WO2002039530A1 - Separateur a presse pour pile a combustible - Google Patents

Separateur a presse pour pile a combustible Download PDF

Info

Publication number
WO2002039530A1
WO2002039530A1 PCT/JP2001/009685 JP0109685W WO0239530A1 WO 2002039530 A1 WO2002039530 A1 WO 2002039530A1 JP 0109685 W JP0109685 W JP 0109685W WO 0239530 A1 WO0239530 A1 WO 0239530A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
less
bending
type
press
Prior art date
Application number
PCT/JP2001/009685
Other languages
English (en)
French (fr)
Inventor
Teruyuki Ohtani
Makoto Tsuji
Masao Utsunomiya
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to DE10194844T priority Critical patent/DE10194844B4/de
Priority to US10/169,800 priority patent/US6953636B2/en
Priority to CA002396944A priority patent/CA2396944C/en
Priority to JP2002541743A priority patent/JP4133323B2/ja
Publication of WO2002039530A1 publication Critical patent/WO2002039530A1/ja
Priority to US11/180,642 priority patent/US20050249999A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12354Nonplanar, uniform-thickness material having symmetrical channel shape or reverse fold [e.g., making acute angle, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/1241Nonplanar uniform thickness or nonlinear uniform diameter [e.g., L-shape]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a separator for forming a gas flow path of a polymer electrolyte fuel cell, and in particular, to a press separator for a fuel cell, which is formed into a corrugated shape with continuous irregularities by pressing a stainless steel plate. About the evening. Background art
  • positive and negative electrode catalyst layers force electrode and anode electrode
  • a gas diffusion layer is formed on these electrode catalyst layers.
  • the stacked electrode structure is one unit cell.
  • a practical fuel cell stack is formed by stacking a plurality of unit cells with the separator interposed therebetween.
  • the separator is made of a material having an electron transfer function and has a large number of groove-shaped gas flow paths through which hydrogen gas as a fuel gas and oxidizing gas such as oxygen and air flow independently. It is interposed between the unit cells in contact with the gas diffusion layer.
  • the electric power is reduced.
  • a chemical reaction occurs, generating electricity.
  • the gas diffusion layer transfers electrons generated by the electrochemical reaction between the electrode catalyst layer and the separator and simultaneously diffuses the fuel gas and the oxidizing gas.
  • the anode-side electrode catalyst layer causes a chemical reaction to the fuel gas to generate protons and electrons
  • the cathode-side electrode catalyst layer generates water from oxygen, protons, and electrons
  • the electrolyte membrane converts the protons into ions.
  • graphite-based material has been mainly used, and the gas passage has been formed by cutting a groove.
  • graphite-based materials include resins such as gas-impermeable graphite and phenol, which are obtained by impregnating baked isotropic graphite with resin such as phenol. Amorphous carbon, which is fired after molding, and a composite molding material composed of resin and graphite.
  • resins such as gas-impermeable graphite and phenol
  • Amorphous carbon which is fired after molding, and a composite molding material composed of resin and graphite.
  • these graphite-based materials have problems that they have difficulty in forming a gas flow path due to their high hardness, and have poor mechanical strength and impact resistance.
  • press-formed metal sheets such as aluminum, titanium, and stainless steel have recently been used as materials that can compensate for the problems of graphite-based materials.
  • stainless steel has an advantage that it has excellent corrosion resistance because it has a passive film on its surface.
  • elution ions may cause catalyst poisoning and decrease the conductivity of the electrolyte membrane.
  • Another drawback is that the contact resistance at the contact interface between the separator and the electrode structure increases due to the high electrical resistance of the passivation film.
  • the former has a major problem in manufacturing that causes a rise in cost. If the gold plating is rubbed by vibration or the like, the gold plating easily peels off at the interface with stainless steel, and is not suitable for long-term use. Further, when there is a defect such as a pinhole, corrosion occurs from the defect. On the other hand, in the latter method, the material deposited on the surface becomes brittle due to the precipitate deposited on the surface, and when bent by press forming, the precipitate is peeled and falls off from the bent part, and corrosion based on the dropout mark occurs. However, it is not suitable for long-term use. Disclosure of the invention
  • the present invention excellent corrosion resistance and conductivity are obtained by a combination of a passivation film and a boride or borocarbide precipitate, and further, exfoliation of the precipitate by press molding • generation of corrosion is suppressed without falling off,
  • the purpose is to provide a press separator for fuel cells that can be used for a long time.
  • the present invention contains 0.005 to 1.5% by weight of B, and at least one of (C, B) 6- type borides, M 2 B-type and MB-type borides precipitates on the surface.
  • Stainless steel sheet is press-formed into a corrugated sheet with continuous irregularities, and the angle of the bent portion formed by bending or bending by the press forming is 15 degrees or more, and the outer bending R value Is 1 mm or less.
  • the separator of the present invention a large number of grooves formed on the front and back surfaces by the unevenness due to the press molding are used as the gas flow path for the fuel gas or the oxidizing gas.
  • the separation of the present invention in addition to high corrosion resistance due to the passivation film on the surface, which is a characteristic of stainless steel, one or more precipitates of borocarbide or boride are exposed on the surface.
  • the corrosion resistance is further enhanced, and the ion elution amount is suppressed, so that high conductivity can be obtained.
  • the precipitates cause the material to be embrittled as described above, and when bent by press molding, the precipitates may separate and fall off from the bent portion, and corrosion based on the dropout marks may occur.
  • the content of B is specified to be 0.005 to 1.5% by weight, and the content is controlled so as not to cause the separation and detachment of the precipitate from the bent portion. .
  • B is a main element of conductive inclusions deposited on the surface. From the viewpoint of satisfying the amount of deposition required to satisfy the contact resistance required for separation, 0.005% by weight or more is required. . However, when the content exceeds 1.5% by weight, the amount of precipitation is excessively increased, and although cracks and voids are generated on the outer surface of the bent portion formed by press molding, although they do not peel or fall off, the cracks are generated. Corrosion may occur as a starting point. Therefore, the content of B is set to 0.05 to 1.5% by weight.
  • the gas flow path of the separator of the present invention is formed in a groove shape on the front and back surfaces by pressing a stainless steel sheet into a corrugated plate, and the angle of the bent portion forming the gas flow path is increased. 15 degrees or more, Outer bending R value shall be 1 mm or less.
  • Figures 1A and 1B show a partial section of a separator obtained by pressing a stainless steel sheet into a corrugated sheet.
  • the gas flow path 1 b are formed in an isosceles triangle shape.
  • the angle 0 of the bent portion 2a is 45 degrees
  • the gas flow path 2b is formed in a trapezoidal shape.
  • the bending radius on the outer surface side of the bent portion is the outer bending R value.
  • Fuel gas or oxidizing gas flows through the gas flow path in the separator, but since these gases are consumed by contacting the electrode structure, the gas flow path must be constant to secure the flow rate. It is necessary to have a depth. From the viewpoint of the gas flow path cross section, a certain height (depth) is required for the width of the gas flow path. Assuming that the width of the cross section is W, the maximum depth formed when the angle of the bent portion is 0 is 0.5 Wt a n 0, and the cross-sectional area is the maximum at this time. In other words, the ratio of the width and depth of the cross section at this time is 0.5Wt an 0 / W O.5 tan 0 as a parameter, and by applying this parameter, the depth of the gas passage can be determined. .
  • FIG. 3 shows a separator formed by pressing a 0.2 mm-thick stainless steel sheet having the composition of the present invention with a constant outer bending R value of 0.5 mm at a bent portion and changing the angle of the bent portion.
  • the figure shows the results of measuring the power generation voltage of a unit cell during power generation of 0.4 cm 2 in these fuel cells by configuring a fuel cell stack.
  • the angle of the bent portion is more than 15 degrees, the power generation efficiency is significantly higher than when the angle is less than 15 degrees.
  • the angle of the bent portion forming the gas flow path is specified to be 15 degrees or more.
  • the gas flow path is required to have such characteristics that the gas flows smoothly without stagnation so that the fuel gas and the oxidizing gas are sufficiently supplied to the electrode structure facing the gas flow path to ensure power generation efficiency.
  • FIG. 2 there is a small gap between the outer surface of the bent portion 3 a of the separator 3 and the electrode structure 10 because the outer surface of the bent portion 3 a is the R surface. A hatched portion in FIG. 2) is formed, and the gas tends to stagnate in this gap. If this gap is made as small as possible, the supply of gas to the electrode structure will be sufficient.
  • Fig. 4 shows each separator formed by pressing a 0.2 mm thick stainless steel sheet having the composition of the present invention with the angle of the bent portion at a constant 45 degrees and changing the outer bending R value of the bent portion.
  • the figure shows the results of measuring the power generation voltage of a unit cell during power generation of 0.4 A / cm 2 in these fuel cells by constructing a fuel cell stack.
  • the outer bending R value is 1 mm or more, the power generation efficiency is significantly higher than when the outer bending R value exceeds 1 mm.
  • the outer bending R value of the bent portion forming the gas flow path is specified to be 1 mm or less.
  • B 0.005 to 1.5% by weight
  • C 0.15% by weight or less
  • Si 0.01 to: L. 5% by weight
  • Mn 0.01 to 1% 2.5% by weight
  • P 0.03% by weight or less
  • S 0.01% by weight or less
  • N 0.3% by weight or less
  • Cr 17 to 30% by weight
  • Mo 0 to 7% by weight
  • the contents of Cr, Mo and B satisfy the following formula,
  • the content of C is preferably as low as possible in order to ensure room temperature toughness and ductility satisfying press formability suitable for mass production, and in view of this, the content of C was set to 0.15% by weight or less in the present invention.
  • Si is effective as a deoxidizing element, if it is less than 0.01% by weight, deoxidation becomes insufficient, and if it exceeds 1.5% by weight, ductility is reduced and press formability is impaired. Therefore, the content of 31 was set to 0.01 to 1.5% by weight.
  • Mn is required as a deoxidizing element and is also added as a Ni balance adjusting element. It also works to fix S, which is mixed as an unavoidable element, as Mn sulfide. These functions are exhibited when the content of Mn is 0.01% by weight or more, but when the content exceeds 2.5% by weight, the ion elution amount increases. In the case of a system, the ionic conductivity of the electrolytic membrane is reduced by bonding to a sulfonic acid group. Therefore, the content of Mn was set to 0.01 to 2.5% by weight.
  • P is an element inevitably mixed, and the lower the content, the better.
  • P was set to 0.035% by weight or less.
  • the content of S was set to 0.01% by weight or less for the same reason as that of P.
  • a 1 0.001 to 0.2% by weight
  • A1 is added at the molten steel stage as a deoxidizing element, and is contained in the range of 0.001 to 0.2% by weight.
  • B in steel is an element that has a strong bond with oxygen in molten steel, so it is necessary to reduce the oxygen concentration by deoxidation with A1.
  • the content of N was set to 0.3% by weight for the same reason as that for C.
  • Cu should be contained at 3% by weight or less as necessary. Containing an appropriate amount of Cu promotes passivation and has the effect of preventing metal elution in a separate environment.
  • the content is preferably at least 0.01% by weight. On the other hand, if it exceeds 3% by weight, the hot workability is reduced, and mass production becomes difficult. Therefore, the content of Cu was set to 0 to 3% by weight.
  • Ni is an important element for making the austenitic metallographic system. Manufacturability, corrosion resistance and formability are ensured by using an austenitic material. If the Ni content is less than 7% by weight, it is difficult to form an austenite structure, while if it exceeds 50% by weight, the cost is too high and the cost is high. Therefore, the content of Ni was set to 7 to 50% by weight. Ni is slightly contained in the M 2 B type boride. Cr: 17 to 30% by weight
  • the Cr content is set to 17 to 30% by weight as a range in which the corrosion resistance and the toughness / ductility are ensured in a well-balanced manner.
  • the content of Mo that does not cause embrittlement is set to 0 to 7% by weight.
  • B 0.005 to 1.5% by weight
  • C 0.15% by weight or less
  • Si 0.01 to 1.5% by weight
  • Mn 0.01 to 1% 5% by weight
  • P 0.03 5% by weight or less
  • S 0.01% by weight or less
  • N 0.03 5% by weight or less
  • Cu 0 to 1% by weight
  • Ni 0 to 5% by weight
  • Cr 17 to 36% by weight
  • Mo 0 to 7% by weight
  • the contents of Cr, Mo and B satisfy the following formula,
  • the contents of Mn, N, Cu, and Ni contained in this separation are slightly different from those of the above-mentioned separation made of austenitic stainless steel plate, the upper and lower limits of these numerical values are the same. .
  • the stainless steel sheet including the austenitic stainless steel sheet and the ferrite stainless steel sheet is preferably a steel sheet which has been subjected to bright annealing treatment.
  • FIG. 1A is a partial cross-sectional view conceptually showing a separator according to the present invention
  • FIG. 1B is a partial cross-sectional view conceptually showing another form of separator according to the present invention.
  • FIG. 2 is a view showing a gap formed between the bent portion of the separator and the electrode structure to cause gas stagnation.
  • FIG. 3 is a diagram showing the relationship between the angle of the bent portion forming the gas flow path in the separator and the power generation voltage of the fuel cell.
  • FIG. 4 is a diagram showing the relationship between the outer bending R value of the bent portion forming the gas flow path in the separator and the power generation voltage of the fuel cell.
  • Fig. 5 is a diagram showing the correlation between the B content and the external bending R value of a separation austenitic stainless steel plate and the corrosion state of the bent part.
  • FIG. 6 is a diagram showing the correlation between the B content of the separator made of austenitic stainless steel sheet, the angle of the bent portion, and the corrosion state of the bent portion.
  • FIG. 7 is a diagram showing the correlation between the B amount and the outer bending R value of the separator made of a ferritic stainless steel sheet and the corrosion state of the bent portion.
  • FIG. 8 is a diagram showing the correlation between the B amount, the angle of the bent portion, and the corrosion state of the bent portion in a separator made of ferritic stainless steel sheet.
  • FIG. 9A is a plan view of the separator manufactured in the example
  • FIG. 9B is a sectional view
  • FIG. 10 is a cross-sectional view of the fuel cell stack manufactured in the example.
  • FIG. 11 is a diagram showing the measurement results of the contact resistance and the passivation current density at 0.9 V of Separate made of an austenitic stainless steel plate in Example.
  • FIG. 12 is a diagram showing the change over time in the contact resistance over time of a separation made of an austenitic stainless steel sheet performed in the example.
  • FIG. 13 is a diagram showing a time-dependent change in the current density over time of a separation made of an austenitic stainless steel plate performed in the example.
  • FIG. 14 is a diagram showing the measurement results of the contact resistance and the passive current density at 0.9 V of the separator made of a ferritic stainless steel plate, which were obtained in the example.
  • FIG. 15 is a diagram showing a change with time of the contact resistance over time of a separation made of a ferritic stainless steel sheet performed in the example.
  • FIG. 16 is a diagram showing a time-dependent change in the current density of a separator made of a ferritic stainless steel plate performed in the example.
  • the content of B is appropriately varied in the range of 0 to 2% by weight, and the content of other elements is within the range of the present invention.
  • the austenitic stainless steel sheet having a thickness of 0.2 mm is bent at a bending angle of a bent portion.
  • various types of separators with different B content and outer bend R value can be obtained. Obtained.
  • a fuel cell was constructed for each separation, and a predetermined gas was passed through the gas flow path to generate power continuously for 300 hours. Then, the bent part of the separation was peeled, dropped, and observed for corrosion. did.
  • Fig. 5 shows the results.In Fig. 5, ⁇ indicates that soundness was not observed with no corrosion originating from peeling and falling off of the surface, and X indicates that such corrosion was observed. It is.
  • an austenitic stainless steel sheet having a thickness of 0.2 mm was prepared in which the content of B was appropriately varied in the range of 0 to 2% by weight, and the content of other elements was within the range of the present invention.
  • the outside bending of the bent portion The R value is constant (1 mm), and the angle of the bent portion is 0 to: L20 degrees. Press forming is performed differently, so that the content of B and the angle of the bent portion are different.
  • a fuel cell was constructed for each of these separations, and a predetermined gas was passed through the gas flow path to generate power continuously for 300 hours. Then, the peeling, falling off, and corrosion of the bent portion of the separation were observed. did.
  • FIG. 6 shows the results, and the evaluations indicated by ⁇ and X are the same as in FIG. According to FIG. 5, if the outer bending R value is specified to be 1 mm or less, corrosion occurs unless the B content is 1.5% by weight or less. According to FIG. 6, if the angle of the bent portion is specified to be 15 degrees or more, the content of B must also be 1.5% by weight or less. Therefore, in the separator made of an austenitic stainless steel sheet according to the present invention, a precipitate formed of boride or borocarbide, which precipitates by containing B, is peeled off and falls off to prevent corrosion caused by the dropout mark.
  • the essential conditions are that the content of B: 1.5% by weight or less, the external bending R value: lmm, and the angle of the bent part: 15 ° or more.
  • the content of B must be 0.005% by weight or more from the viewpoint of satisfying the amount of precipitation required to satisfy the contact resistance required for separation.
  • the content of B is appropriately varied within the range of 0 to 2% by weight, and the content of other elements is within the range of the present invention.
  • Press forming with a constant (15 degrees) and a different outer bending R value of 0.2 to 1.6 mm provides a variety of separations with different combinations of B content and outer bending R value.
  • a fuel cell was constructed for each of these separations, and a predetermined gas was passed through the gas flow path to generate power continuously for 3 000 hours. .
  • FIG. 7 shows the results, and the evaluations indicated by ⁇ and X are the same as in FIG.
  • a 0.2 mm thick ferritic stainless steel sheet having a B content of 0 to 2% by weight and appropriately containing other elements within the range of the present invention is provided.
  • the outside bending R value of the bent part is constant (1 mm) and changing the angle of the bent part to 0 to 120 degrees by press molding, the content of B and the angle of the bent part are different.
  • a fuel cell was constructed for each separation, and a predetermined gas was passed through the gas flow path to generate power continuously for 30000 hours. .
  • FIG. 8 shows the results, and the evaluations indicated by ⁇ and X are the same as in FIG.
  • the outer bending R value is specified to be 1 mm or less, corrosion occurs unless the B content is 1.5% by weight or less.
  • the angle of the bent portion is If it is specified to be 15 degrees or more, the content of B must also be 5 weight: 3 ⁇ 4 or less. Therefore, in the separator made of a ferritic stainless steel sheet according to the present invention, the precipitate comprising boride or borocarbide, which precipitates due to the inclusion of B, peels off and falls off, preventing corrosion caused by the dropout mark.
  • outer bending R value: lmm, angle of the bent part: 15 degrees or more are indispensable conditions.
  • the content of B is required to be not less than 0.05% by weight from the viewpoint of satisfying the amount of precipitation necessary to satisfy the contact resistance required for separation.
  • Example 1 inventive product
  • Comparative Example 1 inventive product shown in Table 1
  • the separator shown in FIGS. 9A and 9B was used. Evening 4 was produced by press molding. As shown in FIG. 9B, the gas flow path 4b of Separation 4 was trapezoidal, the angle of the bent portion 4a was 45 degrees, and the outer bending R value was 0.3 mm. For each of these separations, the contact resistance and the passive current density at 0.9 V were measured. Figure 11 shows the measurement results.
  • the contact resistance is the penetration resistance measured using a ohmmeter under a load of 5 kgf Z cm 2 applied to the separator (anode side and force source side) 4 where two sheets are stacked.
  • the passivation holding current density is defined as when the rate of oxide formation of the base metal, stainless steel, and the rate of melting and ionization of the surface oxide film become equal, that is, the thickness of the oxide film changes. It refers to the current density corresponding to the corrosion rate when it disappeared, and the current density was measured by a constant potential polarization test.
  • a unit cell 20 composed of an electrode structure is used for 10 cells, and the separator 4 of the first embodiment is interposed between the unit cells 20 as shown in FIG.
  • a fuel cell stack was formed.
  • 21 is a seal
  • 22 is a 1-plate
  • 23 is a fuel cell It is a clamp plate for fixing the stacked state of the stack.
  • the separator of Comparative Example 1 a fuel cell stack was similarly constructed. These fuel cells were generated, and the contact resistance was measured every 300 hours from the start of power generation until 300 hours, and the current density at the time of generating 0.7 V per unit cell was measured. The measurement results are shown in FIGS. 12 and 13, respectively.
  • Example 1 there is no significant difference in the contact resistance between Example 1 and Comparative Example 1, but the passivation holding current density at 0.9 V is lower than that of Example 1 compared to Example 1. Is significantly higher.
  • Fig. 12 at the start of power generation, both Example 1 and Comparative Example 1 have low contact resistance and are equal to each other, but in Comparative Example 1, the contact window rises immediately after power generation, and it takes more time. It is gradually rising as it rises.
  • the contact resistance does not fluctuate at a low level even by long-term power generation. According to Fig.
  • Example 13 the current density of Example 1 and Comparative Example 1 is the same at the start of power generation, but in Comparative Example 1, the current density decreases immediately after power generation, and as time passes, It is gradually decreasing. On the other hand, in the first embodiment, the current density does not fluctuate at a low level even by long-term power generation.
  • Example 2 Separation was performed in the same manner as in Example 1 using 0.2 mm thick ferritic stainless steel sheets having the compositions of Example 2 (inventive product) and Comparative Example 2 (inventive product) shown in Table 1. I made one night. For these separations, the contact resistance and the passive holding current density at 0.9 V were measured in the same manner as described above. The measurement results are shown in FIG. Next, in the same manner as in Example 1, a fuel cell sucker using the separator of Example 2 was configured, and further, a fuel cell using the separator of Comparative Example 2 was similarly configured. . These fuel cells were allowed to generate power, and the contact resistance was measured every 50,000 hours from the start of power generation up to 300 hours, and the current density of the unit cell when generating 0.7 V was measured. The measurement results are shown in Fig. 15 and Fig. 16, respectively.
  • Example 2 there is no significant difference in the contact resistance between Example 2 and Comparative Example 2, but the passivation holding current density at 0.9 V is lower than that of Example 2 compared to Example 2. Is significantly higher.
  • the contact resistances of both Example 2 and Comparative Example 2 are low at the start of power generation and are equal to each other, but in Comparative Example 2, the contact resistance increases immediately after power generation, and as time passes, It is rising gradually.
  • Example 2 The contact resistance does not fluctuate at a low level even with electricity.
  • the current densities of Example 2 and Comparative Example 2 are equal at the start of power generation, but in Comparative Example 2, the current density decreased immediately after power generation, and as time passed, It is gradually decreasing.
  • the current density does not fluctuate at a low level even by long-term power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Description

明 細 書 燃料電池用プレスセパレー夕 技術分野
本発明は、 固体高分子型燃料電池のガス流路を形成するセパレー夕に係り、 特 に、 ステンレス鋼板をプレス成形することにより凹凸が連続する波板状に成形さ れた燃料電池用プレスセパレ一夕に関する。 背景技術
固体高分子型燃料電池は、 イオン交換樹脂膜等からなる電解膜の両面に、 正負 の電極触媒層 (力ソード電極とアノード電極) がそれぞれ積層され、 さらにこれ ら電極触媒層にガス拡散層が積層された電極構造体を、 1つの単位セルとしてい る。 そして、 複数の単位セルがセパレ一夕を挟んで積層されることにより、 実用 的な燃料電池スタックが構成される。 セパレー夕は電子伝達機能を有する材料か らなるもので、 燃料ガスである水素ガスと酸素や空気等の酸化剤ガスとがそれぞ れ独立して流通する多数の溝状のガス流路を備え、 ガス拡散層に接触する状態で 単位セル間に介装される。
このような燃料電池によると、 例えば、 負極側のセパレー夕のガス流路に燃料 として水素ガスを流し、 正極側のセパレー夕のガス流路に酸素や空気等の酸化性 ガスを流すと、 電気化学反応が起こって電気が発生する。 電気発生中において、 ガス拡散層は電気化学反応によって生成した電子を電極触媒層とセパレ一夕との 間で伝達させると同時に燃料ガスおよび酸化性ガスを拡散させる。 また、 負極側 の電極触媒層は燃料ガスに化学反応を起こさせてプロトンと電子を発生させ、 正 極側の電極触媒層は酸素とプロトンと電子から水を生成し、 電解膜はプロトンを イオン伝導させる。 そして、 正負の電極触媒層を通して電力が取り出される。 ところで上記セパレー夕は、 従来、 主に黒鉛系材料が用いられ、 ガス流路は溝 を切削加工することで形成されていた。 黒鉛系材料としては、 焼成された等方性 黒鉛にフエノール等の榭脂を含浸させたガス不浸透性黒鉛、 フエノ一ル等の樹脂 を成形後に焼成させたアモルファスカーボン、 樹脂と黒鉛からなる複合成形材料 等が挙げられる。 ところが、 これら黒鉛系材料は、 硬度が高いのでガス流路を形 成し難くかったり、 機械的強度ゃ耐衝撃性に劣ったりする問題点を有していた。 このような事情に鑑み、 近来では、 黒鉛系材料の問題点を補うことができる材 料として、 アルミニウム、 チタン、 ステンレス鋼等の金属製薄板材をプレス成形 したものが用いられるようになってきている。 これらの中でも、 ステンレス鋼は 表面に不動態被膜を有することから耐食性に優れているという長所がある。 とこ ろが、 ステンレス鋼を燃料電池のセパレー夕に用いた場合には、 溶出イオンによ る触媒被毒や電解膜の導電率低下を招くおそれがある。 また、 不動態被膜の電気 抵抗が高いため、 セパレー夕と電極構造体との接触界面での接触抵抗が増加する という欠点もある。
そこで、 これら問題点を解決する手段として、 金メッキを施したステンレス鋼 製のセパレ一夕が、特開平 1 0— 2 2 8 9 1 4号公報により知られている。また、 ステンレス鋼中から導電性を有する硼化物あるいは硼炭化物を析出させ、 この析 出物を不動態被膜とともに表面に露出させて耐食性および導電性の向上を図る手 段も試行されている。
上記従来の解決手段のうち、 前者はコストの高騰を招くという製造上の大きな 課題を有する。 また、 振動等による擦れを金メッキが受けると、 ステンレス鋼と の界面において金メッキが剥離しやすく、 長期間の使用には適さない。 さらに、 ピンホール等の欠陥がある場合にはそこを起点として腐食が生じる。 一方、 後者 の手段では、 表面に析出させた析出物により材料が脆くなり、 プレス成形で折り 曲げ加工すると、 その折り曲げ部から析出物が剥離 ·脱落して脱落痕を基点とす る腐食が生じ、 やはり長期間の使用には適さない。 発明の開示
本発明は、 不動態被膜と硼化物あるいは硼炭化物の析出物の組み合わせにより 優れた耐食性および導電性が得られ、 なおかつ、 プレス成形による析出物の剥離 •脱落が起こらず腐食の発生が抑えられ、 長期にわたる使用が可能となる燃料電 池用プレスセパレー夕を提供することを目的としている。 本発明は、 Bを 0 . 0 0 5〜 1 . 5重量%含有し、 ( C, B ) 6型硼炭化 物、 M 2 B型、 M B型の硼化物のうち 1種以上が表面に析出しているステンレス 鋼板を、 凹凸が連続する波板状にプレス成形してなり、 そのプレス成形による折 り曲げもしくは曲げ伸ばしによって形成される屈曲部の角度が 1 5度以上、 外曲 げ R値が 1 mm以下であることを特徴とする。
本発明のセパレー夕によれば、 プレス成形による凹凸によって表裏面に形成さ れる多数の溝が、 燃料ガスまたは酸化性ガスのガス流路とされる。 本発明のセパ レー夕では、 ステンレス鋼の特性である表面の不動態膜による高耐食性に加え、 硼炭化物または硼化物のうちの 1種以上の析出物が表面に露出していることによ り、 耐食性が一層高まるとともに、 イオン溶出量が抑えられて高い導電性を得る ことができる。 また、 不動態膜や析出物によって有害なイオンや生成物の発生が 抑えられ、 それら有害物の排出により燃料電池の構成部品である電解膜や電極触 媒層、 あるいは配管等がダメージを受けることがない。
上記析出物は、 上述したように材料の脆化を招き、 プレス成形で折り曲げ加工 した際に、 屈曲部から析出物が剥離,脱落し、 脱落痕を基点とする腐食が発生す るおそれがある。 しかしながら、 本発明は Bの含有量を 0 . 0 0 5〜 1 . 5重量 %と規定しており、 この規定含有量によって屈曲部からの析出物の剥離 ·脱落が 発生しないように制御される。
Bは表面に析出する導電性介在物の主要元素で、 セパレー夕に必要な接触抵抗 を満足するために必要な析出量を満足する観点から、 0 . 0 0 5重量%以上を必 要とする。 ただし、 1 . 5重量%を超えると析出量が増え過ぎ、 プレス成形によ つて形成される屈曲部の外面に、 剥離 ·脱落には至らないものの表面に亀裂や空 隙が発生し、 これを起点として腐食が発生するおそれがある。 したがって、 Bの 含有量を 0 . 0 0 5〜 1 . 5重量%とした。
また、 本発明のセパレ一夕のガス流路は、 ステンレス鋼板を波板状にプレス成 形することにより表裏面に溝状に形成されるが、 ガス流路を形成する屈曲部の角 度を 1 5度以上、 外曲げ R値を 1 mm以下に規定する。 第 1図 Aおよび Bは、 ス テンレス鋼板を波板状にプレス成形して得られたセパレー夕の一部断面を示して いる。 第 1図 Aのセパレー夕 1は、 屈曲部 1 aの角度 0が 9 0度でガス流路 1 b が二等辺三角形状に形成されている。 第 1図 Bのセパレ一夕 2は、 屈曲部 2 aの 角度 0が 45度でガス流路 2 bが台形状に形成されている。 本発明では、 屈曲部 の外面側の湾曲半径が外曲げ R値である。
セパレー夕のガス流路には燃料ガスまたは酸化性ガスが流されるが、 これらガ スは、 電極構造体に接触することにより消費されていくため、 流量を確保する上 でガス流路は一定の深さを有していることが必要である。 ガス流路断面の観点か ら言うと、 ガス流路の幅に対してある一定以上の高さ (深さ) が必要である。 断 面の幅を Wとすると、 屈曲部の角度 0のときに形成される最大深さは 0. 5Wt a n 0となり、 このとき断面積は最大となる。 すなわち、 このときの断面の幅と 深さの比率 0. 5Wt a n 0/W=O. 5 t a n 0をパラメ一夕とし、 このパラ メータを適用することで、 ガス流路の深さを決定できる。
第 3図は、 本発明の組成を有する 0. 2 mm厚のステンレス鋼板を、 屈曲部の 外曲げ R値を一定の 0. 5mmとし、 その屈曲部の角度を変えてプレス成形した 各セパレータを用いて燃料電池スタックを構成し、 それら燃料電池における 0. 4 cm2発電時の単位セルの発電電圧を測定した結果を示している。 この図 で判るように、 屈曲部の角度が 1 5度以上であると、 1 5度を下回っている場合 に比べて発電効率が格段に高くなる。 このことから、 本発明ではガス流路を形成 する屈曲部の角度を 1 5度以上に規定した。
ガス流路は、 ガス流路に面する電極構造体に燃料ガスや酸化性ガスが十分供給 されて発電効率が確保されるように、 それらガスがよどみなくスムーズに流れる 特性が求められる。 ところが、 第 2図に示すように、 セパレー夕 3の屈曲部 3 a の外面側と電極構造体 1 0との間には、 屈曲部 3 aの外面が R面であることから 微小な隙間 (第 2図の斜線部分) が形成され、 この隙間においてガスがよどむ傾 向にある。 この隙間をなるベく小さくすれば、 電極構造体へのガスの供給が十分 になされる。
第 4図は、 本発明の組成を有する 0. 2mm厚のステンレス鋼板を、 屈曲部の 角度を一定の 45度とし、 その屈曲部の外曲げ R値を変えてプレス成形した各セ パレー夕を用いて燃料電池スタックを構成し、 それら燃料電池における 0. 4 A /cm2発電時の単位セルの発電電圧を測定した結果を示している。 この図で判 るように、 外曲げ R値が 1 mm以上であると、 1 mmを超える場合に比べて発電 効率が格段に高くなる。 このことから、 本発明ではガス流路を形成する屈曲部の 外曲げ R値を lmm以下に規定した。
また、 本発明は、 B : 0. 005〜 1. 5重量%、 C : 0. 1 5重量%以下、 S i : 0. 0 1〜: L . 5重量%、 Mn : 0. 0 1〜2. 5重量%、 P : 0. 03 5重量%以下、 S : 0. 0 1重量%以下、 A 1 : 0. 00 1〜0. 2重量%、 N : 0. 3重量%以下、 C u : 0〜 3重量%、 N i : 7〜 50重量%、 C r : 1 7 ~30重量%、 Mo : 0〜7重量%を含有し、 残部が F eおよび不可避的不純物 で、 かつ、 C r, Moおよび Bの含有量が次式を満足し、
C r (重量%) + 3 XMO (重量%) - 2. 5 X B (重量%) ≥ 1 7
M23 (C, B) 6型硼炭化物、 M2B型、 MB型の硼化物のうち 1種以上が表面 に析出しているオーステナイ ト系ステンレス鋼板を、 凹凸が連続する波板状にプ レス成形してなり、 そのプレス成形による折り曲げもしくは曲げ伸ばしによって 形成される屈曲部の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特 徴とする。
以下に、 前述した Bを除く上記元素の数値限定の根拠を述べる。
C : 0. 1 5重量%以下
Cは量産に好適なプレス成形性を満足する常温靱性 ·延性を確保するために含 有量は低ければ低いほどよく、 これを鑑みて本発明では 0. 1 5重量%以下とし た。
S i : 0. 0 1〜: L . 5重量%
S iは脱酸元素として有効であるが、 0. 0 1重量%を下回ると脱酸が不十分 となり、 1. 5重量%を超えると延性の低下を招き、 プレス成形性を阻害する。 したがって、 3 1の含有量は0. 0 1〜 1. 5重量%とした。
Mn : 0. 0 1〜 2. 5重量%
Mnは脱酸元素として必要であり、 N iのバランス調整元素としても添加され る。 また、 不可避元素として混入する Sを Mnの硫化物として固定化するように 働く。 これらの機能は、 Mnが 0. 0 1重量%以上の含有量において発揮される が、 2. 5重量%を超えるとイオン溶出量が増大し、 特に、 電解膜がスルホン酸 系である場合にはスルホン酸基と結合して電解膜のイオン電導性が低下する。 し たがって、 Mnの含有量は 0. 0 1〜2. 5重量%とした。
P : 0. 03 5重量%以下
Pは不可避的に混入する元素であり、 含有量は低ければ低いほどよい。 Pを含 む析出物 (介在物) は、 燃料電池環境下において腐食の起点となることを考慮し て、 Pは 0. 035重量%以下とした。
S : 0. 0 1重量%以下
Sも Pと同様の理由により含有量を 0. 0 1重量%以下とした。
A 1 : 0. 00 1〜0. 2重量%
A 1は脱酸元素として溶鋼段階で添加し、 0. 00 1〜0. 2重量%の範囲で 含有させる。 鋼中の Bは溶鋼中の酸素との結合力が強い元素であり、 A 1による 脱酸により酸素濃度を低下させておく必要がある。
N: 0. 3重量%以下
Nは、 Cと同様の理由により含有量を 0. 3重量%とした。
C u : 0〜3重量%
Cuは、 必要により 3重量%以下を含有させる。 C uを適当量含有させると不 動態化が促進され、 セパレー夕環境で金属の溶出を防止する効果がある。 含有量 としては 0. 0 1重量%以上が好ましく、 一方、 3重量%を超えると熱間での加 ェ性を減じることとなり、 量産が難しくなる。 したがって、 Cuの含有量は 0〜 3重量%とした。
N i : 7〜50重量%
N iは、 金属組織学的にオーステナイト系とするために重要な元素である。 ォ ーステナイト系とすることで、 製造性、 耐食性および成形性が確保される。 N i の含有量が 7重量%を下回るとオーステナイト組織の形成が困難であり、 一方、 50重量%を超えるとコストがかかり過ぎ高価になる。 したがって、 N iの含有 量は 7〜 50重量%とした。 なお、 N iは M2B型の硼化物中に僅かに含有され る。 C r : 1 7〜 30重量%
C rは含有量が多ければ多いほど耐食性が高くなるが、 反面、 常温における靱 性 ·延性の低下を招く。 耐食性と靱性 ·延性がバランスよく確保される範囲とし て、 本発明では C rの含有量を 1 7〜30重量%とした。
Mo : 0〜7重量%
Moは含有量が多ければ多いほど耐食性が高くなるが、 反面、 材料の脆化を招 く。 本発明では、 脆化を招かない Moの含有量として 0〜 7重量%とした。
C r (重量%) + 3 XMo (重量%) - 2. 5 X B (重量%) ≥ 1 7
Bがステンレス鋼中の C rおよび Moを消費して硼化物または硼炭化物を生成 するため、母材中に占める耐食性向上の元素である C rおよび Moの量が低下し、 母材の耐食性を招くが、 これを防ぐために上記式を規定した。
また、 本発明は、 B : 0. 005〜 1. 5重量%、 C : 0. 1 5重量%以下、 S i : 0. 0 1〜 1. 5重量%、 Mn : 0. 0 1〜 1. 5重量%、 P : 0. 03 5重量%以下、 S : 0. 0 1重量%以下、 A 1 : 0. 00 1〜 0. 2重量%、 N : 0. 03 5重量%以下、 Cu : 0〜 1重量%、 N i : 0〜5重量%、 C r : 1 7〜36重量%、 Mo : 0〜7重量%を含有し、 残部が F eおよび不可避的不純 物で、 かつ、 C r, Moおよび Bの含有量が次式を満足し、
C r (重量%) + 3 XMO (重量%) - 2. 5 X B (重量%) ≥ 1 7
M23 (C, B) 6型硼炭化物、 M2B型、 MB型の硼化物のうち 1種以上が表面 に析出しているフェライ ト系ステンレス鋼板を、 凹凸が連続する波板状にプレス 成形してなり、 そのプレス成形による折り曲げもしくは曲げ伸ばしによって形成 される屈曲部の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特徴と する。 このセパレ一夕が含有する Mn, N, Cu, N iについては、 上記オース テナイ ト系ステンレス鋼板からなるセパレー夕と若干含有量が異なるが、 これら 数値の上限、 下限の限定理由は同様である。
さらに、 本発明の燃料電池用プレスセパレー夕においては、 オーステナイ ト系 ステンレス鋼板、 フェライ ト系ステンレス鋼板を含むステンレス鋼板は、 光輝焼 鈍処理仕上げした鋼板であることが好ましく、 この光輝焼鈍処理によって、 大気 中酸化では防止できない表層での脱 B層の形成を防止することができ、 酸洗後に 露出する導電性介在物数の減少を阻止することができる。 図面の簡単な説明
第 1図 Aは本発明に係るセパレー夕を概念的に示す一部断面図、 第 1図 Bは本 発明に係る他の形態のセパレー夕を概念的に示す一部断面図である。
第 2図は、 セパレー夕の屈曲部と電極構造体との間に形成されてガスのよどみ を生じさせる隙間を示す図である。
第 3図は、 セパレー夕のガス流路を形成する屈曲部の角度と燃料電池の発電電 圧の関係を示す線図である。
第 4図は、 セパレー夕のガス流路を形成する屈曲部の外曲げ R値と燃料電池の 発電電圧の関係を示す線図である。
第 5図は、 オーステナイト系ステンレス鋼板からなるセパレー夕の B量および 外曲げ R値と屈曲部の腐食状態の相関関係を示す図である。
第 6図は、 オーステナイト系ステンレス鋼板からなるセパレー夕の B量および 屈曲部の角度と屈曲部の腐食状態の相関関係を示す図である。
第 7図は、 フェライ ト系ステンレス鋼板からなるセパレ一夕の B量および外曲 げ R値と屈曲部の腐食状態の相関関係を示す図である。
第 8図は、 フェライト系ステンレス鋼板からなるセパレー夕の B量および屈曲 部の角度と屈曲部の腐食状態の相関関係を示す図である。
第 9図 Aは実施例で作製したセパレー夕の平面図、 第 9図 Bは断面図である。 第 1 0図は、 実施例で作製した燃料電池スタックの断面図である。
第 1 1図は、 実施例で行ったオーステナイト系ステンレス鋼板からなるセパレ 一夕の接触抵抗および 0 . 9 V時の不動態保持電流密度の測定結果を示す線図で ある。
第 1 2図は、 実施例で行ったオーステナイト系ステンレス鋼板からなるセパレ 一夕の接触抵抗の経時変化を示す線図である。
第 1 3図は、 実施例で行ったオーステナィ ト系ステンレス鋼板からなるセパレ 一夕の電流密度の経時変化を示す線図である。 第 1 4図は、 実施例で行ったフェライ ト系ステンレス鋼板からなるセパレー夕 の接触抵抗および 0 . 9 V時の不動態保持電流密度の測定結果を示す線図である。 第 1 5図は、 実施例で行ったフェライ ト系ステンレス鋼板からなるセパレ一夕 の接触抵抗の経時変化を示す線図である。
第 1 6図は、 実施例で行ったフェライ ト系ステンレス鋼板からなるセパレー夕 の電流密度の経時変化を示す線図である。 発明を実施するための最良の形態
以下、 実施例を示して本発明の効果を実証する。
( 1 ) B量と外曲げ R値の関係 (オーステナイト系ステンレス鋼板)
