WO2002041311A1 - Support d'enregistrement optique et dispositif de disques optiques - Google Patents

Support d'enregistrement optique et dispositif de disques optiques Download PDF

Info

Publication number
WO2002041311A1
WO2002041311A1 PCT/JP2001/010124 JP0110124W WO0241311A1 WO 2002041311 A1 WO2002041311 A1 WO 2002041311A1 JP 0110124 W JP0110124 W JP 0110124W WO 0241311 A1 WO0241311 A1 WO 0241311A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical recording
optical
light
recording
recording medium
Prior art date
Application number
PCT/JP2001/010124
Other languages
English (en)
French (fr)
Inventor
Isao Ichimura
Kiyoshi Osato
Jun Nakano
Shin Masuhara
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to AU15226/02A priority Critical patent/AU785402B2/en
Priority to JP2002543435A priority patent/JP4161716B2/ja
Priority to EP01983822A priority patent/EP1341167B1/en
Priority to DE60141475T priority patent/DE60141475D1/de
Priority to US10/181,776 priority patent/US6882616B2/en
Priority to CA002396246A priority patent/CA2396246C/en
Priority to AT01983822T priority patent/ATE459959T1/de
Publication of WO2002041311A1 publication Critical patent/WO2002041311A1/ja
Priority to HK03105408.2A priority patent/HK1054814B/zh
Priority to US11/081,555 priority patent/US6987725B2/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00718Groove and land recording, i.e. user data recorded both in the grooves and on the lands
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24079Width or depth
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24073Tracks
    • G11B7/24082Meandering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs

Definitions

  • the present invention relates to an optical recording medium (hereinafter also referred to as an optical disk) and an optical disk apparatus for reproducing or recording the same, and more particularly to an optical recording medium capable of high-density recording and an optical disk apparatus for reproducing or recording the same.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a CD-RW (re-reliable) optical disk and a method of irradiating light.
  • CD-RW re-reliable optical disk
  • a groove 6 is provided on one surface of a light-transmitting disk substrate 5 having a thickness D5 of about 1.2 mm. On this surface, for example, a dielectric film, a recording film, a dielectric film, and a reflection film are provided.
  • the optical recording layer 7 in which films and the like are laminated in this order is formed. The film configuration and number of layers differ depending on the type and design of the recording material.
  • a protective layer 8 is formed on the optical recording layer 7.
  • An optical disc apparatus for recording an optical disc such as the CD-RW system described above has a light source for irradiating light of a wavelength ⁇ for recording or reproduction and a light for emitting light from the light source in an ordinary configuration. It has an optical system that includes an objective lens (condenser lens) with a numerical aperture of ⁇ that converges on the optical recording layer of the recording medium, and a light receiving element that detects light reflected from the optical recording layer.
  • an objective lens condenser lens
  • a reproduction or recording laser beam LB is condensed by, for example, an objective lens 50 and transmitted through a light-transmissive disk substrate 5. Irradiation is performed on the optical recording layer 7 of the optical disk having the above structure.
  • the reflected light reflected by the optical recording layer is received by a light receiving element, a predetermined signal is generated by a signal processing circuit, and a reproduction signal is extracted.
  • the spot size ⁇ of the light on the optical recording layer is generally given by the following equation (1).
  • the light spot size ⁇ directly affects the recording density of the optical recording medium, and the smaller the spot size ⁇ , the higher the recording density and the greater the capacity. In other words, the shorter the wavelength ⁇ of the light and the larger the number of ports of the objective lens ⁇ , the smaller the spot size 3 ⁇ 4M, indicating that high-density recording becomes possible.
  • the wavelength of the light source is in the near infrared region (about 78 O nm)
  • the numerical aperture of the objective lens is about 0.45
  • the recording layer A phase change type recording layer is used for the optical recording layer.
  • the optical recording layer has an uneven shape according to the unevenness formed on the disk substrate 5.
  • recording or reproducing is performed. Only the part of the optical recording layer that is closer to the projection light irradiation side and that corresponds to the projections of the uneven shape is used as the recording area RA, and is the side farther from the recording or reproduction light irradiation side.
  • a recording capacity of about 700 MB is realized in the case of a 12 Omm ⁇ optical disk.
  • a portion corresponding to an area exposed by a laser beam or an electron beam on the surface of the master in the process of manufacturing the master for forming the disk substrate 5 in which the groove is formed is referred to as a group.
  • Called G Group G
  • the region sandwiched between the is referred to as a land L.
  • the convex portion of the uneven shape corresponds to the group G
  • the concave portion corresponds to the land L.
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of an optical disk formed by the method reported in the above-mentioned Document A and a method of irradiating light.
  • a groove 2 is provided on one surface of a disk substrate 1 having a thickness D 1 of 1.1 to ⁇ 0.2 mm.
  • the optical recording layer 3 having a thickness of D3 is formed by laminating the layers in this order.
  • the film configuration and number of layers differ depending on the type and design of the recording material.
  • An optically transparent protective layer 4 having a thickness D 4 of about 0.1 mm is formed on the optical recording layer 3.
  • the laser beam LB for reproduction or recording is formed, for example, from the first lens (first lens) 12 and the second lens (rear lens) 14.
  • the light is condensed by the second lens group, passes through the light-transmitting protective layer 4, and irradiates the optical recording layer 3 of the optical disk having the above structure.
  • the above optical disk manufacturing method comprises the steps of: forming a stamper having grooves on the surface by transfer from a disk master having grooves on the surface; transferring the surface shape from the stamper to a disk substrate having grooves 2 on the surface; 1 is formed, and an optical recording layer 3 composed of a laminate of, for example, a reflective film, a dielectric film, an optical recording layer, and a dielectric film is formed in this order. This is the reverse order. Finally, a light-transmitting protective layer 4 is formed on the dielectric film.
  • an optical disk having a protective layer having a thickness of 0.1 mm can be formed.
  • the depth D 2 of the groove structure is set to ⁇ / 6 n (s: the wavelength of the light source of the optical disk device, n: the refractive index of the light-transmitting protective layer).
  • the optical recording layer has an uneven shape according to the groove structure, and a land near the irradiation side of the recording or reproducing light in the optical recording layer having the uneven shape is used for recording.
  • both areas of group G, which is far from the irradiation side of the reproducing light are recorded areas R.
  • the land group recording method used as A is adopted.
  • the track pitch TP corresponds to the distance between the center of the land L and the center of the group G, and is specifically set to about 0.
  • the ratio of the width between the land and the group after the optical recording layer is formed (duty ratio) is about 1: 1 in order to equalize the signal amplitude between the land and the group.
  • the groove of the disk substrate is formed. For example, when the width of the groove formed on the disk substrate is set to about 60% of the pitch of the groove, the dielectric film, the recording film, the dielectric film, and the reflection film are laminated on the entire surface by covering the inner wall of the groove. The width of the groove is determined so that the width of the recording film corresponding to the land and the group becomes uniform.
  • the depth of the groove is set to 1/6 n.
  • the land portion in advance is set to the land portion on the near side in advance. A phenomenon (cross light) of erasing recorded signal marks tends to occur easily.
  • an object of the present invention is to reduce the thickness of a light-transmitting protective layer to about 0.1 mm to reduce the wavelength of a light source.
  • optical recording media optical discs
  • An object of the present invention is to provide an optical recording medium that can be used and an optical disk device for recording and reproducing the same.
  • the optical recording medium of the present invention is condensed by a lens having a numerical aperture of 0.85 ⁇ 0.1 and irradiated with light having a wavelength of 405 ⁇ 5 nm for recording or recording.
  • An optical recording medium on which reproduction is performed a substrate having a groove formed on a surface thereof; an optical recording layer formed on the substrate on the groove forming surface, having an uneven shape according to the groove; A light-transmitting protective film formed on the recording layer, wherein the optical recording layer is irradiated with light for recording or reproduction from the protective film side, and is used.
  • the pitch (track pitch) of the convex portions or concave portions used as the recording region is 0.32 ⁇ 0.3 Olm, and the depth of the concave portions with respect to the convex portions is in the range of 19 to 24 nm. .
  • the optical recording medium of the present invention is an optical recording medium on which recording or reproduction is performed by being condensed by a lens having a numerical aperture of 0.85 ⁇ 0.1 and irradiated with light having a wavelength of 405 ⁇ 5 nm.
  • a recording medium which is a convex portion that is near or on the side of the recording or reproducing light irradiation side and a far side or on the side of the recording or reproducing light irradiation side in the optical recording layer having the uneven shape. Since only one of the optical recording layers, t or one of the recesses, is used as a recording area, cross-writing between the recesses and the protrusions is prevented, and the reproduction signal is homogenized. It is easy to ensure compatibility.
  • the pitch of the convex or concave portions used as the recording area (from the spot size of the light on the optical recording layer) It is best to set the track pitch) to 0.32 ⁇ 0.Olm.
  • the depth of the concave portion with respect to the convex portion should be in the range of 19 to 24 ⁇ . It is necessary to set.
  • a groove having an amplitude of ⁇ 8 to 12 ⁇ is formed in the groove.
  • the modulation degree of the pit signal becomes insufficient when the address information is formed as pits.
  • address information is incorporated.
  • the amplitude of the double pull is set within the range of ⁇ 8 to I2 nm.
  • the concave portion and the convex portion since only one of the concave portion and the convex portion is used as a recording area, it may be disadvantageous in terms of recording density.
  • the recording density can be improved by obtaining an address or the like from a double signal.
  • the optical recording medium of the present invention preferably comprises, of the optical recording layer having the irregular shape, a portion corresponding to the convex portion having the irregular shape which is closer to the irradiation side of the recording or reproducing light. Only the optical recording layer is used as a recording area.
  • a convex portion that is close to the L side from the recording or reproduction light irradiation side and the recording or reproduction When comparing the concave portion that is far from the light irradiation side, it is preferable to use the convex portion as the recording area from the experimental results of the cross-write characteristics.
  • a portion corresponding to the convex portion of the concavo-convex shape which is closer to the recording or reproducing light irradiation side, forms a substrate on which the groove is formed. It corresponds to a region exposed by a laser beam or an electron beam on the surface of the master in the process of manufacturing the master for performing the process.
  • the area exposed to a laser beam or the like at the time of forming a master has a constant width in terms of a manufacturing method. Therefore, it is preferable to use this area as a recording area.
  • the regions exposed when the master is formed become convex portions. That is, when a portion corresponding to the exposed region is called a group, it is preferable that the manufacturing is performed so that the convex portions are grouped.
  • an optical disc apparatus comprising: a substrate having a groove formed on a surface thereof; and an optical disk formed on the substrate on the groove forming surface and having an uneven shape according to the groove.
  • a rotation driving means for rotating an optical recording medium having a recording layer and a light-transmitting protective film formed on the optical recording layer; and a wavelength of 405 ⁇ 5 with respect to the optical recording layer.
  • a light source that emits light for recording or reproduction of nm, and a lens having a numerical aperture of 0.85 ⁇ 0.1 for condensing and irradiating the light from the protective film side to the optical recording layer.
  • An optical system including: a light receiving element that receives return light reflected by the optical recording layer; and a signal processing circuit that generates a predetermined signal based on the return light received by the light receiving element. And the optical recording medium is illuminated with the recording or reproducing light. Either a portion corresponding to the concave portion of the concave-convex shape, which is a different side from the side, or a portion corresponding to the convex portion of the concave-convex shape, which is a side closer to the irradiation side of the recording or reproducing light.
  • the optical recording layer alone is used as a recording area, and the pitch (track pitch) of the projections or depressions used as the recording area is 0.32 ⁇ 0.01 im as the optical recording medium; Depth of concave part with respect to the convex part Is in the range of 19 to 24 II m.
  • the optical disc device of the present invention uses an optical recording medium in which a groove having an amplitude of 8 to 12 nm is formed in the groove as the optical recording medium.
  • the optical disc device of the present invention is configured such that, as the optical recording medium, of the concave-convex optical recording layer, the concave-convex convex which is closer to the recording or reproducing light irradiation side. Only the portion of the optical recording layer corresponding to the portion is used as a recording area.
  • a portion corresponding to the convex portion of the concavo-convex shape which is close to and near the irradiation side of the recording or reproducing light, forms a substrate on which the groove is formed. It is use an optical recording 1 medium corresponding to the area exposed by laser Zabimu or electron beam at the surface of the master in the production step of the master.
  • the optical disc device of the present invention uses the optical recording medium of the present invention, which can prevent cross-writing and homogenize the reproduction signal, and can easily ensure compatibility with a read-only disc.
  • An optical disk device for recording and reproducing can be configured.
  • FIG. 1 is a schematic diagram showing a cross-sectional structure of a CD-RW (re-write) optical disk according to a first conventional example and a light irradiation method.
  • FIG. 2 is a schematic diagram showing a cross-sectional structure of an optical disc and a method of irradiating light according to a second conventional example.
  • FIG. 3 is a schematic diagram illustrating a cross-sectional structure of an optical disc and a method of irradiating light according to the embodiment.
  • FIG. 4A and 4B show a manufacturing process of a method for manufacturing an optical disc according to the embodiment.
  • 5A and 5B are cross-sectional views illustrating the manufacturing steps of the method for manufacturing the optical disc according to the embodiment.
  • 6A and 6B are cross-sectional views showing the manufacturing steps of the method for manufacturing an optical disc according to the embodiment.
  • 7A and 7B are cross-sectional views illustrating the manufacturing steps of the method for manufacturing the optical disc according to the embodiment.
  • FIG. 8 is a perspective view showing a main part of the optical disc of the embodiment.
  • FIG. 9 is a diagram showing the measurement results of the jitter and the push-pull signal in the first embodiment.
  • FIG. 10 is a plan view showing an example of the sample in the second embodiment.
  • FIG. 1 is a diagram illustrating a CZN ratio of a sample signal when the sample amplitude is changed in the third embodiment.
  • FIG. 12 is a diagram illustrating a measurement result of the jitter in the fourth embodiment.
  • FIG. 13 is a schematic cross-sectional view showing a configuration of a second group lens for an optical pickup (head) of the optical disc device according to the embodiment.
  • FIG. 14 is a schematic diagram illustrating a configuration of an optical pickup (head) of the optical disc device according to the embodiment.
  • FIG. 15 is a plan view showing the configuration of the light receiving element according to the embodiment.
  • FIG. 6 is a block diagram illustrating a configuration of an optical disc device according to the embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present embodiment is directed to an optical disk which is an optical recording medium and a recording and / or reproducing apparatus for recording and / or reproducing data on the optical disk (hereinafter referred to as an optical disk device). ).
  • FIG. 3 is a schematic diagram illustrating a cross-sectional structure of the optical disc and a method of irradiating light according to the present embodiment.
  • a groove 2 On one surface of a disk substrate 1 having a thickness D1 of 1.1 to 1.2 mm, a groove 2 is provided. On this surface, for example, a reflective film, a dielectric film, a recording film, a dielectric film
  • the optical recording layer 3 having a thickness of D3 is formed by laminating the layers in this order.
  • the film configuration and the number of layers differ depending on the type and design of the recording material.
  • An optically transparent protective layer 4 having a thickness D 4 of about 0.1 mm is formed on the optical recording layer 3.
  • the laser beam LB for reproduction or recording is formed, for example, from the first lens (first lens) 12 and the second lens (rear lens) 14.
  • the light is condensed by the second group lens, passes through the light-transmitting protective layer 4, and is irradiated onto the optical recording layer 3 of the optical disk having the above structure.
  • the wavelength of the laser beam LB to be used is 405 ⁇ 5 nm.
