EP1546546A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen

Info

Publication number
EP1546546A1
EP1546546A1 EP03722284A EP03722284A EP1546546A1 EP 1546546 A1 EP1546546 A1 EP 1546546A1 EP 03722284 A EP03722284 A EP 03722284A EP 03722284 A EP03722284 A EP 03722284A EP 1546546 A1 EP1546546 A1 EP 1546546A1
Authority
EP
European Patent Office
Prior art keywords
valve
valve needle
conical surface
fuel injection
annular groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03722284A
Other languages
English (en)
French (fr)
Inventor
Markus Ohnmacht
Patrick Mattes
Uwe Finke
Werner Teschner
Wilhelm Christ
Ingolf Kahleyss
Guenger Yurtseven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1546546A1 publication Critical patent/EP1546546A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting

Definitions

  • the invention is based on a fuel injection valve as it corresponds to the preamble of claim 1.
  • a fuel injection valve is known from WO 96/19661, which has a valve body with a bore formed therein.
  • a conical valve seat is formed at the end of the bore on the combustion chamber side, and there is at least one injection opening through which the valve seat is connected to the combustion chamber of the internal combustion engine.
  • a piston-shaped valve needle is arranged in the bore so as to be longitudinally displaceable, which cooperates with the valve seat to control the at least one injection opening in such a way that when the valve needle rests on the valve seat, the injection openings are closed, while when the valve needle is lifted from the valve seat, fuel is injected from a pressure chamber into the injection openings can flow.
  • the combustion-gray end of the valve needle has two conical surfaces, the first conical surface having an opening angle that is smaller than the opening angle of the valve seat. Downstream of the first conical surface, a second conical surface is formed on the valve needle, which has an opening angle that is greater than the opening angle of the valve seat. In addition, an annular groove is formed between the two conical surfaces, the edge of which, upstream of the fuel flow to the injection openings and which adjoins the first conical surface, serves as a sealing edge when the valve needle rests on the valve seat.
  • the known fuel injection valve has the disadvantage that the opening pressure, ie the fuel pressure at which the valve needle experiences a sufficiently large hydraulic force to lift off the valve seat against a closing force, changes with the service life of the fuel injection valve.
  • the sealing edge is hammered somewhat into the valve seat, so that the downstream edge of the annular groove is also closer to the valve seat and, finally, even rests on the valve seat in the valve needle in the closed position.
  • fuel flows into the ring groove as soon as the sealing edge has lifted off the valve seat, but can only flow from there throttled past the downstream edge of the ring groove to the injection openings.
  • the fuel can only flow into the injection openings almost unthrottled when the valve needle is fully lifted. This additional opening force lowers the opening pressure and changes the opening dynamics of the valve needle. This makes it difficult to continue to precisely injection the quantity and timing, which is essential in modern, high-speed internal combustion engines.
  • a fuel injection valve is known in which the valve needle has a conical valve seal. surface at its combustion chamber end.
  • An annular groove is formed in the conical valve sealing surface, from which a transverse bore and a longitudinal bore intersect, so that the annular groove is connected to the end face of the valve needle on the combustion chamber side.
  • this fuel injection valve however, only a single sealing surface of the valve needle is provided, which rests with its entire surface on the valve seat, so that a corresponding problem with varying opening pressure cannot occur there.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage over the prior art that the opening dynamics of the fuel injection valve remain constant over the entire service life.
  • the annular groove is connected to the outer surface of the valve needle downstream of the annular groove by a channel running in the valve needle, so that a pressure building up in the annular groove is dissipated via this channel. As a result, the opening dynamics of the injection valve always remain the same.
  • the channel runs at an oblique angle to the longitudinal axis of the valve needle and the second conical surface opens out.
  • Such a channel is easy to manufacture and several such channels can be easily distributed over the circumference of the valve needle.
  • the channel is defined by a transverse bore and a longitudinal bore intersecting it. tion formed, wherein the longitudinal bore opens into the end face of the valve needle.
  • a fuel injection valve according to the invention is shown in the drawing. It shows
  • FIG. 1 shows a fuel injection valve in longitudinal section
  • FIG. 2 shows an enlargement of the section from FIG. 1 designated II in the region of the valve seat, the left and right sides representing two different configurations of the valve seat,
  • FIG. 3 shows another embodiment of the end of the valve needle and the valve seat on the combustion chamber side
  • Figure 4 shows another embodiment of a valve needle according to the invention.
  • 5a and 5b show further exemplary embodiments of valve needles according to the invention.
  • a fuel injection valve according to the invention is shown in longitudinal section.
  • a bore 3 is formed in a valve body 1 and is delimited at its combustion chamber end by a conical valve seat 9. At least one injection opening 11 extends from the valve seat 9 and mouths in the installed position of the fuel injection valve in the combustion chamber of the internal combustion engine.
