EP1373715B1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
EP1373715B1
EP1373715B1 EP02727266A EP02727266A EP1373715B1 EP 1373715 B1 EP1373715 B1 EP 1373715B1 EP 02727266 A EP02727266 A EP 02727266A EP 02727266 A EP02727266 A EP 02727266A EP 1373715 B1 EP1373715 B1 EP 1373715B1
Authority
EP
European Patent Office
Prior art keywords
valve
valve member
sealing surface
fuel
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02727266A
Other languages
English (en)
French (fr)
Other versions
EP1373715A1 (de
Inventor
Christoph Buehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1373715A1 publication Critical patent/EP1373715A1/de
Application granted granted Critical
Publication of EP1373715B1 publication Critical patent/EP1373715B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/047Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being formed by deformable nozzle parts, e.g. flexible plates or discs with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped

Definitions

  • the invention is based on a fuel injection valve for Internal combustion engines, as for example from the published patent application DE 196 18 650 A1 is known.
  • Fuel injection valve has a valve body, in a bore is formed.
  • a piston-shaped valve member disposed longitudinally displaceable, the has a valve sealing surface at its combustion chamber end, the one with the combustion chamber end of the bore trained valve seat cooperates.
  • the valve member is surrounded by a pressure chamber formed in the valve body, whereby this pressure space can be filled with fuel under high pressure is and extends to the valve seat.
  • In the valve seat at least one injection opening is formed, the bore and thus the pressure chamber with the combustion chamber the internal combustion engine connects.
  • valve member By a longitudinal movement of the valve member raises the valve member with the valve sealing surface from the valve seat, so that the pressure chamber with the injection openings is connected.
  • valve seat formed substantially conically, wherein the tip of the the conical surface forming cone to the combustion chamber trimmed is.
  • the valve sealing surface of the valve member is corresponding also conical, wherein the valve sealing surface two conical surfaces with different angles of inclination has, so that at the transition of these two conical surfaces a sealing edge is formed. In the closed position of the valve member, so if the valve sealing surface on the valve seat is applied, this sealing edge is pressed into the valve seat, so that a secure seal of the pressure chamber opposite the injection openings is possible.
  • the valve member is by a device with a Closing force applied, the valve member to the valve seat presses. Due to the hydraulic pressure in the pressure chamber the valve member experiences an acting in the axial direction Force, which is directed against this closing force. exceeds the pressure in the pressure chamber has an opening pressure, so will the hydraulic force on the valve member is greater than that Closing force and the valve member moves out of the Closed position away from the valve seat.
  • the size of this opening pressure depends among other things on which diameter has the sealing edge on the valve seat.
  • a change of the Opening pressure goes with a change in the injection characteristic the injection valve, so that at least one approximately constant opening pressure indispensable for an optimal injection is.
  • valve member having a substantially conical valve sealing surface having, with it with a correspondingly shaped valve seat interacts.
  • the valve sealing surface are two annular grooves formed, and on the remaining between the annular grooves section the valve sealing surface is the sealing edge, with the the valve member rests on the valve seat in the closed position.
  • the sealing edge with time hammered into the valve seat and the hydraulic effective seal diameter changes.
  • the fuel injection valve according to the invention with the characterizing Features of claim 1 has in contrast the advantage that the opening pressure of the fuel injection valve does not change during operation.
  • the valve member an end portion in which two annular grooves are formed are.
  • the first annular groove in a radial plane arranged the longitudinal axis of the valve member and the second annular groove axially arranged to the valve seat to move and parallel to the first annular groove.
  • the valve sealing surface can optimally adapt to the valve seat, so that even in the Time just before the injection, where by the rising Pressure in the pressure chamber of the valve body somewhat elastic widened, an optimal investment of the valve sealing surface takes place at the valve seat.
  • the first annular groove is always with the pressure chamber hydraulically connected. Due to the hydraulic pressure in the first annular groove is widened this slightly elastic, so that the remaining between the two annular grooves ring web the valve member at the beginning of the opening stroke against the valve seat is pressed. This ensures that the hydraulically effective sealing line diameter always corresponds to the edge at the transition of the first ring groove is formed to the valve sealing surface. This applies independently angle tolerances in new condition or wear over the lifetime.
  • the edges, at the transition of the annular grooves to the valve sealing surface are formed, rounded or bevelled. This results in a reduction of the notch effect by pressing these edges into the valve seat.
  • the result is a better high pressure stability and allows the spring-trained annular web of the valve sealing surface in the opening or closing movement a rolling Movement on the valve seat.
  • FIG 1 is a longitudinal section through an inventive Fuel injection valve shown.
  • a valve body 1 which is part of a fuel injection system for Internal combustion engine forms, has a bore 3, in the a piston-shaped valve member 5 arranged longitudinally displaceable is that has a longitudinal axis 6.
  • the Valve member 5 In installation position of the Fuel injection valve in the internal combustion engine is the closed end of the bore 3 facing the combustion chamber.
  • the Valve member 5 is in a brennraumabgewandten section in the bore 3 sealingly and tapers the combustion chamber to form a pressure shoulder 9.
  • the valve member 5 At his the combustion chamber end is the valve member 5 in an im essential conical end portion 22 about, with a also conical at the combustion chamber end of the bore.
  • 3 trained valve seat 18 cooperates.
  • a pressure chamber 7 is formed, which acts as a valve member 5 surrounding annular channel continues to the valve seat 18.
  • the pressure chamber 7 With a not in the drawing shown high-pressure fuel source connected so that he can be filled with fuel under high pressure.
  • a guide portion 10 is formed through which the valve member 5 out in a guide portion 14 of the bore 3 becomes.
  • the guide section 10 To the fuel flow from the pressure chamber 7 to the valve seat 18, at the guide section 10 are several, For example, four recesses 12 are arranged, evenly arranged distributed over the circumference of the valve member 5 are and that enable the fuel flow.
  • valve seat 18 At least one injection opening 20 is formed, the bore 3 with the combustion chamber of the internal combustion engine combines.
  • the at least one injection port 20 is released or closed, so that fuel from the pressure chamber 7 through the injection port 20 controlled by the valve member 5 in can reach the combustion chamber of the internal combustion engine.
  • the control of the injection operation of the fuel injection valve is done by hydraulic forces.
  • An injection cycle looks like this:
  • the valve member 5 is by a device not shown in the drawing acted upon by a closing force, the valve member. 5 with the end portion 22 presses on the valve seat 18. hereby the pressure chamber 7 is closed with respect to the injection openings, and there is no fuel through the injection ports 20 in the combustion chamber of the internal combustion engine.
  • By introducing fuel under high pressure through the Inlet channel 4 in the pressure chamber 7 results in a hydraulic Force in the longitudinal direction of the valve member 5 by applying the pressure shoulder 9 and at least partial areas of the end region 22.
  • Exceed these hydraulic forces the closing force on the valve member the valve member moves 5 away from the valve seat 18 and the end portion 22 lifts from the valve seat 18.
  • FIG 2 is an enlargement of Figure 1 in one with II designated section shown.
  • the essentially conical End surface 22 of the valve member 5 has a first Ring groove 30 and a second annular groove 32, wherein the second Ring groove arranged axially offset from the first annular groove 30 is, but with both annular grooves 30,32 parallel to each other are.
  • the annular grooves 30, 32 are each at least approximately in a radial plane with respect to the longitudinal axis 6 of the valve member 5 arranged.
  • valve sealing surface 26 is at an intermediate the ring grooves 30,32 remaining ring land 27 is formed.
  • the first conical surface 24, the valve sealing surface 26 and the second cone surface 28 are all at least approximately the same cone angle, but is the first Conical surface 24 and the second conical surface 28 slightly set back, so that in the closed position of the valve member 5, the is when the pressure chamber 7 against the injection openings 20th is closed, only the valve sealing surface 26 on the valve seat 18 comes to the plant. This position is shown in FIG. By the recessed first conical surface 24 remains the first annular groove 30 always with the pressure chamber 7 hydraulically connected because between the first cone surface 24 and the Valve seat 18 always a gap remains.
  • FIG 3 is an enlargement of Figure 2 in III designated area shown.
  • the valve member 5 is located Here in a slightly open state, so that the Valve sealing surface 26 is not applied to the valve seat 18.
  • hydraulically Part of the end portion 22 of the valve member 5 corresponds to the first cone surface 24 to the first edge 35, which at the transition the first annular groove 30 is formed to the valve sealing surface 26 is and that forms the sealing line.
  • the hydraulic, in axial forces acting on the walls of the first Ring groove 30 cancel each other.
  • valve sealing surface 26 something is deformed away from the combustion chamber, causing the Sealing surface 26 always optimally applied to the valve seat 18.
  • the Deformation of the valve sealing surface 26 may go so far that the second conical surface 28 in the closed state of the Fuel injection valve on the valve seat 18 comes to rest and thereby limits the deformation of the valve sealing surface 26.
  • the second cone surface 28 covers the injection opening 20, so will be between the individual injections the one connected to the combustion chamber and fuel filled space of the injector minimized, which is favorable affects the pollutant emission of the internal combustion engine.
  • the annular ridge 27 with the valve sealing surface formed thereon 26 has a height D in the direction of the longitudinal axis 6, which must be such that allows elastic deformations be without the valve sealing surface 26 their stability loses.
  • the height D is therefore preferably 0.3 mm to 0.5 mm, the axial height of the annular grooves 30, 32 about 0.2 mm up to 0.4 mm.
  • valve sealing surface 26th limiting edges so the combustion chamber facing away from the first Edge 35 and the combustion chamber facing the second edge 37, rounded or beveled formed. hereby can the valve sealing surface 26 during the opening movement roll the valve member 5 on the valve seat 18 and the notch stresses, when pressing the edges 35,37 in the valve seat 18 arise, are thereby minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es beispielsweise aus der Offenlegungsschrift DE 196 18 650 A1 bekannt ist. Ein solches Kraftstoffeinspritzventil weist einen Ventilkörper auf, in dem eine Bohrung ausgebildet ist. In dieser Bohrung ist ein kolbenförmiges Ventilglied längsverschiebbar angeordnet, das an seinem brennraumseitigen Ende eine Ventildichtfläche aufweist, die mit einem am brennraumseitigen Ende der Bohrung ausgebildeten Ventilsitz zusammenwirkt. Das Ventilglied ist von einem im Ventilkörper ausgebildeten Druckraum umgeben, wobei dieser Druckraum mit Kraftstoff unter hohem Druck befüllbar ist und sich bis zum Ventilsitz erstreckt. Im Ventilsitz ist wenigstens eine Einspritzöffnung ausgebildet, die die Bohrung und damit den Druckraum mit dem Brennraum der Brennkraftmaschine verbindet. Durch eine Längsbewegung des Ventilgliedes hebt das Ventilglied mit der Ventildichtfläche vom Ventilsitz ab, so daß der Druckraum mit den Einspritzöffnungen verbunden wird. Hierbei ist der Ventilsitz im wesentlichen konisch ausgebildet, wobei die Spitze des die Konusfläche bildenden Kegels dem Brennraum zugerichtet ist. Die Ventildichtfläche des Ventilgliedes ist entsprechend ebenfalls konisch ausgebildet, wobei die Ventildichtfläche zwei Konusflächen mit unterschiedlichem Neigungswinkel aufweist, so daß am Übergang dieser beiden Konusflächen eine Dichtkante gebildet wird. In Schließstellung des Ventilgliedes, also wenn die Ventildichtfläche am Ventilsitz anliegt, wird diese Dichtkante in den Ventilsitz eingedrückt, so daß eine sichere Abdichtung des Druckraums gegenüber den Einspritzöffnungen möglich ist.
Das Ventilglied wird durch eine Einrichtung mit einer Schließkraft beaufschlagt, die das Ventilglied auf den Ventilsitz preßt. Durch den hydraulischen Druck im Druckraum erfährt das Ventilglied eine in axialer Richtung wirkende Kraft, die dieser Schließkraft entgegen gerichtet ist. Übersteigt der Druck im Druckraum einen Öffnungsdruck, so wird die hydraulische Kraft auf das Ventilglied größer als die Schließkraft und das Ventilglied bewegt sich aus der Schließstellung vom Ventilsitz weg. Die Größe dieses Öffnungsdrucks hängt unter anderem davon ab, welchen Durchmesser die Dichtkante am Ventilsitz aufweist. Eine Änderung des Öffnungsdrucks geht mit einer Veränderung der Einspritzcharakteristik des Einspritzventils einher, so daß ein zumindest näherungsweise konstanter Öffnungsdruck unerläßlich für eine optimale Einspritzung ist. Das bekannte Kraftstoffeinspritzventil weist hierbei jedoch den Nachteil auf, daß die durch den Übergang der beiden Konusflächen gebildete Dichtkante mit dem Betrieb des Kraftstoffeinspritzventils in den Ventilsitz eingeschlagen wird, wodurch sich der hydraulisch wirksame Dichtliniendurchmesser mit der Zeit verändert und so der Öffnungsdruck nicht konstant bleibt. Dies stellt insbesondere bei modernen Kraftstoffeinspritzsystemen, die auf niedrigen Schadstoffausstoß optimiert sind, einen großen Nachteil dar.
Aus der Schrift DE 199 31 891 A1 ist ein Einspritzventil bekannt, das ein Ventilglied mit einer im wesentlichen konischen Ventildichtfläche aufweist, mit der es mit einem entsprechend geformten Ventilsitz zusammenwirkt. In der Ventildichtfläche sind zwei Ringnuten ausgebildet, und auf dem zwischen den Ringnuten verbleibenden Abschnitt der Ventildichtfläche befindet sich die Dichtkante, mit der das Ventilglied auf dem Ventilsitz in Schließstellung aufliegt. Auch bei diesem Ventilglied ergibt sich der Nachteil, daß sich die Dichtkante mit der Zeit in den Ventilsitz einhämmert und sich der hydraulisch wirksame Dichtliniendurchmesser ändert.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß sich der Öffnungsdruck des Kraftstoffeinspritzventils im Betrieb nicht ändert. Hierzu weist das Ventilglied einen Endbereich auf, in dem zwei Ringnuten ausgebildet sind. Hierbei ist die erste Ringnut in einer Radialebene der Längsachse des Ventilgliedes angeordnet und die zweite Ringnut axial dem Ventilsitz zu verschoben angeordnet und zur ersten Ringnut parallel. Hierdurch wird der Endbereich des Ventilgliedes in drei Abschnitte unterteilt, wobei die Ventildichtfläche an einem zwischen den beiden Ringnuten verbleibenden Ringsteg ausgebildet ist, der am äußeren Rand in Längsrichtung des Ventilgliedes federnd ausgebildet ist. Dies hat zum einen den Vorteil, daß sich die hydraulisch wirksame Dichtkante im Betrieb des Kraftstoffeinspritzventils nicht ändert. Zum anderen kann sich die Ventildichtfläche optimal an den Ventilsitz anpassen, so daß auch in der Zeit unmittelbar vor der Einspritzung, wo durch den ansteigenden Druck im Druckraum der Ventilkörper etwas elastisch aufgeweitet wird, eine optimale Anlage der Ventildichtfläche am Ventilsitz erfolgt.
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist die erste Ringnut stets mit dem Druckraum hydraulisch verbunden. Durch den hydraulischen Druck in der ersten Ringnut wird diese etwas elastische aufgeweitet, so daß der zwischen den beiden Ringnuten verbleibende Ringsteg des Ventilgliedes zu Beginn der Öffnungshubbewegung gegen den Ventilsitz gepreßt wird. Hierdurch ist sichergestellt, daß der hydraulisch wirksame Dichtliniendurchmesser stets der Kante entspricht, die am Übergang der ersten Ringnut zur Ventildichtfläche ausgebildet ist. Dies gilt unabhängig von Winkeltoleranzen im Neuzustand oder vom Verschleiß über der Lebenszeit.
In einer weiteren vorteilhaften Ausgestaltung sind die Kanten, die am Übergang der Ringnuten zur Ventildichtfläche ausgebildet sind, abgerundet oder abgeschrägt gefertigt. Hierdurch ergibt sich eine Verringerung der Kerbwirkung durch das Eindrücken dieser Kanten in den Ventilsitz. Als Folge davon ergibt sich eine bessere Hochdruckstabilität und ermöglicht dem federnd ausgebildeten Ringsteg der Ventildichtfläche bei der Öffnungs- oder Schließbewegung eine abrollende Bewegung auf dem Ventilsitz.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Zeichnung, der Beschreibung und den Ansprüchen entnehmbar.
Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
  • Figur 1 einen Längsschnitt durch ein Kraftstoffeinspritzventil,
  • Figur 2 eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1 und
  • Figur 3 eine Vergrößerung von Figur 2 des mit III bezeichneten Ausschnitts.
Beschreibung des Ausführungsbeispiels
In der Figur 1 ist ein Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt. Ein Ventilkörper 1, der einen Teil eines Kraftstoffeinspritzsystems für Brennkraftmaschinen bildet, weist eine Bohrung 3 auf, in der ein kolbenförmiges Ventilglied 5 längsverschiebbar angeordnet ist, das eine Längsachse 6 aufweist. In Einbaulage des Kraftstoffeinspritzventils in der Brennkraftmaschine ist das geschlossene Ende der Bohrung 3 dem Brennraum zugewandt. Das Ventilglied 5 ist in einem brennraumabgewandten Abschnitt in der Bohrung 3 dichtend geführt und verjüngt sich dem Brennraum zu unter Bildung einer Druckschulter 9. An seinem brennraumseitigen Ende geht das Ventilglied 5 in einen im wesentlichen konischen Endbereich 22 über, der mit einem ebenfalls konischen am brennraumseitigen Ende der Bohrung 3 ausgebildeten Ventilsitz 18 zusammenwirkt. Durch eine radiale Erweiterung der Bohrung 3 ist auf Höhe der Druckschulter 9 ein Druckraum 7 ausgebildet, der sich als ein das Ventilglied 5 umgebender Ringkanal bis zum Ventilsitz 18 fortsetzt. Über einen im Ventilkörper 1 ausgebildeten Zulaufkanal 4 ist der Druckraum 7 mit einer in der Zeichnung nicht dargestellten Kraftstoffhochdruckquelle verbunden, so daß er mit Kraftstoff unter hohem Druck befüllbar ist. Zwischen der Druckschulter 9 und dem Endbereich 22 ist am Ventilglied 5 ein Führungsabschnitt 10 ausgebildet, durch den das Ventilglied 5 in einem Führungsbereich 14 der Bohrung 3 geführt wird. Um den Kraftstofffluß vom Druckraum 7 zum Ventilsitz 18 sicherzustellen, sind am Führungsabschnitt 10 mehrere, beispielsweise vier Ausnehmungen 12 angeordnet, die gleichmäßig über den Umfang des Ventilgliedes 5 verteilt angeordnet sind und die den Kraftstofffluß ermöglichen. Im Ventilsitz 18 ist wenigstens eine Einspritzöffnung 20 ausgebildet, die die Bohrung 3 mit dem Brennraum der Brennkraftmaschine verbindet. Durch die Längsbewegung des Ventilgliedes 5 wird die wenigstens eine Einspritzöffnung 20 freigegeben oder verschlossen, so daß Kraftstoff aus dem Druckraum 7 durch die Einspritzöffnung 20 gesteuert durch das Ventilglied 5 in den Brennraum der Brennkraftmaschine gelangen kann.
Die Steuerung der Einspritztätigkeit des Kraftstoffeinspritzventils erfolgt durch hydraulische Kräfte. Ein Einspritzzyklus sieht wie folgt aus: Das Ventilglied 5 wird durch eine in der Zeichnung nicht dargestellte Vorrichtung mit einer Schließkraft beaufschlagt, die das Ventilglied 5 mit dem Endbereich 22 auf den Ventilsitz 18 preßt. Hierdurch wird der Druckraum 7 gegenüber den Einspritzöffnungen verschlossen, und es gelangt kein Kraftstoff durch die Einspritzöffnungen 20 in den Brennraum der Brennkraftmaschine. Durch Einbringen von Kraftstoff unter hohem Druck durch den Zulaufkanal 4 in den Druckraum 7 ergibt sich eine hydraulische Kraft in Längsrichtung des Ventilgliedes 5 durch Beaufschlagung der Druckschulter 9 und zumindest Teilbereichen des Endbereichs 22. Übersteigen diese hydraulischen Kräfte die Schließkraft auf das Ventilglied, bewegt sich das Ventilglied 5 vom Ventilsitz 18 weg und der Endbereich 22 hebt vom Ventilsitz 18 ab. Hierdurch wird der Druckraum 7 mit den Einspritzöffnungen 20 verbunden, und Kraftstoff fließt am Ventilglied 5 vorbei zu den Einspritzöffnungen 20 und von dort in den Brennraum der Brennkraftmaschine. Durch eine Reduzierung des Kraftstoffzuflusses in den Druckraum 7 sinkt der Druck wieder, so daß, sobald die Schließkraft auf das Ventilglied 5 überwiegt, das Ventilglied 5 zurück in seine Schließstellung fährt, d.h. mit dem Endbereich 22 am Ventilsitz 18 aufsetzt. Da das Ventilglied 5 sowohl im brennraumabgewandten Abschnitt als auch im Führungsabschnitt 10 in der Bohrung 3 geführt ist, ergibt sich auch am Ventilsitz 18 eine genau zentrische Lage des Ventilgliedes 5 in der Bohrung 3, so daß ein symmetrischer Kraftstofffluß zum Ventilsitz 18 sichergestellt ist.
In Figur 2 ist eine Vergrößerung von Figur 1 in einem mit II bezeichneten Ausschnitt dargestellt. Die im wesentlichen konische Endfläche 22 des Ventilgliedes 5 weist eine erste Ringnut 30 und eine zweite Ringnut 32 auf, wobei die zweite Ringnut axial verschoben zur ersten Ringnut 30 angeordnet ist, wobei jedoch beide Ringnuten 30,32 zueinander parallel sind. Die Ringnuten 30,32 sind jeweils zumindest annähernd in einer Radialebene bezüglich der Längsachse 6 des Ventilglieds 5 angeordnet. Hierdurch wird der Endbereich 22 des Ventilgliedes 5 in drei Abschnitte aufgeteilt, wobei eine erste Konusfläche 24, die sich direkt an das Ventilglied 5 anschließt, gebildet wird, eine zwischen den beiden Ringnuten 30,32 ausgebildete Ventildichtfläche 26 und eine zweite Konusfläche 28, die das brennraumzugewandte Ende des Ventilgliedes 5 bildet. Die Ventildichtfläche 26 ist an einem zwischen den Ringnuten 30,32 verbleibenden Ringsteg 27 ausgebildet. Die erste Konusfläche 24, die Ventildichtfläche 26 und die zweite Konusfläche 28 weisen alle zumindest näherungsweise denselben Konuswinkel auf, jedoch ist die erste Konusfläche 24 und die zweite Konusfläche 28 etwas zurückgesetzt, so daß in Schließstellung des Ventilgliedes 5, das ist, wenn der Druckraum 7 gegen die Einspritzöffnungen 20 verschlossen ist, nur die Ventildichtfläche 26 am Ventilsitz 18 zur Anlage kommt. Diese Stellung ist in Figur 2 dargestellt. Durch die zurückgesetzte erste Konusfläche 24 bleibt die erste Ringnut 30 stets mit dem Druckraum 7 hydraulisch verbunden, da zwischen der ersten Konusfläche 24 und dem Ventilsitz 18 immer ein Spalt verbleibt.
In Figur 3 ist eine Vergrößerung von Figur 2 im durch III bezeichneten Bereich dargestellt. Das Ventilglied 5 befindet sich hier in einem leicht geöffneten Zustand, so daß die Ventildichtfläche 26 nicht am Ventilsitz 18 anliegt. Der durch den Druck im Druckraum 7 hydraulisch beaufschlagte Teil des Endbereichs 22 des Ventilgliedes 5 entspricht der ersten Konusfläche 24 bis zur ersten Kante 35, die am Übergang der ersten Ringnut 30 zur Ventildichtfläche 26 gebildet ist und die die Dichtlinie bildet. Die hydraulischen, in axialer Richtung wirkenden Kräfte auf die Wände der ersten Ringnut 30 heben sich gegenseitig auf. Da die Ringnuten 30;32 in den Endbereich 22 des Ventilgliedes 5 eingeschnitten sind, ist der Ringsteg 27 zwischen den beiden Ringnuten 30;32 an seinem äußeren Rand federnd ausgebildet, so daß bei Anlage des Ventilgliedes 5 am Ventilsitz 18 die Ventildichtfläche 26 etwas vom Brennraum weg verformt wird, wodurch die Dichtfläche 26 stets optimal am Ventilsitz 18 anliegt. Die Verformung der Ventildichtfläche 26 kann soweit gehen, daß die zweite Konusfläche 28 im geschlossenen Zustand des Kraftstoffeinspritzventils am Ventilsitz 18 zur Anlage kommt und hierdurch die Verformung der Ventildichtfläche 26 begrenzt. Überdeckt die zweite Konusfläche 28 die Einspritzöffnung 20, so wird zwischen den einzelnen Einspritzungen der mit dem Brennraum verbundene und mit Kraftstoff gefüllte Raum des Einspritzventils minimiert, was sich günstig auf die Schadstoffemission der Brennkraftmaschine auswirkt.
Der Ringsteg 27 mit der daran ausgebildeten Ventildichtfläche 26 weist in Richtung der Längsachse 6 eine Höhe D auf, die so beschaffen sein muß, daß elastische Verformungen ermöglicht werden, ohne daß die Ventildichtfläche 26 ihre Stabilität einbüßt. Die Höhe D ist deshalb vorzugsweise 0,3 mm bis 0,5 mm, die axiale Höhe der Ringnuten 30;32 etwa 0,2 mm bis 0,4 mm.
Neben dem in Figur 3 dargestellten Ausführungsbeispiel kann es auch vorgesehen sein, daß die die Ventildichtfläche 26 begrenzenden Kanten, also die dem brennraumabgewandte erste Kante 35 und die dem brennraumzugewandte zweite Kante 37, abgerundet oder abgeschrägt ausgebildet werden. Hierdurch kann sich die Ventildichtfläche 26 bei der Öffnungsbewegung des Ventilgliedes 5 am Ventilsitz 18 abrollen und die Kerbspannungen, die beim Eindrücken der Kanten 35,37 in den Ventilsitz 18 entstehen, werden hierdurch minimiert.

Claims (4)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem in einer Bohrung (3) ein kolbenförmiges Ventilglied (5) längsverschiebbar angeordnet ist, wobei das Ventilglied (5) zumindest auf einem Teil seiner Länge von einem mit Kraftstoff befüllbaren Druckraum (7) umgeben ist, und mit einem am brennraumseitigen Ende der Bohrung (3) ausgebildeten Ventilsitz (18), an dem das Ventilglied (5) mit einer Ventildichtfläche (26) in einer Schließstellung zur Anlage kommt, so daß der Druckraum (7) von wenigstens einer stromabwärts der Ventildichtfläche (18) gelegenen Einspritzöffnung (20) getrennt wird, wobei im brennraumseitigen Endbereich des Ventilglieds (5) eine erste Ringnut (30) und eine dazu parallele, axial dem Ventilsitz (18) zugewandt angeordnete zweite Ringnut (32) ausgebildet ist und die Ventildichtfläche (26) an einem zwischen diesen beiden Ringnuten (30; 32) verbleibenden Ringsteg (27) angeordnet ist,
    dadurch gekennzeichnet, daß der zwischen den Ringnuten (30; 32) verbleibende Ringsteg (27) des Ventilglieds (5) an seinem äußeren Rand in Bewegungsrichtung des Ventilglieds (5) federnd ausgebildet ist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Ventildichtfläche (26) zumindest näherungsweise konisch geformt ist.
  3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die erste Ringnut (30) ständig mit dem Druckraum (7) hydraulisch verbunden ist.
  4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die am Übergang der Ringnuten (30; 32) zur Ventildichtfläche (32) ausgebildeten Kanten (35; 37) abgerundet oder abgeschrägt sind.
EP02727266A 2001-03-28 2002-03-26 Kraftstoffeinspritzventil für brennkraftmaschinen Expired - Lifetime EP1373715B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10115216 2001-03-28
DE10115216A DE10115216A1 (de) 2001-03-28 2001-03-28 Kraftstoffeinspritzventil für Brennkraftmaschinen
PCT/DE2002/001091 WO2002077445A1 (de) 2001-03-28 2002-03-26 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1373715A1 EP1373715A1 (de) 2004-01-02
EP1373715B1 true EP1373715B1 (de) 2005-01-05

Family

ID=7679340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02727266A Expired - Lifetime EP1373715B1 (de) 2001-03-28 2002-03-26 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (5)

Country Link
US (1) US6923388B2 (de)
EP (1) EP1373715B1 (de)
JP (1) JP2004518890A (de)
DE (2) DE10115216A1 (de)
WO (1) WO2002077445A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245573A1 (de) * 2002-09-27 2004-04-08 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10259169A1 (de) * 2002-12-18 2004-07-01 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschine
DE10322826A1 (de) * 2003-05-19 2004-12-09 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1559903B1 (de) * 2004-01-28 2008-12-10 Continental Automotive Italy S.p.A. Einspritzventil mit verformbarer Nadel
EP1559905A1 (de) * 2004-01-29 2005-08-03 Siemens VDO Automotive S.p.A. Einspritzventil mit einem verformbaren Ventilnadel
DE102004021340A1 (de) * 2004-04-30 2005-11-24 Siemens Ag Düsenbaugruppe und Ventil
MX2009002235A (es) * 2006-08-30 2009-03-13 Jagotec Ag Formulaciones de dosis oral, solidas, de liberacion controlada que comprenden nisoldipina.
DE102009042155A1 (de) * 2009-09-21 2011-04-07 Continental Automotive Gmbh Kraftstoff-Einspritzventil für eine Brennkraftmaschine
WO2012085901A2 (en) * 2011-05-09 2012-06-28 Lietuvietis Vilis I Valve covered orifice pressure equalizing channel
DE102016203028A1 (de) * 2016-02-26 2017-08-31 Bayerische Motoren Werke Aktiengesellschaft Kraftstoffinjektor
CN107143452B (zh) * 2017-07-17 2024-03-08 辽阳新风科技有限公司 一种油嘴偶件、喷油器及汽车
US11746734B2 (en) * 2018-08-23 2023-09-05 Progress Rail Services Corporation Electronic unit injector shuttle valve
DE102019210551A1 (de) * 2019-07-17 2021-01-21 Robert Bosch Gmbh Kraftstoffinjektor
CN112282999B (zh) * 2020-10-30 2021-10-22 安徽江淮汽车集团股份有限公司 一种能够降低落座声的喷油器结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952816A (en) 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
DE2543805C2 (de) * 1975-10-01 1986-05-07 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betätigbares Einspritzventil
US4887769A (en) * 1987-06-26 1989-12-19 Hitachi, Ltd. Electromagnetic fuel injection valve
DE19618650B4 (de) 1996-05-09 2006-04-27 Robert Bosch Gmbh Verfahren zur Herstellung eines Kraftstoffeinspritzventils für Brennkraftmaschinen
DE19844638A1 (de) 1998-09-29 2000-03-30 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE19931891A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE19944638A1 (de) 1999-09-17 2001-03-22 Hettich Paul Gmbh & Co Befestigungsanordnung

Also Published As

Publication number Publication date
DE10115216A1 (de) 2002-10-10
US6923388B2 (en) 2005-08-02
DE50201953D1 (de) 2005-02-10
JP2004518890A (ja) 2004-06-24
WO2002077445A1 (de) 2002-10-03
US20030173428A1 (en) 2003-09-18
EP1373715A1 (de) 2004-01-02

Similar Documents

Publication Publication Date Title
EP1567763B1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
DE19547423B4 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2394049B1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP1373715B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19709794A1 (de) Ventil zum Steuern von Flüssigkeiten
EP1446571A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1321661B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1556607B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1563181B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1509693B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1346143B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10313225A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschine
EP1335128B1 (de) Ventil zur Steuerung einer Verbindung in einem Hochdruckflüssigkeitssystem, insbesondere einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10100390A1 (de) Einspritzventil
DE19954288A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1658427B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10318989A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10312586A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1422418A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2004057180A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10050599B4 (de) Einspritzventil mit einem Pumpkolben
DE10219608A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1546546A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1597475A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
DE10213384A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUEHLER, CHRISTOPH

17Q First examination report despatched

Effective date: 20040216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050105

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050105

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201953

Country of ref document: DE

Date of ref document: 20050210

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20050105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051006

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130329

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130523

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201953

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50201953

Country of ref document: DE

Effective date: 20141001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141001