WO2012169426A1 - 放射線撮影システム - Google Patents

放射線撮影システム Download PDF

Info

Publication number
WO2012169426A1
WO2012169426A1 PCT/JP2012/064127 JP2012064127W WO2012169426A1 WO 2012169426 A1 WO2012169426 A1 WO 2012169426A1 JP 2012064127 W JP2012064127 W JP 2012064127W WO 2012169426 A1 WO2012169426 A1 WO 2012169426A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
radiation
ray
grating
imaging system
Prior art date
Application number
PCT/JP2012/064127
Other languages
English (en)
French (fr)
Inventor
温之 橋本
岩切 直人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012169426A1 publication Critical patent/WO2012169426A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a radiation imaging system.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects an X-ray image, and a transmission image of the subject is captured.
  • each X-ray radiated from the X-ray source toward the X-ray image detector has characteristics (atomic number, density, thickness) of the substance constituting the subject existing on the path to the X-ray image detector. ),
  • the light is incident on the X-ray image detector.
  • an X-ray transmission image of the subject is detected and imaged by the X-ray image detector.
  • X-ray image detectors include a combination of an X-ray intensifying screen and film, a stimulable phosphor (accumulating phosphor), and a flat panel detector (FPD: Flat Panel Detector) using a semiconductor circuit. Widely used.
  • the X-ray absorptivity becomes lower as a substance composed of an element having a smaller atomic number, and the difference in the X-ray absorptivity is small in a soft tissue or soft material of a living body. Therefore, a sufficient image density as an X-ray transmission image is obtained. There is a problem that (contrast) cannot be obtained. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the amount of X-ray absorption between the two is small, so that it is difficult to obtain image contrast.
  • phase contrast image an image based on the phase change of the X-ray by the subject instead of the change of the X-ray intensity by the subject. It is actively done. In general, it is known that when X-rays are incident on an object, the interaction is higher in phase than in X-ray intensity. For this reason, in the X-ray phase imaging using the phase difference, a high-contrast image can be obtained even for a weakly absorbing object having a low X-ray absorption capability.
  • a first diffraction grating (phase type grating or absorption type grating) is arranged behind the subject, and a specific distance (Talbot interference determined by the grating pitch of the first diffraction grating and the X-ray wavelength is set.
  • a second diffraction grating (absorption type grating) is arranged downstream by a distance), and an X-ray image detector is arranged behind the second diffraction grating.
  • the Talbot interference distance is a distance at which the X-rays that have passed through the first diffraction grating form a self-image that exhibits a periodic pattern due to the Talbot interference effect. Modulation is performed by the interaction (phase change) between the subject arranged between the grating and the X-ray.
  • the moire generated by the superposition of the self-image of the first diffraction grating and the second diffraction grating is detected, and the phase information of the subject is obtained by analyzing the modulation of the moire by the subject. get.
  • a moire analysis method for example, a fringe scanning method is known.
  • the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
  • X-rays refracted by the subject from a change in signal value for each corresponding pixel between a plurality of image data obtained by performing a plurality of times of imaging while translating in a vertical direction with a scanning pitch obtained by equally dividing the lattice pitch.
  • Angle distribution (differential image of phase shift) can be obtained, and a phase contrast image of the subject can be obtained based on this angle distribution.
  • the movement of the lattice between a plurality of times of photographing and the moving mechanism that requires high accuracy are unnecessary, so that the photographing workflow can be improved and the apparatus can be simplified.
  • the self-image of the first diffraction grating is detected by using a detector having a pixel pitch smaller than the period of the periodic pattern of the self-image of the first diffraction grating without using the second diffraction grating.
  • An X-ray imaging system has also been proposed in which phase information of a subject is acquired by analyzing modulation of a periodic pattern of an image (see Patent Document 3).
  • the X-ray imaging system described in Patent Document 3 detects a self-image using a detector having a pixel pitch smaller than the period of the periodic pattern of the self-image of the first diffraction grating, analyzes this, and analyzes the phase information. Since the pixel pitch is small, the spatial resolution is excellent. Further, since the second diffraction grating is not interposed, the accuracy of the phase information can be improved. However, the S / N tends to decrease as each pixel becomes smaller, and the accuracy of the phase information may decrease due to the decrease in S / N.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to improve the accuracy of phase information in radiation phase imaging that acquires phase information of a subject.
  • a radiation imaging system comprising: an arithmetic processing unit to generate.
  • the interference between the period of the periodic pattern of the radiographic image and the pixel pitch of the radiographic image detector causes moiré to occur in the image acquired by the radiographic image detector, and is based on the modulation of moiré caused by the subject.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 generates an image data by detecting an X-ray source 11 that emits X-rays to the subject H and an X-ray source 11 that is disposed opposite to the X-ray source 11 and transmits the subject H from the X-ray source 11.
  • the imaging unit 12 that controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator, and the image data acquired by the imaging unit 12 is arithmetically processed to obtain a phase contrast image
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
  • the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H.
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 is provided with an X-ray image detector 30 and an absorption grating 31 for detecting phase change of the X-ray caused by the subject H and performing phase imaging.
  • the X-ray image detector 30 is arranged so that its detection surface is orthogonal to the optical axis A of the X-rays irradiated from the X-ray source 11.
  • the absorption grating 31 is disposed between the X-ray image detector 30 and the X-ray source 11.
  • the absorption type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b (high radiation absorption portions) arranged on the substrate 31a.
  • the substrate 31a is formed of an X-ray transparent member such as silicon, glass, or resin that transmits X-rays.
  • the X-ray shielding part 31b is a line extending in one direction (in the illustrated example, the y direction perpendicular to the x direction and the z direction) in a plane perpendicular to the optical axis A of the X ray emitted from the X-ray source 11. It is comprised with a shaped member.
  • the X-ray shielding part 31b As a material of the X-ray shielding part 31b, a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable. And the X-ray shielding part 31b can be formed by the metal plating method or the vapor deposition method using the above-mentioned material.
  • X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, at a pitch p 1 constant in the direction (x-direction) orthogonal to the one direction, are arranged at a predetermined interval d 1 from each other ing.
  • the absorption type grating 31 does not mainly give a phase difference to incident X-rays but gives an intensity difference, and is also called an amplitude type grating.
  • the slit portion is a region of the distance d 1 (low radiation absorbing portion) may not be a gap, for example, it may be filled with a void in X-ray low-absorbing material such as a polymer or light metal.
  • the absorptive grating 31 is configured to geometrically project X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the interval d 1 to a value sufficiently larger than the effective wavelength of the X-rays emitted from the X-ray source 11, most of the X-rays irradiated do not undergo diffraction at the slit portion.
  • a self-projected image hereinafter, this projected image is referred to as a self-image G1 can be formed behind the absorption grating 31.
  • the effective wavelength of X-ray is about 0.4 mm.
  • the distance d 1 is set to about 1 to 10 ⁇ m, the X-ray image formed by the X-rays that have passed through the slit portion can be ignored in the diffraction effect.
  • An image G1 is formed.
  • the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam with the X-ray focal point 18b as a light emission point, so that the self-image G1 is a distance from the X-ray focal point 18b. Is enlarged in proportion to
  • the distance L 2 from the absorption grating 31 to the X-ray image detector 30 is limited to the Talbot interference distance determined by the grating pitch of the diffraction grating and the X-ray wavelength.
  • the absorption type grating 31 projects incident X-rays without diffracting, and the self-image G1 of the absorption type grating 31 is obtained in a similar manner at a position behind the absorption type grating 31.
  • the L 2 can be set independently of the Talbot distance. Accordingly, the distance L 2, is set to be smaller than the Talbot interference distance can be thinner imaging unit 12.
  • the X-ray shielding part 31b preferably completely shields (absorbs) X-rays in order to generate a periodic pattern image with high contrast.
  • the X-ray shielding part 31b is excellent in X-ray absorption (such as gold and platinum). Even if is used, there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the thickness h 1 of the X-ray shielding portion 31b, it is preferable to be thick as possible.
  • the X-ray shielding part 31b preferably shields 90% or more of the irradiated X-rays, and the thickness thereof is set according to the energy of the irradiated X-rays. For example, when tungsten is used as the target material of the X-ray tube 18 and the tube voltage is 50 kV, the thickness h 1 is preferably 30 ⁇ m or more in terms of gold (Au).
  • the thickness h 1 is preferably set so as to satisfy the following expression (1) from the geometrical relationship shown in FIG.
  • h 1 may be 100 ⁇ m or less.
  • the self-image G1 of the absorption grating 31 is captured by the X-ray image detector 30.
  • the configuration of the X-ray image detector 30 will be described.
  • FIG. 5 schematically shows the configuration of the X-ray image detector 30.
  • the X-ray image detector 30 controls an image receiving unit 41 in which a plurality of pixels 40 that detect X-rays and store charges are two-dimensionally arranged in the xy direction, and read timing of charges stored in each pixel 40.
  • Scanning circuit 42 a signal processing circuit 43 that converts and stores signals sequentially read from each pixel 40 into image data, and transmits the image data to the arithmetic processing unit 22 via the I / F 25 of the console 13.
  • a data transmission circuit 44 is a data transmission circuit 44.
  • the plurality of pixels 40 are arranged at a pitch of several ⁇ m in the same order as the period of the periodic pattern of the self-image G1 formed on the X-ray image detector 30.
  • a CCD Charge Coupled Device
  • a readout circuit for reading out the electric charge accumulated in each pixel is formed on a semiconductor substrate made of single crystal silicon or the like.
  • Sensor or a solid-state imaging device such as a CMOS (Complementary Metal Oxide Semiconductor) sensor.
  • Each pixel 40 can be constituted by, for example, a photodiode formed on a semiconductor substrate.
  • a scintillator that receives X-rays and emits fluorescence having a wavelength suitable for the spectral sensitivity of the photodiode is used.
  • a material for forming the scintillator for example, terbium activated gadolinium oxide (Gd 2 O 2 S: Tb), thallium activated cesium iodide (CsI: Tl), or the like is used.
  • Each pixel 40 can also be constituted by a thin film photodiode formed on a semiconductor substrate using an amorphous semiconductor such as amorphous selenium or amorphous silicon or an organic photoelectric conversion material.
  • the image receiving unit 41 has an FPD (Flat Panel) configured based on a TFT panel in which a TFT (Thin FilmTransistor) switch as a readout circuit is formed on an insulating substrate. Detector) can also be used.
  • FPD Full Panel
  • TFT Thin FilmTransistor
  • the arrangement pitch of the pixels 40 is a value determined by design and is difficult to change, the arrangement pitch of the pixels 40 in the x direction and / or the y direction and the period of the self-image G1 are necessary when generating moire. In order to adjust the relationship with the pattern period, it is preferable to adjust the position of the absorption grating 31 and adjust the period of the periodic pattern of the self-image G1 in the x direction and / or the y direction. Note that the arrangement pitch of the pixels 40 is preferably a value larger than 1 ⁇ 2 of the period of the periodic pattern of the self-image G1, which is a pitch necessary for detecting (resolving) the periodic pattern of the self-image G1.
  • FIG. 6 schematically shows a method for changing the period of the periodic pattern of the self-image G1.
  • the period p 1 ′ in the x direction of the periodic pattern of the self-image G1 can be changed by, for example, rotating the absorption grating 31 around the optical axis A.
  • the absorption grating 31 is rotated by the angle ⁇ with respect to the X-ray image detector 30 by the relative rotation mechanism 50, the substantial grating pitch in the x direction of the absorption grating 31 is “p 1 ” ⁇ “p 1 / Cos ⁇ ”, and as a result, the period p 1 ′ of the periodic pattern of the self-image G1 changes (FIG. 6A).
  • changing the period p 1 ′ with respect to the x direction of the periodic pattern of the self-image G1 causes the absorption type grating 31 to be tilted about an axis perpendicular to the optical axis A and along the y direction. Can be performed.
  • the absorption grating 31 is inclined by the angle ⁇ with respect to the X-ray image detector 30 by the relative inclination mechanism 51, the substantial grating pitch in the x direction of the absorption grating 31 is “p 1 ” ⁇ “p 1 ⁇ cos ⁇ ”, and as a result, the period p 1 ′ of the periodic pattern of the self-image G1 changes (FIG. 6B).
  • the period p 1 ′ in the x direction of the periodic pattern of the self-image G1 can be changed by moving the absorption grating 31 along the direction of the optical axis A.
  • the absorption grating 31 is moved by the movement amount ⁇ with respect to the X-ray image detector 30 by the relative movement mechanism 52
  • the period of the periodic pattern of the self-image G1 formed at the position of the X-ray image detector 30 is It changes as “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )” (FIG. 6C).
  • the imaging unit 12 is not a Talbot interferometer as described above, and can freely set the distance L 2. Therefore, the imaging unit 12 can change itself by changing the distance L 2 like the relative movement mechanism 52.
  • a mechanism that changes the period p 1 ′ of the periodic pattern of the image G1 can be suitably employed.
  • a mechanism for changing the period p 1 ′ of the periodic pattern of the self-image G1 can be configured by an actuator such as a piezoelectric element.
  • the arrangement pitch of the pixels 40 in the x direction and the period of the periodic pattern of the self-image G1 have been described, but the same as the change mechanism (the relative rotation mechanism 50, the relative tilt mechanism 51, and the relative movement mechanism 52).
  • the relationship between the arrangement pitch of the pixels 40 in the y direction and the period of the periodic pattern of the self image G1 can be adjusted by the mechanism.
  • moire generated in an image detected by the X-ray image detector 30 is modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, a phase contrast image of the subject H can be generated by analyzing this moire.
  • FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • Reference numeral 55 denotes an X-ray path that goes straight when the subject H does not exist, and the X-ray that travels along this path 55 passes through the absorption grating 31 and enters the X-ray image detector 30.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along the path 56 are shielded by the absorption grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (3), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the self-image G1 projected from the absorption grating 31 to the position of the X-ray image detector 30 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H.
  • the moire generated in the image due to a minute difference between the pattern period p 1 ′ of the self image G1 in the x direction and the arrangement pitch P of the pixels 40 in the x direction is also displaced in the x direction in accordance with the displacement of the self image G1. It will be.
  • the displacement amount ⁇ x of the self-image G1 is approximately represented by the following equation (4) based on the fact that the X-ray refraction angle ⁇ (x) is very small.
  • the refraction angle ⁇ (x) is expressed by Expression (5) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the self-image G1 due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ X of the moire is expressed by the following equation (6) using the displacement amount ⁇ x of the self-image G1. ).
  • This displacement amount ⁇ X is related to the phase shift amount ⁇ of the signal output from the X-ray image detector 30 (the phase shift amount of the signal with and without the subject H) as shown in the following equation (7). is doing.
  • the refraction angle ⁇ is obtained from the equations (6) and (7), and the phase shift distribution ⁇ ( Since the differential amount of x) is obtained, the phase shift distribution ⁇ (x) of the subject H, that is, the phase contrast image of the subject H can be generated by integrating this with respect to x.
  • a method of calculating the phase shift amount ⁇ will be described.
  • FIG. 8 schematically shows a signal output from the X-ray image detector 30.
  • a plurality of pixels 40 adjacent in the x direction are used as a unit, and the pixel value I of the plurality of pixels 40 constituting one unit is interpolated for each unit.
  • the pixel values of a plurality of pixels 40 are interpolated by a sine curve, and three points need only be interpolated by the sine curve.
  • the signal curve changes periodically with the moiré period T.
  • the self-image G1 is displaced in the x direction
  • the moire is also displaced in the x direction, and the phase of the signal curve corresponding to the moire changes.
  • the displacement amount ⁇ x of the self-image G1 reaches the period p 1 ′ of the periodic pattern
  • the moire displacement amount ⁇ X becomes the moire period T, and the moire and signal curve return to the original state.
  • phase difference between the waveforms of the signal curve (FIG. 8A) when the subject H is not present and the signal curve (FIG. 8B) when the subject H is present is the group of pixels 40 constituting the unit. This corresponds to the phase shift amount ⁇ of the signal.
  • the refraction angle ⁇ (x) is a value corresponding to the differential value of the phase shift distribution ⁇ (x) as shown in the equation (5), the refraction angle ⁇ (x) is integrated along the x-axis. Thus, the phase shift distribution ⁇ (x) is obtained.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the arithmetic processing unit 22 causes the storage unit 23 to store a phase contrast image obtained by imaging the phase shift distribution ⁇ (x, y).
  • the above-described phase contrast image generation processing is automatically performed by the respective units operating in conjunction with each other under the control of the control device 20 after an imaging instruction is given from the input device 21 by the operator. A phase contrast image is displayed on the monitor 24.
  • the X-ray image detector 30 causes the interference between the period p 1 ′ of the periodic pattern of the self-image G 1 and the pixel pitch P of the X-ray image detector 30.
  • Moire is generated in the acquired image, and a phase contrast image is generated based on the modulation of moire caused by the subject H. Therefore, it is not necessary to reduce the pixel pitch to such an extent that the periodic pattern of the self-image G1 can be detected, and S / N can be ensured to improve the accuracy of the phase information.
  • the irradiated X-rays are not required to have high spatial coherence.
  • a general X-ray source used in the medical field can be used as the radiation source 11.
  • the distance L 2 from the absorption grating 31 to the X-ray image detector 30 can be set to an arbitrary value, and the distance L 2 can be set smaller than the minimum Talbot interference distance in the Talbot interferometer. Therefore, the photographing unit 12 can be downsized (thinned).
  • the grating is an absorption grating, but the present invention is not limited to this. As described above, even with the periodic pattern of the Talbot interference image, moire can be formed in the image in relation to the arrangement pitch of the pixels 40 of the X-ray image detector 30, and the present invention is also useful in that case. is there. Therefore, the grating is not limited to the absorption type grating but may be a phase type grating.
  • the image obtained by imaging the phase shift distribution ⁇ is described as being stored or displayed as a phase contrast image.
  • the phase shift distribution ⁇ is obtained by integrating the differential amount of the phase shift distribution ⁇ corresponding to the refraction angle ⁇ . Therefore, the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the phase change of the X-ray by the subject. Therefore, an image of the refraction angle ⁇ and an image of the differential amount of the phase shift are also included in the phase contrast image.
  • phase differential image (differential amount of phase shift distribution) is created from moire obtained by photographing (pre-photographing) in the absence of a subject, and obtained by photographing (main photographing) in the presence of the subject. You may make it correct
  • the phase differential image obtained by the pre-imaging reflects the device-specific phase unevenness (for example, the grating pitch and thickness non-uniformity of the absorption grating 31).
  • the phase differential image acquired by the main imaging also includes the same type of device-specific phase unevenness as the pre-imaging, and acts as an offset of the phase differential signal. Therefore, by subtracting the phase differential image obtained by the pre-photographing from the phase differential image obtained by the main imaging, it is possible to obtain a phase contrast in which the phase unevenness specific to the apparatus is corrected.
  • FIG. 9 shows another example of a moire analysis method regarding a modification of the X-ray imaging system 10.
  • moire is analyzed using Fourier transform and inverse Fourier transform.
  • the moire formed by the interference between the period of the periodic pattern of the absorption grating 31 and the arrangement pitch of the pixels 40 of the X-ray image detector 30 can be expressed by the following expression (8). 9).
  • a (x, y) represents the background
  • b (x, y) represents the amplitude of the spatial frequency component corresponding to the fundamental period of moire
  • (f 0x, f 0y ) represents the moire. Represents the basic period.
  • c (x, y) is represented by the following formula (10).
  • equation (9) becomes the following equation (11) by Fourier transform.
  • F (f x , f y), A (f x, f y), C (f x, f y) respectively f (x, y), a (x, y), c It is a two-dimensional Fourier transform for (x, y).
  • the spatial frequency spectrum of Moire has at least a peak derived from A (f x , f y ) and C (f x , f y) and C * (f x, 3 peaks with peak spatial frequency component corresponding to the fundamental period of the moire resulting from f y) occurs.
  • the region A including the peak frequency of the spatial frequency component corresponding to the fundamental period of moire is cut out so that the peak frequency overlaps the origin of the frequency space.
