EP1567763B1 - Kraftstoffeinspritzventil f r brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil f r brennkraftmaschinen Download PDF

Info

Publication number
EP1567763B1
EP1567763B1 EP03775098A EP03775098A EP1567763B1 EP 1567763 B1 EP1567763 B1 EP 1567763B1 EP 03775098 A EP03775098 A EP 03775098A EP 03775098 A EP03775098 A EP 03775098A EP 1567763 B1 EP1567763 B1 EP 1567763B1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure
needle
bore
inner needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03775098A
Other languages
English (en)
French (fr)
Other versions
EP1567763A1 (de
Inventor
Thomas Kuegler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1567763A1 publication Critical patent/EP1567763A1/de
Application granted granted Critical
Publication of EP1567763B1 publication Critical patent/EP1567763B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as is known for example from the published patent application DE 100 58 153 A1.
  • the fuel injection valve shown there has a valve body in which a bore is formed. At its combustion-chamber-side end, the bore is delimited by a valve seat in which a first row of injection openings and a second row of injection openings are arranged, the injection openings of both rows of injection lines opening into the combustion chamber of the internal combustion engine.
  • a valve outer needle is arranged longitudinally displaceable, which is guided in a side facing away from the combustion chamber in the bore. Between the valve outer needle and the wall of the bore, a pressure space is formed, which can be filled with fuel under high pressure.
  • the valve outer needle At its combustion chamber end, the valve outer needle has a valve sealing surface, with which it cooperates with the valve seat for controlling the first row of injection openings. Centered along its longitudinal axis extends in the valve outer needle an inner bore in which a valve inner needle is arranged longitudinally displaceable.
  • the valve inner needle has at its combustion chamber end a sealing surface, with which it cooperates with the valve seat and in this case the Opening the second injection port row controls.
  • the opening force on the valve inner needle is generated by pressurizing a pressure surface, which is acted upon by the lifting of the valve outer needle from the fuel pressure of the annulus.
  • valve outer needle and the valve inner needle are successively opened, after lifting the valve outer needle from the valve seat, fuel pressure flows inward from the pressure chamber and there encounters the valve inner needle, which is previously separated from the pressure chamber. If the entire pressure surface of the valve inner needle now abruptly acted upon by the pressure in the pressure chamber, it may be due to this impulse to an undesirable light lifting of the valve inner needle before it is desired from the course of the injection forth. This leads to an imprecise injection and to an increase of the pollutant emissions of the internal combustion engine.
  • a pressure chamber is formed in the valve outer needle by a radial extension of the inner bore, in which the pressure surface of the valve inner needle is arranged and which can be connected through the throttle connection with the pressure chamber.
  • a return passage which opens into a formed in the fuel injection valve leakage oil space in which a low fuel pressure prevails.
  • the pressure chamber can be easily relieved, so that after completion of the injection, the fuel pressure in the pressure chamber drops to the pressure of the leakage oil space.
  • FIG. 1 shows a fuel injection valve according to the invention is shown in longitudinal section.
  • the fuel injection valve has a valve body 1, which is pressed by means of a clamping nut 3 against a valve holding body, not shown in the drawing.
  • a bore 5 is formed, which is bounded at its combustion-chamber end by a conical valve seat 18.
  • FIG. 18 shows a first row of injection openings 20 and a second row of injection openings 22 arranged toward the combustion chamber.
  • both injection port rows 20, 22 open into the combustion chamber of the internal combustion engine.
  • a piston-shaped valve outer needle 8 is arranged, which is guided in a bore away from the combustion chamber in the bore 5.
  • valve outer needle 8 tapers to form a pressure shoulder 12 and merges at its combustion chamber end into a sealing surface 25.
  • a pressure chamber 14 is formed, which at the level of the pressure shoulder 12 radially is extended.
  • the valve outer needle 8 has an inner bore 11 in which a valve inner needle 10 is guided longitudinally displaceable.
  • the valve inner needle 10 has at its combustion chamber end a sealing surface 42, with which it, as well as the valve outer needle 8 rests with its sealing surface 35 on the valve seat 18.
  • valve outer needle 8 and the valve inner needle 10 are each acted upon separately at its end remote from the combustion chamber by a closing force which presses the respective valve needle 8, 10 in the direction of the valve seat 18.
  • the closing force can be generated in this case, for example via springs or hydraulic devices.
  • FIG. 2 shows an enlargement of the section of FIG. 1 denoted by II.
  • the valve outer needle 8 has at its combustion chamber end a conical surface 24 and an adjoining, also conical valve sealing surface 35. Due to the different opening angle of the conical surface 24 and the valve sealing surface 35, a first sealing edge 36 is formed at the transition, which is for sealing the pressure chamber 14 against the first row of injection openings 20 is used when the valve outer needle 8 rests against the valve seat 18.
  • the conical valve sealing surface 35 has an opening angle which is slightly smaller than the opening angle of the conical valve seat 18. This comes during the closing movement of the valve outer needle 8 on the valve seat 18 to first the combustion chamber end of the valve sealing surface 35 on the valve seat 18 to the plant, this End is formed as a second sealing edge 38.
  • valve inner needle 10 is arranged with a certain play in the inner bore 11, so that between the valve inner needle 10 and the wall of the inner bore 11, a return channel 28 is formed, which has an annular cross-section and the combustion chamber end facing away from the valve needles 8, 10 in a in the Drawing not shown leakage oil chamber opens, in which there is always a low fuel pressure.
  • the valve inner needle 10 has a guide section 25, which constitutes a radial extension of the valve inner needle 10 and ensures guidance of the valve inner needle 10 in the inner bore 11.
  • a guide section 25 which constitutes a radial extension of the valve inner needle 10 and ensures guidance of the valve inner needle 10 in the inner bore 11.
  • To the combustion chamber end of the valve inner needle 10 tapers the guide portion 25 to form a pressure shoulder 30 and goes at the combustion chamber end in a conical sealing surface 42 on.
  • a circumferential sealing edge 44 is formed, which comes in the closed position of the inner valve needle 10, that is, when it is in contact with the conical valve seat 18, at this plant.
  • the second injection opening row 22 is closed against the pressure chamber 14, so that no fuel can escape from the second row of injection openings 22.
  • the inner bore 11 of the valve outer needle 8 tapers toward its combustion chamber end toward the formation of an annular shoulder 34, which is arranged so that it faces the pressure shoulder 30 of the valve inner needle 10.
  • an annular shoulder 34 By the pressure shoulder 30, the annular shoulder 34, the wall of the inner bore 11 and the valve needle 10, a pressure chamber 27 is limited, which is connected via an annular gap 32 with the valve seat 18, wherein the annular gap 32 extends between the inner valve needle 10 and the inner bore 11.
  • the pressure chamber 27 is also throttled connected to the return passage 28.
  • the operation of the fuel injection valve is as follows: In fuel injection systems that operate according to the so-called common rail principle, is in the pressure chamber 14 is always a high fuel pressure, which corresponds to the injection pressure. On the valve outer needle 8 and the valve inner needle 10 in each case acts a closing force which is so large that both valve needles 8, 10 are held in contact with the valve seat 18, whereby the Einspritzö réelles Herbertn 20, 22 are closed. In the case of the fuel injection valve according to the invention, only a part of the fuel injection openings is first opened and only in the further course of the injection are all injection openings opened. For this purpose is reduces the closing force on the valve outer needle 8, so that the hydraulic force on the pressure shoulder 12 and on the conical surface 24 of the valve outer needle 8 is greater than the closing force.
  • valve outer needle 8 moves away from the valve seat 18 so that now fuel can flow from the pressure chamber 14 to the first row of injection openings 20, from where the fuel is injected into the combustion chamber of the internal combustion engine.
  • the valve inner needle 10 is held in its closed position by the closing force and by the absence of a corresponding opening force.
  • the fuel now also flows through the annular gap 32 in the pressure chamber 27, wherein the annular gap 32 throttles so far that the pressure increase in the pressure chamber 27 happens only with a certain delay.
  • a hydraulic force builds up on the pressure shoulder 30, which is directed counter to the closing force on the inner valve needle 10.
