EP1627148A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen

Info

Publication number
EP1627148A1
EP1627148A1 EP03747819A EP03747819A EP1627148A1 EP 1627148 A1 EP1627148 A1 EP 1627148A1 EP 03747819 A EP03747819 A EP 03747819A EP 03747819 A EP03747819 A EP 03747819A EP 1627148 A1 EP1627148 A1 EP 1627148A1
Authority
EP
European Patent Office
Prior art keywords
valve
annular groove
injection
edge
valve needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03747819A
Other languages
English (en)
French (fr)
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1627148A1 publication Critical patent/EP1627148A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as it corresponds to the preamble of claim 1.
  • a fuel injection valve for internal combustion engines, as it corresponds to the preamble of claim 1.
  • Such a fuel injection valve is known, for example, from published patent application DE 198 44 638 AI.
  • the known fuel injection valve here has a valve body in which a piston-shaped valve needle is guided so as to be longitudinally displaceable in a bore.
  • the bore is delimited by a conical valve seat, from which several injection channels extend, which open into the combustion chamber of the internal combustion engine when the fuel injection valve is in the installed position.
  • the inlet openings of the injection channels are at the same height with respect to the longitudinal axis of the bore.
  • the valve needle At its end on the combustion chamber side facing the valve seat, the valve needle has an essentially conical valve sealing surface, which comprises a first conical surface and a second conical surface arranged downstream thereof. Between the two conical surfaces, a sealing edge is formed, with which the valve needle interacts with the valve seat in its closed position, so that when the valve needle rests on the valve seat, the fuel flow from the pressure chamber to the injection channels is interrupted, the pressure chamber between the valve needle and the wall of the Bore is formed.
  • the known fuel injection valve has an annular groove on the valve sealing surface, which is at least in the closed position.
  • the valve needle covers the inlet openings of the injection channels. This favors the inflow of the fuel into the injection channels on the one hand by the fact that the fuel is distributed evenly over the individual injection channels, even if the valve needle is slightly offset with respect to the valve seat. On the other hand, fluctuations that occur due to a different degree of rounding at the transition of the valve seat into the injection channels have less of an impact through the annular groove, since the fuel inlet is throttled.
  • the known fuel injection valve has the disadvantage, however, that the annular groove has a relatively large volume and fuel can thus enter the combustion chamber of the internal combustion engine from the injection channels even when the valve needle is closed, which leads to increased hydrocarbon emissions from the internal combustion engine.
  • the fuel injection valve according to the invention with the characterizing features of patent claim 1 has the advantage that the inflow of fuel into the injection channels is unthrottled without negative effects on the hydrocarbon emissions of the internal combustion engine.
  • a circumferential, first annular groove is formed on the second conical surface of the valve needle and runs in a radial plane with respect to the longitudinal axis of the valve needle.
  • the circumferential first annular groove has an upstream edge and a downstream edge, the downstream edge running in the closed position of the valve needle to the height of the inlet openings of the injection channels.
  • the groove can also compensate for fluctuations that result from the fact that the transition from the valve seat to the injection channels is usually rounded, but this cannot be reproduced exactly the same on all injection channels. For this reason, the different injection channels at the inlet openings generally have slightly different rounding radii, which are compensated for by the first annular groove, which brings about the same inlet conditions for all injection channels.
  • the width of the first annular groove is smaller than the diameter of the inlet openings of the injection channels.
  • the upstream and / or the downstream edge of the first annular groove is rounded. This configuration of the annular grooves further facilitates and dethrottles the flow of fuel into the injection channels.
  • the upstream edge of the first annular groove is designed as a sealing edge with which the valve needle seals when it rests on the valve seat.
  • This sealing function is additionally carried out by the first Ring groove reinforced, because in this case a higher surface pressure occurs in this area.
  • a second annular groove is formed in the second conical surface of the valve needle, which is arranged downstream of the first annular groove and is parallel to the latter, and the downstream edge of the inlet openings lies within the second annular groove.
  • the inflow of fuel is also throttled at the downstream edge of the inlet opening of the injection channel, so that the flow through the second annular groove is further favored. It is particularly advantageous here if a conical area remains between the first annular groove and the second annular groove, the height of which is smaller than the diameter of the inlet openings of the injection channels.
  • Another fuel injector which is a variant of the same solution idea, has the same advantages as the injector according to claim 1.
  • a circumferential body ring groove is formed in the valve seat, which runs in a radial plane with respect to the longitudinal axis of the bore and which has an upstream edge and a downstream edge, the downstream edge running through the inlet openings of the injection channels.
  • the dethrottling effect of this body ring groove is the same as the dethrottling effect of the first ring groove in the second conical surface of the valve needle, but here the valve needle can be left in its original shape.
  • the width of the annular groove is smaller than the diameter of the inlet openings of the injection channels. As a result, only a small volume is created. det, but reliably dethrottled the inlet of the fuel into the injection channels. It is particularly advantageous here if the upstream edge and / or the downstream edge of the annular groove is rounded. It can also be provided here that a second annular groove is formed in the second conical surface of the valve needle, which is arranged downstream of the annular groove in the valve seat and is parallel to the latter, the downstream edge of the inlet openings being located within the second annular groove.
  • FIG. 1 shows a longitudinal section through a fuel injection valve
  • FIG. 2 shows an enlargement of FIG. 1 in the area of the valve seat
  • FIG. 3 shows the same view as FIG. 2 of a further exemplary embodiment
  • FIG. 4 shows another exemplary embodiment, which is shown here in an enlarged detail of the valve seat area
  • FIG another embodiment in the same
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention.
  • the fuel injection valve comprises a valve body 1 which, in the installed position of the fuel injection valve in an internal combustion engine, projects into a combustion chamber 8 with its end on the combustion chamber side.
  • the Ven TililITY 1 is pressed by means of a clamping nut 2 with the interposition of a throttle body 4 against a holding body 6, wherein the clamping nut 2 engages with an internal thread, not shown in the drawing, in a corresponding external thread of the holding body 6.
  • a bore 3 is formed in the valve body 1, which widens away from the combustion chamber to form a spring chamber 22.
  • the bore 3 is delimited by a conical valve seat 13, a plurality of injection channels 11 being formed at the end of the valve body 1 on the combustion chamber side, which open into the combustion chamber 8 of the internal combustion engine.
  • a piston-shaped valve needle 5 is arranged to be longitudinally displaceable, which has a longitudinal axis 7 and which is guided in a central section of the bore 3.
  • the valve needle 5 has at its end on the combustion chamber side an essentially conical valve sealing surface 9 with which the valve needle 5 interacts with the valve seat 13.
  • a pressure chamber 20 is formed between the wall of the bore 3 and the valve needle 5, which opens into the spring chamber 22, facing away from the combustion chamber, and via which fuel flows from the spring chamber 22 to the injection openings 11.
  • the interaction of the valve sealing surface 9 with the valve seat 13 takes place in such a way that when the valve needle 5 is in contact with the valve seat 13, the fuel flow from the pressure chamber 20 to the injection openings 11 is interrupted, while when the valve needle 13 is lifted from the valve seat 13, fuel is between the valve sealing surface 9 and flows through the valve seat 13 to the injection openings 11.
  • the fuel flow from the spring chamber 22 to the injection openings 11 is conducted in the region in which the valve needle 5 is guided in the bore 3 through a plurality of cuts 17 which form a sufficient flow cross section.
  • a sleeve 24 is arranged in the spring chamber 22, which surrounds the end of the valve needle 5 facing away from the combustion chamber and abuts the throttle body 4.
  • a control chamber 26 is delimited by the end face 32 of the valve needle 5 facing away from the combustion chamber, the sleeve 24 and the throttle body 4, said control chamber being connected to the spring chamber 22 via an inlet throttle 34 formed in the sleeve 24.
  • the control chamber 26 can be connected via a discharge throttle 36, which is formed in the throttle body 4, to a leakage oil chamber (not shown in the drawing), the connection being closable by means of a control valve 14.
  • a closing spring 28 is arranged, which is supported at one end on the sleeve 24 and at the other end on a spring plate 30 surrounding the valve needle 5, the closing spring 28 having a prestress.
  • the prestressing of the closing spring 28 results in a force on the spring plate 30 and thus, since the spring plate 30 is supported on the valve needle 5, also on the valve needle 5, so that the valve needle 5 with the valve sealing surface 9 is pressed against the valve seat 13.
  • the fuel injection is controlled in such a way that at the beginning of an injection cycle the control valve 14 closes the outlet throttle 36, so that the same pressure prevails in the control chamber 26 via the inlet throttle 34 as in the spring chamber 22, which results in a hydraulic force on the end face 32 of the valve needle 5 causes this presses against the valve seat 13 so that the injection channels 11 are closed.
  • the control valve 14 opens the discharge throttle 36, which causes a pressure drop in the control chamber 26.
  • the hydraulic forces on the pressure shoulder 15 and on parts of the valve sealing surface 9 now predominate, so that the valve needle 5 lifts off the valve seat 13 and fuel from the pressure chamber 20 to the Injection channels 11 flows.
  • the control valve 14 By actuating the control valve 14 again, the high fuel pressure in the control chamber 26 builds up again, and the valve needle 5 slides back into its closed position.
  • FIG 2 shows an enlargement of Figure 1 in the section designated II.
  • the valve sealing surface 9 of the valve needle 5 comprises a first conical surface 40 and a second conical surface 42 located downstream of it. At the transition from the first conical surface 40 to the second conical surface 42, a sealing edge 45 is formed, which seals the valve needle 5 on the valve seat 13 leads.
  • a first annular groove 50 is formed, which runs in a radial plane with respect to the longitudinal axis 7 of the valve needle 5 and which has an upstream edge 51 and a downstream edge 52.
  • the downstream edge 52 runs at the level of the inlet openings 16 of the injection channels 11, so that the inflow of the fuel into the injection channels 11 is throttled.
  • the inlet opening 16 of the injection channels 11 has a diameter a that is larger than the diameter D of the injection channels 11, which is due to the fact that the upstream end 18 and the downstream end 19 of the inlet opening 16 also coexist at the transition from the injection channel 11 to the valve seat 13 are rounded to a radius R.
  • the fuel If the fuel flows from the pressure chamber 20 past the sealing edge 45 between the second conical surface 42 and the valve seat 13 to the injection channels 11, the fuel must undergo a major change in direction when it flows into the injection channel 11. This normally leads to a strong loss of energy and thus to a correspondingly reduced injection pressure in the injection channel 11.
  • the rounding radius R at the inlet opening 16 can somewhat alleviate this effect, but it does still present and leads to a reduced injection pressure.
  • the inflow of the fuel into the injection channel 11 is throttled by the first annular groove 50, so that the speed of the fuel in the injection channel 11 is higher and thus a correspondingly higher effective injection pressure is present.
  • a second annular groove 53 is formed on the second conical surface 42 parallel to the first annular groove 50, which also has an upstream edge 54 and a downstream edge 55.
  • the downstream end 19 of the inlet opening 16 is in the closed position of the valve needle 5 with respect to the longitudinal axis 7 between the upstream edge 54 and the downstream edge 55 of the second annular groove 53. This also favors the second annular groove 53 to allow the fuel to flow into the injection channel 11 at the critical point of the downstream end 19 of the inlet opening 16.
  • the reduction in the throttling when the fuel flows into the injection channel 11 is particularly important in the partial stroke range, that is to say when the valve needle 5 has lifted off the valve seat 13 but has not yet reached its maximum stroke.
  • the height x of the first annular groove 50 which is approximately equal to the height y of the second annular groove 53, is preferably smaller than the diameter D of the injection channel 11.
  • FIG. 3 shows a further exemplary embodiment of the fuel injection valve according to the invention, the section only showing the left half.
  • the formation of the ring grooves 50, 53 on the second cone surface 42 is somewhat different from the arrangement as shown in FIG. 2: the first ring groove 50 adjoins the sealing edge 45 directly, so that the first cone surface 40 does not directly adjoin the second conical surface 42 borders.
  • the inlet openings 16 are arranged such that the same arrangement of the inlet opening 16 or of the injection channel 11 is given to the first annular groove 50 and to the second annular groove 53.
  • FIG. 4 shows the same detail as FIG.
  • the valve needle 5 here has only the second annular groove 53 on the second cone surface 42, while the first annular groove 50 is omitted.
  • a body ring groove 57 is formed in the valve seat 13, which runs in the closed position of the valve needle 5 at approximately the same height with respect to the longitudinal axis 7 as the first ring groove 50 in the exemplary embodiment shown in FIG. 2 when the valve needle 5 rests on the valve seat 13
  • the inflow of fuel into the injection channel 11 is throttled by the body ring groove 57 as well as by the first ring groove 50 in the exemplary embodiment shown in FIG the inlet openings 16 are not changed by the stroke of the valve needle 5.
  • a longitudinal groove 56 can also be provided on the second conical surface 42, which connects the second annular groove 53 to the volume between the end surface on the combustion chamber side 47 of the valve needle 5 and the valve body 1 is formed. This pressure relief of the second annular groove 53 additionally favors the dethrottling of the inflow into the injection channel 11.
  • the upstream edge 58 and the downstream edge 59 of the body ring groove 57 can be rounded in order to optimize the dethrottling, since sharp edges can easily lead to a flow separation and thus to an increased flow resistance with a fast fuel flow.
  • the distance of the upstream edge 58 of the body ring groove 57 from the sealing edge 45 in the closed position of the valve needle 5 is approximately 0.02 to 0.2 mm.
  • FIG. 5 shows a further exemplary embodiment, in which not only a single valve needle is provided, but two valve needles which are guided coaxially one inside the other.
  • a valve needle 60 has a first cone surface 63 and a second cone surface 64 at its combustion chamber end, an annular groove 70 being formed in the second cone surface 63.
  • the valve needle 60 has a longitudinal bore 61 in which a valve inner needle 62 is arranged to be longitudinally displaceable.
  • a conical valve sealing surface 66 in which an annular groove 72 is formed, is formed on the end of the valve inner needle 62 on the combustion chamber side.
  • the outer row of injection channels 11a through the valve needle 60 and the inner row Injection channel row 11b is controlled by the valve inner needle 62.
  • the annular groove 70 serves here in the same way.
  • the inflow of fuel into the downstream injection channel row 11b is throttled by the annular groove 72, which has an upstream edge 73 and a downstream edge 74, the downstream edge 74 at the level of the inlet openings of the inner injection opening row 11b when the valve inner needle 62 is in its closed position.
  • the diameter D of the injection channels 11 in all exemplary embodiments is preferably in the range from 80 to 150 ⁇ m, which necessitates a diameter of the ring grooves 50, 53, 57 that is smaller than this diameter of the injection channels 11.
  • Such fine ring grooves can preferably be made using a Introduce the laser into the valve needle 5 or into the valve seat 13, since mechanical processing methods generally do not have the necessary precision here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil mit einem Ventilkörper (1), in dem eine Bohrung (3) ausgebildet ist, die an ihrem brennraumseitigen Ende von einem konischen Ventilsitz (13) begrenzt wird, von dem mehrere Einspritzkanäle (11) abgehen, deren Eintrittsöffnungen (16) im Ventilsitz (13) bezüglich der Längsachse (7) der Bohrung (3) auf derselben Höhe liegen. Eine Ventilnadel (5; 60; 62) ist längsverschiebbar in der Bohrung (3) angeordnet, und zwischen der Wand der Bohrung (3) und der Ventilnadel (5; 60; 62) ist ein Druckraum (20) ausgebildet, der mit Kraftstoff befüllbar ist. Am brennraumseitigen Ende der Ventilnadel (5; 60; 62) ist eine erste >nusfläche (40) und eine stromabwärts zu dieser angeordnetezweite Konusfläche (42) angeordnet, wobei zwischen den >nusflächen (40; 42) eine Dichtkante (45) ausgebildet ist. In der zweiten Konusfläche (42) der Ventilnadel (5; 60; 62) ist eine umlaufende erste Ringnut (50) ausgebildet ist, die in einer Radialebene bezüglich der Längsachse (7) der Ventilnadel (5; 60; 62) verläuft und die eine stromaufwärtige Kante (51) und eine stromabwärtige Kante (52) aufweist, wobei die stromabwärtige Kante (52) in Schliessstellung der Ventilnadel (5; 60; 62) auf Höhe der Eintrittsöffnungen (16) der Einspritzkanäle (11) verläuft.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es der Gattung des Patentanspruchs 1 entspricht. Ein derartiges Kraftstoffeinspritzven- til ist beispielsweise aus der Offenlegungsschrift DE 198 44 638 AI bekannt. Das bekannte Kraftstoffeinspritzventil weist hierbei einen Ventilkörper auf, in dem in einer Bohrung eine kolbenförmigen Ventilnadel längsverschiebbar geführt ist. Die Bohrung wird an ihrem brennraumseitigen Ende von einem konischen Ventilsitz begrenzt, von dem mehrere Einspritzkanäle ausgehen, die in Einbaulage des Kraftstoffeinspritzventils in den Brennraum der Brennkraftmaschine münden. Hierbei liegen die Eintrittsöffnungen der Einspritzkanäle bezüglich der Längsachse der Bohrung auf derselben Höhe. Die Ventilnadel weist an ihrem brennraumseitigen, dem Ventilsitz zugewandten Ende eine im wesentlichen konische Ventildichtfläche auf, die eine erste Konusfläche und eine stromabwärts zu dieser angeordnete zweite Konusfläche umfasst. Zwischen den beiden Konusflächen ist eine Dichtkante ausgebildet, mit der die Ventilnadel in ihrer Schließstellung mit dem Ventilsitz zusammenwirkt, so dass bei Anlage der Ventilnadel am Ventilsitz der Kraftstoffström aus dem Druckraum zu den Einspritzkanälen unterbrochen ist, wobei der Druckraum zwischen der Ventilnadel und der Wand der Bohrung ausgebildet ist.
Das bekannte Kraftstoffeinspritzventil weist an der Ventildichtfläche eine Ringnut auf, die zumindest in Schließstel- lung der Ventilnadel die Eintrittsoffnungen der Einspritzka- nale überdeckt. Dies begünstigt das Einstromen des Kraftstoffs in die Einspntzkanale zum einen dadurch, dass der Kraftstoff auf die einzelnen Einspritzkanale gleichmaßig verteilt wird, auch bei einer leichten Desachsierung der Ventilnadel bezuglich des Ventilsitzes. Zum anderen wirken sich Schwankungen, die durch einen unterschiedlichen Rundungsgrad am Übergang des Ventilsitzes in die Einspritzkana- len auftreten, durch die Ringnut weniger aus, da der Einlauf des Kraftstoffs entdrosselt wird.
Das bekannte Kraftstoffeinspritzventil weist hierbei jedoch den Nachteil auf, dass die Ringnut ein relativ großes Volumen aufweist und so auch bei geschlossener Ventilnadel Kraftstoff aus den Einspritzkanalen in den Brennraum der Brennkraftmaschine gelangen kann, was zu einer erhöhten Kohlenwasserstoffemission der Brennkraftmaschine fuhrt.
Vorteile der Erfindung
Das erfindungsgemaße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass das Einstromen des Kraftstoffs in die Einspritzkanale entdrosselt wird, ohne dass es zu negativen Auswirkungen auf die Kohlenwasserstoffemissionen der Brennkraftmaschine kommt. Hierzu ist an der zweiten Konusflache der Ventilnadel eine umlaufende, erste Ringnut ausgebildet, die in einer Radialebene bezuglich der Langsachse der Ventilnadel verlauft. Die umlaufende erste Ringnut weist hierbei eine stromaufwartige Kante und eine stromabwartige Kante auf, wobei die stromabwartige Kante in Schließstellung der Ventilnadel auf Hohe der Eintrittsoffnungen der Einspritzkanale verlauft. Durch diese erste Ringnut wird das Einstromen des Kraftstoffs, der aus dem Druckraum zwischen der Ventildichtfläche und dem Ventilsitz hindurch zu den Einspritzkanälen strömt, beim Einfließen in die Einspritzkanäle entdrosselt. Diese Stelle ist besonders kritisch, da hier eine starke Richtungsänderung des Kraftstoffstroms stattfindet, was im allgemeinen mit Energieverlust und damit mit einem geringeren effektiven Einspritzdruck einhergeht. Durch die Nut können darüber hinaus Schwankungen ausgeglichen werden, die sich daraus ergeben, dass der Übergang vom Ventilsitz in die Einspritzkanäle üblicherweise gerundet ist, was aber nicht an sämtlichen Einspritzkanälen genau gleich reproduzierbar ist. Deshalb weisen die verschiedenen Einspritzkanäle an den Eintrittsöffnungen in der Regel leicht unterschiedliche Rundungsradien auf, die durch die erste Ringnut kompensiert werden, was gleiche Einlaufverhältnisse bei allen Einspritzkanälen bewirkt.
Durch die Unteransprüche sind vorteilhafte Weiterbildungen des Gegenstandes der Erfindung möglich.
In einer ersten vorteilhaften Ausgestaltung ist die Breite der ersten Ringnut kleiner als der Durchmesser der Eintrittsöffnungen der Einspritzkanäle. Hierdurch wird der Einlauf des Kraftstoffs in den Einspritzkanal entdrosselt bei einem sehr kleinen Volumen der ersten Ringnut, so dass erhöhte Kohlenwasserstoffemissionen sicher vermieden werden.
In einer weiteren vorteilhaften Ausgestaltung ist die stromaufwartige und/oder die stromabwartige Kante der ersten Ringnut gerundet ausgebildet. Durch diese Ausgestaltung der Ringnuten wird das Einfließen des Kraftstoffs in die Einspritzkanäle weiter erleichtert und entdrosselt.
In einer weiteren vorteilhaften Ausgestaltung ist die stromaufwartige Kante der ersten Ringnut als Dichtkante ausgebildet, mit der die Ventilnadel bei Anlage am Ventilsitz dichtet. Diese Dichtfunktion wird zusätzlich durch die erste Ringnut verstärkt, da in diesem Fall eine höhere Flächenpressung in diesem Bereich auftritt.
In einer weiteren vorteilhaften Ausgestaltung ist in der zweiten Konusfläche der Ventilnadel eine zweite Ringnut ausgebildet, wobei diese stromabwärts der ersten Ringnut angeordnet und zu dieser parallel ist und die stromabwartige Kante der Eintrittsöffnungen innerhalb der zweiten Ringnut liegt. Durch diese zweite Ringnut wird das Einströmen des Kraftstoffs auch an der stromabwärtigen Kante der Eintrittsöffnung des Einspritzkanals entdrosselt, so dass eine weitere Begünstigung des Einfließens durch die zweite Ringnut gegeben ist. Besonders vorteilhaft ist es hierbei, wenn zwischen der ersten Ringnut und der zweiten Ringnut ein konischer Bereich verbleibt, dessen Höhe kleiner ist als der Durchmesser der Eintrittsöffnungen der Einspritzkanäle.
Ein weiteres Kraftstoffeinspritzventil, das eine Variante derselben Lösungsidee darstellt, weist die gleichen Vorteile wie das Einspritzventil nach Anspruch 1 auf. Statt der ersten Ringnut in der zweiten Konusfläche ist im Ventilsitz eine umlaufende Körperringnut ausgebildet, welche in einer Radialebene bezüglich der Längsachse der Bohrung verläuft und welche eine stromaufwartige Kante und eine stromabwartige Kante aufweist, wobei die stromabwartige Kante durch die Eintrittsöffnungen der Einspritzkanäle verläuft. Der entdrosselnde Effekt dieser Körperringnut ist gleich wie der entdrosselnde Effekt der ersten Ringnut in der zweiten Konusfläche der Ventilnadel, jedoch kann hier die Ventilnadel in ihrer ursprünglichen Form belassen werden.
In einer vorteilhaften Ausgestaltung des Kraftstoffeinspritzventils nach Anspruch 7 ist die Breite der Ringnut kleiner als der Durchmesser der Eintrittsöffnungen der Einspritzkanäle. Hierdurch wird nur ein geringes Volumen gebil- det, aber der Einlauf des Kraftstoffs in die Einspritzkanäle zuverlässig entdrosselt. Besonders vorteilhaft ist es hierbei, wenn die stromaufwartige Kante und/oder die stromabwartige Kante der Ringnut gerundet ausgebildet ist. Auch hierbei kann es vorgesehen sein, dass in der zweiten Konusfläche der Ventilnadel eine zweite Ringnut ausgebildet ist, die stromabwärts der Ringnut im Ventilsitz angeordnet und zu dieser parallel ist, wobei die stromabwartige Kante der Eintrittsöffnungen innerhalb der zweiten Ringnut liegt.
Zeichnung
In der Zeichnung sind mehrere Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
Figur 1 einen Längsschnitt durch ein Kraftstoffeinspritzventil, Figur 2 eine Vergrößerung von Figur 1 im Bereich des Ventilsitzes, Figur 3 dieselbe Ansicht wie Figur 2 eines weiteren Ausführungsbeispiels , Figur 4 ein weiteres Ausführungsbeispiel, das hier in einer Ausschnittsvergrößerung des Ventilsitzbereichs dargestellt ist und Figur 5 ein weiteres Ausführungsbeispiel in derselben
Darstellung wie Figur 4, wobei hier zwei koaxial ineinander geführte Ventilnadeln vorgesehen sind.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil . Das Kraftstoffeinspritzventil um- fasst einen Ventilkörper 1, der in Einbaulage des Kraftstoffeinspritzventils in einer Brennkraftmaschine mit seinem brennraumseitigen Ende in einen Brennraum 8 ragt. Der Ven- tilkörper 1 wird mittels einer Spannmutter 2 unter Zwischenlage eines Drosselkörpers 4 gegen einen Haltekörper 6 ge- presst, wobei die Spannmutter 2 mit einem in der Zeichnung nicht dargestellten Innengewinde in ein entsprechendes Außengewinde des Haltekörpers 6 eingreift. Im Ventilkörper 1 ist eine Bohrung 3 ausgebildet, die sich brennraumabgewandt zu einem Federraum 22 erweitert. In den Federraum 22 mündet ein im Haltekörper 6, dem Drosselkörper 4 und dem Ventilkörper 1 verlaufender Zulaufkanal 10, über den der Federraum 22 und damit auch die Bohrung 3 mit Kraftstoff unter hohem Druck befüllt werden können. Brennraumseitig wird die Bohrung 3 von einem konischen Ventilsitz 13 begrenzt, wobei am brennraumseitigen Ende des Ventilkörpers 1 mehrere Einspritzkanäle 11 ausgebildet sind, die in den Brennraum 8 der Brennkraftmaschine münden. In der Bohrung 3 ist eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet, die eine Längsachse 7 aufweist und die in einem mittleren Abschnitt der Bohrung 3 geführt ist. Die Ventilnadel 5 weist an ihrem brennraumseitigen Ende eine im wesentlichen konische Ventildichtfläche 9 auf, mit der die Ventilnadel 5 mit dem Ventilsitz 13 zusammenwirkt. Zwischen der Wand der Bohrung 3 und der Ventilnadel 5 ist ein Druckraum 20 ausgebildet, der brennraumabgewandt in den Federraum 22 mündet, und über den Kraftstoff aus dem Federraum 22 zu den Einspritzöffnungen 11 fließt. Das Zusammenwirken der Ventildichtfläche 9 mit dem Ventilsitz 13 erfolgt in der Weise, dass bei Anlage der Ventilnadel 5 am Ventilsitz 13 der Kraftstoffstrom aus dem Druckraum 20 zu den Einspritzöffnungen 11 unterbrochen ist, während bei vom Ventilsitz 13 abgehobener Ventilnadel 5 Kraftstoff zwischen der Ventildichtfläche 9 und dem Ventilsitz 13 hindurch den Einspritzöffnungen 11 zufließt. Der Kraftstoffstrom aus dem Federraum 22 zu den Einspritzöffnungen 11 wird im Bereich, in dem die Ventilnadel 5 in der Bohrung 3 geführt ist, durch mehrere Anschliffe 17 geleitet, die einen ausreichenden Durchflussquerschnitt bilden. Im Federraum 22 ist eine Hülse 24 angeordnet, die das brenn- raumabgewandte Ende der Ventilnadel 5 umgibt und am Drosselkörper 4 anliegt. Durch die brennraumabgewandte Stirnseite 32 der Ventilnadel 5, die Hülse 24 und den Drosselkörper 4 wird ein Steuerraum 26 begrenzt, der über eine in der Hülse 24 ausgebildete Zulaufdrossel 34 mit dem Federraum 22 verbunden ist. Der Steuerraum 26 ist über eine Ablaufdrossel 36, die im Drosselkörper 4 ausgebildet ist, mit einem in der Zeichnung nicht dargestellten Leckölraum verbindbar, wobei die Verbindung mittels eines Steuerventils 14 verschließbar ist. Im Federraum 22 ist - das brennraumabgewandte Ende der Ventilnadel 5 umgebend - eine Schließfeder 28 angeordnet, die sich einenends an der Hülse 24 abstützt und anderenends an einem die Ventilnadel 5 umgebenden Federteller 30, wobei die Schließfeder 28 eine Druckvorspannung aufweist. Durch die Vorspannung der Schließfeder 28 ergibt sich eine Kraft auf den Federteller 30 und damit, da sich der Federteller 30 an der Ventilnadel 5 abstützt, auch auf die Ventilnadel 5, so dass die Ventilnadel 5 mit der Ventildichtfläche 9 gegen den Ventilsitz 13 gedrückt wird.
Die Steuerung der Kraftstoffeinspritzung erfolgt in der Weise, dass zu Beginn eines Einspritzzyklus das Steuerventil 14 die Ablaufdrossel 36 verschließt, so dass im Steuerraum 26 über die Zulaufdrossel 34 derselbe Druck herrscht wie im Federraum 22, was eine hydraulische Kraft auf die Stirnseite 32 die Ventilnadel 5 bewirkt, die diese gegen den Ventilsitz 13 drückt, so dass die Einspritzkanäle 11 verschlossen werden. Soll eine Einspritzung erfolgen, so öffnet das Steuerventil 14 die Ablaufdrossel 36, was einen Druckabfall im Steuerraum 26 bewirkt. Hierdurch überwiegen jetzt die hydraulischen Kräfte auf die Druckschulter 15 und auf Teile der Ventildichtfläche 9, so dass die Ventilnadel 5 vom Ventilsitz 13 abhebt und Kraftstoff aus dem Druckraum 20 zu den Einspritzkanälen 11 strömt. Durch erneutes Betätigen des Steuerventils 14 baut sich wieder der hohe Kraftstoffdruck im Steuerraum 26 auf, und die Ventilnadel 5 gleitet zurück in ihre Schließstellung.
Figur 2 zeigt eine Vergrößerung von Figur 1 im mit II bezeichneten Ausschnitt. Die Ventildichtfläche 9 der Ventilnadel 5 umfasst eine erste konische Fläche 40 und eine stromabwärts zu dieser gelegene zweite Konusfläche 42. Am Übergang der ersten Konusfläche 40 zur zweiten Konusfläche 42 ist eine Dichtkante 45 ausgebildet, die bei Anlage der Ventilnadel 5 auf dem Ventilsitz 13 zur Abdichtung führt. In der zweiten Konusfläche 42 ist eine erste Ringnut 50 ausgebildet, die in einer Radialebene bezüglich der Längsachse 7 der Ventilnadel 5 verläuft und die eine stromaufwartige Kante 51 und eine stromabwartige Kante 52 aufweist. Die stromabwartige Kante 52 verläuft auf Höhe der Eintrittsöffnungen 16 der Einspritzkanäle 11, so dass das Einströmen des Kraftstoffs in die Einspritzkanäle 11 entdrosselt wird. Die Eintrittsöffnung 16 der Einspritzkanäle 11 weist einen Durchmesser a auf, der größer ist als der Durchmesser D der Einspritzkanäle 11, was dadurch zustande kommt, dass das stromaufwartige Ende 18 und das stromabwartige Ende 19 der Eintrittsöffnung 16 am Übergang des Einspritzkanals 11 zum Ventilsitz 13 mit einem Radius R gerundet sind.
Wenn der Kraftstoff aus dem Druckraum 20 an der Dichtkante 45 vorbei zwischen der zweiten Konusfläche 42 und dem Ventilsitz 13 zu den Einspritzkanälen 11 strömt, muss der Kraftstoff beim Einfließen in den Einspritzkanal 11 eine starke Richtungsänderung durchlaufen. Dies führt normalerweise zu einem starken Energieverlust und damit zu einem entsprechend reduzierten Einspritzdruck im Einspritzkanal 11. Durch den Rundungsradius R an der Eintrittsöffnung 16 kann dieser Effekt etwas gemildert werden, jedoch ist er weiterhin vorhanden und führt zu einem reduzierten Einspritzdruck. Durch die erste Ringnut 50 wird das Einströmen des Kraftstoffs in den Einspritzkanal 11 jedoch entdrosselt, so dass die Geschwindigkeit des Kraftstoffs im Einspritzkanal 11 höher ist und damit ein entsprechend höherer effektiver Einspritzdruck vorliegt. Zur weiteren Begünstigung der Einströmung des Kraftstoffs in den Einspritzkanal 11 ist an der zweiten Konusfläche 42 parallel zur ersten Ringnut 50 eine zweite Ringnut 53 ausgebildet, die ebenfalls eine stromaufwartige Kante 54 und eine stromabwartige Kante 55 aufweist. Das stromabwartige Ende 19 der Eintrittsöffnung 16 befindet sich in Schließstellung der Ventilnadel 5 bezüglich der Längsachse 7 zwischen der stromaufwärtigen Kante 54 und der stromabwärtigen Kante 55 der zweiten Ringnut 53. Hierdurch begünstigt auch die zweite Ringnut 53 das Einströmen des Kraftstoffs in den Einspritzkanal 11 an der kritischen Stelle des stromabwärtigen Endes 19 der Eintrittsöffnung 16.
Die Reduzierung der Drosselung bei der Einströmung des Kraftstoffs in den Einspritzkanal 11 ist vor allem im Teilhubbereich von Bedeutung, also wenn die Ventilnadel 5 zwar vom Ventilsitz 13 abgehoben, jedoch noch nicht ihren Maximalhub erreicht hat. Für eine effektive Entdrosselung ist es deshalb wichtig, dass der Abstand der stromaufwärtigen Kante 51 der ersten Ringnut 50 zur stromabwärtigen Kante 55 der zweiten Ringnut 53, der in der Figur 2 mit e bezeichnet ist, größer ist als der Abstand zwischen dem stromaufwärtigen Ende 18 der Eintrittsöffnung 16 und deren stromabwärtigen Ende 19. Die Höhe x der ersten Ringnut 50, die in etwa gleich der Höhe y der zweiten Ringnut 53 ist, ist dabei vorzugsweise kleiner als der Durchmesser D des Einspritzkanals 11. Dies reicht für eine effektive Entdrosselung aus und ergibt nur ein geringfügig größeres Volumen, das in Schließstellung der Ventilnadel 5 stromabwärts der Dichtkante 45 zwischen der zweiten Konusfläche 42 und dem Ventilsitz 13 verbleibt. Je kleiner dieses Volumen, desto günstiger sind die Kohlenwasserstoffemissionen der Brennkraftmaschine, da nur sehr wenig Kraftstoff unkontrolliert durch den Einspritzkanal 11 zwischen den eigentlichen Einspritzungen in den Brennraum 8 gelangen kann.
In Figur 3 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils gezeigt, wobei der Ausschnitt nur die linke Hälfte zeigt. Die Ausbildung der Ringnuten 50, 53 auf der zweiten Konusfläche 42 ist etwas verschieden zu der Anordnung, wie sie in Figur 2 gezeigt ist: Die erste Ringnut 50 schließt sich direkt an die Dichtkante 45 an, so dass die erste Konusfläche 40 nicht direkt an die zweite Konusfläche 42 grenzt. Die Eintrittsöffnungen 16 sind in diesem Fall so angeordnet, dass die gleiche Anordnung der Eintrittsöffnung 16 bzw. des Einspritzkanals 11 zur ersten Ringnut 50 und zur zweiten Ringnut 53 gegeben ist.
In Figur 4, die denselben Ausschnitt wie Figur 3 zeigt, ist ein weiteres Ausführungsbeispiel dargestellt. Die Ventilnadel 5 weist hier an der zweiten Konusfläche 42 nur die zweite Ringnut 53 auf, während die erste Ringnut 50 entfällt. Statt dessen ist im Ventilsitz 13 eine Körperringnut 57 ausgebildet, die in Schließstellung der Ventilnadel 5 etwa auf derselben Höhe bezüglich der Längsachse 7 verläuft, wie die erste Ringnut 50 in dem in Figur 2 gezeigten Ausführungsbei- spiel bei Anlage der Ventilnadel 5 auf dem Ventilsitz 13. Durch die Körperringnut 57 wird das Einströmen des Kraftstoffs in den Einspritzkanal 11 ebenso entdrosselt wie durch die erste Ringnut 50 bei dem in Figur 2 gezeigten Ausführungsbeispiel, jedoch bleiben die Einströmverhältnisse weniger abhängig vom Hub der Ventilnadel 5, da sich die Lage der Körperringnut 57 bezüglich der Eintrittsöffnungen 16 durch den Hub der Ventilnadel 5 nicht verändert. Die Entdrosselung am stromabwärtigen Ende 19 der Eintrittsöffnung 16 erfolgt, wie bei den Ausführungsbeispielen vorher, durch die zweite Ringnut 53. An der zweiten Konusfläche 42 kann darüber hinaus eine Längsnut 56 vorgesehen sein, die die zweite Ringnut 53 mit dem Volumen verbindet, das zwischen der brennraumseitigen Stirnfläche 47 der Ventilnadel 5 und dem Ventilkörper 1 gebildet wird. Durch diese Druckentlastung der zweiten Ringnut 53 wird die Entdrosselung der Einströmung in den Einspritzkanal 11 zusätzlich begünstigt.
Die stromaufwartige Kante 58 und die stromabwartige Kante 59 der Körperringnut 57 können zur Optimierung der Entdrosselung gerundet ausgebildet sein, da scharfe Kanten bei einer schnellen KraftstoffStrömung leicht zu einer Strömungsablösung und damit zu einem erhöhten Fließwiderstand führen können. Für eine optimale Wirkung der Körperringnut 57 ist der Abstand der stromaufwärtigen Kante 58 der Körperringnut 57 von der Dichtkante 45 in Schließstellung der Ventilnadel 5 etwa 0,02 bis 0,2 mm.
Figur 5 zeigt ein weiteres Ausführungsbeispiel, bei dem nicht nur eine einzelne Ventilnadel vorgesehen ist, sondern zwei Ventilnadeln, die koaxial ineinander geführt werden. Eine Ventilnadel 60 weist an ihrem brennraumseitigen Ende eine erste Konusfläche 63 und eine zweite Konusfläche 64 auf, wobei in der zweiten Konusfläche 63 eine Ringnut 70 ausgebildet ist. Die Ventilnadel 60 weist eine Längsbohrung 61 auf, in der eine Ventilinnennadel 62 längsverschiebbar angeordnet ist. Am brennraumseitigen Ende der Ventilinnennadel 62 ist eine konische Ventildichtfläche 66 ausgebildet, in der eine Ringnut 72 ausgebildet ist. Anstelle nur einer Reihe von Einspritzöffnungen 11, die bezüglich der Längsachse 7 auf derselben Höhe liegen, sind hier zwei Einspritzkanalreihen 11a und 11b vorgesehen, wobei die äußere Einspritzkanalreihe 11a durch die Ventiladel 60 und die innere Einspritzkanalreihe 11b durch die Ventilinnennadel 62 gesteuert wird. Um das Einströmen des Kraftstoffs in die stromaufwartige Einspritzkanalreihe 11a in der Weise zu entdros- seln, wie es in den vorhergehenden Ausführungsbeispielen beschrieben wurde, dient die Ringnut 70 hier in der gleichen Weise. Ebenso wird das Einströmen des Kraftstoffs in die stromabwartige Einspritzkanalreihe 11b durch die Ringnut 72 entdrosselt, die eine stromaufwartige Kante 73 und eine stromabwartige Kante 74 aufweist, wobei die stromabwartige Kante 74 auf Höhe der Eintrittsöffnungen der inneren Ein- spritzöffnungsreihe 11b verläuft, wenn die Ventilinnennadel 62 in ihrer Schließstellung ist.
Der Durchmesser D der Einspritzkanäle 11 ist bei allen Ausführungsbeispielen vorzugsweise im Bereich von 80 bis 150 μm, was einem Durchmesser der Ringnuten 50, 53, 57 notwendig macht, der geringer ist als dieser Durchmesser der Einspritzkanale 11. Derart feine Ringnuten lassen sich vorzugsweise mittels eines Lasers in die Ventilnadel 5 bzw. in den Ventilsitz 13 einbringen, da mechanische Bearbeitungsverfahren hier in der Regel nicht die notwendige Präzision aufweisen.

Claims

Ansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1) , in dem eine Bohrung (3) ausgebildet ist, die an ihrem brennraumseitigen Ende von einem konischen Ventilsitz (13) begrenzt wird, von dem mehrere Einspritzkanäle (11) abgehen, deren Eintrittsöffnungen (16) im Ventilsitz (13) bezüglich der Längsachse (7) der Bohrung (3) auf derselben Höhe liegen, und mit einer Ventilnadel (5; 60; 62) , die längsverschiebbar in der Bohrung (3) angeordnet ist und zwischen der und der Wand der Bohrung (3) ein Druckraum (20) ausgebildet ist, der mit Kraftstoff unter Einspritzdruck befüllbar ist, und mit einer am brennraumseitigen Ende der Ventilnadel (5; 60; 62) ausgebildeten Ventildichtfläche (9) , die eine erste Konusfläche (40) und eine stromabwärts zur ersten Konusfläche (40) angeordnete zweite Konusfläche (42) u fasst, wobei zwischen den Konusflächen (40; 42) eine Dichtkante (45) ausgebildet ist, mit der die Ventilnadel (5; 62; 64) in ihrer Schließstellung mit dem Ventilsitz (13) zusammenwirkt, dergestalt, dass bei Anlage der Ventilnadel (5; 62; 64) am Ventilsitz (13) der Kraftstoffström aus dem Druckraum (20) zu den Einspritzkanälen (11) unterbrochen ist, dadurch gekennzeichnet, dass in der zweiten Konusfläche (42) der Ventilnadel eine umlaufende erste Ringnut (50) ausgebildet ist, die in einer Radialebene bezüglich der Längsachse (7) der Ventilnadel (5; 62; 64) verläuft und die eine stromaufwartige Kante (51) und eine stromabwartige Kante (52) aufweist, wobei die stromabwartige Kante (52) in Schließstellung der Ventilnadel (5; 60; 62) auf Höhe der Eintrittsöffnungen (16) der Einspritzkanäle (11) verläuft.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Breite der ersten Ringnut (50) kleiner ist als der Durchmesser (D) der Eintrittsöffnungen (16) der Einspritzkanäle (11) .
3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die stromaufwartige Kante (51) und/oder die stromabwartige Kante (52) der ersten Ringnut
(50) gerundet ausgebildet sind/ist.
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die stromaufwartige Kante (51) der ersten Ringnut (50) die Dichtkante (45) bildet.
5. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass in der zweiten Konusfläche (42) der Ventilnadel (5; 60; 62) eine zweite Ringnut (53) ausgebildet ist, wobei diese stromabwärts der ersten Ringnut
(50) angeordnet und zu dieser parallel ist, wobei das stromabwartige Ende (19) der Eintrittsöffnungen (16) innerhalb der zweiten Ringnut (53) liegt.
6. Kraftstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, dass die zwischen der ersten Ringnut (50) und der zweiten Ringnut (53) verbleibende Bereich der zweiten Konusfläche (42) eine Höhe aufweist, die kleiner ist als der Durchmesser der Eintrittsöffnungen (16) der Einspritzkanäle (11) .
7. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1) , in dem eine Bohrung (3) ausgebildet ist, die an ihrem brennraumseitigen Ende von einem koni- - l ö ¬
schen Ventilsitz (13) begrenzt wird, von dem mehrere Einspritzkanäle (11) abgehen, deren Eintrittsöffnungen (16) im Ventilsitz (13) bezüglich der Längsachse (7) der Bohrung (3) auf derselben Höhe liegen, und mit einer Ventilnadel (5; 60; 62), die längsverschiebbar in der Bohrung (3) angeordnet ist und zwischen der und der Wand der Bohrung (3) ein Druckraum (20) ausgebildet ist, der mit Kraftstoff unter Einspritzdruck befüllbar ist, und mit einer am brennraumseitigen Ende der Ventilnadel (5; 60; 62) ausgebildeten Ventildichtfläche (9), die eine erste Konusfläche (40) und eine stromabwärts zur ersten Konusfläche (40) angeordnete zweite Konusfläche (42) umfasst, wobei zwischen den Konusflächen (40; 42) eine Dichtkante (45) ausgebildet ist, mit der die Ventilnadel (5; 60; 62) in ihrer Schließstellung mit dem Ventilsitz (13) zusammenwirkt, dergestalt, dass bei Anlage der Ventilnadel (5; 62; 64) am Ventilsitz (13) der Kraftstoffström aus dem Druckraum (20) zu den Einspritzkanälen (11) unterbrochen ist, dadurch gekennzeichnet, dass im Ventilsitz (13) eine umlaufende Körperringnut (57) ausgebildet ist, welche in einer Radialebene bezüglich der Längsachse (7) der Bohrung (3) verläuft und welche eine stromaufwartige Kante (58) und eine stromabwartige Kante (59) aufweist, wobei die stromabwartige Kante (59) innerhalb der Eintrittsöffnungen (16) der Einspritzkanäle (11) verläuft.
8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die Breite der Körperringnut (57) kleiner ist als der Durchmesser der Eintrittsöffnungen (16) der Einspritzkanäle (11) .
9. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die stromaufwartige Kante (58) und/oder die stromabwartige Kante (59) der Körperringnut
(57) gerundet ausgebildet sind/ist.
10. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass in der zweiten Konusfläche (42) der Ventilnadel (5; 62; 64) eine zweite Ringnut (53) ausgebildet ist, wobei diese stromabwärts der Körperringnut (57) angeordnet und zu dieser parallel ist, wobei das stromabwartige Ende (19) der Eintrittsöffnungen (16) innerhalb der zweiten Ringnut (53) liegt.
11. Kraftstoffeinspritzventil nach Anspruch 1 oder 7, dadurch gekennzeichnet, dass vom Ventilsitz (13) zwei Einspritzkanalreihen (11a; 11b) abgehen, von denen die äußere Einspritzkanalreihe (11a) stromaufwärts der inneren Einspritzkanalreihe (11b) angeordnet ist, und dass in der Ventilnadel (60) eine Längsbohrung (61) ausgebildet ist, in der eine Ventilinnennadel (62) angeordnet ist, die an ihrem brennraumseitigen Ende eine konische Ventildichtfläche (66) aufweist, in der eine Ringnut (72) ausgebildet ist, die eine stromaufwartige Kante (73) und eine stromabwartige Kante (74) aufweist, wobei die stromabwartige Kante (74) in Schließstellung der Ventilinnennadel (62) auf Höhe der Eintrittsöffnungen der inneren Einspritzkanalreihe (11b) liegt.
EP03747819A 2003-03-25 2003-08-22 Kraftstoffeinspritzventil für brennkraftmaschinen Withdrawn EP1627148A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003113225 DE10313225A1 (de) 2003-03-25 2003-03-25 Kraftstoffeinspritzventil für Brennkraftmaschine
PCT/DE2003/002817 WO2004085832A1 (de) 2003-03-25 2003-08-22 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (1)

Publication Number Publication Date
EP1627148A1 true EP1627148A1 (de) 2006-02-22

Family

ID=32946137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03747819A Withdrawn EP1627148A1 (de) 2003-03-25 2003-08-22 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (5)

Country Link
EP (1) EP1627148A1 (de)
JP (1) JP2006514210A (de)
CN (1) CN1759240A (de)
DE (1) DE10313225A1 (de)
WO (1) WO2004085832A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200402050A2 (tr) * 2004-08-18 2006-03-21 Robert Bosch Gmbh Eşeksenli alansal temaslı çift oturma çaplı enjektör
DE102005020365A1 (de) * 2005-05-02 2006-11-09 Robert Bosch Gmbh Ventil, insbesondere Kraftstoffeinspritzventil
DE102005029024A1 (de) * 2005-06-22 2007-01-04 Siemens Ag Düsenbaugruppe
US7578450B2 (en) 2005-08-25 2009-08-25 Caterpillar Inc. Fuel injector with grooved check member
US20070200011A1 (en) * 2006-02-28 2007-08-30 Caterpillar Inc. Fuel injector having nozzle member with annular groove
JP2008057458A (ja) * 2006-08-31 2008-03-13 Mitsubishi Heavy Ind Ltd 燃料噴射弁
EP2369166B1 (de) 2010-03-22 2017-12-13 Delphi International Operations Luxembourg S.à r.l. Einspritzdüse
DE102010063355A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP5716788B2 (ja) * 2013-04-25 2015-05-13 株式会社デンソー 燃料噴射弁
EP2905457B1 (de) * 2014-01-15 2018-08-29 Continental Automotive GmbH Ventilanordnung und Flüssigkeitseinspritzdüse für eine Brennkraftmaschine
DE102014205454A1 (de) * 2014-03-24 2015-09-24 Robert Bosch Gmbh Gasinjektor mit Doppelventilnadel
EP3156640B1 (de) * 2015-10-14 2020-12-30 Vitesco Technologies GmbH Düsenkörper für flüssigkeitseinspritzventil und flüssigkeitsinjektor
FR3057623B1 (fr) * 2016-10-14 2020-12-25 Delphi Int Operations Luxembourg Sarl Membre de vanne d'un injecteur de carburant
RU2724287C1 (ru) * 2020-01-10 2020-06-22 Александр Александрович Стуров Распылитель форсунки для дизельного двигателя внутреннего сгорания

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2998183B2 (ja) * 1990-09-18 2000-01-11 日産自動車株式会社 燃料噴射ノズル
JPH04318277A (ja) * 1991-04-17 1992-11-09 Nissan Motor Co Ltd 燃料噴射ノズル
JPH07259704A (ja) * 1994-03-24 1995-10-09 Nissan Diesel Motor Co Ltd 内燃機関の燃料噴射ノズル
JP3799857B2 (ja) * 1999-02-02 2006-07-19 トヨタ自動車株式会社 燃料噴射弁の噴射孔構造
JP3567838B2 (ja) * 1999-04-26 2004-09-22 トヨタ自動車株式会社 燃料噴射ノズル
ATE472677T1 (de) * 1999-10-06 2010-07-15 Delphi Tech Holding Sarl Kraftstoffeinspritzventil
JP4221898B2 (ja) * 2000-02-29 2009-02-12 株式会社デンソー 燃料噴射ノズル
IT1319988B1 (it) * 2000-03-21 2003-11-12 Fiat Ricerche Spina di chiusura di un ugello in un iniettore di combustibile permotori a combustione interna.
JP2003120474A (ja) * 2001-10-15 2003-04-23 Hino Motors Ltd 燃料噴射ノズル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004085832A1 *

Also Published As

Publication number Publication date
WO2004085832A1 (de) 2004-10-07
DE10313225A1 (de) 2004-10-07
JP2006514210A (ja) 2006-04-27
CN1759240A (zh) 2006-04-12

Similar Documents

Publication Publication Date Title
DE3688753T2 (de) Steuereinrichtung für elektro-hydraulisch betätigte Kraftstoffeinspritzventile.
EP2171255B1 (de) Drossel an einer ventilnadel eines kraftstoffeinspritzventils für brennkraftmaschinen
DE2500644C2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1446571A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1828593A1 (de) Kraftstoffeinspritzventil f]r eine brennkraftmaschine
EP0028288A1 (de) Kraftstoffeinspritzdüse für Brennkraftmaschinen
EP1627148A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1373715B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1346143B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1356203B1 (de) Vorrichtung zur kraftstoff-hochdruckversorgung einer brennkraftmaschine
EP1574701A1 (de) Common-Rail Injektor
DE19954288A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE4444363A1 (de) Mehrstrahl-Kraftstoffeinspritzdüse
DE3818862A1 (de) Kraftstoffeinspritzduese
EP1952012B1 (de) Einspritzinjektor
WO2004040125A1 (de) Ventil zum steuern eines fluids
DE10312586A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1576283A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
EP2867518B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10242685A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005005713A1 (de) Düsenbaugruppe und Einspritzventil
EP2867519B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10213384A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
CH670682A5 (en) Internal combustion engine accumulator injection device
DE3313395A1 (de) Kraftstoffeinspritzvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051025

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080301