  • a piston-shaped valve needle 5 is arranged so as to be longitudinally displaceable, which is guided with a guide section 15 in a section of the bore 3 facing away from the combustion chamber and has a longitudinal axis 7.
  • the valve needle 5 tapers, starting from the guide section 15, towards the combustion chamber to form a pressure shoulder 13 and merges at its end on the combustion chamber side into a valve sealing surface 12 which interacts with the valve seat 19 for controlling the at least one injection opening 11.
  • a pressure chamber 19 is formed, which is expanded radially at the height of the pressure shoulder 13.
  • an inlet channel 25 runs in the valve body 1, via which the pressure chamber 19 can be filled with fuel under high pressure.
  • a high fuel pressure is constantly present in the pressure chamber 19.
  • the fuel pressure in the pressure chamber 19 results in a hydraulic force on the valve needle 5 by acting on the pressure shoulder 13 and parts of the valve sealing surface 12.
  • This hydraulic opening force is opposed by a closing force which is exerted on the end on the combustion chamber side by a device (not shown in the drawing) the valve needle 5 is exerted.
  • the movement of the valve needle 5 m of the bore 3 takes place in that the closing force is reduced.
  • the valve needle 5 moves away from the valve seat 9, and fuel flows from the pressure chamber 19 to the injection openings 11 and is injected from there into the combustion chamber of the internal combustion engine.
  • the closing force on the valve needle 5 is increased until it is greater than the hydraulic opening force.
  • the valve needle 5 slides back into its closed position and cuts off the fuel supply to the injection openings 11.
  • FIG. 2 shows an enlargement of FIG.
  • the valve needle 5 has a first conical surface 30 and a second conical surface 32 at its combustion chamber end, which together form the valve sealing surface 12. Between the first conical surface 30 and the second conical surface 32, an annular groove 34 is formed which borders on both conical surfaces 30, 32.
  • the end of the valve needle 5 on the combustion chamber side forms an end surface 40 which is flat and has a circular shape.
  • the opening angles of the conical surfaces 30, 32 are designed such that the opening angle a ] _ of the first conical surface 30 is smaller than the opening angle b of the conical valve seat 9.
  • the opening angle a2 of the second conical surface 32 is larger than the opening angle b of the conical valve seat 9, so that when the valve needle 5 is in contact with the valve seat 9, the seat edge 37, which forms the boundary between the annular groove 34 and the first conical surface 30, first comes into contact with the valve seat 9.
  • the angles are also dimensioned such that the difference angle between a. ⁇ and b is smaller than between & 2 and b, i.e. there is a so-called inverse seat angle difference.
  • the throttle edge 38 which forms the boundary between the annular groove 34 and the second conical surface 32, is spaced apart from the valve seat 9 in the closed position of the valve needle 5, so that the annular groove 34 is closed only by the seat edge 37.
  • FIG. 2 is shown, at the beginning of the opening stroke movement of the valve needle 5, if it has not yet completed its full stroke, fuel flows from the pressure chamber 19, past the first conical surface 30, into the annular groove 34 and from there past the throttle edge 38 the injection openings 11.
  • the seat edge 37 pounds somewhat into the valve seat 9 due to wear. This reduces the distance of the throttle edge 38 from the valve seat 9 in the closed position of the valve needle 5, until finally the throttle edge 38 also sits on the valve seat 9.
  • FIG. 3 shows the same fuel injection valve as in the left half of FIG. 2, but here the valve needle 5 is shown partly in section.
  • a transverse bore 22 is formed in the valve needle 5, which runs perpendicular to the longitudinal axis 7 of the valve needle 5.
  • a longitudinal bore 23 is formed in the valve needle 5, which extends from the flat end face 40 of the valve needle 5 along the longitudinal axis 7 to the transverse bore 22 and together with this the channel 20 forms.
  • the fuel can now flow not only past the throttle edge 38 to the injection openings 11, but also through the channel 20 formed by the transverse bore 22 and the longitudinal bore 23 Fuel therefore flows simultaneously out of the opening of the longitudinal bore 23 and from there against the flow direction of the fuel flowing past the throttle edge 38 to the injection openings 11. This prevents pressure build-up in the annular groove 34, so that there is no additional opening pressure can build up.
  • FIG. 4 shows a further exemplary embodiment of a valve needle 5, in which the connection of the annular groove 34 to the end face 40 is realized here via an alternatively designed channel 20.
  • the channel 20 leads inwards a little in the radial direction, then kinks and leads parallel to the second conical surface 32 up to the end surface 40.
  • FIG. 5a shows a further exemplary embodiment of the valve needle 5 in a partially sectioned view, in which the channel 20, starting from the annular groove 34, opens into the part of the outer surface of the valve needle 5 which borders on the annular groove 34 and faces the injection openings 11.
  • the channel 20 does not open into the end face 40 here, but into the second conical surface 32.
  • the channel 20 is straight in this case and does not cut the longitudinal axis 7 of the valve needle 5
  • Figure 5b shows a plan view of the valve needle 5, in which the course of the channels 20 becomes clear.
  • the channels 20 pass the longitudinal axis 7 and are consequently skewed to the latter.
  • the channels 20 can be formed independently of one another and introduced into the valve needle 5, for example by means of a laser method.
  • the diameter of the channel 20 and thus also of the transverse bore 22 and the longitudinal bore 23 is preferably approximately 0.2-0.5 mm, which ensures an adequate hydraulic connection.

Abstract

Kraftstoffeinspritzventil mit einem Ventilkörper (1), in dem eine Bohrung (3) mit einem konischen Ventilsitz (9) und wenigstens eine Einspritzöffnung (11) ausgebildet ist. Eine kolbenförmige Ventilnadel (5) ist längsverschiebbar in der Bohrung (3) angeordnet und wirkt mit dem Ventilsitz (9) zur Steuerung der wenigstens einen Einspritzöffnung (11) zusam­men. Am brennraumseitigen Ende der Ventilnadel (5) ist eine erste Konusfläche (30) und eine stromabwärts zu dieser ange­ordnete zweite Konusfläche (32) ausgebildet, wobei die erste Konusfläche (30) einen Öffnungswinkel (a1) aufweist, der kleiner ist als der Öffnungswinkel (b) des Ventilsitzes (9), während der Öffnungswinkel (a2) der zweiten Konusfläche (32) größer ist als der Öffnungswinkel (b) des Ventilsitzes (9). Zwischen den beiden Konusflächen (30; 32) verläuft eine Ringnut (34), deren stromaufwärts gelegene Kante als Sitz­kante (37) der Ventilnadel (5) dient. Von der Ringnut (37) geht wenigstens ein in der Ventilnadel (5) verlaufender Kanal (20; 22; 23) ab, der in den Teil der Außenfläche der Ventilnadel (5) mündet, welcher an die Ringnut (37) angrenzt und den Einspritzöffnungen (11) zugewandt ist.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil aus, wie es der Gattung des Patentanspruchs 1 entspricht. Aus der WO 96/19661 ist ein solches Kraftstof einspritzventil bekannt, das einen Ventilkörper mit einer darin ausgebildeten Bohrung aufweist. Am brennraumseitigen Ende der Bohrung ist ein konischer Ventilsitz ausgebildet, und es befindet sich dort wenigstens eine Einspritzöffnung, durch die der Ventilsitz mit dem Brennraum der Brennkraftmaschine verbunden ist. In der Bohrung ist eine kolbenförmige Ventilnadel längsver- schiebbar angeordnet, die mit dem Ventilsitz so zur Steuerung der wenigstens einen Einspritzöffnung zusammenwirkt, dass bei Anlage der Ventilnadel auf dem Ventilsitz die Einspritzöffnungen verschlossen werden, während bei vom Ventilsitz abgehobener Ventilnadel Kraftstoff aus einem Druckraum den Einspritzöffnungen zufließen kann. Das brennrau seitige Ende der Ventilnadel weist zwei Konusflächen auf, wobei die erste Konusfläche einen Öffnungswinkel aufweist, der kleiner ist als der Öffnungswinkel des Ventilsitzes. Stromabwärts der ersten Konusfläche ist an der Ventilnadel eine zweite Konusfläche ausgebildet, die einen Öffnungswinkel aufweist, der größer als der Öffnungswinkel des Ventilsitzes ist. Darüber hinaus ist zwischen den beiden Konusflächen eine Ringnut ausgebildet, deren bezüglich des Kraftstoffstroms zu den Einspritzöffnungen stromaufwärts gelegene Kante, die an die erste Konusfläche grenzt, bei Anlage der Ventilnadel am Ventilsitz als Dichtkante dient. Das bekannte Kraftstoffeinspritzventil weist hierbei jedoch den Nachteil auf, dass sich der Öffnungsdruck, also der Kraftstoffdruck, bei dem die Ventilnadel eine genügend gro- ße, hydraulische Kraft erfährt, um gegen eine Schließkraft vom Ventilsitz abzuheben, mit der Lebensdauer des Kraftstoffeinspritzventils ändert. Bei einem neuen Kraftstoffein- spritzventil strömt zu Beginn der Öffnungshubbewegung, wenn die Ventilnadel erst einen kleinen Hub durchfahren hat, Kraftstoff an der Dichtkante vorbei in die Ringnut. Da ein Weiterfließen an der stromabwärts gelegenen Kante der Ringnut vorbei zu den Einspritzöffnungen ohne weiteres möglich ist, kommt es in der Ringnut zu keinem nennenswerten Druckanstieg und damit zu keiner zusätzlichen hydraulischen Kraft auf die Ventilnadel. Im Laufe der Lebensdauer des
