WO2002001065A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO2002001065A1
WO2002001065A1 PCT/DE2001/002180 DE0102180W WO0201065A1 WO 2002001065 A1 WO2002001065 A1 WO 2002001065A1 DE 0102180 W DE0102180 W DE 0102180W WO 0201065 A1 WO0201065 A1 WO 0201065A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve member
fuel injection
combustion chamber
cone
Prior art date
Application number
PCT/DE2001/002180
Other languages
English (en)
French (fr)
Inventor
Axel Hockenberger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/069,506 priority Critical patent/US6827297B2/en
Priority to BR0106897-0A priority patent/BR0106897A/pt
Priority to JP2002506361A priority patent/JP2004502074A/ja
Priority to KR1020027002410A priority patent/KR20020027575A/ko
Priority to PL01352573A priority patent/PL352573A1/xx
Priority to EP01947202A priority patent/EP1297252A1/de
Publication of WO2002001065A1 publication Critical patent/WO2002001065A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1866Valve seats or member ends having multiple cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/047Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being formed by deformable nozzle parts, e.g. flexible plates or discs with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a fuel injection valve is known from DE 196 34 933 AI.
  • a valve member tip is arranged at the combustion chamber end of the valve member and two conical surfaces thereon.
  • a first conical surface adjoins the valve member shaft and has an opening angle that is smaller than that of the conical valve seat.
  • the first cone surface is followed by a second cone surface on the combustion chamber side, the opening angle of which is greater than that of the valve seat, so that a sealing edge is formed at the transition of the two cone surfaces, which comes into contact with the valve seat in the closed position of the valve member by a closing force acting on the valve member ,
  • the opening stroke movement of the valve member is exerted by the hydraulic force of the fuel in the pressure chamber, which in the closed position inter alia acts on the first conical surface and thus causes a resultant force in the axial direction on the valve member.
  • the sealing edge defines the hydraulically effective seat diameter of the valve member and thus, for a given closing force, the opening pressure of the fuel at which the valve member lifts off the valve seat against the closing force.
  • the opening pressure of the fuel injection valve depends on the one hand on the closing force acting on the valve member and on the other hand on the hydraulically effective area of the Valve member.
  • the closing force drops somewhat during operation due to relaxation processes in the valve holding body and in the device generating the closing force.
  • the hydraulically effective area of the valve member must be reduced. This is achieved in that the difference in the cone angle of the valve seat and the first cone surface is smaller than the difference in the cone angle of the second cone surface and the valve seat.
  • the sealing edge When the fuel injection valve is in operation, the sealing edge is pressed into the valve seat by plastic deformation, and the hydraulically effective sealing edge shifts from the original sealing edge to the valve member. This increases the hydraulically effective seat diameter and the associated reduction in the area acting in the opening direction at least partially compensates for the falling closing force, so that the opening pressure remains largely constant. If the closing force remains the same, the opening pressure increases accordingly.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that the resulting opening pressure of the Fuel injector does not change or changes only slightly during operation.
  • a circumferential annular groove is formed on the first conical surface and limits the enlargement of the hydraulically effective seat diameter.
  • the opening pressure of the fuel injector increases for a given closing force due to the increase in the effective hydraulic seat diameter, but only up to a value that can be easily determined by production. This compensates for the drop in the closing force that arises due to relaxation processes of the valve holding body and the mechanism that generates the closing force. Since the increase in the effective hydraulic seat diameter is precisely defined by the annular groove, the other components of the fuel injector can be optimally adapted to this increase in opening pressure.
  • longitudinal grooves are arranged on the conical surface between the valve member shaft and the annular groove. This counteracts a cavitation effect in the ring groove and the associated wear problems. If the valve member lifts off the valve seat very quickly, it can happen at the beginning of the opening stroke movement that the fuel cannot flow into the annular groove quickly enough through the gap formed between the valve member tip and the valve seat.
  • the longitudinal grooves improve the flow of fuel from the pressure chamber into the annular groove and cavitation cannot occur or can only occur to a significantly reduced extent.
  • FIG. 1 shows a fuel injection valve in partial longitudinal section
  • FIG. 2 shows an enlarged illustration of FIG. 1 in the region of the valve seat. Description of the embodiment
  • a fuel injection valve for internal combustion engines is shown in partial longitudinal section.
  • a valve body 5 is clamped by means of a tensioning element 3 against a valve holder body 1, which together form a nozzle holder combination, which in the installed position is arranged in a receiving bore of an internal combustion engine, not shown in the drawing.
  • a bore 15 is formed, which is designed as a blind bore and the bottom surface of which is arranged towards the combustion chamber.
  • a conical valve seat 23 is formed with a cone angle ⁇ and at least one injection opening 25, which connects the bore 15 to the combustion chamber.
  • a piston-shaped valve member 7 Arranged in the bore 15 is a piston-shaped valve member 7 which has a longitudinal axis 19 and which is guided in the bore 15 with a guide section 207 facing away from the combustion chamber and is thus axially movable.
  • the valve member 7 tapers towards the combustion chamber to form a pressure shoulder 9 and merges into a valve member shaft 107.
  • a valve member tip 13 At the combustion chamber end of the valve member 7, a valve member tip 13 is arranged, which tapers towards the combustion chamber.
  • the pressure shoulder 9 is arranged in a pressure chamber 11 formed in the valve body 5, which merges towards the combustion chamber into an annular channel surrounding the valve member shaft 107 and extends to the bottom surface of the bore 15.
  • An inlet channel 17 is formed in the valve holding body 1 and in the valve body 5, which opens into the pressure chamber 11 and via which the pressure chamber 11 can be filled with fuel under high pressure.
  • the valve member 7 is acted upon by a closing force in the direction of the combustion chamber.
  • the device generating the closing force is arranged in the valve holding body 1, for example in the form of a prestressed spring. It can also be provided to generate the closing force by means of a plurality of springs which, depending on the stroke of the valve member 7, generate the closing force individually or together.
  • an additional closing force can also be generated by building up a pressure in the spring chamber. This closing force presses the valve member 7 with the valve member tip 13 against the valve seat 23, as a result of which the pressure chamber 11 is closed against the injection openings 25.
  • the opening stroke movement of the valve member 7 takes place in that the hydraulic force of the fuel in the pressure chamber 11 acts on the pressure shoulder 9 and at least on part of the valve member tip 13.
  • valve member 7 is shown in the closed position in the region of the valve member tip 13 and the valve body 5 surrounding the valve member 7 in longitudinal section.
  • a first conical surface 30 is formed on the valve member tip 13, which adjoins the valve member shaft 107 and has a conical angle ⁇ .
  • the cone angle ⁇ is smaller than the cone angle ⁇ of the valve seat 23, so that a first difference angle ⁇ 2 is formed between the first cone surface 30 and the valve seat 23.
  • a second cone surface 32 adjoins the first cone surface 30 on the valve member tip 13, the cone angle ⁇ of which is greater than the cone angle ⁇ of the valve seat 23.
  • the second differential angle ⁇ 2 formed between the second conical surface 32 and the valve seat 23 is larger than the first differential angle ⁇ ⁇ . Due to the transition from the first 30 to the second cone surface 32, a circumferential sealing edge 40 is formed on the valve member tip 13, which is in a
  • a circumferential annular groove 35 is arranged on the first cone surface 30 and runs in a radial plane to the longitudinal axis 19 of the valve member 7.
  • Their cross-section can be in the form of an arc of a circle or also have another useful shape.
  • the cross section can be formed by a polygon or be part of an ellipse.
  • the width of the annular groove is preferably 0.15 to 0.5 mm.
  • the longitudinal grooves 42 facilitate the inflow of fuel from the pressure chamber 11 into the annular groove 35 at the beginning of the opening stroke movement, so that cavitations cannot form or can be formed to a significantly reduced extent.
  • the longitudinal grooves 42 preferably run parallel to the surface lines of the first conical surface 30 and, if more than one longitudinal groove 42 is provided, are preferably distributed uniformly over the circumference of the valve member 7.
  • valve member tip 13 designed according to the invention is as follows: In the closed position of the valve tilliedes 7, the sealing edge 40 is pressed against the valve seat 23. This is in principle a line contact and there are high voltages both in the valve member 7 and in the valve seat 23, which lead to elastic and plastic deformation of the valve member 7 and valve seat 23, so that the sealing edge 40 in the valve seat during operation 23 presses in and there is surface contact. Since the first differential angle ⁇ is smaller than the second differential angle ⁇ 2 , the hydraulically effective sealing edge, i.e. the boundary line up to which the pressure of the fuel in the pressure chamber 11 acts in the closed position of the valve member 7, is displaced by the indentation of the sealing edge 40 Sealing edge 40 in the direction of the annular groove 35.
  • valve member 7 and valve seat 23 can ensure that the valve member tip 13 is not pressed into the valve seat 23 to such an extent that the upper annular groove edge 37 facing away from the combustion chamber comes into contact with the valve seat 23.
  • the cone angle of the valve seat is 55 to 65 degrees, preferably about 60 degrees.
  • the cone angles of the first 30 and second cone surface 32 are designed such that the difference angles ⁇ l7 ⁇ 2 are each less than 1.5 degrees.
  • the first differential angle ⁇ x is always smaller than the second differential angle ⁇ 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil mit einem Ventilkörper (5), in dem in einer als Sackbohrung ausgeführten Bohrung (15) ein kolbenförmiges Ventilglied (7) längsverschiebbar geführt ist. An der Bodenfläche der Bohrung (15) ist ein konischer Ventilsitz (23) ausgebildt und wenigstens eine Einspritzöffnung (25), die einen zwischen dem brennraumseitigen Abschnitt (107) des Ventilgliedes (7) und der Bohrung (15) gebildeten Druckraum (11) mit dem Brennraum verbindet. Am brennraumseitigen Ende des Ventilgliedes (7) ist eine Ventilgliedspitze (13) ausgebildet, an der eine erste, an das Ventilglied (7) grenzende Konusfläche (30) und eine zweite, brennraumseitig zur ersten angeordnete Konusfläche (32) ausgebildet sind. Der Konuswinkel (α) der ersten Konusfläche (30) ist kleiner und der Konuswinkel (β) der zweite Konusflächen (32) ist größer als der Konuswinkel (η) des Ventilsitzes (23), so daß am Übergang der beiden Konusflächen (30, 32) eine Dichtkante (40) gebildet wird. An der ersten Konusfläche (30) ist eine umlaufende Ringnut (35) ausgebildet, die eine Vergrößerung des hydraulisch wirksamen Sitzdurchmessers aufgrund der plastischen Verformung von Dichtkante (40) und Ventilsitz (23) auf ein genau definiertes Maß beschränkt.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein solches Kraftstoffeinspritzventil ist aus der Schrift DE 196 34 933 AI bekannt. Am brennraumseitigen Ende des Ventilgliedes ist eine Ventilgliedspitze angeordnet und an dieser zwei Konusflächen. Eine erste Konusfläche grenzt an den Ventilgliedschaft und weist einen Öffnungswinkel auf, der kleiner als der des konischen Ventilsitzes ist. An die erste Konusfläche schließt sich brennraumseitig eine zweite Konusfläche an, deren Öffnungswinkel größer als der des Ventilsitzes ist, so daß am Übergang der beiden Konusflächen eine Dichtkante gebildet wird, die in Schließstellung des Ventilgliedes durch eine auf das Ventilglied wirkende Schließkraft am Ventilsitz zur Anlage kommt.
Die Öffnungshubbewegung des Ventilgliedes wird durch die hydraulische Kraft des Kraftstoffs im Druckraum ausgeübt, der in Schließstellung unter anderem auf die erste Konusfläche wirkt und so eine resultierende Kraft in axialer Richtung auf das Ventilglied bewirkt. Die Dichtkante definiert dabei den hydraulisch wirksamen Sitzdurchmesser des Ventilgliedes und damit bei gegebener Schließkraft den Öffnungsdruck des Kraftstoffs, bei dem das Ventilglied vom Ventilsitz entgegen der Schließkraft abhebt .
Der Öffnungsdruck des Kraftstoffeinspritzventils hängt einerseits von der auf das Ventilglied wirkenden Schließkraft und andererseits von der hydraulisch wirksamen Fläche des Ventilgliedes ab. Bei einem Kraftstoffeinspritzventil sinkt die Schließkraft durch Relaxationsprozesse im Ventilhaltekörper und in der die Schließkraft erzeugenden Vorrichtung im Betrieb etwas ab. Für ein optimal funktionierendes Kraft- stoffeinspritzventil ist es jedoch wichtig, daß der Öffnungsdruck im Betrieb konstant bleibt . Um dem entgegenzuwirken muß sich die hydraulisch wirksame Fläche des Ventilgliedes verkleinern. Dies wird dadurch erreicht, daß die Differenz der Konuswinkel von Ventilsitz und erster Konusfläche kleiner ist als die Differenz der Konuswinkel von zweiten Konusfläche und Ventilsitz. Im Betrieb des Kraftstoffeinspritzventil drückt sich die Dichtkante durch plastische Verformung in den Ventilsitz ein, und die hydraulisch wirksame Dichtkante verlagert sich von der ursprünglichen Dicht- kante zum Ventilgliedschaft hin. Dadurch vergrößert sich der hydraulisch wirksame Sitzdurchmesser und die damit einhergehende Verringerung der in Öffnungsrichtung wirkenden Fläche kompensiert wenigstens teilweise die abfallende Schließkraft, so daß der Öffnungsdruck weitgehend konstant bleibt. Bei gleichbleibender Schließkraft erhöht sich entsprechend der Öffnungsdruck.
Bei den bekannten Ventilgliedern läßt sich jedoch nicht vorherbestimmen, wie weit sich der hydraulisch wirksame Sitzdurchmesser des Ventilgliedes im Betrieb ändert und damit, wie stark sich die in Öffnungsrichtung wirkende Fläche vergrößert. Um einigermaßen reproduzierbare Ergebnisse zu erzielen, müssen deshalb sowohl die Konusflächen als auch der Ventilsitz sehr exakt und damit kostenintensiv gefertigt werden.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kenn- zeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß sich der resultierende Öffnungsdruck des Kraftstoffeinspritzventils im Betrieb nicht oder nur unwesentlich ändert. An der ersten Konusfläche ist eine umlaufende Ringnut ausgebildet, die die Vergrößerung des hydraulisch wirksamen Sitzdurchmessers begrenzt. Dadurch steigt der Öffnungsdruck des Kraftstoffeinspritzventils bei gegebener Schließkraft durch die Zunahme des effektiven hydraulischen Sitzdurchmessers an, allerdings nur bis zu einem durch die Fertigung leicht bestimmbaren Wert. Dies kompensiert den Abfall der Schließkraft, der aufgrund von Relaxationsprozes- sen des Ventilhaltekörpers und des die Schließkraft erzeugenden Mechanismus entsteht . Da die Zunahme des effektiven hydraulischen Sitzdurchmessers durch die Ringnut genau definiert geschieht, können die übrigen Komponenten des Kraft- stoffeinspritzventils an diesen Öffnungsdruckanstieg optimal angepaßt werden können.
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung sind an der konischen Fläche zwischen dem Ventil- gliedschaft und der Ringnut Längsnuten angeordnet. Dadurch wird einer Kavitationswirkung in der Ringnut und den damit verbundenen Verschleißproblemen entgegengewirkt . Hebt das Ventilglied sehr schnell vom Ventilsitz ab, kann es zu Beginn der Öffnungshubbewegung dazu kommen, daß der Kraftstoff durch den zwischen der Ventilgliedspitze und dem Ventilsitz gebildeten Spalt nicht schnell genug in die Ringnut strömen kann. Durch die Längsnuten wird der Kraftstoffström aus dem Druckraum in die Ringnut verbessert und Kaviationen können nicht oder nur in deutlich reduziertem Ausmaß auftreten.
Zeichnung
In der Zeichnung ist ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt. Es zeigt die Figur 1 ein Kraft- stoffeinspritzventil im teilweisen Längsschnitt und Figur 2 eine vergrößerte Darstellung von Figur 1 im Bereich des Ventilsitzes . Beschreibung des Ausführungsbeispiels
In Figur 1 ist ein Kraftstoffeinspritzventil für Brennkraft- maschinen im teilweisen Längsschnitt gezeigt . Ein Ventilkörper 5 ist mittels eines Spannelements 3 gegen einen Ventil- haltekörper 1 verspannt, welche zusammen eine Düsenhalter- kombination bilden, die in Einbaulage in einer in der Zeichnung nicht dargestellten Aufnahmebohrung einer Brennkraftma- schine angeordnet ist. Im Ventilkörper 5 ist eine Bohrung 15 ausgebildet, die als Sackbohrung ausgeführt ist und deren Bodenfläche dem Brennraum zu angeordnet ist . An der Bodenfläche der Bohrung 15 ist ein konischer Ventilsitz 23 mit einem Konuswinkel γ ausgebildet und wenigstens eine Ξin- spritzöffnung 25, die die Bohrung 15 mit dem Brennraum verbindet. In der Bohrung 15 ist ein kolbenförmiges Ventilglied 7 angeordnet, das eine Längsachse 19 aufweist und das mit einem brennraumabgewandten Führungsabschnitt 207 in der Bohrung 15 geführt und so axial beweglich ist . Das Ventilglied 7 verjüngt sich zum Brennraum hin unter Bildung einer Druckschulter 9 und geht in einen Ventilgliedschaft 107 über. Am brennraumseitigen Ende des Ventilgliedes 7 ist eine Ventil- gliedspitze 13 angeordnet, die sich zum Brennraum hin verjüngt. Die Druckschulter 9 ist in einem im Ventilkörper 5 ausgebildeten Druckraum 11 angeordnet, der zum Brennraum hin in einen den Ventilgliedschaft 107 umgebenden Ringkanal übergeht und sich bis zur Bodenfläche der Bohrung 15 erstreckt. Im Ventilhaltekörper 1 und im Ventilkörper 5 ist ein Zulaufkanal 17 ausgebildet, der in den Druckraum 11 mün- det und über den der Druckraum 11 mit Kraftstoff unter hohem Druck befüllbar ist.
Das Ventilglied 7 wird von einer Schließkraft in Richtung auf den Brennraum zu beaufschlagt. Die die Schließkraft er- zeugende Vorrichtung ist dabei im Ventilhaltekörper 1 angeordnet, beispielsweise in Form einer vorgespannten Feder. Es kann auch vorgesehen sein, die Schließkraft durch mehrere Federn zu erzeugen, die abhängig vom Hub des Ventilgliedes 7 einzeln oder gemeinsam die Schließkraft erzeugen. Außerdem kann auch durch Aufbau eines Drucks im Federraum eine zu- sätzliche Schließkraft erzeugt werden. Durch diese Schließkraft wird das Ventilglied 7 mit der Ventilgliedspitze 13 gegen den Ventilsitz 23 gepreßt, wodurch der Druckraum 11 gegen die Einspritzöffnungen 25 verschlossen wird. Die Öffnungshubbewegung des Ventilgliedes 7 erfolgt dadurch, daß die hydraulische Kraft des Kraftstoffs im Druckraum 11 auf die Druckschulter 9 und zumindest auf einen Teil der Ventil- gliedspitze 13 einwirkt. Dadurch ergibt sich eine in axialer Richtung wirkende Öffnungskraft auf das Ventilglied 7 entgegen der Schließkraft . Ist die Öffnungskraft größer als die Schließkraft, so bewegt sich das Ventilglied 7 in der Bohrung 15 vom Brennraum weg und die Ventilgliedspitze 13 hebt vom Ventilsitz 23 ab. Die Einspritzöffnungen 25 sind nun mit dem Druckraum 11 verbunden und Kraftstoff wird in den Brennraum eingespritzt. Bei umgekehrtem Verhältnis von Öffnungs- und Schließkraft erfolgt die Schließbewegung des Ventilgliedes 7 und durch die axiale Bewegung des Ventilgliedes 7 auf den Brennraum zu kommt die Ventilgliedspitze 13 am Ventilsitz 23 zur Anlage und beendet so den Einspritzvorgang.
In Figur 2 ist das Ventilglied 7 in Schließstellung im Bereich der Ventilgliedspitze 13 dargestellt und der das Ventilglied 7 umgebende Ventilkörpers 5 im Längsschnitt. An der Ventilgliedspitze 13 ist eine erste Konusfläche 30 ausgebildet, die an den Ventilgliedschaft 107 grenzt und einen Ko- nuswinkel α aufweist. Der Konuswinkel α ist dabei kleiner als der Konuswinkel γ des Ventilsitzes 23, so daß zwischen der ersten Konusfläche 30 und dem Ventilsitz 23 ein erster Differenzwinkel δ2 gebildet wird. An die erste Konusfläche 30 schließt sich an der Ventilgliedspitze 13 brennraumseitig eine zweite Konusfläche 32 an, deren Konuswinkel ß größer als der Konuswinkel γ des Ventilsitzes 23 ist. Der dadurch gebildete zweite Differenzwinkel δ2 zwischen der zweiten Konusfläche 32 und dem Ventilsitz 23 ist dabei größer als der erste Differenzwinkel δ± . Durch den Übergang von der ersten 30 zur zweiten Konusfläche 32 ist an der Ventilgliedspitze 13 eine umlaufende Dichtkante 40 ausgebildet, die in einer
Radialebene zur Längsachse 19 des Ventilgliedes 7 liegt. Die Ventilgliedspitze 13 liegt in Schließstellung des Ventilgliedes 7 mit der Dichtkante 40 am Ventilsitz 23 an, so daß ein dichter Verschluß des Druckraums 11 gegen die Ein- spritzöffnungen 25 erreicht wird, die brennraumzugewandt zur Anlagestelle der Dichtkante 40 am Ventilsitz 23 in der Bodenfläche der Bohrung 15 angeordnet sind.
An der ersten Konusfläche 30 ist eine umlaufende Ringnut 35 angeordnet, die in einer Radialebene zur Längsachse 19 des Ventilgliedes 7 verläuft. Ihr Querschnitt kann kreisbogenförmig sein oder auch eine andere, zweckdienliche Form aufweisen. Beispielsweise kann der Querschnitt durch einen Polygonzug gebildet werden oder Teil einer Ellipse sein. Die Breite der Ringnut beträgt vorzugsweise 0,15 bis 0,5 mm.
Öffnet das Ventilglied 7 sehr schnell, so kann es dazu kommen, daß sich im Bereich der Ringnut 35 Kavitationen bilden. Deshalb kann es vorgesehen sein, daß die Ringnut 35 durch eine oder mehrere Längsnuten 42 mit dem Ventilgliedschaft
107 verbunden ist. Die Längsnuten 42 erleichtern den Zulauf von Kraftstoff aus dem Druckraum 11 in die Ringnut 35 zu Beginn der Öffnungshubbewegung, so daß sich Kavitationen nicht oder in erheblich vermindertem Maß bilden können. Die Längs- nuten 42 verlaufen vorzugsweise parallel zu den Mantellinien der ersten Konusfläche 30 und sind, wenn mehr als eine Längsnut 42 vorgesehen ist, vorzugsweise gleichmäßig über den Umfang des Ventilgliedes 7 verteilt .
Die Funktionsweise der erfindungsgemäß ausgestalteten Ventilgliedspitze 13 ist wie folgt: In Schließstellung des Ven- tilgliedes 7 wird die Dichtkante 40 an den Ventilsitz 23 gepreßt . Damit ist im Prinzip eine Linienberührung gegeben und es treten hohe Spannungen sowohl im Ventilglied 7 als auch im Ventilsitz 23 auf, die zu elastischen und plastischen Verformungen von Ventilglied 7 und Ventilsitz 23 führen, so daß sich im Laufe des Betriebs die Dichtkante 40 in den Ventilsitz 23 eindrückt und eine Flächenberührung vorliegt. Da der erste Differenzwinkel δ kleiner als der zweite Differenzwinkel δ2 ist, verschiebt sich durch das Eindrücken der Dichtkante 40 die hydraulisch wirksame Dichtkante, also die Grenzlinie, bis zu der der Druck des Kraftstoffs im Druckraum 11 in Schließstellung des Ventilgliedes 7 wirkt, von der Dichtkante 40 in Richtung auf die Ringnut 35. Erreicht die hydraulisch wirksame Dichtkante die untere, dem Bren - räum zugewandte Ringnutkante 38, kann sie nicht mehr weiter wandern und die hydraulisch wirksame Dichtkante fällt mit der unteren Ringnutkante 38 zusammen. Durch eine geeignete Auswahl der Materialien von Ventilglied 7 und Ventilsitz 23 kann sichergestellt werden, daß die Ventilgliedspitze 13 nicht soweit in den Ventilsitz 23 eingedrückt wird, daß auch die obere, dem Brennraum abgewandte Ringnutkante 37 am Ventilsitz 23 zur Anlage kommt.
Der Konuswinkel der Ventilsitzes beträgt 55 bis 65 Grad, vorzugsweise etwa 60 Grad. Die Konuswinkel von erster 30 und zweiter Konusfläche 32 sind so ausgebildet, daß die Differenzwinkel δl7δ2 jeweils weniger als 1,5 Grad betragen. Dabei ist stets der erste Differenzwinkel δx kleiner als der zwei- te Differenzwinkel δ2.

Claims

Ansprüche "5
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (5) , in dem eine Bohrung (15) angeordnet ist, an deren brennraumseitigen Ende ein konischer Ventilsitz (23) und wenigstens eine Einspritzöffnung (25) 0 angeordnet sind, welche die Bohrung (15) mit dem Brennraum verbindet, und mit einem in der Bohrung (15) geführten, längsverschiebbaren, kolbenförmigen Ventilglied (7) , das einen dem Ventilsitz (23) zugewandten Ventilgliedschaft (107) aufweist, zwischen dem und der Wand der Boh- 5 rung (15) ein mit Kraftstoff befüllbarer Druckraum (11) ausgebildet ist, und welches Ventilglied (7) an seinem brennraumseitigen Ende eine Ventilgliedspitze (13) aufweist, an welcher eine erste Konusfläche (30) und eine zweite, sich brennraumseitig an die erste Konusfläche 0 (30) anschließende zweite Konusfläche (32) ausgebildet ist, wobei der Konuswinkel ( ) der ersten Konusfläche (30) kleiner und der Konuswinkel (ß) der zweiten Konusfläche (32) größer als der Konuswinkel (γ) des Ventilsitzes (23) ist, so daß am Übergang der beiden Konusflächen 5 (30,32) eine umlaufende Dichtkante (40) gebildet wird, die in Schließstellung des Ventilgliedes (7) am Ventilsitz (23) bezüglich des Kraftstoffflusses zu den Einspritzöffnungen (25) stromaufwärts der Einspritzöffnungen (25) zur Anlage kommt, dadurch gekennzeichnet, daß an der 0 ersten konischen Fläche (30) der Ventilgliedspitze (13) eine umlaufende Ringnut (35) ausgebildet ist.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Ringnut (35) in einer Radialebene der Längsachse (19) des Ventilgliedes (7) verläuft. 5
3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß an der zwischen dem Ventilgliedschaft (107) und der Ringnut (35) ausgebildeten Konusfläche wenigstens eine Längsnut (42) angeordnet ist, die den Ventilgliedschaft (107) mit der Ringnut (35) verbindet.
4. Kraftstoffeinspritzventil nach Anspruch 3, dadurch ge- "5 kennzeichnet, daß die wenigstens eine Längsnut (42) zumindest annähernd parallel zu den Mantellinien der ersten Konusfläche (30) verläuft.
5. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß mehrere Längsnuten (42) vorhanden sind, 0 die gleichmäßig über den Umfang des Ventilgliedes (7) verteilt sind.
6. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Konuswinkel (γ) des Ventilsitzes (23) 55 bis 65 Grad beträgt, vorzugswei- 5 se etwa 60 Grad.
7. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Differenz der Konuswinkel von erster konischer Fläche (30) und Ventilsitz (23) weniger als 1,5 Grad beträgt, vorzugsweise 0,5 0 bis 1,0 Grad.
8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, daß die Differenz der Konuswinkel von zweiter konischer Fläche (32) und Ventilsitz (23) weniger als 1 Grad beträgt, vorzugsweise 0,5 bis 0,7 Grad. 5
PCT/DE2001/002180 2000-06-27 2001-06-12 Kraftstoffeinspritzventil für brennkraftmaschinen WO2002001065A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/069,506 US6827297B2 (en) 2000-06-27 2001-06-12 Fuel injection valve for internal combustion engines
BR0106897-0A BR0106897A (pt) 2000-06-27 2001-06-12 Válvula de injeção de combustìvel para máquinas de combustão interna
JP2002506361A JP2004502074A (ja) 2000-06-27 2001-06-12 内燃機関のための燃料噴射弁
KR1020027002410A KR20020027575A (ko) 2000-06-27 2001-06-12 내연 기관용 연료 분사 밸브
PL01352573A PL352573A1 (en) 2000-06-27 2001-06-12 Fuel ignition valve for internal combustion engines
EP01947202A EP1297252A1 (de) 2000-06-27 2001-06-12 Kraftstoffeinspritzventil für brennkraftmaschinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10031265.9 2000-06-27
DE10031265A DE10031265A1 (de) 2000-06-27 2000-06-27 Kraftstoffeinspritzventil für Brennkraftmaschinen

Publications (1)

Publication Number Publication Date
WO2002001065A1 true WO2002001065A1 (de) 2002-01-03

Family

ID=7646964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002180 WO2002001065A1 (de) 2000-06-27 2001-06-12 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (9)

Country Link
US (1) US6827297B2 (de)
EP (1) EP1297252A1 (de)
JP (1) JP2004502074A (de)
KR (1) KR20020027575A (de)
CN (1) CN1383470A (de)
BR (1) BR0106897A (de)
DE (1) DE10031265A1 (de)
PL (1) PL352573A1 (de)
WO (1) WO2002001065A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1522721A1 (de) * 2003-10-06 2005-04-13 Delphi Technologies, Inc. Einspritzdüse

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031537B4 (de) * 2000-06-28 2009-06-04 Continental Automotive Gmbh Ausbildung eines Einspritzventils zur Verminderung der Sitzbelastung
DE10246693A1 (de) * 2002-10-07 2004-04-15 Siemens Ag Einspritzvorrichtung zum Einspritzen von Kraftstoff
DE10249144A1 (de) 2002-10-22 2004-05-06 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10259169A1 (de) * 2002-12-18 2004-07-01 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschine
DE10260975A1 (de) * 2002-12-24 2004-07-08 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10351881A1 (de) * 2003-10-30 2005-06-02 Robert Bosch Gmbh Injektor mit Strukturen zur Begrenzung verschleißbedingter Änderungen eines Öffnungsverlaufs
DE10353683A1 (de) * 2003-11-17 2005-06-16 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102004033283A1 (de) * 2004-07-09 2006-02-02 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102004050046A1 (de) * 2004-10-14 2006-04-20 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP2006307678A (ja) * 2005-04-26 2006-11-09 Denso Corp 燃料噴射ノズル
US7360722B2 (en) * 2005-08-25 2008-04-22 Caterpillar Inc. Fuel injector with grooved check member
US7578450B2 (en) * 2005-08-25 2009-08-25 Caterpillar Inc. Fuel injector with grooved check member
US20070200011A1 (en) * 2006-02-28 2007-08-30 Caterpillar Inc. Fuel injector having nozzle member with annular groove
DE102006033687A1 (de) * 2006-07-20 2008-01-24 Siemens Ag Einspritzdüse
DE102006035832A1 (de) * 2006-08-01 2008-02-07 Siemens Ag Einspritzventil und Düsenbaugruppe für das Einspritzventil
DE102007009168A1 (de) * 2007-02-26 2008-08-28 Robert Bosch Gmbh Dichtsitz
DE102007013248A1 (de) 2007-03-20 2008-09-25 Robert Bosch Gmbh Druckausgeglichenes Schaltventil
DE102008040639A1 (de) 2007-10-04 2009-04-09 Robert Bosch Gmbh Dichtsitz mit Sitzbegrenzung
CN101592106B (zh) * 2009-04-24 2013-10-30 靳北彪 发动机用有孔阀片形变燃油喷射器
DE102013009418A1 (de) * 2013-06-05 2014-12-24 Man Diesel & Turbo Se Kraftstoffeinspritzdüse
FI126534B (en) * 2014-12-17 2017-01-31 Waertsilae Finland Oy Reinforcing device and method for increasing the fatigue strength of a chamber chamber element
US10415527B2 (en) * 2015-01-30 2019-09-17 Hitachi Automotive Systems, Ltd. Fuel injection valve
EP3290684A1 (de) 2016-08-31 2018-03-07 Continental Automotive GmbH Flüssigkeitsinjektor und nadel für einen einer flüssigkeitsinjektor
JP2022088969A (ja) * 2020-12-03 2022-06-15 株式会社ジャパンエンジンコーポレーション 燃料噴射弁および舶用内燃機関

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540126A (en) * 1982-04-08 1985-09-10 Nissan Motor Co., Ltd. Fuel injection nozzle
US5033679A (en) * 1987-10-30 1991-07-23 Golev Vladislav I Injector nozzle for a diesel engine
US5163621A (en) * 1989-12-12 1992-11-17 Nippondenso Co., Ltd. Fuel injection valve having different fuel injection angles at different opening amounts
JPH0932696A (ja) * 1995-07-14 1997-02-04 Mitsubishi Motors Corp 二段開弁圧式燃料噴射弁
DE19634933A1 (de) * 1996-08-29 1998-03-05 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19931891A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836080A (en) * 1973-09-10 1974-09-17 Ambac Ind Fuel injection nozzle
US4153205A (en) * 1977-10-19 1979-05-08 Allis-Chalmers Corporation Short seat fuel injection nozzle valve
US4408722A (en) * 1981-05-29 1983-10-11 General Motors Corporation Fuel injection nozzle with grooved poppet valve
JPS5882068A (ja) * 1981-11-09 1983-05-17 Nissan Motor Co Ltd 燃料噴射ノズル
GB9425652D0 (en) * 1994-12-20 1995-02-22 Lucas Ind Plc Fuel injection nozzle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540126A (en) * 1982-04-08 1985-09-10 Nissan Motor Co., Ltd. Fuel injection nozzle
US5033679A (en) * 1987-10-30 1991-07-23 Golev Vladislav I Injector nozzle for a diesel engine
US5163621A (en) * 1989-12-12 1992-11-17 Nippondenso Co., Ltd. Fuel injection valve having different fuel injection angles at different opening amounts
JPH0932696A (ja) * 1995-07-14 1997-02-04 Mitsubishi Motors Corp 二段開弁圧式燃料噴射弁
DE19634933A1 (de) * 1996-08-29 1998-03-05 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19931891A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 06 30 June 1997 (1997-06-30) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1522721A1 (de) * 2003-10-06 2005-04-13 Delphi Technologies, Inc. Einspritzdüse
WO2005035973A1 (en) * 2003-10-06 2005-04-21 Delphi Technologies, Inc. Injection nozzle
US8002205B2 (en) 2003-10-06 2011-08-23 Delphi Technologies Holding S.Arl Injection nozzle

Also Published As

Publication number Publication date
PL352573A1 (en) 2003-08-25
US6827297B2 (en) 2004-12-07
DE10031265A1 (de) 2002-01-10
BR0106897A (pt) 2002-04-30
CN1383470A (zh) 2002-12-04
EP1297252A1 (de) 2003-04-02
JP2004502074A (ja) 2004-01-22
KR20020027575A (ko) 2002-04-13
US20020162906A1 (en) 2002-11-07

Similar Documents

Publication Publication Date Title
EP1297252A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19547423B4 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1198672B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10315820A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2000017512A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1556607B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1373715A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2003098031A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10315967A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1518049B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2003004865A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1433951A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1062423B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10102234A1 (de) Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine
WO2004104406A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1608866B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1579113A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
DE10318989A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2004057180A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102006050631A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2001002718A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2004027254A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2001057394A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2002063160A1 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine
DE10320044A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN IN JP KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001947202

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018017762

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027002410

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/445/CHE

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1020027002410

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10069506

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001947202

Country of ref document: EP