  • the extracted area A is moved, and inverse Fourier transform is performed. Then, the refraction angle ⁇ (x, y) can be obtained from the complex number information obtained by the inverse Fourier transform.
  • FIG. 10 shows another example of the radiation imaging system for explaining the embodiment of the present invention
  • FIG. 11 shows a control block of the radiation imaging system of FIG.
  • description is abbreviate
  • An X-ray imaging system 60 shown in FIG. 10 detects an X-ray that is disposed opposite to the X-ray source 11 that emits X-rays to the subject H and that has passed through the subject H from the X-ray source 11.
  • the imaging unit 62 that generates image data, controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 62 based on the operation of the operator, and performs arithmetic processing on the image data acquired by the imaging unit 62.
  • a console 13 for generating a phase contrast image is generating a phase contrast image.
  • the X-ray image detector 30, the absorption type grating 31, and the absorption type grating 31 are translated in the vertical direction (x direction), so that the absorption type grating 31 with respect to the X-ray image detector 30 is translated.
  • a scanning mechanism 33 that changes the relative positional relationship is provided.
  • the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
  • the phase shift distribution ⁇ (x) of the subject H is expressed by Expression (3), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels. .
  • the self-image G1 projected from the absorption grating 31 to the position of the X-ray image detector 30 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ (x) due to refraction of X-rays at the subject H. Will do.
  • This amount of displacement ⁇ x is approximately expressed by equation (4) based on the small X-ray refraction angle ⁇ (x).
  • the refraction angle ⁇ (x) is expressed by Expression (5) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H. That is, the displacement ⁇ x of the self-image G1 due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • This displacement amount ⁇ x is expressed by the following equation (12) in the phase shift amount ⁇ of the signal output from each pixel 40 of the X-ray image detector 30 (the phase shift amount of the signal with and without the subject H). ) Are related.
  • the phase shift amount ⁇ of the signal of each pixel 40 is obtained from the equation (12), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (5).
  • the phase shift distribution ⁇ (x) of the subject H that is, the phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method.
  • imaging is performed while one of the X-ray image detector 30 and the absorption grating 31 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both periodic structures is changed). While shooting).
  • the absorption grating 31 is moved by the scanning mechanism 33, but the X-ray image detector 30 may be moved.
  • the moire As the absorption grating 31 moves, the moire also moves, and when the translation distance (the amount of movement in the x direction) reaches one period (lattice pitch p 1 ) of the grating period of the absorption grating 31 (ie, phase change). When 2 ⁇ is reached), the moire returns to its original state. Photographing while moving the absorption type grating 31 accompanied by such a change in moire at a scanning pitch of 1 / integer of the grating pitch p 1 , obtaining signals of each pixel 40 from a plurality of obtained images, A phase shift amount ⁇ of the signal of the pixel 40 is obtained.
  • M pixel values are obtained for each pixel 40.
  • a method of calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M pixel values will be described.
  • x is a coordinate in the x direction of the pixel 40
  • a 0 is the intensity of the incident X-ray
  • An is a value corresponding to the contrast of the pixel value of the pixel 40 (where n is a positive value). Is an integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
  • arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Therefore, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M signal values obtained for each pixel 40 based on the equation (15).
  • FIG. 12 shows a signal of one pixel 40 obtained by the fringe scanning method.
  • the M pixel values obtained for each pixel 40 periodically change with a period of the grating pitch p 1 with respect to the position k of the absorption grating 31.
  • a broken line in FIG. 12 indicates a change in signal when the subject H does not exist, and a solid line in FIG. 12 indicates a change in signal when the subject H exists.
  • the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
  • the moire moves as a whole with the relative movement of the X-ray image detector 30 and the absorption grating 31. Therefore, even if the moire cycle is longer than the image size. Applicable.
  • FIG. 13 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a mammography apparatus 80 shown in FIG. 13 is an apparatus that captures an X-ray image (phase contrast image) of the breast B as a subject.
  • the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • FIG. 14 shows a modification of the radiation imaging system of FIG.
  • the mammography apparatus 90 shown in FIG. 14 is different from the mammography apparatus 80 described above in that the absorption grating 31 is disposed between the X-ray source 11 and the compression plate 84.
  • the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
  • the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the absorption type grating 31, and therefore, the exposure amount of the subject B is determined by the mammography apparatus 80 described above. It can be reduced to about half of the case.
  • the arrangement of the subject between the first absorption type grating 31 and the X-ray image detector 30 as in the mammography apparatus 90 is also applicable to the X-ray imaging systems 10 and 60 described above. Is possible.
  • FIG. 15 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system 100 differs from the X-ray imaging system 10 of the first embodiment in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the X-ray imaging system 10 when the distance from the X-ray source 11 to the X-ray image detector 30 is set to a distance (1 m to 2 m) set in a general hospital imaging room, X
  • the blur of the self-image G1 due to the focal size of the line focal point 18b (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image will be deteriorated. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi-slit 103 is an absorption type grating having the same configuration as the absorption type grating 31, and a plurality of X-ray shielding parts extending in one direction (y direction) are in the same direction as the X-ray shielding part 31 b of the absorption type grating 31. They are periodically arranged in the (x direction).
  • the multi-slit 103 is intended to form a large number of small-focus light sources (dispersed light sources) arranged at a predetermined pitch in the x direction by partially shielding the radiation emitted from the X-ray focal point 18b. .
  • the grating pitch p 3 of the multi-slit 103 is set such that the distance from the multi-slit 103 to the absorption grating 31 is L 3 and the position of the multi-slit 103 is substantially the X-ray focal position. It is necessary to set to satisfy.
  • the projection image (self-image G1) of the X-ray absorption grating 31 emitted from each small focus light source dispersedly formed by the multi-slit 103 matches at the position of the X-ray image detector 30. It is a geometric condition for (overlapping).
  • the self-images G1 formed by the plurality of small focus light sources formed by the multi-slits 103 are superimposed, so that the phase contrast image is not reduced without reducing the X-ray intensity. Image quality can be improved.
  • the multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
  • the X-ray image detector 30 or the absorption type grating 31 is moved to perform the fringe scanning. It is possible to perform fringe scanning by moving the multi slit 103 while fixing 30 and the absorption type grating 31.
  • FIG. 16 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the absorptive grating 31 of the X-ray imaging system 10 described above is configured such that the periodic arrangement direction of the X-ray shielding portion 31b is linear (that is, the grating surface is planar).
  • an absorption type grating 110 in which the grating surface is concaved into a curved surface can also be used.
  • the X-ray image detector 112 having a cylindrical detection surface, and the detection surface of the X-ray image detector 112 has a straight line passing through the X-ray focal point 18b and extending in the y direction as a central axis. Cylindrical surface.
  • Absorption grating 110, the X-ray permeable and curved surfaces of the substrate 110a, a plurality of X-ray shielding section 110b is periodically arranged at a predetermined pitch p 1.
  • Each X-ray shielding part 110b extends linearly in the y direction, and the lattice plane of the absorption grating 110 is centered on a straight line passing through the X-ray focal point 18b and extending in the extending direction of the X-ray shielding part 110b. It has a shape along the cylindrical surface.
  • the pixel pitch of the X-ray image detector 112 is a pitch that causes moire in the image in relation to the pattern period of the self-image G1 formed on the X-ray image detector 112.
  • X-rays irradiated from the X-ray focal point 18b are all incident perpendicularly to the grating surface when the subject H is not present. is relaxed limit constraints thickness h 1 of the line shielding part 110b is, it is not necessary to consider the above-mentioned formula (1).
  • the radiation used in the present invention is not limited to X-rays, but other than X-rays such as ⁇ -rays and ⁇ -rays. It is also possible to use other radiation.
  • radiographic imaging systems (1) to (10) are disclosed in this specification.
  • the arithmetic processing unit interpolates pixel values of a plurality of the pixels constituting each set, with three or more adjacent pixels as a set.
  • a radiography system that generates a phase contrast image of the subject based on a phase shift amount of the signal when the subject is present and when the subject is absent.
  • the arithmetic processing unit performs a Fourier transform on an image acquired by the radiological image detector to acquire a spatial frequency spectrum of the radiographic image, A spatial frequency region including the fundamental frequency component of the moire in the spatial frequency spectrum is separated from the spatial frequency spectrum, and a partial phase contrast image is generated by performing inverse Fourier transform on the separated spatial frequency region.
  • Radiography system performs a Fourier transform on an image acquired by the radiological image detector to acquire a spatial frequency spectrum of the radiographic image, A spatial frequency region including the fundamental frequency component of the moire in the spatial frequency spectrum is separated from the spatial frequency spectrum, and a partial phase contrast image is generated by performing inverse Fourier transform on the separated spatial frequency region.
  • the radiation imaging system further including a scanning unit that arranges the grating and the radiation image detector in a plurality of relative positional relationships different from each other in phase, and the radiation image detector includes: The radiation image is detected in each of the plurality of relative positional relationships, and the arithmetic processing unit is configured to detect, for each pixel, a plurality of pixels obtained by detecting the radiation image in each of the plurality of relative positional relationships.
  • a radiation imaging system that calculates a signal obtained by interpolating the pixel values of the subject and generates a phase contrast image of the subject based on a phase shift amount of the signal when the subject is present and when the subject is absent.
  • the interference between the period of the periodic pattern of the radiographic image and the pixel pitch of the radiographic image detector causes moiré to occur in the image acquired by the radiographic image detector, and is based on the modulation of moiré caused by the subject.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

 X線撮影システム10は、通過する放射線によって周期パターンを含む放射線像を形成する格子31と、放射線像の周期パターンの周期との関係においてモアレを形成する画素ピッチに配列された複数の画素40を有し、これらの画素によって放射線像を検出するX線画像検出器30と、格子に入射する放射線の照射野に配置される被写体に起因して放射線画像検出器によって取得される画像のモアレに生じる変調に基づいて、被写体の位相コントラスト画像を生成する演算処理部22と、を備える。

Description

放射線撮影システム
 本発明は、放射線撮影システムに関する。
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。
 一般的なX線撮影システムでは、X線を放射するX線源とX線画像を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する被写体を構成する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器に入射する。この結果、被写体のX線透過像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体(蓄積性蛍光体)のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなり、生体軟部組織やソフトマテリアルなどでは、X線吸収能の差が小さく、従ってX線透過像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。
 上記のX線タルボ干渉計では、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって、周期パターンを呈する自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。
 そして上記のX線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレを検出し、被写体によるモアレの変調を解析することによって被写体の位相情報を取得する。モアレの解析方法としては、たとえば、縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、得られる複数の画像データ間で対応する画素毎の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。
 しかし、上記の縞走査法によると、複数回の撮影を行う必要があり、撮影中の被写体の移動、それによる画質の低下が懸念される。そこで、フーリエ変換及び逆フーリエ変換を用いることによって1回の撮影で被写体の位相情報を取得する方法が提案されている(例えば、特許文献2参照)。これは、モアレをフーリエ変換して得られる空間周波数スペクトルからモアレの基本周波数成分を含む周波数領域を分離し、分離された周波数領域に対して逆フーリエ変換を行うことによって位相シフトの微分像を取得するものである。それによれば、複数回の撮影の間の格子の移動と、高精度が要求されるその移動機構が不要であるため、撮影ワークフローの向上と装置の簡易化が可能になる。また、各撮影間の被写体の移動に起因する画質低下を解消することができる。
 また、第2の回折格子を用いることなく、第1の回折格子の自己像の周期パターンの周期よりも小さい画素ピッチの検出器を用いて第1の回折格子の自己像を検出し、この自己像の周期パターンの変調を解析することによって、被写体の位相情報を取得するようにしたX線撮影システムも提案されている(特許文献3参照)。
国際公開第04/058070号 国際公開第10/050483号 日本国特開2007‐203063号公報
 特許文献3に記載されたX線撮影システムは、第1の回折格子の自己像の周期パターンの周期よりも小さい画素ピッチの検出器を用いて自己像を検出し、これを解析して位相情報を取得しており、画素ピッチが小さいことから空間分解能に優れる。そして、第2の回折格子を介さないことから位相情報の精度の向上が図られる。しかしながら、各画素が小さくなるほどにS/Nが低下する傾向にあり、S/Nの低下に起因して位相情報の精度が低下する虞がある。
 本発明は、上述した事情に鑑みなされたものであり、被写体の位相情報を取得する放射線位相イメージングにおいて、位相情報の精度を高めることを目的とする。
 通過する放射線によって周期パターンを含む放射線像を形成する格子と、放射線像の周期パターンの周期との関係においてモアレを形成する画素ピッチに配列された複数の画素を有し、これらの画素によって放射線像を検出する放射線画像検出器と、格子に入射する放射線の照射野に配置される被写体に起因して放射線画像検出器によって取得される画像のモアレに生じる変調に基づいて、被写体の位相コントラスト画像を生成する演算処理部と、を備える放射線撮影システム。
 本発明によれば、放射線像の周期パターンの周期と放射線画像検出器の画素ピッチとの干渉によって、放射線画像検出器によって取得される画像にモアレを生じさせ、被写体に起因するモアレの変調に基づいて位相コントラスト画像を生成する。よって、放射線像の周期パターンを検出可能なほどに画素ピッチを小さくする必要がなく、S/Nを確保して位相情報の精度を高めることができる。
本発明の実施形態を説明するための放射線撮影システムの一例の構成を示す模式図である。 図1の放射線撮影システムの制御ブロック図である。 図1の放射線撮影システムの撮影部の斜視図である。 図1の放射線撮影システムの撮影部の側面図である。 図1の放射線撮影システムの放射線画像検出器の構成を示す模式図である。 図5の放射線画像検出器によって取得される画像に生じるモアレの周期を変更するための機構を示す模式図である。 被写体による放射線の屈折を説明するための模式図である。 図1の放射線撮影システムにおけるモアレの解析方法の一例を示す模式図である。 図1の放射線撮影システムの変形例に関し、モアレの解析方法の他の例を示す模式図である。 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。 図10の放射線撮影システムの制御ブロック図である。 図10の放射線撮影システムにおけるモアレの解析方法の一例を示す模式図である。 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。 図13の放射線撮影システムの変形例を示す模式図である。 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。
 X線撮影システム10は、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。
 X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。
 また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。
 撮影部12には、X線画像検出器30と、被写体HによるX線の位相変化を検出し位相イメージングを行うための吸収型格子31とが設けられている。
 図3及び図4は、撮影部12の構成を模式的に示す。
 X線画像検出器30は、その検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。吸収型格子31は、X線画像検出器30とX線源11との間に配置されている。
 吸収型格子31は、基板31aと、この基板31aに配置された複数のX線遮蔽部31b(高放射線吸収部)とから構成されている。基板31aは、X線を透過させるシリコンやガラス、樹脂等のX線透過性部材により形成されている。X線遮蔽部31bは、X線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、x方向及びz方向に直交するy方向)に延伸した線状の部材で構成される。X線遮蔽部31bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。そして、X線遮蔽部31bは、上記の材料を用い、金属メッキ法や蒸着法によって形成することが可能である。
 X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定のピッチpで、互いに所定の間隔dを空けて配列されている。吸収型格子31は、入射X線に主として位相差を与えるものではなく、強度差を与えるものであるため、振幅型格子とも称される。なお、上記間隔dの領域であるスリット部(低放射線吸収部)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。
 吸収型格子31は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔dを、X線源11から照射されるX線の実効波長より十分大きな値とすることで、照射X線の大部分のX線がスリット部での回折を受けずに、吸収型格子31の後方に自己の投影像(以下、この投影像を自己像G1と称する)を形成するように構成することができる。例えば、前述の回転陽極18aのターゲット材料としてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は、約0.4Åである。この場合には、間隔dを、1~10μm程度とすれば、スリット部を通過したX線が形成するX線像は回折の効果を無視できる程度になり、吸収型格子31の後方に自己像G1が形成される。
 なお、一般的に、X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、自己像G1は、X線焦点18bからの距離に比例して拡大される。
 吸収型格子31からX線画像検出器30までの距離Lは、タルボ干渉計では、回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10においては、吸収型格子31が入射X線を回折させずに投影させる構成であって、吸収型格子31の自己像G1が、吸収型格子31の後方の位置で相似的に得られるため、距離Lを、タルボ干渉距離と無関係に設定することができる。従って、距離Lを、タルボ干渉距離よりも小さく設定し、撮影部12の薄型化することができる。
 X線遮蔽部31bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31bの厚みhを、可能な限り厚くすることが好ましい。X線遮蔽部31bは、照射X線の90%以上を遮蔽することが好ましく、その厚さは、照射X線のエネルギーに応じて設定される。例えば、X線管18のターゲット材料としてタングステンを用い、管電圧を50kVとした場合には、厚みhは、金(Au)換算で30μm以上であることが好ましい。