  • the optical recording layer has a concave and convex shape according to the groove 2.
  • one of the convex portion and the concave portion is used as the recording area RA, so that it is possible to prevent the cross write between the concave portion and the convex portion, and to realize a uniform reproduction signal. Further, it is easy to ensure compatibility with a read-only disc.
  • the disk substrate 1 in which the above-mentioned grooves are formed is formed.
  • the part corresponding to the area exposed by the laser beam or the electron beam is called group G, and the area sandwiched by group G is called land L I will.
  • the convex portion that is closer to the recording or reproduction light irradiation side is farther from the recording G or recording or reproduction light irradiation side. It is manufactured so that the concave portion on the side becomes the land L.
  • the track pitch TP is the pitch of the convex portions or concave portions used as the recording area, that is, the distance between the central position of a convex portion and the central position of the adjacent convex portion, or the pitch of a concave portion.
  • a lens with a numerical aperture of 0.85 ⁇ 0.1 which corresponds to the distance between the central position and the central position of the adjacent concave part, condenses light with a wavelength of 4.55 ⁇ 5 ⁇ m. From the spot size of light on the recording layer, it is optimal to set the track pitch to 0.32 ⁇ 0.01 im.
  • the depth of the concave portion with respect to the convex portion is 24 nm or less.
  • this depth must be set to It is necessary to set it to 19 nm or more.
  • a groove having an amplitude of ⁇ 8 to 2 nm is formed in the groove 2.
  • the modulation degree of the bit signal becomes insufficient when the address information is formed as a pit. This is because address information can be incorporated into the URL.
  • the amplitude of the sample is set in the range of ⁇ 8 to 12 nm in order to satisfy the conditions of the CZN ratio of the young signal and the amount of sample leakage from the adjacent track.
  • the optical disk according to the above-described embodiment has a side closer to the irradiation side of the recording or reproducing light.
  • the convex part group G
  • the concave part laand
  • the convex part as shown in Fig. 1 is obtained from the experimental results of the cross light characteristics.
  • Group G is preferably adopted as the recording area RA.
  • the area exposed to a laser beam or the like at the time of producing the master disc has a constant width. Therefore, it is preferable to use this area as a recording area.
  • the protrusions used as the recording areas are manufactured so as to correspond to the exposure areas in the master disk forming process, that is, the protrusions are grouped.
  • the track pitch is 0.32 and, for example, the 117 RPP modulation method is adopted and the shortest Mac length determined by the performance of the optical disk device is 0.16 ym, about a CD-size optical disk, 23.3 Gpits of recording capacity can be realized.
  • the shortest mark length is set to 0.16 on the assumption that the channel clock T of the optical disk device is 0.08 wm and the 2T signal is the shortest mark.
  • a disk master having a resist film b formed on a glass substrate a is prepared.
  • the resist film b is exposed by a laser beam or an electron beam in a pattern for exposing, for example, a region to be a groove of the disk substrate, and is subjected to a development process, so that the disk substrate is exposed.
  • a resist film b ′ having a pattern that opens a region to be a groove is used.
  • the portion where the surface of the glass substrate a was exposed (the portion indicated by X in the figure) in the master making process corresponds to the above-mentioned exposure region, and is formed on the optical disk finally formed.
  • the optical disc manufactured by this group is formed so as to have a convex portion which is closer to and closer to the irradiation side of recording or reproduction light.
  • a metal mask c is formed on the master disk having the resist film b ′ on the glass substrate a by using, for example, a silver plating process or another film forming process.
  • the concavo-convex pattern reverse to the concavo-convex pattern formed by the glass substrate a and the resist film ′ are transferred.
  • a mother stamper d is formed on the metal master c.
  • the concavo-convex pattern of the reverse pattern of the surface of the metal master c is transferred.
  • the metal master c is set to the lower side, and is drawn upside down with respect to FIG. 5A.
  • polycarbonate or the like is formed on the concave / convex pattern of the mother stamper d by, for example, a compression molding method, an injection molding method, or a 2P (P0t0Pol yma ri za ti on) method.
  • a disk substrate e (1) which is a resin substrate, is formed.
  • a groove f (2) which is a pattern having a reverse pattern to that of the surface of the mother stamper d, is transferred.
  • the mother stamper d is set downward, and is drawn upside down with respect to FIG. 5B.
  • the disk is released from the mother stamper d to obtain a disk substrate e (1).
  • the projections protruding from the substrate surface correspond to the exposure region: shown in FIG. 4B. That is, the projections are group G, and the recesses between them are the land L.
  • an optical recording layer g (3) having, for example, a reflective film, a dielectric film, a recording layer, and a laminate of a dielectric film is formed in this order by a sputtering method, for example. I do. This is the reverse order. .
  • an optically transparent protective layer h is formed on the optical recording layer g (3). (4) is formed.
  • the light-transmitting protective layer h (4) can be formed by, for example, applying a UV curable resin by spin coating and curing the resin, or laminating a resin sheet such as polycarbonate.
  • an optical disk having a protective layer having a thickness of 0.1 mm having the structure shown in FIG. 3 can be formed.
  • a sun stamper is further formed by inverting irregularities from a mother stamper, and a disk substrate is formed by inverting the irregularities on the surface of the sun stamper by an injection molding method or the like.
  • the exposure area in the disc master making process is a concave portion that is farther from the recording or reproducing light irradiation side.
  • the disk substrate is formed directly from the mother stamper, and the inversion step is omitted once as compared with the conventional method.
  • the exposure area (the area X in FIG. 4A) in the process of producing the master disk becomes a convex portion on the final optical disk which is closer to the irradiation side of the recording or reproducing light. That is, the convex portion on the side closer to the irradiation side of the recording or reproducing light is the group G, and the concave portion on the side farther from the irradiation side of the recording or reproducing light is the land L.
  • the width of the exposure area (area X in FIG. 4B) in the process of preparing the master disk corresponds to the spot diameter of the laser beam or the electron beam, and a constant value is secured. That is, the width of the group is constant.
  • the spacing between groups depends on the accuracy of the laser beam or electron beam in the radial direction of the disk in the master making apparatus, and it is difficult to make it constant.
  • the inversion step is omitted once compared with the conventional method, and the exposure area in the disk master production step is reduced. Are manufactured so as to correspond to the protrusions on the disk substrate.
  • FIG. 8 is a perspective view showing a main part of the optical disc of the present embodiment.
  • a groove 2 is provided on the surface of the disk substrate].
  • An optical recording layer 3 is formed on this surface, and a light transmitting layer [raw protective layer 4] is formed thereon.
  • the portion surrounded by the broken line is the spot S of the laser beam.
  • the groove structure be meandered in the radial direction of the disk at a constant period to form a brilliant blue WB.
  • a double signal is generated by the double WB, and based on this signal, detection of a clock signal synchronized with disk rotation, detection of an address signal, and the like are performed.
  • the phase of the wobbles is determined by an address or the like, and the phases of adjacent groups do not match, so the width of the land corresponding to the distance between the groups. Is no longer constant.
  • the group G as the recording area RA rather than the land L in order to keep the amplitude of the reproduction signal and the tracking error signal constant.
  • Tracking error signal with read-only (ROM) disc for reproducing information pits In order to ensure the common characteristics of the optical disks, it is preferable to set the recording area width on the optical disk to less than 50% and to obtain the same signal polarity.
  • the 117 RPP method is used as the modulation method, the shortest mark length is 0.16 in, and the track to be measured is over 100 times.
  • Figure 9 shows the above measurement results.
  • the black circles (random) indicate the jitter values
  • the white circles ( ⁇ ) indicate the values of the push-pull signal.
  • the push-pull signal In order to maintain stable tracking, the push-pull signal must be 0.25 or more, and in order to satisfy this, the depth of the concave portion with respect to the convex portion of the disk substrate must be 19 or more. is necessary.
  • the jitter needs to be 8.5% or less, and in order to satisfy this, the depth of the concave portion with respect to the convex portion of the disk substrate needs to be 24 nm or less.
  • the depth of the concave portion with respect to the convex portion of the disk substrate is in the range of 19 to 24 ⁇ ⁇ .
  • FIG. 10 is a plan view showing an example of a sample in the optical disc of the present embodiment.
  • the depth of the concave portion with respect to the convex portion of the disk substrate is set within the range determined in Example 1, when the address information is formed as pits, the modulation degree of the pit signal becomes 20% or less, which is not sufficient. Therefore, a ⁇ pull is formed in the groove to incorporate address information.
  • a land L is formed between the group G and the group G, and a wobble 1 WB is formed in the group G, so that the width of the land L is not constant.
  • Wopuru signal is determined by its amplitude, as shown in FIG. 1 0, the amplitude A WB of Woburu 1 B includes a central position of the group G in the case where the ⁇ old pull was not, when swung to a maximum in one direction Is the difference from the center position of the group.
  • FIG. 11 is a diagram showing the C / N ratio of the sample signal when the age pull amplitude is changed.
  • the C / N ratio of a pebble signal needs to be 40 dB or more, so that the amplitude of the pebble needs to be 8 nm or more.
  • the upper limit of the sample amplitude is determined by the amount of sample leakage from the adjacent track.
  • the amplitude A WB of the couple is set in the range of ⁇ 8 to 12 nm. (Example 4)
  • the 17-RPP method is adopted as the modulation method, the shortest mark length is set to 0.1, and the track to be measured is overwritten 100 times. Then, the jitter of the track to be measured when the adjacent track was overwritten 100 times was measured. At this time, when the optimum recording power is set to 0 in both the case where recording is performed on the portion corresponding to the convex portion of the disk substrate and the case where recording is performed on the portion corresponding to the concave portion of the disk substrate, 10% and 20% We examined how the value of jitter changed with the power increased by%.
  • Figure 12 shows the results of the above measurement.
  • white circles (O) indicate the values recorded on the convex portions.
  • Black circle (fist) indicates the value when recorded in the recess.
  • the jitter tends to worsen as the recording power is increased in both the convex and concave portions, but the concave portions are worse than the convex portions. This indicates that recesses are more likely to occur in cross-writes that erase data when writing to adjacent tracks.
  • the convex portion as the recording area when comparing the convex portion with the concave portion.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of a group lens for an optical pickup (head) of the optical disc device according to the present embodiment.
  • first lens 12 and second lenses (back lens) 14 having different diameters are arranged on the same optical axis and supported by a lens holder 13, which is an electromagnetic actuator. It is mounted on evening 15.
  • These two lenses function as a two-group objective lens having a numerical aperture of 0.85, and focus the laser beam LB from the light source onto the optical recording layer of the optical disc 11.
  • FIG. 14 is a schematic diagram showing the configuration of the optical pickup (head) 10 of the optical disk device according to the present embodiment.
  • the laser beam LB emitted from the semiconductor laser 6 passes through the collimating lens 17, the ⁇ wavelength plate 18, and the diffraction grating 19 and enters the polarization beam splitter 20.
  • a part of the laser beam LB is reflected by the polarization beam splitter 20 and guided to the light emitting output detecting light receiving element 22 by the condenser lens 21.
  • the laser beam “LB” that has passed through the polarizing beam splitter 20 is a quarter-wave plate 23, an expander lens unit 24 in which the distance d e K between the two lenses is variable, Optics of optical disc 1 1 through rear lens 1 4 and front lens 1 2 Irradiated on the recording layer.
  • the reflected light (return light) from the optical disk 11 is reflected by the polarization beam splitter 20, guided to the detection optical path, passes through the condenser lens 25 and the multi-lens 26, and receives a servo error signal and an RF signal. Is incident on the light receiving element 27 for detecting, and is converted into an electric signal by photoelectric conversion.
  • FIG. 15 is a plan view showing the configuration of the light receiving element 27 for detecting the servo error signal and the RF signal.
  • the light receiving element 27 is composed of eight divided light detecting elements (A, B, C, D, E, F, G, H) as shown in the figure.
  • the light incident on the light receiving element 27 is converted into a single main spot MS on the light detecting elements (A, B, C, D), and is output on the light detecting elements (E, F) and the light detecting elements (G, H). Then, the light is incident as two side spots (SS1, SS2) generated by the diffraction grating 19, respectively.
  • the focus error signal, tracking error signal, double error signal, and RF signal are calculated from the output values from the eight-segment photodetectors (A, B, C, D, E, F, G, H).
  • FIG. 16 is a block diagram illustrating the configuration of the optical disc device according to the present embodiment.
  • the laser beam LB from the optical pickup (head) 10 is irradiated on the optical recording layer of the optical disk 11 rotated and driven by the motor 43, and the reflected light (return light) is detected to obtain the reproduction.
  • the signal is input to the head amplifier 31.
  • the reproduced signal from the head amplifier 31 is input to an RF equalizer amplifier 32, a focus matrix circuit 34, a tracking matrix circuit 37, and a multiple matrix circuit 44.
  • the RF signal (RF) calculated by the RF equalizer amplifier 32 is input to the signal demodulation circuit 33, and is used as a signal for reproducing information recorded on the optical disk 11 as a signal. Processing is performed.
  • phase of the focus error signal (FE) and the tracking error signal (TE) calculated in each of the focus matrix circuit 34 and the tracking matrix circuit 37 are compensated by the phase compensation circuits (35, 38). It is amplified by the amplifiers (36, 39) and input to the driving actuator 45.
  • the wobble signal WS calculated by the intelligent matrix circuit 44 is input to an address detection circuit 46, a clock detection circuit 47, and the like.
  • the focus function of the drive function 45 moves the position of the head 10 in the optical axis direction based on the focus error signal FE, thereby realizing a focus servo.
  • the position of the head 10 is moved in the radial direction of the optical disk 11 based on the error signal TE, and the tracking servo is realized.
  • the CPU (central processing unit) 40 is used for the two lenses of the expander lens unit in the optical pickup (head) 10 through the expander control circuit 41, in addition to the servo mechanism described above. ⁇ U correction and the spherical aberration by adjusting the distance d B kappa, and control of the rotational drive through a spindle Servo circuit 4 2, the control of the operation of the entire optical disk device.
  • optical disk apparatus records and reproduces the data by using the optical disk according to the present embodiment, which can prevent cross-writing and homogenize the reproduction signal, and can easily ensure compatibility with the reproduction-only disk.
  • Optical disk device can be configured for
  • the present invention is not limited to the above embodiment.
  • the layer configuration of the optical recording layer is not limited to the configuration described in the embodiment, but may be various structures according to the material of the recording film and the like.
  • the present invention can be applied to a magneto-optical recording medium and an optical disk medium using an organic dye material.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Head (AREA)
  • Holo Graphy (AREA)
  • Liquid Crystal (AREA)

