WO2012056992A1 - 放射線画像検出装置、放射線撮影装置、放射線撮影システム - Google Patents

放射線画像検出装置、放射線撮影装置、放射線撮影システム Download PDF

Info

Publication number
WO2012056992A1
WO2012056992A1 PCT/JP2011/074186 JP2011074186W WO2012056992A1 WO 2012056992 A1 WO2012056992 A1 WO 2012056992A1 JP 2011074186 W JP2011074186 W JP 2011074186W WO 2012056992 A1 WO2012056992 A1 WO 2012056992A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
radiation
ray
image
absorption
Prior art date
Application number
PCT/JP2011/074186
Other languages
English (en)
French (fr)
Inventor
裕康 石井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012056992A1 publication Critical patent/WO2012056992A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4464Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit or the detector unit being mounted to ceiling
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a radiation image detection apparatus, a radiation imaging apparatus, and a radiation imaging system.
  • X-rays are used as a probe for seeing through the inside of a subject because they have characteristics such as attenuation depending on the atomic numbers of elements constituting the substance and the density and thickness of the substance.
  • X-ray imaging is widely used in fields such as medical diagnosis and non-destructive inspection.
  • a subject is placed between an X-ray source that emits X-rays and an X-ray image detector that detects X-rays, and a transmission image of the subject is captured.
  • each X-ray emitted from the X-ray source toward the X-ray image detector is caused by a difference in characteristics (atomic number, density, thickness) of the substance existing on the path to the X-ray image detector.
  • the X-ray absorption image of the subject is detected and imaged by the X-ray image detector.
  • a flat panel detector FPD: Flat Panel Detector
  • a semiconductor circuit is widely used in addition to a combination of an X-ray intensifying screen and a film and a stimulable phosphor.
  • the X-ray absorption ability is lower as a substance composed of an element having a smaller atomic number, a problem that a sufficient softness (contrast) of an X-ray absorption image cannot be obtained with a soft tissue or a soft material of a living body.
  • a sufficient softness (contrast) of an X-ray absorption image cannot be obtained with a soft tissue or a soft material of a living body.
  • most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and there is little difference in the amount of X-ray absorption between them, so that it is difficult to obtain a difference in light and shade.
  • an X-ray phase for obtaining an image (hereinafter referred to as a phase contrast image) based on an X-ray phase change (angle change) by an object instead of an X-ray intensity change by an object.
  • Imaging research is actively conducted.
  • a first diffraction grating phase type grating or absorption type grating
  • a specific distance Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the second diffraction grating (absorption type grating) is disposed only downstream, and the X-ray image detector is disposed behind the second diffraction grating.
  • the Talbot interference distance is a distance at which X-rays that have passed through the first diffraction grating form a self-image due to the Talbot interference effect, and this self-image is between the X-ray source and the first diffraction grating. It is modulated by the interaction (phase change) between the arranged subject and the X-ray.
  • the X-ray Talbot interferometer detects moiré fringes generated by superimposing the first image of the first diffraction grating and the second diffraction grating, and obtains subject phase information by analyzing changes in the moiré fringes caused by the subject.
  • a fringe scanning method is known. According to this fringe scanning method, the second diffraction grating is substantially parallel to the surface of the first diffraction grating with respect to the first diffraction grating and substantially in the grating direction (strip direction) of the first diffraction grating.
  • a distribution (differential image of phase shift) is obtained, and a phase contrast image of the subject can be obtained based on this angular distribution.
  • the X-ray phase imaging is to observe the phase change of the X-ray caused by the subject, and observing the phase change is the change of the optical path of the X-ray caused by the subject, that is, the refraction of the X-ray. Is equivalent to observing
  • a physical phenomenon for example, Compton scattering or Rayleigh scattering
  • These phenomena deteriorate the signal of each pixel caused by the phase change based on the refraction of X-rays.
  • an attempt is made to remove scattered radiation using a second diffraction grating formed with a high aspect ratio.
  • the grating for removing scattered radiation is preferably a two-dimensional grating in which X-ray shielding portions are arranged vertically and horizontally, but the structure becomes complicated.
  • a metal foil having a thickness of about several millimeters in the thickness direction is generally used for the X-ray shielding portion of the normal scattering removal grating, but the thickness direction of the X-ray shielding portion of the second diffraction grating is generally 100 ⁇ m.
  • about gold or the like is used, there is a possibility that the scattering removal performance is insufficient.
  • the second diffraction grating typically needs to be formed with a pitch on the order of ⁇ m, the second diffraction grating is thick enough to remove or reduce scattered radiation and has a high X-ray shielding portion. It is very difficult to configure with a two-dimensional grid of aspect ratio.
  • the present invention has been made in view of the above-described circumstances, and in phase imaging using radiation such as X-rays, the scattered radiation is effectively removed or reduced using a scattering removal grating in which radiation shielding portions are arranged one-dimensionally.
  • the object is to improve the image quality of the obtained radiation phase contrast image.
  • a first grating, a grating pattern having a period substantially matching a pattern period of a striped radiation image formed by radiation that has passed through the first grating, and the radiation image masked by the grating pattern A radiation image detector for detecting the radiation image, a plurality of radiation shielding portions extending in a predetermined direction and arranged at intervals, and a scatter removal grating for removing scattered radiation incident on the radiation image detector, A radiation image detecting device, wherein an angle formed between an arrangement direction of the plurality of radiation shielding portions of the scattering removal grating and a pitch direction of the grating pattern is 0 ° or more and less than 90 °.
  • the angle formed by the arrangement direction of the plurality of radiation shielding parts of the scattering removal grating and the pitch direction of the grating pattern is 0 ° or more and less than 90 °, and the radiation shielding parts are arranged in a one-dimensional manner. Even with the removal grating, it is possible to effectively remove or reduce a scattering component unnecessary for phase imaging by radiation. Thereby, the image quality of the obtained radiation phase contrast image can be improved.
  • FIG. 1 shows a configuration of an example of a radiation imaging system for explaining an embodiment of the present invention
  • FIG. 2 shows a control block of the radiation imaging system of FIG.
  • the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a subject (patient) H in a standing position, and is disposed opposite to the X-ray source 11 that emits X-rays to the subject H, and the X-ray source 11.
  • An imaging unit 12 that detects X-rays transmitted through the subject H from the X-ray source 11 and generates image data, and controls the exposure operation of the X-ray source 11 and the imaging operation of the imaging unit 12 based on the operation of the operator.
  • it is roughly divided into a console 13 that generates a phase contrast image by calculating the image data acquired by the photographing unit 12.
  • the X-ray source 11 is held movably in the vertical direction (x direction) by an X-ray source holding device 14 suspended from the ceiling.
  • the photographing unit 12 is held by a standing stand 15 installed on the floor so as to be movable in the vertical direction.
  • the X-ray source 11 is emitted from the X-ray tube 18 that generates X-rays according to the high voltage applied from the high voltage generator 16, and the X-ray tube 18.
  • the X-ray includes a collimator unit 19 including a movable collimator 19a that limits an irradiation field so as to shield a portion that does not contribute to the inspection area of the subject H.
  • the X-ray tube 18 is of an anode rotating type, and emits an electron beam from a filament (not shown) as an electron emission source (cathode) and collides with a rotating anode 18a rotating at a predetermined speed, thereby causing X-rays. Is generated. The colliding portion of the rotating anode 18a with the electron beam becomes the X-ray focal point 18b.
  • the X-ray source holding device 14 includes a carriage portion 14a configured to be movable in a horizontal direction (z direction) by a ceiling rail (not shown) installed on the ceiling, and a plurality of support column portions 14b connected in the vertical direction. It consists of.
  • a motor (not shown) that changes the position of the X-ray source 11 in the vertical direction is provided on the carriage unit 14 a by expanding and contracting the column unit 14 b.
  • the standing stand 15 includes a main body 15a installed on the floor, and a holding portion 15b that holds the photographing unit 12 is attached to be movable in the vertical direction.
  • the holding portion 15b is connected to an endless belt 15d that is suspended between two pulleys 15c that are spaced apart in the vertical direction, and is driven by a motor (not shown) that rotates the pulley 15c.
  • the driving of the motor is controlled by the control device 20 of the console 13 described later based on the setting operation by the operator.
  • the standing stand 15 is provided with a position sensor (not shown) such as a potentiometer that detects the position of the photographing unit 12 in the vertical direction by measuring the movement amount of the pulley 15c or the endless belt 15d. .
  • the detection value of this position sensor is supplied to the X-ray source holding device 14 by a cable or the like.
  • the X-ray source holding device 14 moves the X-ray source 11 so as to follow the vertical movement of the imaging unit 12 by expanding and contracting the support column 14 b based on the supplied detection value.
  • the console 13 is provided with a control device 20 comprising a CPU, ROM, RAM and the like.
  • the control device 20 includes an input device 21 through which an operator inputs an imaging instruction and the content of the instruction, an arithmetic processing unit 22 that performs arithmetic processing on the image data acquired by the imaging unit 12 and generates an X-ray image, and X A storage unit 23 for storing line images, a monitor 24 for displaying X-ray images and the like, and an interface (I / F) 25 connected to each unit of the X-ray imaging system 10 are connected via a bus 26. .
  • the input device 21 for example, a switch, a touch panel, a mouse, a keyboard, or the like can be used.
  • X-ray imaging conditions such as X-ray tube voltage and X-ray irradiation time, imaging timing, etc. Is entered.
  • the monitor 24 includes a liquid crystal display or the like, and displays characters such as X-ray imaging conditions and X-ray images under the control of the control device 20.
  • the imaging unit 12 includes a flat panel detector (FPD) 30 made of a semiconductor circuit, a first absorption type grating 31 and a second absorption type for detecting phase change (angle change) of X-rays by the subject H and performing phase imaging.
  • FPD flat panel detector
  • the absorption type grating 32 and the scatter removal grating 34 for removing scattered radiation are provided.
  • the FPD 30 is arranged so that the detection surface is orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
  • the first and second absorption gratings 31 and 32 and the scattering removal grating 34 are disposed between the FPD 30 and the X-ray source 11.
  • the imaging unit 12 changes the relative positional relationship of the second absorption type grating 32 with respect to the first absorption type grating 31 by translating the second absorption type grating 32 in the vertical direction (x direction).
  • a scanning mechanism 33 is provided.
  • the scanning mechanism 33 is configured by an actuator such as a piezoelectric element, for example.
  • FIG. 3 shows a configuration of a radiation image detector included in the radiation imaging system of FIG.
  • the FPD 30 as a radiological image detector includes an image receiving unit 41 in which a plurality of pixels 40 that convert X-rays into electric charges and store them in a two-dimensional array on an active matrix substrate, and an electric charge received from the image receiving unit 41.
  • a scanning circuit 42 that controls the readout timing, a readout circuit 43 that reads out the charges accumulated in each pixel 40, converts the charges into image data and stores them, and performs arithmetic processing on the image data via the I / F 25 of the console 13.
  • the scanning circuit 42 and each pixel 40 are connected by a scanning line 45 for each row, and the readout circuit 43 and each pixel 40 are connected by a signal line 46 for each column.
  • Each pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and stores the converted electric charges in a capacitor (not shown) connected to an electrode below the conversion layer. It can be configured as a direct conversion type element.
  • a TFT switch (not shown) is connected to each pixel 40, and the gate electrode of the TFT switch is connected to the scanning line 45, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 46. When the TFT switch is turned on by the drive pulse from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 46.
  • Each pixel 40 converts X-rays into visible light once with a scintillator (not shown) made of gadolinium oxide (Gd 2 O 3 ), cesium iodide (CsI), or the like, and converts the converted visible light into a photodiode. It is also possible to configure as an indirect conversion type X-ray detection element that converts the charges into charges (not shown) and accumulates them.
  • the X-ray image detector is not limited to an FPD based on a TFT panel, and various X-ray image detectors based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used.
  • the readout circuit 43 includes an integration amplifier circuit, an A / D converter, a correction circuit, and an image memory (all not shown).
  • the integrating amplifier circuit integrates the charges output from each pixel 40 via the signal line 46, converts them into a voltage signal (image signal), and inputs it to the A / D converter.
  • the A / D converter converts the input image signal into digital image data and inputs the digital image data to the correction circuit.
  • the correction circuit performs offset correction, gain correction, and linearity correction on the image data, and stores the corrected image data in the image memory.
  • correction processing by the correction circuit correction of X-ray exposure amount and exposure distribution (so-called shading) and pattern noise depending on FPD 30 control conditions (drive frequency and readout period) (for example, leak signal of TFT switch) May be included.
  • 4 and 5 show an imaging unit of the radiation imaging system of FIG.
  • the first absorption-type grating 31 includes a substrate 31a and a plurality of X-ray shielding portions 31b arranged on the substrate 31a.
  • the second absorption type grating 32 includes a substrate 32a and a plurality of X-ray shielding portions 32b arranged on the substrate 32a.
  • the substrates 31a and 32a are both made of an X-ray transparent member such as glass that transmits X-rays.
  • Each of the X-ray shielding portions 31b and 32b is in one direction in a plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11 (in the illustrated example, the y direction orthogonal to the x direction and the z direction). It is comprised by the linear member extended
  • a material of each X-ray shielding part 31b, 32b a material excellent in X-ray absorption is preferable, and for example, a heavy metal such as gold or platinum is preferable.
  • These X-ray shielding portions 31b and 32b can be formed by a metal plating method or a vapor deposition method.
  • X-ray shielding portion 31b is in a plane perpendicular to the optical axis A of the X-ray, at a predetermined period p 1 in a direction (x-direction) orthogonal to the one direction, are arranged at a predetermined interval d 1 from each other ing.
  • X-ray shielding portion 32b in the plane orthogonal to the optical axis A of the X-ray, at a predetermined period p 2 in a direction (x-direction) orthogonal to the one direction, at a predetermined interval d 2 from each other Are arranged.
  • the first and second absorption gratings 31 and 32 do not give a phase difference to incident X-rays but give an intensity difference, they are also called amplitude gratings.
  • the slit portions may not be voids, and the voids may be filled with an X-ray low-absorbing material such as a polymer or a light metal.
  • the first and second absorption gratings 31 and 32 are configured to geometrically project the X-rays that have passed through the slit portion regardless of the presence or absence of the Talbot interference effect. Specifically, by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of X-rays emitted from the X-ray source 11, most of the X-rays included in the irradiated X-rays are slit at the slit portion. It is configured to pass through without being diffracted while maintaining straightness. For example, when tungsten is used as the rotary anode 18a described above and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, if the distances d 1 and d 2 are about 1 to 10 ⁇ m, most of the X-rays are geometrically projected without being diffracted at the slit portion.
  • the X-ray emitted from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 18b as a light emission point, and therefore a projected image projected through the first absorption grating 31 (hereinafter referred to as a projection image).
  • the projection image is referred to as a G1 image) and is enlarged in proportion to the distance from the X-ray focal point 18b.
  • the grating pitch p 2 of the second absorption type grating 32 is determined so that the slit portion substantially coincides with the periodic pattern of the bright part of the G1 image at the position of the second absorption type grating 32.
  • the grating pitch p 2 is determined so as to satisfy the relationship of the following formula (1).
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 is limited to the Talbot interference distance determined by the grating pitch of the first diffraction grating and the X-ray wavelength.
  • the imaging unit 12 of the present X-ray imaging system 10 has a configuration in which the first absorption grating 31 projects incident X-rays without diffracting, and the G1 image of the first absorption grating 31 is the first. because at every position of the rear absorption type grating 31 similarly obtained, the distance L 2, can be set independently of the Talbot distance.
  • the imaging unit 12 does not constitute a Talbot interferometer, but the Talbot interference distance Z when it is assumed that X-rays are diffracted by the first absorption type grating 31 is the first absorption type grating.
  • the grating pitch p 1 of 31, the grating pitch p 2, X-ray wavelength of the second absorption-type grating 32 (peak wavelength) lambda, and using the positive integer m, is expressed by the following equation (2).
  • Expression (2) is an expression that represents the Talbot interference distance when the X-ray irradiated from the X-ray source 11 is a cone beam. “Atsushi Momose, et al., Japan Journal of Applied Physics, Vol. 47, No. 10, October 2008, page 8077 ”.
  • Talbot distance Z by the following equation (4) and in the case of X-rays emitted from the X-ray source 11 can be regarded as substantially parallel beams, the distance L 2, the value of the range that satisfies the following equation (5) Set to.
  • the X-ray shielding portions 31b and 32b preferably completely shield (absorb) X-rays in order to generate a periodic pattern image with high contrast, but the above-described materials (gold, platinum) having excellent X-ray absorption properties Etc.), there are not a few X-rays that are transmitted without being absorbed. Therefore, in order to enhance the shielding of the X-rays, the X-ray shielding portion 31b, the respective thicknesses h 1, h 2 of 32b, it is preferable to increase the thickness much as possible. For example, when the tube voltage of the X-ray tube 18 is 50 kV, it is preferable to shield 90% or more of the irradiated X-rays. In this case, the thicknesses h 1 and h 2 are 30 ⁇ m or more in terms of gold (Au). It is preferable that
  • the thicknesses h 1 and h 2 of the X-ray shielding portions 31b and 32b are made too thick, X-rays that enter obliquely do not easily pass through the slit portion, so-called vignetting occurs, and the X-ray shielding portions 31b and 32b There is a problem that the effective visual field in the direction (x direction) perpendicular to the stretching direction (strand direction) of the film becomes narrow. Therefore, in view of the field of view secured to define the upper limit of the thickness h 1, h 2.
  • the effective visual field length V in the x direction is 10 cm.
  • the thickness h 1 may be 100 ⁇ m or less and the thickness h 2 may be 120 ⁇ m or less.
  • the scattering removal grating 34 includes a plurality of X-ray shielding portions 34a and a plurality of X-ray transmission portions 34b.
  • the X-ray shielding part 34a is composed of a strip-shaped member extending in one direction (y direction in the illustrated example) in a plane perpendicular to the optical axis A of the X-rays emitted from the X-ray source 11.
  • a material of the X-ray shielding part 34a a material excellent in X-ray absorption is preferable.
  • a metal foil such as lead, copper, or tungsten is used.
  • the X-ray shielding portions 34a are arranged at intervals in a direction (x direction) orthogonal to the one direction in a plane orthogonal to the optical axis A of X-rays.
  • the X-ray transmission part 34b is provided so as to fill a space between adjacent X-ray shielding parts 34a.
  • a material of the X-ray transmission part 34b an X-ray low absorption material is preferable, for example, a polymer, a light metal, or the like is used.
  • the scatter removal grating 34 is downstream of the subject H, and among the X-rays scattered by the subject H (hereinafter referred to as scattered rays), the component in the arrangement direction (x direction) of the X-ray shielding unit 34a is arranged in the traveling direction. Remove or reduce scattered radiation.
  • the scattering removal grating 34 is disposed between the second absorption type grating 32 and the FPD 30. In this case, the scattered radiation generated in the first absorption type grating 31 and the second absorption type grating 32 can also be removed or reduced.
  • the scattering removal grating 34 is: It can also be arranged between the subject H and the first absorption type grating 31 or between the first absorption type grating 31 and the second absorption type grating 32.
  • the scatter removal grating 34 is parallel to the optical axis A of the X-rays irradiated from the X-ray source 11 in the cross section along the direction (x direction) in which the X-ray shields 34 a are arranged.
  • a so-called parallel grid may be used, it is preferable to use a so-called focusing grid in which the extension of each of the X-ray shielding portions 34a is focused on the radiation focus as in the illustrated example. According to this, it is possible to make it difficult to generate so-called vignetting for X-rays that travel substantially along the radiation direction from the X-ray source 11 without being scattered by the subject H.
  • the phase change (angle change) of the X-rays refracted by the subject H is typically several ⁇ rad, and the refracted X-rays travel substantially along the radiation direction from the X-ray source 11.
  • an intensity-modulated image is formed by superimposing the G1 image of the first absorption-type grating 31 and the second absorption-type grating 32 and is captured by the FPD 30.
  • the scattered light due to the subject or the like is removed or reduced by the scattering removal grating 34, thereby preventing the contrast of the intensity-modulated image to be picked up from being lowered.
  • the pattern period p 1 ′ of the G1 image at the position of the second absorption grating 32 and the substantial grating pitch p 2 ′ (substantial pitch after production) of the second absorption grating 32 are manufacturing errors. Some differences occur due to or placement errors. Among these, the arrangement error means that the substantial pitch in the x direction changes due to the relative inclination and rotation of the first and second absorption gratings 31 and 32 and the distance between the two changes. I mean.
  • the period T of the moire fringes is expressed by the following equation (8).
  • the arrangement pitch P of the pixels 40 in the x direction needs to satisfy at least the following expression (9), and further preferably satisfies the following expression (10) (here , N is a positive integer).
  • Equation (9) means that the arrangement pitch P is not an integral multiple of the moire period T, and it is possible in principle to detect moire fringes even when n ⁇ 2.
  • Expression (10) means that the arrangement pitch P is made smaller than the moire period T.
  • the arrangement pitch P of the pixels 40 of the FPD 30 is a value determined by design (generally about 100 ⁇ m) and is difficult to change, the magnitude relationship between the arrangement pitch P and the moire period T is adjusted. Adjusts the positions of the first and second absorption gratings 31 and 32 and changes the moire period T by changing at least one of the pattern period p 1 ′ and the grating pitch p 2 ′ of the G1 image. It is preferable to do.
  • FIG. 6 shows a method of changing the moire cycle T.
  • the moire period T can be changed by relatively rotating one of the first and second absorption gratings 31 and 32 around the optical axis A.
  • a relative rotation mechanism 50 that rotates the second absorption grating 32 relative to the first absorption grating 31 relative to the optical axis A is provided.
  • the substantial grating pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ / cos ⁇ ”.
  • the moire cycle T changes (FIG. 6A).
  • the change of the moire period T is such that either one of the first and second absorption type gratings 31 and 32 is relatively centered about an axis perpendicular to the optical axis A and along the y direction. It can be performed by inclining.
  • a relative tilt mechanism 51 that tilts the second absorption type grating 32 relative to the first absorption type grating 31 about an axis perpendicular to the optical axis A and along the y direction is provided.
  • the second absorption type grating 32 is inclined by the angle ⁇ by the relative inclination mechanism 51, the substantial lattice pitch in the x direction changes from “p 2 ′” ⁇ “p 2 ′ ⁇ cos ⁇ ”.
  • the moire cycle T changes (FIG. 6B).
  • the moire period T can be changed by relatively moving one of the first and second absorption gratings 31 and 32 along the direction of the optical axis A.
  • the second absorption type grating 32 is changed so as to change the distance L 2 between the first absorption type grating 31 and the second absorption type grating 32.
  • a relative movement mechanism 52 that relatively moves along the direction of the optical axis A is provided.
  • the G1 image of the first absorption type grating 31 projected onto the position of the second absorption type grating 32.
  • the pattern period of “p 1 ′” ⁇ “p 1 ′ ⁇ (L 1 + L 2 + ⁇ ) / (L 1 + L 2 )” changes, and as a result, the moire period T changes (FIG. 6C).
  • imaging unit 12 is not the Talbot interferometer as described above, since the distance L 2 can be freely set, moire by changing the distance L 2 as relative movement mechanism 52 A mechanism for changing the period T can be suitably employed.
  • the change mechanism (relative rotation mechanism 50, relative tilt mechanism 51, and relative movement mechanism 52) of the first and second absorption gratings 31 and 32 for changing the moiré period T is constituted by an actuator such as a piezoelectric element. Is possible.
  • the moire fringes detected by the FPD 30 are modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Therefore, the phase contrast image of the subject H can be generated by analyzing the moire fringes detected by the FPD 30.
  • FIG. 7 shows one X-ray refracted according to the phase shift distribution ⁇ (x) of the subject H in the x direction.
  • the illustration of the scattering removal grating is omitted.
  • Reference numeral 55 indicates an X-ray path that travels straight when the subject H is not present. The X-ray that travels along the path 55 passes through the first and second absorption gratings 31 and 32 and enters the FPD 30. To do.
  • Reference numeral 56 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 56 are shielded by the second absorption type grating 32 after passing through the first absorption type grating 31.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following equation (11), where n (x, z) is the refractive index distribution of the subject H, and z is the direction in which the X-ray travels.
  • the G1 image projected from the first absorptive grating 31 to the position of the second absorptive grating 32 is displaced in the x direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. become.
  • This amount of displacement ⁇ x is approximately expressed by the following equation (12) based on the small X-ray refraction angle ⁇ .
  • the refraction angle ⁇ is expressed by Expression (13) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x) of the subject H.
  • the amount of displacement ⁇ x is expressed by the following equation with the phase shift amount ⁇ of the signal output from each pixel 40 of the FPD 30 (the phase shift amount of the signal of each pixel 40 with and without the subject H): It is related as shown in (14).
  • phase shift amount ⁇ of the signal of each pixel 40 the refraction angle ⁇ is obtained from the equation (14), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (13).
  • a phase shift distribution ⁇ (x) of the subject H that is, a phase contrast image of the subject H can be generated.
  • the phase shift amount ⁇ is calculated using a fringe scanning method described below.
  • the fringe scanning method imaging is performed while one of the first and second absorption type gratings 31 and 32 is translated in a stepwise manner relative to the other in the x direction (that is, the phase of both grating periods is changed). Shoot while changing).
  • the second absorption type grating 32 is moved by the scanning mechanism 33 described above, but the first absorption type grating 31 may be moved.
  • the moire fringes move, and the translation distance (the amount of movement in the x direction) is one period of the grating period of the second absorption type grating 32 (grating pitch p 2 ). (Ie, when the phase change reaches 2 ⁇ ), the moire fringes return to their original positions.
  • a fringe image is photographed with the FPD 30 while moving the second absorption grating 32 by an integer of the grating pitch p 2 , and each pixel 40 is captured from the plural fringe images photographed.
  • the signal is acquired and processed by the processing unit 22 to obtain the phase shift amount ⁇ of the signal of each pixel 40.
  • FIG. 8 schematically shows how the second absorption grating 32 is moved by the scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M (an integer of 2 or more).
  • the initial position of the second absorption grating 32 is the same as the dark part of the G1 image at the position of the second absorption grating 32 when the subject H is not present.
  • x is a coordinate in the x direction of the pixel 40
  • a 0 is the intensity of the incident X-ray
  • An is a value corresponding to the contrast of the signal value of the pixel 40 (where n is a positive value). Is an integer).
  • ⁇ (x) represents the refraction angle ⁇ as a function of the coordinate x of the pixel 40.
  • arg [] means the extraction of the declination, and corresponds to the phase shift amount ⁇ of the signal of each pixel 40. Accordingly, the refraction angle ⁇ (x) is obtained by calculating the phase shift amount ⁇ of the signal of each pixel 40 from the M signal values obtained at each pixel 40 based on the equation (17).
  • FIG. 9 shows a signal of one pixel of the radiation image detector that changes with the fringe scanning.
  • the M signal values obtained in each pixel 40 periodically change with a period of the grating pitch p 2 with respect to the position k of the second absorption grating 32.
  • a broken line in FIG. 9 indicates a change in signal value when the subject H does not exist, and a solid line in FIG. 9 indicates a change in signal value when the subject H exists.
  • the phase difference between the two waveforms corresponds to the phase shift amount ⁇ of the signal of each pixel 40.
  • the phase shift is obtained by integrating the refraction angle ⁇ (x) along the x-axis.
  • a distribution ⁇ (x) is obtained.
  • the y coordinate in the y direction of the pixel 40 is not taken into consideration. However, by performing the same calculation for each y coordinate, a two-dimensional phase shift distribution ⁇ (x , Y).
  • the above calculation is performed by the calculation processing unit 22, and the calculation processing unit 22 stores the phase contrast image in the storage unit 23.
  • the refraction angle ⁇ (x) is integrated along the x direction. Then, the refraction angle ⁇ (x) is obtained based on the phase shift amount ⁇ of the signal of each pixel 40, and the phase shift amount ⁇ in the first and second absorption gratings 31 and 32 as described above.
  • the second absorption-type grating 32 is scanned in the x direction, which is the arrangement direction of the X-ray shielding portions 31b, 32b, and imaging is performed when each of the second absorption-type gratings 32 is at each scanning position. It is obtained from a plurality of signal values obtained.
  • the phase shift distribution ⁇ (x) is based on the X-ray refraction component in the x direction that is the arrangement direction of the X-ray shielding portions 31b and 32b in the first and second absorption gratings 31 and 32. Therefore, the scattered radiation including the x-direction component in the traveling direction, particularly the scattered radiation traveling in the x-direction, has a relatively large influence on the phase shift distribution ⁇ (x).
  • the scatter removal grating 34 the plurality of X-ray shielding portions 34 a are arranged in the x direction, and the arrangement direction of the X-ray shielding portions 34 a is parallel to the arrangement direction of the X-ray shielding portions 32 b in the second absorption type grating 32. (0 °). Therefore, the scatter removal grating 34 can effectively remove or reduce the scattered radiation including the component in the x direction in the traveling direction, particularly the scattered radiation traveling in the x direction. Thereby, the X-ray X-ray refraction component for obtaining the phase shift distribution ⁇ (x) can be extracted, and the phase shift distribution ⁇ (x) can be obtained with high accuracy.
  • the scattering direction of the scattering removal grating 34 is such that the arrangement direction of the X-ray shielding portions 34a is X in the second absorption type grating 32. You may arrange
  • the scattering removal grating 34 is arranged so that the arrangement direction of the X-ray shielding part 34a is orthogonal to the arrangement direction of the X-ray shielding part 32b in the second absorption type grating 32, the phase shift distribution ⁇ (x)
  • the removal of the scattered radiation traveling in the x-direction having the greatest influence depends only on the second absorption type grating 32 that is inferior to the scattering removal grating 34 in terms of the scattering removal ability.
  • the angle formed by the arrangement direction of the plurality of X-ray shielding portions 34a in the scattering removal grating 34 and the arrangement direction (x direction) of the X-ray shielding portions 32b in the second absorption type grating 32 is 0 ° or more and 90 °. Is less than 0, preferably 0 °.
  • X-rays of an object including the subject H upstream from the second absorption grating 32 can be obtained. Refraction is observed. Therefore, scattering removal is performed upstream of the second absorption type grating 32 (for example, between the subject H and the first absorption type grating 31 or between the first absorption type grating 31 and the second absorption type grating 32). If a grating is present, X-ray refraction at the scattering removal grating is observed without distinction from X-ray refraction at the subject H.
  • X-ray refraction occurs remarkably in regions where the optical distances through which X-rays pass are different, particularly at the edges of the transmitting objects. May be detected.
  • the scattering removal grating 34 is disposed between the second absorption grating 32 and the FPD 30, that is, downstream of the second absorption grating 32. Therefore, refraction at the scatter removal grating 34 is not observed, that is, refraction at the scatter removal grating 34 is a phase shift amount of a series of signals of each pixel 40 obtained by scanning the second absorption type grating 32. Does not affect ⁇ . Thereby, it is possible to prevent the unevenness on the surface of the scattering removal grating 34 from appearing as a shadow on the X-ray phase contrast image.
  • scattering removal is performed in order to prevent the X-ray shielding portion of the scattering removal grating from appearing in the image.
  • the grating is moved during X-ray irradiation.
  • the scatter removal grating 34 may be similarly moved during X-ray irradiation.
  • the scatter removal grating 34 is stationary at least during X-ray irradiation. Is done.
  • the above-described fringe scanning and phase contrast image generation processing is automatically performed after the imaging instruction is given by the operator from the input device 21, and the respective units are linked and operated based on the control of the control device 20.
  • the phase contrast image of the subject H is displayed on the monitor 24.
  • the arrangement direction of the plurality of X-ray shielding parts 34 a of the scattering removal grating 34 and the plurality of X-ray shielding parts 32 b of the second absorption type grating 32 are arranged. Even if the angle formed with the arrangement direction is 0 ° or more and less than 90 °, and the scatter removal grating 34 in which the X-ray shielding portion is arranged in one dimension, the scatter component unnecessary for phase imaging by radiation is effectively removed. Alternatively, it can be reduced. Thereby, the image quality of the obtained X-ray phase contrast image can be improved.
  • the distance L 2 from the first absorption type grating 31 to the second absorption type grating 32 can be set to an arbitrary value, and the distance L 2 is smaller than the minimum Talbot interference distance in the Talbot interferometer. Since it can be set, the photographing unit 12 can be downsized (thinned).
  • the above-described X-ray imaging system 10 calculates the refraction angle ⁇ by performing fringe scanning on the projection image of the first grating, and therefore the first and second gratings absorb both.
  • the present invention is not limited to this.
  • the present invention is also useful when the refraction angle ⁇ is calculated by performing fringe scanning on the Talbot interference image. Therefore, the first grating is not limited to the absorption type grating but may be a phase type grating.
  • the method of analyzing the moire fringes formed by superimposing the X-ray image of the first grating and the second grating is not limited to the above-described fringe scanning method. For example, “J. Opt. Soc. Am. .72, No. 1 (1982) p. 156 ", and various methods using moire fringes, such as a method using Fourier transform / inverse Fourier transform, are also applicable.
  • the X-ray imaging system 10 has been described as one that stores or displays an image of the phase shift distribution ⁇ as a phase contrast image, as described above, the phase shift distribution ⁇ is a phase determined from the refraction angle ⁇ .
  • the differential amount of the shift distribution ⁇ is integrated, and the differential amount of the refraction angle ⁇ and the phase shift distribution ⁇ is also related to the phase change of the X-ray by the subject. Therefore, an image having the refraction angle ⁇ as an image and an image having the differential amount of the phase shift ⁇ are also included in the phase contrast image.
  • FIG. 10 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • a mammography apparatus 80 shown in FIG. 10 is an apparatus that captures an X-ray image (phase contrast image) of the breast B as a subject.
  • the mammography apparatus 80 is disposed at one end of an arm member 81 that is pivotally connected to a base (not shown), and disposed at the other end of the arm member 81.
  • An imaging table 83 and a compression plate 84 configured to be movable in the vertical direction with respect to the imaging table 83 are provided.
  • the X-ray source storage unit 82 stores the X-ray source 11, and the imaging table 83 stores the imaging unit 12.
  • the X-ray source 11 and the imaging unit 12 are arranged to face each other.
  • the compression plate 84 is moved by a moving mechanism (not shown), and the breast B is sandwiched between the imaging table 83 and compressed. The X-ray imaging described above is performed in this compressed state.
  • the X-ray source 11 and the imaging unit 12 have the same configuration as that of the X-ray imaging system 10 described above, the same reference numerals as those of the X-ray imaging system 10 are given to the respective components. Since other configurations and operations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • FIG. 11 shows a modification of the radiation imaging system of FIG.
  • a mammography apparatus 90 shown in FIG. 11 is different from the mammography apparatus 80 described above in that the first absorption type grating 31 is disposed between the X-ray source 11 and the compression plate 84.
  • the first absorption type lattice 31 is accommodated in a lattice accommodation portion 91 connected to the arm member 81.
  • the imaging unit 92 includes the FPD 30, the second absorption type grating 32, the scanning mechanism 33, and the scattering removal grating 34.
  • the scattering removal grating 34 is disposed between the second absorption type grating 32 and the FPD 30, but is also disposed between the breast B as the subject and the second absorption type grating 32. obtain.
  • the mammography apparatus 90 can also obtain a phase contrast image of the subject B based on the principle described above.
  • the X-ray whose dose is almost halved is irradiated to the subject B due to the shielding by the first absorption type grating 31. Therefore, the exposure amount of the subject B is determined as described above. It can be reduced to about half that of the device 80. Note that the arrangement of the subject between the first absorption type grating 31 and the second absorption type grating 32 as in the mammography apparatus 90 can also be applied to the X-ray imaging system 10 described above. Is possible.
  • photographing is performed using the scatter removal grating 34 in the case of a photographing technique having a strong influence of scattered radiation, and when the influence of the scattered radiation is weak, photographing is performed without using the scattered radiation removal grid from the viewpoint of reducing exposure.
  • Imaging techniques that are strongly influenced by scattered radiation include, for example, a thick part such as the waist (FIG. 1), an image taken in the body side direction, or a thin contrast such as the lungs and breasts (FIGS. 10 and 11). Illustrated.
  • a case where the influence of scattered radiation is weak for example, a case where a thin part such as a finger or a toe is photographed is exemplified.
  • the scattering removal grating 34 can be retracted from the X-ray irradiation field.
  • the scatter removal is movably movable in one direction (for example, the y direction) in the plane orthogonal to the optical axis A of the X-rays emitted from the X-ray source 11.
  • the scatter removal grating 34 is converted into an X-ray by the above driving mechanism. Evacuate from field.
  • the scattering removal grating 34 may be removed from the X-ray irradiation field by being removed from the housing of the imaging unit 12.
  • FIG. 12 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • the X-ray imaging system 100 is different from the X-ray imaging system 10 described above in that a multi-slit 103 is provided in the collimator unit 102 of the X-ray source 101. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the focal point of the X-ray focal point 18b when the distance from the X-ray source 11 to the FPD 30 is a distance (1 m to 2 m) set in a general hospital imaging room, the focal point of the X-ray focal point 18b.
  • the blur of the G1 image due to the size (generally about 0.1 mm to 1 mm) is affected, and there is a possibility that the image quality of the phase contrast image is lowered. Therefore, it is conceivable to install a pinhole immediately after the X-ray focal point 18b to effectively reduce the focal spot size. However, if the aperture area of the pinhole is reduced to reduce the effective focal spot size, the X-ray focal point is reduced. Strength will fall.
  • the multi-slit 103 is disposed immediately after the X-ray focal point 18b.
  • the multi-slit 103 is an absorption type grating (third absorption type grating) having a configuration similar to that of the first and second absorption type gratings 31 and 32 provided in the imaging unit 12, and is in one direction (y direction).
  • the extended X-ray shielding portions are periodically arranged in the same direction (x direction) as the X-ray shielding portions 31b and 32b of the first and second absorption gratings 31 and 32.
  • the multi-slit 103 partially shields the radiation emitted from the X-ray focal point 18b, thereby reducing the effective focal size in the x direction and forming a large number of point light sources (dispersed light sources) in the x direction.
  • the purpose is to do.
  • the lattice pitch p 3 of the multi-slit 103 needs to be set so as to satisfy the following formula (18), where L 3 is the distance from the multi-slit 103 to the first absorption-type lattice 31.
  • the above formula (18) indicates that the projection image (G1 image) of the X-rays emitted from the respective point light sources dispersedly formed by the multi slit 103 by the first absorption type grating 31 is the position of the second absorption type grating 32. This is a geometric condition for matching (overlapping).
  • the grating pitch p2 of the second absorption grating 32 is determined so as to satisfy the relationship of the following equation (19).
  • the G1 images based on the plurality of point light sources formed by the multi slit 103 are superimposed, thereby improving the image quality of the phase contrast image without reducing the X-ray intensity.
  • the multi slit 103 described above can be applied to any of the X-ray imaging systems described above.
  • FIG. 13 shows the configuration of the radiation image detector in relation to another example of the radiation imaging system for explaining the embodiment of the present invention.
  • the second absorption grating 32 is provided independently of the FPD 30, but an X-ray image detector having a configuration disclosed in Japanese Patent Laid-Open No. 2009-133823 is used.
  • This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges, and a charge collection electrode that collects electric charges converted in the conversion layer,
  • the charge collecting electrode 121 of the pixel 120 is configured by arranging a plurality of linear electrode groups 122 to 127 formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. Has been.
  • the pixels 120 are two-dimensionally arranged at a constant pitch along the x direction and the y direction, and each pixel 120 has a charge collection for collecting the charges converted by the conversion layer that converts the X-rays into charges.
  • An electrode 121 is formed.
  • the charge collection electrode 121 includes first to sixth linear electrode groups 122 to 127, and the phase of the arrangement period of the linear electrodes of each linear electrode group is shifted by ⁇ / 3.
  • the phase of the first linear electrode group 122 is 0, the phase of the second linear electrode group 123 is ⁇ / 3, the phase of the third linear electrode group 124 is 2 ⁇ / 3, The phase of the fourth linear electrode group 125 is ⁇ , the phase of the fifth linear electrode group 126 is 4 ⁇ / 3, and the phase of the sixth linear electrode group 127 is 5 ⁇ / 3.
  • the relationship between 1 ′ and the arrangement pitch P of the pixels 120 in the x direction is similar to the second absorption grating 32 of the X-ray imaging system 10 described above, and the period T of the moire fringes represented by the equation (8). Therefore, it is necessary to satisfy the formula (9), and it is preferable to satisfy the formula (10).
  • each pixel 120 is provided with a switch group 128 for reading out the charges collected by the charge collecting electrode 121.
  • the switch group 128 includes TFT switches provided in the first to sixth linear electrode groups 121 to 126, respectively.
  • the second absorption type grating 32 is not required from the imaging unit 12, and a plurality of images can be obtained by one imaging. Since a phase component fringe image can be acquired, physical scanning for fringe scanning becomes unnecessary, and the scanning mechanism 33 can be eliminated. Thereby, it is possible to reduce the cost and further reduce the thickness of the photographing unit.
  • the scatter removal grating 34 can be disposed between the subject H and the first absorption grating 31 or between the first absorption grating 31 and the X-ray image detector.
  • the scattered radiation generated by the first absorption grating 31 in addition to the scattered radiation generated by the subject H is also removed. Alternatively, it can be reduced. It should be noted that the structure of the charge collecting electrode may be replaced with another structure described in Japanese Patent Application Laid-Open No. 2009-133823.
  • FIG. 14 shows another example of a radiation imaging system for explaining an embodiment of the present invention.
  • phase contrast image a high-contrast image (phase contrast image) of an X-ray weakly absorbing object that has been difficult to draw
  • an absorption image is referred to corresponding to the phase contrast image.
  • it is effective to supplement the portion that could not be represented by the absorption image with the information of the phase contrast image by superimposing the absorption image and the phase contrast image by appropriate processing such as weighting, gradation, and frequency processing.
  • capturing an absorption image separately from the phase contrast image makes it difficult to superimpose images due to the shift in the shooting position between the phase contrast image capture and the absorption image capture. Increasing the burden on the subject.
  • the small-angle scattered image can express tissue properties resulting from the fine structure inside the subject tissue, and is expected as a new expression method for image diagnosis in the fields of cancer and cardiovascular diseases.
  • this X-ray imaging system uses an arithmetic processing unit 190 that can generate an absorption image and a small-angle scattered image from a plurality of images acquired for a phase contrast image. Since other configurations are the same as those of the X-ray imaging system 10 described above, description thereof will be omitted.
  • the absorption image generation unit 192 generates an absorption image by averaging the pixel data Ik (x, y) obtained for each pixel with respect to k and calculating an average value as shown in FIG. .
  • the average value may be calculated by simply averaging the pixel data Ik (x, y) with respect to k. However, when M is small, the error increases, so the pixel data Ik (x, y After fitting y) with a sine wave, an average value of the fitted sine wave may be obtained.
  • the generation of the absorption image is not limited to the average value, and an addition value obtained by adding the pixel data Ik (x, y) with respect to k can be used as long as the amount corresponds to the average value.
  • the small angle scattered image generation unit 193 generates a small angle scattered image by calculating and imaging the amplitude value of the pixel data Ik (x, y) obtained for each pixel.
  • the amplitude value may be calculated by obtaining a difference between the maximum value and the minimum value of the pixel data Ik (x, y). However, when M is small, the error increases, and therefore the pixel data Ik. After fitting (x, y) with a sine wave, the amplitude value of the fitted sine wave may be obtained.
  • the generation of the small-angle scattered image is not limited to the amplitude value, and a dispersion value, a standard deviation, or the like can be used as an amount corresponding to the variation centered on the average value.
  • an absorption image and a small angle scattered image are generated from a plurality of images acquired for the phase contrast image of the subject. There is no deviation, and it is possible to superimpose the phase contrast image with the absorption image and the small-angle scattered image, and the burden on the subject is reduced as compared with the case of separately shooting for the absorption image and the small-angle scattered image. be able to.
  • the present specification includes a first grating and a grating having a period that substantially matches the pattern period of the striped radiation image formed by the radiation that has passed through the first grating.
  • a radiation image detector for detecting the radiation image masked by the pattern and the lattice pattern; and a plurality of radiation shielding portions extending in a predetermined direction and arranged at intervals from each other, the radiation image detector
  • a scattering removal grating that removes scattered radiation incident on the light, and an angle formed by the arrangement direction of the plurality of radiation shielding portions of the scattering removal grating and the pitch direction of the grating pattern is 0 ° or more and less than 90 °
  • a radiological image detection apparatus is disclosed.
  • the lattice pattern is placed at a plurality of relative positions having different phases from each other with respect to the radiographic image.
  • the lattice pattern is a second lattice
  • the second lattice is moved by moving either the first lattice or the second lattice.
  • a scanning mechanism is further provided that places a grating at the plurality of relative positions with respect to the radiation image.
  • the scatter removal grating is disposed between the radiographic image detector and the second grating.
  • the radiological image detector includes a conversion layer that converts radiation into electric charge, and a charge collection electrode that collects electric charge converted in the conversion layer.
  • the charge collection electrode includes a plurality of linear electrode groups having a period substantially matching the pattern period of the radiation image, and the plurality of linear electrode groups are arranged so that their phases are different from each other. And the lattice pattern is constituted by each of the plurality of linear electrode groups.
  • the scatter removal grating is disposed between the radiographic image detector and the first grating.
  • the scatter removal grating is stationary at least while radiation is detected by the radiological image detector.
  • the scatter removal grating can be retracted from the radiation irradiation field.
  • the present specification discloses a radiation imaging apparatus including any one of the above-described radiation image detection apparatuses and a radiation source that irradiates the radiation image detection apparatus with radiation.
  • the distribution of the refraction angle of the radiation incident on the radiation image detector is calculated from the image acquired by the radiation imaging apparatus and the radiation image detector, and the distribution of the refraction angle is calculated.
  • a calculation unit that generates a phase contrast image of a subject.
  • the angle formed by the arrangement direction of the plurality of radiation shielding parts of the scattering removal grating and the pitch direction of the grating pattern is 0 ° or more and less than 90 °, and the radiation shielding parts are arranged in a one-dimensional manner. Even with the removal grating, it is possible to effectively remove or reduce a scattering component unnecessary for phase imaging by radiation. Thereby, the image quality of the obtained radiation phase contrast image can be improved.

Abstract

 X線等の放射線による位相イメージングにおいて、放射線遮蔽部が一次元に配列された散乱除去格子を用いて散乱線を効果的に除去あるいは低減し、得られる放射線位相コントラスト画像の画質を高める。 放射線撮影システム10は、放射線画像検出装置12と、放射線源11と、放射線画像検出装置で取得される複数の放射線画像から被写体の位相コントラスト画像を生成する演算部13と、を備えている。放射線画像検出装置12は、第1の格子31と、第1の格子を通過した放射線によって形成される放射線像のパターン周期に実質的に一致する周期を有し、放射線像に対して互いに位相の異なる複数の相対位置に置かれる格子パターン32と、格子パターンによってマスキングされた放射線像を検出する放射線画像検出器30と、所定の方向に延伸し互いに間隔を置いて配列された複数の放射線遮蔽部34aを有し、放射線画像検出器に入射する散乱線を除去する散乱除去格子34と、を備えており、散乱除去格子の複数の放射線遮蔽部の配列方向と、格子パターンのピッチ方向とのなす角度が、0°以上90°未満である。

Description

放射線画像検出装置、放射線撮影装置、放射線撮影システム
 本発明は、放射線画像検出装置、放射線撮影装置、及び放射線撮影システムに関する。
 X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被写体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。
 一般的なX線撮影システムでは、X線を放射するX線源とX線を検出するX線画像検出器との間に被写体を配置して、被写体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器の各画素に入射する。この結果、被写体のX線吸収像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。
 しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線吸収像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が少ないため、濃淡差が得られにくい。
 このような問題を背景に、近年、被写体によるX線の強度変化に代えて、被写体によるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。一般に、X線が物体に入射したとき、X線の強度よりも位相のほうが高い相互作用を示すことが知られている。このため、位相差を利用したX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を得ることができる。このようなX線位相イメージングの一種として、近年、2枚の透過回折格子(位相型格子及び吸収型格子)とX線画像検出器とからなるX線タルボ干渉計を用いたX線撮影システムが考案されている(例えば、特許文献1参照)。
 X線タルボ干渉計は、被写体の背後に第1の回折格子(位相型格子あるいは吸収型格子)を配置し、第1の回折格子の格子ピッチとX線波長で決まる特定距離(タルボ干渉距離)だけ下流に第2の回折格子(吸収型格子)を配置し、その背後にX線画像検出器を配置することにより構成される。上記タルボ干渉距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像を形成する距離であり、この自己像は、X線源と第1の回折格子との間に配置された被写体とX線との相互作用(位相変化)により変調を受ける。
 X線タルボ干渉計では、第1の回折格子の自己像と第2の回折格子との重ね合わせにより生じるモアレ縞を検出し、被写体によるモアレ縞の変化を解析することによって被写体の位相情報を取得する。モアレ縞の解析方法としては、例えば縞走査法が知られている。この縞走査法によると、第1の回折格子に対して第2の回折格子を、第1の回折格子の面にほぼ平行で、かつ第1の回折格子の格子方向(条帯方向)にほぼ垂直な方向に、格子ピッチを等分割した走査ピッチで並進移動させながら複数回の撮影を行い、X線画像検出器で得られる各画素の信号値の変化から、被写体で屈折したX線の角度分布(位相シフトの微分像)を取得し、この角度分布に基づいて被写体の位相コントラスト画像を得ることができる。
 上記の通り、X線位相イメージングは、被写体によって起こるX線の位相変化を観測するものであり、位相変化を観測することとは、被写体によって起こるX線の光路の変化、つまりはX線の屈折を観測することに相当する。しかし、X線と被写体との相互作用の中で、屈折以外にもX線の光路を変える物理現象(例えば、コンプトン散乱やレイリー散乱)が存在する。そして、これらの現象は、X線の屈折に基づく位相変化によってもたらされる各画素の信号を劣化させる。上記の散乱に対して、特許文献1に記載されたX線撮影システムにおいては、高アスペクト比に形成された第2の回折格子を用いて散乱線を除去する試みがなされている。
日本国特表2008-545981号公報
 散乱線は、被写体に入射するX線の運動方向に垂直な面上で等方的な角度分布を有する。よって、散乱線を除去するための格子は、X線遮蔽部が縦横に配列された二次元格子であることが好ましいが、その構造が複雑となる。また、通常の散乱除去格子のX線遮蔽部には、一般に厚さ方向に数mm厚程度の金属箔が用いられるところ、第2の回折格子のX線遮蔽部には、一般に厚さ方向100μm程度の金などが用いられており、散乱除去性能が不足する虞がある。第2の回折格子は、典型的にはμmオーダーのピッチで構成する必要があるため、この第2の回折格子を、散乱線を除去あるいは低減できる程に十分にX線遮蔽部が厚い、高アスペクト比の二次元格子で構成することは非常に困難である。
 本発明は、上述した事情に鑑みなされたものであり、X線等の放射線による位相イメージングにおいて、放射線遮蔽部が一次元に配列された散乱除去格子を用いて散乱線を効果的に除去あるいは低減し、得られる放射線位相コントラスト画像の画質を高めることを目的としている。
 第1の格子と、前記第1の格子を通過した放射線によって形成される縞状の放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、所定の方向に延伸し互いに間隔を置いて配列された複数の放射線遮蔽部を有し、前記放射線画像検出器に入射する散乱線を除去する散乱除去格子と、を備え、前記散乱除去格子の前記複数の放射線遮蔽部の配列方向と、前記格子パターンのピッチ方向とのなす角度が、0°以上90°未満である放射線画像検出装置。
 本発明によれば、散乱除去格子の複数の放射線遮蔽部の配列方向と、格子パターンのピッチ方向とのなす角度を0°以上90°未満としており、放射線遮蔽部が一次元に配列された散乱除去格子であっても、放射線による位相イメージングに不要な散乱成分を効果的に除去あるいは低減することができる。それにより、得られる放射線位相コントラスト画像の画質を高めることができる。
本発明の実施形態を説明するための放射線撮影システムの一例の構成を示す模式図である。 図1の放射線撮影システムの制御ブロック図である。 図1の放射線撮影システムの放射線画像検出器の構成を示す模式図である。 図1の放射線撮影システムの撮影部の斜視図である。 図1の放射線撮影システムの撮影部の側面図である。 第1及び第2の格子の重ね合わせによるモアレ縞の周期を変更するための機構を示す模式図である。 被写体による放射線の屈折を説明するための模式図である。 縞走査法を説明するための模式図である。 縞走査に伴う放射線画像検出器の画素の信号を示すグラフである。 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。 図10の放射線撮影システムの変形例の構成を示す模式図である。 本発明の実施形態を説明するための放射線撮影システムの他の例の構成を示す模式図である。 本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その放射線画像検出器の構成を示す模式図である。 本発明の実施形態を説明するための放射線撮影システムの他の例に関し、放射線画像を生成する演算部の構成を示すブロック図である。 図14の放射線撮影システムの演算部における処理を説明するための放射線画像検出器の画素の信号を示すグラフである。
 図1は、本発明の実施形態を説明するための放射線撮影システムの一例の構成を示し、図2は、図1の放射線撮影システムの制御ブロックを示す。
 X線撮影システム10は、被写体(患者)Hを立位状態で撮影するX線診断装置であって、被写体HにX線を放射するX線源11と、X線源11に対向配置され、X線源11から被写体Hを透過したX線を検出して画像データを生成する撮影部12と、操作者の操作に基づいてX線源11の曝射動作や撮影部12の撮影動作を制御するとともに、撮影部12により取得された画像データを演算処理して位相コントラスト画像を生成するコンソール13とに大別される。
 X線源11は、天井から吊り下げられたX線源保持装置14により上下方向(x方向)に移動自在に保持されている。撮影部12は、床上に設置された立位スタンド15により上下方向に移動自在に保持されている。
 X線源11は、X線源制御部17の制御に基づき、高電圧発生器16から印加される高電圧に応じてX線を発生するX線管18と、X線管18から発せられたX線のうち、被写体Hの検査領域に寄与しない部分を遮蔽するように照射野を制限する可動式のコリメータ19aを備えたコリメータユニット19とから構成されている。X線管18は、陽極回転型であり、電子放出源(陰極)としてのフィラメント(図示せず)から電子線を放出して、所定の速度で回転する回転陽極18aに衝突させることによりX線を発生する。この回転陽極18aの電子線の衝突部分がX線焦点18bとなる。
 X線源保持装置14は、天井に設置された天井レール(図示せず)により水平方向(z方向)に移動自在に構成された台車部14aと、上下方向に連結された複数の支柱部14bとからなる。台車部14aには、支柱部14bを伸縮させて、X線源11の上下方向に関する位置を変更するモータ(図示せず)が設けられている。
 立位スタンド15は、床に設置された本体15aに、撮影部12を保持する保持部15bが上下方向に移動自在に取り付けられている。保持部15bは、上下方向に離間して配置された2つのプーリ15cの間に掛架された無端ベルト15dに接続され、プーリ15cを回転させるモータ(図示せず)により駆動される。このモータの駆動は、操作者の設定操作に基づき、後述するコンソール13の制御装置20により制御される。
 また、立位スタンド15には、プーリ15c又は無端ベルト15dの移動量を計測することにより、撮影部12の上下方向に関する位置を検出するポテンショメータ等の位置センサ(図示せず)が設けられている。この位置センサの検出値は、ケーブル等によりX線源保持装置14に供給される。X線源保持装置14は、供給された検出値に基づいて支柱部14bを伸縮させ、撮影部12の上下動に追従するようにX線源11を移動させる。
 コンソール13には、CPU、ROM、RAM等からなる制御装置20が設けられている。制御装置20には、操作者が撮影指示やその指示内容を入力する入力装置21と、撮影部12により取得された画像データを演算処理してX線画像を生成する演算処理部22と、X線画像を記憶する記憶部23と、X線画像等を表示するモニタ24と、X線撮影システム10の各部と接続されるインターフェース(I/F)25とがバス26を介して接続されている。
 入力装置21としては、例えば、スイッチ、タッチパネル、マウス、キーボード等を用いることが可能であり、入力装置21の操作により、X線管電圧やX線照射時間等のX線撮影条件、撮影タイミング等が入力される。モニタ24は、液晶ディスプレイ等からなり、制御装置20の制御により、X線撮影条件等の文字やX線画像を表示する。
 撮影部12には、半導体回路からなるフラットパネル検出器(FPD)30、被写体HによるX線の位相変化(角度変化)を検出し位相イメージングを行うための第1の吸収型格子31及び第2の吸収型格子32、そして散乱線を除去する散乱除去格子34が設けられている。
 FPD30は、検出面がX線源11から照射されるX線の光軸Aに直交するように配置されている。詳しくは後述するが、第1及び第2の吸収型格子31,32、並びに散乱除去格子34は、FPD30とX線源11との間に配置されている。
 また、撮影部12には、第2の吸収型格子32を上下方向(x方向)に並進移動させることにより、第1の吸収型格子31に対する第2の吸収型格子32の相対位置関係を変化させる走査機構33が設けられている。この走査機構33は、例えば、圧電素子等のアクチュエータにより構成される。
 図3は、図1の放射線撮影システムに含まれる放射線画像検出器の構成を示す。
 放射線画像検出器としてのFPD30は、X線を電荷に変換して蓄積する複数の画素40がアクティブマトリクス基板上にxy方向に2次元配列されてなる受像部41と、受像部41からの電荷の読み出しタイミングを制御する走査回路42と、各画素40に蓄積された電荷を読み出し、電荷を画像データに変換して記憶する読み出し回路43と、画像データをコンソール13のI/F25を介して演算処理部22に送信するデータ送信回路44とから構成されている。なお、走査回路42と各画素40とは、行毎に走査線45によって接続されており、読み出し回路43と各画素40とは、列毎に信号線46によって接続されている。
 各画素40は、アモルファスセレン等の変換層(図示せず)でX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型の素子として構成することができる。各画素40には、TFTスイッチ(図示せず)が接続され、TFTスイッチのゲート電極が走査線45、ソース電極がキャパシタ、ドレイン電極が信号線46に接続される。TFTスイッチが走査回路42からの駆動パルスによってON状態になると、キャパシタに蓄積された電荷が信号線46に読み出される。
 なお、各画素40は、酸化ガドリニウム(Gd)やヨウ化セシウム(CsI)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子として構成することも可能である。また、X線画像検出器としては、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした各種のX線画像検出器を用いることも可能である。
 読み出し回路43は、積分アンプ回路、A/D変換器、補正回路、及び画像メモリ(いずれも図示せず)により構成されている。積分アンプ回路は、各画素40から信号線46を介して出力された電荷を積分して電圧信号(画像信号)に変換して、A/D変換器に入力する。A/D変換器は、入力された画像信号をデジタルの画像データに変換して補正回路に入力する。補正回路は、画像データに対して、オフセット補正、ゲイン補正、及びリニアリティ補正を行い、補正後の画像データを画像メモリに記憶させる。なお、補正回路による補正処理として、X線の露光量や露光分布(いわゆるシェーディング)の補正や、FPD30の制御条件(駆動周波数や読み出し期間)に依存するパターンノイズ(例えば、TFTスイッチのリーク信号)の補正等を含めてもよい。
 図4及び図5は、図1の放射線撮影システムの撮影部を示す。
 第1の吸収型格子31は、基板31aと、この基板31aに配置された複数のX線遮蔽部31bとから構成されている。同様に、第2の吸収型格子32は、基板32aと、この基板32aに配置された複数のX線遮蔽部32bとから構成されている。基板31a,32aは、いずれもX線を透過させるガラス等のX線透過性部材により形成されている。
 X線遮蔽部31b,32bは、いずれもX線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、x方向及びz方向に直交するy方向)に延伸した線状の部材で構成される。各X線遮蔽部31b,32bの材料としては、X線吸収性に優れるものが好ましく、例えば、金、白金等の重金属であることが好ましい。これらのX線遮蔽部31b,32bは、金属メッキ法や蒸着法によって形成することが可能である。
 X線遮蔽部31bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。同様に、X線遮蔽部32bは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に一定の周期pで、互いに所定の間隔dを空けて配列されている。このような第1及び第2の吸収型格子31,32は、入射X線に位相差を与えるものでなく、強度差を与えるものであるため、振幅型格子とも称される。なお、スリット部(上記間隔d,dの領域)は空隙でなくてもよく、例えば、高分子や軽金属などのX線低吸収材で該空隙を充填してもよい。
 第1及び第2の吸収型格子31,32は、タルボ干渉効果の有無に係らず、スリット部を通過したX線を幾何学的に投影するように構成されている。具体的には、間隔d,dを、X線源11から照射されるX線のピーク波長より十分大きな値とすることで、照射X線に含まれる大部分のX線をスリット部で回折させずに、直進性を保ったまま通過するように構成する。例えば、前述の回転陽極18aとしてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は、約0.4Åである。この場合には、間隔d,dを、1~10μm程度とすれば、スリット部で大部分のX線が回折されずに幾何学的に投影される。
 X線源11から放射されるX線は、平行ビームではなく、X線焦点18bを発光点としたコーンビームであるため、第1の吸収型格子31を通過して射影される投影像(以下、この投影像をG1像と称する)は、X線焦点18bからの距離に比例して拡大される。第2の吸収型格子32の格子ピッチpは、そのスリット部が、第2の吸収型格子32の位置におけるG1像の明部の周期パターンとほぼ一致するように決定されている。すなわち、X線焦点18bから第1の吸収型格子31までの距離をL、第1の吸収型格子31から第2の吸収型格子32までの距離をLとした場合に、格子ピッチpは、次式(1)の関係を満たすように決定される。
Figure JPOXMLDOC01-appb-M000001
 第1の吸収型格子31から第2の吸収型格子32までの距離Lは、タルボ干渉計では、第1の回折格子の格子ピッチとX線波長とで決まるタルボ干渉距離に制約されるが、本X線撮影システム10の撮影部12では、第1の吸収型格子31が入射X線を回折させずに投影させる構成であって、第1の吸収型格子31のG1像が、第1の吸収型格子31の後方のすべての位置で相似的に得られるため、該距離Lを、タルボ干渉距離と無関係に設定することができる。
 上記のように撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子31でX線を回折したと仮定した場合のタルボ干渉距離Zは、第1の吸収型格子31の格子ピッチp、第2の吸収型格子32の格子ピッチp、X線波長(ピーク波長)λ、及び正の整数mを用いて、次式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 式(2)は、X線源11から照射されるX線がコーンビームである場合のタルボ干渉距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」により知られている。
 本X線撮影システム10では、撮影部12の薄型化を目的とし、上記距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定する。すなわち、上記距離Lは、次式(3)を満たす範囲の値に設定される。
Figure JPOXMLDOC01-appb-M000003
 なお、X線源11から照射されるX線が実質的に平行ビームとみなせる場合のタルボ干渉距離Zは次式(4)となり、上記距離Lを、次式(5)を満たす範囲の値に設定する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 X線遮蔽部31b,32bは、コントラストの高い周期パターン像を生成するためには、X線を完全に遮蔽(吸収)することが好ましいが、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の遮蔽性を高めるためには、X線遮蔽部31b,32bのそれぞれの厚みh,hを、可能な限り厚くすることが好ましい。例えば、X線管18の管電圧が50kVの場合に、照射X線の90%以上を遮蔽することが好ましく、この場合には、厚みh,hは、金(Au)換算で30μm以上であることが好ましい。
 一方、X線遮蔽部31b,32bの厚みh,hを厚くし過ぎると、斜めに入射するX線がスリット部を通過しにくくなり、いわゆるケラレが生じて、X線遮蔽部31b,32bの延伸方向(条帯方向)に直交する方向(x方向)の有効視野が狭くなるといった問題がある。このため、視野確保の観点から、厚みh,hの上限を規定する。FPD30の検出面におけるx方向の有効視野の長さVを確保するには、X線焦点18bからFPD30の検出面までの距離をLとすると、厚みh,hは、図5に示す幾何学的関係から、次式(6)及び(7)を満たすように設定する必要がある。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 例えば、d=2.5μm、d=3.0μmであり、通常の病院での検査を想定して、L=2mとした場合には、x方向の有効視野の長さVとして10cmの長さを確保するには、厚みhは100μm以下、厚みhは120μm以下とすればよい。
 散乱除去格子34は、複数のX線遮蔽部34a及び複数のX線透過部34bで構成されている。
 X線遮蔽部34aは、X線源11から照射されるX線の光軸Aに直交する面内の一方向(図示の例では、y方向)に延伸した帯状の部材で構成される。X線遮蔽部34aの材料としては、X線吸収性に優れるものが好ましく、例えば、鉛や銅、タングステン、等の金属箔が用いられる。X線遮蔽部34aは、X線の光軸Aに直交する面内において、上記一方向と直交する方向(x方向)に互いに間隔を空けて配列されている。X線透過部34bは、隣り合うX線遮蔽部34aの間を充填するように設けられている。X線透過部34bの材料としては、X線低吸収材が好ましく、例えば、高分子や軽金属等が用いられる。
 散乱除去格子34は、被写体Hの下流にあって、被写体Hによって散乱されたX線(以下、散乱線という)のうち、進行方向にX線遮蔽部34aの配列方向(x方向)の成分を有する散乱線を除去あるいは低減する。図示の例では、散乱除去格子34は、第2の吸収型格子32とFPD30との間に配置されている。この場合、第1の吸収型格子31や第2の吸収型格子32において発生する散乱線についても除去あるいは低減することができる。なお、図示の例のように、X線源11側から、被写体H、第1の吸収型格子31、第2の吸収型格子32、FPD30の順に配置される場合に、散乱除去格子34は、被写体Hと第1の吸収型格子31との間、あるいは第1の吸収型格子31と第2の吸収型格子32との間にも配置され得る。
 散乱除去格子34は、X線遮蔽部34aが配列される方向(x方向)に沿った断面において、X線遮蔽部34a各々がX線源11から照射されるX線の光軸Aに平行となる、いわゆる平行グリッドであってもよいが、図示の例のように、X線遮蔽部34a各々の延長が放射線焦点に集束する、所謂、集束グリッドであることが好ましい。それによれば、被写体Hで散乱されることなくX線源11からの放射方向に略沿って進行するX線に対して、いわゆるケラレを生じにくくすることができる。なお、被写体Hによって屈折されたX線の位相変化(角度変化)は典型的には数μradであって、屈折されたX線は、X線源11からの放射方向に略沿って進行する。
 以上のように構成された撮影部12では、第1の吸収型格子31のG1像と第2の吸収型格子32との重ね合わせにより、強度変調された像が形成され、FPD30によって撮像される。ここで、散乱除去格子34によって被写体等による散乱線が除去あるいは低減されることにより、撮像される強度変調像のコントラストの低下が防止されている。第2の吸収型格子32の位置におけるG1像のパターン周期p’と、第2の吸収型格子32の実質的な格子ピッチp’(製造後の実質的なピッチ)とは、製造誤差や配置誤差により若干の差異が生じる。このうち、配置誤差とは、第1及び第2の吸収型格子31,32が、相対的に傾斜や回転、両者の間隔が変化することによりx方向への実質的なピッチが変化することを意味している。
 G1像のパターン周期p’と格子ピッチp’との微小な差異により、画像コントラストはモアレ縞となる。このモアレ縞の周期Tは、次式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 このモアレ縞をFPD30で検出するには、画素40のx方向に関する配列ピッチPは、少なくとも次式(9)を満たす必要があり、更には、次式(10)を満たすことが好ましい(ここで、nは正の整数である)。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 式(9)は、配列ピッチPがモアレ周期Tの整数倍でないことを意味しており、n≧2の場合であっても原理的にモアレ縞を検出することが可能である。式(10)は、配列ピッチPをモアレ周期Tより小さくすることを意味している。
 FPD30の画素40の配列ピッチPは、設計的に定められた値(一般的に100μm程度)であり変更することが困難であるため、配列ピッチPとモアレ周期Tとの大小関係を調整するには、第1及び第2の吸収型格子31,32の位置調整を行い、G1像のパターン周期p’と格子ピッチp’との少なくともいずれか一方を変更することによりモアレ周期Tを変更することが好ましい。
 図6に、モアレ周期Tを変更する方法を示す。
 モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aを中心として相対的に回転させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aを中心として相対的に回転させる相対回転機構50を設ける。この相対回転機構50により、第2の吸収型格子32を角度θだけ回転させると、x方向に関する実質的な格子ピッチは、「p’」→「p’/cosθ」と変化し、この結果、モアレ周期Tが変化する(FIG.6A)。
 別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させることにより行うことができる。例えば、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aに直交し、かつy方向に沿う方向の軸を中心として相対的に傾斜させる相対傾斜機構51を設ける。この相対傾斜機構51により、第2の吸収型格子32を角度αだけ傾斜させると、x方向に関する実質的な格子ピッチは、「p’」→「p’×cosα」と変化し、この結果、モアレ周期Tが変化する(FIG.6B)。
 更に別の例として、モアレ周期Tの変更は、第1及び第2の吸収型格子31,32のいずれか一方を光軸Aの方向に沿って相対的に移動させることにより行うことができる。例えば、第1の吸収型格子31と第2の吸収型格子32との間の距離Lを変更するように、第1の吸収型格子31に対して、第2の吸収型格子32を、光軸Aの方向に沿って相対的に移動させる相対移動機構52を設ける。この相対移動機構52により、第2の吸収型格子32を光軸Aに移動量δだけ移動させると、第2の吸収型格子32の位置に投影される第1の吸収型格子31のG1像のパターン周期は、「p’」→「p’×(L+L+δ)/(L+L)」と変化し、この結果、モアレ周期Tが変化する(FIG.6C)。
 本X線撮影システム10において、撮影部12は、上述のようにタルボ干渉計ではなく、距離Lを自由に設定することができるため、相対移動機構52のように距離Lの変更によりモアレ周期Tを変更する機構を、好適に採用することができる。モアレ周期Tを変更するための第1及び第2の吸収型格子31,32の上記変更機構(相対回転機構50、相対傾斜機構51、及び相対移動機構52)は、圧電素子等のアクチュエータにより構成することが可能である。
 X線源11と第1の吸収型格子31との間に被写体Hを配置した場合には、FPD30により検出されるモアレ縞は、被写体Hにより変調を受ける。この変調量は、被写体Hによる屈折効果によって偏向したX線の角度に比例する。したがって、FPD30で検出されたモアレ縞を解析することによって、被写体Hの位相コントラスト画像を生成することができる。
 次に、モアレ縞の解析方法について説明する。
 図7は、被写体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折される1つのX線を示す。なお、散乱除去格子の図示は省略する。
 符号55は、被写体Hが存在しない場合に直進するX線の経路を示しており、この経路55を進むX線は、第1及び第2の吸収型格子31,32を通過してFPD30に入射する。符号56は、被写体Hが存在する場合に、被写体Hにより屈折されて偏向したX線の経路を示している。この経路56を進むX線は、第1の吸収型格子31を通過した後、第2の吸収型格子32より遮蔽される。
 被写体Hの位相シフト分布Φ(x)は、被写体Hの屈折率分布をn(x,z)、zをX線の進む方向として、次式(11)で表される。
Figure JPOXMLDOC01-appb-M000011
 第1の吸収型格子31から第2の吸収型格子32の位置に投射されたG1像は、被写体HでのX線の屈折により、その屈折角φに応じた量だけx方向に変位することになる。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に次式(12)で表される。
Figure JPOXMLDOC01-appb-M000012
 ここで、屈折角φは、X線波長λと被写体Hの位相シフト分布Φ(x)を用いて、式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
 このように、被写体HでのX線の屈折によるG1像の変位量Δxは、被写体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD30の各画素40から出力される信号の位相ズレ量ψ(被写体Hがある場合とない場合とでの各画素40の信号の位相のズレ量)に、次式(14)のように関連している。
Figure JPOXMLDOC01-appb-M000014
 したがって、各画素40の信号の位相ズレ量ψを求めることにより、式(14)から屈折角φが求まり、式(13)を用いて位相シフト分布Φ(x)の微分量が求まるから、これをxについて積分することにより、被写体Hの位相シフト分布Φ(x)、すなわち被写体Hの位相コントラスト画像を生成することができる。本X線撮影システム10では、上記位相ズレ量ψを、下記に示す縞走査法を用いて算出する。
 縞走査法では、第1及び第2の吸収型格子31,32の一方を他方に対して相対的にx方向にステップ的に並進移動させながら撮影を行う(すなわち、両者の格子周期の位相を変化させながら撮影を行う)。本X線撮影システム10では、前述の走査機構33により第2の吸収型格子32を移動させているが、第1の吸収型格子31を移動させてもよい。第2の吸収型格子32の移動に伴って、モアレ縞が移動し、並進距離(x方向への移動量)が、第2の吸収型格子32の格子周期の1周期(格子ピッチp)に達すると(すなわち、位相変化が2πに達すると)、モアレ縞は元の位置に戻る。このようなモアレ縞の変化を、格子ピッチpを整数分の1ずつ第2の吸収型格子32を移動させながら、FPD30で縞画像を撮影し、撮影した複数の縞画像から各画素40の信号を取得し、演算処理部22で演算処理することにより、各画素40の信号の位相ズレ量ψを得る。
 図8は、格子ピッチpをM(2以上の整数)個に分割した走査ピッチ(p/M)ずつ第2の吸収型格子32を移動させる様子を模式的に示す。
 走査機構33は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2の吸収型格子32を順に並進移動させる。なお、同図では、第2の吸収型格子32の初期位置を、被写体Hが存在しない場合における第2の吸収型格子32の位置でのG1像の暗部が、X線遮蔽部32bにほぼ一致する位置(k=0)としているが、この初期位置は、k=0,1,2,・・・,M-1のうちいずれの位置としてもよい。
 まず、k=0の位置では、主として、被写体Hにより屈折されなかったX線が第2の吸収型格子32を通過する。次に、k=1,2,・・・と順に第2の吸収型格子32を移動させていくと、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されなかったX線の成分が減少する一方で、被写体Hにより屈折されたX線の成分が増加する。特に、k=M/2では、主として、被写体Hにより屈折されたX線のみが第2の吸収型格子32を通過する。k=M/2を超えると、逆に、第2の吸収型格子32を通過するX線は、被写体Hにより屈折されたX線の成分が減少する一方で、被写体Hにより屈折されなかったX線の成分が増加する。
 k=0,1,2,・・・,M-1の各位置で、FPD30により撮影を行うと、各画素40について、M個の信号値(画素データ)が得られる。以下に、このM個の信号値から各画素40の信号の位相ズレ量ψを算出する方法を説明する。第2の吸収型格子32の位置kにおける各画素40の信号値をI(x)と標記すると、I(x)は、次式(15)で表される。
Figure JPOXMLDOC01-appb-M000015
 ここで、xは、画素40のx方向に関する座標であり、Aは入射X線の強度であり、Aは画素40の信号値のコントラストに対応する値である(ここで、nは正の整数である)。また、φ(x)は、上記屈折角φを画素40の座標xの関数として表したものである。
 次いで、次式(16)の関係式を用いると、上記屈折角φ(x)は、次式(17)のように表される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 ここで、arg[ ]は、偏角の抽出を意味しており、各画素40の信号の位相ズレ量ψに対応する。したがって、各画素40で得られたM個の信号値から、式(17)に基づいて各画素40の信号の位相ズレ量ψを算出することにより、屈折角φ(x)が求められる。
 図9は、縞走査に伴って変化する放射線画像検出器の一つの画素の信号を示す。
 各画素40で得られたM個の信号値は、第2の吸収型格子32の位置kに対して、格子ピッチpの周期で周期的に変化する。図9中の破線は、被写体Hが存在しない場合の信号値の変化を示しており、図9中の実線は、被写体Hが存在する場合の信号値の変化を示している。この両者の波形の位相差が各画素40の信号の位相ズレ量ψに対応する。
 そして、屈折角φ(x)は、上記式(13)で示したように微分位相値に対応する値であるため、屈折角φ(x)をx軸に沿って積分することにより、位相シフト分布Φ(x)が得られる。なお、上記の説明では、画素40のy方向に関するy座標を考慮していないが、各y座標について同様の演算を行うことにより、x方向及びy方向における2次元的な位相シフト分布Φ(x,y)が得られる。
 以上の演算は、演算処理部22により行われ、演算処理部22は、位相コントラスト画像を記憶部23に記憶させる。
 位相シフト分布Φ(x)を得るにあたって、屈折角φ(x)がx方向に沿って積分される。そして、屈折角φ(x)は、各画素40の信号の位相ズレ量ψに基づいて求められ、この位相ズレ量ψは、上記の通り、第1及び第2の吸収型格子31,32におけるX線遮蔽部31b、32bの配列方向であるx方向に第2の吸収型格子32を走査し、第2の吸収型格子32が各走査位置にあるときに撮影を行って各画素40で得られる複数個の信号値から求められる。即ち、位相シフト分布Φ(x)は、第1及び第2の吸収型格子31,32におけるX線遮蔽部31b、32bの配列方向であるx方向のX線の屈折成分に基づくものとなる。そのため、x方向の成分を進行方向に含む散乱線、特にx方向に進行する散乱線は、位相シフト分布Φ(x)に及ぼす影響が相対的に大きい。
 散乱除去格子34において、複数のX線遮蔽部34aはx方向に配列されており、X線遮蔽部34aの配列方向は、第2の吸収型格子32におけるX線遮蔽部32bの配列方向と平行(0°)となっている。よって、散乱除去格子34は、x方向の成分を進行方向に含む散乱線、特にx方向に進行する散乱線を効果的に除去あるいは低減することができる。それにより、位相シフト分布Φ(x)を得るためのx方向のX線の屈折成分を抽出して、高精度に位相シフト分布Φ(x)を得ることができる。
 なお、第2の吸収型格子32もまた、散乱線を除去する機能を少なからず有することから、散乱除去格子34は、そのX線遮蔽部34aの配列方向が第2の吸収型格子32におけるX線遮蔽部32bの配列方向と交差するように配置されてもよい。ただし、X線遮蔽部34aの配列方向が第2の吸収型格子32におけるX線遮蔽部32bの配列方向と直交するように散乱除去格子34が配置されると、位相シフト分布Φ(x)に及ぼす影響が最も大きいx方向に進行する散乱線の除去を、散乱除去格子34よりも散乱除去能に劣る第2の吸収型格子32のみに依存することになる。よって、散乱除去格子34における複数のX線遮蔽部34aの配列方向と第2の吸収型格子32におけるX線遮蔽部32bの配列方向(x方向)とのなす角度は、0°以上で90°未満であり、好ましくは0°である。
 また、上記の第1及び第2の吸収型格子31,32を用いた縞走査法によるX線位相イメージングでは、第2の吸収型格子32より上流にある被写体Hを含む物体でのX線の屈折が観測される。そのため、第2の吸収型格子32より上流(例えば被写体Hと第1の吸収型格子31との間、あるいは第1の吸収型格子31と第2の吸収型格子32との間)に散乱除去格子が存在すると、散乱除去格子でのX線の屈折が被写体HでのX線の屈折と区別なく観測される。そして、X線の屈折は、物体中におけるX線が透過する光学的距離が異なる領域、特に透過する物体のエッジ部で顕著に発生するため、散乱除去格子の表面の僅かな凹凸であっても検出されることがある。しかし、本X線撮影システム10においては、散乱除去格子34が第2の吸収型格子32とFPD30との間、即ち、第2の吸収型格子32の下流に配置されている。そのため、散乱除去格子34での屈折は観測されず、即ち、散乱除去格子34での屈折は、第2の吸収型格子32を走査することによって得られる各画素40の一連の信号の位相ズレ量ψに影響を及ぼさない。それにより、散乱除去格子34の表面の凹凸が陰影となってX線位相コントラスト画像上に現れることを防止することができる。
 また、X線の吸収に基づいた画像(X線吸収コントラスト画像)を得る従来のX線撮影システムにおいては、散乱除去格子のX線遮蔽部が画像に写り込むことを防止するために、散乱除去格子がX線照射中に移動される。X線位相コントラスト画像を得る本X線撮影システム10において、同様にX線照射中に散乱除去格子34を移動させてもよいが、好ましくは、散乱除去格子34は、少なくともX線照射中は静止される。なぜなら、散乱除去格子34を移動させることで振動が発生し、その振動によって第1及び第2の吸収型格子31,32の相対位置ズレが生じ得る。被写体Hを透過することで生じるX線の屈折角度は数μradと僅かであり、それに伴って発生するG1像の変位量、及びこの変位量に関連する各画素40の信号の位相ズレ量も僅かである。そのため、第1及び第2の吸収型格子31,32の相対位置ズレは、位相検出能に影響する。よって、第1及び第2の吸収型格子31,32の相対位置ズレを防止するめに、散乱除去格子34は、X線照射中は静止されるのが好ましい。
 上記の縞走査、及び位相コントラスト画像の生成処理は、入力装置21から操作者により撮影指示がなされた後、制御装置20の制御に基づいて各部が連係動作し、自動的に行われ、最終的に被写体Hの位相コントラスト画像がモニタ24に表示される。
 以上、説明したように、本X線撮影システム10によれば、散乱除去格子34の複数のX線遮蔽部34aの配列方向と、第2の吸収型格子32の複数のX線遮蔽部32bの配列方向とのなす角度を0°以上90°未満としており、X線遮蔽部が一次元に配列された散乱除去格子34であっても、放射線による位相イメージングに不要な散乱成分を効果的に除去あるいは低減することができる。それにより、得られるX線位相コントラスト画像の画質を高めることができる。
 また、第1の吸収型格子31で殆どのX線を回折させずに、第2の吸収型格子32に幾何学的に投影するため、照射X線には、高い空間的可干渉性は要求されず、X線源11として医療分野で用いられている一般的なX線源を用いることができる。そして、第1の吸収型格子31から第2の吸収型格子32までの距離Lを任意の値とすることができ、該距離Lを、タルボ干渉計での最小のタルボ干渉距離より小さく設定することができるため、撮影部12を小型化(薄型化)することができる。更に、本X線撮影システムでは、第1の吸収型格子31からの投影像(G1像)には、照射X線のほぼすべての波長成分が寄与し、モアレ縞のコントラストが向上するため、位相コントラスト画像の検出感度を向上させることができる。
 なお、上述したX線撮影システム10は、第1の格子の投影像に対して縞走査を行って屈折角φを演算するものであって、そのため、第1及び第2の格子がいずれも吸収型格子であるものとして説明したが、本発明はこれに限定されるものではない。上述のとおり、タルボ干渉像に対して縞走査を行って屈折角φを演算する場合にも、本発明は有用である。よって、第1の格子は、吸収型格子に限らず位相型格子であってもよい。また、第1の格子のX線像と第2の格子との重ね合わせによって形成されるモアレ縞の解析方法は、前述した縞走査法に限られず、例えば「J. Opt. Soc. Am. Vol.72,No.1 (1982) p.156」により知られているフーリエ変換/フーリエ逆変換を用いた方法など、モアレ縞を利用した種々の方法も適用可能である。
 また、本X線撮影システム10は、位相シフト分布Φを画像としたものを位相コントラスト画像として記憶ないし表示するものとして説明したが、上記のとおり、位相シフト分布Φは、屈折角φより求まる位相シフト分布Φの微分量を積分したものであって、屈折角φ及び位相シフト分布Φの微分量もまた被写体によるX線の位相変化に関連している。よって、屈折角φを画像としたもの、また、位相シフトΦの微分量を画像としたものも位相コントラスト画像に含まれる。
 図10は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
 図10に示すマンモグラフィ装置80は、被検体として乳房BのX線画像(位相コントラスト画像)を撮影する装置である。マンモグラフィ装置80は、基台(図示せず)に対して旋回可能に連結されたアーム部材81の一端に配設されたX線源収納部82と、アーム部材81の他端に配設された撮影台83と、撮影台83に対して上下方向に移動可能に構成された圧迫板84とを備える。
 X線源収納部82にはX線源11が収納されており、撮影台83には撮影部12が収納されている。X線源11と撮影部12とは、互いに対向するように配置されている。圧迫板84は、移動機構(図示せず)により移動し、撮影台83との間で乳房Bを挟み込んで圧迫する。この圧迫状態で、上記したX線撮影が行われる。
 なお、X線源11及び撮影部12は、前述したX線撮影システム10のものと同様の構成であるため、各構成要素には、X線撮影システム10と同一の符号を付している。その他の構成及び作用については、前述したX線撮影システム10と同様であるため説明は省略する。
 図11は、図10の放射線撮影システムの変形例を示す。
 図11に示すマンモグラフィ装置90は、第1の吸収型格子31がX線源11と圧迫板84との間に配設されている点が前述したマンモグラフィ装置80と異なる。第1の吸収型格子31は、アーム部材81に接続された格子収納部91に収納されている。撮影部92は、FPD30、第2の吸収型格子32、走査機構33、及び散乱除去格子34により構成されている。図示の例において、散乱除去格子34は、第2の吸収型格子32とFPD30との間に配置されているが、被写体である乳房Bと第2の吸収型格子32との間にも配置され得る。
 このように、被検体(乳房)Bが第1の吸収型格子31と第2の吸収型格子32との間に位置する場合であっても、第2の吸収型格子32の位置に形成される第1の吸収型格子31の投影像(G1像)が被検体Bにより変形する。したがって、この場合でも、被検体Bに起因して変調されたモアレ縞をFPD30により検出することができる。すなわち、本マンモグラフィ装置90でも前述した原理で被検体Bの位相コントラスト画像を得ることができる。
 そして、本マンモグラフィ装置90では、第1の吸収型格子31による遮蔽により、線量がほぼ半減したX線が被検体Bに照射されることになるため、被検体Bの被曝量を、前述したマンモグラフィ装置80の場合の約半分に低減することができる。なお、本マンモグラフィ装置90のように、第1の吸収型格子31と第2の吸収型格子32との間に被検体を配置することは、前述したX線撮影システム10にも適用することが可能である。
 好ましくは、散乱線の影響が強い撮影手技の場合に散乱除去格子34を用いて撮影し、散乱線の影響が弱い場合には、被爆低減の観点から、散乱線除去グリッドを用いずに撮影を行う。散乱線の影響が強い撮影手技としては、例えば腰などの厚い部位(図1)や体副方向に撮影するもの、あるいは肺や乳房などの淡いコントラスを描出するもの(図10及び図11)が例示される。一方、散乱線の影響が弱い場合としては、例えば手指や足指など薄い部位を撮影する場合が例示される。そこで、散乱除去格子34がX線照射野から退避可能であることが好ましい。例えば、散乱除去格子34を収納する撮影部12のハウジング内で、X線源11から照射されるX線の光軸Aに直交する面内の一方向(例えばy方向)に移動可能に散乱除去格子34を支持し、適宜な駆動機構を用いて上記の一方向に散乱除去格子34を進退させ、散乱線の影響が弱い撮影手技の場合に、上記の駆動機構によって散乱除去格子34をX線照射野から退避させる。あるいは、撮影部12のハウジングの外に抜去して散乱除去格子34をX線照射野から退避させるようにしてもよい。
 図12は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
 X線撮影システム100は、X線源101のコリメータユニット102に、マルチスリット103を配設した点が、前述したX線撮影システム10と異なる。その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。
 前述したX線撮影システム10では、X線源11からFPD30までの距離を、一般的な病院の撮影室で設定されるような距離(1m~2m)とした場合に、X線焦点18bの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、X線焦点18bの直後にピンホールを設置して実効的に焦点サイズを小さくすることが考えられるが、実効的な焦点サイズを縮小するためにピンホールの開口面積を小さくすると、X線強度が低下してしまう。本X線撮影システム100においては、この課題を解決するために、X線焦点18bの直後にマルチスリット103を配置する。
 マルチスリット103は、撮影部12に設けられた第1及び第2の吸収型格子31,32と同様な構成の吸収型格子(第3の吸収型格子)であり、一方向(y方向)に延伸した複数のX線遮蔽部が、第1及び第2の吸収型格子31,32のX線遮蔽部31b,32bと同一方向(x方向)に周期的に配列されている。このマルチスリット103は、X線焦点18bから放射される放射線を部分的に遮蔽することにより、x方向に関する実効的な焦点サイズを縮小して、x方向に多数の点光源(分散光源)を形成することを目的としている。
 このマルチスリット103の格子ピッチpは、マルチスリット103から第1の吸収型格子31までの距離をLとして、次式(18)を満たすように設定する必要がある。
Figure JPOXMLDOC01-appb-M000018
 上記式(18)は、マルチスリット103により分散形成された各点光源から射出されたX線の第1の吸収型格子31による投影像(G1像)が、第2の吸収型格子32の位置で一致する(重なり合う)ための幾何学的な条件である。
 また、実質的にマルチスリット103の位置がX線焦点位置となるため、第2の吸収型格子32の格子ピッチpは、次式(19)の関係を満たすように決定される。
Figure JPOXMLDOC01-appb-M000019
 このように、本X線撮影システム100では、マルチスリット103により形成される複数の点光源に基づくG1像が重ね合わせられることにより、X線強度を低下させずに、位相コントラスト画像の画質を向上させることができる。以上説明したマルチスリット103は、前述したいずれのX線撮影システムにおいても適用可能である。
 図13は、本発明の実施形態を説明するための放射線撮影システムの他の例に関し、その放射線画像検出器の構成を示す。
 前述したX線撮影システム10では、第2の吸収型格子32がFPD30とは独立して設けられているが、特開2009-133823号公報に開示された構成のX線画像検出器を用いることにより、第2の吸収型格子を排することができる。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であって、各画素120の電荷収集電極121が、一定の周期で配列された線状電極を互いに電気的に接続してなる複数の線状電極群122~127を、互いに位相が異なるように配置することにより構成されている。
 画素120は、x方向及びy方向に沿って一定のピッチで2次元配列されており、各画素120には、X線を電荷に変換する変換層によって変換された電荷を収集するための電荷収集電極121が形成されている。電荷収集電極121は、第1~第6の線状電極群122~127から構成されており、各線状電極群の線状電極の配列周期の位相がπ/3ずつずれている。具体的には、第1の線状電極群122の位相を0とすると、第2の線状電極群123の位相はπ/3、第3の線状電極群124の位相は2π/3、第4の線状電極群125の位相はπ、第5の線状電極群126の位相は4π/3、第6の線状電極群127の位相は5π/3である。
 第1~第6の線状電極群122~127はそれぞれ、y方向に延伸した線状電極をx方向に所定のピッチpで周期的に配列したものである。この線状電極の配列ピッチpの実質的なピッチp’(製造後の実質的なピッチ)と、電荷収集電極121の位置(X線画像検出器の位置)におけるG1像のパターン周期p’と、x方向に関する画素120の配列ピッチPとの関係は、前述したX線撮影システム10の第2の吸収型格子32と同様に、式(8)で表されるモアレ縞の周期Tに基づき、式(9)を満たす必要があり、更には、式(10)を満たすことが好ましい。
 更に、各画素120には、電荷収集電極121により収集された電荷を読み出すためのスイッチ群128が設けられている。スイッチ群128は、第1~第6の線状電極群121~126のそれぞれに設けられたTFTスイッチからなる。第1~第6の線状電極群121~126により収集された電荷を、スイッチ群128を制御してそれぞれ個別に読み出すことによって、一度の撮影により、互いに位相の異なる6種類の縞画像を取得することができ、この6種類の縞画像に基づいて位相コントラスト画像を生成することができる。
 このように構成されたX線画像検出器を、例えば前述したX線撮影システム10に適用した場合に、撮影部12から第2の吸収型格子32が不要となり、更に、一度の撮影で複数の位相成分の縞画像を取得することができるため、縞走査のための物理的な走査が不要となり、走査機構33も排することができる。それにより、コスト削減とともに、撮影部のさらなる薄型化を図ることができる。この場合に、散乱除去格子34は、被写体Hと第1の吸収型格子31との間、あるいは第1の吸収型格子31と上記のX線画像検出器との間に配置され得るが、第1の吸収型格子31と上記のX線画像検出器との間に配置するようにすれば、被写体Hによって発生した散乱線に加えて第1の吸収型格子31によって発生した散乱線についても除去あるいは低減することができる。なお、電荷収集電極の構成には、上記構成に代えて、特開2009-133823号公報に記載のその他の構成を用いることも可能である。
 図14は、本発明の実施形態を説明するための放射線撮影システムの他の例を示す。
 前述した各X線撮影システムによれば、これまで描出が難しかったX線弱吸収物体の高コントラストな画像(位相コントラスト画像)が得られるが、更に、位相コントラスト画像と対応して吸収画像が参照できることは読影の助けになる。例えば、吸収画像と位相コントラスト画像を重み付けや階調、周波数処理などの適当な処理によって重ね合わせることにより吸収画像で表現できなかった部分を位相コントラスト画像の情報で補うことは有効である。しかし、位相コントラスト画像とは別に吸収画像を撮影することは、位相コントラスト画像の撮影と吸収画像の撮影の間の撮影肢位のズレによって良好な重ね合わせを困難にするのに加え、撮影回数が増えることにより被検者の負担となる。また、近年、位相コントラスト画像や吸収画像の他に、小角散乱画像が注目されている。小角散乱画像は、被検体組織内部の微細構造に起因する組織性状を表現可能であり、例えば、ガンや循環器疾患といった分野での新しい画像診断のための表現方法として期待されている。
 そこで、本X線撮影システムは、位相コントラスト画像のために取得した複数枚の画像から、吸収画像や小角散乱画像を生成することも可能とする演算処理部190を用いる。なお、その他の構成については、前述したX線撮影システム10と同一であるので説明は省略する。演算処理部190は、位相コントラスト画像生成部191、吸収画像生成部192、小角散乱画像生成部193が構成されている。これらは、いずれもk=0,1,2,・・・,M-1のM個の各走査位置で得られる画像データに基づいて演算処理を行う。このうち、位相コントラスト画像生成部191は、前述の手順に従って位相コントラスト画像を生成する。
 吸収画像生成部192は、画素ごとに得られる画素データIk(x,y)を、図15に示すように、kについて平均化して平均値を算出して画像化することにより吸収画像を生成する。なお、平均値の算出は、画素データIk(x,y)をkについて単純に平均化することにより行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データIk(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の平均値を求めるようにしてもよい。また、吸収画像の生成には、平均値に限られず、平均値に対応する量であれば、画素データIk(x,y)をkについて加算した加算値等を用いることが可能である。
 小角散乱画像生成部193は、画素ごとに得られる画素データIk(x,y)の振幅値を算出して画像化することにより小角散乱画像を生成する。なお、振幅値の算出は、画素データIk(x,y)の最大値と最小値との差を求めることによって行なっても良いが、Mが小さい場合には誤差が大きくなるため、画素データIk(x,y)を正弦波でフィッティングした後、フィッティングした正弦波の振幅値を求めるようにしても良い。また、小角散乱画像の生成には、振幅値に限られず、平均値を中心としたばらつきに対応する量として、分散値や標準偏差等を用いることが可能である。
 本X線撮影システムによれば、被写体の位相コントラスト画像のために取得した複数枚の画像から吸収画像や小角散乱画像を生成するので、吸収画像や小角散乱画像の撮影の間の撮影肢位のズレが生じず、位相コントラスト画像と吸収画像や小角散乱画像との良好な重ね合わせが可能となるとともに、吸収画像や小角散乱画像のために別途撮影を行う場合に比べて被写体の負担を軽減することができる。
 以上、説明したように、本明細書には、第1の格子と、前記第1の格子を通過した放射線によって形成される縞状の放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、所定の方向に延伸し互いに間隔を置いて配列された複数の放射線遮蔽部を有し、前記放射線画像検出器に入射する散乱線を除去する散乱除去格子と、を備え、前記散乱除去格子の前記複数の放射線遮蔽部の配列方向と、前記格子パターンのピッチ方向とのなす角度が、0°以上90°未満である放射線画像検出装置が開示されている。
 また、本明細書に開示された放射線画像検出装置は、前記格子パターンが、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれる。
 また、本明細書に開示された放射線画像検出装置は、前記格子パターンが、第2の格子であり、前記第1の格子及び前記第2の格子のいずれか一方を移動させ、前記第2の格子を前記放射線像に対して前記複数の相対位置に置く走査機構を更に備える。
 また、本明細書に開示された放射線画像検出装置は、前記散乱除去格子が、前記放射線画像検出器と、前記第2の格子との間に配置されている。
 また、本明細書に開示された放射線画像検出装置は、前記放射線画像検出器が、放射線を電荷に変換する変換層と、前記変換層において変換された電荷を収集する電荷収集電極と、を画素毎に備え、前記電荷収集電極は、前記放射線像のパターン周期に実質的に一致する周期を有する線状電極群を複数含み、前記複数の線状電極群は、互いに位相が異なるように配列されており、前記格子パターンは、前記複数の線状電極群の各々により構成されている放射線画像検出装置。
 また、本明細書に開示された放射線画像検出装置は、前記散乱除去格子が、前記放射線画像検出器と、前記第1の格子との間に配置されている。
 また、本明細書に開示された放射線画像検出装置は、前記散乱除去格子が、少なくとも前記放射線画像検出器によって放射線が検出されている間は静止される。
 また、本明細書に開示された放射線画像検出装置は、前記散乱除去格子が、放射線照射野から退避可能である。
 また、本明細書には、上記いずれかの放射線画像検出装置と、前記放射線画像検出装置に放射線を照射する放射線源と、を備える放射線撮影装置が開示されている。
 また、本明細書には、上記の放射線撮影装置と、前記放射線画像検出器で取得される画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算部と、を備える放射線撮影システムが開示されている。
 本発明によれば、散乱除去格子の複数の放射線遮蔽部の配列方向と、格子パターンのピッチ方向とのなす角度を0°以上90°未満としており、放射線遮蔽部が一次元に配列された散乱除去格子であっても、放射線による位相イメージングに不要な散乱成分を効果的に除去あるいは低減することができる。それにより、得られる放射線位相コントラスト画像の画質を高めることができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年10月25日出願の日本特許出願(特願2010-239109)に基づくものであり、その内容はここに参照として取り込まれる。
10   X線撮影システム
11   X線源
12   撮影部
13   コンソール
30   FPD
31   第1の吸収型格子
32   第2の吸収型格子
33   走査機構
34   散乱除去格子
40   画素

Claims (10)

  1.  第1の格子と、
     前記第1の格子を通過した放射線によって形成される縞状の放射線像のパターン周期に実質的に一致する周期を有する格子パターンと、
     前記格子パターンによってマスキングされた前記放射線像を検出する放射線画像検出器と、
     所定の方向に延伸し互いに間隔を置いて配列された複数の放射線遮蔽部を有し、前記放射線画像検出器に入射する散乱線を除去する散乱除去格子と、
     を備え、
     前記散乱除去格子の前記複数の放射線遮蔽部の配列方向と、前記格子パターンのピッチ方向とのなす角度が、0°以上90°未満である放射線画像検出装置。
  2.  請求項1に記載の放射線画像検出装置であって、
     前記格子パターンは、前記放射線像に対して互いに位相の異なる複数の相対位置に置かれる放射線画像検出装置。
  3.  請求項2に記載の放射線画像検出装置であって、
     前記格子パターンは、第2の格子であり、
     前記第1の格子及び前記第2の格子のいずれか一方を移動させ、前記第2の格子を前記放射線像に対して前記複数の相対位置に置く走査機構を更に備える放射線画像検出装置。
  4.  請求項3に記載の放射線画像検出装置であって、
     前記散乱除去格子は、前記放射線画像検出器と、前記第2の格子との間に配置されている放射線画像検出装置。
  5.  請求項1に記載の放射線画像検出装置であって、
     前記放射線画像検出器は、放射線を電荷に変換する変換層と、前記変換層において変換された電荷を収集する電荷収集電極と、を画素毎に備え、
     前記電荷収集電極は、前記放射線像のパターン周期に実質的に一致する周期を有する線状電極群を複数含み、
     前記複数の線状電極群は、互いに位相が異なるように配列されており、
     前記格子パターンは、前記複数の線状電極群の各々により構成されている放射線画像検出装置。
  6.  請求項5に記載の放射線画像検出装置であって、
     前記散乱除去格子は、前記放射線画像検出器と、前記第1の格子との間に配置されている放射線画像検出装置。
  7.  請求項1から6のいずれか一項に記載の放射線画像検出装置であって、
     前記散乱除去格子は、少なくとも前記放射線画像検出器によって放射線が検出されている間は静止される放射線画像検出装置。
  8.  請求項1から7のいずれか一項に記載の放射線画像検出装置であって、
     前記散乱除去格子は、放射線照射野から退避可能である放射線検出装置。
  9.  請求項1から8のいずれか一項に記載の放射線画像検出装置と、
     前記放射線画像検出装置に放射線を照射する放射線源と、
     を備える放射線撮影装置。
  10.  請求項9に記載の放射線撮影装置と、
     前記放射線画像検出器で取得される画像から、前記放射線画像検出器に入射する放射線の屈折角の分布を演算し、この屈折角の分布に基づいて、被写体の位相コントラスト画像を生成する演算部と、
     を備える放射線撮影システム。
PCT/JP2011/074186 2010-10-25 2011-10-20 放射線画像検出装置、放射線撮影装置、放射線撮影システム WO2012056992A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010239109 2010-10-25
JP2010-239109 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012056992A1 true WO2012056992A1 (ja) 2012-05-03

Family

ID=45993704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074186 WO2012056992A1 (ja) 2010-10-25 2011-10-20 放射線画像検出装置、放射線撮影装置、放射線撮影システム

Country Status (1)

Country Link
WO (1) WO2012056992A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049725A (zh) * 2016-11-22 2019-07-23 株式会社岛津制作所 X射线相位成像装置
US10918352B2 (en) 2017-07-13 2021-02-16 Koninklijke Philips N.V. Device and method for scatter correction in an x-ray image

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203064A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器装置
WO2007125833A1 (ja) * 2006-04-24 2007-11-08 The University Of Tokyo X線撮像装置及びx線撮像方法
JP2008545981A (ja) * 2005-06-06 2008-12-18 パウル・シェラー・インスティトゥート 非干渉性多色x線源を用いた定量的位相コントラスト画像法及び断層撮影法のための干渉計
JP2009133823A (ja) * 2007-10-31 2009-06-18 Fujifilm Corp 放射線画像検出器および放射線位相画像撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545981A (ja) * 2005-06-06 2008-12-18 パウル・シェラー・インスティトゥート 非干渉性多色x線源を用いた定量的位相コントラスト画像法及び断層撮影法のための干渉計
JP2007203064A (ja) * 2006-02-01 2007-08-16 Siemens Ag X線装置の焦点‐検出器装置
WO2007125833A1 (ja) * 2006-04-24 2007-11-08 The University Of Tokyo X線撮像装置及びx線撮像方法
JP2009133823A (ja) * 2007-10-31 2009-06-18 Fujifilm Corp 放射線画像検出器および放射線位相画像撮影装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049725A (zh) * 2016-11-22 2019-07-23 株式会社岛津制作所 X射线相位成像装置
US10918352B2 (en) 2017-07-13 2021-02-16 Koninklijke Philips N.V. Device and method for scatter correction in an x-ray image

Similar Documents

Publication Publication Date Title
JP5331940B2 (ja) 放射線撮影システム及び放射線画像生成方法
JP5702586B2 (ja) 放射線撮影システム
JP5150713B2 (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
JP5238786B2 (ja) 放射線撮影装置及び放射線撮影システム
JP5343065B2 (ja) 放射線撮影システム
JP2012090945A (ja) 放射線検出装置、放射線撮影装置、放射線撮影システム
JP2012090944A (ja) 放射線撮影システム及び放射線撮影方法
JP2011218147A (ja) 放射線撮影システム
JP2012200567A (ja) 放射線撮影システム及び放射線撮影方法
JP2012095865A (ja) 放射線撮影装置、放射線撮影システム
JP2012115576A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
JP2012115577A (ja) 放射線撮影システム
WO2012057047A1 (ja) 放射線撮影システム
WO2012169426A1 (ja) 放射線撮影システム
JP2011206490A (ja) 放射線撮影システム及び放射線撮影方法
JP2012125423A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
WO2012169427A1 (ja) 放射線撮影システム
WO2012070661A1 (ja) 放射線画像検出装置、放射線撮影装置、及び放射線撮影システム
WO2012057278A1 (ja) 放射線撮影システム及び放射線撮影方法
WO2012056992A1 (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
JP2012120650A (ja) 放射線撮影システム及び放射線位相コントラスト画像生成方法
JP2012115621A (ja) 放射線画像検出装置、放射線撮影装置、放射線撮影システム
WO2012147749A1 (ja) 放射線撮影システム及び放射線撮影方法
WO2012057045A1 (ja) 放射線撮影装置、放射線撮影システム
JP2012228369A (ja) 放射線撮影システム及び放射線撮影方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP