washing - and / or tempering.
  • the advantage also lies in the better reproducibility of the processing and curing time. Although these times are not set by a surface treatment, surprisingly the desired course of setting is obtained, namely a relatively rapid transition from a state in which the cement can still be processed to a state in which the hardening begins and meaningful processing is no longer possible ,
  • dental compositions or cements in which the glasses mentioned are used have the same or, in some cases, even improved mechanical properties than cements in which glasses are used whose reactivity has been reduced by acid washing.
  • cements according to the invention are hydrolytically resistant to water.
  • part of the oxygen can be replaced by fluorine, which improves the meltability of the glass on the one hand, and the setting behavior of the cement on the other hand, and enables the release of fluoride ions for secondary caries prophylaxis.
  • this glass powder can only be used to bring the setting rate with polyacids into a manageable range after tempering at 400 ° C. for several hours (cf. Comparative Example 4). This is probably due to the high proportion of a strongly basic oxide, in this case a 2 ⁇ . Another disadvantage of a high Na 2 0 content is the increased water solubility of the resulting cement. It has also been found that the glasses described have essentially no phase separation or crystallization effects over a wide range of compositions.
  • the glasses preferably contain essentially weakly basic and / or amphoteric ions which act as crosslinking ions during the cement reaction.
  • Weakly basic trivalent and tetravalent ions are preferred and particularly preferred are the ions Sc 3+ , Y 3+ , La 3+ , Ce 4 + / 3 + and all subsequent trivalent and tetravalent ions of the lanthanide series.
  • Al 3+ also belongs to the weakly basic or amphoteric reacting ions. However, this takes on "the
  • Aluminum is primarily for that Acid solubility of the glass structure is responsible and only acts as a cross-linking ion.
  • aluminum performs the task of a network builder in the glasses suitable for dental cements.
  • the glasses used usually have a BET surface area of 1 to 15 m 2 / g, preferably 2 to 8 m 2 / g.
  • the glasses have also an average grain size (d 5 o-value) of 0.01 to 20 .mu.m, preferably 1 .mu.m to fifth
  • a fraction of 0 to 25% by weight of the oxygen in the glass used is preferably replaced by fluorine, particularly preferably 8 to 18% by weight.
  • the pK ß value is usually used to define the term basicity.
  • a pK ß of 1 can be given as the boundary between weak and strong basic.
  • the pK is ß of Mg (OH) 2 in RC Weast: CRC Handbook of Chemistry and Physics indicated with a value of 1, while Ca (OH) 2 is considered to be strongly basic numbers without indication of value.
  • weakly basic are oxides or hydroxides which dissociate only to a relatively small extent in aqueous solutions.
  • La is classified as weakly basic compared to Sr, Ba or Na and K.
  • the basicity decreases again from La to Lu, so that the basicity of luthetium can be compared to that of yttrium (lanthanide contraction).
  • the elements of the 1st main group from Li to Cs and the elements of the 2nd main group from Mg to Ba are to be classified as not weakly basic in the sense of the present invention.
  • the higher field strength of these ions probably also plays a certain role, as already explained. This means that the ions described are more firmly anchored in the glass structure and are therefore released more slowly.
  • Polyacid in the sense of the present invention means a polyelectrolyte which has a polymer with ionically dissociable groups, which can be substituents on the polymer chain and the number of which is so large that the polymers are at least partially water-soluble, at least in their (partially) dissociated form.
  • Substituents such as -COOH, -OH, -PO (OH) 2 , -OPO (OH) 2 , -S0 2 (OH) are particularly suitable for this.
  • Organic polyacids (DE 20 61 513 A), such as polymers and copolymers of acrylic acid, methacrylic acid (EP 0 024 056 A), itaconic acid, maleic acid, citraconic acid, vinylphosphonic acid (EP 0 340 016 A; GB 22 91 060 A) are particularly preferred.
  • water-insoluble polyelectrolytes can also be present in the polyelectrolyte cement. The only requirement is that at least one of the polyelectrolytes is at least partially water-soluble.
  • the polyelectrolytes should be able to react with the glass component in the sense of a chelation reaction and / or an acid-base reaction / neutralization reaction.
  • the polyelectrolyte cement contains the at least partially water-soluble solid state-convertible polyelectrolyte, preferably in a proportion of 0.5 to 30% by weight, particularly preferably 2 to 25% by weight and very particularly preferably 5 to 20% by weight.
  • the addition of chelating agents to set a suitable setting is of particular importance (DE 23 19 715 A). Numerous compounds are suitable for this, in particular those which contain hydroxyl or carboxyl groups which form chelate groups or both. Particularly excellent results have been achieved with tartaric acid or citric acid, in particular with a content of 5% by weight.
  • the addition in the form of a metal chelate also has the desired effect.
  • the polyelectrolyte cements contain 0 to 10, preferably 0 to 5% by weight of such a compound, preferably tartaric acid.
  • the polyelectrolyte cement can have auxiliaries such as dyes, pigments, X-ray contrast agents, flow improvers, thixotropy agents, polymer thickeners or stabilizers.
  • Common fillers for dental materials are, for example, glass and quartz powder, plastic powder, pyrogenic highly disperse silicas and mixtures of these components.
  • additives are usually contained in the polyelectrolyte cements according to the invention in an amount of 0 to 60% by weight.
  • the fillers mentioned can also be rendered hydrophobic by surface treatment with organosilanes or organosiloxanes or by etherification of hydroxyl groups to alkoxy groups.
  • the glass compositions mentioned are also suitable for use in monomer-modified cements.
  • a proportion of 20 to 70% by weight, preferably 30 to 60% by weight, of weakly basic oxides in the glass has proven to be favorable.
  • the cement according to the invention optionally contains strongly basic oxides with a proportion in the range from 0 to 25% by weight, preferably in the range from 0 to 10% by weight.
  • the cement according to the invention preferably has a flexural strength in the range of at least 25 MPa to 35 MPa, particularly preferably greater than 45 MPa, measured according to ISO 4049.
  • the processing time of the cement which is determined with a viscometer, is 1 to 4 minutes, particularly preferably 2 to 3 minutes.
  • the curing time is 3 to 10 minutes, particularly preferably 4 to 8 minutes.
  • the glasses can also contain oxides of subgroups 4 and 5.
  • the aluminum oxide can be partially or completely replaced by boron or gallium oxide.
  • the melting conditions can be positively influenced by adding oxides of the 1st main group, phosphate and / or basic oxides of the 2nd main group or ZnO.
  • the oxides which are delimited from one another in the table by “+” can also be present individually.
  • the decisive factor is the proportion by weight of the group in the glass.
  • Sc 2 0 3 can also be present in an amount of 20 to 50% by weight, preferably 20 to 30% by weight are also glass compositions in which Sc 2 0 3 is additionally contained in a comparatively small amount in addition to the above constituent.
  • the glass granules obtained were dry-ground in an agate vibrating mill (from Siebtechnik, grinding vessel, 100 ml, 910 rpm) with a duration of 40 to 50 min.
  • the glass powders obtained had an average grain size in the range from 3 to 6 ⁇ m with a specific surface area from 1.8 to 2.5 m 2 / g.
  • the cements were prepared by mixing the glass powder obtained with polyacids.
  • An approx. 45% polyacrylic acid (molecular weight 20,000 to 30,000), an approx. 45% polyacrylic acid (molecular weight approx. 40,000 to 60,000) and an approx. 55% polyvinylphosphonic acid (molecular weight approx. 20,000) were used.
  • Glass 1 was mixed with both a polyacrylic and a polyacrylic maleic acid in a P: F of 3: 1.
  • the glass was treated once and unreacted once with polyacrylic acid after 6 hours of heat treatment at 400 ° C. in a forced air oven (from Heraeus).
  • the first time corresponds to the processing time, the second time to the curing time.
  • the times refer to minutes.
  • the P: F ratio is given as a weight ratio.
  • the cements according to the invention are usually packaged and sold in containers. It is important to ensure that the individual components of the cement are present in such a way that there is no unwanted reaction before the intended use.
  • the containers usually have at least two separate chambers. Suitable containers are described, for example, in WO 00/30953 A or EP 0 783 872 A.
  • Suitable containers are mixing capsules and closable can-shaped hollow bodies, such as screw-top glass jars. Depending on the area of application, the cements can also be packed in capsules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dental Preparations (AREA)
  • Glass Compositions (AREA)