 しかし、X線源11から照射されるX線がコーンビームである場合に、X線遮蔽部31bの厚みhを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みhを制限することが好ましい。具体的には、X線画像検出器30の検出面におけるx方向の有効視野の長さをV、X線焦点18bからX線画像検出器30の検出面までの距離をLとすると、厚みhは、図4に示す幾何学的関係から、次式(1)を満たすように設定することが好ましい。
Figure JPOXMLDOC01-appb-M000001
 例えば、d=2.5μmとし、通常の病院に設置できる大きさとしてL=2mに設定した場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下とすればよい。
 以上の構成において、吸収型格子31の自己像G1がX線画像検出器30によって撮像される。次に、X線画像検出器30の構成について説明する。
 図5は、X線画像検出器30の構成を模式的に示す。
 X線画像検出器30は、X線を検出して電荷を蓄積する複数の画素40がxy方向に2次元配列されてなる受像部41と、各画素40に蓄積された電荷の読み出しタイミングを制御する走査回路42と、各画素40から順次読み出された信号を画像データに変換して記憶する信号処理回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。
 複数の画素40は、X線画像検出器30上に形成される自己像G1の周期パターンの周期と同じオーダーの数μmのピッチに配列されている。そのような微細な画素ピッチに複数の画素が配列される受像部としては、各画素に蓄積された電荷を読み出す読み出し回路が単結晶シリコン等からなる半導体基板に形成される、CCD(Charge Coupled Device)センサやCMOS(Complementary Metal Oxide Semiconductor)センサなどの固体撮像素子をベースに構成することができる。
 各画素40は、例えば、半導体基板に形成されるフォトダイオードによって構成することができる。この場合に、典型的には、X線を受光してフォトダイオードの分光感度に適合する波長の蛍光を発するシンチレータが用いられる。シンチレータを形成する材料としては、例えば、テルビウム賦活酸化ガドリニウム(Gd2S:Tb)やタリウム賦活ヨウ化セシウム(CsI:Tl)などが用いられる。また、各画素40は、アモルファスセレンやアモルファスシリコンなどの非晶質半導体あるいは有機光電変換材料を用いて半導体基板上に形成される薄膜型のフォトダイオードによって構成することもできる。
 なお、受像部41には、上記の画素ピッチを満たす限りにおいて、読み出し回路としてのTFT(Thin Film Transistor)スイッチが絶縁性基板上に形成されてなるTFTパネルをベースに構成されたFPD(Flat Panel Detector)を用いることもできる。
 自己像G1の周期パターンのx方向に関する周期と画素40のx方向に関する配列ピッチ、及び/又は自己像G1の周期パターンのy方向に関する周期と画素40のy方向に関する配列ピッチに微小な差異(設計上の差異に限らず、製造誤差や配置誤差に起因する差異も含む)があると、X線画像検出器30によって取得される画像にはモアレが生じる。本X線撮影システム10においては、このモアレを解析することによって、被写体Hの位相コントラスト画像が生成される。
 画素40の配列ピッチは、設計的に定められた値であり変更することが困難であるため、モアレを生じさせるにあたって、x方向及び/又はy方向に関する画素40の配列ピッチと自己像G1の周期パターンの周期との関係を調整するには、吸収型格子31の位置調整を行い、x方向及び/又はy方向に関する自己像G1の周期パターンの周期を変更することにより調整することが好ましい。なお、画素40の配列ピッチは、自己像G1の周期パターンを検出(解像)するに必要なピッチである自己像G1の周期パターンの周期の1/2よりも大きい値であることが好ましい。
 図6に、自己像G1の周期パターンの周期を変更する方法を模式的に示す。
 自己像G1の周期パターンのx方向に関する周期p’の変更は、例えば、吸収型格子31を、光軸Aを中心として回転させることにより行うことができる。相対回転機構50により、吸収型格子31をX線画像検出器30に対して角度θだけ回転させると、吸収型格子31のx方向に関する実質的な格子ピッチは、「p」→「p/cosθ」と変化し、この結果、自己像G1の周期パターンの周期p’が変化する(FIG.6A)。
 別の例として、自己像G1の周期パターンのx方向に関する周期p’の変更は、吸収型格子31を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として傾斜させることにより行うことができる。相対傾斜機構51により、吸収型格子31をX線画像検出器30に対して角度αだけ傾斜させると、吸収型格子31のx方向に関する実質的な格子ピッチは、「p」→「p×cosα」と変化し、この結果、自己像G1の周期パターンの周期p’が変化する(FIG.6B)。
 更に別の例として、自己像G1の周期パターンのx方向に関する周期p’の変更は、吸収型格子31を、光軸Aの方向に沿って移動させることにより行うことができる。相対移動機構52により、吸収型格子31をX線画像検出器30に対して移動量δだけ移動させると、X線画像検出器30の位置に形成される自己像G1の周期パターンの周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化する(FIG.6C)。
 本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更により自己像G1の周期パターンの周期p’を変更する機構を、好適に採用することができる。自己像G1の周期パターンの周期p’を変更するための機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することができる。なお、以上は、x方向に関する画素40の配列ピッチ及び自己像G1の周期パターンの周期について説明したが、上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)と同様の機構によって、y方向に関する画素40の配列ピッチと自己像G1の周期パターンの周期との関係についても調整することができる。
 画素40のx方向に関する配列ピッチPと、自己像G1の周期パターンのx方向に関する周期p’との関係において、画像に生じるモアレのx方向に関する周期Tは、次式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 X線源11と吸収型格子31との間に被写体Hを配置すると、X線画像検出器30により検出される画像に生じるモアレは、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、このモアレを解析することによって、被写体Hの位相コントラスト画像を生成することができる。
 次に、モアレの解析方法について説明する。
 図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、吸収型格子31を通過してX線画像検出器30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、吸収型格子31により遮蔽される。
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 吸収型格子31からX線画像検出器30の位置に投射された自己像G1は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。そして、自己像G1のx方向に関するパターン周期p’と画素40のx方向に関する配列ピッチPとの微小な差異により画像に生じるモアレもまた、自己像G1の変位に応じてx方向に変位することになる。
 自己像G1の変位量Δxは、X線の屈折角φ(x)が微小であることに基づいて、近似的に次式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 ここで、屈折角φ(x)は、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 このように、被写体HでのX線の屈折による自己像G1の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。
 そして、自己像G1の変位量Δxが周期p’に達すると、モアレが元の状態にもどることから、モアレの変位量ΔXは、自己像G1の変位量Δxを用いて、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 この変位量ΔXは、X線画像検出器30から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とにおける信号の位相ズレ量)に、次式(7)のように関連している。
Figure JPOXMLDOC01-appb-M000007
 したがって、X線画像検出器30から出力される信号の位相ズレ量ψを求めることにより、式(6)及び(7)から屈折角φが求まり、式(5)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。以下、上記の位相ズレ量ψの算出方法について説明する。
 図8は、X線画像検出器30から出力される信号を模式的に示す。
 x方向に隣り合う複数の画素40を単位とし、単位毎に、1単位を構成する複数の画素40の画素値Iを補間する。図示の例では、複数の画素40の画素値を正弦曲線により補間したものであり、正弦曲線による補間は3点あれば足りるため、互いに隣り合う3つの画素40を単位としている。
 自己像G1の周期パターンのx方向に関する周期p’と画素40のx方向に関する配列ピッチPとが画像にモアレを生じさせる関係にある場合に、信号曲線は、モアレ周期Tで周期的に変化する。自己像G1がx方向に変位すると、それに伴って、モアレもまたx方向に変位し、モアレに対応する信号曲線の位相が変化する。自己像G1の変位量Δxが、その周期パターンの周期p’に達すると、モアレの変位量ΔXは、そのモアレ周期Tとなり、モアレ及び信号曲線は元の状態に戻る。
 被写体Hが存在しない場合の信号曲線(FIG.8A)と、被写体Hが存在する場合の信号曲線(FIG.8B)との両者の波形の位相差が、その単位を構成する画素40の群の信号の位相ズレ量ψに対応する。
 屈折角φ(x)は、式(5)で示したように位相シフト分布Φ(x)の微分値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。
 以上の処理を経て、演算処理部22は、位相シフト分布Φ(x,y)を画像化した位相コントラスト画像を記憶部23に記憶させる。上述した位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作して自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。
 以上、説明したように、X線撮影システム10によれば、自己像G1の周期パターンの周期p’とX線画像検出器30の画素ピッチPとの干渉によって、X線画像検出器30によって取得される画像にモアレを生じさせ、被写体Hに起因するモアレの変調に基づいて位相コントラスト画像を生成する。よって、自己像G1の周期パターンを検出可能なほどに画素ピッチを小さくする必要がなく、S/Nを確保して位相情報の精度を高めることができる。
 また、吸収型格子31で殆どのX線を回折させずに、X線画像検出器30に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、吸収型格子31からX線画像検出器30までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、吸収型格子31からの投影像(自己像G1)には、照射X線のほぼすべての波長成分が寄与し、自己像G1のコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。
 なお、上述したX線撮影システム10は、格子が吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像の周期パターンであっても、X線画像検出器30の画素40の配列ピッチとの関係で画像にモアレを形成することができ、その場合にも本発明は有用である。よって、格子は、吸収型格子に限らず位相型格子であってもよい。
 また、位相シフト分布Φを画像化したものを位相コントラスト画像として記憶ないし表示するものとして説明したが、位相シフト分布Φは、屈折角φに対応する位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像化したもの、また、位相シフトの微分量を画像化したものも位相コントラスト画像に含まれる。
 また、被写体がない状態で撮影(プレ撮影)して取得されるモアレから、位相微分像(位相シフト分布の微分量)を作成し、被写体がある状態で撮影(メイン撮影)して取得されるモアレから作成された位相微分像を補正するようにしてもよい。プレ撮影で取得される位相微分像は、装置固有の位相ムラ(例えば吸収型格子31の格子ピッチや厚さの不均一性等)を反映している。一方で、メイン撮影で取得される位相微分像にも、プレ撮影と同種の装置固有の位相ムラが含まれており、位相微分信号のオフセットとして作用している。従って、メイン撮影で得られた位相微分像からプレ撮影で得られた位相微分像を引くことで、装置固有の位相ムラを補正した位相コントラストを得ることができる。
 図9は、X線撮影システム10の変形例に関し、モアレの解析方法の他の例を示す。
 本例においては、フーリエ変換及び逆フーリエ変換を用いて、モアレを解析する。吸収型格子31の周期パターンの周期とX線画像検出器30の画素40の配列ピッチとの干渉によって形成されるモアレは次式(8)で表すことができ、式(8)は次式(9)に書き換えることができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 式(8)において、a(x,y)はバックグラウンドを表し、b(x,y)はモアレの基本周期に対応した空間周波数成分の振幅を表し、(f0x、0y)はモアレの基本周期を表す。また式(9)において、c(x,y)は次式(10)で表される。
Figure JPOXMLDOC01-appb-M000010
 従って、c(x,y)又はc(x,y)の成分を取り出すことによって屈折角φ(x,y)の情報を得ることができる。ここで、式(9)はフーリエ変換によって次式(11)となる。
Figure JPOXMLDOC01-appb-M000011
 式(11)において、F(f,f)、A(f,f)、C(f,f)は、それぞれf(x,y)、a(x,y)、c(x,y)に対する2次元のフーリエ変換である。
 吸収型格子31のような1次元格子を使用した場合に、モアレの空間周波数スペクトルには、少なくとも、A(f,f)に由来するピークと、これを挟んでC(f,f)及びC(f,f)に由来するモアレの基本周期に対応した空間周波数成分のピークとの3つのピークが生じる。A(f,f)に由来するピークは原点に、また、C(f,f)及びC(f,f)に由来するピークは(±f0x,±f0y)(複合同順)の位置に生じる。
 モアレの空間周波数スペクトルから屈折角φ(x、y)を得るには、モアレの基本周期に対応する空間周波数成分のピーク周波数を含む領域Aを切り出し、ピーク周波数が周波数空間の原点に重なるように切り出した領域Aを移動させ、逆フーリエ変換を行う。そして、逆フーリエ変換によって得られる複素数情報から屈折角φ(x,y)を得ることができる。
 図10は、本発明の実施形態を説明するための放射線撮影システムの他の例を示し、図11は、図10の放射線撮影システムの制御ブロックを示す。なお、上述したX線撮影システム10と共通する要素には、共通の符号を付することにより説明を省略あるいは簡略する。
 図10に示すX線撮影システム60は、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部62と、操作者の操作に基づいてX線源11の曝射動作や撮影部62の撮影動作を制御するとともに、撮影部62により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。
 撮影部62には、X線画像検出器30と、吸収型格子31と、吸収型格子31を上下方向(x方向)に並進移動させることにより、X線画像検出器30に対する吸収型格子31の相対位置関係を変化させる走査機構33が設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。
 図7を参照して、被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、式(3)で表される。そして、吸収型格子31からX線画像検出器30の位置に投射された自己像G1は、被写体HでのX線の屈折により、その屈折角φ(x)に応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φ(x)が微小であることに基づいて、近似的に式(4)で表される。ここで、屈折角φ(x)は、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(5)で表される。即ち、被写体HでのX線の屈折による自己像G1の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、X線画像検出器30の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とにおける信号の位相ズレ量)に次式(12)のように関連している。
Figure JPOXMLDOC01-appb-M000012
 したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(12)から屈折角φ(x)が求まり、式(5)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム60では、上記位相ズレ量ψを、縞走査法を用いて算出する。
 縞走査法では、X線画像検出器30及び吸収型格子31の一方を他方に対して相対的にx方向にステップ的に並進移動させながら撮影を行う(すなわち、両者の周期構造の位相を変化させながら撮影を行う)。本X線撮影システム60においては、走査機構33により吸収型格子31を移動させているが、X線画像検出器30を移動させてもよい。
 吸収型格子31の移動に伴ってモアレもまた移動し、並進距離(x方向への移動量)が吸収型格子31の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、モアレは元の状態に戻る。このようなモアレの変化を伴う吸収型格子31の移動を格子ピッチpの整数分の1の走査ピッチで行いながら撮影し、得られる複数の画像から各画素40の信号を取得して、各画素40の信号の位相ズレ量ψを得る。
 走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、吸収型格子31を順に並進移動させる。k=0,1,2,・・・,M-1の各位置で撮影を行うことにより、画素40毎にM個の画素値が得られる。以下に、このM個の画素値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。吸収型格子31の位置kにおける各画素40の画素値をI(x)と標記すると、I(x)は、次式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
 ここで、xは、画素40のx方向に関する座標であり、Aは入射X線の強度であり、Aは画素40の画素値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。
 次式(14)の関係式を用いると、上記屈折角φ(x)は、次式(15)のように表される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、画素40毎に得られたM個の信号値から、式(15)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。
 図12は、縞走査法によって得られる一つの画素40の信号を示す。
 画素40毎に得られたM個の画素値は、吸収型格子31の位置kに対して、格子ピッチpの周期で周期的に変化する。図12中の破線は、被写体Hが存在しない場合の信号の変化を示しており、図12中の実線は、被写体Hが存在する場合の信号の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。
 なお、上述した縞走査法によるモアレの解析においては、X線画像検出器30及び吸収型格子31の相対移動に伴ってモアレが全体として移動するため、モアレの周期が画像サイズに比べて長くとも適用可能である。
 図13は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
 図13に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、前述したX線撮影システム10と同様であるため説明は省略する。
 図14は、図13の放射線撮影システムの変形例を示す。
 図14に示すマンモグラフィ装置90は、吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。
 このように、被検体(乳房)Bが吸収型格子31とX線画像検出器30との間に位置する場合であっても、X線画像検出器30の位置に形成される吸収型格子31の投影像(自己像G1)の周期パターンが被検体Bにより変調される。したがって、本マンモグラフィ装置90でも前述した原理で被検体Bの位相コントラスト画像を得ることができる。
 そして、本マンモグラフィ装置90では、吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31とX線画像検出器30との間に被検体を配置することは、前述したX線撮影システム10,60にも適用することが可能である。
 図15は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
 X線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、上記第1実施形態のX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。
 前述したX線撮影システム10では、X線源11からX線画像検出器30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)による自己像G1のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。
 マルチスリット103は、吸収型格子31と同様な構成の吸収型格子であり、一方向(y方向)に延伸した複数のX線遮蔽部が、吸収型格子31のX線遮蔽部31bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に所定のピッチで配列した多数の小焦点光源(分散光源)を形成することを目的としている。
 このマルチスリット103の格子ピッチpは、マルチスリット103から吸収型格子31までの距離をLとして、実質的にマルチスリット103の位置がX線焦点位置となるため、次式(16)を満たすように設定する必要がある。
Figure JPOXMLDOC01-appb-M000016
 式(16)は、マルチスリット103により分散形成された各小焦点光源から射出されたX線の吸収型格子31による投影像(自己像G1)が、X線画像検出器30の位置で一致する(重なり合う)ための幾何学的な条件である。
 このように、本X線撮影システム100では、マルチスリット103により形成される複数の小焦点光源がそれぞれ形成する自己像G1が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、前述したいずれのX線撮影システムにおいても適用可能である。
 マルチスリット103を設け、前述した縞走査法により位相コントラスト画像を生成する場合に、X線画像検出器30又は吸収型格子31を移動させて縞走査を行うことの他に、X線画像検出器30及び吸収型格子31を固定したまま、マルチスリット103を移動させることにより縞走査を行うことが可能である。
 マルチスリット103を移動させることにより縞走査を行う場合、マルチスリット103のピッチpを前述のMで割った値(p/M)を走査ピッチとして、マルチスリット103をx方向に間欠移動させればよい。これにより、X線画像検出器30及び吸収型格子31に対するマルチスリット103の相対位置は、k=0,1,2,・・・,M-1のM個の位置に順に変更される。その他の構成及び作用は、図10に示すX線撮影システム60と同一である。
 図16は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
 上述のX線撮影システム10の吸収型格子31は、X線遮蔽部31bの周期配列方向が直線状(すなわち、格子面が平面状)となるように構成されているが、これに代えて、図13に示すように、格子面を曲面状に凹面化した吸収型格子110を用いることもできる。この場合に、検出面が円筒面状のX線画像検出器112を用いることが好ましく、X線画像検出器112の検出面は、X線焦点18bを通りy方向に延びる直線を中心軸とする円筒面状とする。
 吸収型格子110は、X線透過性でかつ湾曲した基板110aの表面に、複数のX線遮蔽部110bが所定のピッチpで周期的に配列されている。各X線遮蔽部110bは、y方向に直線状に延伸しており、吸収型格子110の格子面は、X線焦点18bを通りX線遮蔽部110bの延伸方向に延びる直線を中心軸とする円筒面に沿った形状となっている。
 X線画像検出器112の画素ピッチは、このX線画像検出器112上に形成される自己像G1のパターン周期の周期との関係において、画像にモアレを生じさせるピッチとされている。
 吸収型格子110の格子面を円筒面状とすることにより、X線焦点18bから照射されるX線は、被検体Hが存在しない場合、すべて格子面に垂直に入射することになるため、X線遮蔽部110bの厚みhの上限の制約が緩和され、上記式(1)を考慮する必要がなくなる。
 上述した各X線撮影システムでは、放射線として一般的なX線を用いる場合について説明したが、本発明に用いられる放射線はX線に限られるものではなく、α線、γ線等のX線以外の放射線を用いることも可能である。
 以上、説明したように、本明細書には、下記(1)~(10)の放射線撮影システムが開示されている。
 (1)通過する放射線によって周期パターンを含む放射線像を形成する格子と、前記放射線像の前記周期パターンの周期との関係においてモアレを形成する画素ピッチに配列された複数の画素を有し、これらの画素によって前記放射線像を検出する放射線画像検出器と、前記格子に入射する放射線の照射野に配置される被写体に起因して前記放射線画像検出器によって取得される画像のモアレに生じる変調に基づいて、前記被写体の位相コントラスト画像を生成する演算処理部と、を備える放射線撮影システム。
 (2) 上記(1)の放射線撮影システムであって、前記画素ピッチは、前記周期パターンの周期の1/2倍よりも大きい放射線撮影システム。
 (3) 上記(1)又は(2)の放射線撮影システムであって、前記格子を通過する放射線の光軸を中心として、前記格子及び前記放射線画像検出器を相対回転させる相対回転機構を備える放射線撮影システム。
 (4) 上記(1)又は(2)の放射線撮影システムであって、前記格子を通過する放射線の光軸及び前記格子のピッチ方向に直交する軸を中心として、前記格子及び前記放射線画像検出器を相対的に傾斜させる相対傾斜機構を備える放射線撮影システム。
 (5) 上記(1)又は(2)の放射線撮影システムであって、前記格子を通過する放射線の光軸に沿って、前記格子及び前記放射線画像検出器を相対的に移動させる相対移動機構を備える放射線撮影システム。
 (6) 上記(3)から(5)のいずれか一つの放射線撮影システムであって、前記格子は、吸収型格子である放射線撮影システム。
 (7) 上記(1)の放射線撮影システムであって、前記演算処理部は、互いに隣り合う3つ以上の前記画素を一組として、各組を構成する複数の前記画素の画素値を補間してなる信号を演算し、前記被写体があるときと前記被写体がないときとの前記信号の位相ズレ量に基づいて、前記被写体の位相コントラスト画像を生成する放射線撮影システム。
 (8) 上記(1)の放射線撮影システムであって、前記演算処理部は、前記放射線画像検出器によって取得される画像に対してフーリエ変換を行って該放射線画像の空間周波数スペクトルを取得し、前記空間周波数スペクトルのうちの前記モアレの基本周波数成分を含む空間周波数領域を前記空間周波数スペクトルから分離し、分離された前記空間周波数領域に対して逆フーリエ変換を行って部分位相コントラスト画像を生成する放射線撮影システム。
 (9) 上記(1)の放射線撮影システムであって、前記格子と前記放射線画像検出器とを、互いに位相の異なる複数の相対位置関係に配置する走査部を更に備え、前記放射線画像検出器は、前記複数の相対位置関係の各々において前記放射線像を検出し、前記演算処理部は、前記画素毎に、前記複数の相対位置関係の各々において前記放射線像を検出して得られるその画素の複数の画素値を補間してなる信号を演算し、前記被写体があるときと前記被写体がないときとの前記信号の位相ズレ量に基づいて、前記被写体の位相コントラスト画像を生成する放射線撮影システム。
 (10) 上記(1)の放射線撮影システムであって、前記格子に照射される放射線を部分的に遮蔽して焦点を分散化するマルチスリットと、前記マルチスリットと前記格子及び前記放射線画像検出器とを、互いに位相の異なる複数の相対位置関係に配置する走査部と、を更に備え、前記放射線画像検出器は、前記複数の相対位置関係の各々において前記放射線像を検出し、前記演算処理部は、前記画素毎に、前記複数の相対位置関係の各々において前記放射線像を検出して得られるその画素の複数の画素値を補間してなる信号を演算し、前記被写体があるときと前記被写体がないときとの前記信号の位相ズレ量に基づいて、前記被写体の位相コントラスト画像を生成する放射線撮影システム。
 (11) 上記(1)から(10)のいずれか一つの放射線撮影システムであって、前記放射線画像検出器は、放射線を検出することによって前記各画素に蓄積された電荷を読み出す読み出し回路を有し、前記読み出し回路は、半導体基板に形成されている前記放射線撮影システム。
 本発明によれば、放射線像の周期パターンの周期と放射線画像検出器の画素ピッチとの干渉によって、放射線画像検出器によって取得される画像にモアレを生じさせ、被写体に起因するモアレの変調に基づいて位相コントラスト画像を生成する。よって、放射線像の周期パターンを検出可能なほどに画素ピッチを小さくする必要がなく、S/Nを確保して位相情報の精度を高めることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年6月8日出願の日本特許出願(特願2011-128387)に基づくものであり、その内容はここに参照として取り込まれる。
10  X線撮影システム
11  X線源
12  撮影部
13  コンソール
30  X線画像検出器
31  第1の吸収型格子
32  第2の吸収型格子
40  画素

Claims (11)

  1.  通過する放射線によって周期パターンを含む放射線像を形成する格子と、
     前記放射線像の前記周期パターンの周期との関係においてモアレを形成する画素ピッチに配列された複数の画素を有し、これらの画素によって前記放射線像を検出する放射線画像検出器と、
     前記格子に入射する放射線の照射野に配置される被写体に起因して前記放射線画像検出器によって取得される画像のモアレに生じる変調に基づいて、前記被写体の位相コントラスト画像を生成する演算処理部と、
     を備える放射線撮影システム。
  2.  請求項1に記載の放射線撮影システムであって、
     前記画素ピッチは、前記周期パターンの周期の1/2倍よりも大きい放射線撮影システム。
  3.  請求項1又は2のいずれか一項に記載の放射線撮影システムであって、
     前記格子を通過する放射線の光軸を中心として、前記格子及び前記放射線画像検出器を相対回転させる相対回転機構を備える放射線撮影システム。
  4.  請求項1又は2のいずれか一項に記載の放射線撮影システムであって、
     前記格子を通過する放射線の光軸及び前記格子のピッチ方向に直交する軸を中心として、前記格子及び前記放射線画像検出器を相対的に傾斜させる相対傾斜機構を備える放射線撮影システム。
  5.  請求項1又は2のいずれか一項に記載の放射線撮影システムであって、
     前記格子を通過する放射線の光軸に沿って、前記格子及び前記放射線画像検出器を相対的に移動させる相対移動機構を備える放射線撮影システム。
  6.  請求項3から5のいずれか一項に記載の放射線撮影システムであって、
     前記格子は、吸収型格子である放射線撮影システム。
  7.  請求項1に記載の放射線撮影システムであって、
     前記演算処理部は、互いに隣り合う3つ以上の前記画素を一組として、各組を構成する複数の前記画素の画素値を補間してなる信号を演算し、前記被写体があるときと前記被写体がないときとの前記信号の位相ズレ量に基づいて、前記被写体の位相コントラスト画像を生成する放射線撮影システム。
  8.  請求項1に記載の放射線撮影システムであって、
     前記演算処理部は、前記放射線画像検出器によって取得される画像に対してフーリエ変換を行って該放射線画像の空間周波数スペクトルを取得し、前記空間周波数スペクトルのうちの前記モアレの基本周波数成分を含む空間周波数領域を前記空間周波数スペクトルから分離し、分離された前記空間周波数領域に対して逆フーリエ変換を行って部分位相コントラスト画像を生成する放射線撮影システム。
  9.  請求項1に記載の放射線撮影システムであって、
     前記格子と前記放射線画像検出器とを、互いに位相の異なる複数の相対位置関係に配置する走査部を更に備え、
     前記放射線画像検出器は、前記複数の相対位置関係の各々において前記放射線像を検出し、
     前記演算処理部は、前記画素毎に、前記複数の相対位置関係の各々において前記放射線像を検出して得られるその画素の複数の画素値を補間してなる信号を演算し、前記被写体があるときと前記被写体がないときとの前記信号の位相ズレ量に基づいて、前記被写体の位相コントラスト画像を生成する放射線撮影システム。
  10.  請求項1に記載の放射線撮影システムであって、
     前記格子に照射される放射線を部分的に遮蔽して焦点を分散化するマルチスリットと、
     前記マルチスリットと前記格子及び前記放射線画像検出器とを、互いに位相の異なる複数の相対位置関係に配置する走査部と、
     を更に備え、
     前記放射線画像検出器は、前記複数の相対位置関係の各々において前記放射線像を検出し、
     前記演算処理部は、前記画素毎に、前記複数の相対位置関係の各々において前記放射線像を検出して得られるその画素の複数の画素値を補間してなる信号を演算し、前記被写体があるときと前記被写体がないときとの前記信号の位相ズレ量に基づいて、前記被写体の位相コントラスト画像を生成する放射線撮影システム。
  11.  請求項1から10のいずれか一項に記載の放射線撮影システムであって、
     前記放射線画像検出器は、放射線を検出することによって前記各画素に蓄積された電荷を読み出す読み出し回路を有し、前記読み出し回路は、半導体基板に形成されている前記放射線撮影システム。
PCT/JP2012/064127 2011-06-08 2012-05-31 放射線撮影システム WO2012169426A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011128387A JP2014155508A (ja) 2011-06-08 2011-06-08 放射線撮影システム
JP2011-128387 2011-06-08

Publications (1)

Publication Number Publication Date
WO2012169426A1 true WO2012169426A1 (ja) 2012-12-13

Family

ID=47295992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064127 WO2012169426A1 (ja) 2011-06-08 2012-05-31 放射線撮影システム

Country Status (2)

Country Link
JP (1) JP2014155508A (ja)
WO (1) WO2012169426A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221818A1 (de) * 2013-10-28 2015-04-30 Siemens Aktiengesellschaft Bildgebendes System und Verfahren zur Bildgebung
CN112189134A (zh) * 2018-06-15 2021-01-05 株式会社岛津制作所 X射线成像装置
EP3809121A4 (en) * 2018-06-12 2022-03-09 University of Tsukuba PHASE IMAGE CAPTURE METHOD AND PHASE IMAGE CAPTURE DEVICE USING THE SAME

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101636438B1 (ko) * 2015-03-18 2016-07-05 제이피아이헬스케어 주식회사 단일 그리드를 이용한 pci 기반의 엑스선 영상 생성 방법 및 그 장치
WO2020153257A1 (ja) * 2019-01-24 2020-07-30 コニカミノルタ株式会社 タルボ用格子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203063A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム
WO2007113961A1 (ja) * 2006-03-31 2007-10-11 Konica Minolta Medical & Graphic, Inc. X線撮影システム及びx線撮影方法
JP2008200361A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム
WO2010050483A1 (ja) * 2008-10-29 2010-05-06 キヤノン株式会社 X線撮像装置およびx線撮像方法
JP2011045655A (ja) * 2009-08-28 2011-03-10 Konica Minolta Medical & Graphic Inc X線撮影装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203063A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器システム
WO2007113961A1 (ja) * 2006-03-31 2007-10-11 Konica Minolta Medical & Graphic, Inc. X線撮影システム及びx線撮影方法
JP2008200361A (ja) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc X線撮影システム
WO2010050483A1 (ja) * 2008-10-29 2010-05-06 キヤノン株式会社 X線撮像装置およびx線撮像方法
JP2011045655A (ja) * 2009-08-28 2011-03-10 Konica Minolta Medical & Graphic Inc X線撮影装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013221818A1 (de) * 2013-10-28 2015-04-30 Siemens Aktiengesellschaft Bildgebendes System und Verfahren zur Bildgebung
EP3809121A4 (en) * 2018-06-12 2022-03-09 University of Tsukuba PHASE IMAGE CAPTURE METHOD AND PHASE IMAGE CAPTURE DEVICE USING THE SAME
CN112189134A (zh) * 2018-06-15 2021-01-05 株式会社岛津制作所 X射线成像装置
CN112189134B (zh) * 2018-06-15 2023-09-19 株式会社岛津制作所 X射线成像装置

Also Published As

Publication number Publication date
JP2014155508A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
JP5331940B2 (ja) 放射線撮影システム及び放射線画像生成方法
JP5702586B2 (ja) 放射線撮影システム
JP5238786B2 (ja) 放射線撮影装置及び放射線撮影システム
JP5783987B2 (ja) 放射線撮影装置
JP2012090945A (ja) 放射線検出装置、放射線撮影装置、放射線撮影システム
JP5343065B2 (ja) 放射線撮影システム
JP2012090944A (ja) 放射線撮影システム及び放射線撮影方法
JP2011218147A (ja) 放射線撮影システム
JP2012200567A (ja) 放射線撮影システム及び放射線撮影方法
JP2011224329A (ja) 放射線撮影システム及び方法
JP2012095865A (ja) 放射線撮影装置、放射線撮影システム
JP2012115576A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
WO2012169426A1 (ja) 放射線撮影システム
JP2011206490A (ja) 放射線撮影システム及び放射線撮影方法
WO2012169427A1 (ja) 放射線撮影システム
JP2012125423A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
WO2013047011A1 (ja) 放射線画像検出器及びその製造方法、並びに放射線画像検出器を用いた放射線撮影システム
WO2012057278A1 (ja) 放射線撮影システム及び放射線撮影方法
WO2012147749A1 (ja) 放射線撮影システム及び放射線撮影方法
JP2012120650A (ja) 放射線撮影システム及び放射線位相コントラスト画像生成方法
WO2012056992A1 (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
JP2012115621A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
JP2012228369A (ja) 放射線撮影システム及び放射線撮影方法
JP2011206489A (ja) 放射線撮影システム及び放射線撮影方法
WO2012057045A1 (ja) 放射線撮影装置、放射線撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP