WO2002006008A1 - Procede de centrage/dressage par decharge au contact et dispositif associe - Google Patents

Procede de centrage/dressage par decharge au contact et dispositif associe Download PDF

Info

Publication number
WO2002006008A1
WO2002006008A1 PCT/JP2001/006040 JP0106040W WO0206008A1 WO 2002006008 A1 WO2002006008 A1 WO 2002006008A1 JP 0106040 W JP0106040 W JP 0106040W WO 0206008 A1 WO0206008 A1 WO 0206008A1
Authority
WO
WIPO (PCT)
Prior art keywords
dressing
tooling
electrode
contact discharge
contact
Prior art date
Application number
PCT/JP2001/006040
Other languages
English (en)
French (fr)
Inventor
Masahiro Mizuno
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Priority to DE60122901T priority Critical patent/DE60122901T2/de
Priority to KR10-2003-7000527A priority patent/KR100514205B1/ko
Priority to US10/332,773 priority patent/US6939457B2/en
Priority to EP01949955A priority patent/EP1306164B1/en
Publication of WO2002006008A1 publication Critical patent/WO2002006008A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/04Devices or means for dressing or conditioning abrasive surfaces of cylindrical or conical surfaces on abrasive tools or wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/001Devices or means for dressing or conditioning abrasive surfaces involving the use of electric current

Definitions

  • the present invention relates to a contact discharge tooling 'dressing method and apparatus using a double ring-shaped rotating electrode.
  • Super-abrasive grinding wheels have less wear than conventional grinding wheels and are suitable for high-precision shape creation.
  • tooling and dressing is difficult, so it is not widely used.
  • the present invention provides a contact discharge truing and dressing method capable of extremely easily performing the grinding and dressing of a superabrasive stone, particularly a superabrasive stone having a metal binder, and a method thereof. It is intended to provide a device.
  • the present invention in order to achieve the above object,
  • a rotating non-conductive truing / dressing grindstone is brought into contact with a pair of electrodes to which a DC voltage or a pulse voltage is applied.
  • a contact discharge tooling and dressing method in which the non-conductive tooling and dressing grindstone is tooled and dressed by contact discharge generated when a circuit is opened and closed. a part of the side surface of the double ring-shaped rotary electrode insulated by an insulator of m or less is used as a pair of electrodes.
  • a rotating conductive tooling / dressing grindstone is brought into contact with a pair of electrodes to which a DC voltage or a pulse voltage is applied, and the positive electrode—electrode chips—grinding stone binder—electrode
  • the contact discharge generated when opening and closing the circuit composed of the chip and the negative electrode causes the conductive tooling 'dressing grindstone to be dressed and dressed by a contact discharge tooling and dressing device. It is characterized by comprising a double ring-shaped rotary electrode insulated by an insulator, and a pair of electrodes composed of a part of the side surface of the double ring-shaped rotary electrode.
  • a rotating non-conductive tooling 'dressing wheel is brought into contact with a pair of electrodes to which a DC voltage or pulse voltage is applied, and intermittently from the positive electrode-electrode chip-negative electrode
  • a contact discharge tooling and dressing apparatus in which the non-conductive tooling / dressing grindstone is dressed and dressed by a contact discharge generated when the configured circuit is opened and closed. It is characterized by comprising a double ring-shaped rotary electrode insulated by an insulator of not more than m and a pair of electrodes consisting of a part of the side surface of the double ring-shaped rotary electrode.
  • the contact discharge tooling and dressing device according to the above (3), (4) or (5), characterized in that the contact discharge tooling and dressing device has a structure capable of supplying power to a double ring type rotating electrode having a different diameter. I do.
  • the device according to [3], [4] or [5] is used, and the driving device for the double ring-shaped rotary electrode is provided with a cross movement mechanism and a rotation mechanism. It is installed on a numerically controlled moving table equipped to perform high-precision integrated tooling and dressing.
  • the contact discharge power consumption is controlled by numerical control or automatic control based on the roundness of the estimated tooling' dressing grindstone.
  • E ⁇ It features high-precision drawing and dressing by automatically adjusting the size of Ip / 2.
  • the type of the supply voltage to the double ring type rotating electrode is set to DC voltage so that the control is performed more stably. It is characterized by automatic switching between pulse voltages.
  • a displacement sensor for measuring the position of the electrode side surface is provided on the electrode side surface, and the tooling is performed. It is characterized in that tooling and dressing are performed while measuring the amount.
  • FIG. 1 is a configuration diagram of a contact discharge tooling and dressing apparatus showing an embodiment of the present invention.
  • FIG. 2 is a block diagram of a control device of the contact discharge tooling and dressing device according to the embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a contact discharge tooling and dressing method showing an embodiment of the present invention.
  • FIG. 4 is an enlarged view of part A of FIG. 3 and illustrates the tooling and dressing mechanism (part 1).
  • FIG. 5 is an enlarged view of part A of FIG. 3 and illustrates the tooling and dressing mechanism (part 2).
  • FIG. 6 is a main part configuration diagram of a contact discharge tooling dressing device having an electrode feed drive mechanism according to an embodiment of the present invention.
  • FIG. 7 is a configuration diagram of a power supply mechanism of the contact discharge tooling and dressing apparatus according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing an example in which the diameter of the double-ring rotary electrode of the contact discharge tooling and dressing device shown in FIG. 7 is changed.
  • FIG. 9 is an explanatory diagram of various contact discharge truing and dressing methods of the present invention.
  • FIG. 10 is a view showing a method for removing rotational vibration on the side surface of an electrode according to an embodiment of the present invention.
  • FIG. 11 shows an embodiment of the present invention.
  • -It is explanatory drawing of an ining 'dressing method.
  • FIG. 12 shows a configuration of a contact discharge truing / dressing apparatus in which a driving device for a double ring-shaped rotary electrode according to an embodiment of the present invention is installed on a numerically controlled moving table provided with a cross moving mechanism and a rotating mechanism.
  • FIG. 13 is an explanatory diagram of a method for numerically controlling the feed speed of the double ring-shaped rotary electrode in the direction of the rotation axis according to the embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of a method for estimating the roundness of a grindstone according to an embodiment of the present invention.
  • FIG. 15 shows a method of automatically adjusting the magnitude of the contact discharge power consumption E ⁇ Ip / 2 by numerical control or automatic control based on the estimated value of the roundness of a grinding wheel according to an embodiment of the present invention.
  • FIG. 16 is a diagram illustrating a method of automatically terminating contact discharge tooling and dressing when the estimated value of the roundness of a grindstone reaches a predetermined value according to the embodiment of the present invention.
  • FIG. 17 shows a method of automatically switching the type of the supply voltage to the double-ring type rotating electrode between the DC voltage and the pulse voltage so that the control according to the embodiment of the present invention is performed more stably.
  • FIG. 18 is an explanatory diagram of a method for performing contact discharge pulling and dressing while measuring the amount ofucing according to an embodiment of the present invention.
  • FIG. 19 is a view showing a modification of the method for performing contact discharge tooling and dressing shown in FIG.
  • FIG. 20 is an explanatory diagram of a contact discharge truing and dressing method applied to in-process tooling and dressing showing an embodiment of the present invention and correcting a tool path based on the amount of tooling. .
  • FIG. 21 is a view showing a twin-dressing and dressing apparatus having a double ring-shaped rotating electrode in which a conventional grindstone (non-conductive grindstone) according to an embodiment of the present invention is disposed.
  • FIG. 22 is a view showing a truing dressing apparatus having a double ring-shaped rotating electrode having a conventional grindstone (a non-conductive grindstone) arranged outside, showing an embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a contact discharge truing and dressing apparatus showing an embodiment of the present invention.
  • noted c shows an example of applying the contact discharge vine one Ingu ⁇ Doretsushingu method of the double-ring-shaped rotating electrode type on the cutting edge crane one queuing profile grinding ffi stones, in the first illustration of rolled stone for profile grinding
  • the rotating shaft and the rotating shaft of the double ring-shaped rotating electrode are shown perpendicular to each other, this is for the sake of simplicity in the explanation, and the cutting edge of the grinding wheel for profile grinding is actually 30. 30 between these axes to form a V-shape. Gave the angle.
  • 1 is a grinding stone for profile grinding (grinding and dressing whetstone)
  • 2 is a base
  • 3 is a front cover
  • 4 is a ⁇ ring
  • 5 is a ⁇ ring presser lid
  • 6 is a rear cover.
  • 7 is a connector
  • 8 is a cover
  • 9 is a handle
  • 10 is a front limiter
  • 11 is a rear limiter
  • 12 is a motor bracket
  • 13 is a stepping motor
  • 14 is a power coupling
  • 15 is a ball.
  • Screw 16 is a ball screw support unit
  • 17 is a nut
  • 18 is a nut bracket
  • 19 is a spindle moving table
  • 20 is a linear guide rail
  • 21 is a linear guide slider
  • 22 is a motor bracket.
  • 23 is a DC motor
  • 24 is a coupling
  • 25 is a spindle
  • 26 is a spindle support unit
  • 27 is a spindle auxiliary servo unit
  • 28 is a mechanical lock
  • 29 is an electrode holder
  • 30 Is the insulating layer
  • 31 is the outer ring of the double ring type rotating electrode 3 2 double ring-shaped rotating electrode insulating layer, 3 3 double ring-shaped rotating electrode inner ring, 3 4, 3 5 power supply brush, 3-6 power supply brush bracket 3 7 is a displacement sensor.
  • a ball screw support unit 16 is fixed to the base 2, and thereby a ball screw 15 having a pitch of 1 mm is supported.
  • One end of the ball screw 15 is connected to a rotating shaft of a stepping motor 13 via a coupling 14 and is driven to rotate at a step angle of 0.1 °.
  • the stepping motor 13 is fixed to the base 2 by a motor bracket 12.
  • the nut 17 is engaged with the ball screw 15 and is sent in the direction of the rotation axis by the rotation of the stepping motor 13.
  • the nut bracket 18 is fixed to the nut 17 so that when the switch of the front limiter 10 or the rear limiter 11 is pressed, the stepping motor stops.
  • linear guide rails 20 extending in the electrode rotation axis direction are fixed to the base 2 in parallel.
  • Each linear guide rail 20 is equipped with two linear guide sliders 21.
  • the spindle moving table 19 is fixed to the linear guide slider 21 and the nut bracket 18 and is driven in the direction of the electrode rotation axis by the driving motor 13.
  • the main shaft 25 is supported by a main shaft subunit 26 fixed on a moving table and a main shaft auxiliary support unit 27, and one end thereof is connected to a DC motor 2 for rotating and driving it via a coupling 24. Connected to 3.
  • the DC motor 23 is fixed on the spindle moving table 19 using a motor bracket 22.
  • Carbon (or copper) was used as the electrode material for the outer ring 31 and the inner ring 33 of the double ring-shaped rotating electrode, and epoxy resin was used for the double ring-shaped rotating electrode insulating layer 32 that insulates both.
  • the thickness of the insulating layer between the electrodes was about 500 ⁇ m.
  • Double ring type rotating electrode and the electrode holder 29 are bonded by an insulating layer 30 made of a thermoplastic resin having high insulating properties.
  • Double ring type rotary electrode is mechanical lock 2 It is fixed to the spindle 25 by 8.
  • the outer ring 31 and the inner ring 33 of the double ring type rotating electrode are in contact with power supply brushes 34, 35 which are pressed by springs, and power is supplied by this.
  • These power supply brushes 34, 35 are supported by a power supply brush bracket 36, which is fixed on a spindle moving table 19, and is made of baselite.
  • This embodiment does not employ the power supply system according to the sixth aspect of the present invention.
  • the displacement sensor 37 is installed on the table or the base 2 of the grinding machine, and monitors the position of the electrode side surface to monitor the position of the cutting edge of the profile grinding wheel.
  • FIG. 2 is a diagram showing the control of a contact discharge tooling and dressing device according to an embodiment of the present invention. It is a block diagram of a control apparatus.
  • 38 is a discharge current limiting resistor
  • 39 is a Hall current detector
  • 40 is a numerical processing device
  • 41 is a digital input device
  • 42 is a digital output device
  • 43 is an AD converter
  • 4 is a DA converter
  • 45 is a peak detection circuit
  • 46 is a low-pass filter
  • 47 is a VF converter
  • 48 is a switching circuit
  • 49 is a Y-type relay
  • 50 is a power amplifier circuit
  • 52 and 53 are analog switches
  • 54 is a DC motor driver
  • 55 is a manual operation device
  • 56 is an amplifier.
  • the control device will be described with reference to FIG.
  • a / D converter 43 and a numerical processing device 40 having a D / A converter 44 are used for control.
  • a power amplifying circuit 50 using a power operational amplifier is used as a power supply of the discharging circuit, and the output voltage can be set by a finger from the numerical processing unit 40. As a result, it is possible to continuously change the truing conditions from the rough truing to the finishing truing.
  • the output of the power amplification circuit 50 is electrically insulated from a commercial power supply and a ground for safety.
  • the positive electrode of the output of the power amplification circuit 50 is directly connected to the power supply brush 35.
  • the negative pole of the output of the power amplification circuit 50 is connected to a Y-type relay 49 that can be switched by a command from the numerical processing unit 40, where switching between DC voltage and pulse voltage is performed.
  • a switching circuit 48 composed of a field-effect transistor is connected, and then a DC voltage connected to the power supply brush 34 via the Hall current detector 39 and the discharge current limiting resistor 38 is applied. Do not go through the switching circuit 48.
  • the switching frequency of the switching circuit 48 can be set by a command from the numerical processing unit 40 by using a VF converter (voltage-to-frequency converter) 47.
  • the output from the Hall current detector 39 is divided into three paths and taken into the numerical processing unit 40.
  • the first path is a path for directly taking in the output.
  • the second path is a path taken after passing through the peak detection circuit 45.
  • the peak value of the contact discharge current can be obtained from the signal voltage of the second path (corresponding to the invention according to claims 11, 12, or 13).
  • the peak detection circuit 45 is a finger from the numerical processing unit 40. It is reset at a cycle of one turn or more of the grinding wheel.
  • Third path is one-pass filter
  • the average value Ira of the contact discharge current can be obtained from the signal voltage of the third path (corresponding to the invention according to claim 12).
  • start-stop command, rotation direction switching, and rotation speed adjustment of DC ⁇ 23 are all performed manually by the manual operation device 55, and the alarm output signal when an abnormal force is generated in the DC motor 23 is output. Only the signal line is connected to the numerical processing unit 40, so that processing in the event of an abnormality can be performed.
  • the output of the displacement sensor 37 is amplified by the amplifier 56, and then taken into the numerical processing unit 40, which is used for the modular ring at the cutting edge position of the grinding wheel 1 for profile grinding (see Fig. 1). Is done.
  • FIG. 3 is an explanatory view of a contact discharge truing dressing method according to an embodiment of the present invention
  • FIGS. 4 and 5 are diagrams enlarging a portion A of FIG. 3 and explaining a tooling mechanism thereof. is there.
  • a double ring-shaped rotating electrode 201 composed of an electrode inner ring 202, an insulating layer 203, and an electrode outer ring 204 is used. Then, a DC voltage or a pulse voltage is applied between the electrode inner ring 202 and the electrode outer ring 204 to rotate.
  • the electrode outer ring 204 0 2 Electrode swarf 2 2 1—Contact discharge occurs in the electrode swarf 22 0 and 22 1 of the circuit composed of the inner electrode ring 202, and the heat causes the conductive binder 1 02 melts and abrasive grains 103 fall off.
  • the insulating layer 20 The thickness of 3 may be several hundred / m or more.
  • the thickness of the layer 12 is made several hundreds // m or less, it can be applied to the tooling of the non-conductive grindstone 110.
  • the electrode outer ring 2 13 electrode chips 2 2 2—electrode inner ring 2 1 1
  • Contact discharge occurs at the electrode chips 222 in the circuit composed of the electrodes, and the heat dissolves the non-conductive binder 111, causing the abrasive grains 112 to fall off.
  • the thickness of the insulating layer between the electrodes it becomes possible to perform dressing and dressing of the non-conductive grindstone.
  • 105 is a DC power supply or a pulse power supply.
  • FIG. 6 is a main part configuration diagram of a contact discharge truing and dressing apparatus having an electrode feed mechanism according to an embodiment of the present invention.
  • the double ring-shaped rotary electrode 201 is configured to be fed in the direction of the rotation axis of the double ring-shaped rotary electrode 201 by an electrode feed drive mechanism 120.
  • 100 is a grindstone
  • 105 is a DC power supply or a pulse power supply.
  • FIG. 7 is a configuration diagram of a power supply mechanism of a contact discharge tooling dressing device showing an embodiment of the present invention.
  • 1 2 1 is a rotating main shaft of the double ring type rotating electrode 201
  • 1 2 2 is a conductor ring fixed to the rotating main shaft 1 2 1
  • 1 2 3 is an insulating layer
  • 1 2 4 is electrode Flange
  • 1 2 5 is a washer
  • 1 2 6 is an electrode fixing bolt for electrically connecting the rotating spindle 1 2 1 and the electrode inner ring 2
  • 2 is a electrode outer ring 2 4 and the electrode flange 1 2 4
  • the power supply springs for electrically connecting the power supply brushes, and the power supply brushes 1 28 and 1 2 9 are provided.
  • the power supply brush 1 2 8 One conductor ring 1 2 2—Rotating spindle 1 2 1 One electrode Fixing bolt 1 2 6 —Power is supplied to the inner electrode ring 202 via the washer 1 25 and the power supply brush 1 2 9 —Electrode flange 1 2 4 —Supplied to the outer electrode ring 204 via the power supply spring 1 2 7.
  • FIG. 8 is a cross-sectional view showing an example of the contact discharge truing and dressing apparatus shown in FIG. 7 in which the diameter of the double ring-shaped rotary electrode is changed.
  • a double ring-shaped rotating electrode 201 'having a small diameter is provided.
  • FIG. 9 is an explanatory view of various contact discharge truing and dressing methods of the present invention.
  • FIG. 9 (a) shows a contact discharge in a liquid
  • FIG. 9 (b) shows a contact discharge in a spray
  • FIG. In (c) the contact discharge is performed in an air environment.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.
  • a liquid supply nozzle 301 is arranged at the contact discharge point, and the contact discharge is performed while supplying the liquid 302. Let it do.
  • a spray supply nozzle 303 is arranged at the contact discharge location, and contact discharge is performed while supplying spray 304. Is performed.
  • the contact discharge may be performed in the air without any supply.
  • FIG. 10 is a view showing a method of removing the rotational vibration on the side surface of the electrode according to the embodiment of the present invention.
  • FIG. 11 is an explanatory view of a contact discharge tooling and dressing method for obtaining a V-shaped grinding wheel tip shape according to an embodiment of the present invention.
  • the double ring type rotary electrode is provided while a predetermined angle 0 is given between the rotary spindle 400 of the double ring type rotary electrode 405 and the rotary axis 402 of the grinding wheel 401.
  • a predetermined angle 0 is given between the rotary spindle 400 of the double ring type rotary electrode 405 and the rotary axis 402 of the grinding wheel 401.
  • FIG. 12 shows an embodiment of the present invention, in which a drive device for a double ring-shaped rotary electrode is mounted on a numerically controlled moving table provided with a cross-moving mechanism and a rotating mechanism, and a configuration of a contact discharge tool / single dressing apparatus.
  • the driving device of the double ring type rotary electrode 4 15 is installed on a numerically controlled moving table 4 18 provided with a cross moving mechanism and a rotating mechanism.
  • contact discharge tooling 'dressing is performed by associating the double-ring rotating electrode 4 15 with the grinding wheel 4 10 fixed to the grinding wheel rotating shaft 4 1 1.
  • the drive mechanism of the rotating main shaft 4 16 of the electrode 4 15, that is, the tooling / dressing device main body 4 17 is installed on the numerically controlled movement table 4 18 provided with a cross movement mechanism and a rotation mechanism. This makes it possible to perform high-precision total tooling and dressing.
  • FIG. 13 is a diagram illustrating a method of numerically controlling the feed speed of the double ring-shaped rotary electrode in the direction of the rotating shaft according to an embodiment of the present invention.
  • FIG. 13 (a) is a diagram of the system configuration
  • FIG. 13 (b) is a waveform diagram of the current by the numerical control.
  • a contact discharge current limiting resistor R and a current detector A are inserted on the power supply circuit side of the device so as to be in series with the double ring-shaped rotating electrode 201, and the contact discharge current peaks.
  • the contact discharge state can be kept extremely stable, and periodic irregularities occurring on the grinding wheel working surface can be suppressed.
  • the rate at which the electrode is mechanically wasted is reduced, so that electrode consumption can be reduced. This preserves the working environment in a clean environment It also leads to doing.
  • FIG. 14 is an explanatory diagram of a method of estimating the roundness of ffi stones showing an embodiment of the present invention.
  • FIG. 14 (a) is a configuration diagram of the system
  • FIG. 14 (b) is a diagram. It is a waveform diagram of the current by the numerical control.
  • the average value I m and the peak value I P of the output from the current detector A are obtained in a cycle of one turn or more of the grinding wheel, and the roundness of the grinding wheel is estimated based on the value of I m / I P Then, do dressing 'dressing.
  • a high roundness of the grindstone larger the value of I m / I P.
  • FIG. 15 shows an embodiment of the present invention. 1. A method of automatically adjusting the magnitude of the contact discharge power consumption E ⁇ I p / 2 by numerical control or automatic control based on the estimated roundness of a stone. FIG.
  • FIG. 16 is an explanatory view of a method of automatically terminating contact discharge tooling and dressing when an estimated value of roundness of a grindstone reaches a predetermined value according to an embodiment of the present invention.
  • an automatic end processing device 620 that automatically ends the processing of dressing and dressing is provided, and the trueness of the grinding stone is provided. Automatic truing and dressing when circularity reaches a satisfactory value So that it can be terminated.
  • FIG. 17 shows an embodiment of the present invention, in which the type of the supply voltage to the double-ring type rotating electrode is automatically switched between DC voltage and pulse voltage so that the control is more stably performed.
  • an automatic switching device 630 for automatically switching the type of the supply voltage to the double ring type rotary electrode between the DC voltage and the pulse voltage is provided so that the control is performed more stably.
  • FIG. 18 is an explanatory view showing a method for performing contact discharge tooling 'dressing while measuring the tooling amount, showing an embodiment of the present invention.
  • a displacement sensor 37 for measuring the position of the side surface of the electrode is provided on the side surface of the electrode, and the smoothing and dressing is performed while measuring the amount of smoothing. Further, as shown in FIG. 19, the displacement sensor 37 may be provided in the tooling device main body 71.
  • FIG. 20 is an explanatory view of a contact discharge tooling-ing 'dressing method which is applied to in-process tooling and dressing showing an embodiment of the present invention and is performed while correcting a tool path based on the amount of tooling. is there.
  • reference numeral 8001 denotes a compensating device for compensating a thread pass based on the amount of tooling based on an output i from the sensor 37
  • reference numeral 8002 denotes a numerically controlled movement for mounting a workpiece 803. It is a table.
  • contact discharge truing and dressing are performed while correcting the tool path based on the amount of tooling by applying the present invention to twin process tuning and dressing.
  • the electrode material adheres to the protruding portion (the portion where the runout is large) of the dressing and dressing grindstone, and as a result, the electrode continues to recede. May occur. So solve this problem In order to decide, it is effective to adopt the following configuration.
  • FIG. 21 is a view showing a tooling dressing apparatus having a double ring-shaped rotating electrode in which a conventional grindstone (non-conductive grindstone) is disposed inside showing an embodiment of the present invention.
  • Double ring type rotating electrode 910 composed of an inner electrode ring 9 13, an insulating layer 9.1 4, and an outer electrode electrode 9 15 rotated by the rotating main shaft 9 11 of the double ring type rotating electrode 9 10
  • a conventional grindstone (non-conductive grindstone) 9 12 is placed inside the box.
  • the conventional grindstone (non-conductive grindstone) 912 placed inside the rotating electrode enables accurate removal.
  • FIG illustrates a Tsuruingu-Doretsushingu device having a conventional grindstone double ring-shaped rotating electrode (non-conductive grindstone) arranged outside of an embodiment of the present invention
  • the double ring type rotating electrode 9 20 composed of the electrode inner ring 9 2 2, the insulating layer 9 2 3, and the electrode outer ring 9 2 4 rotated by the rotating main shaft 9 2 1 of the double ring type rotating electrode 9 2 0
  • a conventional grindstone (non-conductive grindstone) 9 25 is placed on the outside.
  • the contact discharge tooling-dressing method and apparatus of the present invention can perform truing and dressing of a superabrasive grindstone, particularly a superabrasive grindstone having a metal binder, in an extremely simple manner, It is suitable as a contact discharge device capable of forming a shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

明 細 書 接触放電ツルーィング · ドレツシング方法およびその装置 技術分野
本発明は、 二重リング形回転電極による接触放電ツル一イング' ドレッシング 方法およびその装置に関するものである。 背景技術
超砥粒砥石は従来砥石に比べて摩耗が少なく、 高精度な形状創成加工に適して いる。 しかし、 その反面、 ツル一イング · ドレッシングが困難であるため、 広く は普及していないのが現状である。
超砥粒砥石のうち、 金属等を結合剤に用いた導電性砥石については放電ツル一 イング · ドレッシング、 電解ドレツシングなどの手法が適用される (砥粒加工学 会誌 Vo 1. 3 9、 No. 5 1 9 9 5, SEP, P. 2 1、 P. 22、 P. 2
5、 P. 2 6参照) が、 従来の方法はいずれも液中で行う方法であり、 金型製造 業界で一般的に行われている乾式研削盤には適しなかった。 また、 上記方法では、 砥石主軸にブラシを用いて給電する必要があり、 簡便ではなかった。
これに対し、 絶縁性の砥石を挟んだ一対の電極に電圧を与え、 これを導電性砥 石で研削し、 その際生じる接触放電現象を利用した接触放電ツル一イング' ドレ ッシング法がある (砥粒加工学会誌 Vo 1. 3 9、 No. 5 1 9 9 5, SEP, P. 24参照)。 この方法は、 砥石主軸にブラシを用いて給電する必要がないの で簡便である。
しかし、 この従来の接触放電ツル一イング · ドレッシング法では、 電極に対す る砥石の切込み量や電極の送り速度を一定にして電極を砥石で研削するため、 安 定した接触放電現象が得られず、 場合によっては砥石作業面の円周に周期的凹凸 が生じるといった問題が発生した ( 1 9 9 0年度精密工学会春季大会学術講演会 講演論文集、 9 3 3〜9 34頁参照) 。 また、 主に機械的に電極を削るため電極 の消耗が激しかった。 さらに、 この接触放電ツル一イング' ドレッシング法は非 導電性の砥石には適用することができなかった。
この他に、 回転させた従来砥石を用い、 結合剤 (通常は金属以外の結合剤) を 機械的に削り落とすことで砥粒を脱落させるツル一イング' ドレッシング法が数 種ある (砥粒加工学会誌 V o 1 . 3 9、 N o . 5 1 9 9 5 , S E P, P . 8〜 1 1参照) 。
し力、し、 いずれの方法も乾式で適用した場合、 大量の砥粒が飛散し、 工作機械 の寿命や人体に悪影響を与えるため問題となっていた。 また、 機械的な力による ツル一イング' ドレッシングであるため、 V字形の鋭い刃先形状を創成しようと すると刃先が欠けるという問題があつた。
また、 上記のいずれのツル一イング. ドレッシング法においても、 砥石の真円 度の大きさをモニタリングしながらツルーィング · ドレツシングする方策が採ら れていなかった。 そのため、 荒から仕上げへのツル一ィング■ ドレツシング条件 の移行を自動で連続的に行うことができなかった。 また、 ツル一イング' ドレツ シングをどの時点で終了すべきかを、 ツル一イング · ドレッシングを行いながら 判断することができなかった。
さらに、 上記のいずれのツル一イング · ドレッシング法においても、 ツル一ィ ングによる砥石半径減少量をモニタリングしながらツル一イング · ドレッシング する方策が採られていなかった。 そのため、 インプロセスツル一イング' ドレツ シングにおいてツールパス (工具経路) を補正しながら加工を行うことができな かった。 発明の開示
上記したように、 従来のいずれのツル一イング · ドレッシング法も、 種々の問 題を有していた。
本発明は、 上記状況に鑑みて、 超砥粒砥石、 特に金属の結合剤を有する超砥粒 碟石のツル一イング · ドレッシングを極めて簡便に行うことができる接触放電ッ ルーイング · ドレッシング方法およびその装置を提供することを目的とする。 本発明は、 上記目的を達成するために、
〔 1〕 D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた導電 性被ツル一イング- ドレッシング砥石を接触させ、 断続的に正電極一電極の切り 屑一砥石結合剤一電極の切り屑一負電極から構成される回路を開閉させる際に生 じる接触放電により、 前記導電性被ツル一イング' ドレッシング砥石がツルーィ ング · ドレツシングされる接触放電ツルーィング · ドレツシング方法であつて、 絶縁体で絶縁された二重リング形回転電極の側面の一部を一対の電極として用い ることを特徴とする。
〔2〕 D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた非導 電性被ツルーィング · ドレツシング砥石を接触させ、 断続的に正電極一電極の切 り屑—負電極から構成される回路を開閉させる際に生じる接触放電により、 前記 非導電性被ツル一^ rング · ドレツシング砥石がツル一ィング · ドレツシングされ る接触放電ツル一イング · ドレッシング方法であって、 厚さが数百; m以下の絶 縁体で絶縁された二重リング形回転電極の側面の一部を一対の電極として用いる ことを特徴とする。
〔3〕 D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた導電 性被ツル一イング · ドレッシング砥石を接触させ、 断続的に正電極—電極の切り 屑—砥石結合剤—電極の切り屑一負電極から構成される回路を開閉させる際に生 じる接触放電により、 前記導電性被ツル一イング' ドレッシング砥石がツル一ィ ング■ ドレッシングされる接触放電ツル一イング · ドレッシング装置であって、 絶縁体で絶縁された二重リング形回転電極と、 この二重リング形回転電極の側面 の一部からなる一対の電極とを具備することを特徵とする。
〔4〕 D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた非導 電性被ツル一イング' ドレッシング砥石を接触させ、 断続的に正電極—電極の切 り屑—負電極から構成される回路を開閉させる際に生じる接触放電により、 前記 非導電性被ツル一イング · ドレッシング砥石がツル一イング' ドレッシングされ る接触放電ツル一イング, ドレッシング装置であって、 厚さが数百 m以下の絶 縁体で絶縁された二重リング形回転電極と、 この二重リング形回転電極の側面の 一部からなる一対の電極とを具備することを特徴とする。
〔5〕 上記 〔3〕 または 〔4〕 記載の接触放電ツル一イング, ドレッシング装 置において、 前記二重リング形回転電極の回転軸方向への駆動機構を具備するこ とを特徴とする。
〔6〕 上記 〔3〕、 〔4〕 または 〔5〕 記載の接触放電ツル一イング · ドレツ シング装置において、 異なる径の二重リング形回転電極に対して給電可能な構造 を有することを特徴とする。
〔7〕 上記 〔1〕 または 〔2〕 記載の接触放電ツル一イング' ドレッシング方 法において、 前記接触放電を液中、 噴霧中または気中の環境下で行うことを特徵 とする。
〔8〕 上記 〔1〕 または 〔2〕 記載の接触放電ツル一イング · ドレッシング方 法において、 前記二重リング形回転電極の側面の初期回転振れを除去するため、 電極間に給電せずに被ツルーィング · ドレツシング砥石で電極側面を研削した後、 電極間に電圧を与えてツル一イング · ドレツシングを開始することを特徴とする。
〔9〕 接触放電ツル一イング · ドレッシング方法において、 上記 〔3〕 、 〔 4〕 または 〔5〕 記載の装置を用い、 前記電極の回転軸と被ツル一イング · ドレ ッシング砥石の回転軸との間に所定の角度を与えた状態で電極に電極回転軸方向 の送りを与えることにより、 所定の砥石刃先形状を得ることを特徴とする。
〔1 0〕 接触放電ツル一イング' ドレッシング方法において、 上記 〔3〕 、 〔4〕 または 〔5〕 記載の装置を用い、 前記二重リング形回転電極の駆動装置を 十字移動機構と回転機構を備えた数値制御移動テーブル上に設置し、 高精度な総 型ツル一イング · ドレッシングを行うことを特徴とする。
〔1 1〕 接触放電ツル一イング' ドレッシング方法において、 上記 〔3〕、 〔4〕 または 〔5〕 記載の装置を用い、 その装置の給電回路側に、 電極対に対し て直列になるよう接触放電電流制限抵抗および電流検出器を挿入し、 接触放電電 流がピーク値 I P をとるときに電極間における消費電力が最大になるように、 す なわち、 電源電圧を Eとしたとき I = E/ ( 2 R) となるように、 前記二重リ ング形回転電極の回転軸方向への送り速度を数値制御することを特徵とする。
〔1 2〕 上記 〔1 1〕 記載の接触放電ツル一イング · ドレッシング方法におい て、 前記電流検出器からの出力の平均値 I m とピーク値 I P を被ツル一イング · ドレツシング砥石一回転以上の周期で取得し、 I m Z I の値に基づレ、て被ッル —イング' ドレッシング砥石の真円度を推定しながらツル一イング' ドレツシン グを行うことを特徴とする。
〔1 3 ) 上記 〔1 2〕 記載の接触放電ツル一イング' ドレッシング方法におい て、 前記推定した被ツル一イング' ドレッシング砥石の真円度に基づいて数値制 御または自動制御により接触放電消費電力 E ■ I p / 2の大きさを自動調整して 高精度ッル一イング · ドレツシングを行うことを特徴とする。
〔1 4〕 上記 〔1 2〕 記載の接触放電ツル一イング' ドレッシング方法におい て、 前記推定した被ツル一イング' ドレッシング 石の真円度が所定の大きさ以 下になつた場合にツル一イング · ドレッシングを自動終了することを特徴とする
〔1 5〕 上記 〔1 1〕 記載の接触放電ツル一イング' ドレッシング方法におい て、 制御がより安定的に行われるように、 前記二重リング形回転電極に対する供 給電圧の種類を D C電圧とパルス電圧の間で自動切替えすることを特徴とする。
〔1 6〕 上記 〔3〕、 〔4〕 または 〔5〕 記載の接触放電ツル一イング · ドレ ッシング装置において、 電極側面側に電極側面の位置を測定する変位センサを設 置し、 ツル一イング量を !ί定しながらツル一イング · ドレッシングを行うことを 特徴とする。
〔1 7〕 上記 〔3〕、 〔4〕 または 〔5〕 記載の接触放電ツル一イング■ ドレ ッシング装置において、 前記電極側面側に電極側面の位置を測定する変位センサ を備えたことを特徴とする。
〔1 8〕 上記 〔1 6〕 記載の接触放電ツル一イング · ドレッシング方法を、 ィ ンプロセスツル一イング' ドレッシングに適用し、 ッル一^ f ング量に基づレ、てッ —ルパスを補正しながら行うことを特徴とする。
〔1 9〕 上言己 〔1〕 または 〔2〕 記載の接触放電ツル一イング ' ドレッシング 方法において、 前記二重リング形回転電極の内側に碟石を配置し、 放電の度の前 記被ツル一ィング · ドレツシング砥石への電極材料の付着物を除去することを特 徵とする。
〔2 0〕 上記 〔1〕 または 〔2〕 記載の接触放電ツル一イング' ドレッシング 方法において、 前記二重リング形回転電極の外側に砥石を配置し、 放電の度の前 記被ツル ング · ドレツシング砥石への電極材料の付着物を除去することを特 徵とする。 〔2 1〕 上記 〔3〕 または 〔4〕 記載の接触放電ツル一イング · ドレッシング 装置において、 前記二重リング形回転電極の内側に砥石を配置することを特徴と する。
〔2 2〕 上記 〔3〕 または 〔4〕 記載の接触放電ツル一イング · ドレッシング 装置において、 前記二重リング形回転電極の外側に砥石を配置することを特徴と する。 図面の簡単な説明
第 1図は、 本発明の実施例を示す接触放電ツル一イング · ドレッシング装置の 構成図である。
第 2図は、 本発明の実施例を示す接触放電ツル一イング · ドレッシング装置の 制御装置のプロック図である。
第 3図は、 本発明の実施例を示す接触放電ツル一イング · ドレッシング方法の 説明図である。
第 4図は、 第 3図の A部を拡大し、 そのツル一イング · ドレッシングメカニズ ムを説明する図 (その 1 ) である。
第 5図は、 第 3図の A部を拡大し、 そのツル f ング · ドレッシングメカニズ ムを説明する図 (その 2 ) である。
第 6図は、 本発明の実施例を示す電極送り駆動機構を有する接触放電ツル一ィ ング■ ドレツシング装置の要部構成図である。
第 7図は、 本発明の実施例を示す接触放電ツル一イング · ドレッシング装置の 給電機構の構成図である。
第 8図は、 第 7図に示す接触放電ツル一イング · ドレッシング装置の二重リン グ形回転電極の径を異ならせた例を示す断面図である。
第 9図は、 本発明の各種の接触放電ツルーィング · ドレツシング方法の説明図 でめ o
第 1 0図は、 本発明の実施例を示す電極側面の回転振れを除去する方法を示す 図である。
第 1 1図は、 本発明の実施例を示す V字形の砥石刃先形状を得る接触放電ツル —イング' ドレッシング方法の説明図である。
第 1 2図は、 本発明の実施例を示す二重リング形回転電極の駆動装置を十字移 動機構と回転機構を備えた数値制御移動テーブル上に設置する接触放電ツルーィ ング■ ドレツシング装置の構成図である。
第 1 3図は、 本発明の実施例を示す二重リング形回転電極の回転軸方向への送 り速度を数値制御する方法の説明図である。
第 1 4図は、 本発明の実施例を示す砥石の真円度を推定する方法の説明図であ な。
第 1 5図は、 本発明の実施例を示す砥石の真円度の推定値に基づいて数値制御 または自動制御により接触放電消費電力 E · I p / 2の大きさを自動調整する方 法の説明図である。
第 1 6図は、 本発明の実施例を示す砥石の真円度の推定値が所定の値になった 場合に接触放電ツル一イング · ドレツシングを自動終了する方法の説明図である。 第 1 7図は、 本発明の実施例を示す制御がより安定的に行われるように、 二重 リング形回転電極に対する供給電圧の種類を D C電圧とパルス電圧の間で自動切 替えする方法の説明図である。
第 1 8図は、 本発明の実施例を示すツル一イング量を測定しながら接触放電ッ ル一イング · ドレッシングを行う方法の説明図である。
第 1 9図は、 第 1 8図に示す接触放電ツル一イング · ドレッシングを行う方法 の変形例を示す図である。
第 2 0図は、 本発明の実施例を示すインプロセスツル一イング. ドレッシング に適用し、 ツル一イング量に基づいてツールパスを補正しながら行う接触放電ッ ルーィング · ドレツシング方法の説明図である。
第 2 1図は、 本発明の実施例を示す従来砥石 (非導電性砥石) を内側に配置し た二重リング形回転電極を有するツル一ィング · ドレツシング装置を示す図であ る。
第 2 2図は、 本発明の実施例を示す従来砥石 (非導電性砥石) を外側に配置し た二重リング形回転電極を有するツルーィング■ ドレツシング装置を示す図であ る。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照しながら詳細に説明する。
第 1図は本発明の実施例を示す接触放電ツルーィング · ドレツシング装置の構 成図である。 ここでは、 プロファイル研削用 ffi石の刃先ツル一イングに二重リン グ形回転電極式の接触放電ツル一ィング■ ドレツシング方式を適用した例を示す c なお、 第 1図ではプロファイル研削用延石の回転軸と二重リング形回転電極の回 転軸が直交した状態で示されているが、 これは説明図をわかりやすくするためで あり、 実際にはプロファイル研削用砥石の刃先を 3 0。 の V字形に成形するため に、 これらの軸間に 3 0。 の角度を与えた。
この図において、 1はプロファイル研削用延石(被ツル一イング · ドレツシン グ砥石) 、 2はべ一ス、 3は前カバ一、 4は◦リング、 5は〇リング押え蓋、 6 は後カバー、 7はコネクタ、 8はカバー、 9は取っ手、 1 0は前方リミッタ、 1 1は後方リミッタ、 1 2はモータブラケット、 1 3はステッピングモ一夕、 1 4 は力ップリング、 1 5はボ一ルスクリュー、 1 6はボ一ルスクリューサポートュ ニット、 1 7はナツト、 1 8はナツトブラケット、 1 9は主軸移動テーブル、 2 0はリニアガイドレール、 2 1はリニアガイドスライダ、 2 2はモータブラケッ ト、 2 3は D Cモータ、 2 4はカップリング、 2 5は主軸、 2 6は主軸サポート ユニット、 2 7は主軸補助サボ一トユニット、 2 8はメカロック、 2 9は電極ホ ルダ、 3 0は絶縁層、 3 1は二重リング形回転電極外輪、 3 2は二重リング形回 転電極絶縁層、 3 3は二重リング形回転電極内輪、 3 4, 3 5は給電ブラシ、 3 6は給電ブラシブラケット、 3 7は変位センサである。
まず、 第 1図を用いて二重リング形回転電極式の接触放電ツル一ィング · ドレ ッシング装置の構造を説明する。
ベース 2にはボールスクリューサポートユニット 1 6が固定されており、 これ によりピッチ 1 mmのボールスクリュー 1 5が支持されている。 このボールスク リュー 1 5の一端はカップリング 1 4を介してスッテツビングモータ 1 3の回転 軸に接続されており、 ステップ角 0 . 1 °で回転駆動される。 なお、 スッテツピ ングモータ 1 3はモ一タブラケット 1 2によりベース 2に固定されている。 ナツト 1 7はボ一ルスクリュー 1 5と嚙み合っており、 ステッピングモータ 1 3の回転によって回転軸方向に送られる。 ナツトブラケット 1 8はナツト 1 7に 固定されており、 これが前方リミッタ 1 0または後方リミッタ 1 1のスィツチを 押すとステツピングモータが停止するようになつている。
また、 ベース 2には電極回転軸方向に伸びるリニアガイドレール 2 0が 2本平 行に固定されている。 それぞれのリニアガイドレール 2 0には 2個のリニアガイ ドスライダ 2 1が搭載されている。 主軸移動テーブル 1 9はリニアガイドスライ ダ 2 1および前記ナットブラケット 1 8に固定されており、 スッテツビングモー 夕 1 3により電極回転軸方向に駆動される。
主軸 2 5は移動テーブル上に固定された主軸サボ一トュニット 2 6と主軸補助 サポートュニット 2 7によって支持され、 その一端はカツプリング 2 4を介して それを回転駆動するための D Cモ一夕 2 3に接続されている。 なお D Cモータ 2 3はモ一夕ブラケット 2 2を用いて主軸移動テーブル 1 9上に固定されている。 二重リング形回転電極外輪 3 1および内輪 3 3の電極材としてカーボン (また は銅) を用い、 両者を絶縁する二重リング形回転電極絶縁層 3 2にはエポキシ樹 脂を用いた。 ここで電極間の絶縁層の厚さは約 5 0 0〃mとした。 この二重リン グ形回転電極と電極ホルダ 2 9は、 絶縁性の高い熱可塑性樹脂からなる絶縁層 3 0で接着されている。 二重リング形回転電極外輪 3 1、 二重リング形回転電極内 輪 3 3、 二重リング形回転電極絶縁層 3 2および電極ホルダ 2 9から構成される 二重リング形回転電極は、 メカロック 2 8により主軸 2 5に固定されている。 また、 二重リング形回転電極外輪 3 1および内輪 3 3には、 ばねによる押し付 け式の給電ブラシ 3 4, 3 5が接触しており、 これにより給電される。 これらの 給電ブラシ 3 4, 3 5は、 主軸移動テーブル 1 9上に固定されたべ一クライト製 の給電ブラシブラケット 3 6で支持されている。 なお、 本実施例は請求項 6にか かる発明の給電方式を採用したものではない。
変位センサ 3 7は研削盤のテーブルまたはべ一ス 2に設置されており、 電極側 面の位置を測定することにより、 プロファイル研削砥石の刃先位置をモニタリン グしている。
第 2図は本発明の実施例を示す接触放電ツル一ィング · ドレツシング装置の制 御装置のブロック図である。
この図において、 3 8は放電電流制限抵抗、 3 9はホール電流検出器、 4 0は 数値演算処理装置、 4 1はデジタル入力装置、 4 2はデジタル出力装置、 4 3は A D変換器、 4 4は D A変換器、 4 5はピーク検出回路、 4 6はローパスフィル 夕、 4 7は V F変換器、 4 8はスイッチング回路、 4 9は Y形リレー、 5 0は電 力増幅回路、 5 1はステッピングモータドライノく、 5 2 , 5 3はアナログスイツ チ、 5 4は D Cモータドライバ、 5 5は手動操作装置、 5 6は増幅器である。 以下、 第 2図を用いて制御装置について説明する。
制御にはデジタル入出力装置 4 1 , 4 2 . A D変換器 4 3、 D A変換器 4 4を 備えた数値演算処理装置 4 0を用いる。
放電回路の電源にはパワーオペアンプによる電力増幅回路 5 0を用い、 その出 力電圧は数値演算処理装置 4 0からの指合で設定可能である。 これにより、 荒ッ ル一ィングから仕上げツル一ィングへ、 ツルーィング条件を連続的に変化させる ことが可能となる。 なお、 電力増幅回路 5 0の出力は、 安全のため商用電源およ びァ一スから電気的に絶縁されている。
電力増幅回路 5 0の出力の正極は給電ブラシ 3 5に直接接続されている。 一方、 電力増幅回路 5 0の出力の負極は数値演算処理装置 4 0からの指令で切替可能な Y形リレ一4 9に接続されており、 ここで D C電圧とパルス電圧の切替が行われ る。 パルス電圧とする場合は電界効果トランジスタから構成されるスィツチング 回路 4 8を絰た後、 ホール電流検出器 3 9、 放電電流制限抵抗 3 8を介して給電 ブラシ 3 4に接続されるカ D C電圧とする場合はスイッチング回路 4 8を経由 しない。 なお、 スイッチング回路 4 8のスイッチング周波数は、 V F変換器 (電 圧一周波数変換器) 4 7を用いることにより数値演算処理装置 4 0からの指令で 設定可能である。
また、 ホール電流検出器 3 9からの出力は三径路に分けて数値演算処理装置 4 0に取り込まれる。 第一径路は出力を直接取り込む経路である。 第二径路はピー ク検出回路 4 5を経た後、 取り込む経路である。 第二径路の信号電圧から接触放 電電流のピーク値 を得る (請求項 1 1、 1 2または 1 3に係る発明に対応す る) ことができる。 なお、 ピーク検出回路 4 5は数値演算処理装置 4 0からの指 令により砥石一回転以上の周期でリセッ卜される。 第三径路は口一パスフィルタ
4 6を経た後取り込む経路である。 第三径路の信号電圧から接触放電電流の平均 値 I ra を得る (請求項 1 2に係る発明に対応する) ことができる。
ステッピングモータ 1 3はホール電流検出器 3 9からの出力に応じて駆動され る。 具体的には、 接触放電電流がピーク値 I。 をとるとき (請求項 1 1にかかる 発明に対応する) に電極間における消費電力が最大になるように、 すなわち、 電 源電圧を Eとしたとき I P = E/ ( 2 R) となるようにステッピングモータ 1 3 の回転速度および回転方向が数値制御される。 また、 前方リミッタ 1 0または後 方リミッタ 1 1が押されたときに、 アナログスィッチ 5 2 , 5 3を用いてステツ ビングモータドライノ 5 1への入力パルスを遮断する。 この前方リミッタ 1 0お よび後方リミッ夕 1 1からの出力信号は数値演算処理装置 4 0へも送られる。 また、 D C乇一夕 2 3の起動'停止指令、 回転方向切替、 回転速度調整は手動 操作装置 5 5において、 全て手動で行われ、 D Cモータ 2 3に異常力生じた場合 のアラーム出力信号の信号線のみが数値演算処理装置 4 0に接続され、 異状時の 処理が行えるようになっている。
さらに、 変位センサ 3 7の出力は増幅器 5 6で増幅された後、 数値演算処理装 置 4 0に取り込まれ、 プロファイル研削用砥石 1 (第 1図参照) の刃先位置のモ 二夕リングに使用される。
第 3図は本発明の実施例を示す接触放電ツルーィング■ ドレツシング方法の説 明図、 第 4図及び第 5図は第 3図の A部を拡大し、 そのツル一イングメカニズム を説明する図である。
例えば、 第 4図に示すように、 電極内輪 2 0 2、 絶縁層 2 0 3、 電極外輪 2 0 4から構成される二重リング形回転電極 2 0 1を用いる。 そして、 電極内輪 2 0 2と電極外輪 2 0 4の間に D C電圧またはパルス電圧を与えて回転させる。 この 二重リング形回転電極 2 0 1を回転軸方向に送り、 その側面を導電性砥石 1 0 1 に接触させると、 電極外輪 2 0 4一電極の切り屑 2 2 0一導電性結合剤 1 0 2— 電極の切り屑 2 2 1—電極内輪 2 0 2から構成される回路の、 電極の切り屑 2 2 0および 2 2 1の部分で接触放電が生じ、 その熱で導電性結合剤 1 0 2が溶けて 砥粒 1 0 3が脱落する。 この第 4図のツル一イング装置においては、 絶縁層 2 0 3の厚さが数百/ m以上あってもよい。
これに対して、 第 5図に示すように、 二重リング形回転電極 2 0 1の絶縁層 2
1 2の厚さを数百// m以下にすれば、 非導電性砥石 1 1 0のツル一イングにも適 用できるようになる。 この場合には、 二重リング形回転電極 2 0 1の側面を非導 電性砥石 1 1 0に接触させると、 電極外輪 2 1 3—電極の切り屑 2 2 2—電極内 輪 2 1 1から構成される回路の、 電極の切り屑 2 2 2の部分で接触放電が生じ、 その熱で非導電性結合剤 1 1 1が溶けて砥粒 1 1 2が脱落する。 このように、 電 極間の絶縁層の厚さを小さくすることにより、 非導電性砥石のツル一イング · ド レツシングも可能になる。
これらの方法では、 被ッルーイング' ドレッシング砥石 1 0 0の主軸にブラシ を用いて給電する必要がなく、 簡便である。 また、 乾式の条件下でもツル一イン グ · ドレツシングを行うことができる。
接触放電の放電電力制御は次のようにして行う。 第 3図に示すように、 給電回 路側に電極対に対して直列になるように放電電流制限抵抗 Rとホール電流検出器 Aを挿入する。 この回路において、 電源電圧 Eに対して接触放電電力が最大にな るのは電流値 Iが I = EZ ( 2 R) となる時である。 被ツル一イング面に振れが ある場合、 電流 Iは砥石 1 0 0の回転周期で変動するが、 その最大値 I P が EZ
( 2 R) となるように電極の回転軸方向への送り速度 Vを制御すれば、 振れの最 も大きい部分を効率よく除去することが可能となる。 1 0 5は D C電源またはパ ルス電源である。
第 6図は本発明の実施例を示す電極送り機構を有する接触放電ツルーィング · ドレツシング装置の要部構成図である。
この図に示すように、 二重リング形回転電極 2 0 1を電極送り駆動機構 1 2 0 により二重リング形回転電極 2 0 1の回転軸方向に送るように構成する。 なお、 第 6図において、 1 0 0は砥石、 1 0 5は D C電源またはパルス電源である。 第 7図は本発明の実施例を示す接触放電ツル一ィング■ ドレッシング装置の給 電機構の構成図である。
この図において、 1 2 1は二重リング形回転電極 2 0 1の回転主軸、 1 2 2は その回転主軸 1 2 1に固定される導電体リング、 1 2 3は絶縁層、 1 2 4は電極 フランジ、 1 2 5はヮッシャ、 1 2 6は回転主軸 1 2 1と電極内輪 2 0 2とを電 気的に接続する電極固定ボルト、 1 2 7は電極外輪 2 0 4と電極フランジ 1 2 4 を電気的に接続する給電バネ、 1 2 8と 1 2 9は給電ブラシである。
このように、 給電ブラシ 1 2 8 一導電体リング 1 2 2—回転主軸 1 2 1 一電極 固定ボルト 1 2 6 —ヮッシャ 1 2 5を介して電極内輪 2 0 2に給電され、 給電ブ ラシ 1 2 9 —電極フランジ 1 2 4 —給電バネ 1 2 7を介して電極外輪 2 0 4に給 ¾される。
第 8図は第 7図に示す接触放電ツルーィング · ドレツシング装置の二重リング 形回転電極の径を異ならせた例を示す断面図である。
この図に示すように、 この実施例では、 径の小さい二重リング形回転電極 2 0 1 ' を設けるようにしている。
第 9図は本発明の各種の接触放電ツルーィング · ドレツシング方法の説明図で あり、 第 9図 (a ) は接触放電を液中、 第 9図 (b ) は接触放電を噴霧中、 第 9 図 (c ) は接触放電を気中の環境下で行うようにしている。 なお、 第 3図と同じ 部分には同じ符号を付してその説明は省略する。
すなわち、 第 9図 (a ) に示すように、 接触放電を液中で行う場合には、 接触 放電箇所に液供給用ノズル 3 0 1を配置し、 液 3 0 2を供給しながら接触放電を 行わせる。
また、 第 9図 (b ) に示すように、 接触放電を噴霧中で行う場合には、 接触放 電箇所に噴霧供給用ノズル 3 0 3を配置し、 噴霧 3 0 4を供給しながら接触放電 を行わせる。
勿論、 第 9図 (c ) に示すように、 なんら供給することなく、 気中で接触放電 を実施するようにしてもよい。
第 1 0図は本発明の実施例を示す電極側面の回転振れを除去する方法を示す図 でめ 。
この図に示すように、 二重リング形回転電極 2 0 1の側面の初期回転振れを除 去するため、 スィッチ 1 0 7をオフにして、 電極内輪と電極外輪間に給電せずに、 被ツル一イング · ドレッシング ί氐石 1 0 0で電極側面を研削した後、 電極内輪と 電極外輪間に電圧を与えてツル一イング · ドレッシングを開始するようにする。 第 1 1図は本発明の実施例を示す V字形の砥石刃先形状を得る接触放電ツル一 イング' ドレツシング方法の説明図である。
この実施例では、 二重リング形回転電極 4 0 5の回転主軸 4 0 6と砥石 4 0 1 の回転軸 4 0 2との間に所定の角度 0を与えた状態で二重リング形回転電極 4 0 5に電極回転主軸 4 0 6方向の送りを与えることにより、 所定の延石刃先形状を 得るようにすることができる。
第 1 2図は本発明の実施例を示す二重リング形回転電極の駆動装置を十字移動 機構と回転機構を備えた数値制御移動テーブル上に設置する接触放電ツル一イン グ■ ドレツシング装置の構成図である。
この実施例では、 二重リング形回転電極 4 1 5の駆動装置を十字移動機構と回 転機構を備えた数値制御移動テーブル 4 1 8上に設置する。 つまり、 砥石回転軸 4 1 1に固定される砥石 4 1 0に二重リング形回転電極 4 1 5を対応させて接触 放電ツル一イング' ドレッシングを行うが、 その際に、 二重リング形回転電極 4 1 5の回転主軸 4 1 6の駆動機構、 つまり、 ツル一イング' ドレッシング装置本 体 4 1 7を、 十字移動機構と回転機構を備えた数値制御移動テーブル 4 1 8上に 設置する。 これにより、 高精度な総型ツル一イング · ドレッシングを行うことが できる。
第 1 3図は本発明の実施例を示す二重リング形回転電極の回転軸方向への送り 速度を数値制御する方法の説明図であり、 第 1 3図 (a ) はそのシステムの構成 図、 第 1 3図 (b ) はその数値制御による電流の波形図である。
この実施例では、 その装置の給電回路側に、 二重リング形回転電極 2 0 1に対 して直列になるよう接触放電電流制限抵抗 Rおよび電流検出器 Aを挿入し、 接触 放電電流がピーク値 I P をとるときに、 二重リング形回転電極 2 0 1間における 消費電力が最大になるように、 すなわち、 電源電圧を Eとしたとき = EZ ( 2 R) となるように、 前記二重リング形回転電極 2 0 1の回転軸 1 2 1方向へ の送り速度を数値制御装置 5 0 1により制御する。
これにより、 接触放電状態を極めて安定に保つことができ、 砥石作業面に発生 する周期的凹凸を抑制できる。 また、 電極が機械的に無駄に削られる割合が少な くなるので電極消耗を低減できる。 このことは作業環境をクリーンな環境に保全 することにもつながる。
第 1 4図は本発明の実施例を示す ffi石の真円度を推定する方法の説明図であり、 第 1 4図 (a) はそのシステムの構成図、 第 1 4図 (b) はその数値制御による 電流の波形図である。
この実施例では、 電流検出器 Aからの出力の平均値 Im とピーク値 I P を砥石 一回転以上の周期で取得し、 Im /IP の値に基づいて砥石の真円度を推定しな がらツル一イング' ドレッシングを行う。 つまり、 Im ZIP の値から砥石の真 円度を推定する砥石の真円度推定装置 602を設ける。 第 1 4図 (b) に示すよ うに、 Im / I P の値が大きいほど砥石の真円度が高い。 なお、 60 1は電流 I のピーク値 IP が IP =E/ (2R) になるように電極送り速度を数値制御する 数値制御装置である。
このように、 電流検出器 Aからの出力の平均値 Im とピーク値 I P を砥石一回 転以上の周期で測定し、 I m / I P の値に基づいて砥石の真円度を推定しながら ツル一ィング · ドレツシングを行うことができるので、 荒から仕上げへのツル一 イング' ドレッシング条件の連続的な移行やツル一ィング · ドレツシングをどの 時点で終了すベきかの判断が自動化できる。
第 1 5図は本発明の実施例を示す ®石の真円度の推定値に基づいて数値制御ま たは自動制御により接触放電消費電力 E · I p /2の大きさを自動調整する方法 の説明図である。
この実施例では、 電流検出器 Aからの出力の平均値 とピーク値 IP に基づ いて、 接触放電消費電力 E · I p Z 2を自動調整する接触放電電力自動調整装置 6 1 0を設けて、 前記砥石の真円度の推定値に基づいて数値制御または自動制御 により接触放電消費電力 E · I p /2の大きさを自動調整して高精度ツル一イン グ- ドレッシングを行う。
第 1 6図は本発明の実施例を示す砥石の真円度の推定値が所定の値になった場 合に接触放電ツル一イング · ドレツシングを自動終了する方法の説明図である。 この実施例では、 延石の真円度の推定値が所定の値になった場合にツル一ィン グ' ドレッシングを自動的に終了処理を行う自動終了処理装置 620を設けて、 砥石の真円度が満足できる値になった場合にツルーィング■ ドレツシングを自動 的に終了できるようにする。
第 1 7図は本発明の実施例を示す制御がより安定的に行われるように、 二重リ ング形回転電極に対する供給電圧の種類を D C電圧とパルス電圧の間で自動切替 えする方法の説明図である。
この実施例では、 二重リング形回転電極に対する供給電圧の種類を D C電圧と パルス電圧の間で自動切替えする自動切替装置 6 3 0を設けて、 制御がより安定 的に行われるようにする。
第 1 8図は本発明の実施例を示すツル一イング量を測定しながら接触放電ツル 一イング' ドレッシングを行う方法の説明図である。
この実施例では、 電極側面側に電極側面の位置を測定する変位センサ 3 7を設 置し、 ツル一イング量を測定しながらツル一イング. ドレッシングを行う。 また、 第 1 9図に示すように、 変位センサ 3 7は、 ツル一イング装置本体 7 0 1に設けるようにしてもよい。
このように、 電極側面側に電極側面の位置を測定する変位センサを設置するこ とで接触放電ツルーィング · ドレツシングによるツル一イング量をモニタリング することが可能となる。 これをインプロセスツル一イング. ドレッシングに適用 した場合、 ツールパスを補正しながら加工を行うことができる。
第 2 0図は本発明の実施例を示すィンプロセスツル一ィング . ドレツシングに 適用し、 ツル一イング量に基づいてツールパスを補正しながら行う接触放電ツル —イング' ドレツシング方法の説明図である。
この図において、 8 0 1はセンサ 3 7からの出力 i 号によりツル一イング量に 基づいてッ一ルパスの補正を行う補正装置、 8 0 2は工作物 8 0 3を搭載する数 値制御移動テ一ブルである。
この実施例では、 ィンプロセスツル一ィング · ドレツシングに適用し、 ツル一 イング量に基づいてツールパスを補正しながら接触放電ツルーィング . ドレッシ ングを行うようにしたものである。
上記した方法でツル一ィング · ドレツシングを行うと、 被ツル一ィング · ドレ ッシング砥石の突出した部分(振れの大きい部分) に電極材料が付着し、 その結 果、 電極が後退し続けるという現象が生じる恐れがある。 そこで、 この問題を解 決するためには以下のような構成をとることが有効である。
第 2 1図は本発明の実施例を示す従来砥石(非導電性砥石) を内側に配置した 二重リング形回転電極を有するツル一イング■ ドレツシング装置を示す図である この図に示すように、 二重リング形回転電極 9 1 0の回転主軸 9 1 1によって 回転する電極内輪 9 1 3、 絶縁層 9 1 4、 電極外輪 9 1 5から構成される二重リ ング形回転電極 9 1 0の内側に従来砥石(非導電性砥石) 9 1 2を配置する。 このように構成したので、 ツル f ング' ドレッシングを行うことにより、 被 ツル一イング · ドレッシング砥石 1 0 0の突出した部分(振れの大きい部分) に 電極材料が付着しても、 二重リング形回転電極の内側に配置された従来砥石(非 導電性砥石) 9 1 2によって、 的確に除去することができる。
第 2 2図は本発明の実施例を示す従来砥石(非導電性砥石) を外側に配置した 二重リング形回転電極を有するツルーィング · ドレツシング装置を示す図である c この図に示すように、 二重リング形回転電極 9 2 0の回転主軸 9 2 1によって 回転する電極内輪 9 2 2、 絶縁層 9 2 3、 電極外輪 9 2 4から構成される二重リ ング形回転電極 9 2 0の外側に従来砥石 (非導電性砥石) 9 2 5を配置する。 このように構成したので、 ツル一イング · ドレッシングを行うことにより、 被 ツル一イング · ドレッシング 5氐石 1 0 0の突出した部分 (振れの大きい部分) に 電極材料が付着しても、 二重リング形回転電極の外側に配置された従来砥石(非 導電性砥石) 9 2 5によって、 的確に除去することができる。
なお、 本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、 詳細に説明したように、 本発明によれば、 以下のような効果を奏するこ とができる。
(A) 超延粒砥石、 特に金属の結合剤を有する超砥粒砥石のツル一イング · ド レッシングを極めて簡便に行うことができる。
( B ) 高精度な形状創成加工が可能になる。
( C ) 乾式研削盤でも機上ツル一イング' ドレッシングができる。
(D ) 導電性、 非導電性の砥石に関わらず、 同じ装置でツル一イング■ ドレツ シングを行うことができる。 ( E) 高い真円度の砥石作業面が得られる。
( F) 電極の消耗が少ないため経済的であり、 また作業環境をクリーンに保つ ことができる。
(G) V字形の鋭い刃先形状を容易に創成することができる。
(H) ツル一 Γング · ドレツシングを行レ、ながら砥石の真円度をモニタリング することができ、 その結果、 その時々に合った適切なツル一イング' ドレツシン グ条件を与えることができる。
( I ) インプロセスツル f ング' ドレッシングにおいて、 ツールパスを補正 しながら加工を行うことができる。
( J) ツル一イング · ドレッシングを行うことにより、 被ツル一イング · ドレ ッシング砥石の突出した部分(振れの大きい部分) に電極材料が付着しても、 二 重リング形回転電極の内側または外側に配置された従来砥石 (非導電性砥石) に よって、 的確に除去することができる。 産業上の利用可能性
本発明の接触放電ツル一イング- ドレッシング方法およびその装置は、 超砥粒 砥石、 特に金属の結合剤を有する超砥粒砥石のツルーィング · ドレツシングを極 めて簡便に行うことができ、 高精度な形状創成加工が可能な接触放電装置として 好適である。

Claims

請 求 の 範 囲
1 . D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた導電性被 ツル一イング · ドレッシング砥石を接触させ、 正電極—電極の切り屑—砥石結合 剤—電極の切り屑一負電極から構成される回路を開閉させる際に生じる接触放電 により、 前記導電性被ツル一イング- ドレッシング砥石が断続的にツル一イング • ドレッシングされる接触放電ツル一イング · ドレッシング方法であって、 絶縁 体で絶縁された二重リング形回転電極の側面の一部を一対の電極として用いるこ とを特徴とする接触放電ツルーィング · ドレツシング方法。
2. D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた非導電性 被ツル一イング. ドレッシング延石を接触させ、 正電極一電極の切り屑一負電極 から構成される回路を開閉させる際に生じる接触放電により、 前記非導電性被ッ ル一イング' ドレッシング砥石が断続的にツル一イング' ドレッシングされる接 触放電ッル一イング · ドレツシング方法であつて、 厚さが数百 a m以下の絶縁体 で絶縁された二重リング形回転電極の側面の一部を一対の電極として用いること を特徴とする接触放電ツル一イング · ドレツシング方法。
3. D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた導電性被 ツル一イング' ドレッシング砥石を接触させ、 正電極—電極の切り屑一砥石結合 剤一電極の切り屑—負電極から構成される回路を開閉させる際に生じる接触放電 により、 前記導電性被ツル一イング' ドレッシング砥石が断続的にツル一イング
• ドレッシングされる接触放電ツル一イング · ドレッシング装置であって、
( a ) 絶縁体で絶縁された二重リング形回転電極と、
(b ) 該二重リング形回転電極の側面の一部からなる一対の電極とを具備するこ とを特徴とする接触放電ツル一イング · ドレツシング装置。
4. D C電圧またはパルス電圧を与えた一対の電極に対し、 回転させた非導電性 被ツル一イング' ドレッシング砥石を接触させ、 正電極一電極の切り屑—負電極 から構成される回路を開閉させる際に生じる接触放電により、 前記非導電性被ッ ル一ィング■ ドレツシング延石が断続的にツル一イング■ ドレッシングされる接 角虫放電ッル一イング. ドレッシング装置であつて、 ( a ) 厚さが数百; m以下の絶縁体で絶縁された二重リング形回転電極と、
(b ) 該二重リング形回転電極の側面の一部からなる一対の電極とを具備するこ とを特徵とする接触放電ツルーィング■ ドレツシング装置。
5 . 請求項 3または 4記載の接触放電ツル一イング' ドレッシング装置において、 前記二重リング形回転電極の回転軸方向への駆動機構を具備することを特徴とす る接触放電ツル一ィング · ドレツシング装置。
6 . 請求項 3、 4または 5記載の接触放電ツル一イング' ドレッシング装置にお レ、て、 異なる径の二重リング形回転電極に対して給電可能な構造を有することを 特徴とする接触放電ツル一イング' ドレッシング装置。
7 . 請求項 1または 2記載の接触放電ツル一イング- ドレッシング方法において、 前記接触放電を液中、 噴霧中または気中の環境下で行うことを特徴とする接触放 電ツル一イング' ドレッシング方法。
8 . 請求項 1または 2記載の接触放電ツル一イング · ドレッシング方法において、 前記二重リング形回転電極の側面の初期回転振れを除去するため、 前記電極間に 給電せずに前記被ツル一ィング · ドレツシング砥石で前記電極側面を研削した後、 該電極間に電圧を与えてツル一イング · ドレツシングを開始することを特徴とす る接触放電ツル一イング · ドレッシング方法。
9 . 請求項 3、 4または 5記載の装置を用い、 前記電極の回転軸と前記被ツル一 イング' ドレッシング砥石の回転軸との間に所定の角度を与えた状態で前記電極 に電極回転軸方向の送りを与えることにより、 所定の砥石刃先形状を得ることを 特徴とする接触放電ツル一イング · ドレツシング方法。
1 0 . 請求項 3、 4または 5記載の装置を用い、 前記二重リング形回転電極の駆 動装置を十字移動機構と回転機構を備えた数値制御移動テーブル上に設置し、 高 精度な総型ツル一ィング · ドレツシングを行うことを特徴とする接触放電ツル一 インク ■ ドレッシング方法。
1 1 . 請求項 3、 4または 5記載の装置を用い、 その装置の給電回路側に、 前記 電極対に対して直列になるよう接触放電電流制限抵抗および電流検出器を挿入し、 接触放電電流がピーク値 I p をとるときに前記電極間における消費電力が最大に なるように、 前記二重リング形回転電極の回転軸方向への送り速度を数値制御す ることを特徴とする接触放電ツル一ィング · ドレツシング方法。
1 2 . 請求項 1 1記載の接触放電ツル一イング · ドレッシング方法において、 前 記電流検出器からの出力の平 値 I M とピーク値 I P を前記被ツル一イング' ド レツシング砥石一回転以上の周期で取得し、 し / I p の値に基づレ、て前記被ッ ル一イング. ドレッシング砥石の真円度を推定しながらツル一イング' ドレッシ ングを行うことを特徴とする接触放電ツル一ィング · ドレツシング方法。
1 3 . 請求項 1 2記載の接触放電ツル一イング · ドレッシング方法において、 前 記推定した被ツルーィング■ ドレツシング砥石の真円度に基づいて数値制御また は自動制御により接触放電消費電力 E · I P 2の大きさを自動調整して高精度 ツル一イング · ドレッシングを行うことを特徴とする接触放電ツル一イング · ド レッシング方法。
1 4 . 請求項 1 2記載の接触放電ツル一イング' ドレッシング方法において、 前 記推定した被ツル一イング · ドレッシング砥石の真円度が所定の大きさ以下にな つた場合にツル一イング · ドレッシングを自動終了することを特徴とする接触放 電ツル一イング · ドレッシング方法。
1 5 . 請求項 1 1記載の接触放電ツル一イング · ドレッシング方法において、 制 御がより安定的に行われるように、 前記二重リング形回転電極に対する供給電圧 の種類を前記 D C電圧とパルス電圧の間で自動切替えすることを特徴とする接触 放電ツル一イング · ドレツシング方法。
1 6 . 請求項 3、 4または 5記載の接触放電ツル一イング' ドレッシング装置に おいて、 前記電極側面側に該電極側面の位置を測定する変位センサを設置し、 ッ ル一ィング量を測定しながらツル一イング · ドレツシングを行うことを特徵とす る接触放電ツル一イング · ドレッシング方法。
1 7 . 請求項 3、 4または 5記載の接触放電ツル一イング' ドレッシング装置に おいて、 前記電極側面側に該電極側面の位置を測定する変位センサを備えたこと を特徴とする接触放電ツル一イング · ドレツシング装置。
1 8 . 請求項 1 6記載の接触放電ツル一イング' ドレッシング方法を、 インプロ セスツルーィング · ドレツシングに適用し、 ツル一ィング量に基づいてツールパ スを補正しながら行うことを特徴とする接触放電ツル一イング · ドレツシング方 法。
1 9 . 請求項 1または 2記載の接触放電ツル一イング' ドレッシング方法におい て、 前記二重リング形回転電極の内側に砥石を配置し、 放電の度に前記被ツル一 イング' ドレッシング砥石への電極材料の付着物を除去することを特徴とする接 触放電ッルーイング' ドレッシング方法。
2 0 . 請求項 1または 2記載の接触放電ツル一イング' ドレッシング方法におい て、 前記二重リング形回転電極の外側に砥石を配置し、 放電の度に前記被ツル一 イング' ドレッシング砥石への電極材料の付着物を除去することを特徴とする接 触放電ツル一ィング · ドレツシング方法。
2 1 . 請求項 3または 4記載の接触放電ツル一イング' ドレッシング装置におい て、 前記二重リング形回転電極の内側に砥石を配置することを特徴とする接触放 電ツル一イング · ドレッシング装置。
2 2 . 請求項 3または 4記載の接触放電ツル一イング · ドレッシング装置におい て、 前記二重リング形回転電極の外側に砥石を配置することを特徴とする接触放 電ッルーイング · ドレッシング装置。
PCT/JP2001/006040 2000-07-14 2001-07-12 Procede de centrage/dressage par decharge au contact et dispositif associe WO2002006008A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60122901T DE60122901T2 (de) 2000-07-14 2001-07-12 Kontakterentladungsabricht- und ausrichtverfahren und vorrichtung
KR10-2003-7000527A KR100514205B1 (ko) 2000-07-14 2001-07-12 접촉방전 트루잉/드레싱 방법 및 그 장치
US10/332,773 US6939457B2 (en) 2000-07-14 2001-07-12 Contact-discharge truing/dressing method and device therefor
EP01949955A EP1306164B1 (en) 2000-07-14 2001-07-12 Contact-discharge truing/dressing method and device therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000213605 2000-07-14
JP2000-213605 2000-07-14
JP2001-188638 2001-06-21
JP2001188638A JP4010392B2 (ja) 2000-07-14 2001-06-21 接触放電ツルーイング・ドレッシング方法およびその装置

Publications (1)

Publication Number Publication Date
WO2002006008A1 true WO2002006008A1 (fr) 2002-01-24

Family

ID=26596015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006040 WO2002006008A1 (fr) 2000-07-14 2001-07-12 Procede de centrage/dressage par decharge au contact et dispositif associe

Country Status (7)

Country Link
US (1) US6939457B2 (ja)
EP (1) EP1306164B1 (ja)
JP (1) JP4010392B2 (ja)
KR (1) KR100514205B1 (ja)
CN (1) CN1192857C (ja)
DE (1) DE60122901T2 (ja)
WO (1) WO2002006008A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030343A (zh) * 2017-06-09 2017-08-11 常州工学院 球头复合阴极在线修整装置及其使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465713C (zh) * 2005-06-20 2009-03-04 乐金显示有限公司 液晶显示设备用研磨机轮和用其制造液晶显示设备的方法
CN104493719B (zh) * 2015-01-07 2017-01-18 常州工学院 一种金刚石回转体砂轮线电极放电‑车削复合修整方法及装置
TWI715298B (zh) * 2019-11-20 2021-01-01 國立臺灣師範大學 線上放電削銳系統及其方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278256U (ja) * 1988-12-05 1990-06-15
JPH03142164A (ja) * 1989-10-27 1991-06-17 Makino Milling Mach Co Ltd 研削砥石の成形方法および装置
JPH04360765A (ja) * 1991-02-04 1992-12-14 Niitoretsukusu Honsha:Kk 接触放電ドレッシング・ツルーイング方法および装置と、そのための電極部材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719902A (en) * 1953-07-22 1955-10-04 Gen Motors Corp Multi-element electrode
CH349717A (de) * 1957-03-18 1960-10-31 Agie Ag Ind Elektronik Elektroerosives Schleifverfahren und Einrichtung zu seiner Durchführung
CH355235A (de) * 1957-03-18 1961-06-30 Agie Ag Ind Elektronik Verfahren und Einrichtung zum elektroerosiven Schleifen
EP0192773A4 (en) * 1984-06-14 1988-07-25 Ohyojiki Kenkyujo Yk CUTTING AND TRIMMING PROCESS USING A CONDUCTIVE ABRASIVE DISC.
JPH0278256A (ja) 1988-09-13 1990-03-19 Fujitsu Ltd 浸漬冷却モジュール
US4937416A (en) * 1989-02-24 1990-06-26 Mamoru Kubota Electrocontact discharge dressing method for grinding wheel
JPH03196968A (ja) * 1989-12-21 1991-08-28 Oyo Jiki Kenkyusho:Kk 導電性砥石のドレス方法、ドレスシステム及びドレス電極
DE4033137C1 (ja) * 1990-10-18 1991-11-14 Wendt Gmbh, 4005 Meerbusch, De
JP3344558B2 (ja) * 1998-02-26 2002-11-11 理化学研究所 通電ドレッシング研削方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278256U (ja) * 1988-12-05 1990-06-15
JPH03142164A (ja) * 1989-10-27 1991-06-17 Makino Milling Mach Co Ltd 研削砥石の成形方法および装置
JPH04360765A (ja) * 1991-02-04 1992-12-14 Niitoretsukusu Honsha:Kk 接触放電ドレッシング・ツルーイング方法および装置と、そのための電極部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1306164A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107030343A (zh) * 2017-06-09 2017-08-11 常州工学院 球头复合阴极在线修整装置及其使用方法

Also Published As

Publication number Publication date
EP1306164B1 (en) 2006-09-06
DE60122901D1 (de) 2006-10-19
JP2002086356A (ja) 2002-03-26
KR20030047990A (ko) 2003-06-18
US6939457B2 (en) 2005-09-06
JP4010392B2 (ja) 2007-11-21
CN1192857C (zh) 2005-03-16
KR100514205B1 (ko) 2005-09-13
EP1306164A1 (en) 2003-05-02
CN1441714A (zh) 2003-09-10
EP1306164A4 (en) 2004-05-06
US20040040864A1 (en) 2004-03-04
DE60122901T2 (de) 2007-02-22

Similar Documents

Publication Publication Date Title
US8410390B2 (en) Grinding machine with a device for conditioning a grinding wheel and a method of conditioning a grinding wheel
KR100594082B1 (ko) 마이크로 방전 트루잉 장치 및 이를 이용한 미세 가공방법
JP4183086B2 (ja) 研削砥石のツルーイング方法、そのツルーイング装置および研削装置
EP1533065B1 (en) Wire electric discharge machining apparatus.
WO2002006008A1 (fr) Procede de centrage/dressage par decharge au contact et dispositif associe
JP2007245315A (ja) 非導通性被加工物の研削加工方法およびその装置
JP3463796B2 (ja) プラズマ放電ツルーイング装置とこれを用いた微細加工方法
JPH05277938A (ja) 機上放電ツルーイング方法及び装置
JP2786842B2 (ja) 砥石補修時期判定方法及びその装置、砥石補修結果判定方法及びその装置、砥石自動補修装置
JP3253799B2 (ja) 研削加工方法
JP3669073B2 (ja) 研削加工装置及び研削加工方法
JP3419690B2 (ja) 導電性砥石のツルーイング方法および研削装置
JPH04201073A (ja) 機上放電ツルーイング/ドレッシング方法及びその装置
JP6875675B2 (ja) 機上ツルーイング装置および工作機械
JPH05277937A (ja) 機上放電ツルーイング/ドレッシング方法
JPH0853777A (ja) 放電被覆加工方法
JPS614666A (ja) 砥石成形法
JP4215499B2 (ja) 内面研削装置用の電極固定冶具
JPS60123221A (ja) ワイヤカット放電加工装置
JP2684624B2 (ja) 研削切断装置
JP2002036110A (ja) 研削装置の給電方法および給電装置
JP2002036109A (ja) 研削装置の給電方法および給電装置
JPH05277939A (ja) 機上放電ツルーイング/ドレッシングと電解による不導体被膜とを利用した鏡面加工方法及びその装置
JPS6239175A (ja) 対電極放電によるツル−イング・ドレツシング方法
JPH0557610A (ja) 研削加工方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001949955

Country of ref document: EP

Ref document number: 10332773

Country of ref document: US

Ref document number: 1020037000527

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018128025

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001949955

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037000527

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020037000527

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001949955

Country of ref document: EP