Abstract

Die Erfindung betrifft die Verwendung von Ionen schwach basischer Oxide als Vernetzerionen für Polysäuren in Zementen, vorzugsweise Polyelektrolytzementen. Geeignete Ionen umfassen die Elemente der Scandiumreihe, beispielsweise Sc?3+, Y3+, La3+, Ce4+¿ und alle folgenden drei- und vierwertigen Lanthanide, sowie die Ionen Mg?2+, Zn2+, Ga2+, In2+¿. Der Einsatz derartiger Ionen erlaubt eine Einstellung der Zementreaktion ohne Oberflächenbehandlung des Glaspulvers.

Description

Reaktionsträges Dentalglas
Die Erfindung betrifft die Verwendung von reaktionsträgen Gläsern in Dentalmassen, insbesondere Dentalzementen, vorzugsweise Polyelektrolyt- zementen, die ohne eine Vorbehandlung der Glaspulveroberfläche eingesetzt werden können.
Gläser werden im Dentalbereich insbesondere im Bereich der Füllungsmaterialien, sowie der Befestigungszemente und -composite für Kronen, Brücken und Inlyas verwendet. Reaktive Gläser, d.h. Gläser, die an einer chemischen Reaktion teilnehmen, kommen in sogenannten Polyelektrolytzementen, insbesondere Glasiono- merzementen zum Einsatz.
Solche Polyelektrolytzemente umfassen üblicherweise drei Bestandteile, eine Polysäure, insbesondere eine Carbonsäure-hältige Substanz, vorzugsweise in flüssiger Form, ein Glaspulver und Wasser. Werden die drei Komponenten vereinigt und miteinander gemischt, kommt es zur Reaktion unter Bildung eines über die Zeit aushärtenden festen Körpers (Zementreaktion).
Bei der Herstellung von Gläsern, die insbesondere in Glasionomerzementen verwendet werden, kommen verschiedene Rohstoffe zum Einsatz. Dies sind zum einen Oxide, wie Si02, AI2O3, CaO, Fluoride, wie CaF2, SrF2, Kryolith, Hydroxide, wie AI(OH)3, Phosphate, wie ÄIP0 , P2O5 oder Calcium- phosphate. Es können aber auch Silikate, wie Mullit oder Karbonate, wie Na2C03, CaC03 oder andere mineralische natürliche Rohstoffe verwendet werden. Prinzipiell können alle Rohstoffe auch in kristallwasserhaltiger Form eingesetzt werden.
In Dentalgläsern ist oftmals ein beträchtlicher Anteil des Sauerstoffes durch Fluor ersetzt. Dies wird durch Anfügen des Elementsymbols F für Fluor in der Beschreibung des Glassystems gekennzeichnet.
Demnach können Gläser für Glasionomerzemente üblicherweise einem der folgenden Systeme zugeordnet werden, wobei P205 und Na20 in einigen Fällen wenig oder gar nicht vorhanden sind: Si02 - AI2O3 - CaO - (P2O5) - (Na20) - F
SiO≥ - AI2O3 - SrO - (P2O5) - (Na20) - F
Si02 - AI2O3 - SrO - La203 - (P205) - (Na20) - F
Si02 - AI2O3 - CaO - La203 - (P205 ) - ( Na20) - F
Bei den Gläsern, die in Dentalzementen eingesetzt werden handelt es sich im allgemeinen um Fluoroaluminosilicatgläser. Die Säurelöslichkeit des Glases ist für seine Verwendung als Bestandteil eines Polyelektrolytzements Vorraussetzung. Eine säurelösliche Glasstruktur entsteht dann, wenn Silizium teilweise durch Aluminium ersetzt wird. Das Ersetzen von Silizium durch Aluminium ist jedoch nur bei Anwesenheit von basischen Oxiden möglich, um einen Ladungsausgleich für das 3-wertige Aluminium-Ion auf Plätzen des 4-wertigen Silizium-Ions zu schaffen.
Bei Zugabe der Polysäuren und Wasser wird die Glasstruktur aufgebrochen und insbesondere die Ionen mit netzwerkwandelnden Eigenschaften als sogenannte Vernetzerionen zumindest teilweise freigesetzt.
Die Vernetzung äußert sich in einer über die Zeit zunehmenden Aushärtung des Zementes. Alle mindestens zweiwertigen basischen Ionen, aber auch das Al3+ ist zur Ausbildung solcher polymeren Strukturen in der Lage. Man unterscheidet üblicherweise zwischen der Verarbeitungszeit - dem Zeitpunkt bis zu dem eine Verarbeitung des noch pastösen Zementmasse durch den Zahnarzt möglich ist, und der Aushärtungszeit - dem Zeitpunkt, ab dem eine Nachbearbeitung mit rotierenden Zahnarztinstrumenten möglich wird. Es hat sich gezeigt, dass herkömmliche Gläser, die als Vernetzerionen beispielsweise Ca2+ und Al3+ enthalten, unbehandelt zu reaktiv sind und wegen zu hoher Löslichkeit zu schnell mit der Polysäure abbinden, so dass der sich bildende Dentalzement nicht vernünftig verarbeitet werden kann.
Es besteht zwar die Möglichkeit, durch Verringerung des Calciumanteils im Glas den Auflösungsprozess zu verlangsamen; es hat sich jedoch gezeigt, dass sich bei einem zu geringen Anteil basischer Oxide, wie CaO oder SrO, die in Lösung gehen können, die Festigkeitseigenschaften des Zements auf Grund nicht in ausreichender Menge zur Verfügung stehender Ionen verschlechtern. Dies bedeutet, dass für den Zahnarzt eine nur sehr kurze Zeit zur Verfügung steht, die Füllungsmasse zu mischen und zu applizieren. Gleichzeitig hat er den Nachteil in Kauf zu nehmen, sehr lange darauf warten zu müssen, bis er mit der Nachbearbeitung des Zementes beginnen kann. Dies ist konträr zu den Anforderungen, die ein Zahnarzt an einen Dentalzement stellt. Der Zahnarzt benötigt üblicherweise eine Verarbeitungszeit von 1 bis 4 min und ein Aushärtezeit von 5 bis 8 min. Die Bestimmung der Aushärtezeit erfolgt üblicherweise nach ISO 9917 (First Edition) Teil 7.3. Die Verarbeitungszeit und die Aushärtungszeit lassen sich mit einem Viskosimeter ermitteln, wie es in der EP 0 023 013 A beschrieben ist. Um die gewünschten Verarbeitungseigenschaften des Zementes zu erreichen, also genügend Zeit zum Verarbeiten und möglichst wenig Zeit bis zur vollständigen Aushärtung zu haben, ist es üblich, die Glaspulver nach dem Mahlprozess einer Oberflächenbehandlung zu unterziehen, wie es beispielsweise in Clinical Materials 12, 113 - 115 (1993) oder der DE 29 29 121 A (EP 0 230 113 A) beschrieben wird. Hierbei werden die zusammensetzungsbedingt zu schnell reagierenden Gläser durch Verarmung ihrer Oberfläche an reaktiven Ionen in ihrer Reaktionsgeschwindigkeit auf das gewünschte Maß eingestellt.
In der EP 0 023 013 A wird die Verwendung eines Calciumaluminiumfluoro- silikatglas-Pulvers für Glasionomerzemente beschrieben, dem weitere Oxide dann zugesetzt werden dürfen, wenn sie die Eigenschaften des Glases nicht beeinträchtigen. Gemäß Beschreibung muss die Oberfläche das Glases deaktiviert werden, um ein brauchbares Glas für einen Dentalzement zu erhalten. Das Deaktivieren stellt einen Vorgang dar, in dem die Reaktions- geschwindigkeit eines Glaspulvers mit einer Säure durch eine Oberflächenbehandlung verzögert wird und somit die gewünschten Verarbeitungszeiten des Zementes eingestellt werden. Das Deaktivieren der Oberfläche kann auch durch andere verhältnismäßig aufwendige Oberflächenbehandlungen, wie durch Beschichtung der Oberfläche, beispielsweise mit einem Polymer, erfolgen.
In der EP 0 023 013 A geschieht dies mittels einer chemischen Behandlung der Pulveroberfläche. Es resultiert ein Zement mit günstigen Verarbeitungszeiten, bei gleichzeitig unverändert günstigen mechanischen Werkstoffkenngrößen.
Diese Oberflächenbehandlung der Gläser stellt allerdings einen aufwendigen Verfahrensschritt dar. Außerdem kann es während der Wasch- oder Temperungsprozessen zu Pulveragglomerationen kommen, die sich nachteilig auf die Zementeigenschaften auswirken.
Aus DE 38 06 448 A ist ein Glas für einen Knochenzement bekannt, das die Elemente Si, AI, Ca, Sr, F, Na und P umfasst und durch einen Zusatz von La2θ3 röntgensichtbar gemacht werden kann. Es wird hervorgehoben, dass die Menge an Zusätzen die Eigenschaften nicht beeinträchtigen darf.
Das in der DE 38 04 469 A beschriebene Glaspulver ist im wesentlichen frei von Alkaliionen und Erdalkaliionen - ausgenommen Strontium, das in einer Menge von 15 bis 40 Gew.-% eingesetzt werden soll. In der DE 20 65 824 B2 ist ein Fluoraluminiumsilicatglaspulver für selbsthärtende medizinische Zemente beschrieben
Eine Aufgabe der vorliegenden Erfindung liegt darin, ein Glas für einen Dentälzement, insbesondere ein reaktives Glas für einen Polyelektrolyt- zement bereitzustellen, dass einfach herzustellen ist. Eine weitere Aufgabe kann darin gesehen werden, das Glas direkt nach dem Mahlprozess ohne Anwenden von aufwendigen Prozessen, wie Oberflächenbehandlung, Säurewaschen, Beschichten und/oder Tempern direkt zu verwenden. Die Reaktivität und damit die Verarbeitungs- und Aushärtezeit hängen dann nur von Glaszusammensetzung und der Kornverteilung ab und sind auf einfache Weise reproduzierbar herzustellen. Diese Aufgabe wird durch eine Dentalmasse, enthaltend ein Glas, wie es in den Ansprüchen beschrieben ist, und die Verwendung bestimmter Ionen als Vernetzerionen in einem Glas, gelöst.
Gegenstand der Erfindung sind auch härtbare Massen, insbesondere Zemente, insbesondere Polyelektrolytzemente, die diese Gläser enthalten.
Unter Vernetzung im Sinne der Erfindung ist eine Reaktion zu verstehen, bei der Polysäuren und mindestens zweiwertige Ionen in einer Chelatbildungs- reaktion, vorzugsweise einer Säure-Base-artigen Reaktion, miteinander wechselwirken und zur Ausbildung eines polymeren Netzwerkes führen. In der vorliegenden Erfindung sind unter den genannten Füllungs- und Befestigungsmaterialien im wesentlichen Zemente, und insbesondere Polyelektrolytzemente zu verstehen. Demnach handelt es sich bei dem beschriebenen Glas vorzugsweise um einen reaktiven Bestandteil und keinen klassischen Füllstoff, im Gegensatz zu den im Compositbereich eingesetzten Gläsern, die reine Füllstoffe sind und nicht an einer Reaktion teilnehmen.
Gläser für Zemente enthalten im allgemeinen stark basische Ionen, wie Li+, Na+, K+, Ca2+, Sr2"1", Ba2+, Zn2+. Es hat sich nun gezeigt, dass durch vollständiges oder teilweises Ersetzen der stark basischen Ionen durch schwach basische Ionen, wie Sc3+, Y3+, La3+ wie Ce3+/4+ oder andere 2, 3, 4- wertige Ionen der Lanthanidreihe und/oder Ga2+ oder ln2+, Gläser erhalten werden, die mit Polysäuren wesentlich langsamer abbinden.
Mit solchen Gläsern lassen sich überraschenderweise Dentalzemente herstellen, die im wesentlichen ohne übliche Oberflächenbehandlung der Glaspulver ein Abbindeverhalten aufweisen, welches vom Zahnarzt gewünscht wird. Weiterhin hat sich gezeigt, dass die Abbindezeiten in einem weiten Bereich über die Glaszusammensetzung eingestellt werden können.
Die Erfindung weist dabei folgende Vorteile auf:
Durch Ersetzen der stark basischen Ionen, wie Ca2+, Sr2+ durch die schwach basischen Ionen Sc3+, Y3+, La3+ Ce4+/3+ und andere 2, 3, 4-wertiger Ionen der
Lanthanidreihe in Gläsern, die in Dentalzementen eingesetzt werden, ist eine kontrollierte Abbindereaktion des Dentalzements, insbesondere eines Glas- ionomerzements erreichbar, ohne, dass das Glas vor seinem Einsatz im Zement, beispielsweise durch Säurewaschung - und/oder Tempern oberflächenbehandelt werden muss. Der Vorteil liegt neben der einfacheren Herstellung auch in der besseren Reproduzierbarkeit der Verarbeitungs- und Aushärtezeit. Obwohl diese Zeiten nicht durch eine Oberflächenbehandlung eingestellt werden, erhält man überraschenderweise den gewünschten Abbindeverlauf, nämlich einen verhältnismäßig schnellen Übergang von einem Zustand, in dem der Zement noch verarbeitet werden kann zu einem Zustand, bei dem die Aushärtung beginnt und keine sinnvolle Verarbeitung mehr möglich ist.
Erstaunlicherweise wurde gefunden, dass Dentalmassen bzw. Zemente, in denen diese genannten Gläser eingesetzt werden, die gleichen oder teilweise sogar verbesserte mechanische Eigenschaften aufweisen, als Zemente, in denen Gläsern eingesetzt werden, deren Reaktivität durch Säurewaschung herabgesetzt wurde.
Weiterhin wurde gefunden, dass die erfindungsgemäßen Zemente hydrolytisch beständig gegenüber Wasser sind.
Insbesondere bei Gläsern, die neben AI und Si, nur Y und/oder La enthalten bzw. nur kleinere Mengen an stärker basisch reagierenden Ionen, wie Ca 2+ oder Sr2"1", Ba2+, Li+, Na+, K+ enthalten, wurden diese Eigenschaften gefunden.
Weiterhin kann ein Teil des Sauerstoffes durch Fluor ersetzt werden, was einerseits die Schmelzbarkeit des Glases und andererseits das Abbindeverhalten des Zements verbessert sowie das Freisetzen von Fluoridionen zur Sekundärkariesprophylaxe ermöglicht.
Die bisher bekannten Systeme der Zemente werden also um folgende Systeme erweitert.
Si02 - Al203 - (SrO) -LnxOy - P205 - (Na20) - F Si02 - AI2O3 - (CaO) -LnxOy - P205 - (Na20) - F LnxOy steht für ein Oxid der Elemente Sc, Y, La bis Lu. x und y können dabei Werte von 1 , 2 oder 3 annehmen. Die in Klammern gesetzten Oxide werden nur in geringem Umfang, gegebenenfalls gar nicht eingesetzt, da sie die Reaktion deutlich beschleunigen würden. So beschreibt die DE 20 65 824 A ein Glas des Systems
Si02 - Al203- La203 - P205 - Na20 - F mit einem Na20 Gehalt von ca. 2 Gew.-%.
Versuche haben gezeigt, dass mit diesem Glaspulver nur nach einem mehrstündigen Tempern bei 400 °C die Abbindegeschwindigkeit mit Polysäuren in einen handhabbaren Bereich gebracht werden kann (vgl. Vergleichsbeispiel 4). Dies ist vermutlich auf den hohen Anteil eines stark basischen Oxides, in diesem Fall a2θ, zurückzuführen. Ein weiterer Nachteil eines hohen Na20-Anteils ist die erhöhte Wasserlöslichkeit des resultierenden Zements. Es wurde außerdem gefunden, dass die beschriebenen Gläser in einem weiten Zusammensetzungsbereich im wesentlichen keine Phasentrennungsoder Kristallisationseffekte aufweisen.
Es ist zu erwarten, dass die Reproduzierbarkeit der Abbindegeschwindigkeit des die Gläser enthaltenden Zements sich bei klaren Gläsern gegenüber entmischten, also trüben Gläsern verbessert, da deren Phasenbestand nicht von der Abkühlgeschwindigkeit abhängt.
Die Gläser enthalten vorzugsweise neben den üblichen Komponenten Si02, AI2θ3, P2O5, und Na20 im wesentlichen schwach basische und/oder amphoter reagierende Ionen, die während der Zementreaktion als Vernetzer- ionen wirken.
Bevorzugt sind schwach basische 3- und 4-wertige Ionen und besonders bevorzugt die Ionen Sc3+, Y3+, La3+, Ce4+/3+ und alle folgenden 3- und 4- wertigen Ionen der Lanthanidreihe.
Zu den schwach basischen bzw. amphoter reagierenden Ionen gehört nach herrschender Lehrmeinung auch das Al3+. Dieses nimmt jedoch bei "den
Gläsern eine Sonderstellung ein. Aluminium ist in erster Linie für die Säurelöslichkeit der Glasstruktur verantwortlich und wirkt erst in zweiter Linie als Vernetzerion. In den für Dentalzementen geeigneten Gläsern nimmt Aluminium im Gegensatz zu den oben genannten 3- und 4-wertige Ionen, die als Netzwandler fungieren, die Aufgabe eines Netzwerkbildners wahr. Die verwendeten Gläser weisen üblicherweise eine BET-Oberfläche von 1 bis 15 m2/g, vorzugsweise 2 bis 8 m2/g auf.
Die Gläser haben ferner eine mittlere Korngröße (d5o-Wert) von 0,01 bis 20 μm, vorzugsweise 1 bis 5 μm.
Vorzugsweise ist in dem verwendeten Glas ein Anteil von 0 bis 25 Gew.-% des Sauerstoffs durch Fluor ersetzt ist, besonders bevorzugt von 8 bis 18 Gew.-%.
Zur Definition des Begriffes Basizität wird üblicherweise der pKß-Wert herangezogen. Als Grenze zwischen schwach und stark basisch kann ein pKß von 1 angegeben werden. Beispielsweise wird der pKß von Mg(OH)2 in R. C. Weast: CRC Handbook of Chemistry and Physics mit einem Wert von 1 angegeben, während Ca(OH)2 ohne Zahlen Wertangabe als stark basisch eingestuft wird.
Als schwach basisch im Sinne der vorliegenden Erfindung gelten Oxide oder Hydroxide, die in wässrigen Lösungen nur zu einem verhältnismäßig geringen Anteil dissoziieren.
Zur Basizität können folgende Aussagen gemacht werden:
Vom Sc über das Y steigt die Basizität zum La an. La ist im Vergleich zu Sr, Ba oder Na und K als schwach basisch einzustufen. Gleichzeitig nimmt die Basizität vom La zum Lu wieder ab, so dass die Basizität des Luthetiums etwa mit der von Yttrium zu vergleichen ist (Lanthanidenkontraktion).
Somit können sämtliche Oxide und Hydroxide der Sc-Reihe als schwach basisch im Sinne der vorliegenden Erfindung bezeichnet werden.
Die Elemente der 1. Hauptgruppe vom Li bis zum Cs und die Elemente der zweiten Hauptgruppe vom Mg bis zum Ba sind im Sinne der vorliegenden Erfindung als nicht schwach basisch reagierend einzustufen. Neben der Basenstärke spielt vermutlich, wie bereits ausgeführt, auch die höhere Feldstärke dieser Ionen eine gewisse Rolle. Diese bedingt, dass die beschriebenen Ionen in der Glasstruktur stärker verankert sind und somit langsamer herausgelöst werden. Mit Polysäure im Sinne der vorliegenden Erfindung ist ein Polyelektrolyt gemeint, der ein Polymer mit ionisch dissoziierbaren Gruppen aufweist, die Substituenten der Polymerkette sein können und deren Zahl so groß ist, dass die Polymeren zumindest in ihrer (partiell) dissoziierten Form wenigstens teilweise wasserlöslich sind. Hierfür sind insbesondere Substituenten Wie z.B. -COOH, -OH, -PO(OH)2, -OPO(OH)2, -S02(OH), geeignet. Besonders bevorzugt sind organische Polysäuren (DE 20 61 513 A), wie Polymere und Copolymere der Acrylsäure, Methacrylsäure (EP 0 024 056 A), Itaconsäure, Maleinsäure, Citraconsäure, Vinylphosphonsäure (EP 0 340 016 A; GB 22 91 060 A). Daneben können beim Vorliegen mehrerer Polyelektrolyte auch wasserunlösliche Polyelektrolyte im Polyelektrolytzement vorliegen. Voraussetzung ist lediglich, dass mindestens einer der Polyelektrolyte wenigstens teilweise wasserlöslich ist.
Die Polyelektrolyten sollen mit der Glaskomponente im Sinne einer Chelatbildungsreaktion und/oder einer Säure-Base-Reaktion/Neutralisations- reaktion, reagieren können.
Der Polyelektrolytzement enthält den wenigstens teilweise wasserlöslichen, in den Festzustand überführbaren Polyelektrolyten, vorzugsweise zu einem Anteil von 0,5 bis 30 Gew.-%, besonders bevorzugt 2 bis 25 Gew.-% und ganz besonders bevorzugt 5 bis 20 Gew.-%. Bei den Polyelektrolytzementen ist der Zusatz von Chelatbildnern zur Einstellung einer geeigneten Abbindung von besonderer Bedeutung (DE 23 19 715 A). Dafür kommen zahlreiche Verbindungen in Frage, vor allem solche, die Chelatbildungen ausbildende Hydroxy- oder Carboxylgruppen oder beide enthalten. Besonders hervorragende Ergebnisse wurden mit Weinsäure oder Citronensäure, insbesondere mit einem Gehalt von 5 Gew.-%, erzielt. Auch der Zusatz in Form eines Metallchelats zeigt den gewünschten Effekt. In den Polyelektrolytzementen befindet sich 0 bis 10, vorzugsweise 0 bis 5 Gew.-% einer derartigen Verbindung, vorzugsweise Weinsäure.
Ferner kann der Polyelektrolytzement Hilfsstoffe, wie Farbstoffe, Pigmente, Röntgenkontrastmittel, Fließverbesserer, Thixotropiemittel, Polymere Verdickungsmittel oder Stabilisatoren, aufweisen.
Übliche Füllstoffe für Dentalwerkstoffe sind beispielsweise Glas- und Quarzpulver, Kunststoffpulver, pyrogene hochdisperse Kieselsäuren sowie Mischungen dieser Komponenten.