Kraftstoffeinspritzventils wird die Dichtkante etwas in den Ventilsitz eingehämmert, so dass sich auch die stromabwärti- ge Kante der Ringnut näher am Ventilsitz befindet und schließlich sogar in Schließstellung der Ventilnadel am Ven- tilsitz aufliegt. Beim Öffnen der Ventilnadel strömt nun, sobald die Dichtkante vom Ventilsitz abgehoben hat, Kraftstoff in die Ringnut, kann von dort aber nur gedrosselt an der stromabwärtigen Kante der Ringnut vorbei zu den Ein- spritzöffnungen weiterfließen. Es kommt deshalb zu einem Druckanstieg in der Ringnut und damit zu einer zusätzlichen Öffnungskraft auf die Ventilnadel. Erst bei vollem Hub der Ventilnadel kann der Kraftstoff nahezu ungedrosselt den Einspritzöffnungen zufließen. Durch diese zusätzliche Öffnungskraft wird der Öffnungsdruck abgesenkt und die Öffnungsdyna- mik der Ventilnadel ändert sich. Hierdurch wird es erschwert, weiterhin eine präzise Einspritzung von Menge und Zeitpunkt vorzunehmen, was bei modernen, schnelllaufenden Brennkraftmaschinen unerlässlich ist.
Aus der DE 36 05 082 AI ist ein Kraftstoffeinspritzventil bekannt, bei dem die Ventilnadel eine konische Ventildicht- fläche an ihrem brennraumseitigen Ende aufweist. In der konischen Ventildichtfläche ist eine Ringnut ausgebildet, von der eine Querbohrung und die Querbohrung schneidend eine Längsbohrung abgeht, so dass die Ringnut mit der brennraum- seitigen Endfläche der Ventilnadel verbunden wird. Bei diesem Kraftstoffeinspritzventil ist jedoch nur eine einzige Dichtfläche der Ventilnadel vorgesehen, die mit ihrer gesamten Fläche auf dem Ventilsitz aufsitzt, so dass sich dort ein entsprechendes Problem mit variierendem Öffnungsdruck nicht auftreten kann.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kenn- zeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass die Öffnungsdynamik des Kraftstoffeinspritzventils während der gesamten Lebensdauer konstant bleibt. Durch einen in der Ventilnadel verlaufenden Kanal ist die Ringnut mit der Außenfläche der Ventilnadel stromabwärts der Ringnut verbunden, so dass ein sich in der Ringnut aufbauender Druck über diesen Kanal abgeführt wird. Hierdurch bleibt die Öffnungsdynamik des Einspritzventils stets dieselbe.
Durch die Unteransprüche sind vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung möglich.
In einer ersten vorteilhaften Ausgestaltung verläuft der Kanal in einem schiefen Winkel zur Längsachse der Ventilnadel und die zweite Konusfläche mündet. Solch ein Kanal ist einfach herzustellen und es lassen sich problemlos mehrere solcher Kanäle über den Umfang der Ventilnadel verteilt anbringen.
In einer weiteren vorteilhaften Ausgestaltung ist der Kanal durch eine Querbohrung und eine diese schneidende Längsboh- rung gebildet, wobei die Längsbohrung in die Stirnfläche der Ventilnadel mündet. Eine solche Verbindung ergibt einen weitgehend ungedrosselten Fluss von Kraftstoff aus der Ringnut in das Reservoirvolumen, so dass auch ein leichter Druckaufbau in der Ringnut wirksam unterdrückt wird.
Weitere vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung und der Zeichnung entnehmbar.
Zeichnung
In der Zeichnung ist ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt. Es zeigt
Figur 1 ein Kraftstoffeinspritzventil im Längsschnitt,
Figur 2 eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1 im Bereich des Ventilsitzes, wobei die linke und die rechte Seite zwei unterschiedliche Ausgestaltungen des Ventilsitzes darstellen,
Figur 3 ein weiteres Ausführungsbeispiel des brennraumseitigen Endes der Ventilnadel und des Ventilsitzes,
Figur 4 ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Ventilnadel und
Figur 5a und Figur 5b weitere Ausführungsbeispiele von erfindungsgemäßen Ventilnadeln.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt. In einem Ventilkörper 1 ist eine Bohrung 3 ausgebildet, die an ihrem brennraumseitigen Ende von einem konischen Ventilsitz 9 begrenzt wird. Vom Ventilsitz 9 geht wenigstens eine Einspritzöffnung 11 ab und mundet in Einbaulage des Kraftstoffemspritzventils in den Brennraum der Brennkraftmaschine. In der Bohrung 10 ist eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet, die mit einem Fuhrungsabschnitt 15 in einem brennraumabge- wandten Abschnitt der Bohrung 3 gefuhrt ist und eine Langsachse 7 aufweist. Die Ventilnadel 5 verjungt sich, ausgehend vom Fuhrungsabschnitt 15, dem Brennraum zu unter Bildung einer Druckschulter 13 und geht an ihrem brennraumseitigen Ende in eine Ventildichtfläche 12 über, die mit dem Ventilsitz 19 zur Steuerung der wenigstens einen Einspritzoffnung 11 zusammenwirkt. Zwischen der Bohrung 3 und der Ventilnadel 5 ist ein Druckraum 19 ausgebildet, der auf Hohe der Druckschulter 13 radial erweitert ist. In die radiale Erweiterung des Druckraums 19 mundet ein im Ventilkorper 1 verlaufender Zulaufkanal 25, über den der Druckraum 19 mit Kraftstoff unter hohem Druck befullbar ist. Bei Kraftstoffeinspritzsyste- men, die nach dem sogenannten Common-Rail-Prinzip arbeiten, liegt im Druckraum 19 standig ein hoher Kraftstoffdruck an. Durch den Kraftstoffdruck im Druckraum 19 ergibt sich eine hydraulische Kraft auf die Ventilnadel 5 durch Beaufschlagung der Druckschulter 13 und Teile der Ventildichtfläche 12. Dieser hydraulischen Offnungskraft ist eine Schließkraft entgegen gerichtet, die durch eine, in der Zeichnung nicht dargestellte, Vorrichtung auf das brennraumseitige Ende der Ventilnadel 5 ausgeübt wird. Die Bewegung der Ventilnadel 5 m der Bohrung 3 erfolgt dadurch, dass die Schließkraft reduziert wird. Sobald die hydraulische Offnungskraft auf die Ventilnadel 5 überwiegt, bewegt sich die Ventilnadel 5 vom Ventilsitz 9 weg, und Kraftstoff fließt aus dem Druckraum 19 den Einspritzoffnungen 11 zu und wird von dort in den Brennraum der Brennkraftmaschine eingespritzt. Zum Schließen des Kraftstoffeinspritzventils wird die Schließkraft auf die Ventilnadel 5 erhöht, bis diese großer ist als die hydraulische Offnungskraft. Die Ventilnadel 5 gleitet zurück in ihre Schließstellung und unterbricht die Kraftstoffzufuhr zu den Einspritzoffnungen 11. Figur 2 zeigt eine Vergrößerung von Figur 1 in dem mit II bezeichneten Ausschnitt, wobei die linke und die rechte Seite von Figur 2 zwei verschiedene Ausführungsbeispiele des brennraumseitigen Endes des Ventilkörpers 1 zeigen. Die Ventilnadel 5 weist an ihrem brennraumseitigen Ende eine erste Konusfläche 30 und eine zweite Konusfläche 32 auf, die zusammen die Ventildichtfläche 12 bilden. Zwischen der ersten Konusfläche 30 und der zweiten Konusfläche 32 ist eine Ringnut 34 ausgebildet, die an beide Konusflächen 30, 32 grenzte Das brennraumseitige Ende der Ventilnadel 5 bildet eine Stirnfläche 40, die eben ausgebildet ist und eine kreisrunde Form hat. Die Öffnungswinkel der Konusflächen 30, 32 sind dabei so ausgeführt, dass der Öffnungswinkel a]_ der ersten Konusfläche 30 kleiner ist als der Öffnungswinkel b des konischen Ventilsitzes 9. Der Öffnungswinkel a2 der zweiten Konusfläche 32 ist hingegen größer als der Öffnungswinkel b des konischen Ventilsitzes 9, so dass bei Anlage der Ventilnadel 5 am Ventilsitz 9 die Sitzkante 37, die die Grenze zwischen der Ringnut 34 und der ersten Konusfläche 30 bildet, zuerst am Ventilsitz 9 zur Anlage kommt. Die Winkel sind außerdem so bemessen, dass der Differenzwinkel zwischen a.ι und b kleiner ist als zwischen &2 und b, also eine sogenannte inverse Sitzwinkeldifferenz vorliegt. Die Drosselkan- te 38, die die Grenze zwischen der Ringnut 34 und der zweiten Konusfläche 32 bildet, ist in Schließstellung der Ventilnadel 5 vom Ventilsitz 9 beabstandet, so dass die Ringnut 34 nur durch die Sitzkante 37 verschlossen ist.
Bei dem Ausführungsbeispiel, das in der linken Hälfte der
Figur 2 dargestellt ist, fließt zu Beginn der Öffnungshubbewegung der Ventilnadel 5, wenn diese noch nicht ihren vollen Hub durchfahren hat, Kraftstoff aus dem Druckraum 19, an der ersten Konusfläche 30 vorbei, in die Ringnut 34 und von dort an der Drosselkante 38 vorbei zu den Einspritzöffnungen 11. Dies entspricht dem Neuzustand des Kraftstoffeinspritzven- tils oder auch nach längerem Betrieb den Verhaltnissen, wenn sowohl die Ventilnadel 5 als auch der Ventilsitz 9 bzw. der Ventilkorper 1 keinen Verschleiß zeigen wurden. Im Laufe der Lebensdauer des Kraftstoffeinspritzventils hämmert sich durch Verschleiß die Sitzkante 37 etwas in den Ventilsitz 9 ein. Hierdurch verringert sich der Abstand der Drosselkante 38 vom Ventilsitz 9 in Schließstellung der Ventilnadel 5, bis schließlich auch die Drosselkante 38 auf dem Ventilsitz 9 aufsitzt. Beim Offnen des Kraftstoffeinspritzventils, also wenn die Ventilnadel 5 vom Ventilsitz 9 abhebt, kommt es anfanglich, bei noch sehr geringem Hub der Ventilnadel 5, zum Einstromen von Kraftstoff an der Sitzkante 37 vorbei in die Ringnut 34. Von dort kann der Kraftstoff aber nur gedrosselt an der Drosselkante 38 vorbei zu den Einspritzoffnungen 11 fließen, so dass sich in der Ringnut 34 ein hoher Druck aufbaut, der eine zusatzliche hydraulische Offnungskraft auf die Ventilnadel 5 ausübt.
Bei dem Ausfuhrungsbeispiel, das auf der rechten Seite der Figur 2 dargestellt ist, sind diese Verhaltnisse in der Ringnut 34 gleich. Die Einspritzoffnungen 11 gehen hier nicht vom konischen Ventilsitz 9 ab, sondern an den Ventilsitz 9 schließt sich eine Blindbohrung 109 an, von der die Einspritzoffnungen 11 abgehen. Die drosselnde Wirkung der Drosselkante 38 und der zusatzliche, unerwünschte Druckaufbau in der Ringnut 34 sind aber hier identisch.
In Figur 3 ist das gleiche Kraftstoffeinspritzventil wie in der linken Hälfte der Figur 2 nochmals gezeigt, jedoch ist hier die Ventilnadel 5 teilweise geschnitten dargestellt.
Auf Hohe der Ringnut 34 ist in der Ventilnadel 5 eine Querbohrung 22 ausgebildet, die senkrecht zur Langsachse 7 der Ventilnadel 5 verlauft. Zusatzlich ist in der Ventilnadel 5 eine Langsbohrung 23 ausgebildet, die von der flachen Stirn- flache 40 der Ventilnadel 5 entlang der Langsachse 7 bis zur Querbohrung 22 reicht und zusammen mit dieser den Kanal 20 bildet. Hierdurch wird eine hydraulische Verbindung der Ringnut 34 mit der Außenfläche der Ventilnadel 5, hier der Stirnfläche 40, hergestellt und damit mit einem Reservoirvolumen 41, das von der Ventilnadel 5 und dem brennraumseiti- gen Ende des Ventilsites 9 begrenzt wird. Bei vom Ventilsitz 9 abgehobener Ventilnadel 5, wie es in Figur 3 dargestellt ist, kann der Kraftstoff jetzt nicht nur an der Drosselkante 38 vorbei zu den Einspritzöffnungen 11 strömen, sondern auch durch den durch die Querbohrung 22 und die Längsbohrung 23 gebildeten Kanal 20. Der Kraftstoff strömt also gleichzeitig aus der Öffnung der Längsbohrung 23 heraus und von dort entgegen der Strömungsrichtung des Kraftstoffs, der an der Drosselkante 38 vorbei fließt, zu den Einspritzöffnungen 11. Dadurch wird ein Druckaufbau in der Ringnut 34 verhindert, so dass sich dort kein zusätzlicher Öffnungsdruck aufbauen kann.
Figur 4 zeigt ein weiteres Ausführungsbeispiel einer Ventilnadel 5, bei der die Verbindung der Ringnut 34 mit der Stirnfläche 40 hier über einen alternativ gestalteten Kanal 20 realisiert ist. Der Kanal 20 führt, ausgehend von der Ringnut 34, ein Stück in radialer Richtung einwärts, knickt dann ab und führt parallel zur zweiten Konusfläche 32 bis zur Stirnfläche 40.
In Figur 5a ist ein weiteres Ausführungsbeispiel der Ventilnadel 5 in teilgeschnittener Ansicht dargestellt, bei der der Kanal 20, ausgehend von der Ringnut 34, in den Teil der Außenfläche der Ventilnadel 5 mündet, der an die Ringnut 34 grenzt und den Einspritzöffnungen 11 zugewandt ist. Im Gegensatz zu denen in Figur 3 und 4 gezeigten Ausführungsbei- spielen mündet der Kanal 20 hier jedoch nicht in die Stirnfläche 40, sondern in die zweite Konusfläche 32. Der Kanal 20 ist hierbei gerade ausgebildet und schneidet die Längs- achse 7 der Ventilnadel 5 nicht. Figur 5b zeigt eine Draufsicht auf die Ventilnadel 5, bei der der Verlauf der Kanäle 20 deutlich wird. Die Kanäle 20 fuhren an der Langsachse 7 vorbei und sind folglich windschief zu dieser ausgebildet. Hierdurch können die Kanäle 20 unabhängig voneinander ausgebildet und beispielsweise mittels eines Laserverfahrens in die Ventilnadel 5 eingebracht werden.
Es kann alternativ zur der Darstellung in Figur 5b auch vorgesehen sein, dass mehr als zwei Kanäle 20 in der Ventilnadel 5 ausgebildet sind, ohne sich zu schneiden. Auch hier werden die Kanäle 20 tangential der Langsachse 7 vorbeige- fuhrt .
Der Durchmesser des Kanals 20 und damit auch der Querbohrung 22 und der Langsbohrung 23 betragt vorzugsweise etwa 0,2- 0,5 mm, was eine ausreichende hydraulische Verbindung sicher stellt.

Claims

Ansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkorper (1) , in dem eine Bohrung (3) ausgebildet ist, an deren brennraumseitigen Ende ein konischer Ventilsitz (9) ausgebildet ist und wenigstens eine Einspritzoffnung (11) in den Brennraum der Brennkraftmaschine abfuhrt, und mit einer kolbenförmigen Ventilnadel (5) , die langsverschiebbar in der Bohrung (3) angeordnet ist und mit dem Ventilsitz (9) zur Steuerung des Kraftstoffflusses zu der wenigstens einen Einspritzoffnung (11) zusammenwirkt, wobei am brennraumseitigen Ende der Ventilnadel (5) eine erste Konusflache (30) und eine stromabwärts zu dieser angeordnete zweite Konusflache (32) aus- gebildet sind, wobei die erste Konusflache (30) einen
Offnungswinkel (a]_) aufweist, der kleiner ist als der Offnungswinkel (b) des Ventilsitzes (9) , wahrend der Offnungswinkel (a2) der zweiten Konusflache (32) großer ist als der Offnungswinkel (b) des Ventilsitzes (9) , und mit einer zwischen den beiden Konusflachen (30; 32) verlaufenden Ringnut (34) , die an beide Konusflachen (30; 32) grenzt und deren stromaufwärts gelegene Kante als Sitzkante (37) der Ventilnadel (5) dient, dadurch gekennzeichnet, dass von der Ringnut (37) wenigstens ein in der Ventilnadel (5) verlaufender Kanal (20; 22; 23) abgeht, der m den Teil der Außenflache der Ventilnadel (5) mundet, welcher an die Ringnut (37) angrenzt und den Einspritzoffnungen (11) zugewandt ist.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch ge- kennzeichnet, dass der Kanal (20) eine Bohrung (22; 23) ist, die in einem schiefen Winkel zur Längsachse (7) der Ventilnadel (5) verläuft und in die zweite Konusfläche (32) mündet.
3. Kraftstoffeinspritzventil nach Anspruch 1 , dadurch ge- kennzeichnet, dass der Kanal (20) durch eine Querbohrung
(22) und eine diese schneidende Längsbohrung (23) gebildet wird, wobei die Längsbohrung (23) in die das brenn- raumseitige Ende der Ventilnadel (5) bildende Stirnfläche (40) mündet.
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Kanal (20) durch zwei gerade Abschnitte gebildet wird, wobei ein erster Abschnitt im rechten Winkel zur Längsachse (7) der Ventilnadel (5) verläuft und in einen zweiten Abschnitt übergeht, der im wesentlichen parallel zur zweiten Konusfläche (32) der
Ventilnadel (5) verläuft.
5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass der Kanal (20) in eine das brennraum- seitige Ende der Ventilnadel (5) bildende Stirnfläche (40) mündet.
EP03722284A 2002-09-13 2003-04-17 Kraftstoffeinspritzventil für brennkraftmaschinen Withdrawn EP1546546A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002142685 DE10242685A1 (de) 2002-09-13 2002-09-13 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10242685 2002-09-13
PCT/DE2003/001296 WO2004027254A1 (de) 2002-09-13 2003-04-17 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (1)

Publication Number Publication Date
EP1546546A1 true EP1546546A1 (de) 2005-06-29

Family

ID=31895983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03722284A Withdrawn EP1546546A1 (de) 2002-09-13 2003-04-17 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (3)

Country Link
EP (1) EP1546546A1 (de)
DE (1) DE10242685A1 (de)
WO (1) WO2004027254A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496246A1 (de) * 2003-07-07 2005-01-12 Delphi Technologies, Inc. Einspritzdüse
DE102007026122A1 (de) * 2007-06-05 2008-12-11 Volkswagen Ag Kraftstoffeinspritzdüse für eine Brennkraftmaschine
CN108533432A (zh) * 2018-01-23 2018-09-14 中国第汽车股份有限公司 一种提高各孔喷油均匀性的喷油嘴
DE102019210551A1 (de) 2019-07-17 2021-01-21 Robert Bosch Gmbh Kraftstoffinjektor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3605082A1 (de) * 1986-02-18 1987-08-20 Bosch Gmbh Robert Kraftstoff-einspritzduese fuer brennkraftmaschinen
JPH04295176A (ja) * 1991-03-25 1992-10-20 Nissan Motor Co Ltd 燃料噴射ノズル
GB9425652D0 (en) * 1994-12-20 1995-02-22 Lucas Ind Plc Fuel injection nozzle
DE10031264A1 (de) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004027254A1 *

Also Published As

Publication number Publication date
DE10242685A1 (de) 2004-03-25
WO2004027254A1 (de) 2004-04-01

Similar Documents

Publication Publication Date Title
EP1431567B1 (de) Brennstoffeinspritzventil für Verbrennungskraftmaschinen
EP1747370B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10315821A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1546547B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE602004004056T2 (de) Einspritzdüse
EP1556607B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102005030868A1 (de) Kraftstoffeinspritzventile bei Kraftmaschinen
EP1373715B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19823937A1 (de) Servoventil für Kraftstoffeinspritzventil
EP1346143B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1627148A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1373710B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1546546A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1043496B1 (de) Einspritzventil zur Kraftstoffeinspritzung in einer Verbrennungskraftmaschine
EP1579113A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
WO2001079688A1 (de) Kraftstoffeinspritzventil fur brennkraftmaschinen
DE10318989A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10312586A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1576283A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
EP3784900B1 (de) Kraftstoffinjektor
DE60019026T2 (de) Kraftstoffeinspritzventil
DE102005005713A1 (de) Düsenbaugruppe und Einspritzventil
DE10157463A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10320044A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005029024A1 (de) Düsenbaugruppe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050413

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050809