WO2002028425A2 - Methods for treating muscle injuries - Google Patents

Methods for treating muscle injuries Download PDF

Info

Publication number
WO2002028425A2
WO2002028425A2 PCT/US2001/027193 US0127193W WO0228425A2 WO 2002028425 A2 WO2002028425 A2 WO 2002028425A2 US 0127193 W US0127193 W US 0127193W WO 0228425 A2 WO0228425 A2 WO 0228425A2
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
botulinum toxin
neurotoxin
bont
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2001/027193
Other languages
English (en)
French (fr)
Other versions
WO2002028425A3 (en
Inventor
Gregory F. Brooks
Kei Roger Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Allergan Sales LLC
Original Assignee
Allergan Inc
Allergan Sales LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24721759&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002028425(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to BR0114440-5A priority Critical patent/BR0114440A/pt
Priority to CA002424242A priority patent/CA2424242C/en
Priority to MXPA03002576A priority patent/MXPA03002576A/es
Priority to NZ524793A priority patent/NZ524793A/en
Priority to AT01966482T priority patent/ATE477816T1/de
Priority to AU8699101A priority patent/AU8699101A/xx
Priority to EP01966482A priority patent/EP1322324B1/en
Application filed by Allergan Inc, Allergan Sales LLC filed Critical Allergan Inc
Priority to KR1020037004676A priority patent/KR100873819B1/ko
Priority to AU2001286991A priority patent/AU2001286991B2/en
Priority to DE60142839T priority patent/DE60142839D1/de
Priority to DK01966482.0T priority patent/DK1322324T3/da
Priority to JP2002532249A priority patent/JP2004518632A/ja
Publication of WO2002028425A2 publication Critical patent/WO2002028425A2/en
Publication of WO2002028425A3 publication Critical patent/WO2002028425A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • A61K38/4893Botulinum neurotoxin (3.4.24.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/08Clostridium, e.g. Clostridium tetani
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/02Muscle relaxants, e.g. for tetanus or cramps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration

Definitions

  • the present invention relates to methods for treating muscle injuries.
  • the present invention relates to a method for treating an injured muscle by administration of a neurotoxin to the injured muscle.
  • Injuries to muscles include acute injuries to skeletal muscles such as contusions (bruises), lacerations, ischemia, strains, and complete ruptures. These injuries may cause tremendous pain and can incapacitate the affected person, preventing them from being able to go to work or even to participate in normal daily activities.
  • strain also known as stretch-induced injuries
  • strains can account for up to 30% of all injuries treated by occupational or sports medicine professionals. Garrett et al. Am J Sports Med, 24(6):S2-S8, 1996.
  • a muscle strain injury is characterized by a disruption of a muscle- tendon unit. The disruption of the muscle-tendon unit may occur anywhere on the muscle. This type of injury most commonly occurs near the myotendinous junction (MTJ) of the superficial muscles working across two joints, such as the rectus femoris, semitendinousus and gastroenemius muscles.
  • MMTJ myotendinous junction
  • Muscle strain may result from an eccentric exercise, or uncommon use of the muscle.
  • eccentric contractions employ fewer active motor units to generate higher forces.
  • the overextended muscle units experience excessive tension during lengthening.
  • the excessive tension may cause microscopic damages to the contractile element of the muscle, centering on what appears to be random disruptions of the Z-lines.
  • the affected person may experience a delayed onset muscle soreness, characterized by pain, weakness and a limited range of motion. The pain is most intense for about 1 to 2 days after the muscle injury and the weakness and limited range of motion can last for a week or more. If a minor strain of the skeletal muscles is treated inappropriately, a more serious injury can occur.
  • muscle strains There are three classifications of muscle strains, based on the severity of the injury and the nature of the hematoma: (1) mild, (first degree) strain; a tear of a few muscle fibers; minor swelling and discomfort with no or only minimal loss of strength and restriction of movement; (2) moderate, (second degree) strain; a greater damage of muscle fibers with a clear loss of strength, and; (3) severe (third degree) strain; a tear extending across the whole muscle belly, resulting in a total loss of muscle function.
  • mild, (first degree) strain a tear of a few muscle fibers; minor swelling and discomfort with no or only minimal loss of strength and restriction of movement
  • moderate, (second degree) strain a greater damage of muscle fibers with a clear loss of strength
  • severe (third degree) strain a tear extending across the whole muscle belly, resulting in a total loss of muscle function.
  • Intramuscular and intermuscular hematomas Two different types of hematomas occur in the injured muscle: intramuscular and intermuscular hematomas.
  • the first type intramuscular hematomas, is limited in size by the intact muscle fascia. There, the extravasation of blood increases the intramuscular pressure, compressing and limiting the size of the hematoma. Such type of hematoma causes pain and loss of function of the muscle.
  • the second type, intermuscular hematomas develops when the muscle fascia is ruptured and extravasated blood spreads into the intermuscular spaces without significantly increasing the pressure within the muscle. This type of hematoma may not cause significant pain if the pressure within the muscle does not increase.
  • a known method for immobilization of an injured/strained muscle requires use of a physical restraint or cast.
  • a cervical collar can be used to immobilize an injured cervical flexor or extensor.
  • the use of a restraint is often cumbersome and uncomfortable.
  • it is not practical or possible to use a physical restraint for injuries of certain muscle groups, it is not practical or possible to use a physical restraint. For example, it is very difficult to immobilize a strained upper trapezius or gluteus maximus muscle with a restraint.
  • Clostridium botulinum produces a potent polypeptide neurotoxin, botulinum toxin, which causes a neuroparalytic illness in humans and animals referred to as botulism.
  • the spores of Clostridium botulinum are found in soil and can grow in improperly sterilized and sealed food containers of home based canneries, which are the cause of many of the cases of botulism.
  • the effects of botulism typically appear 18 to 36 hours after eating the foodstuffs infected with a Clostridium botulinum culture or spores.
  • the botulinum toxin can apparently pass unattenuated through the lining of the gut and attack peripheral motor neurons. Symptoms of botulinum toxin intoxication can progress from difficulty walking, swallowing, and speaking to paralysis of the respiratory muscles and death.
  • Botulinum toxin type A (“BoNT/A”) is the most lethal natural biological neurotoxin known to man. About 50 picograms of botulinum toxin (purified neurotoxin complex) serotype A is a LD 50 in mice. One unit (U) of botulinum toxin is defined as the LD 50 upon intraperitoneal injection into female Swiss Webster mice weighing 18-20 grams each. Seven immunologically distinct botulinum neurotoxins have been characterized, these being respectively botulinum neurotoxin serotypes A, B, C ⁇ , D, E, F and G each of which is distinguished by neutralization with serotype- specific antibodies.
  • botulinum toxin serotypes vary in the animal species that they affect and in the severity and duration of the paralysis they evoke. For example, it has been determined that BoNt A is 500 times more potent, as measured by the rate of paralysis produced in the rat, than is botulinum toxin serotype B (BoNT/B). Additionally, BoNt/B has been determined to be non-toxic in primates at a dose of 480 U/kg which is about 12 times the primate LD 50 for BoNt A. Botulinum toxin apparently binds with high affinity to cholinergic motor neurons, is translocated into the neuron and blocks the release of acetylcholine.
  • Botulinum toxins have been used in clinical settings for the treatment of neuromuscular disorders characterized by hyperactive skeletal muscles.
  • BoNt/A has been approved by the U.S. Food and Drug Administration for the treatment of blepharospasm, strabismus and hemifacial spasm.
  • Non-serotype A botulinum toxin serotypes apparently have a lower potency and/or a shorter duration of activity as compared to BoNt/A.
  • Clinical effects of intramuscular of a botulinum toxin, such as BoNt/A can be noted in a matter of hours.
  • botulinum toxins can, upon intramuscular injection, produce significant muscle paralysis within one day of the injection, as measured, for example, by the mouse Digit Abduction Score (DAS).
  • DAS Digit Abduction Score
  • the typical duration of symptomatic relief from a single intramuscular injection of BoNt/A averages about three months.
  • Botulinum toxins including botulinum toxin type A, with reduced periods of in vivo biological activity are set forth in co- pending U.S. patent application serial number 09/620840, which application is incorporated herein by reference in its entirety.
  • botulinum toxins serotypes apparently inhibit release of the neurotransmitter acetylcholine at the neuromuscular junction, they do so by affecting different neurosecretory proteins and/or cleaving these proteins at different sites.
  • botulinum serotypes A and E both cleave the 25 kiloDalton (kD) synaptosomal associated protein (SNAP-25), but they target different amino acid sequences within this protein.
  • BoNT/B, D, F and G act on vesicle- associated protein (VAMP, also called synaptobrevin), with each serotype cleaving the protein at a different site.
  • VAMP vesicle- associated protein
  • botulinum toxin serotype Ci (B0NT/C 1 ) has been shown to cleave both syntaxin and SNAP-25. These differences in mechanism of action may affect the relative potency and/or duration of action of the various botulinum toxin serotypes.
  • the molecular mechanism of toxin intoxication appears to be similar and to involve at least three steps or stages.
  • the toxin binds with high affinity to the presynaptic membrane of the target neuron through a specific interaction between the H chain and a cell surface receptor; the receptor is thought to be different for each serotype of botulinum toxin and for tetanus toxin.
  • the carboxyl end segment of the H chain, H c appears to be important for targeting of the toxin to the cell surface.
  • the toxin crosses the plasma membrane of the poisoned cell.
  • the toxin is first engulfed by the cell through receptor- mediated endocytosis, and an endosome containing the toxin is formed. The toxin then escapes the endosome into the cytoplasm of the cell. This last step is thought to be mediated by the amino end segment of the H chain, HN, which triggers a conformational change of the toxin in response to a pH of about 5.5 or lower. Endosomes are known to possess a proton pump which decreases intra endosomal pH. The conformational shift exposes hydrophobic residues in the toxin, which permits the toxin to embed itself in the endosomal membrane. The toxin then translocates through the endosomal membrane into the cytosol.
  • the last step of the mechanism of botulinum toxin activity appears to involve cleavage of the critical intracellular exocytosis proteins by the L chain.
  • the entire toxic activity of botulinum and tetanus toxins is contained in the L chain of the holotoxin; the L chain is a zinc (Zn++) endopeptidase which selectively cleaves proteins essential for recognition and docking of neurotransmitter-containing vesicles with the cytoplasmic surface of the plasma membrane, and fusion of the vesicles with the plasma membrane.
  • VAMP vesicle-associated membrane protein
  • Each toxin specifically cleaves a different bond.
  • the botulinum toxins are released by Clostridial bacterium as complexes comprising the 150 kD botulinum toxin protein molecule along with associated non-toxin proteins.
  • the BoNt/A complex can be produced by Clostridial bacterium as 900 kD, 500 kD and 300 kD forms.
  • BoNT/ B and Ci are apparently produced as only a 500 kD complex.
  • BoNT/D is produced as both 300 kD and 500 kD complexes.
  • BoNT/E and F are produced as only approximately 300 kD complexes.
  • the complexes i.e. molecular weight greater than about 150 kD
  • These two non-toxin proteins may act to provide stability against denaturation to the botulinum toxin molecule and protection against digestive acids when toxin is ingested.
  • botulinum toxin complexes may result in a slower rate of diffusion of the botulinum toxin away from a site of intramuscular injection of a botulinum toxin complex.
  • botulinum toxin inhibits potassium cation induced release of both acetylcholine and norepinephrine from primary cell cultures of brainstem tissue. Additionally, it has been reported that botulinum toxin inhibits the evoked release of both glycine and glutamate in primary cultures of spinal cord neurons and that in brain synaptosome preparations botulinum toxin inhibits the release of each of the neurotransmitters acetylcholine, dopamine, norepinephrine, CGRP and glutamate.
  • BoNt/A can be obtained by establishing and growing cultures of Clostridium botulinum in a fermenter and then harvesting and purifying the fermented mixture in accordance with known procedures. All the botulinum toxin serotypes are initially synthesized as inactive single chain proteins which must be cleaved or nicked by proteases to become neuroactive. The bacterial strains that make botulinum toxin serotypes A and G possess endogenous proteases and serotypes A and G can therefore be recovered from bacterial cultures in predominantly their active form. In contrast, botulinum toxin serotypes C-i, D and E are synthesized by nonproteolytic strains and are therefore typically unactivated when recovered from culture.
  • Serotypes B and F are produced by both proteolytic and nonproteolytic strains and therefore can be recovered in either the active or inactive form.
  • the proteolytic strains that produce, for example, the BoNt/B serotype only cleave a portion of the toxin produced.
  • the exact proportion of nicked to unnicked molecules depends on the length of incubation and the temperature of the culture. Therefore, a certain percentage of any preparation of, for example, the BoNt/B toxin is likely to be inactive, possibly accounting for the known significantly lower potency of BoNt/B as compared to BoNt/A.
  • BoNt/B has, upon intramuscular injection, a shorter duration of activity and is also less potent than BoNt/A at the same dose level.
  • BoNt/A has been used in clinical settings as follows:
  • BOTOX® 1 per intramuscular injection (multiple muscles) to treat cervical dystonia
  • BOTOX® 5-10 units of BOTOX® per intramuscular injection to treat glabellar lines (brow furrows) (5 units injected intramuscularly into the procerus muscle and 10 units injected intramuscularly into each corrugator supercilii muscle);
  • flexor carpi radialis 15 U to 60 U
  • biceps brachii 50 U to 200 U.
  • Each of the five indicated muscles has been injected at the same treatment session, so that the patient receives from 90 U to 360 U of upper limb flexor muscle BOTOX® by intramuscular injection at each treatment session.
  • BoNt/A botulinum toxin serotypes
  • BoNT/A preparations BOTOX ® and Dysport ®
  • BoNT/B and F both obtained from Wako Chemicals, Japan
  • DAS mouse digit abduction scoring assay
  • the therapeutic index was calculated as LD 50 /ED50 Separate groups of mice received hind limb injections of BOTOX ® (5.0 to 10.0 units/kg) or BoNt B (50.0 to 400.0 units/kg), and were tested for muscle weakness and increased water consumption, the later being a putative model for dry mouth. Antigenic potential was assessed by monthly intramuscular injections in rabbits (2.0 or 8.7 Units/kg for BoNt/B or 3.0 Units/kg for BOTOX ® ). Peak muscle weakness and duration were dose related for all serotypes. DAS ED 50 values (units/kg) were as follows: BOTOX ® : 6.7, Dysport ® : 24.7, BoNt/B: 11.8 to 244.0, BoNT/F: 4.3.
  • BOTOX ® had a longer duration of action than BoNt/B or BoNt/F.
  • Therapeutic index values were as follows: BOTOX ® : 10.5, Dysport ® : 6.3, BoNt/B: 4.8. Water consumption was greater in mice injected with BoNt/B than with BOTOX ® , although BoNt/B was less effective at weakening muscles. After four months of injections 2 of 4 (where treated with 1.5 ng/kg) and 4 of 4 (where treated with 6.5 ng/kg) rabbits developed antibodies against BoNt B. In a separate study, 0 of 9 BOTOX ® treated rabbits demonstrated antibodies against BoNt/A.
  • DAS results indicate relative peak potencies of BoNt/A being equal to BoNt/F, and BoNt/F being greater than BoNt/B. With regard to duration of effect, BoNt/A was greater than BoNt/B, and BoNt/B duration of effect was greater than BoNt/F.
  • BoNt/A was greater than BoNt/B
  • BoNt/B duration of effect was greater than BoNt/F.
  • the two commercial preparations of BoNt/A (BOTOX ® and Dysport ® ) are different.
  • the increased water consumption behavior observed following hind limb injection of BoNt/B indicates that clinically significant amounts of this serotype entered the murine systemic circulation.
  • the results also indicate that in order to achieve efficacy comparable to BoNt/A, it is necessary to increase doses of the other serotypes examined. Increased dosage can comprise safety.
  • serotype B was more antigenic than was BOTOX ® , possibly because of the higher protein load injected to achieve
  • the tetanus neurotoxin acts mainly in the central nervous system, while botulinum neurotoxin acts at the neuromuscular junction; both act by inhibiting acetylcholine release from the axon of the affected neuron into the synapse, resulting in paralysis.
  • the effect of intoxication on the affected neuron is long-lasting and until recently has been thought to be irreversible.
  • the tetanus neurotoxin is known to exist in one immunologically distinct serotype. Acetylcholine
  • the neurotransmitter acetylcholine is secreted by neurons in many areas of the brain, but specifically by the large pyramidal cells of the motor cortex, by several different neurons in the basal ganglia, by the motor neurons that innervate the skeletal muscles, by the preganglionic neurons of the autonomic nervous system (both sympathetic and parasympathetic), by the postgangiionic neurons of the parasympathetic nervous system, and by some of the postgangiionic neurons of the sympathetic nervous system.
  • acetylcholine has an excitatory effect.
  • acetylcholine is known to have inhibitory effects at some of the peripheral parasympathetic nerve endings, such as inhibition of the heart by the vagal nerve.
  • the efferent signals of the autonomic nervous system are transmitted to the body through either the sympathetic nervous system or the parasympathetic nervous system.
  • the preganglionic neurons of the sympathetic nervous system extend from preganglionic sympathetic neuron cell bodies located in the intermediolateral horn of the spinal cord.
  • the preganglionic sympathetic nerve fibers extending from the cell body, synapse with postgangiionic neurons located in either a paravertebral sympathetic ganglion or in a prevertebral ganglion. Since, the preganglionic neurons of both the sympathetic and parasympathetic nervous system are cholinergic, application of acetylcholine to the ganglia will excite both sympathetic and parasympathetic postgangiionic neurons. Acetylcholine activates two types of receptors, muscarinic and nicotinic receptors.
  • the muscarinic receptors are found in all effector cells stimulated by the postgangiionic neurons of the parasympathetic nervous system, as well as in those stimulated by the postgangiionic cholinergic neurons of the sympathetic nervous system.
  • the nicotinic receptors are found in the synapses between the preganglionic and postgangiionic neurons of both the sympathetic and parasympathetic.
  • the nicotinic receptors are also present in many membranes of skeletal muscle fibers at the neuromuscular junction. Acetylcholine is released from cholinergic neurons when small, clear, intracellular vesicles fuse with the presynaptic neuronal cell membrane.
  • non-neuronal secretory cells such as, adrenal medulla (as well as the PC12 cell line) and pancreatic islet cells release catecholamines and insulin, respectively, from large dense-core vesicles.
  • the PC12 cell line is a clone of rat pheochromocytoma cells extensively used as a tissue culture model for studies of sympathoadrenal development.
  • Botulinum toxin inhibits the release of both types of compounds from both types of cells in vitro, permeabilized (as by electroporation) or by direct injection of the toxin into the denervated cell.
  • Botulinum toxin is also known to block release of the neurotransmitter glutamate from cortical synaptosomes cell cultures.
  • a neuromuscular junction is formed in skeletal muscle by the proximity of axons to muscle cells.
  • a signal transmitted through the nervous system results in an action potential at the terminal axon, with activation of ion channels and resulting release of the neurotransmitter acetylcholine from intraneuronal synaptic vesicles, for example at the motor endplate of the neuromuscular junction.
  • the acetylcholine crosses the extracellular space to bind with acetylcholine receptor proteins on the surface of the muscle end plate. Once sufficient binding has occurred, an action potential of the muscle cell causes specific membrane ion channel changes, resulting in muscle cell contraction.
  • the acetylcholine is then released from the muscle cells and metabolized by cholinesterases in the extracellular space. The metabolites are recycled back into the terminal axon for reprocessing into further acetylcholine.
  • an effective method for treating an injured muscle includes the step of in vivo, local administration of a therapeutically effective amount of a neurotoxin into or to the vicinity of the injured muscle.
  • the neurotoxin functions to provide a temporary chemodenervation of the injured muscle and to reduce the muscle's contractions.
  • An objective of the present invention is therapy is to facility healing and a speedy return to function of an injured muscle.
  • the injured muscle may be, for example, a strained muscle.
  • the neurotoxin is administered intramuscularly or subcutaneously.
  • the step of administering a neurotoxin is preceded by and/or followed by physical therapy and/or surgery.
  • the step of administering the neurotoxin is immediately after the muscle is injured, or is as soon thereafter as is practical.
  • the neurotoxin is effective to immobilize or to substantially immobilize the injured muscle during at least phase 1 and/or phase 2 of the repair process of the injured muscle.
  • the neurotoxin can include a targeting component, a therapeutic component and a translocation component.
  • the targeting component can bind to a presynaptic motor neuron.
  • the targeting component can comprise a carboxyl end fragment of a heavy chain of a butyricum toxin, a tetani toxin, or of a botulinum toxin type A, B, Ci, D, E, F, G or a variant thereof.
  • the therapeutic component can interfere with or modulate the release of a neurotransmitter from a neuron or its processes.
  • the therapeutic component comprises a light chain of a butyricum toxin, a tetani toxin, or of a botulinum toxin type A, B, C-i, D, E, F, G or a variant thereof.
  • the translocation component can facilitate the transfer of at least a part of the neurotoxin, for example the therapeutic component, into the cytoplasm of the target cell.
  • the translocation component can comprise an amino end fragment of a heavy chain of a butyricum toxin, a tetani toxin, or of a botulinum toxin type A, B, Ci, D, E, F, G or variants thereof.
  • the neurotoxin is a botulinum toxin type A, B, E and/or F.
  • the neurotoxin used to treat an injured muscle is botulinum toxin type A.
  • the use of botulinum toxin type A is preferred because of its commercial availability, known clinical uses, and successful application to treat muscle injury according to the present invention, as disclosed herein.
  • Use of from about 0.1 U/kg to about 30 U/kg of a botulinum toxin type A and from about 1 U/kg to about 150 U/kg of a botulinum toxin type B is within the scope of a method practiced according to the present disclosed invention.
  • the U/kg dosage to be used is within the range of about 0.1 U/kg to about 150 U/kg, as set forth herein.
  • the neurotoxin can be recombinantly produced.
  • a detailed embodiment of the present invention is a method for treating (as by promoting the healing of) an injured muscle by in vivo, local administration of a therapeutically effective amount of a botulinum toxin to an injured muscle, thereby treating the injured muscle.
  • the botulinum toxin can be botulinum toxin type A.
  • the present invention also encompasses a method for treating pain associated with an injured muscle by in vivo, local administration of a therapeutically effective amount of a botulinum toxin to an injured muscle, thereby reducing the pain associated with an injured muscle.
  • Heavy chain means the heavy chain of a clostridial neurotoxin. It preferably has a molecular weight of about 100 kDa and may be referred to herein as H chain or as H.
  • HN means a fragment (preferably having a molecular weight of about 50 kDa) derived from the H chain of a Clostridial neurotoxin which is approximately equivalent to the amino terminal segment of the H chain, or the portion corresponding to that fragment in the intact in the H chain. It is believed to contain the portion of the natural or wild type clostridial neurotoxin involved in the translocation of the L chain across an intracellular endosomal membrane.
  • He means a fragment (about 50 kDa) derived from the H chain of a clostridial neurotoxin which is approximately equivalent to the carboxyl terminal segment of the H chain, or the portion corresponding to that fragment in the intact H chain. It is believed to be immunogenic and to contain the portion of the natural or wild type Clostridial neurotoxin involved in high affinity, presynaptic binding to motor neurons.
  • “Injured muscle” includes a strained, torn or pulled muscle, as well as a muscle with a contusion (bruise), laceration, ischemia or rupture.
  • “Light chain” means the light chain of a clostridial neurotoxin. It preferably has a molecular weight of about 50 kDa, and can be referred to as L chain, L or as the proteolytic domain (amino acid sequence) of a clostridial neurotoxin. The light chain is believed to be effective as an inhibitor of neurotransmitter release when it is released into a cytoplasm of a target cell.
  • Local administration means direct administration of a pharmaceutical at or to the vicinity of a site on or within an animal body, at which site a biological effect of the pharmaceutical is desired. Local administration excludes systemic routes of administration, such as intravenous or oral administration.
  • Neuron means a chemical entity that is capable of interfering with or modulating at least one function of a neuron.
  • the "neurotoxin” can be naturally occurring or man-made.
  • the “neurotoxin” can be a small molecule, a large molecule, a polypeptide, a conjugated- polypeptide or mixtures thereof.
  • Variant means a chemical entity which is slightly different from a parent chemical entity but which still has a biological effect.
  • the biological effect of the variant may be substantially the same or better than that of the parent.
  • a variant light chain of a botulinum toxin having at least one amino acid replaced, modified, deleted or added may have the same or better ability to prevent the release of neurotransmitter vesicles.
  • the biological effect of a variant may be decreased.
  • a variant light chain of a botulinum toxin type A having a leucine-based motif removed may have a shorter biological persistence than that of the parent (or native) botulinum toxin type A light chain.
  • an effective method for treating an injured muscle according to the present invention can include the step of locally administering a therapeutically effective amount of a neurotoxin into an injured muscle.
  • the injured muscle is a strained muscle.
  • a strain injury of the skeletal muscle may be classified as a shearing injury.
  • shearing injury not only the myofibers but also the mysial sheaths are torn. Almost immediately after the injury of the muscle, a repair process of muscle begins. The repair process of the shearing injury may be divided into three phases.
  • Phase 1 is the destruction phase, which is characterized by hematoma formation, myofiber necrosis, and inflammatory cell reaction.
  • the site of rupture of an otherwise healthy muscle often occurs close to its distal myotendinous junction (MTJ) after a strain.
  • the ruptured myofibers contract and a gap is formed between the stumps.
  • MTJ myotendinous junction
  • skeletal muscle is richly vascularized, hemorrhage from the torn vessels is inescapable and the gap becomes filled with a hematoma, later replaced by scar tissue.
  • myofibers are very long, string-like cells, the necrosis initiated at this site extends all along the whole length of the ruptured myofiber.
  • the blood vessels are also torn in shearing injuries; thus, blood-borne inflammatory cells gain immediate access to the injury site to induce an inflammation.
  • Phase 1 persists for about 2 to 3 days following the injury.
  • Phase 2 is the repair phase, which consists of phagocycosis of the necrotized tissue, regeneration of the myofibers, production of connective tissue scar, and capillary ingrowth.
  • the key step in the regeneration of injured muscle tissue is the vascularization of the injured area.
  • the restoration of vascular supply is a necessary for the regeneration of an injured muscle.
  • the new capillaries sprout from surviving trunks of blood vessels and pierce coward the center of injured area. These new capillaries help provide adequate oxygen supply to the regenerating area.
  • Phase 3 is the remodeling phase, which consists of maturation of the regenerated myofibers, contraction and reorganization of the scar tissue, and restoration of the functional capacity of the repaired muscle.
  • Phase 2 (repair) and 3 (remodeling) often occur simultaneously and persists for about 2 days to about six weeks following phase 1.
  • the neurotoxin is locally administered, preferably intramuscularly, to immobilize the injured muscle to facilitate healing.
  • Local administration of a neurotoxin according to the present disclosed invention can also reduce the pain experienced due to a muscle injury.
  • the administration of the neurotoxin is immediately at the time of injury or closely thereafter.
  • the neurotoxin is effective to immobilize the injured muscle during the destruction phase (phase 1) to prevent re-rupturing of the muscle.
  • the immobilizing effect of the neurotoxin is absent during the repair phase (phase 2) and/or remodeling phase (phase 3).
  • the neurotoxin is administered and is effective to immobilize the injured muscle during phase 1 , but not during phases 2 and 3 of the repair process.
  • the neurotoxin is injected, preferably intramuscularly, immediately to the muscle following an injury, it is preferable that the neurotoxin immobilizes the injured muscle for about 3 days after the time of administration.
  • the neurotoxin can have its immobilization effect only up to the point where the patient experiences little or no pain in the use of the injured muscle in basic movements. When this critical point is reached, the patient should be encouraged to start active, progressive mobilization.
  • the neurotoxin is effective to immobilize the injured muscle for all of the phase 1 -3 periods and for a subsequent muscle injury recovery period thereafter.
  • Neurotoxins such as certain of the botulinum toxins, which can require from less than about one day to about seven days to exhibit significant clinical muscle paralysis effect and/or and where the muscle paralysis effect is sustained post injection for a period of several months, are within the scope of the present invention, as such neurotoxins can be used to treat relatively serious or long lasting muscle injuries or where a long period of muscle immobilization is indicated for proper healing.
  • the neurotoxin is a neuromuscular blocking agent.
  • Table 1 shows a non-limiting list of neuromuscular blocking agents and their potential site of actions.
  • neuromuscular blocking agents having the ability to immobilize muscles, preferably injured muscles, for at least about 5 days, and preferably for at least about 3 days are administered to treat injured muscles.
  • the neurotoxin is a botulinum toxin because of the known uses and clinical safety of a botulinum toxin, such as botulinum toxin type E to treat muscle disorders, such as muscle spasms.
  • the locally administered botulinum toxin is a botulinum toxin type E.
  • Botulinum toxin type A can also be used in both these embodiments.
  • Captopril Presynaptic Antihypertensive (Capoten .RTM., ACE Inhibitor Squibb; Capzide .RTM. zinc endopeptidase Squibb) inhibitor
  • Gabapentin Presynaptic Antiepileptic (Neurontin, Parke- CNS GABA Analog Davis) Gallamine Postsynaptic AChR Antagonist Grayantoxin Presynaptic Sodium Channel Activator Hexahydroazepinyl Presynaptic ACh Releaser Acetamides and other chemical classes Huperzine A Synaptic Cleft ACh Esterase Inhibitor Insect Venoms Ion Channel Pre and Post Channel Blockers Blockers Synaptic Ion Channel Pre and Post Channel Stimulants Stimulants Synapti Latrotoxin- Presynaptic Calcium Ionophore black widow spider venom component
  • AChR Antagonists Blocking Agents AChR Depolarizing Neurotoxins from Pre and Post varies reptile, insects, Synaptic as and other sources well as Synaptic Cleft
  • Presynaptic Nerve Pre Synaptic any extra or intraneuronal Terminal Recpetors recpetors on nerve terminal Short Neurotoxin Postsynaptic AChR Antagonist alpha ⁇ -Bungarotoxin Presynaptic Snake toxin from Bungarus ( ⁇ -BuTX) multicinctus .
  • Nondepolarizing muscle Organon relaxant Vecuronium-3-OH Postsynaptic AChR Antagonist metabolites Nondepolarizing muscle
  • Zinc Endopeptidase Pre Synaptic Enyzmes . and other proteases reduce neurotransmitter delivered by release Botulinum toxin or tetanus toxin transporter
  • the neurotoxin can comprise a targeting component, a therapeutic component and a translocation component.
  • the targeting component can bind to a presynaptic motor neuron.
  • the targeting component can comprise a carboxyl end fragment of a heavy chain of a butyricum toxin, a tetani toxin, a botulinum toxin type A, B, C1 , D, E, F, G or a variant thereof.
  • the targeting component can include a carboxyl end fragment of a botulinum toxin type A.
  • the therapeutic component can substantially interfere with or modulate the release of neurotransmitters from a cell or its processes.
  • the therapeutic component comprises a light chain of a butyricum toxin, a tetani toxin, a botulinum toxin type A, B, C-i, D, E, F, G or a variant thereof.
  • the therapeutic component may include a light chain of a botulinum toxin type which has a short biological persistence, for example less than about 5 days, preferably less than about 3 days.
  • such light chain can be a light chain of a botulinum toxin type E or F.
  • the light chain can be a light chain of a botulinum toxin type A.
  • the translocation component can facilitate the transfer of at least a part of the neurotoxin, for example the therapeutic component into the cytoplasm of the target cell.
  • the translocation component comprises an amino end fragment of a heavy chain of a butyricum toxin, a tetani toxin, a botulinum toxin type A, B, C-i, D, E, F, G or variants thereof.
  • the translocation component comprises an amino end fragment of a heavy chain of a botulinum toxin type A.
  • the targeting component comprises a carboxyl end fragment of a heavy chain of a botulinum toxin type E or F
  • the therapeutic component comprises a light chain of a botulinum toxin type E or F
  • the translocation component comprises an amine end fragment of a heavy chain of a botulinum toxin type E or F.
  • the neurotoxin comprises a botulinum toxin type E.
  • the neurotoxin comprises a botulinum toxin type F.
  • the neurotoxin comprises a mixture of botulinum toxin type E and F.
  • the targeting component comprises a carboxyl end fragment of a heavy chain of a botulinum toxin type A
  • the therapeutic component comprises a light chain of a botulinum toxin type A
  • the translocation component comprises an amine end fragment of a heavy chain of a botulinum toxin type A.
  • the neurotoxin of the present invention comprises a botulinum toxin type A.
  • a suitable botulinum toxin type A to use herein is BOTOX ® (Allergan, Inc., Irvine, California)
  • the neurotoxins of the present invention treats injured muscles by immobilizing them, in one embodiment, the neurotoxin may also be administered to injured muscles to reduce pain and/or spasm.
  • the neurotoxin is able to immobilize the injured muscle and to reduce pain associated with that injured muscle.
  • a neurotoxin for example a botulinum toxin type E, pr most preferably type A, is administered to a strained muscle to immobilize the muscle and/or to reduce pain associated with that muscle.
  • an ordinarily skilled medical provider can determine the appropriate dose and frequency of administration(s) to achieve an optimum clinical result. That is, one of ordinary skill in medicine would be able to administer the appropriate amount of the neuromuscular blocking agent at the appropriate time(s) to effectively immobilize the injured muscle(s).
  • the dose of the neurotoxin to be administered depends upon a variety of factors, including the size of the muscle, the severity of the muscle injury. In a preferred embodiment, the dose of the neurotoxin administered immobilizes the injured muscle(s) for no longer than the duration of phase 1 of the repair process. In the various methods of the present invention, from about 0.1 U/kg to about 15 U/kg, of botulinum toxin type A can be administered to the injured muscle. Preferably, about 1 U/kg to about 20 U/kg of botulinum toxin type A may be administered to the injured muscle.
  • a botulinum toxin type A Use of from about 0.1 U/kg to about 30 U/kg of a botulinum toxin type A and from about 1 U/kg to about 150 U/kg of a botulinum toxin type B is within the scope of a method practiced according to the present disclosed invention.
  • the U/kg dosage to be used is within the range of about 0.1 U/kg to about 150 U/kg, as set forth herein.
  • the method of treating injured muscle according to this invention further includes other steps described below. These other steps may be taken prior to, in conjunction with or following the step of administering a neurotoxin, preferably to the injured muscle.
  • the present recommended treatment for strained muscle includes resting, icing, compression and elevating. These four steps (or procedures) have the same objective. They minimize bleeding from ruptured blood vessels to rupture site. This will prevent the formation of a large hematoma, which has a direct impact on the size of scar tissue at the end of the regeneration. A small hematoma and the limitation of interstitial edema accumulation on the rupture site also shorten the ischemic period in the granulation tissue, which in turn accelerates regeneration.
  • NSAIDs nonsteroidal anti-inflammatory drugs
  • therapeutic ultrasound a part of early treatment and should he started immediately after the injury.
  • hyperbaric oxygen a gas stream containing a spasmodic agents
  • severe injuries surgery may also be employed.
  • NSAIDs should be a part of early treatment and should he started immediately after the injury. Short-term use of NSAIDs in the early phase of healing decreases the inflammatory cell reaction, and has no adverse effects on tensile or contractile properties of injured muscle.
  • the additional step includes the use of therapeutic ultrasound.
  • Therapeutic ultrasound is widely recommended and used in the treatment of muscle strains. It is thought that therapeutic ultrasound promotes the proliferation phase of myoregeneration.
  • the additional step includes the use of hyperbaric oxygen. It is known that hyperbaric oxygen therapy in rabbits during the early phase of the repair substantially improves the final outcome. It is believed that such hyperbaric oxygen therapy in other mammals, for example human beings, may be helpful, such as by speeding up muscle regeneration.
  • the additional step includes surgical intervention.
  • Surgical treatment of muscle injuries should be reserved for the most serious injuries, because in most cases conservative treatment results in a good outcome. Surgical treatment is indicated only in cases of (1) large intramuscular hematomas, (2) third-degree strains or tears of muscles with few or no agonise muscles, and (3) second-degree strains, if more than half of the muscle belly is torn.
  • recombinant techniques are used to produce at least one of the components of the neurotoxins.
  • the technique includes steps of obtaining genetic materials from either DNA cloned from natural sources, or synthetic oligonucleotide sequences, which have codes for one of the components, for example the therapeutic, translocation and/or targeting component(s).
  • the genetic constructs are incorporated into host cells for amplification by first fusing the genetic constructs with a cloning vectors, such as phages or plasmids. Then the cloning vectors are inserted into hosts, preferably E. coli's. Following the expressions of the recombinant genes in host cells, the resultant proteins can be isolated using conventional techniques.
  • the protein expressed may comprise all three components of the neurotoxin.
  • the protein expressed may include a light chain of botulinum toxin type E (the therapeutic component), a heavy chain, preferably the HN, of a botulinum toxin type B (the translocation component), and an H c of botulinum toxin type A, which selectively binds to the motor neurons.
  • the protein expressed may include less than all three components of the neurotoxin. In such case, the components may be chemically joined using techniques known in the art.
  • neurotoxin from anaerobic Clostridium cultures is a cumbersome and time-consuming process including a multi-step purification protocol involving several protein precipitation steps and either prolonged and repeated crystallization of the toxin or several stages of column chromatography.
  • the high toxicity of the product dictates that the procedure must be performed under strict containment (BL-3).
  • BL-3 strict containment
  • the folded single-chain neurotoxins are activated by endogenous Clostridial proteases through a process termed nicking. This involves the removal of approximately 10 amino acid residues from the single-chain to create the dichain form in which the two chains remain covalently linked through the intrachain disulfide bond.
  • the nicked neurotoxin is much more active than the unnicked form.
  • the amount and precise location of nicking varies with the serotypes of the bacteria producing the toxin.
  • the differences in single-chain neurotoxin activation and, hence, the yield of nicked toxin are due to variations in the type and amounts of proteolytic activity produced by a given strain. For example, greater than 99% of Clostridial botulinum type A single-chain neurotoxin is activated by the Hall A Clostridial botulinum strain, whereas type B and E strains produce toxins with lower amounts of activation (0 to 75% depending upon the fermentation time). Thus, the high toxicity of the mature neurotoxin plays a major part in the commercial manufacture of neurotoxins as therapeutic neurotoxins.
  • Clostridial toxins such as botulinum toxin and tetanus toxin could be expressed, recombinantly, in high yield in rapidly- growing bacteria (such as heterologous E. coli cells) as relatively non-toxic single-chains (or single chains having reduced toxic activity) which are safe, easy to isolate and simple to convert to the fully-active form.
  • Example 1 Treatment of a Ruptured Biceps Tendon Ruptures of the biceps brachii commonly occur at the proximal end and involve the long head of the biceps. The muscle may rupture at the distal insertion onto the radius, but is rare.
  • a 45 year old man presents with a bulge in the lower arm after lifting heavy boxes. He reports a history of sudden sharp pain in the upper arm, often accompanied by an audible snap. The man is diagnosed as having a ruptured biceps tendon and is at the beginning of phase 1 of the repair process. The rupture may be classified as a mild second degree strain.
  • the patient is treated by a bolus injection of between about 0.1 U/kg to about 25 U/kg of a neurotoxin intramuscularly to the biceps.
  • the neurotoxin is botulinum toxin type E and/or F, more preferably type A.
  • the particular dose and frequency of administrations depend upon a variety of factors, and are to be determined by the treating physician.
  • the patient is further instructed to rest and apply ice and compression to the biceps.
  • Within about three days after the administration of the neurotoxin the patient is able to bend his arm. Also, after about three days, the patient experiences a reduction in inflammation, which is a sign that the patient is entering into phase 2 and 3 of the repair process. The patient also experiences a significant pain reduction.
  • Local administration of from about 10 units to about 200 units of botulinum toxin type A can also be used for long term (2-4 months) muscle immobilization and pain reduction.
  • Rupture of the extensor mechanism of the knee occurs in one of two ways: in younger patients as a result of a sudden or violent force (such as jumping, heavy lifting); and in older patients as a result of relatively trivial force.
  • a sudden or violent force such as jumping, heavy lifting
  • older patients as a result of relatively trivial force.
  • This condition affects older patients who have typically been somewhat sedentary and have suddenly increased their activity level, or patient who have had some preexisting or co-existing condition such as diabetes mellitus, rheumatoid arthritis, and other systemic inflammatory disorders, or prior knee surgery.
  • a 22 year old female soccer player presents with an inability to extend her knee.
  • the patient also is also unable to do straight leg raise, but is able to walk if she keeps a hand on her thigh and maintain her knee in extension.
  • a plain radiograph shows that the patella is in a lower than usual location. The patient is diagnosed with a severe rupture of the quadriceps.
  • the patient After determining the injury is severe (third degree), the patient agrees to undergo reparative surgery. Post-operationally, the patient is treated by a bolus injection of between about 0.1 U/kg to about 25 U/kg of a neurotoxin (such as about 10 units to about 400 units of botulinum toxin type A) intramuscularly to the quadriceps.
  • a neurotoxin such as about 10 units to about 400 units of botulinum toxin type A
  • the neurotoxin is botulinum toxin type A.
  • the particular dose and frequency of administrations depend upon a variety of factors, and are to be determined by the treating physician.
  • the patient is further instructed to rest and apply ice and compression to the quadriceps. Within about 15 days after the administration of the neurotoxin, gradual movement and activity of the injured muscle is possible.
  • botulinum toxin therapy would facilitate her early return to this activity.
  • Local administration of from about 10 units to about 200 units of botulinum toxin type A can be used for long term (2-4 months) muscle immobilization.
  • Runners commonly experience shin splits in the lower limb which causes pain and restricts this activity.
  • the lower leg pain resulting from shin splits is caused by very small tears in the leg muscles at their point of attachment to the shin.
  • strained muscle such as a shin splint
  • five steps are recommended: (1) Protect the injured muscle from further injury by using splints, pads and/or crutches; (2) Restrict activity, usually for 48 to 72 hours to allow the healing process to begin.
  • Suitable botulinum toxins, including botulinum toxin type A, with reduced periods of in vivo biological activity suitable for use herein are set forth in co-pending U.S.
  • Chromosomal DNA from C. botulinum serves as a template in the amplification reaction.
  • the PCR amplification is performed in a 100 ⁇ l volume containing 10 mM Tris-HCI (pH 8.3), 50 mM KCI, 1.5 mM MgCI 2 , 0.2 mM of each deoxynucleotide triphosphate (dNTP), 50 pmol of each primer, 200 ng of genomic DNA and 2.5 units of Taq-polymerase (Promega).
  • the reaction mixture is subjected to 35 cycles of denaturation (1 minute at 94° C), annealing (2 minutes at 37°C) and polymerization (2 minutes at 72°C). Finally, the reaction is extended for an additional 5 minutes at 72°C.
  • the PCR amplification product is digested with Stu I and EcoR I, purified by agarose gel electrophoresis, and ligated into Sma I and EcoR I digested pBluescript II SK* to yield the plasmid, pSAL.
  • Bacterial transformants harboring this plasmid are isolated by standard procedures.
  • the identity of the cloned L chain polynucleotide is confirmed by double stranded plasmid sequencing using SEQUENASE (United States Biochemicals) according to the manufacturer's instructions. Synthetic oligonucleotide sequencing primers are prepared as necessary to achieve overlapping sequencing runs.
  • the cloned sequence is found to be identical to the sequence disclosed by Binz, et al., in J. Biol. Chem.
  • a small-scale SDS-PAGE analysis confirmed the presence of a 90 kDa protein band in samples derived from IPTG-induced bacteria.
  • This M r is consistent with the predicted size of a fusion protein having MBP ( ⁇ 40 kDa) and BoNT/A-L chain ( ⁇ 50 kDa) components.
  • the IPTG-induced clones contained substantially larger amounts of the fusion protein.
  • the MBP-L chain fusion proteins encoded by the pCAL and pCAL- TyrU7 expression plasmids are purified from bacteria by amylose affinity chromatography. Recombinant wild-type or mutant L chains are then separated from the sugar binding domains of the fusion proteins by site- specific cleavage with Factor X 2 . This cleavage procedure yielded free MBP, free L chains and a small amount of uncleaved fusion protein. While the resulting L chains present in such mixtures have been shown to possess the desired activities, we have also employed an additional purification step. Accordingly, the mixture of cleavage products is applied to a second amylose affinity column that bound both the MBP and uncleaved fusion protein. Free L chains are not retained on the affinity column, and are isolated for use in experiments described below.
  • This Example describes a method to produce and purify wild-type recombinant BoNT/A light chains from bacterial clones.
  • Pellets from 1 liter cultures of bacteria expressing the wild-type BoNT/A-L chain proteins are resuspended in column buffer [10 mM Tris-HCI (pH 8.0), 200 mM NaCI, 1 mM EGTA and I mM DTT] containing 1 mM phenyl-methanesulfonyl fluoride (PMSF) and 10 mM benzamidine, and lysed by sonication.
  • the lysates are cleared by centrifugation at 15,000 x g for 15 minutes at 4°C.
  • Supematants are applied to an amylose affinity column [2x10 cm, 30 ml resin] (New England BioLabs; Hitchin, UK). Unbound proteins are washed from the resin with column buffer until the eluate is free of protein as judged by a stable absorbance reading at 280 nm. The bound MBP-L chain fusion protein is subsequently eluted with column buffer containing 10 mM maltose. Fractions containing the fusion protein are pooled and dialyzed against 20 mM Tris-HCI (pH 8.0) supplemented with 150 mM NaCI, 2 mM, CaCI 2 and 1 mM DTT for 72 hours at 4°C.
  • Tris-HCI pH 8.0
  • Fusion proteins are cleaved with Factor X 2 (Promega; Southampton, UK) at an enzyme:substrate ratio of 1 :100 while dialyzing against a buffer of 20 mM Tris-HCI (pH 8.0) supplemented with 150 mM NaCI, 2 mM, CaCI 2 and 1 mM DTT. Dialysis is carried out for 24 hours at 4°C. The mixture of MBP and either wild-type or mutant L chain that resulted from the cleavage step is loaded onto a 10 ml amylose column equilibrated with column buffer. Aliquots of the flow through fractions are prepared for SDS-PAGE analysis to identify samples containing the L chains.
  • a sensitive antibody-based assay is developed to compare the enzymatic activities of recombinant L chain products and their native counterparts.
  • the assay employed an antibody having specificity for the intact C-terminal region of SNAP-25 that corresponded to the BoNT/A cleavage site.
  • Western Blotting of the reaction products of BoNT/A cleavage of SNAP-25 indicated an inability of the antibody to bind SNAP- 25 sub-fragments.
  • the antibody reneurotoxin employed in the following Example detected only intact SNAP-25.
  • the loss of antibody binding served as an indicator of SNAP-25 proteolysis mediated by added BoNT/A light chain or recombinant derivatives thereof.
  • This Example describes a method to demonstrate that both native and recombinant BoNT/A-L chains can proteolyze a SNAP-25 substrate.
  • a quantitative assay is employed to compare the abilities of the wild-type and their recombinant analogs to cleave a SNAP-25 substrate.
  • the substrate utilized for this assay is obtained by preparing a glutathione-S- transferase (GST)-SNAP-25 fusion protein, containing a cleavage site for thrombin, expressed using the pGEX-2T vector and purified by affinity chromatography on glutathione agarose.
  • GST glutathione-S- transferase
  • the SNAP-25 is then cleaved from the fusion protein using thrombin in 50 mM Tris-HCI (pH 7.5) containing 150 mM NaCI and 2.5 mM CaCI 2 (Smith et al., Gene 67:31 (1988)) at an enzyme:substrate ratio of 1:100. Uncleaved fusion protein and the cleaved glutathione- binding domain bound to the gel. The recombinant SNAP-25 protein is eluted with the latter buffer and dialyzed against 100 mM HEPES (pH 7.5) for 24 hours at 4°C. The total protein concentration is determined by routine methods.
  • CANQRATKMLGSG SEQ ID#3
  • This peptide corresponded to residues 195 to 206 of the synaptic plasma membrane protein and an N-terminal cysteine residue not found in native SNAP-25.
  • the synthetic peptide is conjugated to bovine serum albumin (BSA) (Sigma; Poole, UK) using maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) as a cross- linking neurotoxin (Sigma; Poole, UK) to improve antigenicity (Liu et al., Biochemistry 18:690 (1979)1.
  • Affinity purification of the anti-peptide antibodies is carried out using a column having the antigenic peptide conjugated via its N-terminal cysteine residue to an aminoalkyl agarose resin (Bio-Rad; Hemel Hempstead, UK), activated with iodoacetic acid using the cross-linker ethyl 3-(3-dimethytpropyl) carbodiimide.
  • the peptide-specific antibodies are eluted using a solution of 100 mM glycine (pH 2.5) and 200 mM NaCI, and collected in tubes containing 0.2 ml of 1 M Tris-HCI (pH 8.0) neutralizing buffer. All recombinant preparations containing wild-type L chain are dialyzed overnight at 4°C into 100 mM HEPES (pH 7.5) containing 0.02% Lubrol and 10 ⁇ M zinc acetate before assessing their enzymatic activities. BoNT/A, previously reduced with 20 mM DTT for 30 minutes at 37°C, as well as these dialyzed samples, are then diluted to different concentrations in the latter HEPES buffer supplemented with 1 mM DTT.
  • Reaction mixtures include 5 ⁇ l recombinant SNAP-25 substrate (8.5 ⁇ M final concentration) and either 20 ⁇ l reduced BoNT/A or recombinant wild-type L chain. All samples are incubated at 37°C for 1 hour before quenching the reactions with 25 ⁇ l aqueous 2% trifluoroacetic acid (TFA) and 5 mM EDTA (Foran et al., Biochemistry 33:15365(1994)). Aliquots of each sample are prepared for SDS-PAGE and Western blotting with the polyclonal SNAP-25 antibody by adding SDS-PAGE sample buffer and boiling. Anti-SNAP-25 antibody reactivity is monitored using an ECL detection system and quantified by densitometric scanning.
  • TFA trifluoroacetic acid
  • Purified H Chain Native H and L chains are dissociated from BoNT/A (List Biologicals Inc.; Campbell, USA) with 2 M urea, reduced with 100 mM DTT and then purified according to established chromatographic procedures (Kozaki et al., Japan J. Med. Sci. Biol. 34:61 (1981); Maisey et al., Eur. J. Biochem. 177:683 (1988)). Purified H chain is combined with an equimolar amount of either native L chain or recombinant wild-type L chain.
  • Reconstitution is carried out by dialyzing the samples against a buffer consisting of 25 mM Tris (pH 8.0), 50 ⁇ M zinc acetate and 150 mM NaCI over 4 days at 4°C. Following dialysis, the association of the recombinant L chain and native H chain to form disulfide-linked 150 kDa dichains is monitored by SDS-PAGE and quantified by densitometric scanning. The proportion of dichain molecules formed with the recombinant L chains is lower than that obtained when native L chain is employed. Indeed, only about 30% of the recombinant wild-type or mutant L chain is reconstituted while >90% of the native L chain reassociated with the H chain. In spite of this lower efficiency of reconstitution, sufficient material incorporating the recombinant L chains is easily produced for use in subsequent functional studies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
PCT/US2001/027193 2000-10-04 2001-08-31 Methods for treating muscle injuries Ceased WO2002028425A2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2002532249A JP2004518632A (ja) 2000-10-04 2001-08-31 筋肉損傷の処置方法
KR1020037004676A KR100873819B1 (ko) 2000-10-04 2001-08-31 근육 손상의 처치방법
MXPA03002576A MXPA03002576A (es) 2000-10-04 2001-08-31 Metodos para tratar lesiones musculares.
NZ524793A NZ524793A (en) 2000-10-04 2001-08-31 Methods for treating muscle injuries particulary skeletal muscle injury and pain with a botulinum neurotoxin
AT01966482T ATE477816T1 (de) 2000-10-04 2001-08-31 Botulinum toxin zur behandlung von akuten verletzungen der skelettmuskeln
AU8699101A AU8699101A (en) 2000-10-04 2001-08-31 Methods for treating muscle injuries
EP01966482A EP1322324B1 (en) 2000-10-04 2001-08-31 Botulinum toxin for use in the treatment of acute injuries to skeletal muscles
BR0114440-5A BR0114440A (pt) 2000-10-04 2001-08-31 Métodos para tratamento de lesão muscular
DE60142839T DE60142839D1 (de) 2000-10-04 2001-08-31 Botulinum Toxin zur Behandlung von akuten Verletzungen der Skelettmuskeln
CA002424242A CA2424242C (en) 2000-10-04 2001-08-31 Methods for treating muscle injuries
AU2001286991A AU2001286991B2 (en) 2000-10-04 2001-08-31 Methods for treating muscle injuries
DK01966482.0T DK1322324T3 (da) 2000-10-04 2001-08-31 Fremgangsmåder til behandling af muskelskader

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/678,189 2000-10-04
US09/678,189 US6423319B1 (en) 2000-10-04 2000-10-04 Methods for treating muscle injuries

Publications (2)

Publication Number Publication Date
WO2002028425A2 true WO2002028425A2 (en) 2002-04-11
WO2002028425A3 WO2002028425A3 (en) 2003-02-27

Family

ID=24721759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/027193 Ceased WO2002028425A2 (en) 2000-10-04 2001-08-31 Methods for treating muscle injuries

Country Status (16)

Country Link
US (4) US6423319B1 (enExample)
EP (2) EP2174662A3 (enExample)
JP (2) JP2004518632A (enExample)
KR (1) KR100873819B1 (enExample)
CN (2) CN102078597A (enExample)
AT (1) ATE477816T1 (enExample)
AU (2) AU8699101A (enExample)
BR (1) BR0114440A (enExample)
CA (1) CA2424242C (enExample)
DE (1) DE60142839D1 (enExample)
DK (1) DK1322324T3 (enExample)
ES (1) ES2348862T3 (enExample)
MX (1) MXPA03002576A (enExample)
NZ (1) NZ524793A (enExample)
TW (1) TWI292713B (enExample)
WO (1) WO2002028425A2 (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129171A3 (en) * 2005-05-31 2007-03-29 Polydoor Emile Huijsmans Method and medical package for repairing tendons by surgery
US20130022543A1 (en) * 2011-07-20 2013-01-24 Mcginley Joseph C Method for Treating and Confirming Diagnosis of Exertional Compartment Syndrome
US9138194B1 (en) 2012-06-27 2015-09-22 Joseph McGinley Apparatus for use to replicate symptoms associated with vascular obstruction secondary to vascular compression
WO2015188944A1 (en) * 2014-06-13 2015-12-17 Merz Pharma Gmbh & Co. Kgaa Novel uses of recombinant clostridial neurotoxins with decreased duration of effect
US9226954B2 (en) 2011-07-20 2016-01-05 Joseph C. McGinley Method for treating and confirming diagnosis of exertional compartment syndrome
WO2022043476A1 (en) 2020-08-27 2022-03-03 Rousselot B.V. Combination of collagen peptide and whey protein for use in a condition of the skeletal tissue

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060216313A1 (en) * 1999-08-10 2006-09-28 Allergan, Inc. Methods for treating a stricture with a botulinum toxin
US7838008B2 (en) * 1999-12-07 2010-11-23 Allergan, Inc. Methods for treating diverse cancers
US20040170665A1 (en) * 2000-06-02 2004-09-02 Allergan, Inc. Intravitreal botulinum toxin implant
US20040033241A1 (en) * 2000-06-02 2004-02-19 Allergan, Inc. Controlled release botulinum toxin system
US20040219619A1 (en) * 2000-07-21 2004-11-04 Ester Fernandez-Salas Methods of identifying compounds that alter toxin persistence and/or protease activity
US7491799B2 (en) * 2000-07-21 2009-02-17 Allergan, Inc. Modified botulinum neurotoxins
US6903187B1 (en) * 2000-07-21 2005-06-07 Allergan, Inc. Leucine-based motif and clostridial neurotoxins
US7691983B2 (en) * 2000-07-21 2010-04-06 Allergan, Inc. Chimera botulinum toxin type E
US6423319B1 (en) * 2000-10-04 2002-07-23 Allergan Sales, Inc. Methods for treating muscle injuries
ITUD20010002A1 (it) * 2001-01-05 2002-07-05 Univ Degli Studi Udine Uso della tossina botulinica per la soluzione di patologie articolari, in particolare della coxartrosi, della epicondilite e della patolo
JP4707254B2 (ja) * 2001-04-24 2011-06-22 クミアイ化学工業株式会社 粒状組成物及びその製造方法
WO2003000193A2 (en) * 2001-06-21 2003-01-03 Surromed, Inc. Covalent coupling of botulinum toxin with polyethylene glycol
US20030100574A1 (en) 2001-11-15 2003-05-29 Wilson Nestor Antonio Lagos Use and application of a pharmaceutical composition containing a mixture of natural-origin heterocyclical guanidine, for cosmetology, wound healing, focal dystonia and muscular spasm-related clinical pathologies
US7140371B2 (en) * 2002-03-14 2006-11-28 Allergan, Inc. Surface topography method for determining effects of a botulinum toxin upon a muscle and for comparing botulinum toxins
US7300412B2 (en) * 2002-05-10 2007-11-27 Hospital For Joint Diseases Methods for therapeutic treatment of carpal tunnel syndrome
WO2004012674A2 (en) * 2002-08-02 2004-02-12 Nutraceutical Development Corporation Development of muscle mass in a mammal
US20040037895A1 (en) * 2002-08-23 2004-02-26 Alex Zhu Methods of treating involuntary facial spasms and facial wrinkles
AU2003287155A1 (en) * 2002-10-15 2004-05-04 Allergan, Inc. Botulinum toxin dental therapies and procedures
US20040086532A1 (en) * 2002-11-05 2004-05-06 Allergan, Inc., Botulinum toxin formulations for oral administration
US7238357B2 (en) * 2002-11-05 2007-07-03 Allergan, Inc. Methods for treating ulcers and gastroesophageal reflux disease
AU2004216904B2 (en) * 2003-03-06 2009-12-24 Botulinum Toxin Research Associates, Inc. Treatment of sinusitis related chronic facial pain and headache with botulinum toxin
US7393538B2 (en) * 2003-04-25 2008-07-01 Ackerman Alan H Clostridial toxin treatment for dermatillomania
US7390496B2 (en) * 2003-04-25 2008-06-24 Allergan, Inc. Therapeutic treatments for repetitive hand washing
US7396535B2 (en) * 2003-04-25 2008-07-08 Ackerman Alan H Therapy for obsessive compulsive head banging
US7422753B2 (en) * 2003-04-25 2008-09-09 Allergan, Inc. Methods for treating trichotillomania
US7393537B2 (en) 2003-04-25 2008-07-01 Allergan, Inc. Botulinum toxin for treatment of obsessive compulsive finger biting disorder
US6838434B2 (en) * 2003-05-02 2005-01-04 Allergan, Inc. Methods for treating sinus headache
US7220422B2 (en) * 2003-05-20 2007-05-22 Allergan, Inc. Methods and compositions for treating eye disorders
US20040253274A1 (en) * 2003-06-11 2004-12-16 Allergan, Inc. Use of a clostridial toxin to reduce appetite
US20050013850A1 (en) * 2003-07-15 2005-01-20 Caers Jan K. Device to assist hyperhydrosis therapy
US8609112B2 (en) 2003-10-29 2013-12-17 Allergan, Inc. Botulinum toxin treatments of depression
US8617572B2 (en) * 2003-10-29 2013-12-31 Allergan, Inc. Botulinum toxin treatments of depression
US8609113B2 (en) 2003-10-29 2013-12-17 Allergan, Inc. Botulinum toxin treatments of depression
US8734810B2 (en) 2003-10-29 2014-05-27 Allergan, Inc. Botulinum toxin treatments of neurological and neuropsychiatric disorders
US7172764B2 (en) * 2003-11-17 2007-02-06 Allergan, Inc. Rescue agents for treating botulinum toxin intoxications
US8048423B2 (en) * 2003-12-09 2011-11-01 Allergan, Inc. Botulinum toxin therapy for skin disorders
US8871224B2 (en) * 2003-12-09 2014-10-28 Allergan, Inc. Botulinum toxin therapy for skin disorders
US20050129677A1 (en) * 2003-12-10 2005-06-16 Shengwen Li Lipid rafts and clostridial toxins
US20050148935A1 (en) * 2003-12-29 2005-07-07 Rozalina Dimitrova Botulinum toxin injection guide
US7270287B2 (en) * 2004-01-06 2007-09-18 Allergan, Inc. Botulinum toxin treatment for kinesia
US6974579B2 (en) * 2004-01-08 2005-12-13 Allergan, Inc. Methods for treating vascular disorders
US20100266638A1 (en) * 2004-02-26 2010-10-21 Allergan, Inc. Headache treatment method
US20050191321A1 (en) 2004-02-26 2005-09-01 Allergan, Inc. Methods for treating headache
US9078892B2 (en) * 2004-02-26 2015-07-14 Allergan, Inc. Methods for treating pain and for treating a medication overuse disorder
US9211248B2 (en) 2004-03-03 2015-12-15 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
US20050220821A1 (en) * 2004-03-31 2005-10-06 Allergan, Inc. Pressure sore treatment
US20050220734A1 (en) * 2004-04-02 2005-10-06 Allergan, Inc. Therapy for melanin related afflictions
US20080021051A1 (en) * 2004-05-07 2008-01-24 Phytotox Limited Phycotoxins and Uses Thereof
CA2607206C (en) * 2004-05-07 2016-06-14 Phytotox Limited Transdermal administration of phycotoxins
US6991789B2 (en) * 2004-06-29 2006-01-31 Allergas, Inc. Methods of modulating intracellular degradation rates of toxins
US7514088B2 (en) * 2005-03-15 2009-04-07 Allergan, Inc. Multivalent Clostridial toxin derivatives and methods of their use
US7922983B2 (en) * 2005-07-28 2011-04-12 Kimberly-Clark Worldwide, Inc. Sterilization wrap with additional strength sheet
US7811584B2 (en) * 2004-06-30 2010-10-12 Allergan, Inc. Multivalent clostridial toxins
US20060024794A1 (en) * 2004-07-30 2006-02-02 Shengwen Li Novel methods for production of di-chain botulinum toxin
US20060024331A1 (en) * 2004-08-02 2006-02-02 Ester Fernandez-Salas Toxin compounds with enhanced membrane translocation characteristics
WO2006026780A1 (en) 2004-09-01 2006-03-09 Allergan, Inc. Degradable clostridial toxins
US7179474B2 (en) * 2004-09-03 2007-02-20 Allergan, Inc. Methods for treating a buttock deformity
US7429386B2 (en) * 2004-09-03 2008-09-30 Allergan, Inc. Stretch mark treatment
US20060073208A1 (en) * 2004-10-01 2006-04-06 Allergan, Inc. Cosmetic neurotoxin compositions and methods
US7897147B2 (en) * 2004-10-20 2011-03-01 Allergan, Inc. Treatment of premenstrual disorders
US7749515B2 (en) 2005-02-01 2010-07-06 Allergan, Inc. Targeted delivery of botulinum toxin to the sphenopalatine ganglion
US7655244B2 (en) 2005-02-01 2010-02-02 Allergan, Inc. Targeted delivery of botulinum toxin for the treatment and prevention of trigeminal autonomic cephalgias, migraine and vascular conditions
CN1930186A (zh) 2005-03-03 2007-03-14 阿勒根公司 为获得梭菌毒素的梭菌细菌培养基及方法
CA2601592A1 (en) 2005-03-15 2006-09-28 Allergan, Inc. Modified clostridial toxins with enhanced targeting capabilities for endogenous clostridial toxin receptor systems
ES2351942T3 (es) 2005-04-05 2011-02-14 Allergan Inc Analisis de la actividad de una toxina clostridial.
US7419675B2 (en) * 2005-05-26 2008-09-02 Allergan, Inc. Method for treating peritoneal adhesions
US20060269574A1 (en) * 2005-05-31 2006-11-30 De Beer Johann F Method of repairing tendons by surgery
US8105611B2 (en) * 2005-06-17 2012-01-31 Allergan, Inc. Treatment of autoimmune disorder with a neurotoxin
US7910116B2 (en) * 2005-08-24 2011-03-22 Allergan, Inc. Use of a botulinum toxin to improve gastric emptying and/or to treat GERD
US7824694B2 (en) * 2006-01-12 2010-11-02 Allergan, Inc. Methods for enhancing therapeutic effects of a neurotoxin
US20070178121A1 (en) * 2006-01-27 2007-08-02 Allergan, Inc. Methods for enhancing skin treatments
US7794386B2 (en) 2006-03-15 2010-09-14 Allergan, Inc. Methods for facilitating weight loss
US7811586B2 (en) * 2006-05-02 2010-10-12 Allergan, Inc. Methods for alleviating testicular pain
CN101074935B (zh) * 2006-05-19 2011-03-23 清华大学 探测器阵列及设备
US9061025B2 (en) * 2006-08-31 2015-06-23 Allergan, Inc. Methods for selecting headache patients responsive to botulinum toxin therapy
US20080092910A1 (en) * 2006-10-18 2008-04-24 Allergan, Inc. Apparatus and method for treating obesity using neurotoxins in conjunction with bariatric procedures
US20080113051A1 (en) * 2006-11-13 2008-05-15 Allergan, Inc. Methods for alleviating tattoo pain
CA2678038C (en) 2007-02-15 2016-10-11 Allergan, Inc. Use of botulinum toxin and enzymes for treating bladder or prostate disorders, or hyperhydrosis
US8470337B2 (en) * 2008-03-13 2013-06-25 Allergan, Inc. Therapeutic treatments using botulinum neurotoxin
US8617571B2 (en) 2008-04-03 2013-12-31 Allergan, Inc. Suture line administration technique using botulinum toxin
ES2356883B1 (es) * 2008-07-24 2012-02-22 Bcn Peptides, S.A. Composición para el tratamiento del dolor y/o la inflamación.
US20100028385A1 (en) * 2008-08-04 2010-02-04 Allergan, Inc. Treatment of excess cerumen secretion
ES2538835T3 (es) 2009-01-07 2015-06-24 Robert John Petrella Tratamiento de lesiones de tejidos blandos utilizando el ácido hialurónico y la toxina botulínica
AU2010221435B2 (en) 2009-03-06 2014-06-19 Allergan, Inc. Clostridial toxin to improve ejaculate
CA2774951C (en) 2009-09-24 2014-12-16 Allergan, Inc. Method of treating osteoporosis with a neurotoxin
JP2011157331A (ja) * 2010-02-03 2011-08-18 Chemo-Sero-Therapeutic Research Inst 高用量投与が可能なボツリヌス毒素製剤
WO2012103415A1 (en) 2011-01-28 2012-08-02 Allergan, Inc. Dosage regimen for the treatment of multiple disorders with botulinum toxins
US8697090B2 (en) 2011-05-05 2014-04-15 Allergan, Inc. Method of treating persistent genital arousal disorder with a neurotoxin
US8992941B2 (en) 2011-07-08 2015-03-31 Allergan, Inc. Method for treatment of esophageal spasm
CN103747796A (zh) 2011-07-08 2014-04-23 阿勒根公司 用于治疗自主神经系统病症的方法
AU2012280947B2 (en) 2011-07-14 2016-04-07 Allergan, Inc. Methods for treatment of incontinence associated with sexual activity
BR112014001066A2 (pt) 2011-07-20 2017-02-21 Allergan Inc toxinas botulínicas para uso em um método para tratamento de depósitos adiposos
ES2424294B1 (es) 2012-03-22 2014-07-21 Lipotec, S.A. Exopolisacárido para el tratamiento y/o cuidado de la piel, mucosas, cabello y/o uñas
EP2649984A1 (en) 2012-04-13 2013-10-16 Lipotec, S.A. Compounds which inhibit neuronal exocytosis
EP2649985A1 (en) 2012-04-13 2013-10-16 Lipotec, S.A. Compounds which inhibit neuronal exocytosis (III)
ES2660901T3 (es) 2012-04-13 2018-03-26 Lubrizol Advanced Materials, Inc. Compuestos que inhiben la exocitosis neuronal (II)
EP2649983A1 (en) 2012-04-13 2013-10-16 Lipotec, S.A. Compounds which inhibit neuronal exocytosis (II)
US9005628B2 (en) 2012-10-04 2015-04-14 Dublin City University Biotherapy for pain
AU2014234190A1 (en) 2013-03-22 2015-09-10 Lipotec S.A. Exopolysaccharide for the treatment and/or care of the skin, mucous membranes and/or nails
GB201312317D0 (en) 2013-07-09 2013-08-21 Syntaxin Ltd Cationic neurotoxins
US10149893B2 (en) 2013-09-24 2018-12-11 Allergan, Inc. Methods for modifying progression of osteoarthritis
US9480731B2 (en) 2013-12-12 2016-11-01 Medy-Tox, Inc. Long lasting effect of new botulinum toxin formulations
US9216210B2 (en) 2013-12-23 2015-12-22 Dublin City University Multiprotease therapeutics for chronic pain
US10058471B2 (en) * 2014-02-21 2018-08-28 William M. Vaughan System and method of using hyperbaric oxygen therapy for treating concussive symptoms and musculoskeletal injuries and for pre-treatment to prevent damage from injuries
EP3154572A1 (en) * 2014-06-13 2017-04-19 Merz Pharma GmbH & Co. KGaA Novel uses of recombinant clostridial neurotoxins with decreased duration of effect
DK3242884T3 (da) 2015-01-09 2021-04-19 Ipsen Bioinnovation Ltd Kationiske neurotoksiner
GB201517450D0 (en) 2015-10-02 2015-11-18 Ipsen Biopharm Ltd Method
CN105567739B (zh) * 2016-02-04 2019-07-12 郑州可尔利尔生物科技有限公司 病毒载体颗粒及其构建方法和应用
KR20180130104A (ko) * 2016-03-25 2018-12-06 입센 바이오팜 리미티드 보툴리눔 독소의 치료 효능을 증진시키기 위한 물리 요법 정보의 수집
GB201607901D0 (en) 2016-05-05 2016-06-22 Ipsen Biopharm Ltd Chimeric neurotoxins
EP3263710A1 (en) 2016-07-01 2018-01-03 Ipsen Biopharm Limited Production of activated clostridial neurotoxins
WO2018038301A1 (en) 2016-08-26 2018-03-01 Hugel Inc. Stabilized liquid formulation of botulinum toxin and preparation method thereof
JP7118055B2 (ja) 2016-09-29 2022-08-15 イプセン バイオファーム リミテッド ハイブリッド神経毒
WO2018106339A1 (en) * 2016-12-06 2018-06-14 Bonti, Inc. Botulinum neurotoxins for use in tendon repair surgery
CA3057304A1 (en) * 2017-03-22 2018-09-27 Bonti, Inc. Botulinum neurotoxins for treating traumatic injuries
WO2018195474A1 (en) * 2017-04-21 2018-10-25 Bonti, Inc. Initiating neurotoxin treatments
EP3470054B1 (en) 2017-10-11 2023-09-20 Hugel Inc. Microstructure formulation techniques for botulinum toxin
US10792400B2 (en) 2017-10-12 2020-10-06 Hugel Inc. Microstructure formulation techniques for botulinum toxin
US10525111B2 (en) 2017-10-12 2020-01-07 Hugel, Inc. Microstructure formulation techniques for botulinum toxin
US20210187194A1 (en) 2018-02-26 2021-06-24 Ipsen Biopharm Limited Use of Ultrasound to Guide Injection of Non-cytotoxic Protease
CN112955166A (zh) * 2018-09-13 2021-06-11 阿勒根公司 治疗咬肌肥大的方法
EP3660509B1 (en) 2018-11-29 2022-03-09 Hugel Inc. A cell-based method for determining an activity of botulinum toxin
WO2020163495A1 (en) * 2019-02-06 2020-08-13 Allergan, Inc. Combination therapy using clostridial toxin derivative and at least one chemical depolarizing agent
CN110710494B (zh) * 2019-10-20 2021-06-11 宋凯 一种眼睛王蛇毒液安全取出装置
GB202103372D0 (en) 2021-03-11 2021-04-28 Ipsen Biopharm Ltd Modified clostridial neurotoxins
KR20250069883A (ko) 2022-09-30 2025-05-20 입센 바이오팜 리미티드 방광 통증 증후군 치료에 사용되는 클로스트리디움 신경독소
GB202318884D0 (en) 2023-12-11 2024-01-24 Ipsen Biopharm Ltd Formulation
CN120168615B (zh) * 2025-05-20 2025-08-26 浙江大学医学院附属第二医院 A型肉毒毒素在制备减轻尖吻蝮蛇咬伤后肢体局部肌肉损伤药物中的应用及药物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6030494A (en) 1993-01-15 1994-08-15 Associated Synapse Biologics Method for treating myofascial pain syndrome
AU683275B2 (en) * 1993-06-10 1997-11-06 Allergan, Inc. Multiple botulinum toxins for treating neuromuscular disorders and conditions
RO118557B1 (ro) 1993-12-22 2003-07-30 Zeneca Ltd Compozitie erbicida si metoda pentru controlul vegetatiei nedorite
EP1602379A1 (en) * 1993-12-28 2005-12-07 Allergan, Inc. Botulinum toxin B for treating spastic muscle
DE69511860T2 (de) 1994-05-31 2000-02-10 Allergan, Inc. Modifizierung von clostridium-toxinen und ihre anwendung als transport proteine
US5721215A (en) 1996-03-20 1998-02-24 Allergan Injectable therapy for control of muscle spasms and pain related to muscle spasms
US6063768A (en) * 1997-09-04 2000-05-16 First; Eric R. Application of botulinum toxin to the management of neurogenic inflammatory disorders
GB9818548D0 (en) * 1998-08-25 1998-10-21 Microbiological Res Authority Treatment of mucas hypersecretion
BR9914891A (pt) 1998-10-27 2001-07-17 Mayo Foundation Processos para aperfeiçoamento de cura de ferimento
US7138127B1 (en) * 2000-01-19 2006-11-21 Allergan, Inc. Clostridial toxin derivatives and methods for treating pain
CA2494241C (en) * 2000-02-08 2011-06-14 Allergan, Inc. Botulinum toxin pharmaceutical compositions
US6464986B1 (en) * 2000-04-14 2002-10-15 Allegan Sales, Inc. Method for treating pain by peripheral administration of a neurotoxin
US6423319B1 (en) * 2000-10-04 2002-07-23 Allergan Sales, Inc. Methods for treating muscle injuries
DE10131388B4 (de) * 2001-06-28 2004-07-08 Infineon Technologies Ag Integrierter dynamischer Speicher und Verfahren zum Betrieb desselben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129171A3 (en) * 2005-05-31 2007-03-29 Polydoor Emile Huijsmans Method and medical package for repairing tendons by surgery
US20130022543A1 (en) * 2011-07-20 2013-01-24 Mcginley Joseph C Method for Treating and Confirming Diagnosis of Exertional Compartment Syndrome
US9138188B2 (en) * 2011-07-20 2015-09-22 Joseph C. McGinley Method for treating and confirming diagnosis of exertional compartment syndrome
US9226954B2 (en) 2011-07-20 2016-01-05 Joseph C. McGinley Method for treating and confirming diagnosis of exertional compartment syndrome
US9138194B1 (en) 2012-06-27 2015-09-22 Joseph McGinley Apparatus for use to replicate symptoms associated with vascular obstruction secondary to vascular compression
WO2015188944A1 (en) * 2014-06-13 2015-12-17 Merz Pharma Gmbh & Co. Kgaa Novel uses of recombinant clostridial neurotoxins with decreased duration of effect
WO2022043476A1 (en) 2020-08-27 2022-03-03 Rousselot B.V. Combination of collagen peptide and whey protein for use in a condition of the skeletal tissue

Also Published As

Publication number Publication date
CA2424242A1 (en) 2002-04-11
US7108857B2 (en) 2006-09-19
WO2002028425A3 (en) 2003-02-27
US7468188B2 (en) 2008-12-23
US20020192240A1 (en) 2002-12-19
MXPA03002576A (es) 2004-04-20
US20070128227A1 (en) 2007-06-07
TWI292713B (en) 2008-01-21
EP2174662A2 (en) 2010-04-14
US6423319B1 (en) 2002-07-23
EP1322324A2 (en) 2003-07-02
CN1658897A (zh) 2005-08-24
EP2174662A3 (en) 2010-06-30
JP2012229263A (ja) 2012-11-22
CN102078597A (zh) 2011-06-01
US6955813B2 (en) 2005-10-18
AU8699101A (en) 2002-04-15
AU2001286991B2 (en) 2005-05-19
DK1322324T3 (da) 2010-11-01
CA2424242C (en) 2007-08-07
US20050281846A1 (en) 2005-12-22
EP1322324B1 (en) 2010-08-18
JP2004518632A (ja) 2004-06-24
BR0114440A (pt) 2004-06-15
DE60142839D1 (de) 2010-09-30
ES2348862T3 (es) 2010-12-16
ATE477816T1 (de) 2010-09-15
KR20030043981A (ko) 2003-06-02
KR100873819B1 (ko) 2008-12-11
NZ524793A (en) 2005-09-30

Similar Documents

Publication Publication Date Title
US6955813B2 (en) Therapy for injured muscles
AU2001286991A1 (en) Methods for treating muscle injuries
US7705125B2 (en) Leucine-based motif and Clostridial neurotoxins
US8420105B2 (en) Botulinum toxin administration to treat various conditions
US7255865B2 (en) Methods of administering botulinum toxin
EP1272207B1 (en) Use of a botulinum toxin for the manufacture of a medicament for peripheral administration for treating pain non associated to muscle spasm or headache
CA2632696A1 (en) Modified clostridial neurotoxins with altered biological persistence
HK1154506A (en) Methods for treating muscle injuries
HK1081863A (en) Methods for treating muscle injuries

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 524793

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/002576

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2001966482

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2424242

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037004676

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001286991

Country of ref document: AU

Ref document number: 2002532249

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020037004676

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018199461

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001966482

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001286991

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 524793

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 524793

Country of ref document: NZ