Diese sonstigen Zusätze sind in den erfindungsgemäßen Polyelektrolyt- zementen üblicherweise zu 0 bis 60 Gew.-% enthalten.
Die genannten Füllstoffe können auch durch eine Oberflächenbehandlung mit Organosilanen bzw. -siloxanen oder durch die Veretherung von Hydroxylgruppen zu Alkoxygruppen hydrophobiert sein.
Prinzipiell sind die erwähnten Glaszusammensetzung auch geeignet, in Monomer-modifzierten Zementen eingesetzt zu werden.
Ein Anteil von 20 bis 70 Gew.-% vorzugsweise von 30 bis 60 Gew.-% an schwach basischen Oxiden im Glas hat sich als günstig erwiesen.
Der erfindungsgemäße Zement enthält gegebenenfalls stark basische Oxide mit einem Anteil im Bereich von 0 bis 25 Gew.-%, vorzugsweise im Bereich von 0 bis 10 Gew.-%.
Der erfindungsgemäße Zement weist vorzugsweise eine Biegefestigkeit im Bereich von mindestens 25 MPa bis 35 MPa auf, besonders bevorzugt von größer 45 MPa, gemessen nach ISO 4049.
Die Verarbeitungszeit des Zements, die mit einem Viskosimeter ermittelt wird, beträgt 1 bis 4 min, besonders bevorzugt 2 bis 3 min. Die Aushärtezeit beträgt 3 bis 10 min, besonders bevorzugt 4 bis 8 min.
Im folgenden werden bevorzugte Zusammensetzungen der Gläser angegeben.
Neben den bereits erwähnten schwach basischen Oxiden der Scandiumreihe können die Gläser noch Oxide der 4. Und 5. Nebengruppe enthalten. Auch kann das Aluminiumoxid teilweise oder vollständig durch Bor- oder Galliumoxid ersetzt werden. Die Schmelzbedingungen können durch Zugabe von Oxiden der 1. Hauptgruppe, Phosphat und/oder basischen Oxiden der 2. Hauptgruppe oder ZnO positiv beeinflusst werden.
Die in der Tabelle durch „+" von einander abgegrenzten Oxide können erfindungsgemäß auch nur einzeln vorliegen. Entscheidend ist der jeweilige Gewichtsanteil der Gruppe am Glas.
Figure imgf000013_0001
An Stelle des Bestandteils ,N203+ La203+ andere Lanthanidoxide" kann auch Sc203 in einer Menge von 20 bis 50 Gew.-%, vorzugsweise von 20 bis 30 Gew.-% enthalten sein kann. Umfasst sind auch Glaszusammensetzungen, in denen Sc203 neben obigem Bestandteil in vergleichsweise kleiner Menge zusätzlich enthalten ist.
Die Erfindung wird nachfolgend anhand einiger Beispiele näher beschrieben:
Keines der Gläser der Beispiele wurde vor seiner Umsetzung mit einer Polysäure mit einer anorganischen Säure behandelt, die zu einer Verarmung der Oberfläche der Gläser an reaktiven Ionen führt (Säurewaschung).
Gasherstellung:
Gläser mit folgenden oxidischen Zusammensetzungen (in Gew.-%) wurden bei Temperaturen im Bereich von 1300 bis 1600 °C über einen Zeitraum von 30 min bis 5 h geschmolzen. Mit Ausnahme von Vergleichsbeispiel 4 betrug der Fluorgehalt 12 bis 14 Gew.-% in der Einwaage.
In Vergleichsbeispiel 4 wurde ein Glas gemäß DE 20 65 824 A1 unter Verwendung folgender Zusammmensetzung geschmolzen:
9,5 g Si02, 10,0 g Al203, 7,6 g Na3AIF6, 9,4 g LaF3, 7,3 g AIP04. In der Tabelle ist hierzu die oxidische Zusammensetzung angegeben.
Figure imgf000014_0001
Figure imgf000015_0001
Mahlung
Von dem erhaltenen Glasgranulat wurden 60 bis 80 g in einer Achatschwingmühle (Fa. Siebtechnik, Mahlgefäß, 100 ml, 910 U/min) mit einer Dauer von 40 bis 50 min trocken gemahlen. Die erhaltenen Glaspulver wiesen eine mittlere Korngröße im Bereich von 3 bis 6 μm bei einer spezifischen Oberfläche von 1 ,8 bis 2,5 m2/g auf.
Beispiel 6: Glasbeispiel 6 wurde zusätzlich mit einer Rührwerkskugelmühle nass gemahlen. Es wurde ein Aluminiumoxidgefäß (500 ml) mit 50 g Glaspulver 200 ml H20 und 100 g Zirkonoxidkugeln (D=0,8 mm) gefüllt und 6 h mit einer gelochten Zirkonoxidscheibe gemahlen. Es ergab sich eine mittlere Korngröße von 1 ,5 μm und eine spezifische Oberfläche von 10,5 m2.
Zemente
Die Zemente wurden unter Mischen der erhaltenen Glaspulver mit Polysäuren hergestellt. Dabei kam eine ca. 45 %ige Polyacrylsäure (Molekülgewicht 20000 bis 30000) eine ca. 45 %ige Polyacrylmaleinsäure (Molekül- gewicht ca. 40000 bis 60000) und eine ca. 55 %ige Polyvinylphosphonsäure (Molekülgewicht ca. 20 000) zum Einsatz.
Die Abbindung wurde zum einen in Anlehnung an ISO 9917, zum anderen mit dem in der EP 0 023 013 A1 beschriebenen Viskosimeter bestimmt. In allen Fällen wurde eine Temperierung der Proben auf 28 °C durch den Versuchsaufbau gewährleistet. Biegefestigkeiten wurden im Dreipunktbiegeversuch an 2x2x25 mm Zementproben nach ISO 4049 bestimmt. Ergebnisse:
Zement 1 :
Glas 1 wurde sowohl mit einer Polyacryl- als auch einer Polyacrylmalein- säure im P:F von 3:1 gemischt.
Figure imgf000016_0001
Zement 6:
Glas 6 wurde mit Polyacrylsäure (45 %ig) im P:F von 2,0:1 umgesetzt.
Figure imgf000016_0002
Glas V6:
Das Glas wurde einmal unbehandelt und einmal nach 6-stündiger Temperung bei 400 °C in einem Umluftofen (Fa. Heraeus) mit Polyacrylsäure umgesetzt.
Figure imgf000017_0001
Weitere Zementbeispiele:
Figure imgf000017_0002
Die bei den in den Beispielen 1 bis 9 erhaltenen Zementen ermittelten Abbindezeiten liegen alle im bevorzugten Bereich, mit Ausnahme des Glases 6, das nur trocken gemahlen wurde.
Der Zement gemäß Vergleichsbeispiel 1 bindet vermutlich bedingt durch den hohen Ca-Anteil zu rasch ab. Bei den Zementen gemäß den Vergleichs- beispielen 2 und 3 waren Messung bedingt durch zu schnelles Abbinden nicht mehr möglich.
Bei den Messungen mit dem Viskosimeter entspricht die erste Zeitangabe der Verarbeitungszeit, die zweite Zeitangabe der Aushärtungszeit. Die Zeitangaben beziehen sich auf Minuten. Das P:F-Verhältnis ist als Gewichtsverhältnis angegeben.
Die erfindungsgemäßen Zemente werden üblicherweise in Behältnissen abgepackt in den Handel gebracht. Hierbei ist darauf zu achten, dass die einzelnen Komponenten des Zementes so vorliegen, dass keine ungewollte Reaktion vor dem bestimmungsgemäßen Gebrauch erfolgt. Die Behältnisse weisen üblicherweise mindestens zwei von einander getrennte Kammern auf. Geeignete Behältnisse sind beispielsweise in der WO 00/30953 A oder der EP 0 783 872 A beschrieben.
Geeignete Behältnisse sind Mischkapseln und verschließbare dosenförmige Hohlkörper, wie Schraubdeckelgläser. Je nach Anwendungsbereich können die Zemente auch in Kapseln abgepackt werden.

Claims

Patentansprüche
1. Dentalmasse, umfassend ein Dentalglas gekennzeichnet durch eine Zusammensetzung:
Figure imgf000019_0001
wobei an Stelle des Bestandteils Y2θ3 + La2θ3 + andere Lanthanidoxide auch SC2O3 in einer Menge von 20 bis 50 Gew.-% enthalten sein kann.
2. Dentalmasse nach Anspruch 1 , umfassend ein Dentalglas gekenn- zeichnet durch eine Zusammensetzung:
Figure imgf000019_0002
Figure imgf000020_0001
wobei an Stelle des Bestandteils Y2O3+ La2θ3+ andere Lanthanidoxide auch Sc203 in einer Menge von 20 bis 50 Gew.-% enthalten sein kann.
3. Dentalmasse nach einem der vorstehenden Ansprüche, wobei das Glas im wesentlichen ein Dreistoffsystem ist.
4. Dentalmasse nach einem der vorstehenden Ansprüche, wobei ein Anteil von 0 bis 25 Gew.-% des Sauerstoffs im Dentalglas durch Fluor ersetzt ist.
5. Dentalmasse nach einem der vorstehenden Ansprüche, wobei das Dentalglas in Pulverform mit einer spezifischen BET-Oberfläche von 1 bis
15 m2/g vorliegt.
6. Dentalmasse nach einem der vorstehenden Ansprüche, wobei das Dentalglas eine mittlere Korngröße im Bereich von 0,01 bis 10 μm aufweist.
7. Dentalmasse nach einem der vorstehenden Ansprüche, wobei die Oberfläche des Dentalglases zur Einstellung der Abbindezeit nicht oberflächenbehandelt wurde, beispielsweise durch Waschen mit Säure, Oberflächenbeschichten und/oder Tempern.
8. Verfahren zur Herstellung eines Dentalglases wie es in einem der vorstehenden Ansprüche beschrieben ist, umfassend die Schritte a)
Bereitstellen der oxidischen Substanzen, b) Mischen der oxidischen Substanzen, c) Schmelzen der Mischung aus Schritt b), d) Abschrecken der Schmelze zu einem Festkörper, e) Mahlen des Festkörpers aus Schritt d) zu einem Glaspulver, wobei das Glaspulver aus Schritt d) vor dem Einsatz in einem Dentalzement nicht mit Säure behandelt wird.
9. Verwendung eines Dentalglases wie es in einem der vorstehenden Ansprüche beschrieben ist zur Herstellung eines Zements, wobei die Oberfläche des Glases nicht oberflächenbehandelt wurde.
10.Verwendung nach Anspruch 9, wobei es sich bei dem Zement um einen Polyelektrolytzement handelt.
11. Dentalzement, umfassend A) mineralischen Feststoff in einer Menge von 50 bis 90 Gew.-%, B) Wasser in einer Menge von 5 bis 50 Gew.-% und C) Polysäure in einer Menge von 5 bis 50 Gew.-%, wobei der mineralische Feststoff ein Dentalglas umfasst, wie es in einem der Ansprüche 1 bis 8 beschrieben ist.
12. Dentalzement nach Anspruch 11 , wobei in Komponente A) der Füllstoff in einer Menge von 0 bis 90 Gew.-% vorliegt.
13. Dentalzement nach Anspruch 12, wobei der Füllstoff gewählt ist aus Quarz, Gläser, Aluminiumoxid, mineralische Pulver, wie Feldspäte oder Kaolin und/oder Kunststoffpulver.
14. Dentalzement nach einem der Ansprüche 11 bis 13 mit einer Biegefestigkeit von mindestens 25 MPa, gemessen nach ISO 4049.
15. Behältnis mit mindestens zwei Kammern, enthaltend einen Dentalzement nach einem der Ansprüche 12 bis 14, wobei die fließfähigen Bestandteile von den festen Bestandteilen getrennt sind.
16. Behältnis nach Anspruch 15 in Form einer Mischkapsel.
17. Verwendung von Ionen schwach basisch reagierender Oxide in Gläsern, die eine Zementreaktion mit einer Polysäure eingehen können, zum Vernetzen der Polysäure.
18. Verwendung nach Anspruch 17, wobei die Oxide in einer Menge von mindestens 20 Gew.-% eingesetzt werden.
19. Verwendung nach einem der Ansprüche 17 oder 18, wobei die Oxide einen pKß-Wert von > 1 aufweisen.
20. Verwendung nach einem der Ansprüche 17 bis 19, wobei die Ionen der Oxide gewählt sind aus Sc3+, Y3+, La3+, Ce4+ und allen folgenden, drei- und vierwertigen Lanthaniden sowie Ga2+ und/oder ln2+.
PCT/EP2001/014721 2000-12-20 2001-12-13 Reaktionsträges dentalglas WO2002049581A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE50105493T DE50105493D1 (de) 2000-12-20 2001-12-13 Reaktionsträges dentalglas
JP2002550925A JP2004516260A (ja) 2000-12-20 2001-12-13 歯科用不活性ガラス
AT01271196T ATE289792T1 (de) 2000-12-20 2001-12-13 Reaktionsträges dentalglas
US10/451,222 US7264665B2 (en) 2000-12-20 2001-12-13 Inert dental glass
AU2002219182A AU2002219182A1 (en) 2000-12-20 2001-12-13 Inert dental glass
EP01271196A EP1343452B1 (de) 2000-12-20 2001-12-13 Reaktionsträges dentalglas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10063939A DE10063939B4 (de) 2000-12-20 2000-12-20 Dentalzement enthaltend ein reaktionsträges Dentalglas und Verfahren zu dessen Herstellung
DE10063939.9 2000-12-20

