WO2002035098A1 - Elektromotorisch angetriebene pumpe und verfahren zur herstellung einer solchen pumpe - Google Patents

Elektromotorisch angetriebene pumpe und verfahren zur herstellung einer solchen pumpe Download PDF

Info

Publication number
WO2002035098A1
WO2002035098A1 PCT/DE2001/003624 DE0103624W WO0235098A1 WO 2002035098 A1 WO2002035098 A1 WO 2002035098A1 DE 0103624 W DE0103624 W DE 0103624W WO 0235098 A1 WO0235098 A1 WO 0235098A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
stator
pump according
motor
wall
Prior art date
Application number
PCT/DE2001/003624
Other languages
English (en)
French (fr)
Inventor
Thomas Weigold
Gerald Zierer
Johannes Pfetzer
Guenther Riehl
Matthias Henschel
Matthias Schmitz
Gerta Rocklage
Torsten Heidrich
Frank Melzer
Hansjuergen Linde
Uwe Neumann
Andreas Rehklau
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7660955&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002035098(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/168,902 priority Critical patent/US20040062664A1/en
Priority to ES01980182T priority patent/ES2305115T3/es
Priority to DE50114041T priority patent/DE50114041D1/de
Priority to EP01980182A priority patent/EP1328731B1/de
Priority to JP2002538051A priority patent/JP2004512462A/ja
Priority to KR1020027008193A priority patent/KR20020064360A/ko
Publication of WO2002035098A1 publication Critical patent/WO2002035098A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0626Details of the can
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0686Mechanical details of the pump control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5813Cooling the control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers

Definitions

  • the invention is based on a motor pump with a pump head and an electric motor driving the pump head according to the preamble of claim 1 or on a method for producing such a pump according to the preamble of claim 20.
  • Motor pumps of this type are used to transport or increase the pressure of a liquid and have been used for a long time, for example, as water pumps in heating circuits.
  • a pump-motor unit which serves as a cooling water pump of a motor vehicle internal combustion engine.
  • the pump-motor unit described in EP-0 778 649 B1 is a centrifugal pump which is driven by an electronically controlled direct current motor.
  • the centrifugal pump and the DC motor are connected to each other via a heat sink.
  • a ⁇ gap pot made of a suitable material is clamped, which the rotor of the Separates the electric motor from the stand.
  • a seal inserted between the pump housing and the containment shell seals the liquid-filled rotor chamber against an outer stator chamber.
  • EP-0 713 282 B1 discloses a canned motor for pumps with a can arranged between the rotor and the stator.
  • the stator has a thin-walled sleeve-shaped, in particular sheet-metal base body.
  • This base body carries radially aligned webs on its outside, which carry the stator winding and, with its cylindrical inside, lies at least partially against the outside of the can.
  • Another disadvantage here is the complex assembly and sealing of the additional containment shell. The can must be installed and sealed between the stator package and the rotor.
  • the control and regulating electronics of the canned motor of EP-0713 282 is designed as a module and requires one elaborate cooling.
  • the electronics module lies with its one side of the housing in a form-fitting manner on the stator winding.
  • the thermal energy generated by the electronics is released via the switch housing to the motor housing with the stator winding located therein. This in turn transfers the absorbed thermal energy to the fluid through the containment shell.
  • the pump according to the invention with the features of claim 1 has the advantage that the rotor space, which is open towards the pumping medium, is sealed off from the stator space in a simple manner, and good cooling of the electronics of the pump motor is additionally achieved.
  • the fact that the sealing wall of the containment shell belongs directly to the stator means that there is no need for the additional component of a can.
  • the installation step of inserting the can between the stator and the rotor is omitted, which leads to a corresponding simplification and cost reduction in the manufacture of the pump according to the invention.
  • An advantageous embodiment of the pump according to the invention results from the fact that the pump head, the electric motor driving this pump head and an electronic switching part that serves to control the electric motor are arranged together in one housing.
  • This housing can be a one-piece housing or even several Components exist that are assigned to the individual functions (pump, motor, switching part) and that are connected to each other.
  • the motor housing can be used as a housing part and also as a heat sink for the electronics.
  • a wall made in one piece with the motor housing gives the pump according to the invention the necessary mechanical stability and can at the same time contribute to the sealing of the rotor space.
  • This wall can be made of metal in particular, which is advantageous for reasons of strength and heat transfer. In principle, it is therefore possible to use only one metal part for the pump housing of the pump according to the invention, which leads to a significant reduction in the cost of such a pump.
  • a sealing wall firmly connected to the stator and delimiting the rotor space in the radial direction avoids the need for a can in the form of an additional, separate component.
  • a separate component is no longer necessary for sealing between the rotor and stator.
  • this sealing wall can be designed as a casing of the stator that is completely closed in the circumferential direction along the rotor space.
  • This casing of the stator can be made in a simple and advantageous manner from plastic or another suitable material.
  • the sheathing of the stator with a plastic also offers the advantage that the pole teeth of the stator, which can be formed, for example, by discrete laminated laminations, can be injected directly and easily into the plastic and thus fixed.
  • the plastic sheathing also makes it possible for the sealing element to have a row between the rotor and stator spaces can be transferred from other functions that a separate canned tube cannot fulfill in the original sense.
  • the stator laminated cores can be attached by injection and, for example, secured against rotation. This means a simple and secure fixation of the laminated cores.
  • the overmolded stator also allows the necessary winding bodies of the stator winding to be formed directly during the injection molding process.
  • stator is connected to a motor housing wall, in particular to a wall made of metal, this wall can absorb the forces and moments. Due to its thermal conductivity, this metal wall can then also be used directly as a heat sink for the electronics of the pump motor.
  • the electronic switching elements are cooled well if they are applied directly to the metal wall. If necessary, a heat-conducting film can also be placed between the component and the heat sink. It is conceivable to press the power components of the electronics via springs onto the cooling surface or to thermally couple them directly to the cooling surface using an electrically insulating adhesive. This ensures good heat transfer from the power component of the electronics to the metallic motor housing.
  • a further significant improvement in the cooling of the control electronics elements can be achieved if the metallic cooling wall is itself actively cooled.
  • part of the fluid to be pumped is guided past the cooling wall on the motor side.
  • Such cooling is possible because the cooling water temperatures to be expected of the internal combustion engine come to be below the ambient temperatures.