Bの含有量が 0〜 2重量%の範囲で適宜に異なり、 他の元素の含有量は本発明 の範囲内である 0 . 2 mm厚のオーステナイ ト系ステンレス鋼板を、 屈曲部の曲 げ角度を一定 ( 1 5度) とし、 外曲げ R値を 0 . 2〜 1 . 6 mmに異ならせてプ レス成形することにより、 Bの含有量と外曲げ R値が異なる組み合わせの各種セ パレータを得た。 これらセパレー夕ごとに燃料電池を構成し、 ガス流路に所定の ガスを流して 3 0 0 0時間連続して発電させた後、 セパレ一夕の屈曲部の剥離 · 脱落および腐食の状態を観察した。 第 5図はその結果を示しており、 図中〇は表 面の剥離 ·脱落痕を起点とした腐食が認められず健全な状態だったセパレー夕、 Xはそのような腐食が認められたものである。
( 2 ) B量と屈曲部の角度の関係 (オーステナイ ト系ステンレス鋼板)
上記同様に、 Bの含有量が 0〜 2重量%の範囲で適宜に異なり、 他の元素の含 有量は本発明の範囲内である 0 . 2 mm厚のオーステナィ ト系ステンレス鋼板を 用意し、 屈曲部の外曲げ R値を一定 (1 mm) とし、 屈曲部の角度を 0〜: L 2 0 度に異ならせてプレス成形することにより、 Bの含有量と屈曲部の角度が異なる 組み合わせの各種セパレー夕を得た。これらセパレ一夕ごとに燃料電池を構成し、 ガス流路に所定のガスを流して 3 0 0 0時間連続して発電させた後、 セパレー夕 の屈曲部の剥離 ·脱落および腐食の状態を観察した。 第 6図はその結果を示して おり、 〇、 Xで示す評価は第 5図と同様である。 第 5図によれば、外曲げ R値を 1 mm以下と規定するならば、 Bの含有量が 1 . 5重量%以下でなければ腐食が生じる。 また、 第 6図によれば、 屈曲部の角度を 1 5度以上と規定するならば、 同じく Bの含有量は 1 . 5重量%以下でなければ ならない。 したがって、 本発明におけるオーステナイト系ステンレス鋼板製のセ パレー夕においては、 Bを含有することによって析出する硼化物または硼炭化物 からなる析出物が剥離 ·脱落し、 脱落痕に起因する腐食を防止するためには、 B . の含有量: 1 . 5重量%以下、 外曲げ R値: l mm、 屈曲部の角度: 1 5度以上 が必須条件となる。 ただし、 Bの含有量は、 セパレー夕に必要な接触抵抗を満足 するために必要な析出量を満足する観点から 0 . 0 0 5重量%以上を必要とする。
( 3 ) B量と外曲げ R値の関係 (フェライト系ステンレス鋼板)
Bの含有量が 0〜 2重量%の範囲で適宜に異なり、 他の元素の含有量は本発明 の範囲内である 0 . 2 mm厚のフェライト系ステンレス鋼板を、 屈曲部の曲げ角 度を一定 (1 5度) とし、 外曲げ R値を 0 . 2〜 1 . 6 mmに異ならせてプレス 成形することにより、 Bの含有量と外曲げ R値が異なる組み合わせの各種セパレ 一夕を得た。 これらセパレー夕ごとに燃料電池を構成し、 ガス流路に所定のガス を流して 3 0 0 0時間連続して発電させた後、 セパレー夕の屈曲部の剥離 ·脱落 および腐食の状態を観察した。 第 7図はその結果を示しており、 〇、 Xで示す評 価は第 5図と同様である。
( 4 ) B量と屈曲部の角度の関係 (フェライト系ステンレス鋼板)
上記と同様に、 Bの含有量が 0〜 2重量%の範囲で適宜に異なり、 他の元素の 含有量は本発明の範囲内である 0 . 2 mm厚のフェライト系ステンレス鋼板を用 意し、 屈曲部の外曲げ R値を一定 (1 mm) とし、 屈曲部の角度を 0〜 1 2 0度 に異ならせてプレス成形することにより、 Bの含有量と屈曲部の角度が異なる組 み合わせの各種セパレー夕を得た。 これらセパレー夕ごとに燃料電池を構成し、 ガス流路に所定のガスを流して 3 0 0 0時間連続して発電させた後、 セパレー夕 の屈曲部の剥離 ·脱落および腐食の状態を観察した。 第 8図はその結果を示して おり、 〇、 Xで示す評価は第 5図と同様である。
第 7図によれば、外曲げ R値を 1 mm以下と規定するならば、 Bの含有量が 1 . 5重量%以下でなければ腐食が生じる。 また、 第 8図によれば、 屈曲部の角度を 1 5度以上と規定するならば、 同じく Bの含有量はし 5重量: ¾以下でなければ ならない。 したがって、 本発明におけるフェライ ト系ステンレス鋼板製のセパレ 一夕においては、 Bを含有することによって析出する硼化物または硼炭化物から なる析出物が剥離 '脱落し、 脱落痕に起因する腐食を防止するためには、 Bの含 有量: 1 . 5重量%以下、 外曲げ R値: l mm、 屈曲部の角度: 1 5度以上が必 須条件となる。 ただし、 Bの含有量は、 セパレー夕に必要な接触抵抗を満足する ために必要な析出量を満足する観点から、 0 . 0 0 5重量%以上を必要とする。
( 5 ) B量による性能の相違 (オーステナイ ト系ステンレス鋼板)
表 1に示す実施例 1 (本発明品) と比較例 1 (本発明逸脱品) の組成を有する 0 . 2 mm厚のオーステナイ ト系ステンレス鋼板を用いて、 第 9図 Aおよび Bに 示すセパレー夕 4をプレス成形により作製した。 第 9図 Bに示すように、 セパレ 一夕 4のガス流路 4 bは台形状であって、 屈曲部 4 aの角度は 4 5度、 外曲げ R 値は 0 . 3 mmとした。 これらのセパレ一夕につき、 接触抵抗と、 0 . 9 V時の 不動態保持電流密度を測定した。 その測定結果を、 第 1 1図に示す。 なお、 接触 抵抗は 2枚重ねたセパレー夕 (アノード側と力ソード側) 4に面圧 5 k g f Z c m 2の荷重をかけ、 抵抗計を用いて測定した貫通抵抗である。 また、 不動態保持 電流密度とは、 母材のステンレス鋼が酸化物になる酸化物生成速度と、 表面酸化 被膜が溶けてイオン化する速度が等しくなつたとき、 すなわち酸化被膜の厚さが 変化しなくなったときの腐食速度に対応した電流密度を言うもので、 定電位分極 試験にてその電流密度を測定した。
表 1
元素の含有量単位: ilffl%
Figure imgf000013_0001
本発明から逸脱する数储 次に、 第 1 0図に示すように、 電極構造体からなる単位セル 2 0を 1 0セル用 い、 単位セル 2 0間に実施例 1のセパレー夕 4を介在させて積層した燃料電池ス. タックを構成した。 同図で 2 1はシール、 2 2は集1プレー卜、 2 3は燃料電池 スタックの積層状態を固定するクランププレートである。 一方、 比較例 1のセパ レー夕を用い、 同様にして燃料電池スタックを構成した。 これらの燃料電池を発 電させ、 発電開始から 5 0 0時間ごとに 3 0 0 0時間までの接触抵抗と、 単位セ ルの 0 . 7 V発電時の電流密度を測定した。 その測定結果を、 第 1 2図、 第 1 3 図にそれぞれ示す。
第 1 1図によれば、 接触抵抗に関しては実施例 1と比較例 1に大きな差異は認 められないが、 0 . 9 V時の不動態保持電流密度は実施例 1に比べて比較例 1の 方が大幅に高い。 また、 第 1 2図によれば、 発電開始時こそ実施例 1と比較例 1 はともに接触抵抗が低く同等であるが、 比較例 1は発電直後から接触抵坊が上昇 し、 さらに時間を経るにつれ徐々に上昇している。 一方、 実施例 1は長時間の発 電によっても接触抵抗は低いレベルで変動しない。 また、 第 1 3図によれば、 発 電開始時こそ実施例 1と比較例 1の電流密度は同等であるが、 比較例 1は発電直 後から電流密度が低下し、 さらに時間を経るにつれ徐々に低下している。 一方、 実施例 1は長時間の発電によっても電流密度は低いレベルで変動しない。
( 6 ) B量による性能の相違 (フェライト系ステンレス鋼板)
表 1に示す実施例 2 (本発明品) と比較例 2 (本発明逸脱品) の組成を有する 0 . 2 mm厚のフェライ ト系ステンレス鋼板を用いて、 実施例 1と同様にしてセ パレ一夕を作製した。 これらのセパレー夕につき、 上記と同様にして接触抵抗と 0 . 9 V時の不動態保持電流密度を測定した。その測定結果を、第 1 4図に示す。 次に、 実施例 1と同様にして、 実施例 2のセパレ一夕を用いた燃料電池ス夕ッ クを構成し、 さらに、 比較例 2のセパレー夕を用いた燃料電池を同様にして構成 した。 これらの燃料電池を発電させ、 発電開始から 5 0 0時間ごとに 3 0 0 0時 間までの接触抵抗と、 単位セルの 0 . 7 V発電時の電流密度を測定した。 その測 定結果を、 第 1 5図、 第 1 6図にそれぞれ示す。
第 1 4図によれば、 接触抵抗に関しては実施例 2と比較例 2に大きな差異は認 められないが、 0 . 9 V時の不動態保持電流密度は実施例 2と比べて比較例 2の 方が大幅に高い。 また、 第 1 5図によれば、 発電開始時こそ実施例 2と比較例 2 はともに接触抵抗が低く同等であるが、 比較例 2は発電直後から接触抵抗が上昇 し、 さらに時間を経るにつれ徐々に上昇している。 一方、 実施例 2は長時間の発 電によっても接触抵抗は低いレベルで変動しない。 また、 第 1 6図によれば、 発 電開始時こそ実施例 2と比較例 2の電流密度は同等であるが、 比較例 2は発電直 後から電流密度が低下し、 さらに時間を経るにつれ徐々に低下している。 一方、 実施例 1は長時間の発電によっても電流密度は低いレベルで変動しない。

Claims

請 求 の 範 囲
1. Bを 0. 005〜 1. 5重量%含有し、 M23 (C, B) 6型硼炭化物、 M2 B型、 MB型の硼化物のうち 1種以上が表面に析出しているステンレス鋼板を、 凹凸が連続する波板状にプレス成形してなり、
そのプレス成形による折り曲げもしくは曲げ伸ばしによって形成される屈曲部 の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特徴とする燃料電池 用プレスセパレー夕。
2. B : 0. 005〜: 1. 5重量%、 C : 0. 1 5重量%以下、 S i : 0. 0 1〜 1. 5重量%、 Mn : 0. 0 1〜2. 5重量%、 P : 0. 035重量%以下、 S : 0. 0 1重量%以下、 A 1 : 0. 00 1〜 0. 2重量%、 N: 0. 3重量% 以下、 Cu : 0〜3重量%、 N i : 7〜50重量%、 C r : 1 7〜30重量%、 Mo : 0〜 7重量%を含有し、残部が F eおよび不可避的不純物で、かつ、 C r, Moおよび Bの含有量が次式を満足し、
C r (重量%) + 3 XMo (重量%) — 2. 5 X B (重量%) ≥ 1 7 M23 (C, B) 6型硼炭化物、 M2B型、 MB型の硼化物のうち 1種以上が表面 に析出しているオーステナイト系ステンレス鋼板を、 凹凸が連続する波板状にプ レス成形してなり、
そのプレス成形による折り曲げもしくは曲げ伸ばしによって形成される屈曲部 の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特徴とする燃料電池 用プレスセパレー夕。
3. B : 0. 005〜 1. 5重量%、 C : 0. 1 5重量%以下、 S i : 0. 0 1〜 1. 5重量%、 Mn : 0. 0 1〜; L . 5重量%、 P : 0. 035重量%以下、 S : 0. 0 1重量%以下、 A 1 : 0. 00 1〜 0. 2重量%、 N: 0. 03 5重 量%以下、 C u : 0〜 1重量%、 N i : 0〜 5重量%、 C r : 1 7〜 36重量%、 Mo : 0〜 7重量%を含有し、残部が F eおよび不可避的不純物で、かつ、 C r, M oおよび Bの含有量が次式を満足し、 C r (重量%) + 3 XMo (重量%) — 2. 5 X B (重量%) ≥ 1 7 M23 (C, B) 6型硼炭化物、 M2B型、 MB型の硼化物のうち 1種以上が表面 に析出しているフェライ ト系ステンレス鋼板を、 凹凸が連続する波板状にプレス 成形してなり、
そのプレス成形による折り曲げもしくは曲げ伸ばしによって形成される屈曲部 の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特徴とする燃料電池 用プレスセパレー夕。
4. Bを 0. 005〜 1. 5重量%含有し、 M23 (C, B) 6型硼炭化物、 M2 B型、 MB型の硼化物のうち 1種以上が表面に析出している光輝焼鈍処理仕上げ したステンレス鋼板を、 凹凸が連続する波板状にプレス成形してなり、
そのプレス成形による折り曲げもしくは曲げ伸ばしによって形成される屈曲部 の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特徴とする燃料電池 用プレスセパレー夕。
5. B : 0. 005〜 1. 5重量%、 C : 0. 1 5重量%以下、 S i : 0. 0 :!〜 1. 5重量%、 Mn : 0. 0 1〜2. 5重量%、 P : 0. 035重量%以下、 S : 0. 0 1重量%以下、 A 1 : 0. 00 1〜 0. 2重量%、 N: 0. 3重量% 以下、 Cu : 0〜3重量%、 N i : 7〜50重量%、 C r : 1 7〜30重量%、 Mo : 0〜 7重量%を含有し、残部が F eおよび不可避的不純物で、 かつ、 C r, Moおよび Bの含有量が次式を満足し、
C r (重量%) + 3 XMo (重量%) - 2. 5 X B (重量%) ≥ 1 7
M23 (C, B) fi型硼炭化物、 M2B型、 MB型の硼化物のうち 1種以上が表面 に析出している光輝焼鈍処理仕上げしたオーステナイ ト系ステンレス鋼板を、 凹 凸が連続する波板状にプレス成形してなり、
そのプレス成形による折り曲げもしくは曲げ伸ばしによって形成される屈曲部 の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特徴とする燃料電池 用プレスセパレー夕。
6. B : 0. 005〜: L. 5重量%、 C : 0. 1 5重量%以下、 S i : 0. 0 1〜: L . 5重量%、 Mn : 0. 0 1〜: L . 5重量%、 P : 0. 03 5重量%以下、 S : 0. 0 1重量%以下、 A 1 : 0. 00 1〜0. 2重量%、 N : 0. 03 5重 量%以下、 Cu : 0〜 1重量%、 N i : 0〜5重量%、 C r : 1 7〜36重量%、 Mo : 0〜7重量%を含有し、残部が F eおよび不可避的不純物で、かつ、 C r, Moおよび Bの含有量が次式を満足し、
C r (重量%) + 3 XMo (重量%) — 2. 5 X B (重量%) ≥ 1 7
M23 (C, B) fi型硼炭化物、 M2B型、 MB型の硼化物のうち 1種以上が表面 に析出している光輝焼鈍処理仕上げしたフェライト系ステンレス鋼板を、 凹凸が 連続する波板状にプレス成形してなり、
そのプレス成形による折り曲げもしくは曲げ伸ばしによって形成される屈曲部 の角度が 1 5度以上、 外曲げ R値が lmm以下であることを特徴とする燃料電池 用プレスセパレー夕。
PCT/JP2001/009685 2000-11-10 2001-11-06 Separateur a presse pour pile a combustible WO2002039530A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10194844T DE10194844B4 (de) 2000-11-10 2001-11-06 Gepresster Separator für eine Brennstoffzelle
US10/169,800 US6953636B2 (en) 2000-11-10 2001-11-06 Press separator for fuel cell made of stainless steel press formed in contiguous corrugations
CA002396944A CA2396944C (en) 2000-11-10 2001-11-06 Press separator for fuel cell made of stainless steel press formed in contiguous corrugations
JP2002541743A JP4133323B2 (ja) 2000-11-10 2001-11-06 燃料電池用プレスセパレータ
US11/180,642 US20050249999A1 (en) 2000-11-10 2005-07-14 Press separator for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-344298 2000-11-10
JP2000344298 2000-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/180,642 Division US20050249999A1 (en) 2000-11-10 2005-07-14 Press separator for fuel cell

Publications (1)

Publication Number Publication Date
WO2002039530A1 true WO2002039530A1 (fr) 2002-05-16

Family

ID=18818516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009685 WO2002039530A1 (fr) 2000-11-10 2001-11-06 Separateur a presse pour pile a combustible

Country Status (5)

Country Link
US (2) US6953636B2 (ja)
JP (1) JP4133323B2 (ja)
CA (1) CA2396944C (ja)
DE (1) DE10194844B4 (ja)
WO (1) WO2002039530A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669318B1 (ko) 2004-11-25 2007-01-15 삼성에스디아이 주식회사 연료전지용 금속 세퍼레이터 및 그 제조방법과 이를포함하는 연료전지
JP2010037614A (ja) * 2008-08-06 2010-02-18 Sumitomo Metal Ind Ltd 燃料電池セパレータ用ステンレス鋼および燃料電池用セパレータ
US9455454B2 (en) 2011-06-28 2016-09-27 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell and inter-connector
EP3805419A4 (en) * 2019-06-14 2021-09-08 Posco AUSTENITIC STAINLESS STEEL WITH EXCELLENT ELECTRICAL CONDUCTIVITY AND ASSOCIATED MANUFACTURING PROCESS

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917442B2 (ja) * 2002-03-14 2007-05-23 本田技研工業株式会社 燃料電池用金属製セパレータおよびその製造方法
DE112005003605T5 (de) * 2005-06-14 2008-04-30 Toyota Jidosha Kabushiki Kaisha, Toyota Brennstoffzellensystem, das zur Sicherstellung der Betriebsstabilität entworfen worden ist
US20100180427A1 (en) * 2009-01-16 2010-07-22 Ford Motor Company Texturing of thin metal sheets/foils for enhanced formability and manufacturability
US20100330389A1 (en) * 2009-06-25 2010-12-30 Ford Motor Company Skin pass for cladding thin metal sheets
EP3130409B1 (en) * 2014-04-09 2021-07-14 Nippon Steel Corporation Press-formed product, automobile structural member including the same, production method and production device for the press-formed product
EP3202940A4 (en) * 2014-10-01 2018-05-09 Nippon Steel & Sumitomo Metal Corporation Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
US20180248203A1 (en) * 2017-02-28 2018-08-30 GM Global Technology Operations LLC System and method for manufacturing channels in a bipolar plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311620A (ja) * 1995-05-17 1996-11-26 Nisshin Steel Co Ltd 熱間加工性及び耐溶融塩腐食性に優れたステンレス鋼
JPH10302814A (ja) * 1997-04-25 1998-11-13 Aisin Takaoka Ltd 固体高分子型燃料電池
JP2000328205A (ja) * 1999-05-24 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用フェライト系ステンレス鋼および燃料電池
JP2000328200A (ja) * 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
JP2001032056A (ja) * 1999-07-22 2001-02-06 Sumitomo Metal Ind Ltd 通電部品用ステンレス鋼および固体高分子型燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE418646B (sv) * 1976-09-29 1981-06-15 Svenska Flaektfabriken Ab Kontaktkropp for vetska och gas
US4835211A (en) * 1986-12-18 1989-05-30 The Procter & Gamble Company Cationic latex compositions capable of producing elastomers with hydrophilic surfaces
US5856409A (en) * 1989-04-07 1999-01-05 Dow Corning Corporation Method of making hydrophobic copolymers hydrophilic
US5219945A (en) * 1992-02-20 1993-06-15 E. I. Du Pont De Nemours And Company ABC triblock methacrylate polymers
JP3854682B2 (ja) * 1997-02-13 2006-12-06 アイシン高丘株式会社 燃料電池用セパレータ
US6111025A (en) * 1997-06-24 2000-08-29 The Lubrizol Corporation Block copolymer surfactants prepared by stabilized free-radical polymerization
CN1117882C (zh) * 1999-04-19 2003-08-13 住友金属工业株式会社 固体高分子型燃料电池用不锈钢材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311620A (ja) * 1995-05-17 1996-11-26 Nisshin Steel Co Ltd 熱間加工性及び耐溶融塩腐食性に優れたステンレス鋼
JPH10302814A (ja) * 1997-04-25 1998-11-13 Aisin Takaoka Ltd 固体高分子型燃料電池
JP2000328200A (ja) * 1999-05-13 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用オーステナイト系ステンレス鋼および燃料電池
JP2000328205A (ja) * 1999-05-24 2000-11-28 Sumitomo Metal Ind Ltd 通電電気部品用フェライト系ステンレス鋼および燃料電池
JP2001032056A (ja) * 1999-07-22 2001-02-06 Sumitomo Metal Ind Ltd 通電部品用ステンレス鋼および固体高分子型燃料電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669318B1 (ko) 2004-11-25 2007-01-15 삼성에스디아이 주식회사 연료전지용 금속 세퍼레이터 및 그 제조방법과 이를포함하는 연료전지
JP2010037614A (ja) * 2008-08-06 2010-02-18 Sumitomo Metal Ind Ltd 燃料電池セパレータ用ステンレス鋼および燃料電池用セパレータ
US9455454B2 (en) 2011-06-28 2016-09-27 Ngk Spark Plug Co., Ltd. Solid oxide fuel cell and inter-connector
EP3805419A4 (en) * 2019-06-14 2021-09-08 Posco AUSTENITIC STAINLESS STEEL WITH EXCELLENT ELECTRICAL CONDUCTIVITY AND ASSOCIATED MANUFACTURING PROCESS
US12049688B2 (en) 2019-06-14 2024-07-30 Posco Co., Ltd Austenitic stainless steel having excellent electrical conductivity, and method for manufacturing same

Also Published As

Publication number Publication date
US6953636B2 (en) 2005-10-11
US20040253503A1 (en) 2004-12-16
CA2396944C (en) 2007-07-03
DE10194844B4 (de) 2009-01-22
JP4133323B2 (ja) 2008-08-13
US20050249999A1 (en) 2005-11-10
DE10194844T1 (de) 2003-08-28
CA2396944A1 (en) 2002-05-16
JPWO2002039530A1 (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
US6670066B2 (en) Separator for fuel cell
US6372376B1 (en) Corrosion resistant PEM fuel cell
US20050249999A1 (en) Press separator for fuel cell
JP5234711B2 (ja) 燃料電池用セパレータおよびその製造方法
KR20080087043A (ko) 고체 고분자형 연료전지용 세퍼레이터 및 그 제조 방법
US7674546B2 (en) Metallic separator for fuel cell and method for anti-corrosion treatment of the same
WO2006082734A1 (ja) 燃料電池用セパレータおよびその製造方法
TWI640122B (zh) 燃料電池之分隔件用鋼板之基材不鏽鋼鋼板及其製造方法
JP6859980B2 (ja) バイポーラプレート
WO2007145377A1 (ja) 純チタンまたはチタン合金製固体高分子型燃料電池用セパレータおよびその製造方法
JP3922154B2 (ja) 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法および固体高分子型燃料電池
JP3980150B2 (ja) 低温型燃料電池用セパレータ
JP2003272659A (ja) 固体高分子型燃料電池用セパレータおよび燃料電池
WO2003028134A1 (fr) Separateur de pile a combustible et preparation correspondante
JP4967831B2 (ja) 固体高分子形燃料電池セパレータ用フェライト系ステンレス鋼およびそれを用いた固体高分子形燃料電池
JP5560533B2 (ja) 固体高分子形燃料電池セパレータ用ステンレス鋼およびそれを用いた固体高分子形燃料電池
JP3971267B2 (ja) 燃料電池用金属製セパレータ用素材板およびそれを使用した燃料電池用金属製セパレータ
JP2009007627A (ja) 固体高分子形燃料電池セパレータ用オーステナイト系ステンレス鋼およびそれを用いた固体高分子形燃料電池
JP5703560B2 (ja) 導電性に優れた燃料電池セパレータ用ステンレス鋼板
WO2003028133A1 (fr) Separateur de pile a combustible
JP2003092119A (ja) 燃料電池用セパレータの製造方法
JP4604302B2 (ja) 高分子電解質型燃料電池
US20100040911A1 (en) Fuel cell flow field having strong, chemically stable metal bipolar plates
WO2003083980A1 (fr) Separateur metallique pour pile a combustible et procede de fabrication de celui-ci
JP2020024883A (ja) 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE JP US

ENP Entry into the national phase

Ref document number: 2002 541743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2396944

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10169800

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10194844

Country of ref document: DE

Date of ref document: 20030828

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10194844

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607