WO2002002837A1 - Korrosionsbeständiger werkstoff - Google Patents

Korrosionsbeständiger werkstoff Download PDF

Info

Publication number
WO2002002837A1
WO2002002837A1 PCT/AT2001/000188 AT0100188W WO0202837A1 WO 2002002837 A1 WO2002002837 A1 WO 2002002837A1 AT 0100188 W AT0100188 W AT 0100188W WO 0202837 A1 WO0202837 A1 WO 0202837A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
resistance
equal
corrosion
free state
Prior art date
Application number
PCT/AT2001/000188
Other languages
English (en)
French (fr)
Inventor
Herbert Aigner
Josef Bernauer
Gabriele Saller
Original Assignee
Schoeller-Bleckmann Oilfield Technology Gmbh & Co Kg
Böhler Edelstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3685991&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002002837(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schoeller-Bleckmann Oilfield Technology Gmbh & Co Kg, Böhler Edelstahl GmbH filed Critical Schoeller-Bleckmann Oilfield Technology Gmbh & Co Kg
Priority to AT01942857T priority Critical patent/ATE284979T1/de
Priority to US10/182,725 priority patent/US6764647B2/en
Priority to CA002396207A priority patent/CA2396207C/en
Priority to DE50104841T priority patent/DE50104841D1/de
Priority to AU2001265657A priority patent/AU2001265657A1/en
Priority to EP01942857A priority patent/EP1294956B1/de
Publication of WO2002002837A1 publication Critical patent/WO2002002837A1/de
Priority to NO20022917A priority patent/NO330002B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Definitions

  • the invention relates to a material with great corrosion resistance in media with a high chloride concentration, suitable for devices in oilfield technology, in particular for drill string components, consisting of the elements carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and manufacturing-related impurities, which material is thermoformed and cold-formed after cooling.
  • drill string components consisting of the elements carbon (C), silicon (Si), manganese (Mn), chromium (Cr), molybdenum (Mo), nickel (Ni), copper (Cu), nitrogen (N), iron (Fe) and manufacturing-related impurities, which material is thermoformed and cold-formed after cooling.
  • Corrosion-resistant materials that show paramagnetic behavior and have high strength can be used for equipment in oilfield technology, especially for drill string components. However, ever higher demands are placed on the parts and ever stricter standards for the materials.
  • the material must have a permeability of less than 1.005 in order to be able to carry out directional measurements with a necessary accuracy when drilling or sinking a hole.
  • a high mechanical strength, in particular a high 0.2% elongation value, is necessary with regard to an advantageous system design and high operational reliability of the parts, because the stresses on the parts are intended up to the limit values of the respective material load capacity and ever greater drilling depths are required. Furthermore, a notched impact strength of the material is important because the parts have to endure high loads suddenly or suddenly.
  • a high fatigue strength is of importance in many cases, in particular for drill string parts and drill collars, because swelling or changing stresses can be present when the parts or drill collars rotate.
  • the parts are often assembled or used at low temperatures, so that The toughness transition temperature (FATT) of the material is also of great importance.
  • FATT toughness transition temperature
  • Corrosion behavior is of crucial importance for parts used in oilfield technology, that is stress corrosion cracking (SCC) and pitting corrosion (pitting, CPT).
  • SCC stress corrosion cracking
  • CPT pitting corrosion
  • materials with high corrosion resistance in media with a high chloride concentration which are suitable for devices in oil field technology, are simultaneously exposed to a large number of high loads.
  • the aim of the invention is to create a paramagnetic material with a high yield strength, high impact strength and high fatigue strength as well as a low toughness transition temperature, which is at the same time corrosion-resistant, in particular resistant to pitting, in chloride-containing media.
  • Iron (Fe) rest as well as production-related impurities exist, which material in the nitride excretion-free state and without excreted socialized
  • the advantages achieved by the invention lie in particular in the alloying effect of a balanced nitrogen concentration. It has surprisingly been found that a particularly high output can be achieved in the production of parts. Although there are no nitride precipitates during hot forming, the formability of the material is suddenly deteriorated when the forging heat fluctuates at levels above 0.29% by weight nitrogen. In the narrow concentration range from 0.17 to 0.29% by weight N, separation of associated phases can be prevented in a simple manner if the further alloying elements are present in the intended content ranges. Nitrogen, nickel and molybdenum also synergistically provide extremely high resistance to pitting.
  • the upper limit of the carbon content of the alloy for corrosion-chemical reasons is 0.03% by weight, a further reduction of which increases the corrosion resistance of the material, in particular pitting and stress corrosion cracking.
  • the silicon content in the material according to the invention should not exceed 0.89% by weight, for reasons of corrosion chemistry and in particular because of the low magnetic permeability.
  • the nitrogen solubility of the alloy and the austenite stabilization are promoted by manganese.
  • manganese levels are 4.49% by weight and nickel is introduced into the alloy.
  • a minimum content of 0.51% by weight of manganese is required for effective sulfur binding.
  • chromium is the basis for the formation of a passive layer on the surface of the parts. Contents of at least 25.1% by weight of Cr are necessary in order to largely prevent this layer from possibly breaking through, in synergy with the other alloying elements, in particular Mo and N. Levels higher than 38.9% by weight increase the risk of intermetallic phases being eliminated.
  • the alloying element nickel is important in the intended concentrations for stabilizing the face-centered cubic atomic lattice, i.e. for low permeability, and interactively with chromium and molybdenum is effective for avoiding pitting corrosion.
  • the toughness, the FATT and the fatigue strength are advantageously increased. If the value falls below 22.9% by weight, the stabilizing effect with regard to corrosion, in particular stress corrosion cracking, in chloride-containing media and with regard to the magnetic values during cold working is increasingly reduced; the tendency to form zones with deformation martensite increases.
  • a copper content is also provided within the limits of the alloy, although the effect of this element is questioned in various ways.
  • the nitrogen content is synergistically matched to the rest of the alloy composition. This content of 0.17 to 0.29% by weight has the further advantage that a block can be solidified under atmospheric pressure without gas inclusions being formed by exceeding the solubility limit during solidification.
  • the magnetic, mechanical and in particular the corrosion resistance values of the material can be set at a particularly high level if the material consists essentially of the elements in% by weight.
  • Si less than or equal to 0.75, preferably 0.20 to 0.70
  • Mn 1.1 to 2.9, preferably 2.01 to 2.6
  • Ni 27.9 to 32.5, preferably 30.9 to 32.1
  • N 0.15 to 0.29, preferably 0.18 to 0.22
  • High mechanical property values with a relative magnetic permeability of 1.004 and less are achieved if the material is thermoformed at least 3.6 times in the precipitation-free state and at a temperature of 100 to 590 ° C, preferably 360 to 490 ° C, with a degree of deformation of less than 38%, preferably from 6 to 19%, is cold worked.
  • the material has a pitting corrosion potential in neutral solution at room temperature of greater than 1100 mVH / 1000 ppm chlorides and / or 1000 mVH / 80,000 ppm chlorides.
  • Table 1 shows the chemical composition of the alloys according to the invention and of the comparison materials. Furthermore, the key figures for the hot forming and the cold forming of the forgings in this table.
  • Table 2 shows the magnetic and mechanical parameters
  • sample designation 1 to 5 are comparative alloys and with the
  • Sample designations A to E are alloys composed according to the invention in Table 1.
  • Table 2 The test results of the materials can be found in Table 2, the results of which are briefly discussed below.
  • Alloys 1 to 3 have low nitrogen contents, therefore do not show any desired hardening during cold deformation, as can be seen from the R ⁇ values, and low numerical values (not shown in the table) of 1,270, 210 and 290 were also used for the fatigue strength N / mm 2 determined. Neither the SCC nor the CPT values are sufficient in terms of corrosion chemistry, which can be attributed in particular to the low Mo content and, in the case of material 2, to a low Cr content.
  • Alloys 4 and 5 have an insufficiently high and an excessive nitrogen concentration, which leads to higher yield strength values and also increases the value of the fatigue strength (+ 308, 340 N / mm 2 ). Due to a low Cr content, material 4 has a disadvantageous DUAL microstructure (etchings at the grain boundaries), although it should also be noted that material 5 also meets the requirements despite the sufficient Cr concentrations due to the lower Cr contents does not meet the corrosion resistance.
  • the results of alloys A to E show that the nitrogen contents lead to a desired hardening by cold working and the respective concentrations of nitrogen, nickel and molybdenum synergistically bring about a high corrosion resistance of the material in chloride-containing media, in particular a high resistance to pitting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Glass Compositions (AREA)
  • Earth Drilling (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Erfindung betrifft einen Werkstoff mit grosser Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, geeignet für Einrichtungen in der Ölfeldtechnik. Zur Schaffung eines paramagnetischen Werkstoffes mit hoher Dehngrenze, hoher Kerbschlagzähigkeit und hoher Dauerwechselfestigkeit sowie niedriger Zähigkeitsübergangstemperatur bei gleichzeitig verbesserter hoher Korrosionsbeständigkeit, insbesondere Beständigkeit gegen Lochkorrosion, ist erfindungsgemäss ein Werkstoff bestehend im wesentlichen aus den Elementen in Gew.-% Kohlenstoff (C) kleiner/gleich 0,03; Silizium (Si) kleiner/gleich 0,89; Mangen (Mn) 0,51 bis 4,49; Chrom (Cr) 25,1 bis 38,9; Molybdän (Mo) 2,1 bis 5,9; Nickel (Ni) 22,9 bis 38,9; Kupfer (Cu) 0,51 bis 1,49; Stickstoff (N) 0,17 bis 0,19; Eisen (Fe) Rest, sowie herstellungsbedingte Verunreinigungen, welcher Werkstoff im nitridausscheidungsfreien Zustand und ohne ausgeschiedene vergesellschaftete Phasen warmverformt und nach Abkühlung im ferritfreien Zustand kaltverformt ist und eine Permeabilität von kleiner als 1,0048; einer Dehngrenze (Rp02) von grosser als 710 N/mm2; eine Kerbschlagzähigkeit von über 60 J; eine Dauerwechselfestigkeit von mindestens + 310 N/mm2; bei N = 107 Lastwechsel und eine Zähigkeitsübergangstemperatur von unter - 28°C (FATT) aufweist, vorgesehen.

Description

Korrosionsbeständiger Werkstoff
Die Erfindung betrifft einen Werkstoff mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, geeignet für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, bestehend aus den Elementen Kohlenstoff (C), Silizium (Si), Mangan (Mn), Chrom (Cr), Molybdän ( Mo), Nickel (Ni), Kupfer (Cu), Stickstoff (N), Eisen (Fe) sowie herstellungsbedingten Verunreinigungen, welcher Werkstoff warmverformt und nach einer Abkühlung kaltverformt ist.
Korrosionsbeständige Werkstoffe, die paramagnetisches Verhalten zeigen und hohe Festigkeit aufweisen, sind für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, verwendbar. Allerdings werden immer höhere Anforderungen an die Teile und immer strengere Maßstäbe an die Werkstoffe gestellt bzw. angelegt.
Um Richtungsmessungen bei einem Abteufen bzw. Niederbringen einer Bohrung mit einer notwendigen Genauigkeit durchführen zu können, muß der Werkstoff eine Permeabilität von kleiner als 1,005 haben.
Eine hohe mechanische Festigkeit, insbesondere ein hoher 0,2% Dehnwert, ist im Hinblick auf eine vorteilhafte anlagentechnische Konzeption und auf eine hohe Betriebssicherheit der Teile erforderlich, weil die Beanspruchungen derselben bis zu den Grenzwerten der jeweiligen Werkstoffbelastbarkeit vorgesehen und immer größere Bohrtiefen erforderlich sind. Weiters ist eine Kerbschlagzähigkeit des Materials wichtig, weil oft schlagartig oder stoßartig hohe Belastungen von den Teilen ertragen werden müssen.
Insbesondere für Bohrstrangteile und Schwerstangen ist in vielen Fällen eine hohe Dauerwechselfestigkeit von Bedeutung, weil bei einer Rotation der Teile bzw. der Schwerstangen schwellende oder wechselnde Beanspruchungen vorliegen können.
Die Teile werden oft bei niedrigen Temperaturen montiert oder eingesetzt, so daß auch der Zahigkeitsubergangstemperatur (FATT) des Werkstoffes ein hoher Stellenwert zukommt.
Entscheidende Bedeutung besitzt das Korrosionsverhalten für in der Ölfeldtechnik verwendete Teile, das sind einerseits die Spannungsrißkorrosion (SCC) und andererseits die Lochkorrosion ( Pitting, CPT).
Wie aus obigen Darlegungen hervorgeht, sind Werkstoffe mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, die für Einrichtungen in der Ölfeldtechnik geeignet sind, gleichzeitig einer Vielzahl von hohen Beanspruchungen ausgesetzt.
Die Erfindung setzt sich zum Ziel, einen paramagnetischen Werkstoff mit hoher Dehngrenze, hoher Kerbschlagzähigkeit und hoher Dauerwechselfestigkeit sowie einer niedrigen Zahigkeitsubergangstemperatur zu erstellen, der gleichzeitig korrosionsbeständig, insbesondere beständig gegen Lochkorrosion, in chloridhaltigen Medien ist.
Dieses Ziel wird bei einem Werkstoff der eingangs genannten Art dadurch erreicht, daß diese im wesentlichen aus den Elementen in Gew.-%
Kohlenstoff (C) kleiner/gleich 0,03
Silizium (Si) kleiner/gleich 0,89
Mangan (Mn) 0,51 bis 4,49
Chrom (Cr) 25,1 bis 38,9
Molybdän (Mo) 2,1 bis 5,9
Nickel (Ni) 22;9 bis 38,9
Kupfer (C) 0,51 bis 1,49
Stickstoff (N) 0,17 bis 0,29
Eisen (Fe) Rest sowie herstellungsbedingte Verunreinigungen besteht, welcher Werkstoff im nitridausscheidungsfreien Zustand und ohne ausgeschiedene vergesellschaftete
Phasen warmverformt und nach einer Abkühlung im ferritfreien Zustand kaltverformt ist und eine Permeabilität von kleiner als 1,0048 eine Dehngrenze (R^.,) von größer als 710 N/mm2 eine Kerbschlagzähigkeit von über 60 J eine Dauerwechselfestigkeit von größer +310 N/mm3 bei N = 107 Lastwechsel und eine Zähigkeitstemperatur von unter -28°C ( FATT) aufweist.
Die durch die Erfindung erreichten Vorteile liegen insbesondere in der legierungstechnischen Wirkung einer ausgewogenen Stickstoffkonzentration. Es wurde überraschend gefunden, daß bei der Herstellung von Teilen ein besonders hohes Ausbringen erreicht werden kann. Obwohl bei einer Warmverformung keinerlei Nitridausscheidungen gegeben selfTKönήen, wird die Verformbarkeit des Werkstoffes bei schwankender Schmiedehitze bei Gehalten über 0,29 Gew.-% Stickstoff sprunghaft verschlechtert. Auch kann im engen Konzentrationsbereich von 0,17 bis 0,29 Gew.-% N eine Ausscheidung von vergesellschafteten Phasen auf einfache Weise verhindert werden, wenn die weiteren Legierungselemente in den vorgesehenen Gehaltsbereichen vorliegen. Stickstoff, Nickel und Molybdän erbringen dabei auch synergetisch eine äußerst hohe Resistenz gegen Lochkorrosion (Pitting).
Mit 0,03 Gew.-% ist der Kohlenstoffgehalt der Legierung aus korrosionschemischen Gründen nach oben begrenzt, wobei eine weitere Senkung desselben die Korrosionsbeständigkeit des Werkstoffes, insbesondere die Loch-und Spannungsrißkorrosion, erhöhen.
Der Siliziumgehalt soll beim erfindungsgemäßen Werkstoff 0,89 Gew.-%, aus korrosionschemischen Gründen und insbesondere der niedrigen magnetischen Permeabilität wegen, nicht überschreiten.
Die Stickstoff löslichkeit der Legierung und die Austenitstabilisierung werden durch Mangan gefördert. Allerdings müssen im Hinblick auf eine Verhinderung von Lochkorrosion die Mangangehalte mit 4,49 Gew.-% nach oben hin beschränkt und dafür Nickel in die Legierung eingeführt werden. Ein Mindestgehalt an 0,51 Gew.-% Mangan ist für eine wirkungsvolle Schwefelabbindung erforderlich.
Eines der besonders wichtigen Legierungselemente im Hinblick auf den Korrosionswiderstand ist Chrom, weil Chrom die Grundlage für die Bildung einer Passivschicht an der Oberfläche der Teile darstellt. Um ein gegebenenfalls stellenweises Durchbrechen dieser Schicht, in Synergiewirkung mit den übrigen Legierungselementen, insbesondere Mo und N in hohem Maße zu verhindern, sind Gehalte von mindestens 25,1 Gew.% Cr erforderlich. Durch höhere Gehalte als 38,9 Gew.-% steigt die Gefahr einer Auscheidung von intermetallischen Phasen.
Wenn auch das Legierungslemente Molybdän äußerst wichtig für eine Beständigkeit des Werkstoffes gegen Spalt- und Lochkorrosion ist, sollte der Gehalt 5,9 Gew.-% nicht überschreiten, weil dann eine Neigung zur Bildung von vergesellschafteten Phasen sprunghaft steigt. Niedrigere Gehalte als 2,1 Gew.-% verschlechtern das Korrosionsverhalten des Werkstoffes überproportional.
Das Legierungselement Nickel ist in den vorgesehenen Konzentrationen wichtig zur Stabilisierung des kubisch flächenzentrierten Atomgitters, also für geringe Permeabilität, und interaktiv mit Chrom und Molybdän wirkungsvoll für eine Vermeidung der Lochkorrosion. Bis 38,9 Gew.-% werden die Zähigkeit, die FATT und die Dauerwechselfestigkeit vorteilhaft angehoben. Bei einem Unterschreiten von 22,9 Gew.-% verringert sich in zunehmendem Maße der stabilisierende Effekt hinsichtlich der Korrosion, insbesondere der Spannungsrißkorrosion, in chloridhaltigen Medien und betreffend die magnetischen Werte bei der Kaltverformung; es erhöht sich also die Neigung zur Ausbildung von Zonen mit Verformungsmartentsit.
Zur Steigerung der Korrosionsbeständigkeit ist auch ein Kupfergehalt in Grenzen der Legierung vorgesehen wenn auch die Wirkung dieses Elementes verschiedentlich in Frage gestellt wird. Wie früher erwähnt, ist der Stickstoffgehalt synergetisch auf die übrige Legierungszusammensetzung abgestimmt. Dieser Gehalt von 0,17 bis 0,29 Gew.-% besitzt den weiteren Vorteil, daß ein Block unter Atmosphärendruck erstarren gelassen werden kann, ohne daß Gaseinschlüsse durch eine Überschreitung der Löslichkeitsgrenze bei der Erstarrung in diesem gebildet werden.
Auf einem besonders hohem Niveau können die magnetischen, die mechanischen und insbesondere die Werte der Korrosionsbeständigkeit des Werkstoffes eingestellt werden, wenn dieser im wesentlichen aus den Elementen in Gew.-%
C = kleiner/gleich 0,02, vorzugsweise 0,005 bis 0,02
Si = kleiner/gleich 0,75, vorzugsweise 0,20 bis 0,70
Mn = 1,1 bis 2,9, vorzugweise 2,01 bis 2,6
Cr = 26, 1 bis 27,9, vorzugsweise 26,5 bis 27,5
Mo = 2,9 bis 5,9, vorzugsweiswe 3,2 bis 3,8
Ni = 27,9 bis 32,5, vorzugsweise 30,9 bis 32,1
Cu = 0,98 bis 1 ,45, vorzugsweise 1 ,0 bis 1 ,4
N = 0, 175 bis 0,29, vorzugsweise 0, 18 bis 0,22
Fe und herstellungsbedingten Verunreinigungen = Rest besteht.
Hohe mechanische Eigenschaftswerte bei einer relativen magnetischen Permeabilität von 1.004 und kleiner werden erreicht, wenn der Werkstoff im ausscheidungsfreien Zustand mindestens 3,6-fach warmverformt und bei einer Temperatur von 100 bis 590°C, vorzugsweise von 360 bis 490°C, mit einem Umformgrad von kleiner als 38% , vorzugsweise von 6 bis 19 %, kaltverformt ist. Erfindungsgemäß weist der Werkstoff ein Lochkorrosionspotential in neutraler Lösung bei Raumtemperatur von größer als 1100 mVH/1000 ppm Chloride und/oder 1000 mVH/80000 ppm Chloride auf.
Anhand von Beispielen wird die Erfindung näher erläutert. In der Tabelle 1 ist die chemische Zusammensetzung der erfindungsgemäßen Legierungen und der Vergleichswerkstoffe angegeben. Weiters sind die Kennzahlen für die Warmverformung und die Kaltverformung der Schmiedestücke dieser Tabelle entnehmbar.
Aus der Tabelle 2 sind die magnetischen und die mechanischen Kennwerte dieser
Werkstoffe ersichtlich.
M it der Probenbezeichnung 1 bis 5 sind Vergleichslegierungen und mit der
Probenbezeichnung A bis E sind erfindungsgemäß zusammengesetzte Legierungen in der Tabelle 1 zusammengestellt. Die Untersuchungsergebnisse der Werkstoffe sind der Tabelle 2 zu entnehmen, aufweiche Ergebnisse nachfolgend kurz eingegangen wird.
Die Legierungen 1 bis 3 weisen geringe Stickstoffgehalte auf, zeigen deshalb keine gewünschte Verfestigung bei einer Kaltverfomung, wie aus den R^- Werten hervorgeht, und auch für die Dauerwechselfestigkeit wurden niedrige Zahlenwerte (in der Tabelle nicht angegeben) von 1 270, 210 und 290 N/mm2 ermittelt. Korrosionschemisch sind weder die SCC- noch die CPT-Werte ausreichend, was insbesondere auf jeweils niedrige Mo-Gehalte und beim Werkstoff 2 auf einen niedrigen Cr-Gehalt zurückzuführen ist.
Die Legierungen 4 und 5 besitzen eine nicht ausreichend hohe und eine überhöhte Stickstoffkonzentration, was zu höheren Streckgrenzenwerten führt und auch den Wert der Biegewechselfestigkeit ( + 308, 340 N/mm2) anhebt. Auf Grund eines geringen Cr-Gehaltes ist beim Werkstoff 4 ein nachteiliges DUAL-Mikrogefüge (Anätzungen an den Korngrenzen) gegeben, wobei weiter anzumerken ist, daß auch der Werkstoff 5 trotz jeweils ausreichender Mo-Konzentrationen der geringeren Cr-Gehalte wegen, die Anforderungen an die Korrosionsbeständigkeit nicht erfüllt. Die Ergebnisse der Legierungen A bis E zeigen, daß die Stickstoffgehalte zu einer gewünschten Verfestigung durch eine Kaltumformung führen und die jeweiligen Konzentrationen von Stickstoff, Nickel und Molybdän synergetisch eine hohe Korrosionsbeständigkeit des Werkstoffes in chloridhaltigen Medien, insbesondere einen hohen Widerstand gegen Pitting, bewirken.
Figure imgf000009_0001
A, B, C, D, E => Erfin ungsgemässe Werkstoffe 1 bis 5 => Vergleichswerkstoffe Tabelle 1
Figure imgf000010_0001
A, B, C, D, E => Erfindungsgernässe Werkstoffe 1 bis 5 => Vergieichswerkstoffe Tabelle 2

Claims

Patentansprüche
1. Werkstoff mit großer Korrosionsbeständigkeit in Medien mit hoher Chloridkonzentration, geeignet für Einrichtungen in der Ölfeldtechnik, insbesondere für Bohrstrangkomponenten, bestehend im wesentlichen aus den Elementen in Gew.-%
Kohlenstoff (C) kleiner/gleich 0,03
Silizium (Si) kleiner/gleich 0,89
Mangan (Mn) 0,51 bis 4,49
Chrom (Cr) 25,1 bis 38,9
Molybdän (Mo) 2,1 bis 5,9
Nickel (Ni) 22,9 bis 38,9
Kupfer (Cu) 0,51 bis 1,49
Stickstoff (N) 0,17 bis 0,29
Eisen ( Fe) Rest sowie herstellungsbedingte Verunreinigungen, welcher Werkstoff im nitridausscheidungsfreien Zustand und ohne ausgeschiedene vergesellschaftete
Phasen warmverformt und nach einer Abkühlung im ferritfreien Zustand kaftverformt ist und eine Permeabilität von kleiner als 1 ,0048 eine Dehngrenze (R^.,) von größer als 710 N/mm2 eine Kerbschlagzähigkeit von über 60 J eine Dauerwechselfestigkeit von mindestens + 310 N/mm2 bei N = 107 Lastwechsel und eine Zahigkeitsubergangstemperatur von unter -28 ° C
(FATT) aufweist.
2. Werkstoff nach Anspruch 1, bestehend im wesentlichen aus den Elementen in Gew.-%
C = kleiner/gleich 0,02, vorzugsweise 0,01 bis 0,02 Si= kleiner/gleich 0,75, vorzugsweise 0,20 bis 0,70 Mn = 1 ,1 bis 2,9, vorzugsweise 2,01 bis 2,6
Cr= 26,1 bis 27,9, vorzugsweise 26,5 bis 27,5 Mo= 2,9 bis 5,9, vorzugsweise 3,2 bis 3,8 Ni= 27,9 bis 32,5, vorzugsweise 30,9 bis 32, 1 Cu= 0,98 bis 1 ,45, vorzugsweise 1 ,0 bis 1 ,4 N = 0, 175 bis 0,29, vorzugsweise 0, 18 bis 0,22 Fe und herstellungsbedingte Verunreinigungen = Rest
3. Werkstoff nach Anspruch 1 oder 2, der, wie an sich bekannt, im ausscheidungsfreien Zustand mindestens 3,6-fach warmverformt und bei einer Temperatur von 100 bis 590°C, vorzugsweise von 360 bis 490°C , mit einem Umformgrad von kleiner 38%, vorzugsweise von 6 bis 19 % katlverformt ist.
4. Werkstoff nach einem der Ansprüche 1 bis 3, der ein Lochpotential in neutraler Lösung bie Raumtemperatur von größer 1100 mVH/1000 ppm Chloride und/oder 1000 mVH/80000 ppm Chloride aufweist.
PCT/AT2001/000188 2000-06-30 2001-06-08 Korrosionsbeständiger werkstoff WO2002002837A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT01942857T ATE284979T1 (de) 2000-06-30 2001-06-08 Korrosionsbeständiger werkstoff
US10/182,725 US6764647B2 (en) 2000-06-30 2001-06-08 Corrosion resistant material
CA002396207A CA2396207C (en) 2000-06-30 2001-06-08 Corrosion resistant material
DE50104841T DE50104841D1 (de) 2000-06-30 2001-06-08 Korrosionsbeständiger werkstoff
AU2001265657A AU2001265657A1 (en) 2000-06-30 2001-06-08 Corrosion resistant material
EP01942857A EP1294956B1 (de) 2000-06-30 2001-06-08 Korrosionsbeständiger werkstoff
NO20022917A NO330002B1 (no) 2000-06-30 2002-06-18 Korrosjonsbestandig materiale

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0113300A AT408889B (de) 2000-06-30 2000-06-30 Korrosionsbeständiger werkstoff
ATA1133/00 2000-06-30

Publications (1)

Publication Number Publication Date
WO2002002837A1 true WO2002002837A1 (de) 2002-01-10

Family

ID=3685991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2001/000188 WO2002002837A1 (de) 2000-06-30 2001-06-08 Korrosionsbeständiger werkstoff

Country Status (9)

Country Link
US (1) US6764647B2 (de)
EP (1) EP1294956B1 (de)
AT (2) AT408889B (de)
AU (1) AU2001265657A1 (de)
CA (1) CA2396207C (de)
DE (1) DE50104841D1 (de)
ES (1) ES2231505T3 (de)
NO (1) NO330002B1 (de)
WO (1) WO2002002837A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044239A1 (en) * 2001-11-22 2003-05-30 Sandvik Ab Use of a super-austenitic stainless steel
DE102018133255A1 (de) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Superaustenitischer Werkstoff
WO2020127786A1 (de) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh Co. Bohrstrangkomponente mit hoher korrosionsbeständigkeit und verfahren zu ihrer herstellung

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410550B (de) * 2002-01-23 2003-05-26 Boehler Edelstahl Reaktionsträger werkstoff mit erhöhter härte für thermisch beanspruchte bauteile
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
JP2009541587A (ja) * 2006-06-23 2009-11-26 ジョルゲンセン フォージ コーポレーション オーステナイト系常磁性耐食性材料
US8808471B2 (en) * 2008-04-11 2014-08-19 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10351922B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9347121B2 (en) 2011-12-20 2016-05-24 Ati Properties, Inc. High strength, corrosion resistant austenitic alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
RU2611252C1 (ru) * 2015-10-13 2017-02-21 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения высокопрочного проката аустенитной нержавеющей стали с наноструктурой
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN114502757B (zh) * 2019-10-10 2023-04-07 日本制铁株式会社 合金材料和油井用无缝管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292061A1 (de) * 1987-05-19 1988-11-23 VDM Nickel-Technologie Aktiengesellschaft Korrosionsbeständige Legierung
JPS6447817A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
US4824638A (en) * 1987-06-29 1989-04-25 Carondelet Foundry Company Corrosion resistant alloy
EP0657556A1 (de) * 1993-12-10 1995-06-14 Bayer Ag Austenitische Legierungen und deren Verwendung
EP0913491A1 (de) * 1997-10-31 1999-05-06 Abb Research Ltd. Verfahren zur Herstellung eines Werkstückes aus einer Chromlegierung und dessen Verwendung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI760020A (de) * 1976-01-07 1977-07-08 Rauma Repola Oy
US4201575A (en) * 1979-05-18 1980-05-06 Carpenter Technology Corporation Austenitic stainless corrosion-resistant alloy
US4400349A (en) 1981-06-24 1983-08-23 Sumitomo Metal Industries, Ltd. Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4421571A (en) 1981-07-03 1983-12-20 Sumitomo Metal Industries, Ltd. Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292061A1 (de) * 1987-05-19 1988-11-23 VDM Nickel-Technologie Aktiengesellschaft Korrosionsbeständige Legierung
US4824638A (en) * 1987-06-29 1989-04-25 Carondelet Foundry Company Corrosion resistant alloy
JPS6447817A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
EP0657556A1 (de) * 1993-12-10 1995-06-14 Bayer Ag Austenitische Legierungen und deren Verwendung
EP0913491A1 (de) * 1997-10-31 1999-05-06 Abb Research Ltd. Verfahren zur Herstellung eines Werkstückes aus einer Chromlegierung und dessen Verwendung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 110, no. 12, 20 March 1989, Columbus, Ohio, US; abstract no. 99455, CHARLES, J. ET AL: "Superaustenitic stainless steels for marine applications" XP002177424 *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 238 (C - 603) 5 June 1989 (1989-06-05) *
STAINLESS STEELS '87, PROC. CONF. (1988), MEETING DATE 1987, 259-65 PUBLISHER: INST. MET., LONDON, UK., 1988 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044239A1 (en) * 2001-11-22 2003-05-30 Sandvik Ab Use of a super-austenitic stainless steel
WO2003044238A1 (en) * 2001-11-22 2003-05-30 Sandvik Ab Super-austenitic stainless steel
US7081173B2 (en) 2001-11-22 2006-07-25 Sandvik Intellectual Property Ab Super-austenitic stainless steel
DE102018133255A1 (de) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Superaustenitischer Werkstoff
WO2020127789A1 (de) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh & Co Kg Superaustenitischer werkstoff
WO2020127786A1 (de) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh Co. Bohrstrangkomponente mit hoher korrosionsbeständigkeit und verfahren zu ihrer herstellung
WO2020127788A1 (de) 2018-12-20 2020-06-25 Voestalpine Böhler Edelstahl Gmbh Co. Superaustenitischer werkstoff
DE102018133251A1 (de) 2018-12-20 2020-06-25 Schoeller-Bleckmann Oilfield Technology Gmbh Bohrstrangkomponente mit hoher Korrosionsbeständigkeit und Verfahren zu ihrer Herstellung

Also Published As

Publication number Publication date
ATA11332000A (de) 2001-08-15
AU2001265657A1 (en) 2002-01-14
ATE284979T1 (de) 2005-01-15
NO20022917L (no) 2002-06-18
EP1294956B1 (de) 2004-12-15
ES2231505T3 (es) 2005-05-16
US6764647B2 (en) 2004-07-20
AT408889B (de) 2002-03-25
EP1294956A1 (de) 2003-03-26
CA2396207C (en) 2007-08-14
US20030024612A1 (en) 2003-02-06
CA2396207A1 (en) 2002-01-10
DE50104841D1 (de) 2005-01-20
NO330002B1 (no) 2011-02-07
NO20022917D0 (no) 2002-06-18

Similar Documents

Publication Publication Date Title
AT408889B (de) Korrosionsbeständiger werkstoff
DE60214456T2 (de) Martensitischer rostfreier Stahl mit hoher Härte und guter Korrosionsbeständigkeit
EP2199420B1 (de) Austenitischer edelstahl
US20180340245A1 (en) High Nitrogen, Multi-Principal Element, High Entropy Corrosion Resistant Alloy
EP2855724B1 (de) Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
KR890001135B1 (ko) 중간 심층의 황함유 유정용 관재
EP2632628B1 (de) Ni-fe-cr-mo-legierung
KR20080066867A (ko) 오일 패치 설비용 고강도 부식 저항성 합금
EP1188845B1 (de) Nickelbasislegierung für die Hochtemperaturtechnik
SE440796B (sv) Austenitiskt rostfritt stal
DE1301586B (de) Austenitische ausscheidungshaertbare Stahllegierung und Verfahren zu ihrer Waermebehandlung
DE60016286T2 (de) Niedrig legierter und hitzebeständiger Stahl, Verfahren zur Wärmebehandlung und Turbinenrotor
DE2447137B2 (de) Gegen gruebchenkorrosion bestaendige stahllegierung
EP0455625B1 (de) Hochfeste korrosionsbeständige Duplexlegierung
DE4203328C1 (de)
RU2383649C2 (ru) Дисперсионно-твердеющая сталь (варианты) и изделие из стали (варианты)
DE3522115A1 (de) Hitzebestaendiger 12-cr-stahl und daraus gefertigte turbinenteile
DE60129223T2 (de) Austenitische legierung
DE3937857C2 (de)
DE1232759B (de) Martensitaushaertbarer Chrom-Nickel-Stahl
AT405297B (de) Duplexlegierung für komplex beanspruchte bauteile
EP0498105B1 (de) Hochfester rostfreier Stahl mit guten Zähigkeitseigenschaften, und Verfahren zu seiner Herstellung
JP2002161343A (ja) 耐食性に優れた高強度析出硬化型マルテンサイト系ステンレス鋼
DE10124393A1 (de) Hitzebeständiger Stahl, Verfahren zur thermischen Behandlung von hitzebeständigem Stahl, und Kompenten aus hitzebeständigem Stahl
AT414341B (de) Stahl für chemie - anlagen - komponenten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2396207

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10182725

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001942857

Country of ref document: EP

ENP Entry into the national phase

Ref country code: AT

Ref document number: 2001 9140

Date of ref document: 20020110

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 20019140

Country of ref document: AT

WWP Wipo information: published in national office

Ref document number: 2001942857

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001942857

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP