EP1556607B1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
EP1556607B1
EP1556607B1 EP03740029A EP03740029A EP1556607B1 EP 1556607 B1 EP1556607 B1 EP 1556607B1 EP 03740029 A EP03740029 A EP 03740029A EP 03740029 A EP03740029 A EP 03740029A EP 1556607 B1 EP1556607 B1 EP 1556607B1
Authority
EP
European Patent Office
Prior art keywords
valve
conical
partial surface
conical partial
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03740029A
Other languages
English (en)
French (fr)
Other versions
EP1556607A1 (de
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1556607A1 publication Critical patent/EP1556607A1/de
Application granted granted Critical
Publication of EP1556607B1 publication Critical patent/EP1556607B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size

Definitions

  • a fuel injection valve for internal combustion engines as corresponds to the preamble of claim 1.
  • a fuel injection valve for example in the published patent application DE 100 31 265 A1 described and has a valve body in which a bore is formed.
  • the bore is delimited at its combustion-chamber-side end by a valve seat, from which at least one injection opening discharges, which opens into the combustion chamber of the internal combustion engine in the installation position of the fuel injection valve.
  • a piston-shaped valve needle is arranged longitudinally displaceable, which has at its combustion chamber side, so the valve seat facing the end, a valve sealing surface with which the valve needle cooperates with the valve seat.
  • the longitudinal movement of the valve needle in the bore is effected by the ratio of two forces: on the one hand a hydraulic force, which is formed by the pressure in the pressure chamber, which is formed between the wall of the bore and the valve needle and filled with fuel, so that a hydraulic force on the Valve needle is exercised.
  • a closing force acts on the valve needle, which faces away from the combustion chamber End of the valve needle is exercised by means of a suitable device.
  • the hydraulic force on the valve needle depends on the effective area occupied by the fuel, which results in a longitudinal force component.
  • the opening pressure of the fuel injection valve so the fuel pressure in the pressure chamber, in which the hydraulic force on the valve needle just sufficient to move away against a given closing force in the longitudinal direction of the valve seat, thus depends inter alia on the support line of the valve needle on the valve seat, the so-called hydraulically effective seat diameter, because of which depends on the fuel pressure acted on the partial surface of the valve sealing surface. Due to wear between the valve sealing surface and the valve seat, in the course of the service life of the fuel injection valve there is a change in this area and thus a change in the hydraulically effective seat diameter. This also changes the opening pressure, which is reflected in a change in the opening dynamics of the valve needle. As a result, the injection timing and the injection quantity of the fuel also change, which can lead to problems in modern, high-speed internal combustion engines, in particular with regard to fuel consumption and pollutant emissions.
  • An injection valve which has a valve seat with three conical surfaces, wherein the conical surfaces are arranged one after the other in the direction of flow of the fuel.
  • the second conical surface viewed in the direction of flow, is raised in relation to the first conical surface.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that with unchanged geometry of the valve needle, a constant opening pressure over the entire life of the fuel injection valve can be maintained.
  • the valve seat has three conical partial surfaces, of which the second conical partial surface is arranged downstream of the first conical partial surface and the third conical partial surface downstream of the second conical partial surface.
  • the second conical surface is raised relative to the first conical surface, so that the valve needle in Closed position on the second conical surface comes to rest, defines the edge at the transition of the first conical surface to the second conical surface, the hydraulically effective seat diameter.
  • the fuel injection valve according to the invention has a third conical partial surface formed on the valve seat downstream of the second conical partial surface, which is set back relative to the second conical partial surface.
  • the valve seat surface on which the valve needle can rest is also delimited downstream by a shoulder. This results in precisely defined hydraulic conditions at the contact surface of valve needle and valve seat.
  • the second conical partial surface is preferably raised by 2 ⁇ m to 20 ⁇ m in relation to the first conical partial surface.
  • the fuel injection valve according to the invention has all of the conical partial area the same opening angle as the first conical partial area.
  • the three conical partial surfaces can be produced with the same tool, which saves a readjustment of the milling or grinding tool during production.
  • valve seat according to the invention are when the valve needle has a sealing edge, which is formed between two Konusdichtvid and which rests in the closed position of the valve needle on the second conical surface. This ensures the Constancy of the opening pressure even over very long operating periods.
  • FIG. 1 a fuel injection valve according to the invention is shown in longitudinal section.
  • a valve body 1 a bore 3 is formed, in which a piston-shaped valve needle 5 is arranged longitudinally displaceable.
  • the valve needle 5 is guided sealingly in this case with a guide chamber 15 facing away from the combustion chamber in a guide section 23 of the bore 3.
  • the valve needle 5 tapers to the combustion chamber to form a pressure shoulder 13 and merges at its combustion chamber end into a substantially conical valve sealing surface 7.
  • a pressure chamber 19 is formed which is radially expanded at the level of the pressure shoulder 13.
  • FIG. 2 is an enlargement of the section marked II FIG. 1 shown.
  • the valve sealing surface 7 of the valve needle 5 is subdivided into a first cone sealing surface 107 and a second cone sealing surface 207, at whose transition by different opening angles of the two cone sealing surfaces 107, 207 a sealing edge 17 is formed.
  • the valve seat 9 has a substantially conical shape and comprises three conical partial surfaces, wherein the first conical partial surface 109 adjoins the second conical partial surface 209 and this in turn adjoins the third conical partial surface 309.
  • the second conical partial surface 209 is raised relative to the first conical partial surface 109 and positioned relative to the valve needle 5, that in the closed position of the valve needle 5, when it rests against the valve seat 9, the sealing edge 17 abuts against the second conical partial surface 209.
  • FIG. 3 shows an enlargement of the designated III section of FIG. 2
  • a first annular shoulder 21 is formed, which limits the hydraulically effective seat diameter.
  • the longitudinal movement of the valve needle 5 in the bore 3 is determined by the ratio of two forces: On the one hand, a closing force on the combustion chamber facing away from the end of the valve needle by means not shown in the drawing, suitable Device is exercised. On the other hand acts on the valve needle 5, a hydraulic opening force, which is directed against the closing force and by the fuel pressure in the pressure chamber 19 is exerted on the valve needle 5.
  • valve needle 5 The surfaces of the valve needle 5, the pressure of which results in a force acting in the longitudinal direction resultant force component, especially the pressure shoulder 13 and parts of the valve sealing surface 7. If the closing force is constant, so this is the opening pressure, ie the fuel pressure in the force chamber 19 at the valve needle 5 begins its ⁇ Stammshubiolo.
  • the sealing edge 17 of the valve needle 5 would define the hydraulically effective seat diameter.
  • the entire surface of the valve sealing surface 7, which lies upstream of the sealing edge 17, in this embodiment, therefore, the first cone sealing surface 107, would be acted upon by the fuel pressure, thereby defining the hydraulic opening pressure.
  • the hydraulically effective seat diameter also changes in such a way that the pressurized area becomes smaller becomes, whereby the opening pressure rises.
  • FIG. 4 shows the same section as FIG. 2 another fuel injection valve, which has a slightly different seat geometry.
  • the third conical surface 309 is set back relative to the second conical surface 209, so that a second annular shoulder 22 is formed.
  • the third conical partial surface 309 merges into a blind hole 30, from which the injection openings 11 exit.
  • the valve needle 5 has a slightly modified valve sealing surface 7, on which a first cone sealing surface 107 and a second cone sealing surface 207 continue to be formed, however, an annular groove 27 is formed between these two cone sealing surfaces 107, 207.
  • the recessed third partial cone surface 309 achieves two things: on the one hand, a geometric limitation of the effective seating surface on the second conical partial surface 209, which precisely defines the hydraulic relationships in the gap between the valve seat 9 and the valve sealing surface 7, in particular at the very beginning of the opening stroke movement and makes it predictable.
  • the height d of the annular shoulder 21, as in FIG. 3 is shown, is preferably 2 microns to 20 microns, which ensures that on the one hand the hydraulically effective seat diameter is precisely determined and on the other hand, the stability ratios in the region of the valve seat 9 of the valve body 1 remain unchanged.
  • the width a of the second conical Part surface, as in FIG. 2 is shown, is preferably 0.2 mm to 0.5 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Es wird von einem Kraftstoffeinspritzventil für Brennkraftmaschinen ausgegangen, wie es dem Oberbegriff des Anspruchs 1 entspricht. Ein derartiges Kraftstoffeinspritzventil ist beispielsweise in der Offenlegungsschrift DE 100 31 265 A1 beschrieben und weist einen Ventilkörper auf, in dem eine Bohrung ausgebildet ist. Die Bohrung wird an ihrem brennraumseitigen Ende von einem Ventilsitz begrenzt, von dem wenigstens eine Einspritzöffnung abgeht, die in Einbaulage des Kraftstoffeinspritzventils in den Brennraum der Brennkraftmaschine mündet. In der Bohrung ist eine kolbenförmige Ventilnadel längsverschiebbar angeordnet, die an ihrem brennraumseitigen, also dem dem Ventilsitz zugewandten Ende, eine Ventildichtfläche aufweist mit der die Ventilnadel mit dem Ventilsitz zusammenwirkt. Hierbei wird in Schließstellung der Ventilnadel, das ist, wenn die Ventilnadel mit ihrer Ventildichtfläche auf dem Ventilsitz aufliegt, die Einspritzöffnungen verschlossen, während bei vom Ventilsitz abgehobener Ventilnadel Kraftstoff zwischen der Ventildichtfläche und dem Ventilsitz hindurch den Einspritzöffnungen zufließt und von dort in den Brennraum der Brennkraftmaschine eingespritzt wird.
  • Die Längsbewegung der Ventilnadel in der Bohrung erfolgt durch das Verhältnis zweier Kräfte: Zum einen eine hydraulische Kraft, die durch den Druck im Druckraum, der zwischen der Wand der Bohrung und der Ventilnadel ausgebildet und mit Kraftstoff befüllt ist, so dass eine hydraulische Kraft auf die Ventilnadel ausgeübt wird. Zum anderen wirkt eine Schließkraft auf die Ventilnadel, die auf das brennraumabgewandte Ende der Ventilnadel mittels einer geeigneten Vorrichtung ausgeübt wird. Die hydraulische Kraft auf die Ventilnadel hängt von der effektiven, vom Kraftstoff beaufschlagten Fläche ab, bei der sich eine Kraftkomponente in Längsrichtung ergibt. Der Öffnungsdruck des Kraftstoffeinspritzventils, also der Kraftstoffdruck im Druckraum, bei dem die hydraulische Kraft auf die Ventilnadel gerade ausreicht, diese entgegen einer gegebenen Schließkraft in Längsrichtung vom Ventilsitz wegzubewegen, hängt also unter anderem von der Auflagelinie der Ventilnadel auf dem Ventilsitz ab, dem sogenannten hydraulisch wirksamen Sitzdurchmesser, weil davon die vom Kraftstoffdruck beaufschlagte Teilfläche der Ventildichtfläche abhängt. Durch Verschleiß zwischen Ventildichtfläche und Ventilsitz kommt es im Verlauf der Lebensdauer des Kraftstoffeinspritzventils zu einer Änderung dieser Fläche und damit zu einer Änderung des hydraulisch wirksamen Sitzdurchmessers. Dadurch ändert sich auch der Öffnungsdruck, was sich in einer geänderten Öffnungsdynamik der Ventilnadel niederschlägt. Dadurch ändern sich auch der Einspritzzeitpunkt und die Einspritzmenge des Kraftstoffs, was bei modernen, schnelllaufenden Brennkraftmaschinen zu Problemen führen kann, insbesondere hinsichtlich des Kraftstoffverbrauchs und der Schadstoffemissionen.
  • Aus der Schrift GB 726,248 ist ein Einspritzventil bekannt, das einen Ventilsitz mit drei konischen Flächen aufweist, wobei die konischen Flächen in Flussrichtung des Kraftstoffs nacheinander angeordnet sind. Die in Flussrichtung gesehen zweite konische Fläche ist gegenüber der ersten konischen Fläche erhaben ausgebildet.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass bei unveränderter Geometrie der Ventilnadel ein konstanter Öffnungsdruck über die gesamte Lebensdauer des Kraftstoffeinspritzventils aufrecht erhalten werden kann. Hierzu weist der Ventilsitz drei konische Teilflächen auf, von denen die zweite konische Teilfläche stromabwärts der ersten konischen Teilfläche und die dritte konische Teilfläche stromabwärts der zweiten konischen Teilfläche angeordnet ist. Die zweite konische Teilfläche ist gegenüber der ersten konischen Teilfläche erhaben, so dass die Ventilnadel in Schließstellung an der zweiten konischen Teilfläche zur Anlage kommt, die Kante am Übergang der ersten konischen Teilfläche zur zweiten konischen Teilfläche den hydraulisch wirksamen Sitzdurchmesser definiert.
  • Das erfindungsgemässe Kraftstoffeinspritzventil weist auf, dass am Ventilsitz stromabwärts der zweiten konischen Teilfläche eine dritte konische Teilfläche ausgebildet, die gegenüber der zweiten konischen Teilfläche zurückgesetzt ist. Dadurch wird die Ventilsitzfläche, auf der die Ventilnadel aufsitzen kann, auch stromabwärts durch einen Absatz begrenzt. So ergeben sich genau definierte hydraulische Verhältnisse an der Berührungsfläche von Ventilnadel und Ventilsitz.
  • In einer weiteren vorteilhaften Ausgestaltung ist die zweite konische Teilfläche gegenüber der ersten konischen Teilfläche vorzugsweise um 2 µm bis 20 µm erhaben. Durch eine solche Abstufung ist die Konstanz des Öffnungsdrucks gegeben, ohne dass sich die Stabilitätsverhältnisse im Ventilkörper im Bereich des Ventilsitzes ändern.
  • Durch die Unteransprüche sind vorteilhafte Weiterbildungen des Gegenstandes der Erfindung möglich.
  • Das erfindungsgemässe Krafstoffeinspritzventil weist die sämtliche konische Teilfläche denselben Öffnungswinkel auf wie die erste konische Teilfläche. Dadurch lassen sich die drei konischen Teilflächen mit demselben Werkzeug herstellen, was bei der Herstellung eine Neujustage des Fräs- oder Schleifwerkzeugs erspart.
  • Besonders vorteilhaft sind die erfindungsgemäßen Ausgestaltungen des Ventilsitzes, wenn die Ventilnadel eine Dichtkante aufweist, die zwischen zwei Konusdichtflächen ausgebildet ist und die in Schließstellung der Ventilnadel an der zweiten konischen Teilfläche anliegt. Dies gewährleistet die Konstanz des Öffnungsdrucks auch über sehr lange Betriebszeiträume.
  • Zeichnung
  • In der Zeichnung sind verschiedene Ausführungsbeispiele eines erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
  • Figur 1
    Ein Kraftstoffeinspritzventil im Längsschnitt,
    Figur 2
    Eine Vergrößerung des mit II bezeichneten Aus- schnitts von Figur 1 im Bereich des Ventilsitzes,
    Figur 3
    Eine Vergrößerung des mit III bezeichneten Aus- schnitts von Figur 2 und
    Figur 4
    zeigt den gleichen Ausschnitt wie Figur 2, wobei hier das Kraftstoffeinspritzventil im Bereich des Ventilsitzes als sogenannte Sacklochdüse ausgebil- det ist.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt. In einem Ventilkörper 1 ist eine Bohrung 3 ausgebildet, in der eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet ist. Die Ventilnadel 5 wird hierbei mit einem brennraumabgewandten Führungsabschnitt 15 in einem Führungsabschnitt 23 der Bohrung 3 dichtend geführt. Ausgehend vom Führungsabschnitt 15 verjüngt sich die Ventilnadel 5 dem Brennraum zu unter Bildung einer Druckschulter 13 und geht an ihrem brennraumseitigen Ende in eine im wesentlichen konische Ventildichtfläche 7 über. Zwischen der Ventilnadel 5 und der Wand der Bohrung 3 ist ein Druckraum 19 ausgebildet, der auf Höhe der Druckschulter 13 radial erweitert ist. In diese radiale Erweiterung des Druckraums 19 mündet eine im Ventilkörper 1 verlaufende Zulaufbohrung 25, über die der Druckraum 19 mit Kraftstoff unter hohem Druck befüllbar ist. Die Bohrung 3 wird an ihrem brennraumseitigen Ende von einem Ventilsitz 9 begrenzt, von dem wenigstens eine Einspritzöffnung 11 abgeht, die in Einbaulage des Kraftstoffeinspritzventils in einer Brennkraftmaschine in deren Brennraum mündet.
  • In Figur 2 ist eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1 dargestellt. Die Ventildichtfläche 7 der Ventilnadel 5 unterteilt sich in eine erste Konusdichtfläche 107 und eine zweite Konusdichtfläche 207, an deren Übergang durch unterschiedliche Öffnungswinkel der beiden Konusdichtflächen 107, 207 eine Dichtkante 17 ausgebildet ist. Der Ventilsitz 9 ist im wesentlichen konisch ausgebildet und umfasst drei konische Teilflächen, wobei die erste konische Teilfläche 109 an die zweite konische Teilfläche 209 und diese wiederum an die dritte konische Teilfläche 309 grenzt. Die zweite konische Teilfläche 209 ist gegenüber der ersten konischen Teilfläche 109 erhaben und bezüglich der Ventilnadel 5 so positioniert, dass in Schließstellung der Ventilnadel 5, wenn diese an Ventilsitz 9 anliegt, die Dichtkante 17 an der zweiten konischen Teilfläche 209 zur Anlage kommt.
  • Figur 3 zeigt eine Vergrößerung des mit III bezeichnetem Ausschnitts von Figur 2, stellt also den entscheidenden Teil des Ventilsitzes 9 nochmals vergrößert dar. Zwischen der ersten konischen Teilfläche 109 und der zweiten konischen Teilfläche 209 ist ein erster Ringabsatz 21 ausgebildet, der den hydraulisch wirksamen Sitzdurchmesser begrenzt. Dieser spielt für das Öffnungsverhalten des Kraftstoffeinspritzventils eine entscheidende Rolle: Die Längsbewegung der Ventilnadel 5 in der Bohrung 3 wird durch das Verhältnis zweier Kräfte bestimmt: Zum einen einer Schließkraft, die auf das brennraumabgewandte Ende der Ventilnadel mittels einer, in der Zeichnung nicht dargestellten, geeigneten Vorrichtung ausgeübt wird. Zum anderen wirkt auf die Ventilnadel 5 eine hydraulischen Öffnungskraft, die der Schließkraft entgegen gerichtet ist und die durch den Kraftstoffdruck im Druckraum 19 auf die Ventilnadel 5 ausgeübt wird. Die Flächen der Ventilnadel 5, bei deren Druckbeaufschlagung sich eine in Längsrichtung wirkende resultierende Kraftkomponente ergibt, sind vor allem die Druckschulter 13 und Teile der Ventildichtfläche 7. Ist die Schließkraft konstant, so ist hierdurch der Öffnungsdruck gegeben, also der Kraftstoffdruck im Kraftraum 19, bei dem die Ventilnadel 5 ihre Öffnungshubbewegung beginnt.
  • Bei ideal steifen Verhältnissen, also wenn sich weder die Ventilnadel 5 noch der Ventilsitz 9 verformt, würde die Dichtkante 17 der Ventilnadel 5 den hydraulisch wirksamen Sitzdurchmesser definieren. Die gesamte Fläche der Ventildichtfläche 7, die stromaufwärts der Dichtkante 17 liegt, in diesem Ausführungsbeispiel also die erste Konusdichtfläche 107, würde vom Kraftstoffdruck beaufschlagt, so dass dadurch der hydraulische Öffnungsdruck festgelegt wäre. Durch das Einhämmern der Ventilnadel 5 in den Ventilsitz 9 kommt es mit der Zeit jedoch zu einer flächenhaften Berührung zwischen der Ventildichtfläche 7 und dem Ventilsitz 9, so dass sich auch der hydraulisch wirksame Sitzdurchmesser ändert, und zwar in der Weise, dass die druckbeaufschlagte Fläche kleiner wird, wodurch der Öffnungsdruck steigt. Durch die Ausbildung der erhabenen zweiten konischen Teilfläche 209 am Ventilsitz 9 kann dieser hydraulische Sitzdurchmesser jedoch nur bis zum ersten Ringabsatz 21 ansteigen, so dass auch bei längerem Betrieb des Kraftstoffeinspritzventils der Öffnungsdruck unverändert bleibt. Durch den zwischen der zweiten konischen Teilfläche 209 und der dritten konischen Teilfläche 309 ausgebildeten zweiten Ringabsatz 22 wird die Fläche, auf der die Ventilnadel 5 aufliegt, den Einspritzöffnungen zu begrenzt, so dass genau definierte hydraulische Verhältnissen am Ventilsitz herrschen. Eventuell auftretende adhäsive Kräfte zwischen Ventilnadel und Ventilsitz bleiben so konstant.
  • Figur 4 zeigt denselben Ausschnitt wie Figur 2 eines anderen Kraftstoffeinspritzventils, das eine etwas veränderte Sitzgeometrie aufweist. Wie schon beim Ausführungsbeispiel, das in Figur 2 und in Figur 3 dargestellt ist, ist die dritte konische Teilfläche 309 gegenüber der zweiten konischen Teilfläche 209 zurückgesetzt, so dass ein zweiter Ringabsatz 22 gebildet wird. Die dritte konische Teilfläche 309 geht in ein Sackloch 30 über, von dem die Einspritzöffnungen 11 abgehen. Die Ventilnadel 5 weist eine etwas veränderte Ventildichtfläche 7 auf, an der zwar weiterhin eine erste Konusdichtfläche 107 und eine zweite Konusdichtfläche 207 ausgebildet sind, jedoch ist zwischen diesen beiden Konusdichtflächen 107, 207 eine Ringnut 27 ausgebildet. Am Übergang zwischen der Ringnut 27 und der ersten Konusdichtfläche 107 ist die Dichtkante 17 ausgebildet, die in Schließstellung der Ventilnadel 5 an der zweiten konischen Teilfläche 209 zur Anlage kommt. Durch die zurückgesetzte dritte Teilkonusfläche 309 erreicht man zwei Dinge: zum einen eine geometrische Begrenzung der effektiven Sitzfläche auf die zweite konische Teilfläche 209, was die hydraulischen Verhältnisse im Spalt zwischen dem Ventilsitz 9 und der Ventildichtfläche 7, insbesondere ganz zu Beginn der Öffnungshubbewegung, genau definiert und damit berechenbar macht. Zum anderen ergibt sich durch die zurückgesetzte dritte konischen Teilfläche 309 eine Verringerung der Drosselwirkung für den in das Sackloch 30 einströmenden Kraftstoff, der andernfalls am Übergang der dritten konischen Teilfläche 309 zum Sackloch 30 stark abgedrosselt würde, was einen verringerten Einspritzdruck an den Einspritzöffnungen 11 bewirken würde.
  • Die Höhe d des Ringabsatzes 21, wie er in Figur 3 dargestellt ist, beträgt vorzugsweise 2 µm bis 20 µm, was sicherstellt, dass einerseits der hydraulisch wirksame Sitzdurchmesser genau bestimmt ist und andererseits die Stabilitätsverhältnisse im Bereich des Ventilsitzes 9 des Ventilkörpers 1 unverändert bleiben. Die Breite a der zweiten konischen Teilfläche, wie sie in Figur 2 dargestellt ist, beträgt vorzugsweise 0,2 mm bis 0,5 mm.
  • Bei der Gestaltung der Öffnungswinkel der konischen Teilflächen 109, 209, 309 des Ventilsitzes 9 ergeben sich größere Freiheiten. Es kann zum einen vorgesehen sein, dass sämtliche konischen Teilflächen 109, 209, 309 einen identischen Öffnungswinkel aufweisen. Es kann aber auch vorgesehen sein, dass jeweils leicht unterschiedliche Öffnungswinkel vorliegen, um die Einströmverhältnisse des Kraftstoffs im Spalt zwischen dem Ventilsitz 9 und der Ventildichtfläche 7 zu optimieren, insbesondere, um die Einlaufbedingungen des Kraftstoffs in das Sackloch 30, wie es bei einem Kraftstoffeinspritzventil nach der in Figur 4 gezeigten Art der Fall ist, optimal zu gestalten.

Claims (4)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem eine Bohrung (3) ausgebildet ist, die an ihrem brennraumseitigen Ende von einem Ventilsitz (9) begrenzt wird und an deren brennraumseitigen Endbereich wenigstens eine Einspritzöffnung (11) ausgebildet ist, und mit einer kolbenförmigen Ventilnadel (5), die in der Bohrung (3) längsverschiebbar angeordnet ist und die an ihrem brennraumseitigen Ende eine im wesentlichen konische Ventildichtfläche (7) aufweist, mit welcher die Ventilnadel (5) mit dem Ventilsitz (9) zusammenwirkt, so dass die wenigstens eine Einspritzöffnung (11) bei Anlage der Ventilnadel (5) auf dem Ventilsitz (9) verschlossen wird und bei vom Ventilsitz (9) abgehobener Ventilnadel (5) Kraftstoff zwischen dem Ventilsitz (9) und der Ventildichtfläche (7) hindurch den Einspritzöffnungen (11) zuströmt, wobei der Ventilsitz (9) eine erste konische Teilfläche (109), eine zweite konische Teilfläche (209) und eine dritte konische Teilfläche (309) umfasst, wobei die zweite konische Teilfläche (209) stromabwärts der ersten konischen Teilfläche (109) angeordnet und gegenüber dieser erhaben ausgebildet ist, wobei, dass die dritte konische Teilfläche (309) stromabwärts der zweiten konischen Teilfläche (209) ausgebildet, dadurch gekennzeichnet, dass die dritte konische Teilfläche gegenüber der zweiten konischen Teilfläche (209) zurückgesetzt ist, wobei sämtliche konische Teilflächen (109; 209; 309) einen identischen Öffnungswinkel aufweisen.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilnadel (5) in ihrer Schließstellung an der zweiten konischen Teilfläche (209) zur Anlage kommt.
  3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die zweite konische Teilfläche (209) 2 µm bis 20 µm gegenüber der ersten konischen Teilfläche (109) erhaben ist.
  4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass an der Ventildichtfläche (7) eine Dichtkante (17) ausgebildet ist, die in Schließstellung der Ventilnadel (5) an der zweiten konischen Teilfläche (209) anliegt.
EP03740029A 2002-10-22 2003-05-23 Kraftstoffeinspritzventil für brennkraftmaschinen Expired - Lifetime EP1556607B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10249144A DE10249144A1 (de) 2002-10-22 2002-10-22 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10249144 2002-10-22
PCT/DE2003/001679 WO2004040124A1 (de) 2002-10-22 2003-05-23 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1556607A1 EP1556607A1 (de) 2005-07-27
EP1556607B1 true EP1556607B1 (de) 2010-07-14

Family

ID=32087093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03740029A Expired - Lifetime EP1556607B1 (de) 2002-10-22 2003-05-23 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (6)

Country Link
US (1) US7077340B2 (de)
EP (1) EP1556607B1 (de)
JP (1) JP2006504037A (de)
CN (1) CN100379979C (de)
DE (2) DE10249144A1 (de)
WO (1) WO2004040124A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006062008A1 (de) * 2006-12-29 2008-07-03 Robert Bosch Gmbh Vorrichtung für Hochdruckanwendungen
US7669789B2 (en) * 2007-08-29 2010-03-02 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US20090057446A1 (en) * 2007-08-29 2009-03-05 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US8006715B2 (en) * 2007-09-20 2011-08-30 Caterpillar Inc. Valve with thin-film coating
US20090090794A1 (en) * 2007-10-04 2009-04-09 Visteon Global Technologies, Inc. Low pressure fuel injector
JP2009138614A (ja) * 2007-12-05 2009-06-25 Mitsubishi Heavy Ind Ltd 蓄圧式燃料噴射装置の燃料噴射弁
US20090200403A1 (en) * 2008-02-08 2009-08-13 David Ling-Shun Hung Fuel injector
DE102008039920A1 (de) * 2008-08-27 2010-03-04 Continental Automotive Gmbh Düsenkörper, Düsenbaugruppe und Kraftstoffinjektor, sowie Verfahren zum Herstellen eines Düsenkörpers
JP5237054B2 (ja) * 2008-11-07 2013-07-17 三菱重工業株式会社 蓄圧式燃料噴射装置の制御弁構造
KR101154579B1 (ko) * 2010-11-23 2012-06-08 현대자동차주식회사 엔진의 인젝터홀 구조
JP5838701B2 (ja) * 2011-10-05 2016-01-06 株式会社デンソー 燃料噴射弁
EP2905457B1 (de) * 2014-01-15 2018-08-29 Continental Automotive GmbH Ventilanordnung und Flüssigkeitseinspritzdüse für eine Brennkraftmaschine
JP6354519B2 (ja) * 2014-10-23 2018-07-11 株式会社デンソー 燃料噴射弁
US12078136B2 (en) 2022-05-20 2024-09-03 Caterpillar Inc. Fuel injector nozzle assembly including needle having flow guiding tip for directing fuel flow

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR445873A (fr) 1912-04-03 1912-11-21 Robert Bosch Attache-fil pour l'assemblage d'un cable et d'un balai frotteur en charbon
US1952816A (en) * 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
US2927737A (en) * 1952-04-12 1960-03-08 Bosch Gmbh Robert Fuel injection valves
GB726248A (en) 1952-04-12 1955-03-16 Bosch Gmbh Robert Improvements in fuel injection valves for internal combustion engines
DE3014958A1 (de) 1980-04-18 1981-10-29 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoff-einspritzduese, insbesondere lochduese, fuer brennkraftmaschinen
AT389352B (de) 1983-10-13 1989-11-27 Steyr Daimler Puch Ag Kraftstoff-einspritzduese fuer brennkraftmaschinen mit direkter kraftstoffeinspritzung
DE19609218B4 (de) * 1996-03-09 2007-08-23 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19755057A1 (de) * 1997-12-11 1999-06-17 Bosch Gmbh Robert Kraftstoffeinspritzdüse für selbstzündende Brennkraftmaschinen
DE19820513A1 (de) * 1998-05-08 1999-11-11 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzdüse für eine Brennkraftmaschine
DE19931891A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE10031265A1 (de) * 2000-06-27 2002-01-10 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
US20060032947A1 (en) 2006-02-16
DE50312891D1 (de) 2010-08-26
EP1556607A1 (de) 2005-07-27
CN1688807A (zh) 2005-10-26
US7077340B2 (en) 2006-07-18
DE10249144A1 (de) 2004-05-06
JP2006504037A (ja) 2006-02-02
WO2004040124A1 (de) 2004-05-13
CN100379979C (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
EP1556607B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102008031271B4 (de) Düsenbaugruppe für ein Einspritzventil
EP1321661B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2002001065A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1373715B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1623108B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1346143B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102005034879B4 (de) Düsenbaugruppe für ein Einspritzventil
EP1062423B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1952012B1 (de) Einspritzinjektor
EP1579113A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
EP1422418B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1601869B1 (de) Ventil mit federelement für einen kraftstoffinjektor
WO2006040288A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102006012242A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1576283A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
EP1546546A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10353683A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19623581A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10320044A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1597475A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
DE10157463A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10213384A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10016426A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10231622A1 (de) Ventil, insbesondere Drei/Zwei-Wege-Ventil eines Common-Rail-Einspritzsystems für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50312891

Country of ref document: DE

Date of ref document: 20100826

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100714

26N No opposition filed

Effective date: 20110415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50312891

Country of ref document: DE

Effective date: 20110415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120723

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130604

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312891

Country of ref document: DE

Effective date: 20131203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602