WO2002004932A1 - Appareil de mesure a rayons x - Google Patents

Appareil de mesure a rayons x Download PDF

Info

Publication number
WO2002004932A1
WO2002004932A1 PCT/JP2001/004946 JP0104946W WO0204932A1 WO 2002004932 A1 WO2002004932 A1 WO 2002004932A1 JP 0104946 W JP0104946 W JP 0104946W WO 0204932 A1 WO0204932 A1 WO 0204932A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
grid
detector
detection
focal point
Prior art date
Application number
PCT/JP2001/004946
Other languages
English (en)
French (fr)
Inventor
Rika Baba
Ken Ueda
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US10/296,511 priority Critical patent/US6895080B2/en
Publication of WO2002004932A1 publication Critical patent/WO2002004932A1/ja

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/025Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using multiple collimators, e.g. Bucky screens; other devices for eliminating undesired or dispersed radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present invention relates to an X-ray measuring apparatus, such as an X-ray imaging apparatus, an X-ray fluoroscope, and a cone-beam CT apparatus, capable of capturing a high-quality image using a flat X-ray detector.
  • an X-ray measuring apparatus such as an X-ray imaging apparatus, an X-ray fluoroscope, and a cone-beam CT apparatus, capable of capturing a high-quality image using a flat X-ray detector.
  • An X-ray fluoroscope that measures an X-ray image using a two-dimensional X-ray detector and an X-ray imaging apparatus are known technologies.
  • Cone beam CT that performs rotation imaging while rotating the X-ray source and 2D X-ray detector once around the inspection target, and also fixes the X-ray source and 2D X-ray detector and rotates the inspection target once.
  • cone-beam CT that performs rotation imaging while rotating
  • a set of projection data is obtained by performing correction processing on each of a plurality of images obtained by rotational imaging.
  • a three-dimensional image is obtained by performing a three-dimensional reconstruction process on the obtained set of projection data using a three-dimensional reconstruction algorithm.
  • the 3D reconstruction algorithm for CT is described in "Image Engineering” (Shin Hasegawa, published by Corona, pp. 195-199: Conventional Technique 2).
  • a 3D reconstruction algorithm for cone beam CT a method such as the Ferdkamp method is used.
  • the Feldkamp method see 'Practicalconebeamalgor ithm I (LA Feldka mp ⁇ J ournal of O ptica 1 Society of America, vol. 1 (6), pp. 6 12—6 19, 198 4: Prior art 3).
  • an XII-camera type X-ray detector that combines an X-ray Image Intensifier (hereinafter abbreviated as XII) and a TV camera via an optical system (Japanese Unexamined Patent Publication No. 10-1919267: Conventional Technique 1), and a flat X-ray detector.
  • a pair of an amorphous silicon photodiode (hereinafter abbreviated as a-Si PD) and a TFT are arranged in a square matrix, and a flat X-ray detector is constructed by directly combining these pairs with a fluorescent plate.
  • a-Si PD amorphous silicon photodiode
  • TFT a thin film transistor
  • a flat X-ray detector is constructed by directly combining these pairs with a fluorescent plate.
  • planar X-ray detector the fluorescent light generated when X-rays are incident on the fluorescent screen is incident on the nearest a-Si PD and converted into electric charge. Charges are stored until read out.
  • one Si PD functions as an independent (discrete) detection element.
  • X-ray grid As a means for reducing scattered X-rays incident on the two-dimensional X-ray detector, there is a scattered X-ray shielding grid (hereinafter simply referred to as X-ray grid).
  • X-ray grid By arranging the X-ray grid in front of the two-dimensional X-ray detector, scattered radiation can be reduced in X-ray fluoroscopy, X-ray imaging, and cone beam CT imaging.
  • the X-ray darlid has a laminated structure in which X-ray transmitting materials such as aluminum and X-ray shielding materials such as lead are alternately stacked. X-ray dalid with this laminated structure There is a cross X-ray dar- ide where the two are arranged orthogonally to each other and integrated. It is known to use a scattered X-ray shielding X-ray dalid for cone beam CT imaging (Japanese Patent Application Laid-Open No. Hei 9-149895: Prior Art 5).
  • the bundle addition the effect of reducing the number of data of the output signal to shorten the time for outputting an image per sheet and the effect of reducing the time required for data processing can be realized. Moreover, after the output signals of the respective detection elements are stored in the memory, the bundle addition is performed in post-processing, so that the time required for the arithmetic processing after the bundle addition can be reduced.
  • the period of the X-ray shielding material of the X-ray darlid shall be set to an integral multiple of the period of the array of the detection elements.
  • Amorphous silicon diode In the following description, it is abbreviated as a-SiPD.
  • Planar X-ray detector An X-ray detector in which detection elements are arranged two-dimensionally in a plane. In the following description, it is simply called X-ray detector.
  • Detecting element In the example described below, it is composed of a pair of a—Si PD and TFT and a fluorescent layer.
  • the detection element converts the fluorescent light generated in the fluorescent layer by X-rays into an electric signal.
  • the flat X-ray detector is a surface on which a plurality of a-Si PDs are formed.
  • diagnostic X-ray measurement devices such as X-ray fluoroscopes, X-ray imaging devices, and cone-beam CT devices that measure X-ray images using an X-ray detector
  • spatial resolution is required to improve diagnostic capabilities. Therefore, miniaturization of the detection element of the X-ray detector is being promoted.
  • X-ray measurement devices for diagnostics are required to reduce the amount of X-ray exposure in addition to improving the spatial resolution, and thus to increase the sensitivity of X-ray detection.
  • An object of the present invention is to provide a diagnostic X-ray measurement apparatus capable of obtaining a large-field image with high spatial resolution, high sensitivity, and no moiré.
  • the X-ray measurement apparatus to which the present invention is applied is a two-dimensional array of a plurality of detection elements having an X-ray source for generating X-rays from an X-ray focal point, and a dead area surrounded by a dead area.
  • X-ray detector and a data processor that controls imaging and collects output signals from multiple detectors and performs data processing
  • the X-ray focal point and the X-ray detector at a predetermined distance from the position of the X-ray focal point and the X-ray transmitting member and the X-ray shielding member are alternately arranged in one direction (first direction). And an X-ray dalide that is scattered and fixed by a thin X-ray transmission flat plate.
  • X-ray detectors function independently of each other via a dead zone (dead zone).
  • the detection element is composed of a pair of a—Si PD and TFT and a fluorescent layer.
  • the X-rays that have passed the inspection target enter the phosphor layer after passing through the X-ray grid.
  • the fluorescent light generated in the fluorescent layer enters the nearest a-Si PD and is converted into electric charge, which is accumulated until the electric charge is read out.
  • X-ray irradiates the linear projection image of the X-ray shielding member on the X-ray grid with the X-ray detector on the detection surface of the X-ray detector (surface on which multiple a-Si PDs are formed) without placing the inspection target. You can get on.
  • the period in one direction of the linear projection image of the X-ray shielding member of the X-ray grid on the detection surface of the X-ray detector is substantially equal to the one direction.
  • the data processing means performs a process of adding output signals of a plurality of detection elements adjacent to each other. By bundling and adding the output signals of the plurality of detection elements, it is possible to obtain an image with high speed, high spatial resolution, high sensitivity, and no moiré.
  • the X-ray grid is fixedly arranged at a predetermined distance from the X-ray focal point with respect to the X-ray focal point.
  • X-ray grid surface or X-ray detector detection surface The position of the surface formed by the ends of the X-ray shielding members on the X-ray incident surface side in the direction connecting the centers of the X-rays and the detection surface of the X-ray detector.
  • the X-ray dalid (cross X-ray dalid) is a first X-ray transmitting member and a first X-ray shielding member that are alternately arranged in a first direction. Consisting of an X-ray grid, and second X-ray dalides in which second X-ray transmitting members and second X-ray shielding members are alternately arranged in a second direction orthogonal to the first direction.
  • the first X-ray grid and the second X-ray dalid are arranged substantially in parallel, and the center of the first X-ray dalid and the center of the second X-ray dalid are arranged. Are integrated so as to substantially match.
  • the period of the linear projection image of the first X-ray shielding member on the detection surface of the X-ray detector in the first direction and the period of the second X-ray shielding member on the detection surface of the X-ray detector is substantially equal to that of the first X-ray dalid and the second X-ray dalid. Become a dalid.
  • X-ray shielding material of X-ray Since it has a two-dimensionally arranged structure, it is possible to obtain images with high spatial resolution, high sensitivity, and no moiré due to little mixing of scattered X-rays.
  • the data processing means collects output signals of the plurality of detection elements at a plurality of rotation angles by rotation and performs detection. Data processing for obtaining a target tomographic image is performed.
  • the period of the linear projection image of the X-ray shielding member on the detection surface of the X-ray detector in the first direction is substantially equal to the period. It is an integer multiple of 2 or more of the arrangement period of the detection elements in the first direction.
  • the adjusting means when using multiple X-ray detectors with different spatial resolutions for one type of X-ray grid, select the X-ray detector according to the spatial resolution Then, the position of the object to be inspected can be measured by adjusting the position by the adjusting means.
  • the cross constituted by the first X-ray daly and the second X-ray daly described in the first configuration the X-ray daly is replaced by the X-ray daly.
  • the adjusting means having the same function as the first configuration, in the first direction, the center of the linear projection image of the first X-ray shielding member is substantially at the center of the dead zone (dead zone).
  • the distance is adjusted such that the center of the linear projection image of the second X-ray shielding member is substantially located at the center of the area of the dead zone (dead zone).
  • the period of the linear projection image of the first X-ray shielding member on the detection surface of the X-ray detector in the first direction and the X-ray detector of the second X-ray shielding member substantially And the period of the linear projection image on the detection surface in the second direction is made equal.
  • X-ray grids cross X-ray grids
  • X-ray shielding materials that are arranged two-dimensionally are used. It is possible to obtain images with high spatial sensitivity and high sensitivity and no moiré.
  • Prior Art 8 described above does not disclose an X-ray detector in which the size of the detection element is smaller than the distance between the X-ray shielding members.
  • Prior art 9 discloses a method of aligning an X-ray source and an X-ray dalid
  • prior art 10 discloses a method of aligning an X-ray source and a detector. It does not disclose a method of aligning the X-ray detector with the X-ray detector.
  • FIG. 1 is a diagram illustrating a configuration example of a cone beam CT device according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a lead foil of a cross X-ray dalid and an X-ray detector in the cone beam CT device according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of the positional relationship between the sensitive region and the dead zone of the detection element.
  • FIG. FIG. 4 is an enlarged cross-sectional view of an X-ray grid X-ray shield and a part of an X-ray detector in a cone beam CT apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a positional relationship between an X-ray grid and a detection element.
  • FIG. 5 is a diagram illustrating a cone beam CT apparatus according to an embodiment of the present invention.
  • the period in two directions of the image projected on the detection surface of the X-ray shielding material arranged in each of the two directions is twice the period of the detection elements in each of the two directions in which the detection elements are formed.
  • FIG. 5 is a diagram illustrating the relative positional relationship between the X-ray shielding material, the sensitive region of the detection element, and the dead zone when the adjustment is performed so that the X-ray shielding material is projected onto the detection surface;
  • FIG. 6 is a diagram showing an artefact due to moire in a conventional cone beam CT image. -Best mode for carrying out the invention
  • FIG. I is a diagram showing a configuration example of a cone beam c ⁇ device according to an embodiment of the present invention.
  • Cone beam CT device irradiates X-rays on inspection object 1
  • X-ray tube 2 holding table 3 holding inspection object 1 and rotating holder 3
  • Rotating device 4 X-ray detector 5 detecting X-rays transmitted through inspection object 1, X-ray grid shielding scattered radiation 6.
  • Adjustment device that adjusts by changing the relative position of X-ray detector 5 with respect to X-ray grid 6.
  • Data collection device 8 that collects the output signal of each of the detection elements as data
  • data processing device 9 that performs arithmetic processing of the collected data
  • display device 1 that displays the collected data and the result of the arithmetic processing. It consists of 0 and so on.
  • the function of the data processing device 9 may be provided to the data collection device 8.
  • the X-ray daly 6, the X-ray detector 5, and the X-ray tube 2 are rotated around the inspection target 1, and cone beam CT measurement is performed. Also, the cone beam CT measurement may be performed by fixing the pair of the X-ray grid 6 and the X-ray detector 5 and the X-ray tube 2 and rotating the inspection object 1 by the rotating device 4.
  • the X-ray detector is composed of a plurality of detection units joined to each other. Each detection unit consists of a fluorescent layer that converts the X-rays incident on each detection unit into visible light, a conversion unit that converts the fluorescence generated from the fluorescent layer into an electric signal by a-Si PD, and a TFT from the conversion unit.
  • It consists of an amplifying unit that amplifies the signal read by the A / D converter, a signal output unit that sends out the signal amplified by the amplifying unit, a read control unit that controls the reading of the signal by each detection unit, and the like.
  • the detection elements in each detection unit have a square shape with one side of 0.127 mm, and are arranged in a square at a pitch of 0.127 mm in two directions.
  • a cross X-ray grid is used in which the first and second X-ray dalides having the same structure are integrated.
  • the first and second X-ray grids are each used as an X-ray shielding material, an elongated lead foil with a thickness of 0.050 mm, a height of 1.016 mm, and a length of about 390 mm
  • an elongated aluminum foil with a thickness of about 0.2 Omm, a height of 1.016 mm, and a length of about 390 mm as the X-ray transmitting material.
  • the X-ray grid ratio of the first and second X-ray dalids is 8: 1.
  • the first and second X-ray grids are aligned with the center of each X-ray dalid, and the first X-ray daid arranged on the X-ray incident side of the cross X-ray dalid Of the second X-ray grid placed on the X-ray exit side of the cross X-ray dalide and the surface connecting the end faces on the X-ray incident side of the lead foil and aluminum foil. While keeping the surface connecting the end faces of the aluminum foil on the X-ray incident side substantially parallel to each other, they are integrated by bonding so that the longitudinal direction of the lead foil at the center of each X-ray darrid is orthogonal. I do.
  • the longitudinal direction of the lead foil at the center of the first X-ray grid is arranged parallel to the first direction
  • the longitudinal direction of the lead foil at the center of the second X-ray grid is The first X-ray grid and the second X-ray grid are bonded together to be arranged in parallel in a second direction orthogonal to the first direction.
  • the distance between the center of the surface of the first X-ray grid connecting the end faces of the lead foil and the aluminum foil on the X-ray incident side and the X-ray focal point is 1.2 m.
  • the first X-ray grid has a surface connecting the end faces of the lead foil and the aluminum foil on the X-ray incident side, and a detection surface of the detection element of the X-ray detector.
  • the distance between the sensitive region ie, the surface formed by a plurality of a-Si PDs) is 19 mm.
  • the period in the first direction of the linear projection image of the lead foil of the first X-ray darlid on the detection surface of the X-ray detector by X-rays is substantially detected in the first direction.
  • the period in the second direction of the linear projection image of the lead foil of the second X-ray grid on the detection surface of the X-ray detector by X-rays so as to be twice the period of the array of elements. Is adjusted to be substantially twice the period of the array of the detection elements in the second direction.
  • the center of the linear projection image of the lead foil of the first X-ray grid substantially corresponds to the dead zone.
  • Fig. 2 shows an example of the positional relationship between the lead foil of the cross X-ray dalid, the sensitive area of the detection element of the X-ray detector, and the dead zone in the cone beam CT apparatus according to the embodiment of the present invention. It is sectional drawing which passes through O (21).
  • the y-axis of the orthogonal coordinate system (x, y, z) with the origin O (2 1) is the rotation center axis of the rotating device 4, or the pair of X-ray grid 6 and X-ray detector 5 and X-ray
  • the xy plane is used as a rotation axis when rotating the tube 2 around the inspection object 1.
  • the xy plane is defined as the cross X-ray grid 6 composed of the first and second X-ray grids 22, 23.
  • the X-ray must be parallel to the surface connecting the X-ray incidence side end surfaces of the X-ray dalide 2 and the detection surface (sensitive area) 27 of the detection element of the X-ray detector 24.
  • the Z axis is defined as a direction connecting the X-ray focal point F (20) of the X-ray tube 2 and the center of the surface connecting the end surface of the first X-ray darlid 22 on the X-ray incident side.
  • FIG. 2 shows an X-ray path 29 passing through the center of the lead foil 26 arranged in the X direction of the first X-ray grid 22 and reaching the center of the width of the dead zone 28 formed in the X direction.
  • the X-ray path 30 passing through the aluminum foil 25 arranged in the X direction of the 22 and reaching the center of the width of the dead zone 28 formed in the X direction Is shown.
  • the structure of the second X-ray grid 23 is omitted.
  • X-ray detectors 24, 24 ' have the same detector size in the X and y directions, respectively, and have the same width of dead zones 28, 28'
  • the detector 24 ' has a lower spatial resolution than the X-ray detector 24, and the area of the sensitive area 27 is larger than the area of the sensitive area 27. (That is, the size of the detecting element of the X-ray detector 24 is larger than the size of the detecting element of the X-ray detector 24.)
  • the X-ray detectors 24 and 24 ' are shifted in the X direction and the y direction by the size of 1Z2 of the size of the detection element. You can arrange it.
  • the first and second X-ray grids having the same structure are used by overlapping and integrating a cross X-ray grid.
  • the X-ray grid either the first X-ray grid with lead foil arranged in the X direction or the second X-ray grid with lead foil arranged in the y direction may be used.
  • the relative positioning between the X-ray grid and the X-ray detector may be performed by the method described above and the method described below.
  • the detection surface of the X-ray detector 24 or 24 ' is connected to the first X-ray grid.
  • FIG. 3 is a cross-sectional view illustrating an example of a method of adjusting the positional relationship between the X-ray detector and the X-ray dalid in the cone beam CT device according to the embodiment of the present invention.
  • the X-ray detector 5 and the X-ray grid 6 are each fixed to a sliding slide plate 41 attached to a frame 40.
  • the X-ray detector 5 and the X-ray grid 6 are mounted perpendicular to the frame 40.
  • the screw holes 4 3 of the adjusting screws 42 for distance adjustment are formed in the X-ray grid 6, and the adjusting screws 42 are screwed into the screw holes 43.
  • the adjusting screw 42 is screwed toward the X-ray detector 5.
  • X-ray detector 5 A receiving plate 44 is provided at a portion where the head of the adjusting screw 42 comes into contact with the head so that the X-ray detector 5 is not damaged by the head of the adjusting screw 42.
  • the distance between the X-ray grid 6 and the X-ray detector 5 can be reduced by turning the adjusting screw 42 to draw it toward the X-ray grid 6.
  • only one adjusting screw is used.
  • the accuracy of distance adjustment can be improved.
  • the center of the surface connecting the X-ray incident side end faces of the first X-ray grid 22 of the X-ray grid 6 is located at a predetermined distance from the X-ray focal point F (20) of the X-ray tube 2.
  • the slide plate 41 on which the X-ray grid 6 is fixed is moved so that the slide plate 41 is fixed to the frame 40. Push the adjusting screw 42 toward the X-ray detector 5 or pull it toward the X-ray grid 6. Move the slide plate 41 to which the X-ray detector 5 is fixed until the surface of the X-ray detector 5 hits the head of the adjusting screw 42. Fix the slide plate 41 to the frame 40. X-rays are generated and the projected image of the X-ray shielding material (lead foil 26) of the X-ray detector 5 is measured without placing the inspection target.
  • the lead foil in the X direction By detecting the center position of the linear projected image of the lead foil in the X and y directions in the projected image and the center position of the dead zone width in the X and y directions, the lead foil in the X direction
  • the period of the center position of the linear projection image is substantially twice the period of the array of detectors in the X direction, and the linear projection image of the lead foil in the y direction.
  • the first X-ray grid is further provided with a linear projection image of the lead foil in the X direction so that the period of the center position of the first X-ray grid is substantially twice the period of the array of the detection elements in the y direction.
  • the cone beam CT apparatus according to the embodiment of the present invention performs bundle addition.
  • the first bundle addition mode requires a longer processing time than the second bundle addition mode, but is a high-resolution mode that can provide a high spatial resolution image.
  • the second bundle addition mode has lower spatial resolution than the image obtained in the first bundle addition mode, but can perform arithmetic processing at a higher speed than the second bundle addition mode. This is a standard mode that gives conditions.
  • the outputs of two detection elements are added together in the X direction and the y direction, and the outputs of four detection elements are added.
  • the outputs of the four detection elements are added in the X direction and the y direction, and the outputs of the fourteen detection elements are added, and the outputs of a total of 16 detection elements are added.
  • the ratio of the spatial resolution in the high-resolution mode to the spatial resolution in the standard mode is 1: 2.
  • the number of detection elements to be bundled and added (the number of bundled addition elements), that is, the number of outputs of the detection elements to be added can be variously changed.
  • control is performed to add the outputs of the detection elements, and then the addition results are collected.As the number of elements added increases, the data is collected faster. it can.
  • the number of bundled adder elements in the x direction and the number of bundled adder elements in the y direction ⁇ may not be equal.
  • the decrease in sensitivity is reduced without increasing the number of bundled adder elements in the X direction, and y
  • FIG. 4 is an enlarged cross-sectional view of the cone beam CT apparatus according to the embodiment of the present invention, which is parallel to the X-ray shielding member of the X-ray grid and the Xz plane of a part of the X-ray detector and passes through the origin O (2 1).
  • FIG. 3 is a diagram for explaining a positional relationship between an X-ray grid and a detection element. '
  • the X-ray focal point F (20) of the X-ray tube is on the left side in the z direction not shown in FIG. 4.
  • Dotted lines 42 1, 422, 423, 424, 425, and 426 are emitted from the X-ray focal point, travel in contact with the X-rays of the X-ray grid, shielding material (lead foil), and enter the detection element.
  • the dotted lines 4 21 1 to 426 are not parallel to each other, and the path of the X-rays indicated by the dotted lines 421 to 426 diverges from the X-ray focal point, as shown exaggeratedly in FIG. It is a path by a beam.
  • the first X-ray grid 22 of the cross X-ray grid 6 is composed of X-ray shielding materials (lead foil) 401, 402, 403 arranged in the X direction, and X-ray transmission material arranged in the X direction.
  • the plane 471, the lead foil at the end face on the X-ray emission side, and the plane 472 formed by the end face of the aluminum foil are each on the same plane parallel to the Xy plane (the first plane not shown in FIG. 4). The same is true for X-ray grid 23).
  • FIG. 4 the sensitive areas 4 51 of the four detectors of the X-ray detector 24, 45 2, 45 3 and 45 4 are shown.
  • the X-ray shielding material of the X-ray grid and the X-ray transmitting material are slightly enlarged on the detection surface 461 of the X-ray detector 24 by the X-rays radiated from the X-ray focal point F (20). Projected. This magnification is determined by the distance between the X-ray focal point F (20) and the detection surface 46 1 and the distance between the X-ray focal point F (20) and the X-ray grid surface 47 1. Ratio. Let L (470) be the distance between the surface 47 1 of the X-ray grid and the front surface 47 3 of the X-ray detector.
  • the positional relationship between the position of the X-ray dalid projected on the detection surface 461 and the sensitive region of the detection element will be described.
  • the period of the image of the X-ray shielding material of the first X-ray dalide projected on the detection surface 461 by the X-ray from the X-ray focal point is the period of the period in which the detection element is formed.
  • the figure shows the case where the adjustment is made twice.
  • Dotted lines 800, 800, and 803 indicate the boundaries of the group of detector elements where the outputs are added in the high-resolution mode and the bundle addition is performed.
  • the positions of these boundary lines indicate the sensitivity of the detector elements. It corresponds to the center position of the width of the dead zone formed between the regions.
  • the summation of the two detectors in the X and y directions is a total of four detectors, and in the standard mode, the total of four detectors in the X and y directions is 16 Is performed for the detection elements of. That is, in the high-resolution mode, the period of the image of the X-ray shielding material projected on the detection surface is the same as the period of the array of the detection elements to be bundled and added.
  • the period of the array of detector elements bundled and added in the standard mode is an integral multiple of the period of the array of detector elements bundled and added in the high-resolution mode.
  • the boundary lines 81, 802, and 803 correspond to the center positions of the widths of the dead zones formed in the x direction, and are arranged in the X direction projected on the detection surface 461.
  • the distance L (470) from the position 471 on the front of the first X-ray dalid to the front 4473 of the X-ray detector so that it matches the center position of the image of the X-ray shielding material Are changed and adjusted.
  • the change of the distance L (470) is performed by adjusting the position of the front surface 473 of the X-ray detector.
  • the period of the image of the X-ray shielding material projected on the detection surface and the period of the array of the detection element groups to be added and bundled are matched, so that occurrence of moire can be prevented.
  • the sensitivity of the X-ray measurement device is improved because the ratio of the sensitive region of the detection element shielded by the X-ray shielding material can be effectively reduced.
  • the bundle addition in the X direction and the y direction is performed for the detection element group inside the same pair of X-ray shielding materials (for example, in the X direction, the pair of lead foil 401 and lead foil 402). Since this is performed, the reduction in spatial resolution due to the addition of the outputs of the detection element group can be suppressed to a minimum.
  • FIG. 5 shows the X-direction of the center position of the image projected on the detection surface 461 of the X-ray shielding material arranged in the X direction and the y direction in the cone beam CT apparatus according to the embodiment of the present invention, and Sensitivity of the X-ray shielding material and the detection element when the period in the y direction is adjusted so as to be twice the X direction of the detection element and the period of the detection element in the y direction.
  • FIG. 4 is a diagram illustrating a relative positional relationship between an area and a dead zone, and is a partially enlarged projection view in which an X-ray shielding material is projected on a detection surface 461, and FIG. 4 is a projection view as viewed from a direction perpendicular to the paper surface. is there.
  • a cross X-ray dalid composed of first and second X-ray grids having the same structure is used.
  • the area around 1 32, 1 33, and 134 is surrounded by a dead zone (width: 0.02 1 mm).
  • An area with a width of 0.015 mm from the periphery of each sensitive area in the vicinity of two adjacent sides of each sensitive area is covered with a cross X-ray grid (projected on the detection surface 461
  • the dimensions of the X-ray shielding material are 0.051 mm).
  • the X-ray shielding material projected on the detection surface 46 1 allows the X-ray grid to project onto the detection surface 4 6 1 of the X-ray shielding material. 01, 502, 503, and 504 are formed. If a cross X-ray grid consisting of the first and second X-ray grids is used, the holes 501, 502, 503, and 504 will contain the X-rays of the first X-ray grid. Neither the shielding material nor the X-ray shielding material of the second X-ray grid is a portion where neither is projected.
  • the dotted line shown in FIG. 5 indicates the boundary of the range of the detection element group to be bundled and added in the X direction and the y direction.
  • the bundle addition is performed for a total of four elements, two elements each in the X direction and the y direction.
  • the X-direction of the projected image of the X-ray shielding material on the X-ray shielding material on the detection surface, so that the center of the area occupied by the four detection elements to be bundled and added coincides with the center of the above hole, And the position of the detection surface of the X-ray detector with respect to the position in front of the first X-ray grid of the cross X-ray dar adjust. That is, as shown in FIG.
  • the position of the dotted line indicating the boundary of the range of the detection element group to be bundled and added in the X direction and the y direction is the center position of the width of the dead zone, and the cross X-ray
  • the center of the projected image of the grid on the detection surface of the X-ray shielding material is matched with the center position in the X and y directions.
  • the period of the image of the X-ray shielding material of the cross X-ray grid projected on the detection surface and the period of the array of the detection element group to be bundled and added are matched. Therefore, occurrence of moire can be prevented. Also, the sensitive area of the detection element
  • the sensitivity of the X-ray measuring device is improved because the ratio of the X-ray shielding material can be effectively reduced.
  • the detection element group to be bundled and added in the X direction and the y direction is inside the above-mentioned hole, and the same pair of X-ray shielding materials (for example, in the X direction, lead foil 401 and lead foil are used). Since the bundled addition is performed for the detection element group inside the pair (402), the decrease in the spatial resolution due to the addition of the output of the detection element group can be suppressed to the minimum in the X direction and the y direction.
  • the bundle addition in the X direction and the y direction is performed by detecting the detection element groups inside the same pair of X-ray shielding materials (for example, in the X direction, a pair of lead foil 401 and lead foil 402). Therefore, a decrease in spatial resolution due to the addition of the outputs of the detection element group can be suppressed to a minimum.
  • the spatial resolution is reduced by the bundled addition of 16 detection elements, but the spatial resolution is reduced.
  • the processing is executed after the bundled addition. The data processing amount is greatly reduced and the operation time is shortened.
  • the bundle addition is performed in two stages. It is possible to perform both bundled addition by hardware before collecting signals from the detection elements and storing the collected signals in the memory, and by performing software after storing the signals in the memory. Available in series.
  • the bundled addition of the four detectors in the x and y directions, a total of four detectors, is performed in hardware before the signal from each detector is stored in memory.
  • the obtained bundled and added signal (four-element bundled addition signal) is collected and stored in the memory.
  • the bundled addition of the four collected and added signals (four-element bundled addition signal) is executed by software. ⁇
  • the pre-processing by hardware and the post-processing by software are combined to execute the bundle addition of the 16 detection elements.
  • the design of X-ray detectors can be generalized and cost can be reduced, and the flexibility of using X-ray measurement devices can be enhanced based on the relationship between computation time and spatial resolution. it can.
  • the center position of the projected image of the X-ray grid on the detection surface of the X-ray shielding material in the X and y directions is the boundary of the detection element, that is, The width of the dead zone in the X and y directions coincides with the center position in the X and y directions.
  • the X-ray measurement device of the present invention is applied to devices for the purpose of diagnosis, such as an X-ray imaging device, an X-ray fluoroscope, and a cone-beam CT device, which can capture high-quality images using an X-ray detector. According to the X-ray measurement apparatus of the present invention, the following effects can be obtained.
  • the ratio of the sensitive region of the detection element blocked by the X-ray shielding material can be effectively reduced, the occurrence of moire can be prevented, and the X-ray detection sensitivity can be improved.
  • the same X-ray darling can be used for multiple X-ray detectors with different detection element periods. Can be increased.

Description

明 細 書
X線計測装置 技術分野
本発明は、 平面型 X線検出器を用いて高画質な画像の撮影が可能 な X線撮影装置、 X線透視装置、 コーンビーム CT装置等の X線計 測装置に関する。 背景技術
2次元 X線検出器を用いて X線像の計測を行なう X線透視装置、 及ぴ X線撮影装置は公知の技術である。 X線源と 2次元 X線検出器 を検查対象の周りに 1回転させながら回転撮影を行なうコーンビー ム CT、 また、 X線源と 2次元 X線検出器を固定し、 検査対象を 1 回転させながら回転撮影を行なうコーンビーム C Tがある (特開平 1 0 - 1 9 2 26 7号公報:従来技術 1 ) 。
コーンビーム CTでは、 回転撮影により得られた複数の画像に対 してそれぞれ補正処理を施すことにより、 1組の投影データを得る。 得られた 1組の投影データに対して、 3次元再構成アルゴリズムを 用いて 3次元再構成処理を行なうことにより、 3次元画像を得る。
C Tの 3次元再構成アルゴリズムは、 「画像工学」 (長谷川伸著、 コロナ社発行、 p p . 1 9 5 - 1 9 9 :従来技術 2) に記載されて いる。 コーンビーム C Tの 3次元再構成アルゴリズムとしては、 フ ェルドカンプ法等の方法が用いられる。 特に、 フェルドカンプ法に つレヽては、 ' P r a c t i c a l c o n e b e a m a l g o r i t h m I (L. A. F e l d k a mp^ J o u r n a l of O p t i c a 1 S o c i e t y o f Am e r i c a、 v o l . 1 (6) 、 p p . 6 1 2— 6 1 9、 1 9 8 4 :従来技術 3) に記載さ れている。
コーンビーム CTに用いられる 2次元 X線検出器としては、 X線 I m a g e I n t e n s i f i e r (以下、 X I I と略記する。 ) とテレビカメラを光学系を介して組合せた X I I—カメラ型 X線検 出器 (特開平 1 0— 1 9 2 2 6 7号公報 :従来技術 1 ) や、 平面型 X線検出器等がある。
平面型 X線検出器と、そのトモグラフィ応用の可能性については、 「フラットパネル ·ディテクタの動向」 (稲邑清也、 映像情報、 V o 1. 3 1 (4) , p p . 1 25 - 1 3 0 :従来技術 4) に記載さ れている。
例えば、 アモルファスシリ コンフォトダイオード (以下、 a - S i PDと略記する。 ) と T F Tとの対を正方マトリ ックス状に配置 し、 これらの対と蛍光板を直接組合せた平面型 X線検出器の構成が 公知である。 このタイプの平面型 X線検出器では、 X線が蛍光板に 入射して発生する蛍光は、 最近傍の a— S i P Dに入射して電荷に 変換される。 電荷は読み出されるまで蓄積される。 この例では、 a 一 S i PDは独立 (ディスクリート) な検出素子として機能する。
2次元 X線検出器に入射する散乱 X線を低減する手段として、 散 乱 X線遮蔽グリッド (以下、 単に、 X線グリッドと略記する。 ) が ある。 X線グリッドを 2次元 X線検出器の前面に配置することによ り、 X線透視、 X線撮影、 及ぴコーンビーム C T撮影において散乱 線を低減できる。
X線ダリ ッ ドはアルミニウム等の X線透過材と鉛等の X線遮蔽材 を交互に重ねた積層構造をもつ。 この積層構造をもつ X線ダリッド の 2枚を互いに直交して配置して一体化したクロス X線ダリ ッ ドが ある。 コーンビ一ム CT撮影に散乱 X線遮蔽 X線ダリ ッドを使用す ることは公知である(特開平 9一 1 4 9 8 9 5号公報:従来技術 5)。
2次元 X線検出器の複数の検出素子の出力信号を 1次元方向又は 2次元方向で加算する束ね加算 (b i n n i n g) の技術は公知で ある (特開平 9一 1 9 70 5 1号公報 :従来技術 6) 。 X I I—力 メラ型 X線検出器では、 テレビカメラの出力画素数を変化させるこ とが可能であることが知られている。 これは、 コーンビーム CT撮 影においても公知である (特開平 1 1一 2 2 6 004号公報 :従来 技術 7) 。
束ね加算では、 出力信号のデータ数を減少させて、 1枚当りの画 像を出力する時間を短縮する効果、 データ処理に要する時間を短縮 する効果が実現できる。 一且、 各検出素子の出力信号をメモリ に記 憶した後に、 後処理で束ね加算を行ない、 束ね加算後の演算処理に 要する時間を短縮することもできる。
X線により平面型 X線検出器の検出素子の面に投影された X線遮 蔽 X線ダリ ッドの X線遮蔽材の周期を検出素子の配列の周期の整数 分の 1倍とすることが知られている (特開平 9 - 75 3 3 2号公 報:従来技術 8) 。
X線により平面型 X線検出器の検出素子の面に投影された X線グ リ ッドの X線遮蔽材の影を用いて、 X線源と X線グリ ッドの位置を 合わせる方法が知られている (特開平 4一 3 0 8 8 0 9号公報:従 来技術 9) 。
また、 X線により平面型 X線検出器の検出素子の面に投影された X線グリ ッ ドの X線遮蔽材の影を用いて、 X線源と検出器の位置を 合わせる方法が知られている (特開平 9 - 6 60 54号公報:従来 技術 1 0 ) 。
先ず、 以降の説明に使用する用語を説明する。
( 1 ) アモルファスシリ コンフォ トダイォード :以下の説明では、 a - S i P Dと略記する。
( 2 ) 散乱 X線遮蔽グリッド : 以下の説明では、 単に、 X線グリ ツ ドと略記する。
( 3 ) 平面型 X線検出器:検出素子が 2次元に平面状に配列される X線検出器をいう。 以下の説明では、 単に、 X線検出器という。
( 4 ) 検出素子 :以下に説明する例では、 a— S i P Dと T F Tの 対と蛍光層から構成される。 検出素子は、 X線により蛍光層で発生 する蛍光を電気信号に変化する a— S i P Dが形成されている有感 領域 (有感部) と、 有感領域以外の不感領域 (不感部、 不感帯部) を含む。
( 5 ) 検出面 : 以下に説明する例では、 平面型 X線検出器で複数の a— S i P Dが形成される面である。
X線検出器を用いて X線像の計測を行なう X線透視装置、 X線撮 影装置、 コーンビーム C T装置等の診断用の X線計測装置では、 診 断能向上のために、 空間分解能の向上が必要とされ、 X線検出器の 検出素子の微小化が進められている。 また、 診断用の X線計測装置 では、 空間分解能の向上に加えて X線被曝量の低減が要求されてお り、 X線検出の高感度化が求められている。
X線検出器を用いる場合、 散乱 X線による画質劣化が避けられな いという問題がある。 散乱 X線を低減するために、 X線グリ ッドの X線遮蔽材の間隔を検出素子の間隔に対応させて同じくする場合、 検出素子が微小化するにつれて、 X線遮蔽材の間隔が小さくなるの で、 X線グリ ッドによる感度低下を招き、 所定の感度を得るには X 線照射線量の増加させなければないという問題がある。 また、 検出 素子が微小化した時、 X線グリ ッドの X線遮蔽材の間隔を複数の検 出素子群の間隔に対応させて、 X線遮蔽材の間隔を検出素子の間隔 より も大きくすることが考えられる。
しかし、 何れの場合にも、 X線遮蔽材の配列の周期と X線検出器 の感度分布の周期の対応関係がずれることによりモアレが生じると いう問題がある。特に、 X線検出器では感度分布特性が急峻なため、 モアレが生じ易く、 コーンビーム C T画像では、 モアレによるァー チファタ トによる画質劣化、 及ぴ C T値の定量性の低下が生じると いう問題がある。 例えば、 図 6に示すように、 リングアーチファタ トに加えて更にあるリングから派生する複数の曲線部分をもつ全体 として非常に複雑なアーチファタ トを生じることが、 本発明者に-よ り確認されている。 図 6は、 大口径の円柱形の水ファン トムの再構 成画像の中心部に出現したアーチファク トの例である。
微小なサイズの検出素子をもつ X線検出器を用いる X線計測装置 では、散乱 X線を有効に低減し、感度の低下をもたらさず、高感度、 高空間分解を実現することが望まれている。 発明の開示
本発明の目的は、 高空間分解能で高感度でモアレのない大視野の 画像を得ることが可能な診断用の X線計測装置を提供することにあ る。 、
本発明が適用される X線計測装置は、 X線焦点から X線を発生す る X線源と、 不感部と不感部に取り囲まれる有感部とをもつ複数の 検出素子が 2次元に配列される X線検出器と、 撮影の制御を行ない 複数の検出素子の出力信号を収集してデータ処理を行なうデータ処 理手段と、 X線焦点と X線検出器との間に X線焦点の位置に対して 所定の距離に配置され、 X線透過部材と X線遮蔽部材とが交互に 1 つの方向 (第 1の方向) に配列され、 薄い厚さの X線透過平板で固 定される散乱線を遮蔽する X線ダリッ ドとを具備する。
例えば、 X線検出器は、 相互に不感帯 (不感部) を介して独立し て機能する a— S i P Dと T F Tからなり正方マトリ ックス状に配 置される複数の対と蛍光層 (板) を直接組合わせた公知の構成とす る。 検出素子は、 a— S i P Dと T F Tの対と蛍光層から構成され る。 検'査対象を通過した X線は、 X線グリ ッドを通過した後に、 蛍 光層に入射する。 蛍光層で発生する蛍光は、 最近傍の a— S i P D に入射して電荷に変換され、 電荷の読み出し時点まで蓄積される。 検査対象を配置しない状態で、 X線の照射により X線グリッドの X線遮蔽部材の線状の投影像を、 X線検出器の検出面 (複数の a— S i P Dが形成される面) 上に得ることができる。
本発明の第 1の構成では、 X線検出器の検出面への X線グリッ ド の X線遮蔽部材の線状の投影像の 1つの方向での周期が、 実質的に この 1つの方向での検出素子の配列の周期の 2以上の整数倍である, この構成により、 高空間分解能且つ高感度でモアレのない大視野の 画像を得ることが可能となる。
また、 第 1の構成では、 データ処理手段は、 相互に隣接する複数 の検出素子の出力信号を加算する処理を行なう。 この複数の検出素 子の出力信号を束ね加算することにより、 高速に、 高空間分解能且 つ高感度でモアレのない画像を得ることが可能となる。
また、 第 1の構成では、 X線グリッドは、 X線焦点と: X線検出器 との間に X線焦点の位置に対して所定の距離に固定して配置されて おり、 X線焦点と X線グリ ッドの面 し 又は X線検出器の検出面) の中心部を結ぶ方向での、 X線ダリッドの複数の X線遮蔽部材の X 線入射面側の端部がなす面の位置と X線検出器の検出面 (複数の a - S i P Dが形成される面) の位置との間隔を調整する調整手段を 具備し、 調整手段は、 X線グリ ッドの複数の X線遮蔽部材の: 線入 射面側の端部がなす面と X線検出器の検出面を実質的に平行に保持 した状態で、 上記の間隔を調整できる。
X線焦点、 及ぴ X線ダリッ ドの位置が、 X線焦点と X線ダリッド の面 (:、 又は X線検出器の検出面) の中心部を結ぶ方向で固定され る構成とするので、 1種類の X線グリ ッドに対して、 空間分解能、 即ち、 検出素子の上記の 1つの方向でのサイズが異なる X線検出器 を使用する場合にも、 空間分解能に応じて X線検出器を選択して、 上記の調整手段により位置を調整することにより、 検査対象の画像 の計測が可能となる。
また、 第 1の構成では、 X線ダリッド (クロス X線ダリッ ド) は、 第 1の X線透過部材と第 1の X線遮蔽部材とが交互に第 1の方向に 配列される第 1の X線グリッドと、 第 2の X線透過部材と第 2の X 線遮蔽部材とが交互に、 第 1の方向に直交する第 2の方向に配列さ れる第 2の X線ダリッ ドとから構成され、 第 1の X線グリッ ドと第 2の X線ダリ ッ ドとが実質的に平行に配置され、 第 1の X線ダリッ ドの中心部と第 2の X線ダリ ッ ドの中心部が実質的に一致するよう に一体化されて構成されている。
更に、 第 1の X線遮蔽部材の X線検出器の検出面への線状の投影 像の第 1の方向での周期と、 第 2の X線遮蔽部材の X線検出器の検 出面への線状の投影像の第 2の方向での周期とが実質的に等しく、 第 1の X線ダリッ ドと第 2の; X線ダリッドにより構成される X線グ リ ッドはクロス X線ダリッ ドとなる。 X線ダリ ッ ドの X線遮蔽材が 2次元に配列される構造をもつので、 散乱 X線の混入が少なく、 高 空間分解能且つ高感度でモアレのない画像を得ることが可能となる c 更に、 第 1の構成では、 X線焦点と X線グリッ ドとの間に配置さ れる検査対象の周囲で、 X線源、 X線グリ ッド、 及び X線検出器の 相対的な位置を固定して保持した状態で、 X線源、 X線グリツ..ド、 及ぴ X線検出器を回転させる手段を具備し、 データ処理手段は、 回 転による複数の回転角度において、 複数の検出素子の出力信号を収 集して、 検查対象の断層像を求めるデータ処理を行なう。
X線焦点からの放射状の X線を検查対象に照射して、 コーンビー ム C T計測を行ない、 高空間分解能且つ高感度でモアレのない 3次 元再構成画像を得ることが可能となる。
本発明の第 2の構成では、 第 1の構成と同様に、 X線遮蔽部材の X線検出器の検出面への線状の投影像の第 1の方向での周期が、 実 質的に第 1の方向での検出素子の配列の周期の 2以上の整数倍であ る。 第 1の構成と同様の機能をもつ調整手段により、 第 1の方向に おいて、 X線遮蔽部材の線状の投影像の中心が、実質的に不感帯(不 感部) の領域の中心に位置するように、 上記の間隔が調整される。 第 1の構成の場合と同様に、 1種類の X線グリ ッドに対して、 空間 分解能の異なる複数の X線検出器を使用する場合にも、 空間分解能 に応じて X線検出器を選択して、 上記の調整手段により位置を調整 することにより、 検査対象の画像の計測が可能となる。
本発明の第 3の構成では、 第 1 の構成で説明.した第 1の X線ダリ ッドと第 2の X線ダリ ッ ドにより構成されるクロス: X線ダリ ッドを X線ダリ ッ ドとして使用する。 第 1の構成と同様の機能をもつ調整 手段により、 第 1の方向において、 第 1の X線遮蔽部材の線状の投 影像の中心が、 実質的に不感帯 (不感部) の領域の中心に位置する ように、 第 2の方向において、 第 2の X線遮蔽部材の線状の投影像 の中心が、 実質的に不感帯 (不感部) の領域の中心に位置するよう に、 上記の間隔が調整される。
また、 第 1の X線遮蔽部材の X線検出器の検出面への線状の投影 像の第 1の方向での周期と、 実質的に第 2の X線遮蔽部材の X線検 出器の検出面への線状の投影像の第 2の方向での周期とを等しい構 成とする。 第 1の構成の場合と同様に、 2次元に配列さ 'れる X線遮 蔽材をもつ X線グリッ ド (クロス X線グリ ッ ド) を使用するので、 散乱 X線の混入が少なく、 高空間分解能且つ高感度でモアレのない 画像を得ることが可能とな 。
なお、 先述した従来技術 8は、 検出素子のサイズが X線遮蔽材の 間隔よりも小さい X線検出器を開示していない。 また、 従来技術 9 は、 X線源と X線ダリ ッドの位置合わせ方法を開示し、 従来技術 1 0は、 X線源と検出器の位置合わせ方法を開示するが、 X線グリ ツ ドと X線検出器の位置合せ方法を開示していない。 図面の簡単な説明
図 1は、 本発明の実施例のコーンビーム C T装置の構成例を示す 図、 図 2は、 本発明の実施例のコーンビーム C T装置におけるクロ ス X線ダリッドの鉛箔と X線検出器の検出素子の有感領域と不感帯 の位置関係の例を示す断面図、 図 3は、 本発明の実施例のコーンビ ーム C T装置における X線検出器と X線ダリ ッドとの位置関係の調 整方法の例を説明する断面図、 図 4は、 本発明の実施例のコーンビ ーム C T装置における、 X'線グリッドの X線遮蔽材と X線検出器の 一部の拡大断面図であり、 X線グリッドと検出素子の位置関係を示 す説明する図、 図 5は、 本発明の実施例のコーンビーム C T装置に おいて、 2方向にそれぞれ配列される X線遮蔽材の検出面に投影さ れた像の 2方向での周期を、 検出素子がそれぞれ形成される 2方向 での検出素子の周期の 2倍とするように調整した時の、 X線遮蔽材、 検出素子の有感領域、 不感帯の相対的な位置関係を説明する図であ り、 検出面に X線遮蔽材を投影した部分拡大投影図、 図 6は、 従来 のコーンビーム C T画像におけるモアレによるアーチファタ トを示 す図である。 - 発明を実施するための最良の形態
以下、 本発明の実施例を図を用いて詳細に説明する。
図 iは、 本発明の実施例のコーンビーム c τ装置の構成例を示す 図である。 コーンビーム C T装置は、 検査対象 1に X線を照射する
X線管 2、 検査対象 1を保持する保持台 3と保持台 3を回転させる 回転装置 4、 検査対象 1を透過した X線を検出する X線検出器 5、 散乱線を遮蔽する X線グリッド 6、 X線グリッド 6に対する X線検 出器 5の相対位置を変化させて調整する調整装置 7、 X線管 2と回 転装置 4と X線検出器 5を制御し、 X線検出器 5の各検出素子の出 力信号をデータとして収集するデータ収集装置 8、 収集されたデー タの演算処理を行なうデータ処理装置 9、 収集されたデータ、 及び 演算処理された結果を表示する表示装置 1 0等から構成される。 デ ータ処理装置 9の機能をデータ収集装置 8に持たせてもよい。
X線ダリ ッド 6と X線検出器 5の对と X線管 2とを検査対象 1の 周囲で回転させ、 コーンビーム C T計測を実行する。 また、 X線グ リ ツド 6 と X線検出器 5の対と X線管 2とを固定して、 回転装置 4 により検査対象 1を回転させて、 コーンビーム C T計測を実行して もよい。 X線検出器は、 相互に接合される複数の検出ュニットから構成さ れる。 各検出ユニットは、 各検出ユニッ トに入射する X線を可視光 に変換する蛍光層と蛍光層から発生する蛍光を a— S i PDにより 電気信号に変える変換ュニッ ト、 変換ュニッ トから TF Tにより読 み出される信号を増幅する増幅部、 増幅部で増幅された信号を送出 する信号出力部、 各検出ュ-ットにおける信号の読み出しを制御す る読み出し制御部等から構成される。
各検出ユニッ トに於ける検出素子は、 1辺が 0. 1 2 7mmの正 方形の形状をもち、 2方向にピッチ 0. 1 2 7 mmで正方配列され る。 検出素子の有感領域 (有感部) は 1辺が 0. 1 06 mmの正方 形の形状をもつ。 この有感領域は 4方向で、 0. 0 1 0 5 (= 0. 0 2 1 /2) mmの幅で不感領域 (不感部) により取り囲まれてい る。 即ち、 隣接する検出素子の有感領域の間に形成されている不感 部の幅は 0. 0 2 1 m mである。
X線検出器は、 2方向にピッチ 0. 1 2 7 mmで正方配列される、 3 0 7 2 X 30 7 2 = 943 7 1 84個の検出素子から構成され、 X線検出器は、 1辺が約 3 9 0 mmの大きさの正方形の形状をもつ。
X線グリ ッドとして、 同じ構造をもつ第 1、 第 2の X線ダリ ッ ド を重ねて一体化したクロス X線グリッ ドを使用する。 第 1、 第 2の X線グリッドはそれぞれ、 X線遮蔽材として、 厚さが 0. 0 5 0 m m、 高さが 1. 0 1 6 mm、 長さが約 3 9 0 mmの細長い鉛箔を使 用し、 X線透過材として、 厚さが約 0. 2 Omm、 高さが 1. 0 1 6 mm、 長さが約 3 9 0 mmの細長いアルミ二ゥム箔を使用する。 第 1、 第 2の X線ダリッドの X線グリツド比は 8 : 1である。 第 1、第 2の X線グリ ッドは、各 X線ダリ ッドの中心部を一致させて、 クロス X線ダリッドの X線入射側に配置される第 1の X線ダリ ッド の、 鉛箔、 及ぴアルミニウム箔の X線入射側の端面を結ぶ面と、 ク ロス X線ダリッドの X線出射側に配置される第 2の X線グリ ッドの. 鉛箔、 及ぴアルミニウム箔の X線入射側の端面を結ぶ面とを実質的 に平行に保持した状態で、 各 X線ダリ ッドの中心部での鉛箔の長手 方向が直交するように貼り合せて一体化する。
即ち、 第 1の X線グリッ ドの中心部での鉛箔の長手方向を第 1の 方向に平行に配置し、 第 2の X線ダリッ ドの中心部での鉛箔の長手 方向を、 第 1の方向に直交する第 2の方向に平行に配置して、 第 1 の X線グリ ツ ドと第 2の X線グリ ッドとを貼り合せて一体化する。 第 1の X線グリ ッドの、 鉛箔、 及ぴアルミニウム箔の X線入射側 の端面を結ぶ面の中心部と X線焦点と間の距離は、 1 . 2 mである。 本発明の実施例のコーンビーム C T装置では、 第 1の X線グリッド の、 鉛箔、 及びアルミニウム箔の X線入射側の端面を結ぶ面と、 X 線検出器の検出素子の検出面 (複数の有感領域、 即ち、 複数の a— S i P Dで形成されるの面) との間隔は、 1 9 m mである。
第 1の X線ダリッドの上記の X線入射側の端面を結ぶ面の中心部 と X線焦点とを結ぶ方向で、 X線検出器の検出面を上記の X線入射 側の端面を結ぶ面に実質的に平行に移動させて、 クロス X線ダリッ ドに対する X線検出器の検出面の位置を、 以下のように調整する。
X線による第 1の X線ダリ ッドの鉛箔の X線検出器の検出面への 線状の投影像の第 1の方向での周期が、 実質的に、 第 1の方向での 検出素子の配列の周期の 2倍となるように、 また、 X線による第 2 の X線グリッドの鉛箔の X線検出器の検出面への線状の投影像の第 2の方向での周期が、 実質的に、 第 2の方向での検出素子の配列の 周期の 2倍となるように調整する。 更に、 第 1の方向において、 第 1の X線グリ ッドの鉛箔の線状の投影像の中心が、 実質的に不感帯 の幅の中心に位置するように、 第 2の方向において、 第 2の X線グ リ ッドの鉛箔の線状の投影像の中心が、 実質的に不感帯の幅の中心 に位置するように、 第 1の X線ダリッドの上記の X線入射側の端面 を結ぶ面と、 X線検出器の検出素子の検出面との間隔が調整される。 図 2は、 本発明の実施例のコーンビーム C T装置におけるクロス X線ダリッドの鉛箔と X線検出器の検出素子の有感領域と不感帯の 位置関係の例を示す X z面に平行で原点 O ( 2 1 ) を通る断面図で ある。 原点 O ( 2 1 ) とする直交座標系 (x、 y、 z ) の y軸を、 回転装置 4の回転中心軸、 又は、 X線グリ ッド 6と X線検出器 5の 対と X線管 2とを検査対象 1の周囲で回転させる時の回転軸とする, x y面を、 第 1、 第 2の X線グリッド 2 2、 2 3により構成される クロス X線グリ ッ ド 6の第 1の X線ダリッ ド 2 2の X線入射側の端 面を結ぶ面、 及ぴ X線検出器 2 4の検出素子の検出面 (有感領域) 2 7に平行にとる。 Z軸を、 X線管 2の X線焦点 F ( 2 0 ) と第 1 の X線ダリ ッド 2 2の X線入射側の端面を結ぶ面の中心部とを結ぶ 方向とする。
図 2は、 第 1の X線グリ ッド 2 2の X方向に配列される鉛箔 2 6 の中心を通り、 X方向に形成される不感帯 2 8の幅の中心に至る X 線経路 2 9、 及び第 1の X線グリッド · 2 2の X方向に配列されるァ ルミ二ゥム箔 2 5を通り、 X方向に形成される不感帯 2 8の幅の中 心に至る X線経路 3 0を示す。 図 2では、 第 2の X線グリッド 2 3 の構造は省略している。
図 2に示す: X線検出器 2 4、 2 4 ' はそれぞれ、 X方向、 及び y 方向で同じ検出素子の大きさをもち、 同じ幅の不感帯 2 8、 2 8 ' をもつが、 X線検出器 2 4 ' は、 X線検出器 2 4よりも、 空間分解 能は悪く、 有感領域 2 7, の面積は有感領域 2 7の面積より大きい (即ち、 X線検出器 2 4, の検出素子の大きさは、 X線検出器 2 4 の検出素子の大きさよりも大きい。 ) 。
なお、 図 2において、 クロス X線グリッド 6に対して、 X線検出 器 2 4、 2 4 ' を X方向、 及ぴ y方向それぞれ、 その検出素子のサ ィズの 1 Z 2の寸法だけシフ トして配置してもよレ、。
また、 図 2に示す例では、 同じ構造をもつ第 1、 第 2の X線グリ ッ ドを重ねて一体化したクロス X線ダリッ ドを使用する例を説明し たが、 図 2に示すクロス X線グリッドの代わりに、 X方向に鉛箔が 配列される第 1の X線グリッ ド、 y方向に鉛箔が配列される第 2の X線グリッ ドの何れか一方を使用してもよく、 この場合も、 上記で 説明した方法、 下記で説明する方法で、 X線グリッ ドと X線検出器 の相対的な位置合せを行なえばよい。
X線検出器 2 4、 又は、 2 4 ' の検出面を、 第 1 の X線グリッド
2 2の X線入射側の端面に対して平行を保った状態で移動させて、 ク ロス X線ダリッドに対する X線検出器の検出面の位置を調整する. ことにより、 1種類の第 1の X線ダリ ッド 2 2に対して、 異なる空 間分解能をもつ複数の X線検出器を使用できる。
図 3は、 本発明の実施例のコーンビーム C T装置における X線検 出器と X線ダリッドとの位置関係の調整方法の例を説明する断面図 である。 X線検出器 5と X線グリッド 6はそれぞれ、 枠 4 0に取り 付けられたスライ ドするスライ ド板 4 1に固定されている。 X線検 出器 5と X線グリ ツド 6は、 枠 4 0に対して垂直に取り付けられて いる。
距離調節用の調節ねじ 4 2のねじ穴 4 3が X線グリッド 6に形成 されており、 調節ねじ 4 2がねじ穴 4 3にねじ込まれている。 調節 ねじ 4 2は X線検出器 5に向けてねじ込まれている。 X線検出器 5 の上で調節ねじ 4 2の頭が接する部分には、 調節ねじ 4 2の頭によ り X線検出器 5が破損しないように受け板 4 4が備えられている。 調節ねじ 4 2を回して X線検出器 5の側に押し出すことにより、 X 線ダリッド 6 と X線検出器 5との距離を平行に拡大できる。 調節ね じ 4 2を回して X線グリッド 6の側に引き出すことにより、 X線グ リ ツド 6 と X線検出器 5との距離を狭めることができる。 図 3に示 す例では、 調節ねじを 1本のみとしたが、 更に調節ねじの本数を増 加させることにより、 距離の調整の精度を向上することができる。
X線グリ ッ ド 6の第 1の X線グリ ツド 2 2の X線入射側の端面を 結ぶ面の中心部が、 X線管 2の X線焦点 F ( 2 0 ) から所定の距離 の位置にくるように、 X線グリッ ド 6が固定されたスライ ド板 4 1 を移動させ、 スライ ド板 4 1を枠 4 0に固定する。 調節ねじ 4 2を X線検出器 5の側に押し出す、 又は、 X線グリッド 6の側に引き出 す。 X線検出器 5の面が調節ねじ 4 2の頭にぶっかる位置まで、 X 線検出器 5が固定されたスライ ド板 4 1を移動させる。 スライ ド板 4 1を枠 4 0に固定する。 検査対象を配置しない状態で、 X線を発 生して X線検出器 5の X線遮蔽材 (鉛箔 2 6 ) の投影画像を計測す る。
投影画像における X方向、 及ぴ y方向の鉛箔の線状の投影像の中 心位置と、 X方向、 及び y方向の不感帯の幅の中心位置とを検出し て、 X方向での鉛箔の線状の投影像の中心位置の周期が、実質的に、 X方向での検出素子の配列の周期の 2倍となるように、 また、 y方 向での鉛箔の線状の投影像の中心位置の周期が、 実質的に、 y方向 での検出素子の配列の周期の 2倍となるように、 更に、 第 1の X線 グリッドの X方向の鉛箔の線状の投影像の中心が、 実質的に X方向 の不感帯の幅の中心に位置するように、 第 2の X線グリッドの V方 向の鉛箔の線状の投影像の中心が、 実質的に y方向の不感帯の幅の 中心に位置するように、 X線検出器 5が固定されたスライ ド板 4 1 を移動させて、 X線ダリッド 6と X線検出器 5との間の距離を調整 する。 更に、 投影画像にモアレが見えるか否かを確認する。 モアレ が見えなくなるまで、 距離の調整を行なう。
本発明の実施例のコーンビーム C丁装置では、 X線検出器の複数 の検出素子の出力信号を、 X方向又は y方向の 1方向、 あるいは、 X方向及び y方向の 2方向で加算する束ね加算 (b i n n i n g ) を実行する。
本発明の実施例のコーンビーム C T装置は、 束ね加算を実行する
2つモー ドをもつ。 第 1の束ね加算モー ドは、 第 2の束ね加算モー ドに比較して長い演算処理時間を要するが、 高空間分解能の画像を 提供できる高分解能モードである。 第 2の束ね加算モードは、 第 1 の束ね加算モードで得られる画像に比較して空間分解能は劣るが、 第 2の束ね加算モードよりも高速に演算処理が可能であり、.標準的 な計測条件を与える標準モー ドである。
高分解能モードでは、 X方向、 及ぴ y方向においてそれぞれ 2つ の検出素子の出力を加算する束ね加算を行ない、 合計 4つの検出素 子の出力を加算する。 標準モードでは、 X方向、 及ぴ y方向におい てそれぞれ 4つの検出素子の出力を加算する束ね加算を行ない、 合 計 1 6の検出素子の出力を加算する。 高分解能モードでの空間分解 能と標準モードでの空間分解能の比は、 1 : 2である。
束ね加算する検出素子の数 (束ね加算素子数) 、 即ち、 加算する 検出素子の出力の数は種々変化させることができる。 データの収集 時に、 検出素子の出力を加算する制御を実行した後に、 加算結果を 収集すると、 束ね加算素子数を増加させる程、 高速にデータを収集 できる。
x方向での束ね加算素子数と y方向での束ね加算素子数 ^を等し く しない構成としてもよく、 例えば、 X方向での束ね加算素子数を 増加させないで感度の低下を小さく し、 y方向での束ね加算素子数 を増加させることにより、 高速化を図り、 高感度且つ高速なデータ 収集をおこなうことが可能となる。
図 4は、 本発明の実施例のコーンビーム CT装置における、 X線 グリッドの X線遮蔽材と X線検出器の一部の X z面に平行で原点 O (2 1) を通る拡大断面図であり、 X線グリ ッドと検出素子の位置 関係を説明するための図である。 '
図 4において、 図 4には図示しない z方向の左側に X線管の X線 焦点 F (2 0) がある。 点線 42 1、 42 2、 42 3、 424、 4 2 5 , 4 2 6は X線焦点から放射され X線グリ ッドの X線,遮蔽材(鉛 箔) に接して進行し検出素子へ入射する X線経路を示す。 各点線 4 2 1〜 42 6は相互に平行ではなく、 各点線 4 21〜 4 26により 示される X線の経路は、 図 2に誇張して示すように、 X線焦点から の発散する X線ビームによる経路である。
クロス X線グリ ツド 6の第 1の X線グリ ツド 22は、 X方向に配 列する X線遮蔽材 (鉛箔) 40 1、 40 2、 403と、 x方向に配 列する X線透過材 (アルミユウム箔) 4 1 1、 41 2、 4 1 3、 4 1 4から構成され、 第 1の X線グリツ ド 2 2の X線入射側の端面で の鉛箔、 及ぴアルミニウム箔の端面のなす面 4 71、 X線出射側の 端面での鉛箔、 及びアルミニウム箔の端面のなす面 47 2はそれぞ れ、 X y面に平行な同一の面にある (図 4に図示しない第 1の X線 グリ ッ ド 2 3についても同様である) 。
図 4では、 X線検出器 24の 4つの検出素子の有感領域 4 5 1、 4 5 2、 4 5 3、 4 5 4を示す。 X線グリ ッ ドの X線遮蔽材、 及ぴ X線透過材は X線焦点 F (20) から放射される X線により、 X線 検出器 24の検出面 4 6 1に僅かだが拡大されて投影される。 この 拡大率は、 X線焦点 F (2 0) と検出面 46 1 との間の距離と、 X 線焦点 F (20) と X線グリ ッドの面 4 7 1 との間の距離との比で ある。 X線グリ ッドの面 4 7 1 と X線検出器の前面 4 7 3との間の 距離を L (47 0) とする。
以下、 検出面 46 1に投影された X線ダリッドの位置と、 検出素 子の有感領域の位置関係について説明する。 図 4に示す例は、 X線 焦点からの X線により検出面 4 6 1に投影された第 1の X線ダリッ ドの X線遮蔽材の像の周期が、 検出素子が形成される周期の 2倍と なるよう調整された場合を示す。
点線 8 0 1、 8 0 2、 8 0 3は、 高分解能モードで出力が加算さ れる束ね加算がなされる検出素子群の境界線を示し、 これらの境界 線の位置は、 検出素子の有感領域の間に形成される不感帯の幅の中 心位置に対応する。
束ね加算は、 高分解能モードでは X方向、 及び y方向においてそ れぞれ 2つの検出素子の合計 4つの検出素子について、 標準モード では X方向、 及び y方向においてそれぞれ 4つの検出素子の合計 1 6の検出素子について実行される。 即ち、 高分解能モードでは、 検 出面に投影された X線遮蔽材の像の周期は、 束ね加算される検出素 子群の配列の周期と同一となる。 標準モードで束ね加算される検出 素子群の配列の周期は、 高分解能モードで束ね加算される検出素子 群の配列の周期の整数倍となる。
境界線 8 0 1、 8 0 2、 8 0 3は、 x方向に形成された不感帯の 幅の中心位置に対応し、 検出面 4 6 1に投影された X方向に配列さ れる X線遮蔽材の像の中心位置と一致するように、 第 1の X線ダリ ッ ドの前面の位置 4 7 1から X線検出器の前面 4 7 3の間の距離 L (4 70) が,変更され調整される。 距離 L (4 70) の変更は、 X 線検出器の前面 4 7 3の位置を変更する調整により実行される。
この結果、 検出面に投影された X線遮蔽材の像の周期と、 束ね加 算される検出素子群の配列の周期とがー致するので、 モアレの発生 を防止できる。 また、 検出素子の有感領域が X線遮蔽材で遮蔽され る割合を効果的に低減できるので、 X線計測装置の感度が向上する。 更に、 X方向、及ぴ y方向で束ね加算は、 同一の X線遮蔽材の対(例 えば、 X方向では、 鉛箔 4 0 1 と鉛箔 402の対) の内側の検出素 子群について実行されるので、 検出素子群の出力の加算による空間 分解能の低下を最小に抑制できる。
図 5は、 本発明の実施例のコーンビーム C T装置において、 X方 向、 及び y方向にそれぞれ配列される X線遮蔽材の検出面 46 1に 投影された像の中心位置の X方向、 及び y方向での周期を、 検出素 子がそれぞれ形成される X方向、 及ぴ y方向での検出素子の周期の 2倍とするように調整した時の、 X線遮蔽材、検出素子の有感領域、 不感帯の相対的な位置関係を説明する図であり、 検出面 46 1に X 線遮蔽材を投影した部分拡大投影図であり、 図 4を紙面に垂直な方 向から見た投影図である。 図 5に示す例では、図 2、図 4と同様に、 同じ構造をもつ第 1、 第 2の X線グリ ッドにより構成されるクロス X線ダリッドを使用している。
X方向、 及び y方向にそれぞれ同じ等間隔に形成される検出素子 ( 0. 1 2 7 m m X 0. 1 2 7 mm) の有感領域 ( 0. 1 0 6 mm X 0. 1 06 mm) 1 0 1、 1 0 2、 1 0 3、 1 04、 1 1 1、 1 1 2、 1 1 3、 1 1 4、 1 2 1、 1 2 2、 1 2 3、 1 24、 1 3 1、 1 3 2、 1 3 3、 1 34の周囲は、 不感帯 (幅 0. 02 1 mm) で 囲まれる。 各有感領域の隣接する 2辺の近傍の各有感領域の周辺か ら幅 0. 0 1 5mmの領域は、 クロス X線グリ ッ ドにより覆われて いる (検出面 46 1に投影される X線遮蔽材の寸法は 0. 0 5 1 m mである) 。
検出面 46 1に投影される X線遮蔽材により、 クロス X線グリッ ドの X線遮蔽材の検出面 4 6 1への投影により、 検出面 46 1には X線遮蔽材の投影による孔 5 0 1、 5 0 2、 5 0 3、 5 04が形成 される。 第 1、 及ぴ第 2の X線グリッドにより構成されるクロス X 線グリッドを使用する場合、 孔 50 1、 5 0 2、 5 03、 504の 部分には、 第 1の X線グリッドの X線遮蔽材、 第 2の X線グリ ッド の X線遮蔽材の何れもが投影されない部分である。
図 5に示す点線は、 X方向、 及ぴ y方向で束ね加算される検出素 子群の範囲の境界を示す。図 5に示す例では、束ね加算は、 X方向、 及ぴ y方向でそれぞれ 2素子の合計 4素子に対して実行される。 束ね加算される 4つの検出素子が占有する領域の中心と、 上記の 孔の中心とがー致するように、 クロス X線ダリッ ドの X線遮蔽材の 検出面への投影像の X方向、 及び y方向での中心位置が、 不感帯の 幅の中心位置に一致するように、 クロス X線ダリ ッドの第 1の X線 グリッドの前面の位置に対する、 X線検出器の検出面の位置を調整 する。 即ち、 図 5に示すように、 X方向、 及ぴ y方向で束ね加算さ れる検出素子群の範囲の境界を示す点線の位置は、 不感帯の幅の中 心位置、 及ぴ、 ク ロス X線グリッドの X線遮蔽材の検出面への投影 像の X方向、 及ぴ y方向での中心位置に一致させている。
この結果、 検出面に投影されたクロス X線グリ ッドの X線遮蔽材 の像の周期と、 束ね加算される検出素子群の配列の周期とがー致す るので、 モアレの発生を防止できる。 また、 検出素子の有感領域が
X線遮蔽材で遮蔽され割合を効果的に低減できるので、 X線計測装 置の感度が向上する。 更に、 X方向、 及ぴ y方向で束ね加算される 検出素子群は上記の孔の内部にあり、 同一の X線遮蔽材の対 (例え ば、 X方向では、 鉛箔 4 0 1 と鉛箔 4 0 2の対) の内側にある検出 素子群について束ね加算が実行されるので、 検出素子群の出力の加 算による空間分解能の低下を X方向、 及び y方向で最小に抑制でき る。
標準モードでは、 X方向、 及び y方向のそれぞれで 4つの検出素 子の合計 1 6の検出素子ついて束ね加算される。 この結果、 検出面 に投影されたクロス X線グリッドの X線遮蔽材の像の周期と、 束ね 加算される検出素子群の配列の周期とがー致するので、 モアレの発 生を防止できる。 検出素子の有感領域が X線遮蔽材で遮蔽され割合 を効果的に低減できるので、 X線計測装置の感度が向上する。
更に、 X方向、 及ぴ y方向で束ね加算は、 同一の X線遮蔽材の対 (例えば、 X方向では、 鉛箔 4 0 1 と鉛箔 4 0 2の対) の内側の検 出素子群について実行されるので、 検出素子群の出力の加算による 空間分解能の低下を最小に抑制できる。 標準モードでは、 1 6の検 出素子の束ね加算により、 空間分解能は低下するが、 束ね加算の以 降に実行される.データ処理量が大幅に低減し演算時間が短縮される 効果がある。
本発明の実施例のコーンビーム C T装置では、 束ね加算が 2段階 で実行される。 束ね加算を、 検出素子からの信号を収集してメモリ に記憶する以前に、 ハードウェアにより行なう構成と、 メモリに記 憶した後にソフ トウェアで行なう構成の両方が可能であり、 これら 2つの構成を直列させて利用できる。 x方向、 及び y方向での 2つの検出素子の合計 4つの検出素子の 束ね加算は、 各検出素子からの信号をメモリに記憶する以前に、 ハ 一ドウエアで実行される。 得られた束ね加算された信号 (4素子束 ね加算信号) は収集されメモリに記憶される。 後処理では、 収集さ れた 4個の束ね加算された信号 (4素子束ね加算信号) の束ね加算 がソフトウェアにより実行される。 ·
即ち、 ハー ウエアによる前処理とソフトウェアによる後処理と を組合せて 1 6の検出素子の束ね加算を実行する。 4つの検出素子 の束ね加算を実行できるハードウエアによる機能 (4素子束ね加算 機能) をもつ X線検出器を用いて、 後処理でソフトウェアにより、 1 6の検出素子の束ね加算を実行できる。 この結果、 X線検出器の 設計を汎用化して低コスト化可能とすると共に、 演算時間と空間間 分解能の関係に基づいて、 X線計測装置の利用の仕方の融通性を高 めることができる。
上記の 1つの孔に対して 1つの検出素子が対応するようなクロス X線グリ ッ ドを使用する場合には、 図 5に示す例のように、 上記の 1つの孔に対して 4つの検出素子が対応するようなクロス X線ダリ ッドを使用する場合よりも、 散乱線の遮蔽能力が高くなるという効 果がある。 この時、 束ね加算を実行しない場合には、 X線グリッド の X線遮蔽材の検出面への投影像の X方向、 及ぴ y方向での中心位 置は、 検出素子の境界線、 即ち、 X方向、 及ぴ y方向での不感帯の 幅の X方向、 及び y方向での中心位置に一致する。 この結果、 検出 素子の有感領域が X線遮蔽材で遮蔽される割合を効果的に低減でき るので、 X線計測装置の感度が向上する。 また、 モアレの発生も抑 止できる。 産業上の利用可能性
本発明の X線計測装置は、 X線検出器を用いて高画質な画像の撮 影が可能な X線撮影装置、 X線透視装置、 コーンビーム C T装置等 の診断を目的とする装置に適用され、 本発明の X線計測装置によれ ば、 以下の効果を奏する。
( 1 ) 検出素子の有感領域が X線遮蔽材で遮蔽ざれる割合を効果的 に低減し、モアレの発生を防止でき、 X線の検出感度が向上できる。
( 2 ) 束ね加算を X線遮蔽材の対の内側の領域の検出素子の出力信 号の加算により実行するので、 束ね加算における空間分解能の低下 を最小に抑制できる。
( 3 ) 検出素子の出力の束ね加算により、 高速に、 高空間分解能且 つ高感度でモアレのない画像を得ることができる。
( 4 ) X線グリッドと X線検出器の間隔の調整により、 検出素子の 周期が異なる複数の X線検出器に対して、 同一の X線ダリ ッドを使 用でき X線グリッドの融通性を高めることができる。
( 6 ) X線グリッドとして、 X方向、 及ぴ y方向の構造が同一であ るクロス X線グリッ ドと、 検出素子の配列間隔が X方向、 及ぴ y方 向の両方向で同一である X線検出器とを用いて、 X方向、 及び y方 向の両方向で同じ空間分解能を実現できる。 '

Claims

請 求 の 範 囲 .
1 . X線焦点から X線を検査対象に照射する X線源と、 有感部と該 有感部を取り囲む不感部とを有する複数の検出素子が 2次元に配列 され、 前記検査対象を透過し t X線像を検出する平面型 X線検出器 と、 前記検出素子の出力信号を収集して前記 X線像に関するデータ 処理を行なうデータ処理手段と、 前記 X線焦点と前記平面型 X線検 出器との間にあって前記 X線焦点の位置に対して所定の距離に配置 され、 X線透過部材と X線遮蔽部材とが交互に第 1の方向に配列さ れた X線グリ ッ ドとを有し、 かつ、 前記 X線による前記 X線遮蔽部 材の前記平面型 X線検出器の検出面への投影像の前記第 1の方向で の周期が、 実質的に前記第 1の方向での前記検出素子の配列の周期 の 2以上の整数倍であるよう構成したことを特徴とする X線計測装
2 . 前記データ処理手段は、 相互に隣接する複数の前記検出素子の 出力信号を加算する処理を行なうよう構成したことを特徴とする請 求の範囲第 1項記載の X線計測装置。 ,
3 . 前記 X線焦点と前記 X線ダリ ッドの中心部を結ぶ方向における 前記 X線ダリ ッドの位置と前記平面型 X線検出器の位置との間隔を. 前記 X線ダリ ッ ドの面と前記平面型 X線検出器の検出面との関係を 保持した状態で調整する調整手段を有することを特徴とする請求の 範囲第 1項記載の X線計測装置。
4 . 前記 X線グリッドは、 第 1の X線透過部材と第 1の X線遮蔽部 材とが交互に第 1の方向に配列される第 1の X線グリ ッドと、 第 2 の X線透過部材と第 2の X線遮蔽部材とが交互に、 前記第 1の方向 に直交する第 2の方向に配列される第 2の X線ダリ ッ ドとを具備し. かつ、 前記第 1の X線ダリ ッドと前記第 2の X線ダリ ッ ドとが実質 的に平行に配置されてなることを特徴とする請求の範囲第 1項記載 の X線計測装置。
5 . 前記第 1の X線遮蔽部材の前記検出面への前記投影像の前記第 1の方向での周期と、 前記第 2の X線遮蔽部材の前記検出面への前 5 記投影像の前記 2の方向での周期とが実質的に等しいことを特徴と する請求の範囲第 4項記載の X線計測装置。
6 . .前記 X線焦点と前記 X線ダリッドとの間に配置される前記検査 対象の周囲で、 前記 X線源、 前記 X線グリ ッド、 及ぴ前記平面型 X 線検出器の相対的な位置を保持した状態で、 前記検出対象に対して0 相対的な回転を与える手段を具備し、 前記データ処理手段は、 前記 回転による複数の回転角度において前記検出素子の前記出力信号を 収集して、 前記検査対象の断層像を求めるデータ処理を行なうこと を特徴とする請求の範囲第 1項記載の X線計測装置。
7 . X線焦点から X線を検査対象に照射する X線源と、 有感部と該5 有感部を取り囲む不感部とを有する複数の検出素子が 2次元に配列 され、 前記検査対象を透過した X線像を検出する平面型 X線検出器 と、 前記検出素子の出力信号を収集して前記 X線像に関するデータ 処理を行なうデータ処理手段と、 前記 X線焦点と前記平面型 X線検 • 出器との間に前記 X線焦点の位置に対して所定の距離に配置され、0 X線透過部材と X線遮蔽部材とが交互に第 1の方向に配列される X 線グリッドと、 前記 X線焦点と前記 X線ダリ ッドの中心部を結ぶ方 向における、 前記 X線ダリッドの位置と前記平面型 X線検出器の位 置との間隔を、 前記 X線グリ ッドの面と前記平面型 X線検出器の検 出面との関係を保持した状態で調整する調整手段とを有し、 かつ、5 前記 X線遮蔽部材の前記検出面への線状の投影像の前記第 1の方向 での周期が、 実質的に前記第 1の方向での前記検出素子の配列の周 期の 2以上の整数倍であるよう構成したことを特徴とする X線計測
8 . 前記調整手段により、 前記第 1の方向において前記 X線遮蔽部 材の前記線状の投影像の中心が、 実質的に前記不感部の領域の中心 に位置するように、 前記間隔が調整されてなることを特徴とする請 求の範囲第 7項記載の X線計測装置。
9 . X線焦点から X線を検査対象に照射する X線源と、 有感部と該 有感部を取り囲む不感部とを有する複数の検出素子が 2次元に配列 され、 前記検査対象を透過した X線像を検出する平面型 X線検出器 と、 前記検出素子の出力信号を収集して前記 X線像に関するデータ 処理を行なうデータ処理手段と、 第 1の X線透過部材と第 1の X線 遮蔽部材とが交互に第 1の方向に配列される第 1の X線グリッド、 及ぴ第 2の X線透過部材と第 2の X線遮蔽部材とが交互に、 前記第 1の方向に直交する第 2の方向に配列される第 2の X線グリ ッドを 具備し、 前記第 1の X線グリ ッドと前記第 2の X線グリ ッドとが実 質的に平行に配置され、 前記 X線焦点と前記平面型 X線検出器との 間に前記 X線焦点の位置に対して所定の距離に配置された X線ダリ ッドと、 前記 X線焦点と前記 X線グリ ッドの中心部を結ぶ方向にお ける、 前記 X線グリ ッドの位置と前記平面型 X線検出器の位置との 間隔を、 前記 X線グリ ッ ドの面と前記平面型 X線検出器の検出面を 実質的に平行に保持して調整する調整手段とを有し、 かつ、 前記 X 線による前記第 1の X線遮蔽部材の前記検出面への線状の投影像の 前記第 1の方向での周期が、 実質的に前記第 1の方向での前記検出 素子の配列の周期の 2以上の整数倍であり、 前記 X線による前記第 2の X線遮蔽部材の前記検出面への線状の投影像の前記第 2の方向 での周期が、 実質的に前記第 2の方向での前記検出素子の配列の周 期の 2以上の整数倍であり、 前記調整手段により、 第 1の方向にお いて、 第 1の X線遮蔽部材の前記線状の投影像の中心が実質的に前 記不感部の領域の中心に位置するように、 第 · 2の方向において、 第 2の X線遮蔽部材の前記線状の投影像の中心が実質的に前記不感部 の領域の中心に位置するように、 前記間隔が調整されてなることを 特徴とする X線計測装置。
1 0 . 前記第 1の X線遮蔽部材の前記検出面への前記線状の投影像 の前記第 1の方向での周期と、 前記第 2の X線遮蔽部材の前記検出 面への前記線状の投影像の前記第 2の方向での周期とが実質的に等 しいことを特徴とする請求の範囲第 9項記載の X線計測装置。
PCT/JP2001/004946 2000-07-10 2001-06-12 Appareil de mesure a rayons x WO2002004932A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/296,511 US6895080B2 (en) 2000-07-10 2001-06-12 X-ray measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-213370 2000-07-10
JP2000213370A JP3987676B2 (ja) 2000-07-10 2000-07-10 X線計測装置

Publications (1)

Publication Number Publication Date
WO2002004932A1 true WO2002004932A1 (fr) 2002-01-17

Family

ID=18709133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004946 WO2002004932A1 (fr) 2000-07-10 2001-06-12 Appareil de mesure a rayons x

Country Status (3)

Country Link
US (1) US6895080B2 (ja)
JP (1) JP3987676B2 (ja)
WO (1) WO2002004932A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023123A1 (en) * 2002-09-04 2004-03-18 Koninklijke Philips Electronics N.V. Anti-scattering x-ray shielding for ct scanners
US20200406389A1 (en) * 2015-09-24 2020-12-31 Arcam Ab X-ray calibration standard object

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10312450A1 (de) * 2003-03-20 2004-10-07 Siemens Ag Verfahren zur Kompensation von Bildstörungen bei Strahlungsbildaufnahmen sowie Strahlungsbildaufnahmevorrichtung
JP4596748B2 (ja) * 2003-05-07 2010-12-15 キヤノン株式会社 放射線画像撮影装置及び放射線画像撮影装置における再構成方法
CN101453954B (zh) 2006-05-31 2011-08-17 株式会社岛津制作所 放射线摄像装置
JP5383005B2 (ja) * 2007-05-08 2014-01-08 キヤノン株式会社 X線ct撮影装置
JP2009082250A (ja) * 2007-09-28 2009-04-23 Ge Medical Systems Global Technology Co Llc X線ct装置
WO2009097323A2 (en) * 2008-01-28 2009-08-06 Reflective X-Ray Optics Llc Optical alignment system and alignment method for radiographic x-ray imaging
JP4946927B2 (ja) * 2008-03-13 2012-06-06 株式会社島津製作所 X線断層撮影装置
JP5193636B2 (ja) * 2008-03-17 2013-05-08 富士フイルム株式会社 放射線画像撮影装置
EP2276408B1 (en) * 2008-05-08 2019-07-10 Arineta Ltd. X ray imaging system with scatter radiation correction and method of using same
JP2010190830A (ja) * 2009-02-20 2010-09-02 Hamamatsu Photonics Kk 放射線検出装置
JP5319331B2 (ja) * 2009-03-03 2013-10-16 株式会社東芝 放射線検出装置
JP5136478B2 (ja) * 2009-03-17 2013-02-06 株式会社島津製作所 放射線撮影装置
JP5452131B2 (ja) * 2009-08-24 2014-03-26 アンリツ産機システム株式会社 X線検出器およびx線検査装置
JP5457118B2 (ja) * 2009-09-18 2014-04-02 浜松ホトニクス株式会社 放射線検出装置
JP5467830B2 (ja) 2009-09-18 2014-04-09 浜松ホトニクス株式会社 放射線検出装置
JP5237919B2 (ja) * 2009-11-13 2013-07-17 株式会社日立製作所 核医学診断装置
JP5530295B2 (ja) * 2010-08-04 2014-06-25 株式会社日立メディコ X線ct装置
US9105369B2 (en) * 2010-09-03 2015-08-11 Koninklijke Philips N.V. Differential phase-contrast imaging with improved sampling
JP2014030439A (ja) * 2010-11-26 2014-02-20 Fujifilm Corp 放射線画像検出装置、放射線撮影装置、及び放射線撮影システム
JP2012143548A (ja) * 2010-12-21 2012-08-02 Fujifilm Corp 放射線画像取得方法および放射線画像撮影装置
JP5711567B2 (ja) * 2011-02-28 2015-05-07 キヤノン株式会社 放射線画像撮影装置および放射線画像撮影のための装置
US8705828B2 (en) * 2011-08-31 2014-04-22 Carestream Health, Inc. Methods and apparatus for super resolution scanning for CBCT system and cone-beam image reconstruction
CN103997967B (zh) 2011-12-12 2016-07-06 株式会社日立医疗器械 X射线ct装置
WO2013191001A1 (ja) 2012-06-20 2013-12-27 株式会社日立メディコ X線ct装置
US9826947B2 (en) * 2015-02-24 2017-11-28 Carestream Health, Inc. Flexible antiscatter grid
JP6456854B2 (ja) 2016-01-12 2019-01-23 株式会社日立製作所 放射線撮像装置
US11313980B2 (en) 2017-07-25 2022-04-26 Sony Semiconductor Solutions Corporation Radiation detection apparatus
JP7178204B2 (ja) * 2018-08-08 2022-11-25 セメス株式会社 X線検査装置、x線検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744999A (en) * 1980-09-01 1982-03-13 Oobayashi Seisakusho:Kk Apparatus for improving precision of examination by fluoroscopy
JPH01235839A (ja) * 1988-02-03 1989-09-20 Kurt Sauerwein 透過線像を作製するための装置及び方法
JPH06154207A (ja) * 1992-11-18 1994-06-03 Canon Inc X線撮影装置及びその位置合わせ方法
JP2000060843A (ja) * 1998-08-18 2000-02-29 Fuji Photo Film Co Ltd 放射線画像撮影方法および放射線画像撮影装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308809A (ja) 1991-04-06 1992-10-30 Canon Inc 撮影装置
JPH0966054A (ja) 1995-09-01 1997-03-11 Canon Inc X線撮影装置
JP3776485B2 (ja) 1995-09-18 2006-05-17 東芝医用システムエンジニアリング株式会社 X線診断装置
US5693948A (en) 1995-11-21 1997-12-02 Loral Fairchild Corporation Advanced CCD-based x-ray image sensor system
JP3423828B2 (ja) 1995-11-30 2003-07-07 株式会社日立メディコ X線画像作成方法およびその装置
JP3620942B2 (ja) 1997-01-14 2005-02-16 株式会社日立メディコ X線装置
JPH10305030A (ja) * 1997-03-06 1998-11-17 Canon Inc 放射線撮像装置及び放射線撮像装置の駆動方法
US5949850A (en) * 1997-06-19 1999-09-07 Creatv Microtech, Inc. Method and apparatus for making large area two-dimensional grids
JPH11226004A (ja) 1997-12-04 1999-08-24 Hitachi Medical Corp X線検査装置及びx線像の撮像方法
US6177237B1 (en) * 1998-06-26 2001-01-23 General Electric Company High resolution anti-scatter x-ray grid and laser fabrication method
US6282264B1 (en) * 1999-10-06 2001-08-28 Hologic, Inc. Digital flat panel x-ray detector positioning in diagnostic radiology

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744999A (en) * 1980-09-01 1982-03-13 Oobayashi Seisakusho:Kk Apparatus for improving precision of examination by fluoroscopy
JPH01235839A (ja) * 1988-02-03 1989-09-20 Kurt Sauerwein 透過線像を作製するための装置及び方法
JPH06154207A (ja) * 1992-11-18 1994-06-03 Canon Inc X線撮影装置及びその位置合わせ方法
JP2000060843A (ja) * 1998-08-18 2000-02-29 Fuji Photo Film Co Ltd 放射線画像撮影方法および放射線画像撮影装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023123A1 (en) * 2002-09-04 2004-03-18 Koninklijke Philips Electronics N.V. Anti-scattering x-ray shielding for ct scanners
US7236560B2 (en) 2002-09-04 2007-06-26 Koninklijke Philips Electronics N.V. Anti-scattering X-ray shielding for CT scanners
US20200406389A1 (en) * 2015-09-24 2020-12-31 Arcam Ab X-ray calibration standard object
US11806800B2 (en) * 2015-09-24 2023-11-07 Arcam Ab X-ray calibration standard object

Also Published As

Publication number Publication date
JP3987676B2 (ja) 2007-10-10
JP2002022678A (ja) 2002-01-23
US20040013224A1 (en) 2004-01-22
US6895080B2 (en) 2005-05-17

Similar Documents

Publication Publication Date Title
WO2002004932A1 (fr) Appareil de mesure a rayons x
US7450683B2 (en) Tileable multi-layer detector
JP5581321B2 (ja) X線ct装置
JP5784916B2 (ja) 放射線画像取得装置
JP5665857B2 (ja) プリフォーカシングされた散乱線除去グリッドを備えた検出器アレイ
JP5944254B2 (ja) 放射線画像取得装置
JP5283382B2 (ja) 核医学用検出器
CN108714033B (zh) 放射线光栅检测器和x射线检查装置
KR20160147270A (ko) 광자 계수형 검출기
JP3527381B2 (ja) X線ct装置
US20190353805A1 (en) Digital x-ray detector having polymeric substrate
JPH05256950A (ja) X線コンピュータトモグラフィ装置用固体検出器
JP2004337609A (ja) コンピュータ断層撮影システム用コリメータ組立体
WO2012169426A1 (ja) 放射線撮影システム
WO2012169427A1 (ja) 放射線撮影システム
WO2013047011A1 (ja) 放射線画像検出器及びその製造方法、並びに放射線画像検出器を用いた放射線撮影システム
JP3413775B2 (ja) 放射線画像検出装置
JP2022520547A (ja) トンネル型コンピュータ断層撮影スキャナおよびトンネル型コンピュータ断層撮影スキャナのシンチレータから画像を取得する方法
RU2098929C1 (ru) Рентгенографическая установка для медицинской диагностики
JPH0866388A (ja) 放射線撮像装置
EP1000581B1 (en) High resolution real-time x-ray image apparatus
JP5877691B2 (ja) X線検出器、及びx線撮像装置
US20030136913A1 (en) Radiation detector with a detection field comprising scintillators and photodiodes
JPS6321039A (ja) 多線源ctスキヤナ
JPH01305929A (ja) X線診断装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10296511

Country of ref document: US

122 Ep: pct application non-entry in european phase