  • valve inner needle 10 As soon as the hydraulic force on the pressure shoulder 30 exceeds the closing force on the valve inner needle 10, the valve inner needle 10 also opens and lifts off from the valve seat 18 with its sealing edge 44, so that fuel is now also injected through the second row of injection openings 22 into the combustion chamber. This open state, which is shown in Figure 4, is maintained until the desired amount of fuel is injected into the combustion chamber.
  • the closing forces on the inner valve needle 10 and the outer valve needle 8 are increased until these closing forces are higher than the hydraulic forces due to the fuel pressure in the pressure chamber 14. Both the valve outer needle 8 and the inner valve needle 10 slide back to their closed position on the valve seat 18 and close both Einspritzö réelles Herbertn 20, 22 again.
  • the design of the pressure chamber 27 also has a further advantage.
  • the opening speed of the valve outer needle 8 depends, in addition to the mass of the valve outer needle 8, from the attacking forces, for a given closing force of the pressurized surface of the valve outer needle 8. At the beginning of the opening stroke this is the pressure shoulder 12 and the conical surface 24. Has the valve outer needle lifted off the valve seat 18, is still the hydraulic force on the sealing surface 35 added. The annular shoulder 34 counteracts this only very slightly, since the fuel pressure in the pressure chamber 27 at the beginning of the opening stroke is only small, so that this force is negligible. The valve outer needle 8 therefore opens very quickly, which is essential for rapid successive injections.
  • FIG. 5 shows the same view as FIG. 4 of a further embodiment.
  • the connection of the pressure chamber 27 with the return channel 28 is not made here or not only on the formed between the guide portion 25 and the wall of the inner bore 11 residual gap 48, but over a plurality of bevels 46 which are laterally formed on the guide portion 25.
  • the flow cross-section can be optimized to achieve a rapid pressure drop after completion of the injection and at the same time to ensure precise guidance of the valve inner needle 10 in the inner bore 11.
  • the polished sections 46 are in this case only very flat, preferably 5-20 ⁇ m.
  • the residual gap 48 can be chosen arbitrarily small here, as long as no excessive friction between the inner valve needle 10 and the wall of the inner bore 11 occurs, since the flow of the fuel is ensured by the bevels 46. In order for pressure buildup in the pressure chamber 27 to continue, the flow cross section of the polished sections 46 is smaller than the flow cross section of the annular gap 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es beispielsweise aus der Offenlegungsschrift DE 100 58 153 A1 bekannt ist. Das dort dargestellte Kraftstoffeinspritzventil weist einen Ventilkörper auf, in dem eine Bohrung ausgebildet ist. An ihrem brennraumseitigen Ende wird die Bohrung von einem Ventilsitz begrenzt, in dem eine erste Einspritzöffnungsreihe und eine brennraumseitig zu dieser angeordnete zweite Einspritzöffnungsreihe ausgebildet sind, wobei die Einspritzöffnungen beider Einspritzöffnungsreihen in den Brennraum der Brennkraftmaschine münden. In der Bohrung ist eine Ventilaußennadel längsverschiebbar angeordnet, die in einem brennraumabgewandten Abschnitt in der Bohrung geführt ist. Zwischen der Ventilaußennadel und der Wand der Bohrung ist ein Druckraum ausgebildet, der mit Kraftstoff unter hohem Druck befüllbar ist. An ihrem brennraumseitigen Ende weist die Ventilaußennadel eine Ventildichtfläche auf, mit der sie mit dem Ventilsitz zur Steuerung der ersten Einspritzöffnungsreihe zusammenwirkt. Mittig entlang ihrer Längsachse verläuft in der Ventilaußennadel eine Innenbohrung, in der eine Ventilinnennadel längsverschiebbar angeordnet ist. Die Ventilinnennadel weist an ihrem brennraumseitigen Ende eine Dichtfläche auf, mit der sie mit dem Ventilsitz zusammenwirkt und hierbei die Öffnung der zweiten Einspritzöffnungsreihe steuert. Die Öffnungskraft auf die Ventilinnennadel wird durch Druckbeaufschlagung einer Druckfläche erzeugt, die nach dem Abheben der Ventilaußennadel vom Kraftstoffdruck des Ringraums beaufschlagt wird.
  • Wenn die Ventilaußennadel und die Ventilinnennadel sukzessiv geöffnet werden, fließt nach dem Abheben der Ventilaußennadel vom Ventilsitz Kraftstoffdruck aus dem Druckraum nach innen und trifft dort auf die Ventilinnennadel, die bis dahin vom Druckraum getrennt ist. Wird die gesamte Druckfläche der Ventilinnennadel jetzt schlagartig vom Druck im Druckraum beaufschlagt, so kann es durch diesen Kraftstoß zu einem unerwünschten leichten Abheben der Ventilinnennadel kommen, ehe dies vom Einspritzverlauf her gewünscht ist. Dies führt zu einer unpräzisen Einspritzung und zu einer Erhöhung der Schadstoffemissionen der Brennkraftmaschine.
  • Aus der Schrift DE 198 34 867 A1 ist ein Einspritzventil mit einer Innennadel und einer Außennadel bekannt. Hierbei ist an der Innennadel, die in einer Längsbohrung der Außennadel geführt ist, nahe des Sitzes ein im Durchmesser erweiterter Abschnitt ausgebildet, an dem eine Druckschulter ausgebildet ist. Durch einen zwischen der Wand der Längsbohrung und der Innennadel ausgebildeten Ringspalt ist die Druckschulter der Innennadel mit einem Druckraum, der die Außennadel umgibt, verbindbar.
  • Vorteile der Erfindung
  • In dem erfindungsgemäßen Kraftstoffeinspritzventil ist in der Ventilaußennadel durch eine radiale Erweiterung der Innenbohrung eine Druckkammer gebildet, in der die Druckfläche der Ventilinnennadel angeordnet ist und die durch die Drosselverbindung mit dem Druckraum verbindbar ist. Durch die Ausbildung der Druckkammer lässt sich die Größe der Druckfläche der Ventilinnennadel in größeren Bereichen einstellen, um die gewünschte Öffnungskraft zu erhalten. Weiter ist es bei dieser Ausgestaltung vorteilhaft, in der Druckkammer an der Ventilaußennadel eine Gegendruckfläche anzuordnen, die vom Kraftstoffdruck in der Druckkammer beaufschlagt wird und die der Ventildichtfläche der Ventilaußennadel entgegen gerichtet ist. Dies weist den Vorteil auf, dass bei der Öffnungshubbewegung der Ventilaußennadel der volle Kraftstoffdruck des Druckraums an der Ventildichtfläche der Ventilaußennadel anliegt, während in der Druckkammer noch ein niedriger Druck herrscht, so dass sich kein Gegendruck auf die Gegendruckfläche ergibt. Bei der Schließbewegung hingegen hat sich in der Druckkammer der Einspritzdruck des Druckraums aufgebaut, so dass die Gegendruckfläche der Ventilaußennadel beaufschlagt wird und die hydraulische Kraft auf die Ventildichtfläche der Ventilaußennadel teilweise kompensiert. Dadurch vermindert sich die Kraft in Öffnungsrichtung auf die Ventilaußennadel, was die Schließbewegung der Ventilaußennadel beschleunigt und so die Schaltzeit entscheidend verringert.
  • In einer weiteren vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist zwischen der Wand der Innenbohrung und der Ventilinnennadel ein Rücklaufkanal ausgebildet, der in einen im Kraftstoffeinspritzventil ausgebildeten Leckölraum mündet, in dem ein niedriger Kraftstoffdruck herrscht. Über diesen Rücklaufkanal lässt sich die Druckkammer einfach entlasten, so dass nach beendeter Einspritzung der Kraftstoffdruck in der Druckkammer auf den Druck des Leckölraums absinkt.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung und der Zeichnung entnehmbar.
  • Zeichnung
  • In der Zeichnung ist ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt. Es zeigt
  • Figur 1
    ein Kraftstoffeinspritzventil im Längsschnitt,
    Figur 2
    eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1 im Bereich des Ventilsitzes,
    Figur 3
    und
    Figur 4
    denselben Ausschnitt wie Figur 2 in unterschiedlichen Öffnungsphasen des Kraftstoffeinspritzventils und
    Figur 5
    dieselbe Ansicht wie Figur 4 eines geänderten Ausführungsbeispiels.
    Beschreibung des Ausführungsbeispiels
  • In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt. Das Kraftstoffeinspritzventil weist einen Ventilkörper 1 auf, der mittels einer Spannmutter 3 gegen einen in der Zeichnung nicht dargestellten Ventilhaltekörper gepresst wird. Im Ventilkörper 1 ist eine Bohrung 5 ausgebildet, die an ihrem brennraumseitigen Ende von einem konischen Ventilsitz 18 begrenzt wird. Vom Ventilsitz 18 geht eine erste Einspritzöffnungsreihe 20 und eine zum Brennraum hin angeordnete zweite Einspritzöffnungsreihe 22 ab. In Einbaulage des Kraftstoffeinspritzventils in der Brennkraftmaschine münden beide Einspritzöffnungsreihen 20, 22 in den Brennraum der Brennkraftmaschine. In der Bohrung 5 ist eine kolbenförmige Ventilaußennadel 8 angeordnet, die in einem brennraumabgewandten Abschnitt in der Bohrung 5 geführt ist. Zum Ventilsitz 18 hin verjüngt sich die Ventilaußennadel 8 unter Bildung einer Druckschulter 12 und geht an ihrem brennraumseitigen Ende in eine Dichtfläche 25 über.. Zwischen der Ventilaußennadel 8 und der Wand der Bohrung 5 ist ein Druckraum 14 ausgebildet, der auf Höhe der Druckschulter 12 radial erweitert ist. In die radiale Erweiterung des Druckraums 14 mündet ein im Ventilhaltekörper 1 verlaufender Zulaufkanal 16, der von einer Kraftstoffhochdruckquelle Kraftstoff unter hohem Druck dem Druckraum 14 zuführt. Die Ventilaußennadel 8 weist eine Innenbohrung 11 auf, in der eine Ventilinnennadel 10 längsverschiebbar geführt ist. Die Ventilinnennadel 10 weist an ihrem brennraumseitigen Ende eine Dichtfläche 42 auf, mit der sie, ebenso wie die Ventilaußennadel 8 mit ihrer Dichtfläche 35, am Ventilsitz 18 aufliegt. Die Ventilaußennadel 8 und die Ventilinnennadel 10 werden an ihrem brennraumabgewandten Ende jeweils separat von einer Schließkraft beaufschlagt, die die jeweilige Ventilnadel 8, 10 in Richtung des Ventilsitzes 18 drückt. Die Schließkraft kann hierbei beispielsweise über Federn oder über hydraulische Vorrichtungen erzeugt werden.
  • In Figur 2 ist eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1 dargestellt. Die Ventilaußennadel 8 weist an ihrem brennraumseitigen Ende eine Konusfläche 24 und eine sich daran anschließende, ebenfalls konische Ventildichtfläche 35 auf. Durch den unterschiedlichen Öffnungswinkel der Konusfläche 24 und der Ventildichtfläche 35 ist an deren Übergang eine erste Dichtkante 36 ausgebildet, die zur Abdichtung des Druckraums 14 gegen die erste Einspritzöffnungsreihe 20 dient, wenn die Ventilaußennadel 8 am Ventilsitz 18 anliegt. Die konische Ventildichtfläche 35 weist einen Öffnungswinkel auf, der geringfügig kleiner ist, als der Öffnungswinkel des konischen Ventilsitzes 18. Dadurch kommt bei der Schließbewegung der Ventilaußennadel 8 auf den Ventilsitz 18 zu zuerst das brennraumseitige Ende der Ventildichtfläche 35 am Ventilsitz 18 zur Anlage, wobei dieses Ende als zweite Dichtkante 38 ausgebildet ist. Erst nach einer leichten Verformung der Ventildichtfläche 35 kommt auch die erste Dichtkante 36 am Ventilsitz 18 zur Anlage, so dass die erste Einspritzöffnungsreihe 20 sowohl gegen den Druckraum 14, als auch gegenüber dem Bereich des Ventilsitzes 18, der sich stromabwärts der ersten Einspritzöffnungsreihe 20 befindet, abdichtet. Damit eine ausreichende Anpresskraft an der ersten Dichtkante 36 und der zweiten Dichtkante 38 gewährleistet ist, ist zwischen diesen beiden Dichtkanten 36, 38 eine Ringnut 40 an der Ventildichtfläche 35 ausgebildet, die auf Höhe der ersten Einspritzöffnungsreihe 20 verläuft. Die Tiefe der Ringnut 40 ist gering, da sich ein großes Volumen in diesem Bereich ungünstig auf die Kohlenwasserstoffemissionen der Brennkraftmaschine auswirkt.
  • Die Ventilinnennadel 10 ist mit einem gewissen Spiel in der Innenbohrung 11 angeordnet, so dass zwischen der Ventilinnennadel 10 und der Wand der Innenbohrung 11 ein Rücklaufkanal 28 ausgebildet ist, der einen kreisringförmigen Querschnitt aufweist und am brennraumabgewandten Ende der Ventilnadeln 8, 10 in einen in der Zeichnung nicht dargestellten Leckölraum mündet, in dem stets ein niedriger Kraftstoffdruck vorhanden ist.
  • Im brennraumseitigen Endbereich weist die Ventilinnennadel 10 einen Führungsabschnitt 25 auf, der eine radiale Erweiterung der Ventilinnennadel 10 darstellt und für eine Führung der Ventilinnennadel 10 in der Innenbohrung 11 sorgt. Zum brennraumseitigen Ende der Ventilinnennadel 10 hin verjüngt sich der Führungsabschnitt 25 unter Bildung einer Druckschulter 30 und geht am brennraumseitigen Ende in eine konische Dichtfläche 42 über. Am Übergang der Ventilinnennadel 10 zur Dichtfläche 42 ist eine umlaufende Dichtkante 44 ausgebildet, die in Schließstellung der Ventilinnennadel 10, d.h. wenn diese in Anlage am konischen Ventilsitz 18 ist, an diesem zur Anlage kommt. Dadurch wird die zweite Einspritzöffnungsreihe 22 gegen den Druckraum 14 verschlossen, so dass kein Kraftstoff aus der zweiten Einspritzöffnungsreihe 22 austreten kann.
  • Die Innenbohrung 11 der Ventilaußennadel 8 verjüngt sich zu ihrem brennraumseitigen Ende hin unter Bildung einer Ringschulter 34, die so angeordnet ist, dass sie der Druckschulter 30 der Ventilinnennadel 10 gegenüberliegt. Durch die Druckschulter 30, die Ringschulter 34, die Wand der Innenbohrung 11 und die Ventilnadel 10 wird eine Druckkammer 27 begrenzt, die über einen Ringspalt 32 mit dem Ventilsitz 18 verbunden ist, wobei der Ringspalt 32 zwischen der Ventilinnennadel 10 und der Innenbohrung 11 verläuft. Über einem Restspalt 48 zwischen dem Führungsabschnitt 25 und der Wand der Innenbohrung 11 ist die Druckkammer 27 darüber hinaus gedrosselt mit dem Rücklaufkanal 28 verbunden.
  • Die Funktionsweise des Kraftstoffeinspritzventils ist wie folgt: Bei Kraftstoffeinspritzsystemen, die nach dem sogenannten Common Rail-Prinzip arbeiten, liegt im Druckraum 14 stets ein hoher Kraftstoffdruck an, der dem Einspritzdruck entspricht. Auf die Ventilaußennadel 8 und die Ventilinnennadel 10 wirkt jeweils eine Schließkraft, die so groß ist, dass beide Ventilnadeln 8, 10 in Anlage am Ventilsitz 18 gehalten werden, wodurch die Einspritzöffnungsreihen 20, 22 verschlossen sind. Bei dem erfindungsgemäßen Kraftstoffeinspritzventil wird zuerst nur ein Teil der Kraftstoffeinspritzöffnungen aufgesteuert und erst im weiteren Verlauf der Einspritzung sämtliche Einspritzöffnungen. Hierzu wird die Schließkraft auf die Ventilaußennadel 8 reduziert, so dass die hydraulischen Kraft auf die Druckschulter 12 und auf die Konusfläche 24 der Ventilaußennadel 8 größer ist als die Schließkraft. Hierdurch bewegt sich die Ventilaußennadel 8 vom Ventilsitz 18 weg, so dass jetzt Kraftstoff aus dem Druckraum 14 zur ersten Einspritzöffnungsreihe 20 fließen kann, von wo der Kraftstoff in den Brennraum der Brennkraftmaschine eingespritzt wird. Die Ventilinnennadel 10 wird durch die Schließkraft und durch das Fehlen einer entsprechenden Öffnungskraft in ihrer Schließstellung gehalten. Durch das Abheben der Ventilaußennadel 8 vom Ventilsitz 18 strömt der Kraftstoff jetzt auch durch den Ringspalt 32 in die Druckkammer 27, wobei der Ringspalt 32 so weit drosselt, dass der Druckanstieg in der Druckkammer 27 nur mit einer gewissen Verzögerung geschieht. Mit zunehmendem Kraftstoffdruck in der Druckkammer 27. baut sich eine hydraulische Kraft auf die Druckschulter 30 auf, die der Schließkraft auf die Ventilinnennadel 10 entgegen gerichtet ist. Sobald die hydraulische Kraft auf die Druckschulter 30 die Schließkraft auf die Ventilinnennadel 10 übersteigt, öffnet auch die Ventilinnennadel 10 und hebt mit ihrer Dichtkante 44 vom Ventilsitz 18 ab, so dass jetzt auch Kraftstoff durch die zweite Einspritzöffnungsreihe 22 in den Brennraum eingespritzt wird. Dieser geöffnete Zustand, der in Figur 4 dargestellt ist, wird solange aufrecht erhalten, bis die gewünschte Kraftstoffmenge in den Brennraum eingespritzt ist. Zum Schließen des Kraftstoffeinspritzventils werden die Schließkräfte auf die Ventilinnennadel 10 und die Ventilaußennadel 8 erhöht, bis diese Schließkräfte höher sind als die hydraulischen Kräfte durch den Kraftstoffdruck im Druckraum 14. Sowohl die Ventilaußennadel 8, als auch die Ventilinnennadel 10 gleiten zurück in ihre Schließstellung am Ventilsitz 18 und verschließen beide Einspritzöffnungsreihen 20, 22 wieder. Beim Aufsetzen der Ventilaußennadel 8 auf dem Ventilsitz 18 kommt zuerst die zweite Dichtkante 38 und anschließend die erste Dichtkante 36 am Ventilsitz 18 zur Anlage, so dass die erste Einspritzöffnungsreihe 20 sowohl zum Druckraum 14 als auch zur zweiten Einspritzöffnungsreihe 22 abgedichtet ist. Nach dem Aufsetzen der Ventilaußennadel 8 auf dem Ventilsitz 18 ist die Druckkammer 27 vom Druckraum 14 getrennt. Der noch immer hohe Kraftstoffdruck in der Druckkammer 27 wird jetzt durch den Drosselspalt zwischen dem Führungsabschnitt 25 und der Wand der Innenbohrung 11 allmählich über den Rücklaufkanal 28 entlastet, so dass sich in der Druckkammer 27 der niedrige Kraftstoffdruck des Leckölraums einstellt, bis die nächste Einspritzung des Kraftstoffeinspritzventils erfolgt.
  • Die Ausbildung der Druckkammer 27 weist darüber hinaus einen weiteren Vorteil auf. Die Öffnungsgeschwindigkeit der Ventilaußennadel 8 hängt, neben der Masse der Ventilaußennadel 8, von den angreifenden Kräften ab, bei gegebener Schließkraft also von der druckbeaufschlagten Fläche der Ventilaußennadel 8. Zu Beginn der Öffnungshubbewegung ist dies die Druckschulter 12 und die Konusfläche 24. Hat die Ventilaußennadel 8 vom Ventilsitz 18 abgehoben, kommt noch die hydraulische Kraft auf die Dichtfläche 35 hinzu. Die Ringschulter 34 wirkt dem nur sehr gering entgegen, da der Kraftstoffdruck in der Druckkammer 27 zu Beginn der Öffnungshubbewegung nur gering ist, so dass diese Kraft vernachlässigbar ist. Die Ventilaußennadel 8 öffnet deshalb sehr schnell, was für rasch aufeinander folgende Einspritzungen unerlässlich ist. Bei Beendigung der Einspritzung ist in der Druckkammer 27 ein hoher Kraftstoffdruck vorhanden, der jetzt auch eine entsprechende hydraulische Kraft auf die Ringschulter 34 ausübt. Diese Kraft kompensiert zum Teil die hydraulische Kraft auf die Dichtfläche 35, so dass die jetzt wieder erhöhte Schließkraft auf die Ventilaußennadel 8 wegen der geringeren Gegenkraft die Ventilaußennadel 8 schneller in ihre Schließstellung zurück befördert, wodurch auch die Schließbewegung beschleunigt wird. Durch das schnellere Öffnen und Schließen der Ventilaußennadel 8 lassen sich rasch aufeinanderfolgende Einspritzungen problemlos realisieren. Durch die vom Ventilsitz 18 beabstandete Druckschulter 30 der Ventilinnennadel 10 ergibt sich darüber hinaus auch die Möglichkeit, die Ventilaußennadel 8 im Bereich der Dichtfläche 35 zu verstärken, was zu einer Verminderung des Verschleißes durch eine größere Auflagefläche der Ventilaußennadel 8 am Ventilsitz 18 führt.
  • Figur 5 zeigt dieselbe Ansicht wie Figur 4 eines weiteren Ausführungsbeispiels. Die Verbindung der Druckkammer 27 mit dem Rücklaufkanal 28 ist hier nicht oder nicht nur über den zwischen dem Führungsabschnitt 25 und der Wand der Innenbohrung 11 ausgebildeten Restspalt 48 hergestellt, sondern über mehrere Anschliffe 46, die am Führungsabschnitt 25 seitlich ausgebildet sind. Durch diese Anschliffe 46 kann der Durchflussquerschnitt optimiert werden, um einen raschen Druckabfall nach Beendigung der Einspritzung zu erreichen und gleichzeitig eine präzise Führung der Ventilinnennadel 10 in der Innenbohrung 11 zu gewährleisten. Die Anschliffe 46 sind hierbei nur sehr flach ausgebildet, vorzugsweise 5-20 µm. Der Restspalt 48 kann hier beliebig klein gewählt werden, solange keine übermäßige Reibung zwischen der Ventilinnennadel 10 und der Wand der Innenbohrung 11 auftritt, da der Durchfluss des Kraftstoffs über die Anschliffe 46 sichergestellt ist. Damit sich nach wie vor ein Druckaufbau in der Druckkammer 27 ergibt, ist der Durchflussquerschnitt der Anschliffe 46 geringer als der Durchflussquerschnitt des Ringspalts 32.

Claims (6)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem eine Bohrung (5) ausgebildet ist, die an ihrem brennraumseitigen Ende von einem Ventilsitz (18) begrenzt wird, in dem eine erste Einspritzöffnungsreihe (20) und eine zweite Einspritzöffnungsreihe (22) ausgebildet sind, wobei die zweite Einspritzöffnungsreihe (22) brennraumnäher als die erste Einspritzöffnungsreihe (20) angeordnet ist, und mit einer Ventilaußennadel (8), die längsverschiebbar in der Bohrung (5) angeordnet ist und die mit dem Ventilsitz (18) zur Steuerung der ersten Einspritzöffnungsreihe (20) zusammenwirkt, wobei zwischen der Ventilaußennadel (8) und der Wand der Bohrung (5) ein Druckraum (14) ausgebildet ist, der mit Kraftstoff unter hohem Druck befüllbar ist, und mit einer Ventilinnennadel (10), die in einer Innenbohrung (11) der Ventilaußennadel (8) längsverschiebbar angeordnet ist und die mit dem Ventilsitz (18) zur Steuerung der zweiten Einspritzöffnungsreihe (22) zusammenwirkt, und mit einer an der Ventilinnennadel (10) ausgebildeten Druckschulter (30), über die bei Druckbeaufschlagung eine hydraulische Öffnungskraft auf die Ventilinnennadel (10) ausgeübt wird, wobei die Ventilaußennadel (8) durch ihre Öffnungshubbewegung eine Drosselverbindung (32) vom Druckraum (14) zur Druckschulter (30) der Ventilinnennadel (10) öffnet und die Drosselverbindung als Ringspalt (32) zwischen der Wand der Innenbohrung (11) und der Ventilinnennadel (10) ausgebildet ist, dadurch gekennzeichnet, dass in der Ventilaußennadel (8) durch eine radiale Erweiterung der Innenbohrung (11) eine Druckkammer (27) gebildet ist, in der die Druckschulter (30) der Ventilinnennadel (10) angeordnet ist und die durch die Drosselverbindung (32) mit dem Druckraum (14) verbindbar ist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Druckkammer (27) von einer Ringschulter (34) der Ventilaußennadel (8) begrenzt ist, die der Ventildichtfläche (35) der Ventilaußennadel (8) entgegengerichtet ist.
  3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventilinnennadel (10) nahe dem Ventilsitz (18) einen Führungsabschnitt (25) aufweist, mit dem sie in der Innenbohrung (11) geführt ist.
  4. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass brennraumabgewandt zum Führungsabschnitt (25) der Ventilinnennadel (10) zwischen der Wand der Innenbohrung (11) und der Ventilinnennadel (10) ein Rücklaufkanal (28) ausgebildet ist, über den die Druckkammer (27) druckentlastet werden kann.
  5. Kraftstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, dass am Führungsabschnitt (25) der Ventilinnennadel (10) wenigstens ein Anschliff (46) ausgebildet ist.
  6. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass die Druckschulter (30) der Ventilinnennadel (10) am brennraumseitigen Ende des radial erweiterten Führungsabschnitts (25) ausgebildet ist.
EP03775098A 2002-11-11 2003-10-31 Kraftstoffeinspritzventil f r brennkraftmaschinen Expired - Lifetime EP1567763B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10252660 2002-11-11
DE10252660 2002-11-11
PCT/DE2003/003624 WO2004044415A1 (de) 2002-11-11 2003-10-31 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1567763A1 EP1567763A1 (de) 2005-08-31
EP1567763B1 true EP1567763B1 (de) 2006-09-27

Family

ID=32185552

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03775098A Expired - Lifetime EP1567763B1 (de) 2002-11-11 2003-10-31 Kraftstoffeinspritzventil f r brennkraftmaschinen

Country Status (6)

Country Link
US (1) US7143964B2 (de)
EP (1) EP1567763B1 (de)
JP (1) JP2006505742A (de)
CN (2) CN100400850C (de)
DE (3) DE10315821A1 (de)
WO (1) WO2004044415A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10305187A1 (de) * 2003-02-08 2004-08-19 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung, insbesondere für Brennkraftmaschinen mit Kraftstoff-Direkteinspritzung
DE10354878A1 (de) * 2003-11-24 2005-06-09 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung, insbesondere für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung, sowie Verfahren zu ihrer Herstellung
DE102004002083A1 (de) * 2004-01-15 2005-08-04 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten, insbesondere Kraftstoffeinspritzventil
DE102004021340A1 (de) * 2004-04-30 2005-11-24 Siemens Ag Düsenbaugruppe und Ventil
TR200402050A2 (tr) * 2004-08-18 2006-03-21 Robert Bosch Gmbh Eşeksenli alansal temaslı çift oturma çaplı enjektör
ATE371809T1 (de) * 2004-10-01 2007-09-15 Delphi Tech Inc Einspritzdüse
DE102004059974A1 (de) * 2004-11-23 2006-06-01 Siemens Ag Düsenbaugruppe und Einspritzventil
DE102004060180B4 (de) * 2004-12-14 2007-04-05 Siemens Ag Düsenbaugruppe und Einspritzventil
DE102005001675A1 (de) * 2005-01-13 2006-07-27 Siemens Ag Düsenbaugruppe und Einspritzventil
DE602005005159T2 (de) 2005-01-19 2009-04-30 Delphi Technologies, Inc., Troy Kraftstoffeinspritzventil
EP1693562B1 (de) * 2005-01-19 2007-05-30 Delphi Technologies, Inc. Brennstoffeinspritzventil
DE112006000809T5 (de) * 2005-04-06 2008-02-07 GM Global Technology Operations, Inc., Detroit Doppelreihenclusterkonfiguration mit Injektoren für reduzierte Russemissionen
DE102005025637B4 (de) * 2005-06-03 2007-09-27 Siemens Ag Düsenbaugruppe und Einspritzventil
DE102005037955A1 (de) * 2005-08-11 2007-02-15 Robert Bosch Gmbh Teilentdrosseltes Einspritzventilglied für Kraftstoffinjektoren
JP4734351B2 (ja) * 2008-01-28 2011-07-27 日立オートモティブシステムズ株式会社 燃料噴射弁及び内燃機関
US8496191B2 (en) * 2008-05-19 2013-07-30 Caterpillar Inc. Seal arrangement for a fuel injector needle valve
DE102009018767A1 (de) * 2009-04-24 2010-10-28 Man Diesel & Turbo Se Kraftstoffeinspritzdüse für eine Brennkraftmaschine
EP2369166B1 (de) 2010-03-22 2017-12-13 Delphi International Operations Luxembourg S.à r.l. Einspritzdüse
US8602319B2 (en) 2010-10-07 2013-12-10 Caterpillar Inc. Needle valve member with frustoconical guide segment and fuel injector using same
WO2013162525A1 (en) * 2012-04-24 2013-10-31 International Engine Intellectual Property Company, Llc Low leakage seat valve guide
US20140175192A1 (en) * 2012-12-21 2014-06-26 Quantlogic Corporation Mixed-mode fuel injector with a variable orifice
US9562505B2 (en) * 2013-06-11 2017-02-07 Cummins Inc. System and method for control of fuel injector spray
US9920674B2 (en) 2014-01-09 2018-03-20 Cummins Inc. Variable spray angle injector arrangement
JP6451663B2 (ja) * 2016-02-24 2019-01-16 株式会社デンソー 燃料噴射装置
US11867142B2 (en) * 2016-06-29 2024-01-09 Transportation Ip Holdings, Llc Systems and methods for fuel injector control
US10302056B2 (en) * 2016-06-29 2019-05-28 Ge Global Sourcing Llc Systems and methods for fuel injector control
CN105971794A (zh) * 2016-07-12 2016-09-28 江西汇尔油泵油嘴有限公司 延迟喷油方法及延迟喷油嘴
CN106089531A (zh) * 2016-07-12 2016-11-09 江西汇尔油泵油嘴有限公司 螺旋状喷油方法及螺旋状喷油嘴
CN106194537A (zh) * 2016-07-12 2016-12-07 江西汇尔油泵油嘴有限公司 一种阻尼式喷油方法以及阻尼式喷油嘴
CN105971796A (zh) * 2016-07-12 2016-09-28 江西汇尔油泵油嘴有限公司 柴油机的孔式喷油嘴及其喷油方法
CN106014738A (zh) * 2016-07-12 2016-10-12 江西汇尔油泵油嘴有限公司 阻隔式喷油方法及喷油嘴
DE102016215637A1 (de) * 2016-08-19 2018-02-22 Robert Bosch Gmbh Kraftstoffeinspritzdüse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1834061A (en) * 1930-04-30 1931-12-01 Westinghouse Electric & Mfg Co Fuel nozzle
FR2328855A1 (fr) * 1975-10-21 1977-05-20 Lucas Industries Ltd Injecteur de carburant liquide pour moteur
DE2710138A1 (de) * 1977-03-09 1978-09-14 Maschf Augsburg Nuernberg Ag Mehrloch-einspritzduese
DE2710216A1 (de) * 1977-03-09 1978-09-14 Bosch Gmbh Robert Kraftstoffeinspritzduese
DE4023223A1 (de) * 1990-07-21 1992-01-23 Bosch Gmbh Robert Kraftstoff-einspritzduese fuer brennkraftmaschinen
FI88333C (fi) * 1991-06-25 1993-04-26 Waertsilae Diesel Int Foerbaettrat insprutningsventilarrangemang foer braensle
GB9709678D0 (en) * 1997-05-14 1997-07-02 Lucas Ind Plc Fuel injector
US5899389A (en) * 1997-06-02 1999-05-04 Cummins Engine Company, Inc. Two stage fuel injector nozzle assembly
AT2164U3 (de) * 1997-08-07 1999-02-25 Avl List Gmbh Einspritzdüse für eine direkt einspritzende brennkraftmaschine
GB9914644D0 (en) 1999-06-24 1999-08-25 Lucas Ind Plc Fuel injector
IT1319988B1 (it) * 2000-03-21 2003-11-12 Fiat Ricerche Spina di chiusura di un ugello in un iniettore di combustibile permotori a combustione interna.
DE10058153A1 (de) * 2000-11-22 2002-06-06 Bosch Gmbh Robert Einspritzdüse mit separat steuerbaren Düsennadeln
DE10155227A1 (de) * 2001-11-09 2003-05-22 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
WO2004044415A1 (de) 2004-05-27
CN100378321C (zh) 2008-04-02
DE10315821A1 (de) 2004-05-27
CN1711416A (zh) 2005-12-21
CN100400850C (zh) 2008-07-09
DE50305205D1 (de) 2006-11-09
CN1711415A (zh) 2005-12-21
US7143964B2 (en) 2006-12-05
US20060118660A1 (en) 2006-06-08
DE10315820A1 (de) 2004-05-27
EP1567763A1 (de) 2005-08-31
JP2006505742A (ja) 2006-02-16

Similar Documents

Publication Publication Date Title
EP1567763B1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
EP1478840B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE69918902T2 (de) Brennstoffinjektor
EP1387939B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1446571A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1563181B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1373715B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1509693B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1592878A1 (de) Kraftstoffeinspritzventil mit zwei koaxialen ventilnadeln
EP1335128B1 (de) Ventil zur Steuerung einer Verbindung in einem Hochdruckflüssigkeitssystem, insbesondere einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1608866B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19954288A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1650427B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1422418B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2001079688A1 (de) Kraftstoffeinspritzventil fur brennkraftmaschinen
DE10318989A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2004057180A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102006012242A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2655850B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2818684A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102004050046A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10312584A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10213384A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060927

REF Corresponds to:

Ref document number: 50305205

Country of ref document: DE

Date of ref document: 20061109

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091110

Year of fee payment: 7

Ref country code: IT

Payment date: 20091024

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141208

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503