Description

明 糸田 書 光学記録媒体および光デイスク装置 技術分野
本発明は、 光学記録媒体 (以下光ディスクとも言う) とこれを再生または記録 する光ディスク装置に関し、 特に高密度記録が可能な光学記録媒体とこれを再生 または記録する光ディスク装置に関する。 背景技術
近年、 動画、 静止画などのビデオデータをデジタルに記録する技術の発展に伴 い、 大容量のデータが取り扱われるようになり、 大容量記録装置として C Dや D V Dなどの光デイスク装置が脚光を浴びており、 さらなる大容量化の研究が進め られている。
図 1は、 C D— RW (リライ夕ブル) 方式の光ディスクの断面構造および光の 照射方法を示す模式図である。
厚さ D 5が約 1 . 2 mmの光透過性のディスク基板 5の一方の表面に、 溝 6が 設けられており、 この面上に、 例えば誘電体膜、 記録膜、 誘電体膜、 反射膜など がこの順番で積層された光学記録層 7が形成されている。 膜構成および層数は記 録材料の種類や設計によつて異なる。
光学記録層 7の上層に保護層 8が形成されている。
上記の C D— R W方式などの光ディスクを記録ある ϋ、は再生する光ディスク装 置は、 通常の構成において、 記録または再生用の波長 λの光を照射する光源と、 当該光源の出射する光を光学記録媒体の光学記録層上に集光する開口数 Ν Αの対 物レンズ (集光レンズ) を含む光学系と、 光学記録層からの反射光を検出する受 光素子などを有する。 例えば C D— RW方式においては、 図 1に示すように、 再生用あるいは記録用 のレーザビーム L Bが、 例えば対物レンズ 5 0により集光されて、 光透過性のデ イスク基板 5を透過して、 上記構造の光デイスクの光学記録層 7に対して照射さ れる。
光ディスクの再生時においては、 光学記録層で反射された戾り光が受光素子で 受光され、 信号処理回路により所定の信号を生成して、 再生信号が取り出される
0
上記の光ディスクの再生あるいは記録において、 光学記録層上における光のス ポツ トサイズ øは、 一般に下記式 (1 ) で与えられる。
Φ = λ /Ν Α ··' ( 1 )
光のスポッ トサイズ øは光学記録媒体の記録密度に直接影響を与え、 スポツ ト サイズ øが小さいほど高密度記録が可能となり、 大容量化ができる。 即ち、 光の 波長 λがより短いほど、 また、 対物レンズの関口数 Ν Αが大きいほど、 スポツ ト サイズ ¾Mまより小さくなり、 高密度記録が可能となることを示す。
例えば、 図 1に示すような C D— RW方式においては、 光源の波長が近赤外領 域 (7 8 O n m程度) であり、 対物レンズの開口数が 0 . 4 5程度であり、 記録 層に相変化型記録層を用い、 さらに、 ディスク基板 5に形成された凹凸に応じて 、 光学記録層が凹凸形状を有しており、 この凹凸形状の光学記録層の内、 記録ま たは再生用の光の照射側から近い側である、 凹凸形状の凸部に相当する部分の光 学記録層のみが記録領域 R Aとして用いられ、 記録または再生用の光の照射側か ら遠い側である、 凹凸形状の凹部に相当する部分の光学記録層を記録領域 R Aと して用いない構成において、 1 2 O mm柽の光ディスクの場合に約 7 0 0 M Bの 記録容量を実現している。
上記の凸部と凹部については、 溝が形成されたディスク基板 5を形成するため の原盤を製造する工程における当該原盤の表面においてレーザビームあるいは電 子ビームにより露光された領域に相当する部分をグループ Gと呼び、 グループ G で挟まれた領域をランド Lと呼ぶことにし、 例えば図 1に示す光デイスクの一般 的な製法の場合、 凹凸形状の凸部がグループ Gに相当し、 凹部がランド Lに相当 する。
光ディスクのさらなる高密度化の研究が進められており、 例え 、 文献 A 「◦ P t i c a 1 d i sk r e c or d i ng u s i n a G a N h 1 u e— v i o l e t l a s er d i o d ej (I ch imu r aら、 Jpn . J. AP 1. P h y s. , vo l. 39 ( 2000 ) , pp 937-942 ) においては、 青紫色半導体レーザと開 数 85の 2群対物レンズを用いる ことで、 DVDサイズの光ディスクに 22Gバイ トを越える記憶容量を実現する 手法が提案されている。
ところで、 対物レンズの開口数が大きくなると、 一般に光ディスク装置におけ るディスク傾き許容度が減少する。 光軸に対する傾き角 に対して、 発生するコ マ収差1 Wsiは、 文献 B 「Ap l ana t i c c ond i t i on r e q u i r e d t o r epr o d u c e j i t t e r—: f r e e s i na l s i n o t i c l d i s k s y s t em」 (Kub o t aら、 App 1. O t. , v o l. 26 ( 1 987 ) , pp 3961— 3973) によると 下記式 (2) で与えられ、 概ね開口数 NAの 3乗と、 光ディスクの保護層 (光学 記録層の上層に形成された層) の厚さ tに比例する。 なお、 式 (2) 中、 nは保 護層の屈折率である。 λΛ/ t(n2-1)n2 sin0 cos0 -NA3
W31 = -(2)
2(n2 - sin2 5/2 従って、 許容されるコマ収差 W31の値を λ/4とすると、 開口数 0. 85まで 高めた光ディスク装置において、 D V D再生装置と同等のデイスク傾き許容度を 確保するためには、 光ディスクの保護層の厚さを 0. 1 mm程度に薄くすること が必要となる。 図 2は、 上記の文献 Aにおいて報告された手法により形成された光ディスクの 断面構造および光の照射方法を示す模式図である。
厚さ D 1が 1 . 1〜〗. 2 mmのディスク基板 1の一方の表面に、 溝 2が設け られており、 この面上に、 例えば反射膜、 誘電体膜、 記録膜、 誘電体膜などがこ の順番で積層された厚さ D 3の光学記録層 3が形成されている。 膜構成および層 数は記録材料の種類や設計によつて異なる。
光学記録層 3の上層に厚さ D 4が 0 . 〗 mm程度の光透過性の保護層 4が形成 されている。
上記の方式においては、 図 2に示すように、 再生用あるいは記録用のレーザピ ーム L Bが、 例えば第 1のレンズ (先玉レンズ) 1 2および第 2のレンズ (後玉 レンズ) 1 4からなる 2群レンズにより集光されて、 光透過性の保護層 4を透過 して、 上記構造の光ディスクの光学記録層 3に対して照射される。
再生時においては、 光学記録層で反射された戻り光が受光素子で受光され、 信 号処理回路により所定の信号を生成して、 再生信号が取り出される。
上記の光デイスクの製造方法は、 表面に溝を有するディスク原盤などからの転 写により表面に溝を有するスタンパを形成し、 ス夕ンパから表面形状を転写して 表面に溝 2を有するディスク基板 1を形成し、 例えば反射膜、 誘電体膜、 光学記 録層、 誘電体膜の積層体からなる光学記録層 3をこの成膜順序で成膜する。 これ は通常とは逆の順である。 最後に、 誘電体膜の上層に光透過性の保護層 4を形成 する。 この手法により、 0 . 1 mmの厚さの保護層を有する光ディスクを形成す ることができる。
上記の方式においては、 面記録密度を向上させるため、 溝構造の深さ D 2を λ / 6 n (ス :光ディスク装置の光源の波長、 n :光透過性の保護層の屈折率) 程 度とし、 溝構造に応じて光学記録層が凹凸形状を有しており、 この凹凸形状の光 学記録層の内、 記録または再生用の光の照射側から近い側であるランドしと、 記 録または再生用の光の照射側から遠い側であるグループ Gの両領域を記録領域 R Aとして用いるランド ·グループ記録方式が採用されている。
ランド ·グループ記録方式においては、 トラックピッチ TPはランド Lの中央 位置とグループ Gの中央位置の距離に相当し、 具体的には約 0. 程度に設 定されている。
ランド 'グループ記録方式に関しては文献 C 「Land nd gr o ov e r e c o r d i ng f or i h tr a ck d ens i t y o n pha s e-change o t i c a l d i s k s J (M i y a g a waら、 Jpn. J. AP P 1. P h y s. , vo l. 32 ( 1 993 ) , p p 5324-5328) などに詳細に記載されている。
この方式においては、 ランド部とグループ部の信号振幅を均等にするべく、 光 学記録層の成膜後のランド部とグループ部の幅の比 (d u t y比) が約 1 : 1と なるように、 ディスク基板の溝が形成される。 例えば、 ディスク基板に形成され る溝の幅を溝のピッチの 60%程度とし、 溝の内壁を被覆して全面に、 誘電体膜 、 記録膜、 誘電体膜、 反射膜を積層させたときに、 ランド部とグループ部に相当 する記録膜の幅が均等となるように、 溝の幅が決定される。
また、 溝干渉を利用して、 隣接トラックからの反射光量、 すなわちクロストー ク成分を低減させるために、 溝の深さを; 1/6 nとしている。
しかしながら、 上記のランド,グループ記録方式を採用した場合、 一般に、 記 録または再生用の光の照射側から違 L、側であるグループ部に信号を記録する際に 、 予め手前側のランド部に記録されている信号マークを消去する現象 (クロスラ ィ ト) が発生しやすい傾向がある。
これは、 対物レンズの開口数が大きく、 溝が深めであることからグループ部に 電磁波が伝播しにく く、 グループ部での照射出力を高めることから、 記録時の最 適照射出力が必ずしも均等にならないことが原因となっている。
さらに、 ランド部とグループ部の再生信号の品質を均質化するのが難しいとい う面を持っている。 従って、 ランド ·グループ方式の特徴である隣接トラックからのクロストーク をキャンセルする効果を十分に活かしたトラック密度を実現するには至っていな い 0
また、 ランド部とグループ部の両者を記録領域として用いているために、 ピツ トにより情報を記録する再生専用 (ROM; Read on l y memory ) ディスクとの互換性を確保するためには工夫が必要であった。 発明の開示
本発明は、 上記の状況に鑑みてなされたものであり、 従って本発明の目的は、 光透過性の保護層の厚さを 0. 1mm程度に薄く して、 光源の波長の短波長化お よび対物レンズの高開口数化による高密度記録に対応した光学記録媒体 (光ディ スク) において、 クロスライトの防止や再生信号の均質化を実現し、 容易に再生 専用ディスクとの互換性を確保できる光学記録媒体と、 これを記録 ·再生するた めの光ディスク装置を提供することである。
上記の目的を達成するために、 本発明の光学記録媒体は、 開口数が 0. 85± 0. 1であるレンズにより集光され、 波長が 405 ±5 nmである光が照射され て記録または再生がなされる光学記録媒体であつて、 表面に溝が形成された基板 と、 上記溝形成面における上記基板上に形成され、 上記溝に応じて凹凸形状を有 する光学記録層と、 上記光学記録層上に形成された光透過性の保護膜とを有し、 上記保護膜側から上記光学記録層に記録または再生用の光が照射されて用いられ 、 上記凹凸形状の光学記録層の内、 上記記録または再生用の光の照射側から遠い 側である上記凹凸形状の凹部に相当する部分と、 上記記録または再生用の光の照 射側から近い側である上記凹凸形状の凸部に相当する部分の内のいずれか一方の 上記光学記録層のみが記録領域として用いられ、 上記記録領域として用いられる 凸部または凹部のピッチ (トラックピッチ) が 0. 32±0. O l mであり、 上記凸部に対する凹部の深さが 19〜24 nmの範囲である。 上記の本発明の光学記録媒体は、 開口数が 0. 85±0. 1であるレンズによ り集光され、 波長が 405 ±5 nmである光が照射されて記録または再生がなさ れる光学記録媒体であって、 凹凸形状を有する光学記録層の内、 記録または再生 用の光の照射側から近 、側である凸部と、 記録または再生用の光の照射側から遠 、側である凹部の内の t、ずれか一方の上記光学記録層のみが記録領域として用い られるので、 凹部と凸部の間のクロスライ トの防止と、 再生信号の均質化を実現 し、 さらに再生専用ディスクとの互換性の確保が容易である。
閧口数が 85±0. 】であるレンズにより、 波長が 405±5nmである 光を集光すると、 光学記録層上での光のスポジ トサイズから、 記録領域として用 いる凸部または凹部のピッチ (トラックピッチ) を 0. 32±0. O l mに設 定するのが最適となり、 得られる信号品質とサーボ特性を満たすためには、 凸部 に対する凹部の深さを 1 9〜24 ηηιの範囲に設定することが必要となる。 上記の本発明の光学記録媒体は、 好適には、 上記溝に振幅が ±8~1 2η で あるゥォブルが形成されている。
凸部に対する凹部の深さを上記の範囲に設定すると、 ァドレス情報をピットと して形成する場合にピツ ト信号の変調度が不十分となるため、 溝にゥォプルを形 成して、 これにアドレス情報を組み込むことが好ましい。 この場合、 ゥォプル信 号の CZN比と、 隣接トラックからのゥォブルの漏れ込み量との条件を満たすた めに、 ゥ才プルの振幅を ± 8〜; I 2 nmの範囲に設定する。
また、 凹部と凸部の内の一方しか記録領域として用いないので記録密度の面で 不利となる場合があるが、 ァドレスなどをゥォプル信号から得ることなどにより 、 記録密度の向上が可能である。