Publications (1)

Publication Number Publication Date
WO2002049581A1 true WO2002049581A1 (de) 2002-06-27

Family

ID=7668252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/014721 WO2002049581A1 (de) 2000-12-20 2001-12-13 Reaktionsträges dentalglas

Country Status (7)

Country Link
US (1) US7264665B2 (de)
EP (1) EP1343452B1 (de)
JP (1) JP2004516260A (de)
AT (1) ATE289792T1 (de)
AU (1) AU2002219182A1 (de)
DE (2) DE10063939B4 (de)
WO (1) WO2002049581A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050829A1 (en) * 2004-11-12 2006-05-18 Dentsply De Trey Gmbh Dental glass composition
US7687418B2 (en) 2004-03-04 2010-03-30 Schott Ag X-ray opaque glass, method for the production and use thereof
US7718739B2 (en) * 2004-09-09 2010-05-18 Halliburton Energy Services, Inc Polyalkenoate cement compositions and methods of use in cementing applications

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501123A (ja) * 2002-09-27 2006-01-12 ピーピージー インダストリーズ オハイオ, インコーポレイテッド 欠陥密度が低減したフロートガラスを作製する方法
EP1570831A1 (de) * 2004-03-02 2005-09-07 Ernst Mühlbauer GmbH & Co.KG Gefülltes, polymerisierbares Dentalmaterial und Verfahren zu dessen Herstellung
DE102004048041B4 (de) 2004-09-29 2013-03-07 Schott Ag Verwendung eines Glases oder einer Glaskeramik zur Lichtwellenkonversion
EP2072028A1 (de) * 2007-12-21 2009-06-24 Ernst Mühlbauer GmbH & Co.KG Stumpfaufbaumaterial
JP4772883B2 (ja) * 2008-03-19 2011-09-14 富士フイルム株式会社 インクジェット記録液
EP2103296B1 (de) * 2008-03-20 2012-02-22 Ivoclar Vivadent AG Polymerbeschichteter Glasfüllstoff zur Verwendung in Dentalwerkstoffen
DE102009008951B4 (de) 2009-02-13 2011-01-20 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
DE102009008953B4 (de) 2009-02-13 2010-12-30 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
DE102009008954B4 (de) 2009-02-13 2010-12-23 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
DE102010007796B3 (de) 2010-02-12 2011-04-14 Schott Ag Röntgenopakes bariumfreies Glas und dessen Verwendung
MX350427B (es) 2011-10-14 2017-09-05 Ivoclar Vivadent Ag Ceramico de vidrio de silicato de litio y vidrio con oxido de metal monovalente.
CA2872430C (en) 2012-05-03 2019-09-24 Dalhousie University Germanium-based glass polyalkenoate cement
KR101430748B1 (ko) * 2013-01-31 2014-08-14 전남대학교산학협력단 생체활성 색조 글라스, 이를 포함하는 치과용 임플란트 및 보철물
EP3263089A1 (de) 2016-06-30 2018-01-03 Dentsply DeTrey GmbH Dentalzusammensetzung mit einem dentalfüllstoff mit einem strukturellen füllstoff und silanisierten glasflocken
US10583217B2 (en) * 2016-09-30 2020-03-10 Nippon Piston Ring Co., Ltd. Implant and method for producing implant
EP3300714A1 (de) 2016-09-30 2018-04-04 DENTSPLY DETREY GmbH Dentale zusammensetzung
EP3336092A1 (de) 2016-12-14 2018-06-20 DENTSPLY DETREY GmbH Dentale zusammensetzung
EP3335689A1 (de) 2016-12-14 2018-06-20 DENTSPLY DETREY GmbH Dentale zusammensetzung
EP3338757A1 (de) 2016-12-20 2018-06-27 Dentsply DeTrey GmbH Direkte zahnfüllungszusammensetzung
US11628125B2 (en) 2017-08-30 2023-04-18 Dentsply Sirona Inc. Photoinitiator modified polyacidic polymer
EP3449895A1 (de) 2017-08-30 2019-03-06 Dentsply DeTrey GmbH Fotoinitiatormodifiziertes polysäurepolymer
EP3449894A1 (de) 2017-08-31 2019-03-06 Dentsply DeTrey GmbH Dentalzusammensetzung enthaltend einen partikelträger mit kovalent gebundenem co-initiator
EP3536303A1 (de) 2018-03-07 2019-09-11 Dentsply DeTrey GmbH Dentale zusammensetzung
DE102018204655A1 (de) 2018-03-27 2019-10-02 Mühlbauer Technology Gmbh Wasserhärtender Dentalzement, Verfahren und Kit zum Herstellen eines solchen und dessen Verwendung
EP3650004A1 (de) 2018-11-08 2020-05-13 Dentsply DeTrey GmbH Härtbare zahnärztliche zweikomponentenzusammensetzung
EP3653194A1 (de) 2018-11-15 2020-05-20 Dentsply DeTrey GmbH Bifunktionelle und polyfunktionelle co-initiatoren in zahnärztlichen zusammensetzungen
EP3659546B1 (de) 2018-11-27 2022-10-19 Dentsply DeTrey GmbH Verfahren zur generativen fertigung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929121A1 (de) * 1979-07-18 1981-02-12 Espe Pharm Praep Calciumaluminiumfluorosilikatglas- pulver und seine verwendung
US4772436A (en) * 1986-04-11 1988-09-20 Michele Tyszblat Process for the preparation of a dental prosthesis by slight solid phase fritting of a metal oxide based infrastructure
DE3806448A1 (de) * 1988-02-29 1989-09-07 Espe Stiftung Verformbares material und daraus erhaeltliche formkoerper
EP0783872A2 (de) * 1996-01-13 1997-07-16 VOCO GmbH Misch-und Applikationskapsel für Dentalmaterial
US5849068A (en) * 1993-06-24 1998-12-15 Dentsply G.M.B.H. Dental prosthesis
WO2000030953A2 (de) * 1998-11-26 2000-06-02 3M Espe Ag Mischkapsel
DE19914975A1 (de) * 1999-04-01 2000-10-05 Espe Dental Ag Polyelektrolytzement

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2805166A (en) * 1954-01-18 1957-09-03 Loffler Johannes Glasses containing oxides of rare earth metals
GB1316129A (en) 1969-12-15 1973-05-09 Nat Res Dev Surgical cement
GB1422337A (de) * 1972-04-18 1976-01-28
AT339523B (de) * 1973-09-21 1977-10-25 Jenaer Glaswerk Schott & Gen Glaskeramik fur zahnfullmassen
US3971754A (en) * 1973-12-10 1976-07-27 Pennwalt Corporation X-ray opaque, enamel-matching dental filling composition
NL7406960A (nl) * 1974-05-24 1975-11-26 Philips Nv Werkwijze voor het bereiden van een zeldzaam- -aard-aluminiaat, in het bijzonder een lumines- cerend zeldzaam-aard-aluminaat.
GB1532954A (en) * 1974-10-24 1978-11-22 Nat Res Dev Poly-(carboxylate)cements
DE2932823A1 (de) * 1979-08-13 1981-03-12 Espe Pharm Praep Anmischkomponente fuer glasionomerzemente
JPS582235A (ja) 1981-06-30 1983-01-07 Natl Inst For Res In Inorg Mater 希土類酸化物含有アルミノ珪酸塩ガラス
DE3248357A1 (de) * 1982-12-28 1984-07-05 ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld Pulverfoermiger dentalwerkstoff, verfahren zu seiner herstellung und seine verwendung
NL8502025A (nl) * 1985-07-15 1987-02-02 Philips Nv Lagedrukkwikdampontladingslamp.
AU601381B2 (en) 1985-11-29 1990-09-13 American National Can Company Blends of polypropylene and sheet structures made from the blends
NL8602518A (nl) * 1986-10-08 1988-05-02 Philips Nv Luminescerend lanthaan en/of gadolinium bevattend aluminosilikaat- en/of aluminoboraatglas en luminescerend scherm voorzien van een dergelijk glas.
JPH0755882B2 (ja) * 1987-02-13 1995-06-14 而至歯科工業株式会社 歯科用グラスアイオノマーセメント用ガラス粉末
US4808228A (en) * 1987-02-20 1989-02-28 Minnesota Mining And Manufacturing Company Glass ionomer cement powder
US5051453A (en) * 1988-02-08 1991-09-24 Tokuyama Soda Kabushiki Kaisha Cement composition
GB8809998D0 (en) 1988-04-27 1988-06-02 Wilson A D Poly-vinylphosphonic acid & metal oxide/cement/glass ionomer cement
DE3825027A1 (de) * 1988-07-22 1990-01-25 Espe Stiftung Pulverfoermiger dentalwerkstoff, verfahren zu seiner herstellung und seine verwendung
GB8924129D0 (en) * 1989-10-26 1989-12-13 Ellis John Polyvinylphosphonic acid glass ionomer cement
DE4024322A1 (de) * 1990-07-31 1992-02-06 Thera Ges Fuer Patente Verformbare masse und deren verwendung als fuellmaterial fuer zahnwurzelkanaele
JP2951771B2 (ja) * 1991-09-26 1999-09-20 守 大森 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
JPH05186310A (ja) * 1991-12-28 1993-07-27 Noritake Co Ltd 歯科用陶材フレームおよびその製造方法
GB2291060B (en) 1994-07-09 1998-11-25 Albright & Wilson Uk Ltd Cement compositions
DE4443173C2 (de) * 1994-12-05 1997-04-10 Schott Glaswerke Bariumfreies Dentalglas mit guter Röntgenabsorption
DE19726103A1 (de) * 1997-06-19 1998-12-24 Muehlbauer Ernst Kg Alumofluorosilicatglas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929121A1 (de) * 1979-07-18 1981-02-12 Espe Pharm Praep Calciumaluminiumfluorosilikatglas- pulver und seine verwendung
US4772436A (en) * 1986-04-11 1988-09-20 Michele Tyszblat Process for the preparation of a dental prosthesis by slight solid phase fritting of a metal oxide based infrastructure
DE3806448A1 (de) * 1988-02-29 1989-09-07 Espe Stiftung Verformbares material und daraus erhaeltliche formkoerper
US5849068A (en) * 1993-06-24 1998-12-15 Dentsply G.M.B.H. Dental prosthesis
EP0783872A2 (de) * 1996-01-13 1997-07-16 VOCO GmbH Misch-und Applikationskapsel für Dentalmaterial
WO2000030953A2 (de) * 1998-11-26 2000-06-02 3M Espe Ag Mischkapsel
DE19914975A1 (de) * 1999-04-01 2000-10-05 Espe Dental Ag Polyelektrolytzement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687418B2 (en) 2004-03-04 2010-03-30 Schott Ag X-ray opaque glass, method for the production and use thereof
US7718739B2 (en) * 2004-09-09 2010-05-18 Halliburton Energy Services, Inc Polyalkenoate cement compositions and methods of use in cementing applications
WO2006050829A1 (en) * 2004-11-12 2006-05-18 Dentsply De Trey Gmbh Dental glass composition

Also Published As

Publication number Publication date
ATE289792T1 (de) 2005-03-15
US7264665B2 (en) 2007-09-04
DE50105493D1 (de) 2005-04-07
DE10063939B4 (de) 2005-01-27
EP1343452A1 (de) 2003-09-17
DE10063939A1 (de) 2002-07-18
AU2002219182A1 (en) 2002-07-01
US20040079258A1 (en) 2004-04-29
JP2004516260A (ja) 2004-06-03
EP1343452B1 (de) 2005-03-02

Similar Documents

Publication Publication Date Title
EP1343452B1 (de) Reaktionsträges dentalglas
DE2750326C3 (de) Härtbare Zementmischung für medizinische Zwecke
DE3804469C2 (de)
DE2061513C3 (de) Zementpulvermischung für medizinische Zwecke
DE3628822C2 (de)
DE3610845C2 (de)
DE3788816T2 (de) Verfahren zur Herstellung radioopaquen, vernetzten Poly(carbonsäure)-Zahnzements.
DE2319715C3 (de) Verfahren zur Herstellung einer selbsthärtenden Masse und deren Verwendung in der Dentalmedizin
EP0468026B1 (de) Apatitglaskeramik
DE602004009510T2 (de) Durchscheinende radiopake Glaskeramiken
DE2547744B2 (de) Durch Wasserzusatz selbsthärtendes Zementpulvergemisch
EP0469573B1 (de) Verformbare Masse und deren Verwendung als Füllungsmaterial für Zahnwurzelkanäle
DE69004219T2 (de) Zahnzementzusammensetzung.
DE3224720C2 (de)
CH644336A5 (de) Glaszusammensetzungen und sie enthaltende bindemittel.
DE2101939B2 (de) Durch Zusatz von Zinkoxid härtende Massen
DE3705038A1 (de) Niedrigtemperatur-dichtungszusammensetzung
DE3000118A1 (de) Glaszusammensetzung zur herstellung von in wasser aushaertenden bindemitteln
DE69310150T2 (de) Dentalzement
DE1920203A1 (de) Aluminiumoxyd-lieferndes Material und verbessertes Verfahren zur Herstellung von Glas
EP2823800A1 (de) System zur Füllung eines Zahnwurzelkanals und zur Überdeckung von Pulpa
DE3933679C2 (de) Verfahren zur Passivierung von Seltenerdoxidhalogenid-Leuchtstoffen und deren Verwendung
DE3246884A1 (de) Verfahren zur herstellung von calciumhydrogenphosphatdihydrat
DE2537528C2 (de)
WO2010000438A2 (de) Polyalkenoat-zemente mit verbesserten eigenschaften

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001271196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002550925

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001271196

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10451222

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001271196

Country of ref document: EP