  • a pressure-side opening is provided in the pump head, which creates a connection to the suction side of the pump via a channel in the common shaft of the electric motor with the pump wheel. The full pressure difference of the pump is thus present above the rotor, so that a secondary flow of the fluid to be pumped, which is guided precisely past the cooling surface of the motor housing, has been realized.
  • the electric motor is advantageously arranged between the switching part with the power electronics and the pump head. This enables a compact, space-saving construction of the motor pump according to the invention.
  • An electronically commutated direct current motor which can drive the pump, ensures exact control of the coolant flow, for example a cooling or heating circuit of a motor vehicle with an internal combustion engine. This in turn enables precisely adapted heat dissipation and thus, among other things, optimum efficiency and fuel consumption for the vehicle engine.
  • FIG. 1 shows a longitudinal section through an electric motor-driven pump according to the invention
  • FIG. 2 shows a cross section through the stator of the electric motor of the pump driven by the electric motor
  • FIG. 3 shows a detailed view of the stator of the pump driven by an electric motor according to the invention.
  • the exemplary embodiment of a pump 10 according to the invention shown in longitudinal section in FIG. 1, consists of a pump head 12, which is driven by a brushless, electronically commutated electric motor 14, and a switching part 16 for controlling the electric motor 14.
  • the pump head 12 has a pump housing 18 in which an impeller 22 fastened on a drive shaft 20 is located in a pump chamber 11.
  • the impeller 22 is provided with blades 24 for transporting and increasing the pressure of a liquid to be pumped.
  • An opening 26 leads into the pump housing 18 for sucking in the liquid in the direction of arrow 28.
  • the pump housing has an outlet opening 30 on the pressure side of the pump, which is not shown completely in FIG.
  • the suction opening 26 opens onto the blades 24 of the impeller 22 of the pump 10.
  • the pump housing 18 is connected to a motor housing 34 via a flange 32 and via an O-ring 36, which is located between the two Housing parts located, sealed.
  • Various possibilities of fastening are conceivable for the stable connection of the pump head 12 to the motor housing 30, of which only screwing, riveting, gluing are to be mentioned here.
  • the electric motor 14 of the pump 10 has a rotor 38 arranged in the motor housing 34 and a stator 40 which surrounds the rotor 38 in the radial direction.
  • the stator 40 consists of a plastic carrier part 42 into which a plurality of soft iron teeth 44 forming the stator poles are directly injected , These soft iron teeth are designed, for example, in the form of laminated laminations 46, as indicated in FIG. 1.
  • FIG. 2 shows a cross section through the stator 40.
  • the plastic carrier part 42 and the pole teeth 44 injected therein can be seen.
  • the plastic carrier part 42 forms on its inside 48 facing the rotor 38 (not shown in FIG. 2 for the sake of clarity) a completely closed plastic sheathing 50 of the stator 40.
  • the plastic sheathing 50 is designed such that it covers the inside, ie rotor 38 lying in the intermediate space 52 of the plastic carrier part 42 seals against the stator 40.
  • the plastic sheathing 50 of the stator pole teeth 44 serves not only as a sealing wall 51 for the stator but also as a carrier shape and winding body 54 for the windings 56 of the stator coils 58.
  • FIG. 3 shows a detail of a possible realization of the carrier shape 54 for the windings 56 of the stator 40.
  • the plastic sheathing 50 of the pole teeth 44 is shaped in such a way that there is a stable receptacle for the windings 56 of the coil 58.
  • Additional contact pockets 60 for the winding wire 62 can - as shown in Figure 3 - as well as other required brackets directly on the plastic carrier part 42 of the stator 40 by a shape-forming process.
  • the stator 40 with its plastic carrier part 42 is secured against rotation in the axial direction on a wall 64 of the motor housing 34 and additionally sealed against the motor housing 34 by means of sealing elements 66.
  • the wall 64 of the motor housing 34 facing away from the pump head 12 is embodied in one piece with the motor housing 34 in the exemplary embodiment shown and has a plurality of brackets for fixing the stator 40, which are embodied as pins 68 in the exemplary embodiment.
  • the housing wall 64 also has a number of bushings 70 for one or more electrical connections 72 of the electric motor 14 to the switching part 16.
  • the housing wall 64 can preferably be made of metal in order to be able to better absorb the forces and moments of the motor and to guarantee a secure fastening of the stator 40.
  • a metal wall is also suitable as a cooling wall 65 for heat transfer reasons.
  • the housing wall 64 additionally has a holder 74, which is embodied in one piece in the exemplary embodiment and into which a first bearing 76 of the motor shaft 20 is placed.
  • the rotor 38 is firmly seated on a shaft, which in this exemplary embodiment is also the drive shaft 20 of the pump impeller 22.
  • the rotor 38 carries permanent magnets 80 in the axial direction, which are evenly distributed over its entire circumference.
  • the cup-shaped space 78 forming a rotor space 82 is radial Direction just large enough that the parts of the rotor remote from the axis circulate in the immediate vicinity of the inside 48 of the plastic casing 50 of the stator 40, but do not touch it.
  • the inventive plastic sheath 50 on the stator 40 makes it possible to keep the gap between the stator and the rotor 38 of the electric motor 14 very small.
  • the rotor chamber 82 is closed off from the pump head 12 by a wall 84 and sealing elements 86.
  • the wall 84 of the rotor chamber 82 carries a second bearing 88 for the drive shaft 20 of the pump 10.
  • the wall 84 on the pump head side has an opening 90 to the pressure side of the pump 10.
  • the switching part 16 for controlling and regulating the pump 10 according to the invention.
  • power elements 96 of the switching electronics 98 of the electric motor 14 are fastened.
  • these power elements 96 which can be transistors, for example, are applied directly to the housing wall 64, so that there is good thermal conductivity between these electronic components of the switching part 16 and the wall 64.
  • the heat generated by the electronics 98 can be quickly released to the housing wall 64, which is metallic in the exemplary embodiment.
  • the housing wall 64 is also at least partially flowed around by the liquid to be pumped around on the motor side, so that according to the invention there is a substantially improved heat dissipation for the components of the switching part 16.
  • the switching part 16 itself is to be closed by a cover 100, which in the exemplary embodiment is applied directly to the motor housing 34 of the pump 10.
  • the cover 100 can be attached, screwed, riveted, glued or securely and possibly reversibly attached to the motor housing 34 using another suitable technique.
  • the cover 100 of the switching part 16 carries a connection 102 for the external voltage supply of the motor pump 10 according to the invention.
  • the invention is not limited to the described embodiment of an electric motor-driven pump.
  • a sealing wall connected in one piece to the stator can also be used advantageously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Die Erfindung betrifft eine Pumpe (10) mit einem Pumpenkopf (12), der einen Pumpenraum (11) aufweist und mit einem den Pumpenkopf (12) antreibenden Elektromotor (14), der einen Rotor (38) aufweist, wobei der Rotor (38) mit dem Pumpenkopf (12) verbunden ist und in einem zum Pumpenraum (11) hin geöffneten Rotorraum (82) angeordnet ist. Es wird vorgeschlagen, dass der radial um den Rotorraum (82) herum angeordnete Stator (40) durch eine zum Stator (40) gehörende Dichtwand (51) und mindestens eine Gehäusewand (64) gegen das Fördermedium hin abgedichtet ist.

Description

Elektromotorisch angetriebene Pumpe und Verfahren zur Herstellung einer solchen Pumpe
Stand der Technik
Die Erfindung geht aus von einer Motorpumpe mit einem Pumpenkopf und einem den Pumpenkopf antreibenden Elektromotor nach der Gattung des Oberbegriffs des Anspruchs 1 beziehungsweise von einem Verfahren zur Herstellung einer solchen Pumpe nach dem Oberbegriff des Anspruchs 20.
Derartige Motorpumpen dienen dem Transport beziehungsweise der Druckerhöhung einer Flüssigkeit und werden seit längerer Zeit beispielsweise als Wasserpumpen in Heizungskreisläufen genutzt .
Aus der europäischen Patentschrift EP-0 778 649 Bl ist eine Pumpe-Motor-Einheit bekannt, die als Kühlwasserpumpe eines Kraftfahrzeugverbrennungsmotors dient. Bei der in der EP-0 778 649 Bl beschriebenen Pumpe-Motor-Einheit handelt es sich um eine Kreiselpumpe, die von einem elektronisch kom utierten Gleichstrommotor angetrieben wird. Die Kreiselpumpe und der Gleichstrommotor sind über einen Kühlkörper miteinander verbunden. Zwischen dem Pumpengehäuse und dem Kühlkörper ist ein aus einem geeigneten Material bestehender Ξpalttopf eingespannt, der den Läufer des Elektromotors vom Ständer trennt . Eine zwischen Pumpengehäuse und Spalttopf eingebrachte Dichtung dichtet die flüssigkeitsgefüllte Läuferkammer gegenüber einer äußeren Ständerkammer ab.
Ein Nachteil der in der EP-0 778 649 Bl beschriebenen Pumpe- Motor-Einheit und aller vergleichbaren Motorpumpen ist der entstehende Luftspalt zwischen dem Stator (Ständer) und dem Rotor (Läufer) des Elektromotors, der sich negativ auf den Wirkungsgrad solch eines Spaltrohrmotors auswirkt. Eine Verringerung des Luftspalts durch Reduzierung der Materialstärke des Spalttopfes zieht die Gefahr von mechanischen Instabilitäten am Spalttopf nach sich. Dies kann zu einem vorzeitigen Ausfall der Pumpe führen.
Auch die Kühlung der Leistungselektronik des Steuermotors durch einen zusätzlichen passiven Kühlkörper, wie er in der EP-0 778 649 Bl vorgeschlagen wird, erhöht - neben der Notwendigkeit eines zusätzlichen Spalttopfes - die Komplexität einer solchen Pumpe.
In der EP-0 713 282 Bl ist ein Ξpaltrohrmotor für Pumpen offenbart mit einem zwischen dem Rotor und dem Stator angeordneten Spalttopf. Der Stator weist einen dünnwandigen hülsenförmigen, insbesondere geblechten Grundkörper auf. Dieser Grundkörper trägt auf seiner Außenseite radial ausgerichtete Stege, die die Statorwicklung tragen und liegt mit seiner zylindrischen Innenseite zumindest teilweise an der Außenseite des Spaltrohres an. Nachteilig auch hier ist die aufwendige Montage und Abdichtung des zusätzlichen Spalttopfes. Das Spaltrohr muss zwischen dem Statorpaket und dem Läufer eingebaut und abgedichtet werden.
Die Steuer- und Regelelektronik des Spaltrohrmotors der EP- 0713 282 ist als Modul ausgebildet und bedarf einer aufwendigen Kühlung. Das Elektronikmodul liegt mit seiner einen Gehäuseseite formschlüssig an der Statorwicklung an. Die von der Elektronik erzeugte Wärmeenergie wird über das Schaltgehäuse an das Motorengehäuse mit der sich darin befindenden Statorwicklung abgegeben. Diese wiederum gibt die aufgenommene Wärmeenergie über den Spalttopf an das Fördermedium ab .
Vorteile der Erfindung
Die erfindungsgemäße Pumpe mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass auf einfache Art und Weise die Abdichtung des zum Fördermedium hin geöffneten Rotorraumes gegenüber dem Statorraum ermöglicht wird und zusätzlich eine gute Kühlung der Elektronik des Pumpenmotors erreicht wird.
Dadurch, dass die Dichtwand des Spalttopfes direkt zum Stator gehört, kann auf das zusätzliche Bauteil eines Spaltrohres verzichtet werden. Bei der Montage und Abdichtung der erfindungsgemäßen Pumpe entfällt der Montageschritt der Einbringung des Spaltrohres zwischen dem Stator und dem Rotor, was zu einer entsprechenden Vereinfachung und Kostenreduzierung bei der Fertigung der erfindungsgemäßen Pumpe führt.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der in Anspruch 1 genannten Pumpe möglich.
Eine vorteilhafte Ausgestaltung der erfindungsgemäßen Pumpe ergibt sich dadurch, dass sich der Pumpenkopf, der diesen Pumpenkopf treibende Elektromotor und ein elektronisches Schaltteil, dass zur Steuerung des Elektromotors dient, gemeinsam in einem Gehäuse angeordnet sind. Dieses Gehäuse kann ein einteiliges Gehäuse sein oder auch aus mehreren Komponenten bestehen, die den einzelnen Funktionen (Pumpe, Motor, Schaltteil) zuzuordnen sind und die miteinander verbunden sind. Das Motorengehäuse kann so gleichzeitig als Gehäuseteil und und auch als Kühlkörper für die Elektronik genutzt werden.
Eine mit dem Motorengehäuse einstückig ausgeführte Wand gibt der erfindungsgemäßen Pumpe die notwendige mechanische Stabilität und kann gleichzeitig zur Abdichtung des Rotorraumes beitragen. Diese Wand lässt sich im speziellen aus Metall herstellen, was aus Festigkeits- und Wärmeübertragungsgründen von Vorteil ist. Prinzipiell ist damit die Verwendung nur eines Metallteils für das Pumpengehäuse der erfindungsgemäßen Pumpe möglich, was zu einer deutlichen Kostenreduzierung einer solchen Pumpe führt .
Eine mit dem Stator fest verbundene und den Rotorraum in radialer Richtung abgrenzende Dichtwand vermeidet die Notwendigkeit eines Spaltrohres in Form eines zusätzlichen, separaten Bauteils. Zur Abdichtung zwischen Rotor und Stator ist damit kein eigenes Bauteil mehr notwendig. Speziell lässt sich diese Dichtwand als eine in Umfangsrientlang des Rotorraumes vollständig geschlossene Ummantelung des Stators ausbilden. Diese Ummantelung des Stators kann in einfacher und vorteilha ter Weise aus Kunststoff oder einem anderen geeigneten Material hergestellt werden.
Die Ummantelung des Stators mit einem Kunststoff bietet zudem den Vorteil, dass sich die Polzähne des Stators, die beispielsweise durch diskrete Blechlamellenpakete gebildet sein können, auf einfache und vorteilhafte Weise direkt in den Kunststoff einspritzen und so fixieren lassen. Durch die Kunststoffummantelung ist es zudem möglich, dass dem Dichtelement zwischen Rotor- und Statorraum eine Reihe von weiteren Funktionen übertragen werden können, die ein separates Spaltrohr im ursprünglichen Sinne nicht erfüllen kann. Neben der Abdichtung des das Fördermedium führenden Rotorraumes gegenüber dem Statorraum können die Statorblechpakete durch das Einspritzen befestigt und beispielsweise gegen Verdrehen gesichert werden. Dies bedeutet eine einfache und sichere Fixierung der Blechpakete. Der umspritzte Stator gestattet es ebenfalls die notwendigen Wickelkörper der Statorwicklung beim Spritzprozess direkt mit auszubilden. Benötigte Kontakttaschen für den Anschluss der Statorwicklung lassen sich ebenso wie andere benötigte Halterungen am Stator in vorteilhafter Weise beim Spritzprozess direkt mit ausformen. Dies alles vereinfacht den Aufbau und die Abdichtung des Stators, verringert die Anzahl der Bauteile und erleichtert damit den Zusammenbau der erfindungsgemäßen Pumpe. Mit einer Spaltrohrpumpe der herkömmlichen Bauart ist das so nicht zu realisieren.
Wird der Stator mit einer Motorengehäusewand, insbesondere mit einer Wand aus Metall verbunden, so kann diese Wand die anfallenden Kräfte und Momente aufnehmen. Diese Metallwand kann zweckmäßiger Weise aufgrund ihrer Wärmeleitfähigkeit dann auch direkt als Kühlkörper für die Elektronik des Pumpenmotors benutzt werden. Eine gute Kühlung der elektronischen Schaltelemente ergibt sich, wenn diese direkt auf die Metallwand aufgebracht werden. Gegebenenfalls kann auch eine Wärmeleitfolie zwischen Bauteil und Kühlkörper gelegt werden. Es ist vorstellbar die Leistungsbauteile der Elektronik über Federn an die Kühlfläche zu drücken oder auch über einen elektrisch isolierenden Kleber direkt an die Kühlfläche thermisch anzukoppeln. Damit ist eine gute Wärmeübertragung vom Leistungsbauteil der Elektronik in das metallische Motorengehäuse gewährleistet. Eine weitere deutliche Verbesserung der Kühlung der Elemente der Steuerelektronik lässt sich erreichen, wenn die metallische Kühlwand ihrerseits zusätzlich aktiv gekühlt wird. In der erfindungsgemäßen Motorpumpe wird aus diesem Grund ein Teil des zu pumpenden Fluids an der Kühlwand motorseitig vorbeigeführt. Eine derartige Kühlung ist möglich, da die zu erwartenden Kühlwassertemperaturen des Verbrennungsmotors unter den Umgebungstemperaturen zu liegen kommen. Zur Kühlung der Metallwand ist in dem Pumpenkopf eine druckseitge Öffnung vorgesehen, die über einen Kanal in der gemeinsamen Welle des Elektromotors mit dem Pumpenrad eine Verbindung zur Saugseite der Pumpe schaff . Somit liegt über dem Rotor die volle Druckdifferenz der Pumpe an, so dass ein Sekundärstrom des zu pumpenden Fluids, der genau an der Kühlfläche des Motorengehäuses vorbeigeführt wird, realisiert worden ist.
Vorteilhafter Weise wird der Elektromotor zwischen dem Schaltteil mit der Leistungselektronik und dem Pumpenkopf angeordnet. Dies ermöglicht eine kompakte, platzsparende Konstruktion der erfindungsgemäßen Motorpumpe. Ein elektronisch kommutierte Gleichstrommotor, der die Pumpe antreiben kann, gewährleistet eine exakte Regelung des Kühlmitteldurchflusses, beispielsweise eines Kühl- beziehungsweise Heizkreislaufs eines Kraftfahrzeugs mit Verbrennungsmotor. Dies wiederum ermöglicht eine genau angepasste Wärmeabfuhr und damit unter anderem auch einen optimalen Wirkungsgrad und Kraf stoffverbrauch des Fahrzeugmotors .
Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt, dass in der nachfolgenden Beschreibung näher erläutert wird. Es zeigen :
Figur 1 einen Längsschnitt durch eine erfindungsgemäße, elektromotorisch angetriebene Pumpe,
Figur 2 einen Querschnitt durch den Stator des Elektromotors der erfindungsgemäßen, elektromotorisch angetriebenen Pumpe und
Figur 3 eine Detailansicht des Stators der erfindungsgemäßen, elektromotorisch angetriebenen Pumpe.
Beschreibung des Ausführungsbeispiels
Das in der Figur 1 im Längsschnitt dargestellte Ausführungsbeispiel einer erfindungsgemäßen, elektromotorisch angetriebenen Pumpe 10 besteht aus einem Pumpenkopf 12, der von einem bürstenlosen, elektronisch kommutierten Elektromotor 14 angetrieben wird und einem Schaltteil 16 zur Steuerung des Elektromotors 14.
Der Pumpenkopf 12 besitzt ein Pumpengehäuse 18, in dem sich ein auf einer Antriebswelle 20 befestigtes Laufrad 22 in einem Pumpenraum 11 befindet. Das Laufrad 22 ist mit Schaufeln 24 zum Transport und zur Druckerhöhung einer umzupumpenden Flüssigkeit versehen. In das Pumpengehäuse 18 hinein führt eine Öffnung 26 zum Ansaugen der Flüssigkeit in Richtung des Pfeils 28. Ferner weist das Pumpengehäuse eine in der Figur 1 nicht vollständig dargestellte Austrittsöffnung 30 auf der Druckseite der Pumpe auf. Die Ansaugöffnung 26 mündet auf die Schaufeln 24 des Laufrades 22 der Pumpe 10. Das Pumpengehäuse 18 ist im dargestellten Ausführungsbeispiel der erfindungsgemäßen Motorpumpe 10 über einen Flansch 32 mit einem Motorengehäuse 34 verbunden und über einen O-Ring 36, der sich zwischen den beiden Gehäuseteilen befindet, abgedichtet. Zur stabilen Verbindung des Pumpenkopfs 12 mit dem Motorengehäuse 30 sind verschiedene Möglichkeiten der Befestigung denkbar, von denen hier nur das Verschrauben, Vernieten, Verkleben beispielhatf genannt werden sollen.
Der Elektromotor 14 der erfindungsgemäßen Pumpe 10 besitzt einen im Motorengehäuse 34 angeordneten Rotor 38 und einen in radialer Richtung den Rotor 38 umgreifenden Stator 40. Der Stator 40 besteht aus einem Kunststoff- Trägerteil 42, in das mehrere, die Statorpole bildende Weicheisenzähne 44 direkt eingespritzt sind. Diese Weicheisenzähne sind beispielsweise in Form von Blechlamellen-Paketen 46 - wie in der Figur 1 angedeutet - ausgebildet.
Figur 2 zeigt einen Querschnitt durch den Stator 40. Zu erkennen ist das Kunststoff-Trägerteil 42 und die darin eingespritzten Polzähne 44. Das Kunststoff-Trägerteil 42 bildet auf seiner, dem Rotor 38 (in Figur 2 der Übersicht halber nicht eingezeichnet) zugewandten Innenseite 48 eine vollständig geschlossene Kunststoffummantelung 50 des Stators 40. Die Kunststoffummantelung 50 ist derart ausgestaltet, dass sie den innen, d.h. im Zwischenraum 52 des Kunststoff-Trägerteils 42 liegenden Rotor 38 zum Stator 40 hin abdichtet. Die Kunststoffummantelung 50 der Statorpolzähne 44 dient nicht nur als eine Dichtwand 51 für den Stator sondern auch als Trägerform und Wickelkörper 54 für die Wicklungen 56 der Statorspulen 58.
Figur 3 zeigt in einem Ausschnitt eine mögliche Realisierung der Trägerform 54 für die Wicklungen 56 des Stators 40. Die Kunststoffummantelung 50 der Polzähne 44 ist so ausgeformt, dass sich eine stabile Aufnahme für die Wicklungen 56 der Spule 58 ergibt. Zusätzliche Kontakttaschen 60 für den Wicklungsdraht 62 lassen sich - wie in Figur 3 dargestellt - ebenso wie weitere benötigte Halterungen direkt am Kunststoff-Trägerteil 42 des Stators 40 durch einen formbildenden Prozess ausformen.
Der Stator 40 mit seinem Kunststoff-Trägerteil 42 ist in axialer Richtung an einer Wand 64 des Motorengehäuses 34 verdrehsicher befestigt und zusätzlich über Dichtelemente 66 gegenüber dem Motorengehäuse 34 abgedichtet. Die dem Pumpenkopf 12 abgewandte Wand 64 des Motorengehäuses 34 ist in dem gezeigten Ausführungsbeispiel einstückig mit dem Motorengehäuse 34 ausgeführt und besitzt mehrere - im Ausführungsbeispiel als Zapfen 68 ausgeführte - Halterungen zur Fixierung des Stators 40. Die Gehäusewand 64 weist zudem eine Anzahl von Durchführungen 70 für eine oder auch mehrere elektrische Verbindungen 72 des Elektromotors 14 mit dem Schaltteil 16 auf. Die Gehäusewand 64 kann vorzugsweise - ebenso wie das Motorengehäuse 34 - aus Metall gefertigt sein, um die Kräfte und Momente des Motors besser aufnehmen zu können und eine sichere Befestigung des Stators 40 zu garantieren. Auch aus Wärmeübertragungsgründen bietet sich hier eine Metallwand als Kühlwand 65 an. Die Gehäusewand 64 besitzt zusätzlich eine - im Ausführungsbeispiel einstückig ausgeführte - Halterung 74, in die ein erstes Lager 76 der Motorwelle 20 gesetzt ist.
Der vom Kunststoff-Trägerteil 42 ummantelte Innenraum 52 des Stators 40 und der entsprechend überdeckte Bereich der Gehäusewand 64 des Motorgehäuses 34 bilden erfindungsgemäß einen becherförmigen Raum 78, in dem der Rotor 38 des Elektromotors 14 umläuft. Der Rotor 38 sitzt fest auf einer Welle, die in diesem Ausführungsbeispiel auch die Antriebswelle 20 des Pumpenlaufrades 22 ist. Der Rotor 38 trägt in axialer Richtung Permanentmagnete 80, die über seinen gesamten Umfang gleichmäßig verteilt sind. Der einen Rotorraum 82 bildende becher örmige Raum 78 ist in radialer Richtung gerade so groß, dass die achsfernen Teile des Rotors in unmittelbarer Nähe der Innenseite 48 der Kuns s offummantelung 50 des Stators 40 umlaufen, diese aber nicht berühren. Durch die erfindungsgemäße Kunststoffummantelung 50 am Stator 40 ist es möglich den Spalt zwischen dem Stator und dem Rotor 38 des Elektromotors 14 sehr gering zu halten.
Der Rotorraum 82 ist zum Pumpenkopf 12 hin durch eine Wand 84 und Dichtelemente 86 abgeschlossen. Die Wand 84 des Rotorraumes 82 trägt ein zweites Lager 88 für die Antriebswelle 20 der Pumpe 10. Zudem weist die pumpenkopfseitige Wand 84 eine Öffnung 90 zur Druckseite der Pumpe 10 hin auf.
Durch die druckseitige Öffnung 90 der pumpenkopfseifigen Rotorraumwand 84 kann eine Teil des zu fördernden Fluids in den Rotorraum 82 gelangen und den Rotor 38 sowie im Speziellen die Lager 76 und 88 der Antriebswelle 20 umspülen und kühlen. Die in den Rotorraum 82 gelangte Flüssigkeit fließt dabei auch an der schaltteilseitigen Motorgehäusewand 64 entlang und kühlt diese ebenfalls. Durch einen Kanal 92 in der gemeinsamen Antriebswelle 20 des Motors 14 und des Pumpenkopfes 12 gelangt die Flüssigkeit anschließend in Richtung des Pfeils 94 wieder aus dem Rotorraum 82 heraus und in den Bereich der saugseitigen Öffnung 90 des Pumpenkopfes 12.
Auf der dem Pumpenkopf 12 abgewandten Seite des Motorengehäuses 34 befindet sich das Schaltteil 16 zur Steuerung und Regelung der er indungsgemäßen Pumpe 10. Das Schaltteil 16 ist im dargestellten Ausführungsbeispiel einstückig mit dem Motorengehäuse 34 verbunden und teilt sich mit diesem in vorteilhafter Weise die Gehäusewand 64. Auf der dem Motor 14 abgewandten Seite der Gehäusewand 64 sind Leistungselemente 96 der Schaltelektronik 98 des Elektromotors 14 befestigt. Diese Leistungselemente 96, die beispielsweise Transistoren sein können, sind im Ausführungsbeispiel direkt auf die Gehäusewand 64 aufgebracht, so dass sich eine gute Wärmeleitfähigkeit zwischen diesen elektronischen Komponenten des Schaltteils 16 und der Wand 64 ergibt. Die von der Elektronik 98 erzeugte Wärme kann schnell an die - im Ausführungsbeispiel metallische - Gehäusewand 64 abgegeben werden. Es ist aber auch vorstellbar, die zu kühlenden Bauteile des Schaltelements 16 über Federn an die Gehäusewand 64 zu drücken. Auch das direkte Aufkleben mit einem elektrisch isolierendem Kleber zur thermischen Ankopplung der elektronischen Bauteile 98 an die Kühlwand 64 ist möglich.
Die Gehäusewand 64 wird zudem motorseitig von der umzupumpenden Flüssigkeit zumindest teilweise umströmt, so dass sich erfindungsgemäß eine wesentlich verbesserte Wärmeabfuhr für die Komponenten des Schaltteils 16 ergibt.
Das Schaltteil 16 selbst ist über einen Deckel 100, der im Ausführungsbeispiel direkt auf das Motorengehäuse 34 der Pumpe 10 aufgebracht ist, zu verschließen. Der Deckel 100 kann aufgesteckt, verschraubt, vernietet, verklebt oder mit einer anderen entsprechenden Technik am Motorengehäuse 34 sicher und gegebenenfalls reversibel befestigt werden. Der Deckel 100 des Schaltteils 16 trägt im dargestellten Ausführungsbeispiel einen Anschluss 102 für die externe Spannungsversorgung der erfindungsgemäßen Motorpumpe 10.
Die Erfindung ist nicht auf das beschriebene Ausführungsbeispiel einer elektromotorisch angetriebenen Pumpe beschränkt . Im Speziellen lässt sich auch eine einstückig mit dem Stator verbundene Dichtwand vorteilhaft verwenden.

Claims

Ansprüche
1. Pumpe mit einem Pumpenkopf (12), der einen Pumpenraum (11) aufweist, mit einem den Pumpenkopf (12) antreibenden Elektromotor (14) , der einen Stator (40) und einen Rotor (38) aufweist, wobei der Rotor (38) mit dem Pumpenkopf (12) verbunden ist und in einem zum Pumpenraum (11) hin geöffneten Rotorraum (82) angeordnet ist, dadurch gekennzeichnet, dass der Stator (40) radial um den Rotorraum (82) herum angeordnet ist, und der Rotorraum (82) durch eine zum Stator (40) gehörige Dichtwand (51) und mindestens eine Wand (64) des Pumpengehäuses (18) gegen den Pumpenraum (11) hin abgedichtet ist .
2. Pumpe nach Anspruch 1, dadurch gekennzeichnet, dass der Pumpenkopf (12), der Elektromotor (14) und ein elektronisches Schaltteil (16) zur Steuerung des Elektromotors (14) in einem gemeinsamen, insbesondere dreiteiligen Pumpengehäuse (18) angeordnet sind.
3. Pumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest eine den Rotorraum (82) begrenzende Wand (64) einstückig mit einem Motorengehäuse (34) des Elektromotors (14) ausgeführt ist.
4. Pumpe nach Anspruch 3, dadurch gekennzeichnet, dass die den Rotorraum (82) in radialer Richtung begrenzende und zum Stator (40) gehörige Dichtwand (51) den Rotorraum (82) über elastische Dichtmittel { 66 ) abdichtet.
5. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die den Rotorraum (82) in radialer Richtung begrenzende Dichtwand (51) fest mit dem Stator (40) verbunden ist .
6 . Pumpe nach Anspruch 5, dadurch gekennzeichnet, dass die Dichtwand (51) von einer in Umfangsrichtung des Rotorraums
(82) vollständig geschlossenen Ummantelung (50) des Stators (40) gebildet ist.
7. Pumpe nach Anspruch 6, dadurch gekennzeichnet, dass die in Umfangsrichtung des Rotorraums (82) vollständig geschlossene Ummantelung (50) des Stators (40) aus Kunststoff besteht.
8. Pumpe nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass in die Ummantelung (50) des Stators (40) Polzähne (44) des Stators (40) eingespritzt sind.
9. Pumpe nach Anspruch 7 oder 8, dadurch gekennzeichnet, das die Kunststoffummantelung (50) des Stators (40) derart geformt ist, dass sie als Wickelkörper (54) für Statorwicklungen (56) dient .
10. Pumpe nach einem der vorhergehenden Ansprüche, dadurch; gekennzeichnet, dass der Stator (40) mit der Wand (64) des Motorengehäuses (34) verbunden ist.
11. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine das Schaltteil (16) einschließende Wand (64) einstύckig mit dem Motorengehäuse (34) ausgeführt ist.
12. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Elektronikbauteil ( 96 ) des Schaltteils (16) an einer von einem Fördermedium gekühlten Kühlwand (65) angeordnet ist.
13. Pumpe nach Anspruch 11 und 12, dadurch gekennzeichnet, dass die Kühlwand (65) eine Wand (64) des Motorengehäuses (34) ist .
14. Pumpe nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass ein Volumenstrom des Fördermediums von der Druckseite des Pumpenkopfes (12) an der Kühlwand (65) vorbei zu der Saugseite des Pumpenkopfes (12) fließt.
15. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektronische Schaltteil (16) an der dem Pumpenkopf (12) entgegengesetzten Seite des Motorengehäuses (34) angebracht ist.
16. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Welle des Elektromotors (14) gleichzeitig Antriebswelle (20) des Pumpenkopfes (12) ist.
17. Pumpe nach Anspruch 16, dadurch gekennzeichnet, dass das
Fördermedium durch einen Kanal (92) in der Antriebswelle (20) des Motors (14) zur Saugseite fließt.
18. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektromotor (14) ein elektronisch kommutierter Gleichstrommotor ist.
19. Pumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpe eine Wasserpumpe für den Einsatz in Kraftfahrzeugen ist.
20. Verfahren zur Herstellung einer Pumpe (10), insbesondere einer Flüssigkeitspumpe für den Kühl- bzw. Heizkreislauf eines Kraftfahrzeuges wobei die Pumpe (10) einen Pumpenkopf (12) und einen Elektromotor (14) mit einem Stator (40) und einem Rotor (38) aufweist, dadurch gekennzeichnet, dass der Stator (40) des den Pumpenkopf (12) antreibenden Elektromotors (14) durch Umspritzen von Statorpolzahnen (44) insbesondere mit einem Kunststoff hergestellt wird, und dass beim Einspritzen der Statorpolzähne (44) in den Kunststoff die Kunststoffummantelung (50) derart ausgeformt wird, dass die Statorpolzähne (44) verdrehsicher und fest in der Kunststoffummantelung (50) zu sitzen kommen, die Kunststoffummantelung (50) als Träger (54) der Statorwicklungen (56) ausgeformt wird, und die Kunststoffummantelung (50) den Stator (40) gegen den zum Fördermedium hin geöffneten Rotorraum (82) des Elektromotors (14) abdichten kann.
PCT/DE2001/003624 2000-10-25 2001-09-20 Elektromotorisch angetriebene pumpe und verfahren zur herstellung einer solchen pumpe WO2002035098A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/168,902 US20040062664A1 (en) 2000-10-25 2001-09-20 Pump driven by an electromotor and method for producing a pump of this type
ES01980182T ES2305115T3 (es) 2000-10-25 2001-09-20 Bomba propulsada por medio de un motor electrico y procedimiento para la fabricacion de una bomba de este tipo.
DE50114041T DE50114041D1 (de) 2000-10-25 2001-09-20 Elektromotorisch angetriebene pumpe und verfahren zur herstellung einer solchen pumpe
EP01980182A EP1328731B1 (de) 2000-10-25 2001-09-20 Elektromotorisch angetriebene pumpe und verfahren zur herstellung einer solchen pumpe
JP2002538051A JP2004512462A (ja) 2000-10-25 2001-09-20 電動モータにより駆動されるポンプおよびこのようなポンプを製造するための方法
KR1020027008193A KR20020064360A (ko) 2000-10-25 2001-09-20 전기 모터 구동식 펌프 및 펌프 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10052797.3 2000-10-25
DE10052797A DE10052797A1 (de) 2000-10-25 2000-10-25 Elektromotorisch angetriebene Pumpe und Verfahren zur Herstellung einer solchen Pumpe

Publications (1)

Publication Number Publication Date
WO2002035098A1 true WO2002035098A1 (de) 2002-05-02

Family

ID=7660955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/003624 WO2002035098A1 (de) 2000-10-25 2001-09-20 Elektromotorisch angetriebene pumpe und verfahren zur herstellung einer solchen pumpe

Country Status (7)

Country Link
US (1) US20040062664A1 (de)
EP (1) EP1328731B1 (de)
JP (1) JP2004512462A (de)
KR (1) KR20020064360A (de)
DE (2) DE10052797A1 (de)
ES (1) ES2305115T3 (de)
WO (1) WO2002035098A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095982A1 (de) * 2006-02-23 2007-08-30 Wilo Ag Motorkreiselpumpe
EP1865202A2 (de) * 2006-06-08 2007-12-12 Oase GmbH Wasserpumpe für insbesondere Teiche, Aquarien, Springbrunnen und dergleichen
WO2011066815A3 (de) * 2009-12-03 2012-04-19 Hanning Elektro-Werke Gmbh & Co. Kg Elektromotor sowie verfahren zur herstellung eines stators
EP2730785A1 (de) * 2012-11-07 2014-05-14 Pierburg Pump Technology GmbH Elektrische Automobil-Flüssigkeitspumpe
WO2014124975A3 (de) * 2013-02-13 2014-10-30 Mahle International Gmbh Elektrische fluidpumpe
DE102017214997A1 (de) * 2017-08-28 2019-02-28 Mahle International Gmbh Elektrische Fluidpumpe
EP3770434A4 (de) * 2018-05-28 2021-12-15 Zhejiang Sanhua Intelligent Controls CO., Ltd. Elektronische ölpumpe

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254670A1 (de) * 2002-11-22 2004-06-24 Minebea Co., Ltd. Elektromotor für einen Pumpenantrieb
EP1748536A1 (de) * 2005-07-30 2007-01-31 ThyssenKrupp Aufzugswerke GmbH Elektromotor
DE102007016255B4 (de) * 2006-04-28 2012-11-29 Bühler Motor GmbH Kreiselpumpe
DE102006049292A1 (de) * 2006-10-19 2008-04-30 Wilo Ag Spaltrohrmotor
US20080112824A1 (en) * 2006-11-09 2008-05-15 Nidec Shibaura Corporation Pump
CN101666279B (zh) * 2008-09-03 2014-02-19 德昌电机(深圳)有限公司 燃料泵
US8122867B2 (en) * 2008-11-17 2012-02-28 GM Global Technology Operations LLC Engine with oil pump muffler and noise damper
KR101072328B1 (ko) * 2009-11-19 2011-10-11 현대자동차주식회사 전기식 워터 펌프
KR101134968B1 (ko) * 2009-11-19 2012-04-09 현대자동차주식회사 전기식 워터 펌프
KR101134970B1 (ko) * 2009-11-19 2012-04-09 현대자동차주식회사 전기식 워터 펌프
KR101134969B1 (ko) 2009-11-19 2012-04-09 현대자동차주식회사 전기식 워터 펌프의 고정자 제작 방법
KR101072327B1 (ko) 2009-11-19 2011-10-11 현대자동차주식회사 전기식 워터 펌프
WO2011131251A1 (de) * 2010-04-19 2011-10-27 Pierburg Pump Technology Gmbh Elektrische kfz-kühlmittelpumpe
KR101237022B1 (ko) * 2010-05-19 2013-02-25 주식회사 아모텍 완전 방수구조를 갖는 유체 펌프
KR101237020B1 (ko) * 2010-05-19 2013-02-25 주식회사 아모텍 완전 방수구조를 갖는 유체 펌프
KR101256198B1 (ko) * 2010-11-10 2013-04-19 주식회사 아모텍 자동차용 워터 펌프
DE102010062137A1 (de) * 2010-11-29 2012-05-31 Mahle International Gmbh Flüssigkeitsfördereinrichtung
DE102011075097A1 (de) 2011-05-02 2012-11-08 Krones Aktiengesellschaft Vorrichtung zum Bewegen eines Fluids
WO2013139628A1 (de) 2012-03-19 2013-09-26 Ixetic Bad Homburg Gmbh Pumpenanordnung
KR101481627B1 (ko) 2012-06-11 2015-01-14 주식회사 아모텍 워터 펌프
JP6057566B2 (ja) * 2012-07-04 2017-01-11 基益企業股▲ふん▼有限公司 流体ポンプ
DE102012222358A1 (de) * 2012-12-05 2014-06-05 Mahle International Gmbh Elektrische Flüssigkeitspumpe
SE536824C2 (sv) * 2012-12-14 2014-09-23 Xylem Ip Man S R L Kylarrangemang hos pump avsedd för pumpning av vätska
DE102013211848A1 (de) 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus mindestens zwei unterschiedlichen versinterbaren Materialien
DE102013211844A1 (de) * 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus einem magnetischen und einem nichtmagnetischen Material
DE102013017975A1 (de) * 2013-11-29 2015-06-03 Fte Automotive Gmbh Elektromotorisch angetriebene Flüssigkeitspumpe, insbesondere zur Zwangsschmierung eines Schaltgetriebes für Kraftfahrzeuge
US10236750B2 (en) 2014-02-14 2019-03-19 Mitsubishi Electric Corporation Rotating electric machine with a built-in control device and electric power assist steering system
DE102014004121A1 (de) 2014-03-24 2015-09-24 Heraeus Deutschland GmbH & Co. KG Pumpengehäuse aus mindestens drei unterschiedlichen versinterbaren Materialien
CN105322730B (zh) * 2014-07-28 2017-09-15 江门市地尔汉宇电器股份有限公司 一种永磁同步电机及其制备方法
BR102014021617B1 (pt) * 2014-09-01 2023-04-11 Mundial S/A Produtos De Consumo Motobomba de mancal flutuante arrefecida por um fluido circulante
DE212016000048U1 (de) * 2015-02-04 2017-10-05 Industrie Saleri Italo S.P.A. Pumpengruppe mit gekühlter elektronischer Steuervorrichtung
CN106151054B (zh) * 2015-03-26 2019-12-13 浙江三花汽车零部件有限公司 电驱动泵
WO2017000990A1 (de) * 2015-06-30 2017-01-05 Pierburg Pump Technology Gmbh Pumpengehäuse mit befestigungsstruktur
CN106481567B (zh) * 2015-08-26 2020-10-16 德昌电机(深圳)有限公司 电动液泵
JP6576773B2 (ja) * 2015-09-30 2019-09-18 日本電産サンキョー株式会社 ポンプ装置
DE102016201967A1 (de) * 2016-02-10 2017-08-10 Robert Bosch Gmbh Stator für eine elektrische Maschine, insbesondere für einen Innenäulfer-Elektromotor
CN107269545A (zh) 2016-04-06 2017-10-20 德昌电机(深圳)有限公司 泵机
DE102017104837A1 (de) * 2017-03-08 2018-09-13 HELLA GmbH & Co. KGaA Pumpe
DE102017105089A1 (de) 2017-03-10 2018-09-13 Kolektor Group D.O.O. Elektromotor
DE102017214998A1 (de) 2017-08-28 2019-02-28 Mahle International Gmbh Fluidpumpe und Verfahren zur Montage der Fluidpumpe
CN110541819B (zh) * 2018-05-28 2020-11-20 杭州三花研究院有限公司 电子油泵
DE102018214079A1 (de) * 2018-08-21 2020-02-27 Continental Automotive Gmbh Fluidpumpenanordnung
CN109026682A (zh) * 2018-09-11 2018-12-18 江阴爱尔姆真空设备有限公司 一种转子的新型结构及其制造工艺
DE102018219253A1 (de) * 2018-11-12 2020-05-14 KSB SE & Co. KGaA Elektromotor
AT522208A1 (de) * 2019-03-13 2020-09-15 Melecs Ews Gmbh Elektrische Maschine
TWI704291B (zh) * 2019-08-12 2020-09-11 訊凱國際股份有限公司 磁驅泵浦
KR102221809B1 (ko) * 2019-09-16 2021-03-03 주식회사 코아비스 제어부 일체형 모터 및 이를 포함한 워터 펌프
US11959494B2 (en) * 2020-11-04 2024-04-16 Gecko Alliance Group Inc. Water-cooled pump assembly for bathing unit system and pump assembly for bathing unit system with mounting brackets
DE102021108178A1 (de) 2021-03-31 2022-10-06 HELLA GmbH & Co. KGaA Stator für einen Motor einer Pumpe, Motor mit diesem Stator und Pumpe mit diesem Motor
WO2023001370A1 (en) 2021-07-21 2023-01-26 Pierburg Pump Technology Gmbh Automotive electric side-channel liquid pump with motor cooling
DE102022205009A1 (de) 2022-05-19 2023-11-23 Robert Bosch Gesellschaft mit beschränkter Haftung Pumpenvorrichtung und Pumpe
US11781566B1 (en) * 2022-11-23 2023-10-10 Coavis Water pump and manufacturing method thereof
WO2024173396A1 (en) * 2023-02-13 2024-08-22 The Gorman-Rupp Company Explosion proof motor, pump system, and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264653A (en) * 1964-09-18 1966-08-02 Taco Inc Pump
US3395644A (en) * 1966-06-16 1968-08-06 Sta Rite Products Inc Motor pump unit
DE3822897A1 (de) * 1988-07-06 1990-01-11 Webasto Ag Fahrzeugtechnik Umwaelzpumpe
JPH07208380A (ja) * 1994-01-12 1995-08-08 Tgk Co Ltd 送水ポンプ
EP0844723A2 (de) * 1996-11-25 1998-05-27 Flender Austria Antriebstechnik Aktiengesellschaft Elektromotorisch angetriebene Pumpe
EP0713282B1 (de) 1994-10-27 1998-08-26 WILO GmbH Spaltrohrmotor
EP0778649B1 (de) 1995-12-07 1999-06-09 Pierburg Aktiengesellschaft Pumpe-Motoreinheit
DE19845864A1 (de) * 1998-10-05 2000-04-06 Wilo Gmbh Spaltrohrmotor
DE19903817A1 (de) * 1999-02-02 2000-08-10 Bosch Gmbh Robert Kühlwasserpumpe

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1957380A (en) * 1930-08-05 1934-05-01 Barlow Wilfrid Induction motor
US2695969A (en) * 1950-08-31 1954-11-30 Singer Mfg Co Stator core construction for dynamoelectric machines
US3135211A (en) * 1960-09-28 1964-06-02 Integral Motor Pump Corp Motor and pump assembly
US3225698A (en) * 1963-11-29 1965-12-28 Buffalo Forge Co Hermetic motor-pump construction
US3220350A (en) * 1964-09-03 1965-11-30 Crane Co Motor driven pump
US3827141A (en) * 1972-05-17 1974-08-06 Skf Ind Trading & Dev Method of manufacturing an electric rotary machine
US4025840A (en) * 1975-04-09 1977-05-24 General Electric Company Permanent magnet generator with output power adjustment by means of magnetic shims
DE2644279C3 (de) * 1976-09-30 1980-11-06 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ständer für einen Mehrphasen-Elektromotor
US4131988A (en) * 1976-10-29 1979-01-02 The Globe Tool And Engineering Company Method of manufacturing a dynamoelectric field member
FR2514250A1 (fr) * 1981-10-08 1983-04-15 Artus Piece a main a moteur integre
JP2633826B2 (ja) * 1985-10-09 1997-07-23 株式会社日立製作所 回転ヘッド装置
DE3642726A1 (de) * 1986-12-13 1988-06-23 Grundfos Int Drehzahlgeregeltes pumpenaggregat
DE4222394C1 (de) * 1992-07-08 1993-12-09 Grundfos A S Bjerringbro Motorpumpe
US5306976A (en) * 1993-01-29 1994-04-26 General Electric Company Motor and stationary assembly therefor having end caps and overlapping film slot insulation
US5895207A (en) * 1993-06-17 1999-04-20 Itt Automotive Europe, Gmbh Electric motor-pump assembly
IT1279098B1 (it) * 1995-01-10 1997-12-04 Bitron Spa Perfezionamenti a motori di tipo brushless, in particolare per il pilotaggio diretto del cestello delle lavatrici
DE19702723A1 (de) * 1997-01-27 1998-08-06 Grundfos As Naßlaufender Tauchmotor zum Antreiben einer Kreiselpumpe
JPH10238491A (ja) * 1997-02-26 1998-09-08 Nikkiso Co Ltd キャンドモータポンプ
US6011331A (en) * 1997-04-22 2000-01-04 Emerson Electric Co. Electric motor having an improved airflow cooling system
US5997261A (en) * 1997-10-31 1999-12-07 Siemens Canada Limited Pump motor having fluid cooling system
US6129528A (en) * 1998-07-20 2000-10-10 Nmb Usa Inc. Axial flow fan having a compact circuit board and impeller blade arrangement
DE19904148C1 (de) * 1999-02-03 2000-10-12 Pierburg Ag Elektrische Förderpumpe
DE19956380C1 (de) * 1999-11-24 2001-01-04 Bosch Gmbh Robert Flüssigkeitspumpe mit einem Motorgehäuse und Verfahren zur Herstellung eines Motorgehäuses
US6447269B1 (en) * 2000-12-15 2002-09-10 Sota Corporation Potable water pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264653A (en) * 1964-09-18 1966-08-02 Taco Inc Pump
US3395644A (en) * 1966-06-16 1968-08-06 Sta Rite Products Inc Motor pump unit
DE3822897A1 (de) * 1988-07-06 1990-01-11 Webasto Ag Fahrzeugtechnik Umwaelzpumpe
JPH07208380A (ja) * 1994-01-12 1995-08-08 Tgk Co Ltd 送水ポンプ
EP0713282B1 (de) 1994-10-27 1998-08-26 WILO GmbH Spaltrohrmotor
EP0778649B1 (de) 1995-12-07 1999-06-09 Pierburg Aktiengesellschaft Pumpe-Motoreinheit
EP0844723A2 (de) * 1996-11-25 1998-05-27 Flender Austria Antriebstechnik Aktiengesellschaft Elektromotorisch angetriebene Pumpe
DE19845864A1 (de) * 1998-10-05 2000-04-06 Wilo Gmbh Spaltrohrmotor
DE19903817A1 (de) * 1999-02-02 2000-08-10 Bosch Gmbh Robert Kühlwasserpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 11 26 December 1995 (1995-12-26) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095982A1 (de) * 2006-02-23 2007-08-30 Wilo Ag Motorkreiselpumpe
EP1987579B1 (de) 2006-02-23 2017-03-15 Wilo Se Motorkreiselpumpe
EP1865202A2 (de) * 2006-06-08 2007-12-12 Oase GmbH Wasserpumpe für insbesondere Teiche, Aquarien, Springbrunnen und dergleichen
EP1865202A3 (de) * 2006-06-08 2008-06-04 Oase GmbH Wasserpumpe für insbesondere Teiche, Aquarien, Springbrunnen und dergleichen
WO2011066815A3 (de) * 2009-12-03 2012-04-19 Hanning Elektro-Werke Gmbh & Co. Kg Elektromotor sowie verfahren zur herstellung eines stators
US10119544B2 (en) 2012-11-07 2018-11-06 Pierburg Pump Technology Gmbh Automotive electric liquid pump
EP2730785A1 (de) * 2012-11-07 2014-05-14 Pierburg Pump Technology GmbH Elektrische Automobil-Flüssigkeitspumpe
WO2014072360A1 (en) * 2012-11-07 2014-05-15 Pierburg Pump Technology Gmbh Automotive electric liquid pump
WO2014124975A3 (de) * 2013-02-13 2014-10-30 Mahle International Gmbh Elektrische fluidpumpe
DE102017214997A1 (de) * 2017-08-28 2019-02-28 Mahle International Gmbh Elektrische Fluidpumpe
US11156222B2 (en) 2017-08-28 2021-10-26 Mahle International Gmbh Electric fluid pump
EP3770434A4 (de) * 2018-05-28 2021-12-15 Zhejiang Sanhua Intelligent Controls CO., Ltd. Elektronische ölpumpe
US11725652B2 (en) 2018-05-28 2023-08-15 Zhejiang Sanhua Intelligent Controls Co., Ltd Electric oil pump

Also Published As

Publication number Publication date
EP1328731A1 (de) 2003-07-23
DE10052797A1 (de) 2002-05-08
KR20020064360A (ko) 2002-08-07
EP1328731B1 (de) 2008-06-18
US20040062664A1 (en) 2004-04-01
JP2004512462A (ja) 2004-04-22
DE50114041D1 (de) 2008-07-31
ES2305115T3 (es) 2008-11-01

Similar Documents

Publication Publication Date Title
EP1328731B1 (de) Elektromotorisch angetriebene pumpe und verfahren zur herstellung einer solchen pumpe
DE102011001041B4 (de) Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren
EP1149245B1 (de) Flüssigkeitspumpe mit einem motorgehäuse und verfahren zur herstellung eines motorgehäuses
DE4415031C1 (de) Hydrodynamische Einrichtung als Heizgenerator für ein Kraftfahrzeug
DE60218006T2 (de) Eingetauchte, elektrische Fluidpumpe
EP2072825A2 (de) Kühlmittelpumpe
DE10017091A1 (de) Motorenbetriebener Kompressor
EP0520333A1 (de) Pumpenaggregat
DE19545561A1 (de) Pumpe-Motoreinheit
EP1866546B1 (de) Nassläuferpumpe
EP1256722B1 (de) Kreiselpumpe
WO2019174773A1 (de) Baukastensystem eines axial integrierten pumpenaufbaus
EP1085213B1 (de) Nassläuferpumpe mit Montageplatte
DE102017210426B4 (de) Pumpe, insbesondere Getriebeölpumpe
DE19927741B4 (de) Elektrisch angetriebene Fluidpumpenvorrichtung mit Steuerungsschaltung
DE19943577A1 (de) Pumpengehäuse mit integrierter Elektronik
DE10045596B4 (de) Pumpe mit einem elektronisch kommutierten Gleichstrommotor
EP1026811B1 (de) Brensstoff-Elektromotorpumpe
EP1117169B1 (de) Elektronikkühlung durch Spaltrohrdeckel
DE102018126775A1 (de) Elektrische Wasserpumpe mit aktiver Kühlung
EP0713282B1 (de) Spaltrohrmotor
WO2020064812A1 (de) Trockenläuferpumpe mit ringkondensator
DE102017109253B4 (de) Kühlmittelpumpe mit druckausgleichender Medientrennung
WO2013037449A2 (de) Elektromotorisches pumpenaggregat
DE102004047637B4 (de) Elektrisch betriebene Pumpe mit Außenrotor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2001980182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027008193

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 538051

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020027008193

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001980182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10168902

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001980182

Country of ref document: EP