上記の本発明の光学記録媒体は、 好適には、 上記凹凸形状の光学記録層の内、 上記記録または再生用の光の照射側から近い側である上記凹凸形状の凸部に相当 する部分の上記光学記録層のみが記録領域として用いられる。
記録または再生用の光の照射側から近 L、側である凸部と、 記録または再生用の 光の照射側から遠い側である凹部を比較した場合、 クロスライ ト特性の実験結果 から凸部を記録領域として採用することが好ましい。
上記の本発明の光学記録媒体は、 好適には、 上記記録または再生用の光の照射 側から近い側である上記凹凸形状の凸部に相当する部分が、 上記溝が形成された 基板を形成するための原盤を製造する工程における当該原盤の表面においてレー ザビームあるいは電子ビームにより露光された領域に相当する。
上記の構成の光学記録媒体では、 製法上、 原盤作成時にレーザビームなどの露 光がなされた領域は幅が一定となることから、 この領域を記録領域として用いる ことが好ましい。
従つて凸部と凹部の内、 原盤作成時に露光がなされた領域が凸部となるように することが好ましい。 即ち、 露光された領域に相当する部分をグループと呼ぶ場 合、 凸部がグループとなるように製造することが好ましい。
また、 上記の目的を達成するために、 本発明の光ディスク装置は、 表面に溝が 形成された基板と、 上記溝形成面における上記基板上に形成され、 上記溝に応じ て凹凸形状を有する光学記録層と、 上記光学記録層上に形成された光透過性の保 護膜とを有する光学記録媒体を回転駆動する回転駆動手段と、 上記光学記録層に 対して、 波長が 4 0 5 ± 5 n mの記録または再生用の光を出射する光源と、 上記 光を上記保護膜側から上記光学記録層に集光して照射するための開口数が 0 . 8 5 ± 0 . 1であるレンズを含む光学系と、 上記光学記録層で反射された戻り光を 受光する受光素子と、 上記受光素子により受光された戻り光に基づ L、て所定の信 号を生成する信号処理回路とを有し、 上記光学記録媒体として、 上記記録または 再生用の光の照射側から違い側である上記凹凸形状の凹部に相当する部分と、 上 記記録または再生用の光の照射側から近い側である上記凹凸形状の凸部に相当す る部分の内のいずれか一方の上記光学記録層のみを記録領域として用い、 上記光 学記録媒体として、 上記記録領域として用いられる凸部または凹部のピッチ (ト ラックピッチ) が 0 . 3 2 ± 0 . 0 1 i mであり、 上記凸部に対する凹部の深さ が 1 9〜2 4 II mの範囲である光学記録媒体を用いる。
上記の本発明の光ディスク装置は、 好適には、 上記光学記録媒体として、 上記 溝に振幅が土 8 ~ 1 2 n mであるゥォブルが形成されている光学記録媒体を用い る o
上記の本発明の光ディスク装置は、 好適には、 上記光学記録媒体として、 上記 凹凸形状の光学記録層の内、 上記記録または再生用の光の照射側から近い側であ る上記凹凸形状の凸部に相当する部分の上記光学記録層のみを記録領域として用 いる。
さらに好適には、 上記光学記録媒体として、 上記記録または再生用の光の照射 側から近 、側である上記凹凸形状の凸部に相当する部分が、 上記溝が形成された 基板を形成するための原盤を製造する工程における当該原盤の表面においてレー ザビームあるいは電子ビームにより露光された領域に相当する光学記録1媒体を用 いる。
上記の本発明の光ディスク装置は、 クロスライ卜の防止や再生信号の均質化を 実現し、 容易に再生専用ディスクとの互換性を確保できる上記の本発明の光学記 録媒体を用いて、 これを記録 ·再生するための光ディスク装置を構成することが できる。 図面の簡単な説明
図 1は、 第 1従来例に係る C D— RW (リライ夕プル) 方式の光ディスクの断 面構造および光の照射方法を示す模式図である。
図 2は、 第 2従来例に係る光ディスクの断面構造および光の照射方法を示す模 式図である。
図 3は、 実施形態に係る光ディスクの断面構造および光の照射方法を示す模式 図である。
図 4 Aおよび図 4 Bは、 実施形態に係る光ディスクの製造方法の製造工程を示 す断面図である。
図 5 Aおよび図 5 Bは、 実施形態に係る光ディスクの製造方法の製造工程を示 す断面図である。
図 6 Aおよび図 6 Bは、 実施形態に係る光ディスクの製造方法の製造工程を示 す断面図である。
図 7 Aおよび図 7 Bは、 実施形態に係る光ディスクの製造方法の製造工程を示 す断面図である。
図 8は、 実施形態の光ディスクの要部を示す斜視図である。
図 9は、 実施例 1でのジッターとプッシュプル信号の測定結果を示す図である 図 1 0は、 実施例 2でのゥォプルの一例を示す平面図である。
図】 1は、 実施例 3でのゥォプル振幅を変えたときのゥォプル信号の C ZN比 を示す図である。
図 1 2は、 実施例 4でのジッターの測定結果を示す図である。
図 1 3は、 実施形態に係る光ディスク装置の光学ピックアップ (へツド) 用 2 群レンズの構成を示す模式断面図である。
図 1 4は、 実施形態に係る光ディスク装置の光学ピックアップ (へツ ド) の構 成を示す模式図である。
図 1 5は、 実施形態に係る受光素子の構成を示す平面図である。
図】 6は、 実施形態に係る光ディスク装置の構成を示すブロック図である。 発明を実施するための最良の形態
本発明の好適実施の形態を添付図面を参照して述ぺる。
以下、 本発明の実施の形態について図面を用 、て詳しく説明する。
本実施の形態は、 光学記録媒体である光ディスクと、 これに対するデータの記 録および/または再生を行う記録および/または再生装置 (以下、 光ディスク装 置という) に適用したものである。
図 3は、 本実施形態に係る光ディスクの断面構造および光の照射方法を示す模 式図である。
厚さ D 1が 1 . 1〜 1 . 2 mmのディスク基板 1の一方の表面に、 溝 2が設け られており、 この面上に、 例えば反射膜、 誘電体膜、 記録膜、 誘電体膜などがこ の順番で積層された厚さ D 3の光学記録層 3が形成されている。 膜構成および層 数は記録材料の種類や設計によって異なる。
光学記録層 3の上層に厚さ D 4が 0 . 1 mm程度の光透過' f生の保護層 4が形成 されている。
本実施形態においては、 図 3に示すように、 再生用あるいは記録用のレーザビ ーム L Bが、 例えば第 1のレンズ (先玉レンズ) 1 2および第 2のレンズ (後玉 レンズ) 1 4からなる 2群レンズにより集光されて、 光透過性の保護層 4を透過 して、 上記構造の光デイスクの光学記録層 3に对して照射される。
開口数が 0 . 8 5 ± 0 . 1であるレンズを用いるため、 上記のような 2群レン ズを使用する。
また、 用いるレーザビーム L Bの波長は 4 0 5 ± 5 n mである。
再生時においては、 光学記録層で反射された戻り光が受光素子で受光され、 信 号処理回路により所定の信号を生成して、 再生信号が取り出される。
上記の光デイスクにおいて、 溝 2に応じて光学記録層は凹凸形伏となつており
、 記録または再生用の光の照射側から近い側である凸部と、 記録または再生用の 光の照射側から遠い側である凹部の内、 いずれか一方が記録領域 R Aとして用い られる。
本実施形態の光ディスクは、 凸部と凹部の内のいずれか一方が記録領域 R Aと して用いられるので、 凹部と凸部の間のクロスライ トの防止と、 再生信号の均質 化を実現し、 さらに再生専用ディスクとの互換性の確保が容易である。
上記の凸部と凹部については、 上記の溝が形成されたディスク基板 1を形成す るための原盤を製造する工程における当該原盤の表面において、 レーザビームあ るいは電子ビームにより露光された領域に相当する部分をグループ Gと呼び、 グ ループ Gで挟まれた領域をランド Lと呼ぶことにする。
本実施形態においては、 下記の製造方法において説明されるように、 記録また は再生用の光の瞌射側から近い側である凸部がグループ G、 記録または再生用の 光の照射側から遠い側である凹部がランド Lとなるように製造する。
本実施形態の光ディスクにおいては、 トラックピッチ T Pは、 記録領域として 用いる凸部または凹部のピッチ、 即ち、 ある凸部の中央位置とその隣の凸部の中 央位置の距離、 あるいは、 ある凹部の中央位置とその隣の凹部の中央位置の距離 に相当し、 開口数が 0. 8 5 ± 0. 1であるレンズにより、 波長が 4 0 5 ± 5 ιι mである光を集光すると、 光学記録層上での光のスポッ トサイズから、 上記のト ラックピッチを 0 . 3 2 ± 0 . 0 1 i mに設定するのが最適となる。
また、 満足な信号品質を得るためには、 凸部に対する凹部の深さを 2 4 n m以 下に設定することが必要であり、 一方、 満足なサーボ特性を得るためには、 この 深さを 1 9 n m以上に設定することが必要となる。
上記の本実施形態の光ディスクほ、 溝 2に振幅が ± 8〜】 2 n mであるゥ才ブ ルが形成されていることが好ましい。
凸部に対する凹部の深さを上記の範囲に設定すると、 アドレス情報をピッ 卜と して形成する場合にピツ ト信号の変調度が不十分となるが、 溝にゥォプルを形成 することで、 これにアドレス情報を組み込むことができるからである。 この場合 、 ゥ才ブル信号の CZN比と、 隣接トラックからのゥォプルの漏れ込み量との条 件を満たすために、 ゥォプルの振幅を ± 8〜1 2 n mの範囲に設定する。
また、 凹部と凸部の内の一方しか記録領域として用いないので記録密度の面で 不利となる場合があるが、 アドレスなどをゥォブル信号から得ることなどにより
、 記録密度の向上が可能となり、 この点からも好ましい。
上記の本実施形態の光ディスクは、 記録または再生用の光の照射側から近い側 である凸部 (グループ G ) と、 記録または再生用の光の照射側から違い側である 凹部 (ランド ) を比較した場合、 クロスライ ト特性の実験結果から、 図 1に示 すように凸部 (グループ G ) を記録領域 R Aとして採用することが好ましい。 さらに、 本実施形態の光ディスクの製造方法において、 ディスク原盤の作成時 にレーザビームなどの露光がなされた領域は幅が一定となることから、 この領域 を記録領域として用いることが好ましい。
この理由により、 記録領域として用いる凸部が、 ディスク原盤作成工程におけ る露光領域に相当するように、 即ち、 凸部がグループとなるように製造すること が好ましい。
トラックピッチが 0 . 3 2 であり、 例えば 1一 7 R P P変調方式を採用し 、 光ディスク装置側の性能で決定される最短マ ク長を 0 . 1 6 y mとすると、 C Dサイズの光ディスクで、 約 2 3 . 3 Gパイ 卜の記録容量を実現できる。 ここで、 上記の最短マーク長を 0 . 1 6 とするのは、 光ディスク装置のチ ヤンネルクロック Tが 0 . 0 8 w mであるとして、 2 T信号を最短マークとして 想定している。
将来、 チャンネルクロックがさらに短くなると、 さらなる容量の増大が可能で ある 0
上記の本実施形態の光デイスクの製造方法につ 、て説明する。
まず、 図 4 Aに示すように、 ガラス基板 a上にレジスト膜 bが成膜されたディ スク原盤を準備する。
次に、 図 4 Bに示すように、 レーザビームあるいは電子ビームなどにより、 例 えばディスク基板の溝となる領域を感光させるパターンでレジスト膜 bの露光を 行い、 現像処理を施して、 ディスク基板の溝となる領域を開口するパターンのレ ジスト膜 b ' とする。
ここで、 原盤作成工程においてガラス基板 aの表面が露出した部分 (図中の X で示した部分) が上記の露光領域に相当し、 最終的に形成される光ディスクにお けるグループとなるが、 本実施形態においては、 このグループが製造する光ディ スクにおいて記録または再生用の光の照射側から近 L、側である凸部となるように する。
次に、 図 5 Aに示すように、 例えば銀メツキ処理やその他の成膜処理などを用 いて、 上記ガラス基板 a上のレジスト膜 b' を有するディスク原盤上にメタルマ ス夕 cを形成する。 メタルマスタ cの表面には、 ガラス基板 aおよびレジスト膜 ' により構成されるパターンの凹凸と逆パターンの凹凸が転写される。
次に、 図 5 Bに示すように、 上記メタルマスタ c上にマザースタンパ dを形成 する。 マザースタンパ dの表面には、 メタルマスタ cの表面の凹凸と逆パターン の凹凸が転写される。 図面上、 メタルマスタ cを下方とし、 図 5 Aに対して上下 を逆転して描いている。
次に、 図 6Aに示すように、 例えば圧縮成形法、 射出成形法あるいは 2P (P 0 t 0 P o l yma r i za t i on)法などにより、 上記マザースタンパ dの凹凸パターン上に、 ポリカーボネートなどの樹脂製基板であるディスク基板 e (1) を形成する。 ディスク基板 e (1) には、 マザースタンパ dの表面の凹 凸と逆パターンの凹凸となる溝 f (2)が転写される。 図面上、 マザースタンパ dを下方とし、 図 5 Bに対して上下を逆転して描いている。
次に、 図 6 Bに示すように、 マザースタンパ dから離型して、 ディスク基板 e (1) を得る。
得られたディスク基板 e (1) では、 基板表面から突き出た凸部が、 図 4Bに 示す露光領域: に相当し、 即ち、 凸部がグループ Gとなり、 その間の凹部がラン ド Lとなる。
次に、 図 7Aに示すように、 例えばスパッタリング法などにより、 例えば反射 膜, 誘電体膜、 記録層、 誘電体膜の積層体を有する光学記録層 g (3) をこの成 膜順序で成膜する。 これは通常とは逆の順である。.
次に、 図 7 Bに示すように、 光学記録層 g (3) の上層に光透過性の保護層 h ( 4 ) を形成する。
光透過性の保護層 h ( 4 ) は、 例えば紫外線硬化樹脂をスピン塗布などで塗布 し、 硬化せしめる方法や、 ポリカーボネートなどの樹脂シートを貼り合わせるこ とで形成できる。
この手法により、 図 3に示す構造の 0 . 1 mmの厚さの保護層を有する光ディ スクを形成することができる。
従来より広く用いられている光ディスクの製造方法では、 マザースタンパから 凹凸を反転させてサンスタンパをさらに形成し、 射出成形法などによりサンス夕 ンパの表面の凹凸と反転させてディスク基板を形成しているが、 この方法では、 ディスク原盤作成工程における露光領域は、 記録または再生用の光の照射側から 遠い側である凹部となる。
一方、 本実施形態の光ディスクの製造方法では、 上記のマザースタンパから直 接ディスク基板を形成しており、 上記の従来の方法と比べると反転工程を 1回省 略してことになる。 このため、 ディスク原盤作成工程における露光領域 (図 4 A の領域 X ) が、 最終的な光ディスクにおいて記録または再生用の光の照射側から 近い側である凸部となる。 即ち、 記録または再生用の光の照射側から近い側であ る凸部がグループ G、 記録または再生用の光の照射側から遠 t、側である凹部がラ ンド Lとなる。
上記の本実施形態の光デイスクの製造方法において、 ディスク原盤の作成工程 における露光領域 (図 4 Bの領域 X ) の幅は、 レーザビームあるいは電子ビーム のスポッ ト径に相当し、 一定値を確保することができ、 即ち、 グループの幅は一 定となる。
一方、 グループとグループの間隔、 即ちランド部の幅は、 原盤作成装置におけ るレーザビームあるいは電子ビームのディスク半径方向の送り精度に依存し、 一 定とすることが困難となっている。
即ち、 記録領域としてランドを用いる場合、 再生信号やトラッキング誤差信号 の振幅が、 トラック毎に異なることを意味し、 高いトラック密度が要求される光 ディスクにおいてはより顕著な影響が現れる。
このことから、 ランドよりもグループを記録領域として用いることが好ましい 一方で、 本実施形態においては、 上述のように凹部よりも凸部を記録領域とし て用いることが好ましい。
従つて凸部がグループとなるように製造することが好ましく、 これを実現する ために、 上記の製造方法においては従来の方法よりも反転工程を 1回省略し、 デ イスク原盤作成工程における露光領域がデイスク基板における凸部に相当するよ うに製造する。
図 8は、 本実施形態の光ディスクの要部を示す斜視図である。
ディスク基板】の表面に、 溝 2が設けられており、 この面上に、 光学記録層 3 が形成され、 その上層に光透過'【生の保護層 4が形成されている。
ランド Lとグループ Gの内、 いずれか一方、 例えば図示のようにグループ Gの みが記録領域 R Aとして用いられ、 記録スポツ ト R Sが形成される。
破線で囲んだ部分がレーザビームのスポツ ト Sである。
図 8に示すように、 溝構造をディスク半径方向に一定周期で蛇行させてゥ才ブ ル W Bを形成することが好ましい。 ゥォプル W Bによりゥォブル信号が生成され 、 この信号に基づいて、 ディスク回転に同期したクロック信号の検出やアドレス 信号の検出などがなされる。
上記のように溝構造にゥォプル W Bを形成する塌合、 ゥォブルの位相はァドレ スなどで決定され、 隣り合うグループ同士で位相は一致しないので、 グループと グループの間の距離に相当するランドの幅は一定とならなくなる。
上記の理由からも、 再生信号やトラッキング誤差信号の振幅を一定にするため に、 ランド Lよりもグループ Gを記録領域 R Aとして用いることが好ましい。 情報ピツ トを再生する再生専用 (R O M) ディスクとのトラッキング誤差信号 の共逋性を確保するため、 光ディスク上の記録領域幅を 5 0 %未満とし、 同一の 信号極性を得ることも好ましく行うことができる。
(実施例 1 ')
トラックピッチを 0 . 3 2 とした上記の本実施形態の光ディスクにおいて 、 変調方式として 1一 7 R P P方式を採用し、 最短マーク長を 0 . 1 6 inとし 、 測定対象トラックにおいて 1 0 0回オーバーライ トを行い、 続けて隣接トラツ クに 1 0 0回オーバーライトを行ったときの測定対象トラックのジッターとプッ シュプル信号を測定し、 これらの測定値がデイスク基板の凸部に対する凹部の深 さを変えたときにどう変化するか調べた。
図 9は上記の測定結果であり、 図中黒丸 (暴) はジッターの値を、 白丸 (〇) はプツシュプル信号の値を示す。
安定したトラッキングを保っためには、 プッシュプル信号は 0 . 2 5以上とす ることが必要であり、 これを満たすためにはディスク基板の凸部に対する凹部の 深さが 1 9 以上であることが必要である。
一方、 システムマージンにとってジッターは 8 . 5 %以下とすることが必要で あり、 これを満たすためにはディスク基板の凸部に対する凹部の深さが 2 4 n m 以下であることが必要である。
この結果から、 ディスク基板の凸部に対する凹部の深さは 1 9 ~ 2 4 η ΐΉの範 囲とする。
(実施例 2 )
図 1 0は、 上記の本実施形態の光ディスクにおけるゥォプルの一例を示す平面 図である。
ディスク基板の凸部に対する凹部の深さを実施例 1で決められた範囲に設定す ると、 ァドレス情報をピットとして形成する場合にピツ ト信号の変調度が 2 0 % 以下となり、 不十分となるので、 溝にゥ才プルを形成してアドレス情報を組み込 む。 グループ Gとグループ Gの間がランド Lとなり、 グループ Gにゥォブル1 WBが 形成されており、 このためにランド Lの幅を一定とならない様子を示している。 光ディスク装置のチャンネルクロック Tを単位として、 ゥォブル WBの一周期 分の長さ LWBを 69 Tと設定し、 T= 0. 08 のとき、 LWBは 5. b 2 urn となる。
(実施例 3 )
ゥォプル信号は、 その振幅によって決まり、 図 1 0に示すように、 ゥォブル1 Bの振幅 AWBは、 ゥ才プルが無いとした場合のグループ Gの中央位置と、 一方向 に最大に振れたときのグループの中央位置との差となる。
図 1 1はゥ才プル振幅を変えたときのゥォプル信号の C/N比を示す図である 。 一般に、 ゥォブル信号の C/N比は 40 d B以上必要であるので、 ゥォブルの 振幅は士 8 nm以上必要となる。
一方、 ゥォプル振幅の上限は、 隣接トラックからのゥォプルの漏れ込み量によ つて決まり、 実験では士 12 を越えるとァドレスエラーが発生した。
上記の結果から、 ゥォプルの振幅 AWBを ±8~1 2 nmの範囲に設定する。 (実施例 4 )
トラックピッチを 0. 32 wrnとした上記の本実施形態の光ディスクにおいて 、 変調方式として 1一 7RPP方式を採用し、 最短マーク長を 0. 1 とし 、 測定対象トラックにおいて 1 00回オーバーライ トを行い、 続けて隣接トラッ クに 1 00回オーバーライトを行ったときの測定対象トラックのジッターを測定 した。 このとき、 ディスク基板の凸部に相当する部分に記録した場合と、 デイス ク基板の凹部に相当する部分に記録した場合の両方において、 最適記録パワーを 0としたときに、 1 0%および 20%増したパワーにおいてジッターの値がどう 変化するか調べた。
図 12は上記の測定結果であり、 図中白丸 (O)は凸部に記録した場合の値を 、 黒丸 (拳) は凹部に記録した場合の値を示す。
凸部、 凹部共に、 記録パワーを増やすにつれてジッターが悪化する傾向にある が、 凸部よりも凹部のほうがより悪化している。 これは、 隣接トラックに書き込 んだときにデータを消してしまうクロスライ トが、 凹部のほうが発生しやすいこ とを示している。
この結果から、 凸部と凹部を比較した場合、 凸部を記録領域として採用するこ とが好ましい 0
以下に、 本実施形態の光デイスクを用 t、て記録再生する光ディスク装置につい て説明する。
図 1 3は、 本実施形態に係る光ディスク装置の光学ピックアップ (へツ ド) 用 群レンズの構成を示す模式断面図である。
径の異なる 2つの第 1のレンズ (先玉レンズ) 1 2および第 2のレンズ (後玉 レンズ) 1 4が、 同一光軸上に配置されてレンズホルダ 1 3に支持され、 これが 電磁ァクチユエ一夕 1 5上に搭載されている。
これら 2枚のレンズは、 開口数 0 . 8 5の 2群対物レンズとして機能し、 光源 からのレーザビーム L Bを光ディスク 1 1の光学記録層上に集光する。
図 1 4は、 本実施形態に係る光ディスク装置の光学ピックアップ (へッ ド) 1 0の構成を示す模式図である。
半導体レーザ】 6から出射されたレーザビーム L Bは、 コリメ一夕レンズ 1 7 、 1 / 2波長板 1 8、 回折格子 1 9を通過して、 偏光ビームスプリクタ 2 0に入 射する。
レーザビーム L Bの一部は、 偏光ビームスプリ 'クタ 2 0において反射し、 集光 レンズ 2 1により発光出力検出用受光素子 2 2へと導かれる。
一方、 偏光ビームスプリクタ 2 0を通過したレーザビ ""ム L Bは、 1 / 4波長 板 2 3、 2枚のレンズの間隔 d e Kが可変となっているエキスパンダレンズュニツ ト 2 4、 後玉レンズ 1 4および先玉レンズ 1 2を通過して光ディスク 1 1の光学 記録層上に照射される。
また、 光ディスク 1 1からの反射光 (戻り光) は、 偏光ビームスプリツタ 20 で反射し、 検出光路へと導かれ、 集光レンズ 25およびマルチレンズ 26を通つ て、 サーボ誤差信号および RF信号を検出するための受光素子 27へと入射し、 光電変換により電気信号に変換される。
図 1 5は、 上記のサーボ誤差信号および RF信号を検出するための受光素子 2 7の構成を示す平面図である。
受光素子 27は、 図示のように 8分割光検出素子 (A, B, C, D, E, F, G, H)から構成される。
受光素子 27に入射する光は、 光検出素子 (A, B, C, D)上に 1つのメイ ンスポッ ト MSとして、 光検出素子 (E, F) および光検出素子 (G, H)上に 、 それぞれ回折格子 1 9により生成された 2つのサイドスポッ ト (SS 1, SS 2) として入射する。
上記の 8分割光検出素子 (A, B, C, D, E, F, G, H)からの出力値か ら、 フォーカス誤差信号、 トラッキング誤差信号、 ゥォプル誤差信号、 RF信号 が演算される。
図 1 6は、 本実施形態に係る光ディスク装置の構成を示すブロック図である。 光学ピックアップ (へツド) 1 0からのレーザビーム LBが、 モータ 43によ り回転駆動される光ディスク 1 1の光学記録層上に照射され、 その反射光 (戻り 光) を検出して得た再生信号は、 へッ ドアンプ 31に入力される。
ヘッ ドアンプ 31からの再生信号は、 RFイコライザアンプ 32、 フォ^-カス マトリクス回路 34、 トラッキングマトリクス回路 37およびゥォプルマトリク ス回路 44に入力される。
RFイコライザアンプ 32において演算された RF信号 (RF) は、 信号復調 回路 33に入力され、 光ディスク 1 1上に記録された情報の再生信号として信号 処理がなされる。
フォーカスマトリクス回路 3 4およびトラッキングマトリクス回路 3 7のそれ ぞれにおいて演算されたフォーカス誤差信号 (F E ) およびトラッキング誤差信 号 (T E ) は、 位相補償回路 (3 5 , 3 8 ) により位相が補償され、 アンプ (3 6 , 3 9 ) により増幅されて駆動用ァクチユエ一夕 4 5に入力される。
ゥ才ブルマトリクス回路 4 4において演算されたゥォブル信号 W Sは、 ァドレ ス検出回路 4 6やクロック検出回路 4 7などに入力される。
駆動用ァクチユエ一夕 4 5中のフォーカスァクチユエ一夕は、 フォーカス誤差 信号 F Eに基づいてへツ ド 1 0の位置を光軸方向に移動させ、 フォ^"カスサーボ が実現され、 一方、 トラッキング誤差信号 T Eに基づいてへツド 1 0の位置を光 ディスク 1 1の径方向に移動させ、 トラッキングサーボが実現される。
C P U (中央演算ュニッ ト) 4 0は、 上記のサーボ機構の他、 エキスパンダ制 御回路 4 1を通じた光学ピックアップ (へク ド) 1 0中のエキスパンダレンズュ ニッ トの 2枚のレンズの間隔 d B κの調整による球面収差の補正や、 スピンドルサ ーボ回路 4 2を通じた回転駆動の制御など、 光ディスク装置全体の動作の制御を 仃ぅ。
上記の光ディスク装置は、 クロスライ 卜の防止や再生信号の均質化を実現し、 容易に再生専用デイスクとの互換性を確保できる上記の本実施形態の光デイスク を用いて、 これを記録 ·再生するための光デイスク装置を構成することができる
産業上の利用可能性
本発明の光学記録媒体およびこれを用いた光ディスク装置によれば、 凹凸形状 を有する光学記録層の内、 記録または再生用の光の照射側から近 、側であるラン ドと、 記録または再生用の光の照射側から違 (<、側であるダルーブの内の 、ずれか 一方の上記光学記録層のみが記録領域として用いられるので、 ランドとグループ 間のクロスライトの防止と、 再生信号の均質化を実現し、 さらに再生専用ディス クとの互換性の確保が容易である。
本発明は、 上記の実施の形態に限定されない。
例えば、 光学記録層の層構成は、 実施形態で説明した構成に限らず、 記録膜の 材料などに応じて種々の構造とすることができる。
また、 相変化型の光学記録媒体の他、 光磁気記録媒体や、 有機色素材料を用い た光ディスク媒体にも適用可能である。
その他、 本発明の要旨を変更しない範囲で種々の変更をすることができる。

Claims

請求の範囲
1. 開口数が 0. 85 ± 0. 1であるレンズにより集光され、 波長が 405 ± 5 n mである光が照射されて記録または再生がなされる光学記録媒体であつて 表面に溝が形成された基板と、
上記溝形成面における上記基板上に形成され、 上記溝に応じて凹凸形状 を有する光学記録層と、
上記光学記録層上に形成された光透過性の保護膜と
を有し、
上記保護膜側から上記光学記録層に記録または再生用の光が照射されて 用いられ、
上記凹凸形状の光学記録層の内、 上記記録または再生用の光の照射側か ら遠 t、側である上記凹凸形状の凹部に相当する部分と、 上記記録または再生用の 光の照射側から近い側である上記凹凸形状の凸部に相当する部分の内のいずれか 一方の上記光学記録層のみが記録領域として用いられ、
上記記録領域として用いられる凸部または凹部のピッチ (トラックピッ チ) が 0. 32 ± 0. 0 1 であり、
上記凸部に対する凹部の深さが 1 9~24 nmの範囲である
光学記録媒体。
2. 上記溝に振幅が ±8〜1 2 nmであるゥォプルが形成されている
請求項〗に記載の光学記録媒体。
3. 上記凹凸形状の光学記録層の内、 上記記録または再生用の光の照射側か ら近い側である上記凹凸形状の凸部に相当する部分の上記光学記録層のみが記録 領域として用いられる
請求項 1に記載の光学記録媒体。
4 . 上記記録または再生用の光の照射側から近 t、側である上記凹凸形状の凸 部に相当する部分が、 上記溝が形成された基板を形成するための原盤を製造する 工程における当該原盤の表面においてレーザビームあるいは電子ビームにより露 光された領域に相当する
請求項 3に記載の光学記録媒体。
5 . 表面に溝が形成された基板と、 上記溝形成面における上記基板上に形成 され、 上記溝に応じて凹凸形状を有する光学記録層と、 上記光学記録層上に形成 された光透過性の保護膜とを有する光学記録媒体を回転駆動する回転駆動手段と 上記光学記録層に対して、 波長が 4 0 5土 5 n mの記録または再生用の 光を出射する光源と、
上記光を上記保護膜側から上記光学記録層に集光して照射するための開 口数が 0 . 8 5 ± 0 . 1であるレンズを含む光学系と、
上記光学記録層で反射された戻り光を受光する受光素子と、
上記受光素子により受光された戻り光に基づ 、て所定の信号を生成する 信号処理回路と
を有し、
上記光学記録媒体として、 上記記録または再生用の光の照射側から遠い 側である上記凹凸形状の凹部に相当する部分と、 上記記録または再生用の光の照 射側から近い側である上記凹凸形状の凸部に相当する部分の内のいずれか一方の 上記光学記録層のみを記録領域として用い、
上記光学記録媒体として、 上記記録領域として用いられる凸部または凹 部のピッチ (トラックピッチ) が 0 . 3 2 ± 0 . 0 1 mであり、 上記凸部に対 する凹部の深さが 1 9〜2 4 n mの範囲である光学記録媒体を用いる
光ディスク装置。
6 . 上記光学記録媒体として、 上記溝に振幅が ± 8〜1 2 n mであるゥォブ ルが形成されている光学記録媒体を用いる
請求項 5に記載の光デイスク装置。
7 . 上記光学記録媒体として、 上記凹凸形状の光学記録層の内、 上記記録ま たは再生用の光の照射側から近 、側である上記凹凸形状の凸部に相当する部分の 上記光学記録層のみを記録領域として用いる
請求項 5に記載の光デイスク装置。
8 . 上記光学記録媒体として、 上記記録または再生用の光の照射側から近 、 側である上記凹凸形状の凸部に相当する部分が、 上記溝が形成された基板を形成 するための原盤を製造する工程における当該原盤の表面においてレーザビームあ るいは電子ビームにより露光された領域に相当する光学記録媒体を用いる
請求項 7に記載の光デイスク装置。
PCT/JP2001/010124 2000-11-20 2001-11-20 Support d'enregistrement optique et dispositif de disques optiques WO2002041311A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU15226/02A AU785402B2 (en) 2000-11-20 2001-11-20 Optical recording medium and optical disk device
JP2002543435A JP4161716B2 (ja) 2000-11-20 2001-11-20 光学記録媒体および光ディスク装置
EP01983822A EP1341167B1 (en) 2000-11-20 2001-11-20 Optical recording medium and optical disk device
DE60141475T DE60141475D1 (de) 2000-11-20 2001-11-20 Optisches aufzeichnungsmedium und optisches plattengeraet
US10/181,776 US6882616B2 (en) 2000-11-20 2001-11-20 Optical recording medium with high density track pitch and optical disk device for recording and playback of the same
CA002396246A CA2396246C (en) 2000-11-20 2001-11-20 Optical recording medium with high density track pitch and optical disk device for recording and playback of the same
AT01983822T ATE459959T1 (de) 2000-11-20 2001-11-20 Optisches aufzeichnungsmedium und optisches plattengeraet
HK03105408.2A HK1054814B (zh) 2000-11-20 2003-07-25 光記錄介質和光盤裝置
US11/081,555 US6987725B2 (en) 2000-11-20 2005-03-17 Optical recording medium with high density track pitch and optical disk drive for recording and playback of the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-353288 2000-11-20
JP2000353288 2000-11-20
JP2001-10716 2001-01-18
JP2001010716 2001-01-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10181776 A-371-Of-International 2001-11-20
US11/081,555 Continuation US6987725B2 (en) 2000-11-20 2005-03-17 Optical recording medium with high density track pitch and optical disk drive for recording and playback of the same

Publications (1)

Publication Number Publication Date
WO2002041311A1 true WO2002041311A1 (fr) 2002-05-23

Family

ID=26604301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010124 WO2002041311A1 (fr) 2000-11-20 2001-11-20 Support d'enregistrement optique et dispositif de disques optiques

Country Status (11)

Country Link
US (3) US6882616B2 (ja)
EP (2) EP2189980A1 (ja)
JP (1) JP4161716B2 (ja)
KR (1) KR100796327B1 (ja)
CN (1) CN1205607C (ja)
AT (1) ATE459959T1 (ja)
CA (1) CA2396246C (ja)
DE (1) DE60141475D1 (ja)
HK (1) HK1054814B (ja)
TW (1) TWI272589B (ja)
WO (1) WO2002041311A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004042714A1 (ja) * 2002-11-07 2006-03-09 松下電器産業株式会社 光学ヘッドおよび光学ヘッドを備えた光ディスク装置
CN1307634C (zh) * 2002-05-31 2007-03-28 富士通株式会社 光记录媒体和光记录装置
WO2010035736A1 (ja) * 2008-09-29 2010-04-01 富士フイルム株式会社 レーザ加工装置
WO2010035737A1 (ja) * 2008-09-29 2010-04-01 富士フイルム株式会社 レーザ加工装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085778A (ja) * 2001-06-29 2003-03-20 Sony Corp 光学記録再生媒体、光学記録再生媒体製造用マザースタンパ及び光学記録再生装置
US20050122890A1 (en) * 2002-03-15 2005-06-09 Kabushiki Kaisha Toshiba Information recording medium and information recording/ reproducing device and method
JP3961466B2 (ja) * 2002-09-05 2007-08-22 松下電器産業株式会社 光情報記録媒体及びその製造方法、並びに光情報記録媒体の保持方法
KR100498478B1 (ko) * 2003-01-16 2005-07-01 삼성전자주식회사 호환형 광픽업장치
JP2004342216A (ja) * 2003-05-15 2004-12-02 Sony Corp 光記録媒体、光記録媒体製造用原盤、記録再生装置および記録再生方法
JP2005174408A (ja) * 2003-12-09 2005-06-30 Fuji Photo Film Co Ltd 光情報記録媒体、光情報記録媒体の製造方法、及び光情報記録方法
JP2005196817A (ja) * 2003-12-26 2005-07-21 Toshiba Corp 情報記録媒体
US20070133380A1 (en) * 2004-03-09 2007-06-14 Koninklijke Philips Electronics, N.V. Optical recording disc adapted to storing data using an ultra-violet laser source
JP2005322356A (ja) * 2004-05-11 2005-11-17 Canon Inc 光ピックアップ装置
CN100334633C (zh) * 2004-05-28 2007-08-29 精碟科技股份有限公司 光学记录媒体
JP4201740B2 (ja) * 2004-06-02 2008-12-24 三洋電機株式会社 光ディスク記録方法および光ディスク記録装置
CA2583163A1 (en) * 2004-10-08 2006-04-13 Koninklijke Philips Electronics N.V. An optical record carrier
US20060109756A1 (en) * 2004-11-22 2006-05-25 Chih-Yuan Chen Track determination
US8277919B2 (en) * 2009-07-23 2012-10-02 VMO Systems, Inc. Reflective coating for an optical disc

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120733A (ja) * 1991-10-24 1993-05-18 Hitachi Ltd 光デイスク
JP2000011453A (ja) 1998-06-29 2000-01-14 Sony Corp 光記録媒体と光記録再生装置
US6122233A (en) 1997-01-30 2000-09-19 Sharp Kabushiki Kaisha Optical disk having virtually constant width recording track and optical disk apparatus
JP2000298878A (ja) 1999-02-12 2000-10-24 Sony Corp 光記録媒体
EP1205916A2 (en) 2000-11-10 2002-05-15 Pioneer Corporation Optical Disk

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860229B2 (ja) * 1993-06-25 1999-02-24 株式会社ケンウッド 光ディスク記録再生装置
JPH08147699A (ja) * 1994-11-22 1996-06-07 Sony Corp 情報記録再生装置
JP3772379B2 (ja) * 1996-03-25 2006-05-10 ソニー株式会社 記録媒体、アドレス記録方法、および装置
DE69729606T2 (de) * 1996-07-09 2005-07-07 Sharp K.K. Optische Platte mit verteilten Wobbelsektionen, Herstellungsverfahren und Verfahren zur Aufzeichnung und Wiedergabe
JP4258037B2 (ja) * 1998-06-29 2009-04-30 ソニー株式会社 光記録媒体と、これを用いた光記録再生装置
KR100809188B1 (ko) * 2000-10-10 2008-02-29 마츠시타 덴끼 산교 가부시키가이샤 광디스크
KR100458299B1 (ko) * 2000-10-10 2004-11-26 티디케이가부시기가이샤 광기록방법 및 광기록매체
US20040202097A1 (en) * 2003-04-08 2004-10-14 Tdk Corporation Optical recording disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05120733A (ja) * 1991-10-24 1993-05-18 Hitachi Ltd 光デイスク
US6122233A (en) 1997-01-30 2000-09-19 Sharp Kabushiki Kaisha Optical disk having virtually constant width recording track and optical disk apparatus
JP2000011453A (ja) 1998-06-29 2000-01-14 Sony Corp 光記録媒体と光記録再生装置
JP2000298878A (ja) 1999-02-12 2000-10-24 Sony Corp 光記録媒体
EP1205916A2 (en) 2000-11-10 2002-05-15 Pioneer Corporation Optical Disk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIYAGAWA ET AL., JPN. J. APPL. PHYS., vol. 32, 1993, pages 5324 - 5328

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307634C (zh) * 2002-05-31 2007-03-28 富士通株式会社 光记录媒体和光记录装置
JPWO2004042714A1 (ja) * 2002-11-07 2006-03-09 松下電器産業株式会社 光学ヘッドおよび光学ヘッドを備えた光ディスク装置
US7706216B2 (en) 2002-11-07 2010-04-27 Panasonic Corporation Optical head and optical device provided with optical head
JP2010153033A (ja) * 2002-11-07 2010-07-08 Panasonic Corp 光学ヘッドおよび光学ヘッドを備えた光ディスク装置
JP4516428B2 (ja) * 2002-11-07 2010-08-04 パナソニック株式会社 光学ヘッドおよび光学ヘッドを備えた光ディスク装置
WO2010035736A1 (ja) * 2008-09-29 2010-04-01 富士フイルム株式会社 レーザ加工装置
WO2010035737A1 (ja) * 2008-09-29 2010-04-01 富士フイルム株式会社 レーザ加工装置

Also Published As

Publication number Publication date
CN1205607C (zh) 2005-06-08
CA2396246A1 (en) 2002-05-23
KR100796327B1 (ko) 2008-01-21
EP1341167A4 (en) 2007-01-17
US6987723B2 (en) 2006-01-17
AU1522602A (en) 2002-05-27
DE60141475D1 (de) 2010-04-15
KR20020071937A (ko) 2002-09-13
US20030090986A1 (en) 2003-05-15
JPWO2002041311A1 (ja) 2004-03-25
US20050163033A1 (en) 2005-07-28
CN1395729A (zh) 2003-02-05
HK1054814A1 (en) 2003-12-12
CA2396246C (en) 2007-05-15
ATE459959T1 (de) 2010-03-15
JP4161716B2 (ja) 2008-10-08
US6987725B2 (en) 2006-01-17
US6882616B2 (en) 2005-04-19
TWI272589B (en) 2007-02-01
EP1341167B1 (en) 2010-03-03
EP2189980A1 (en) 2010-05-26
US20050157635A1 (en) 2005-07-21
EP1341167A1 (en) 2003-09-03
HK1054814B (zh) 2005-12-30

Similar Documents

Publication Publication Date Title
JP4050656B2 (ja) ホログラム記録媒体およびホログラム記録再生方法
US6987725B2 (en) Optical recording medium with high density track pitch and optical disk drive for recording and playback of the same
US20050163032A1 (en) Multilayer record carrier with shifted recording start and stop positions
WO1999000794A1 (fr) Support d&#39;enregistrement optique et dispositif de disque optique
JP2006040446A (ja) 光ディスク及び情報再生装置
US7813258B2 (en) Optical information recording medium and optical information reproducing method
JPH0944898A (ja) 光学ディスク
JP2009104704A (ja) 情報記録再生装置及び情報記録再生方法
JP2003006919A (ja) 光記録媒体、および光記録媒体製造方法
JP2001014684A (ja) 光ディスクおよびその製造方法
JP2512042B2 (ja) 光記録媒体および光記録方法
WO2008013168A1 (fr) Support d&#39;enregistrement d&#39;informations optiques, dispositif de reproduction pour support d&#39;enregistrement d&#39;informations optiques, et procédé de reproduction pour support d&#39;enregistrement d&#39;informations optiques
JP2005346769A (ja) 光記録媒体及び情報記録再生装置
JP2003141775A (ja) 片面2層光ディスク及び光ディスク記録再生装置
JPH11149642A (ja) 光記録媒体およびその製造方法
JP3917970B2 (ja) 光磁気記録媒体
KR100616232B1 (ko) 고밀도광기록매체그리고그기록/재생장치및방법
JP4137979B2 (ja) 光学的記憶媒体、光学的記憶媒体の製造方法及び光学的記憶装置
JPH083912B2 (ja) 新規な光記録媒体及びその製造方法
JP3870800B2 (ja) 光学記録媒体の初期化装置および初期化方法
JP2005018852A (ja) 光情報記録媒体、光情報記録媒体の製造方法、光情報記録再生光学系、及び光情報記録再生装置
JPH1074341A (ja) 光学記録媒体の製造方法
JPH07210874A (ja) 光記録媒体及びその再生装置
US20060023623A1 (en) Optical disk and information playback apparatus
JPH09102142A (ja) 光記録媒体及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 15226/02

Country of ref document: AU

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 543435

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2396246

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001983822

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027008986

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018039111

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10181776

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027008986

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001983822

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 15226/02

Country of ref document: AU