WO2003098031A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO2003098031A1
WO2003098031A1 PCT/DE2003/001579 DE0301579W WO03098031A1 WO 2003098031 A1 WO2003098031 A1 WO 2003098031A1 DE 0301579 W DE0301579 W DE 0301579W WO 03098031 A1 WO03098031 A1 WO 03098031A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fuel injection
annular groove
valve seat
valve needle
Prior art date
Application number
PCT/DE2003/001579
Other languages
English (en)
French (fr)
Inventor
Wilhelm Christ
Bernd Dittus
Friedrich Boecking
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10318989A external-priority patent/DE10318989A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2004505529A priority Critical patent/JP2005526212A/ja
Priority to US10/508,938 priority patent/US7100847B2/en
Priority to EP03740006A priority patent/EP1509693B1/de
Priority to KR10-2004-7018535A priority patent/KR20040111628A/ko
Priority to DE50305850T priority patent/DE50305850D1/de
Publication of WO2003098031A1 publication Critical patent/WO2003098031A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1866Valve seats or member ends having multiple cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as is known from WO 96/19661.
  • a valve needle is arranged so that it can be moved slowly in a bore, the bore being arranged at the end on the combustion chamber side, a conical valve seat.
  • the valve needle is guided in a section in the bore facing away from the combustion chamber, and a pressure chamber is formed between the section of the valve needle facing the combustion chamber and the wall of the bore, which can be filled with fuel under high pressure.
  • the pressure chamber extends to the valve seat, which is conical and in which at least one injection opening is formed.
  • the valve needle At the end facing the valve seat, the valve needle has an essentially conical valve sealing surface, so that when the valve sealing surface is lifted from the valve seat, fuel can flow from the pressure space between the valve seat and the valve sealing surface to the injection openings.
  • a closing force acts on the valve needle, which presses the valve sealing surface against the valve seat and thus prevents the injection of fuel through the injection openings in the absence of additional forces.
  • a first conical surface is formed on the valve sealing surface, the opening angle of which is smaller than the opening angle of the conical valve seat. Viewed in the direction of flow of the fuel, there is a further conical surface on the valve sealing surface downstream of the first conical surface formed, the opening angle is larger than the opening angle of the valve seat.
  • An annular groove is formed between the two conical surfaces of the valve sealing surface, which runs in a radial plane of the valve needle and which borders on both conical surfaces.
  • the fuel injection valve according to the invention with the characterizing features of patent claim 1 has the advantage that the wear on the valve seat is reduced.
  • part of the valve sealing surface is acted upon by a hydraulic force in the closed position of the valve needle, so that the total force on the valve needle is reduced in its closed position.
  • the valve needle is hydraulically connected to the pressure chamber by an annular groove between the first and the second conical surface, so that the same fuel pressure prevails in this annular groove as in the pressure chamber.
  • the annular groove is connected to the pressure chamber by at least one connecting bore running in the valve needle.
  • Such connecting bores can be easily made in the valve needle by various methods, preferably before the valve needle hardens. Another advantage is that the other outer shape of the valve needle and its mechanical stability remain practically unchanged.
  • the configuration of the connecting bores as transverse bores is advantageous for the drilling process, since the angle to the surfaces at which the transverse bore emerges is greater.
  • the diameter of the cross hole can be increased to the width of the ring groove.
  • the hydraulic connection of the annular groove to the pressure chamber is established by at least one recess formed in the first cone surface. Such recesses can be easily Insert from outside into the valve needle, even after the hardening process.
  • Valve seat smaller than the seat angle difference between the first conical surface and the valve seat. This configuration results in an optimized distribution of the surface pressure on the valve seat and thus reduced wear.
  • valve needle when the valve needle closes, the sealing edge formed at the transition from the annular groove to the second conical surface first comes into contact with the valve seat.
  • This sharp delimitation of the second cone surface and thus the hydraulically effective seat diameter on the valve needle when opening opens up a precisely defined opening characteristic, so that a precisely metered injection of fuel into the combustion chamber of the internal combustion engine is possible.
  • FIG. 1 shows a longitudinal section through the essential part of a fuel injection valve
  • FIG. 2 shows an enlargement of FIG. 1 in the region of the valve seat, the valve needle being drawn in the position in which it just just touches the valve seat
  • FIG. 3 shows the same detail as FIG. 2 in the closed position of the valve needle
  • FIG. 4 shows the same detail as FIG. 2 of a further exemplary embodiment
  • 5 shows the same view as FIG. 2 of a further exemplary embodiment
  • Figure 6 shows a cross section through the fuel injector shown in Figure 5 along the line VI-VI.
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention.
  • a valve body In a valve body
  • I is formed a bore 3, which is closed at its combustion chamber end by a conical valve seat 11. Downstream of the valve seat 11 there is a blind bore 21, from which injection openings 9 depart, which connect the blind bore to the combustion chamber of the internal combustion engine.
  • a piston-shaped valve needle 5 is arranged in the bore in a slidable manner and is guided in a sealing section 103 of the bore 3 with a guide area 105. Starting from the guide area 105 of the valve needle 5, the valve needle 5 tapers to the valve seat
  • An annular channel-shaped pressure chamber 19 is formed between the shaft 205 and the wall of the bore 3 and is radially expanded at the height of the pressure shoulder 13.
  • the pressure chamber 19 can be filled with fuel under high pressure via an inlet channel 25 running in the valve body 1, the inlet channel 25 opening into the radial expansion of the pressure chamber 19.
  • the valve needle 5 is acted upon at its end facing away from the combustion chamber by a closing force which is generated by a device not shown in the drawing.
  • a closing force which is generated by a device not shown in the drawing.
  • Devices that generate the closing force with the aid of spring elements and devices that generate the closing force hydraulically are known.
  • This closing force presses the valve needle 5 with the valve sealing surface 7 against the valve seat 11, so that the injection openings 9, which are formed in the valve seat 11 and which connect the valve seat 11 to the combustion chamber of the internal combustion engine, are separated from the pressure chamber 19.
  • there is a constant high pressure in the pressure chamber 19 or only when fuel is to be injected which can be between 100 and 200 MPa depending on the system used.
  • either the pressure in the pressure chamber 19 can be increased or the closing force on the valve needle 5 can be reduced. In any case, it must be achieved that the hydraulic forces on the pressure shoulder 13 and on parts of the valve sealing surface 7 are greater than the closing force on the valve needle 5.
  • valve needle 5 moves away from the valve seat 11, so that fuel can flow from the pressure chamber 19 between the valve sealing surface 7 and the valve seat 11 to the injection openings 9.
  • the force relationships on the valve needle 5 are reversed, so that the valve needle 5 moves back into its closed position until it comes to the valve seat 11 with the valve sealing surface 7 Facility is coming.
  • FIG. 2 shows an enlargement of FIG. 1 in the region of the section designated II, that is to say in the region of the valve seat 11.
  • the valve sealing surface 7 of the valve needle 5 has a first conical surface 30 which borders directly on the stem 205.
  • the first conical surface 30 points here with an opening angle that is smaller than the opening angle of the conical valve seat 11, so that a difference angle ⁇ ⁇ is formed between the first conical surface 30 and the valve seat 11.
  • an annular groove 35 adjoins the first conical surface 30, which surrounds the valve needle 5 over its entire circumference and extends in a radial plane of the longitudinal axis 15 of the valve needle 5.
  • a second conical surface 32 adjoins the annular groove 35 downstream and also forms the end of the valve needle 5.
  • the opening angle of the second conical surface 32 is larger than the opening angle of the valve seat 11, so that a difference angle 82 is formed between these two surfaces.
  • the two conical surfaces 30, 32 and the annular groove 35 are arranged on the valve sealing surface 7 such that the circular section line of the imaginary extension of the first conical surface 30 and the second conical surface 32 lies at the height of the annular groove 35.
  • annular groove 35 Since the annular groove 35 is introduced into the valve sealing surface 7 at the end of the production process of the valve needle 5, this ensures that the upper edge 37 of the annular groove 35, which forms the boundary line to the first conical surface 30, and the sealing edge 38, which the Border line to the second cone surface 32 forms, extend exactly in a radial plane of the longitudinal axis 15.
  • the annular groove 35 is connected to the pressure chamber 19 via at least two connecting bores 40 which run in the valve needle 5.
  • the connection bores 40 are preferably arranged uniformly distributed over the circumference of the valve needle 5. It is thus ensured that, regardless of the position of the valve needle 5 relative to the valve seat 11, the
  • the annular groove 35 always has the same fuel pressure as the pressure chamber 19, at least substantially.
  • the annular groove 35 is the valve needle 5 on its combustion chamber side End formed in such a way that when the valve needle 5 closes, the sealing edge 38 first comes to rest on the valve seat 11 and only in the course of the further closing movement does the downstream boundary edge of the annular groove 35. In FIG the moment the sealing edge 38 comes to rest on the valve seat 11. Without an elastic deformation of valve needle 5 and valve seat 11, valve needle 5 would remain in this position. However, since a high closing force acts on the valve needle 5, both the valve sealing surface 7 of the valve needle 5 and the valve seat 11 deform, and the resulting shape and position of the valve needle 5 is shown in FIG. 3.
  • FIG. 4 shows a further exemplary embodiment of the fuel injection valve according to the invention, the same cutout as in FIG. 2 being chosen.
  • the connecting bores 40 instead of the connecting bores 40, at least two connecting grooves 42 are formed on the first conical surface 30, through which the annular groove 35 remains hydraulically connected to the pressure chamber 19.
  • the connecting grooves 42 are preferably arranged uniformly distributed over the circumference of the valve needle 5 and have a depth of a few 1/10 mm.
  • FIG. 5 shows a further exemplary embodiment, in which the annular groove 35, as in the exemplary embodiment shown in FIGS. 2 and 3, is connected to the pressure chamber via a connecting hole, but the connecting hole here is designed as a transverse hole 44.
  • the transverse bore 44 extends from the annular groove 35 and runs across the valve needle 5 to the stem 205. Such a transverse bore 44 can be manufactured more easily than a connecting bore 40, as shown in FIG. 2, since here a large angle to the surface of the valve needle 5 is present at both ends of the transverse bore 44.
  • FIG. 6 shows a cross section through the injection valve shown in FIG. 5 along the line VI-VI.
  • the annular groove 35 is connected to the pressure chamber via a plurality of transverse bores 44, the transverse bores 44 being parallel to one another in the projection onto the plane identified by the line VI-VI in FIG. 5.
  • the transverse bores 44 are oriented such that the end of the transverse bore 44 emerging from the shaft 205 is as far as possible opposite the end in the annular groove 35 without the transverse bores 44 intersecting.
  • the diameter of the transverse bore 44 can correspond to the width of the annular groove 35 or can also have a smaller diameter.
  • Modern fuel injection systems such as those used in particular for self-igniting internal combustion engines in high-speed engines, are subject to great demands today in terms of efficiency and pollutant emissions.
  • very short switching times of the valve needle 5 are necessary in order to enable injections which follow one another rapidly, in particular in order to implement pre-injection and post-injection within an injection cycle.
  • a typical fuel injection valve for passenger cars which operates at a pressure of works for example 150 MPa, has a needle diameter in the guide area 105 of about 4 mm. When the valve needle 5 is lifted from the valve seat 11, this results in a force of approximately 1900 N on the opened valve needle 5.
  • this force must be compensated for by a closing force which is significantly higher than 1900 N to allow the valve needle 5 to close quickly.
  • a closing force which is significantly higher than 1900 N to allow the valve needle 5 to close quickly.
  • the area of the valve sealing surface 7 that lies downstream of the sealing edge 38 is no longer acted upon by the fuel pressure in the pressure chamber 19.
  • part of the hydraulic opening force counteracting the closing force is eliminated from the valve needle 5, so that the valve needle 5 is now pressed against the valve seat 11 with a very high force.
  • this high closing force and the correspondingly high surface pressure on the valve seat can lead to increased wear and thus to a premature failure of the fuel injector.
  • the closing force must have a certain minimum value so that the valve needle 5 remains closed between the individual injections in any case even at a correspondingly high pressure in the combustion chamber.
  • the fuel injection valve according to the invention solves this problem in that an additional annular groove in the valve sealing surface 7 is exposed to the pressure in the pressure chamber 19, so that the resulting force on the valve needle 5 is reduced.
  • valve needle 5 both to the sealing edge 38 and in the area of the upper edge 37, the surface pressure in the loading range of the sealing edge 38 is kept so low that the material limit values are not reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil mit einem Ventilkörper (1), in dem in einer Bohrung (3) eine eine Längsachse (15) aufweisende Ventilnadel (5) längsverschiebbar angeordnet ist. Am brennraumseitigen Ende der Bohrung (3) ist ein konischer Ventilsitz (11) angeordnet, wobei zwischen der Ventilnadel (5) und der Wand der Bohrung (3) ein mit Kraftstoff befüllbarer Druckraum (19) ausgebildet ist, der bis zum Ventilsitz (11) reicht. An der Ventilnadel (5) ist eine Ventildichtfläche (7) ausgebildet, die mit dem Ventilsitz (11) zur Steuerung wenigstens einer, vom Ventilsitz (11) ausgehenden Einspritzöffnung zusammenwirkt und in der eine in einer Radialebene der Ventilnadel (5) verlaufende Ringnut (35) ausgebildet ist. Die stromabwärtige Kante der Ringnut (35) ist als Dichtkante (38) ausgebildet und stets mit dem Druckraum (19) hydraulisch verbunden.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es aus der WO 96/19661 bekannt ist. Bei einem solchen Kraftstoffeinspritzventil ist in einer Bohrung eine Ventilnadel langsverschiebbar angeordnet, wobei am brennraumseitigen Ende die Bohrung ein konischer Ventilsitz angeordnet ist. Die Ventilnadel ist in einem brennraumabgewandten Abschnitt in der Bohrung gefuhrt, und zwischen dem brennraumzugewandten Abschnitt der Ventilnadel und der Wand der Bohrung ist ein Druckraum ausgebildet, der mit Kraftstoff unter hohem Druck befullbar ist. Der Druckraum reicht hierbei bis zum Ventilsitz, der konisch ausge- bildet ist und in dem wenigstens eine Einspritzoffnung ausgebildet ist. An dem dem Ventilsitz zugewandten Ende weist die Ventilnadel eine im wesentlichen konische Ventildichtflache auf, so dass bei vom Ventilsitz abgehobener Ventildichtflache Kraftstoff aus dem Druckraum zwischen dem Ven- tilsitz und der Ventildichtflache hindurch den Einspritzoff- nungen zufließen kann. Die Ventilnadel wird von einer Schließkraft beaufschlagt, die die Ventildichtflache gegen den Ventilsitz presst und so bei Abwesenheit weiterer Kräfte eine Einspritzung von Kraftstoff durch die Einspritzoffnun- gen verhindert.
An der Ventildichtflache ist eine erste konische Flache ausgebildet, deren Offnungswinkel kleiner als der Offnungswin- kel des konischen Ventilsitzes ist. In Stromungsrichtung des Kraftstoffs gesehen stromabwärts der ersten konischen Flache ist an der Ventildichtflache eine weitere konische Flache ausgebildet, deren Offnungswinkel großer als der Offnungs- winkel des Ventilsitzes ist. Zwischen den beiden konischen Flachen der Ventildichtflache ist eine Ringnut ausgebildet, die in einer Radialebene der Ventilnadel verläuft und die an beide konischen Flachen grenzt.
Zur Einspritzung von Kraftstoff in den Brennraum der Brennkraftmaschine wird in den Druckraum des Einspritzventils Kraftstoff unter hohem Druck eingeleitet. Dadurch ergibt sich auf eine an der Ventilnadel vorhandene Druckflache und auf Teile der Ventildichtflache eine hydraulische Kraft, die der Schließkraft entgegengerichtet ist. Wird die Schließkraft reduziert, so bewegen die hydraulischen Kräfte die Ventilnadel vom Ventilsitz weg, so dass Kraftstoff den Ein- spritzoffnungen zufließen kann. Bei geöffneter Ventilnadel wirkt auf ihren gesamten Querschnitt der hydraulische Druck durch den Kraftstoffdruck im Druckraum. Um diese Kraft zu u- berwinden, muss die Schließkraft entsprechend hoch sein, da bei modernen Kraftstoffeinspritzsystemen kurze Schließzeiten des Kraftstoffeinspritzventils angestrebt werden, um schnell hintereinander genau dosierte Einspritzungen möglich zu machen. Sobald die Ventilnadel wieder am Ventilsitz zur Anlage kommt, entfallt die hydraulische Kraft auf einen Teil der Ventildichtflache, so dass sich jetzt ein starker Uberschuss der Schließkraft gegenüber der hydraulischen Kraft auf die Ventilnadel ergibt. Dies bedeutet, dass die Ventilnadel mit einer hohen Kraft gegen den Ventilsitz gepresst wird, was dort mit der Zeit zu einem erhöhten Verschleiß fuhrt, der die Lebensdauer des Kraftstoffeinspritzventils erheblich ab- senken kann. Insbesondere bei den neuesten Kraftstoffein- spritzsystemen, die mit Drucken von bis zu 200 MPa arbeiten, stoßt man mittlerweile an die Belastbarkeitsgrenze des Materials .
Vorteile der Erfindung Das erfmdungsgemaße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass der Verschleiß am Ventilsitz reduziert ist. Hierzu wird in Schließstellung der Ventilnadel ein Teil der Ventildichtflache von einer hydraulischen Kraft beaufschlagt, so dass sich die Gesamtkraft auf die Ventilnadel in deren Schließstellung reduziert. Durch eine Ringnut zwischen der ersten und der zweiten konischen Flache ist die Ventilnadel mit dem Druckraum hydraulisch verbunden, so dass in dieser Ringnut stets der gleiche Kraftstoffdruck herrscht wie im Druckraum. Bei geschlossener Ventilnadel ergibt sich so eine Vergrößerung der hydraulisch beaufschlagten Flache an der Ventilnadel und damit eine erhöhte Gegenkraft zur Schließkraft, so dass die Flachenpressung im Bereich des Ventilsitzes reduziert wird bei gleichzeitig guten Dichteigenschaften.
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist die Ringnut mit dem Druckraum durch wenigstens eine in der Ventilnadel verlaufende Verbindungsbohrung verbunden. Solche Verbindungsbohrungen lassen sich durch verschiedene Verfahren einfach in die Ventilnadel einbringen, vorzugsweise vor dem Harten der Ventilnadel. Ein weiterer Vorteil besteht dabei, dass die sonstige Außenform der Ven- tilnadel und ihre mechanische Stabilität praktisch unverändert bleiben. Die Ausgestaltung der Verbindungsbohrungen als Querbohrungen ist für das Bohrverfahren vorteilhaft, da der Winkel zu den Oberflachen, an denen die Querbohrung austritt, großer ist. Darüber hinaus lasst sich der Durchmesser der Querbohrung bis zur Breite der Ringnut vergrößern.
In einer weiteren vorteilhaften Ausgestaltung ist die hydraulische Verbindung der Ringnut mit dem Druckraum durch wenigstens eine in der ersten Konusflache ausgebildete Ausneh- mung hergestellt. Solche Ausnehmungen lassen sich einfach von außen in die Ventilnadel einbringen, auch noch nach dem Hartungsprozess .
In einer weiteren vorteilhaften Ausgestaltung ist d e Sitz- Winkeldifferenz zwischen der zweiten Konusflache und dem
Ventilsitz kleiner als die Sitzwinkeldifferenz zwischen der ersten Konusflache und dem Ventilsitz. Durch diese Ausgestaltung erhalt man eine optimierte Verteilung der Flachenpressung am Ventilsitz und damit einen verminderten Ver- schleiß.
In einer weiteren vorteilhaften Ausgestaltung kommt bei der Schließbewegung der Ventilnadel zuerst die am Übergang der Ringnut zur zweiten Konusflache ausgebildete Dichtkante am Ventilsitz zur Anlage. Durch diese scharfe Begrenzung der zweiten Konusflache und damit des beim Offnen hydraulisch wirksamen Sitzdurchmessers an der Ventilnadel erhalt man eine genau definierte Offnungscharakteristik, so dass ein genau dosiertes Einspritzen von Kraftstoff in den Brennraum der Brennkraftmaschine möglich ist.
Zeichnung
In der Zeichnung ist verschiedene Ausfuhrungsbeispiele des erfmdungsgemaßen Kraftstoffeinspritzventils dargestellt. Es zeigt
Figur 1 einen Längsschnitt durch den wesentlichen Teil eines Kraftstoffeinspritzventils,
Figur 2 eine Vergrößerung von Figur 1 im Bereich des Ven- tilsitzes, wobei die Ventilnadel in der Stellung gezeichnet ist, in der sie den Ventilsitz gerade eben berührt, Figur 3 denselben Ausschnitt wie Figur 2 in Schließstellung der Ventilnadel,
Figur 4 denselben Ausschnitt wie Figur 2 eines weiteren Ausfuhrungsbeispiels, Figur 5 dieselbe Ansicht wie Figur 2 eines weiteren Ausfuhrungsbeispiels und
Figur 6 einen Querschnitt durch das in Figur 5 dargestellte Kraftstoffeinspritzventil entlang der Linie VI- VI.
Beschreibung der Ausfuhrungsbeispiele
In Figur 1 ist ein Längsschnitt durch ein erfindungsgemaßes Kraftstoffeinspritzventil dargestellt. In einem Ventilkorper
I ist eine Bohrung 3 ausgebildet, die an ihrem brennraumseitigen Ende durch einen konischen Ventilsitz 11 verschlossen wird. Dem Ventilsitz 11 schließt sich stromabwärts eine Sackbohrung 21 an, von der Einspritzoffnungen 9 abgehen, die die Sackbohrung mit dem Brennraum der Brennkraftmaschine verbinden. In der Bohrung ist eine kolbenförmige Ventilnadel 5 langsverschiebbar angeordnet, die in einem Fuhrungsab- schnitt 103 der Bohrung 3 mit einem Fuhrungsbereich 105 dichtend gefuhrt ist. Ausgehend vom Fuhrungsbereich 105 der Ventilnadel 5 verjungt sich die Ventilnadel 5 dem Ventilsitz
II zu unter Bildung einer Druckschulter 13 und geht in einen Schaft 205 über, der einen geringeren Durchmesser aufweist als der Fuhrungsbereich 105. Das brennraumseitige Ende der Ventilnadel 5, das direkt an den Schaft 205 grenzt, wird durch eine im wesentlichen konische Ventildichtflache 7 gebildet, die mit dem Ventilsitz 11 zusammenwirkt und deren genaue Form und Funktion weiter unten erläutert wird. Zwischen dem Schaft 205 und der Wand der Bohrung 3 ist ein ringkanalformiger Druckraum 19 ausgebildet, der auf Hohe der Druckschulter 13 radial erweitert ist. Der Druckraum 19 lasst sich über einen im Ventilkorper 1 verlaufenden Zulaufkanal 25 mit Kraftstoff unter hohem Druck befullen, wobei der Zulaufkanal 25 in die radiale Erweiterung des Druckraums 19 mundet. Die Ventilnadel 5 wird an ihrem brennraumabgewandten Ende von einer Schließkraft beaufschlagt, die von einer in der Zeichnung nicht dargestellten Vorrichtung erzeugt wird. Bekannt sind zum einen Vorrichtungen, die die Schließkraft mit Hilfe von Federelementen erzeugen und Vorrichtungen, welche die Schließkraft hydraulisch erzeugen. Durch diese Schließkraft wird die Ventilnadel 5 mit der Ventildichtflache 7 gegen den Ventilsitz 11 gepresst, so dass die Einspritzoffnun- gen 9, die im Ventilsitz 11 ausgebildet sind und die den Ventilsitz 11 mit dem Brennraum der Brennkraftmaschine verbinden, vom Druckraum 19 getrennt werden. Je nach Einspritzsystem herrscht im Druckraum 19 standig oder nur dann, wenn eine Einspritzung von Kraftstoff erfolgen soll, ein hoher Kraftstoffdruck, der j e nach verwendetem System zwischen 100 und 200 MPa betragen kann. Zur Bewegung der Ventilnadel 5 kann entweder der Druck im Druckraum 19 erhöht oder die Schließkraft auf die Ventilnadel 5 erniedrigt werden. In jedem Fall muss erreicht werden, dass die hydraulischen Kräfte auf die Druckschulter 13 und auf Teile der Ventildichtflache 7 großer sind, als die Schließkraft auf die Ventilnadel 5.
Ist dies der Fall, so bewegt sich die Ventilnadel 5 vom Ventilsitz 11 weg, so dass Kraftstoff aus dem Druckraum 19 zwischen der Ventildichtflache 7 und dem Ventilsitz 11 hindurch zu den Einspritzoffnungen 9 fließen kann. Durch eine Erho- hung der Schließkraft beziehungsweise eine Unterbrechung der Kraftstoffzufuhr in den Druckraum 19 kehren sich die Kraft- verhaltnisse an der Ventilnadel 5 wieder um, so dass die Ventilnadel 5 zurück in ihre Schließstellung fahrt, bis sie mit der Ventildichtflache 7 am Ventilsitz 11 zur Anlage kommt .
In Figur 2 ist eine Vergrößerung von Figur 1 im Bereich des mit II bezeichneten Ausschnitts dargestellt, also im Bereich des Ventilsitzes 11. Die Ventildichtflache 7 der Ventilnadel 5 weist eine erste konische Flache 30 auf, die direkt an den Schaft 205 grenzt. Die erste konische Flache 30 weist hier- bei einen Offnungswmkel auf, der kleiner ist als der Off- nungswinkel des konischen Ventilsitzes 11, so dass zwischen der ersten konischen Flache 30 und dem Ventilsitz 11 ein Differenzwinkel δ^ gebildet ist. Stromabwarts des Kraft- stoffstroms zu den Einspritzoffnungen 9 schließt sich an die erste konische Flache 30 eine Ringnut 35 an, die die Ventilnadel 5 auf ihrem gesamten Umfang umgibt und in einer radialebene der Langsachse 15 der Ventilnadel 5 verlauft. An die Ringnut 35 schließt sich stromabwärts eine zweite koni- sehe Flache 32 an, die auch das Ende der Ventilnadel 5 bildet. Der Offnungswinkel der zweiten konischen Flache 32 ist großer als der Offnungswinkel des Ventilsitzes 11, so dass zwischen diesen beiden Flachen ein Differenzwinkel 82 gebildet ist. Die beiden konischen Flachen 30, 32 und die Ringnut 35 sind derart an der Ventildichtflache 7 angeordnet, dass die kreisförmige Schnittlinie der gedachten Verlängerung der ersten konischen Flache 30 und der zweiten konischen Flache 32 auf Hohe der Ringnut 35 liegt. Da die Ringnut 35 am Ende des Produktionsprozesses der Ventilnadel 5 in die Ventil- dichtflache 7 eingebracht wird, ist dadurch sichergestellt, dass die obere Kante 37 der Ringnut 35, die die Grenzlinie zur ersten konischen Flache 30 bildet, und die Dichtkante 38, die die Grenzlinie zur zweiten Konusflache 32 bildet, exakt in einer Radialebene der Langsachse 15 verlaufen. Über wenigstens zwei Verbindungsbohrungen 40, die in der Ventilnadel 5 verlaufen, ist die Ringnut 35 mit dem Druckraum 19 verbunden. Die Verbindungsbohrungen 40 sind hierbei vorzugsweise gleichmaßig über den Umfang der Ventilnadel 5 verteilt angeordnet. Es ist somit sichergestellt, dass, unabhängig von der Lage der Ventilnadel 5 zum Ventilsitz 11, die
Ringnut 35 zumindest im wesentlichen stets den gleichen Kraftstoffdruck aufweist wie der Druckraum 19.
Durch die Offnungswinkel der ersten konischen Flache 30, der zweiten konischen Flache 32, des Ventilsitzes 11 und der
Ringnut 35 ist die Ventilnadel 5 an ihrem brennraumseitigen Ende derart ausgebildet, dass bei der Schließbewegung der Ventilnadel 5 zuerst die Dichtkante 38 am Ventilsitz 11 zur Anlange kommt und erst im Zuge der weiteren Schließbewegung die stromabwärts liegende Begrenzungskante der Ringnut 35. In Figur 2 ist die Ventilnadel 5 in genau dieser Stellung gezeichnet, also in dem Moment, in dem die Dichtkante 38 am Ventilsitz 11 zur Anlange kommt. Ohne eine elastische Verformung von Ventilnadel 5 und des Ventilsitzes 11 wurde die Ventilnadel 5 in dieser Stellung verharren. Da jedoch auf die Ventilnadel 5 eine hohe Schließkraft wirkt, verformt sich sowohl die Ventildichtflache 7 der Ventilnadel 5 als auch der Ventilsitz 11. Die sich daraus ergebende Form und Lage der Ventilnadel 5 ist in Figur 3 dargestellt. Im Bereich der Dichtkante 38 ergibt sich eine flachenmaßige Anla- ge der Ventilnadel 5 am Ventilsitz 11 und eine hohe Flachenpressung an der Ventildichtflache 7, so dass eine Abdichtung im Bereich der Dichtkante 38 in jedem Fall gegeben ist. Durch die Verformung im Bereich der Dichtkante 38 und auch durch das Einhämmern der Ventilnadel 5 in den Ventilsitz 11 beim längeren Betrieb in der Brennkraftmaschine kommt auch die obere Kante 37 der Ringnut 35 am Ventilsitz 11 zur Anlage. Hierdurch erhöht sich die gesamte am Ventilsitz 11 anliegende Flache der Ventilnadel 5 und damit ergibt sich eine Reduzierung der Flachenpressung im Bereich der Dichtkante 38, da hier nicht mehr die gesamte Schließkraft auf den Ventilsitz 11 wirkt.
In Figur 4 ist ein weiteres Ausfuhrungsbeispiel des erfmdungsgemaßen Kraftstoffeinspritzventils dargestellt, wobei derselbe Ausschnitt wie in Figur 2 gewählt ist. Statt der Verbindungsbohrungen 40 sind an der ersten Konusflache 30 wenigstens zwei Verbindungsnuten 42 ausgebildet, durch die die Ringnut 35 hydraulisch mit dem Druckraum 19 verbunden bleibt. Die Verbindungsnuten 42 sind hierbei vorzugsweise gleichmäßig über den Umfang der Ventilnadel 5 verteilt angeordnet und weisen eine Tiefe von wenigen 1/10 mm auf. Figur 5 zeigt ein weiteres Ausfuhrungsbeispiel, bei dem die Ringnut 35, wie bei dem in Figur 2 und 3 gezeigten Ausfuhrungsbeispiel, über eine Verbmdungsbohrung mit dem Druck- räum verbunden ist, jedoch ist die Verbindungsbohrung hier als Querbohrung 44 ausgebildet. Die Querbohrung 44 geht von der Ringnut 35 aus und fuhrt quer durch die Ventilnadel 5 bis zum Schaft 205. Eine solche Querbohrung 44 lasst sich einfacher fertigen als eine Verbindungsbohrung 40, wie sie Figur 2 zeigt, da hier em großer Winkel zur Oberflache der Ventilnadel 5 an beiden Enden der Querbohrung 44 vorhanden ist. Die Figur 6 zeigt einen Querschnitt durch das in Figur 5 dargestellte Einspritzventil entlang der Linie VI-VI. Die Ringnut 35 ist über mehrere Querbohrungen 44 mit dem Druck- räum verbunden, wobei die Querbohrungen 44 in der Projektion auf die durch die Linie VI-VI gekennzeichnete Ebene in Figur 5 parallel zueinander sind. Hierbei sind die Querbohrungen 44 jedoch so ausgerichtet, dass das aus dem Schaft 205 austretende Ende der Querbohrung 44 soweit wie möglich dem Ende in der Ringnut 35 gegenüber liegt, ohne dass sich die Querbohrungen 44 schneiden. Der Durchmesser der Querbohrung 44 kann hierbei der Breite der Ringnut 35 entsprechen oder auch einen kleineren Durchmesser aufweisen.
An moderne Kraftstoffeinspritzsysteme, wie sie insbesondere für selbstzundende Brennkraftmaschinen in schnellaufenden Motoren Verwendung finden, werden bezuglich Effizienz und Schadstoffausstoß heutzutage große Anforderungen gestellt. Dies bedingt zum einen, dass mit einem sehr hohen Druck ein- gespritzt wird, der bei modernen Kraftstoffeinspritzsystemen bis zu 200 MPa betragen kann. Zum anderen sind sehr kurze Schaltzeiten der Ventilnadel 5 notig, um rasch aufeinanderfolgende Einspritzungen zu ermöglichen, insbesondere um innerhalb eines Einspritzzyklus eine Vor- und eine Nachem- spritzung zu realisieren. Em typisches Kraftstoffeinspπtz- ventil für Personenkraftwagen, das mit einem Druck von bei- spielsweise 150 MPa arbeitet, weist einen Nadeldurchmesser im Fuhrungsbereich 105 von etwa 4 mm auf. Bei vom Ventilsitz 11 abgehobener Ventilnadel 5 ergibt sich somit eine Kraft von etwa 1900 N auf die geöffnete Ventilnadel 5. Insbesonde- re bei Systemen, die mit einem standigen Hochdruck im Druckraum 19 arbeiten, muss diese Kraft durch eine Schließkraft kompensiert werden, die deutlich hoher als 1900 N liegt, um ein rasches Schließen der Ventilnadel 5 zu ermöglichen. Sobald die Ventilnadel 5 mit der Ventildichtflache 7 am Ven- tilsitz 11 anliegt, wird der Bereich der Ventildichtflache 7, der stromabwärts der Dichtkante 38 liegt, nicht mehr vom Kraftstoffdruck im Druckraum 19 beaufschlagt. Dadurch entfallt ein Teil der der Schließkraft entgegenwirkenden hydraulischen Offnungskraft auf die Ventilnadel 5, so dass die Ventilnadel 5 jetzt mit einer sehr hohen Kraft gegen den Ventilsitz 11 gepresst wird. Über die gesamte Lebensdauer des Kraftstoffeinspritzventils betrachtet kann diese hohe Schließkraft und die entsprechend hohe Flachenpressung am Ventilsitz zu einem erhöhten Verschleiß fuhren und damit zu einem vorzeitigen Ausfall des Kraftstoffeinspritzventils . Zur Erhöhung der der Schließkraft entgegengerichteten hydraulischen Kraft wäre es möglich, die Dichtkante 38 weiter stromabwärts zu verlagern, so dass die vom Druck im Druckraum 19 beaufschlagte Teilflache der Ventildichtflache 7 im wesentlichen die erste konische Flache 30 im dargestellten Ausfuhrungsbeispiel vergrößert wird. Die Schließkraft muss andererseits einen gewissen Mindestwert haben, damit die Ventilnadel 5 auch bei einem entsprechend hohen Druck im Brennraum zwischen den einzelnen Einspritzungen in jedem Fall geschlossen bleibt. Das erfindungsgemaße Kraftstoffein- spritzventil lost dieses Problem, indem eine zusatzliche Ringnut in der Ventildichtflache 7 dem Druck im Druckraum 19 ausgesetzt ist, so dass die resultierende Kraft auf die Ventilnadel 5 reduziert ist. Gleichzeitig wird durch das anle- gen der Ventilnadel 5 sowohl an der Dichtkante 38 als auch im Bereich der oberen Kante 37 die Flachenpressung im Be- reich der Dichtkante 38 so niedrig gehalten, dass die Materialgrenzwerte nicht erreicht werden.

Claims

Ansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkorper (1), dem in einer Bohrung (3) eine eine Langsachse (15) aufweisende Ventilnadel (5) langsverschiebbar angeordnet ist, wobei am brennraumseitigen Ende der Bohrung (3) ein konischer Ventilsitz (11) angeordnet ist und wobei zwischen einem Abschnitt der Ventilnadel (5) und der Wand der Bohrung (3) em mit Kraftstoff befullbarer Druckraum (19) ausgebildet ist, der bis zum Ventilsitz (11) reicht, und mit einer an der Ventilnadel (5) ausgebildeten Ventildichtflache (7) , die mit dem Ventilsitz (11) zur Steuerung wenigstens einer, vom Ventilsitz (11) ausgehenden Einspritzoffnung zusammenwirkt und in der eine in einer Radialebene der Ventilnadel (5) verlaufende Ringnut (35) ausgebildet ist, deren stromabwar- tige Kante als Dichtkante (38) ausgebildet ist, dadurch gekennzeichnet, dass die Ringnut (35) stets mit dem Druckraum (19) hydraulisch verbunden ist.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Ventildichtflache (7) eine erste konische Flache (30) und eine stromabwärts zu dieser angeordnete zweite konische Flache (32) umfasst, zwischen denen die Ringnut (35) verlauft.
3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass der Offnungswinkel der ersten koni- sehen Flache (30) kleiner und der Offnungswinkel der zweiten konischen Flache (32) großer ist als der Off- nungswmkel des konischen Ventilsitzes (11).
4. Kraftstoffemspritzventil nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Ringnut (35) sowohl an die erste konische Flache (30) als auch an die zweite konische Flache (32) grenzt.
5. Kraftstoffemspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass die Sitzwinkeldifferenz (82) zwischen der zweiten Konusflache (32) und dem Ventilsitz (11) kleiner ist als die Sitzwinkeldifferenz (δ_) zwischen der ersten Konusflache (30) und dem Ventilsitz (11) .
6. Kraftstoffemspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass bei der Schließbewegung der Ventilnadel (5) auf den Ventilsitz (11) zu zuerst die zweite konische Flache (32) am Ventilsitz (11) zur Anlage kommt und erst durch eine Verformung der Ventilnadel (5) und/oder des Ventilkorpers (1) auch die erste konische
Flache (30) .
7. Kraftstoffemspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die hydraulische Verbindung der Ringnut (35) mit dem Druckraum (19) durch wenigstens eine in der Ventilnadel (5) verlaufende Verbindungsbohrung (40) hergestellt wird.
8. Kraftstoffemspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die Verbindungsbohrung (40) als Querbohrung (44) ausgebildet ist.
9. Kraftstoffemspritzventil nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Verbindungsbohrung (40) die Ringnut (35) mit dem Schaft (205) der Ventilnadel (5) verbindet .
10. Kraftstoffemspritzventil nach Anspruch 2, dadurch ge- kennzeichnet, dass die hydraulische Verbindung der Ringnut (35) mit dem Druckraum (19) durch wenigstens eine in der ersten Konusflache (30) ausgebildete Ausnehmung (42) hergestellt wird.
11. Kraftstoffeinspritzventil nach Anspruch 3, dadurch ge- kennzeichnet, dass bei der Schließbewegung der Ventilnadel (5) zuerst die am Übergang der Ringnut (35) zur zweiten Konusflache (32) ausgebildete Dichtkante (38) am Ventilsitz (11) zur Anlage kommt.
12. Kraftstoffeinspritzventil nach Anspruch 1, dadurch ge- kennzeichnet, dass der Kraftstoff im Druckraum (19) zumindest zeitweise einen Druck von mehr als 100 MPa aufweist .
PCT/DE2003/001579 2002-05-18 2003-05-15 Kraftstoffeinspritzventil für brennkraftmaschinen WO2003098031A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004505529A JP2005526212A (ja) 2002-05-18 2003-05-15 内燃機関用の燃料噴射弁
US10/508,938 US7100847B2 (en) 2002-05-18 2003-05-15 Fuel injection valve for internal combustion engines
EP03740006A EP1509693B1 (de) 2002-05-18 2003-05-15 Kraftstoffeinspritzventil für brennkraftmaschinen
KR10-2004-7018535A KR20040111628A (ko) 2002-05-18 2003-05-15 엔진용 연료 분사 밸브
DE50305850T DE50305850D1 (de) 2002-05-18 2003-05-15 Kraftstoffeinspritzventil für brennkraftmaschinen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10222209 2002-05-18
DE10222209.6 2002-05-18
DE10318989A DE10318989A1 (de) 2002-05-18 2003-04-25 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10318989.0 2003-04-25

Publications (1)

Publication Number Publication Date
WO2003098031A1 true WO2003098031A1 (de) 2003-11-27

Family

ID=29550935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001579 WO2003098031A1 (de) 2002-05-18 2003-05-15 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (5)

Country Link
US (1) US7100847B2 (de)
EP (1) EP1509693B1 (de)
JP (1) JP2005526212A (de)
DE (1) DE50305850D1 (de)
WO (1) WO2003098031A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360722B2 (en) 2005-08-25 2008-04-22 Caterpillar Inc. Fuel injector with grooved check member
US7578450B2 (en) 2005-08-25 2009-08-25 Caterpillar Inc. Fuel injector with grooved check member
DE102019210551A1 (de) * 2019-07-17 2021-01-21 Robert Bosch Gmbh Kraftstoffinjektor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245573A1 (de) * 2002-09-27 2004-04-08 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005025135A1 (de) * 2005-06-01 2006-12-07 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102006052817A1 (de) * 2006-11-09 2008-05-15 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102008031271B4 (de) * 2008-07-02 2011-07-28 Continental Automotive GmbH, 30165 Düsenbaugruppe für ein Einspritzventil
JP2010053796A (ja) * 2008-08-29 2010-03-11 Hitachi Ltd 燃料噴射弁
US8602319B2 (en) 2010-10-07 2013-12-10 Caterpillar Inc. Needle valve member with frustoconical guide segment and fuel injector using same
IT1403006B1 (it) * 2010-12-06 2013-09-27 O M T Ohg Torino S P A Polverizzatore ad elevata vita operativa per iniettori meccanici ad alta pressione operanti con combustibile pesante
EP3006735B1 (de) * 2014-10-10 2017-08-30 Siemens Aktiengesellschaft Unterwasservorrichtung zum Bereitstellen eines unter Druck stehenden Fluids
JP6354519B2 (ja) * 2014-10-23 2018-07-11 株式会社デンソー 燃料噴射弁
US10415527B2 (en) * 2015-01-30 2019-09-17 Hitachi Automotive Systems, Ltd. Fuel injection valve
KR101986973B1 (ko) * 2019-03-07 2019-06-07 이수철 이중 접촉면을 가지는 연료분사밸브

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952816A (en) * 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
GB702797A (en) * 1950-11-13 1954-01-20 Rudolf L Orange Improvements in or relating to fuel-injection nozzles for internal combustion engines
DE10109345A1 (de) * 2000-02-29 2001-08-30 Denso Corp Kraftstoffeinspritzeinrichtung für einen Verbrennungsmotor
EP1136693A2 (de) * 2000-03-21 2001-09-26 C.R.F. Società Consortile per Azioni Ventilnadel für ein Brennstoffeinspritzventil einer Verbrennungsmaschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118556A (ja) * 1984-11-14 1986-06-05 Toyota Central Res & Dev Lab Inc 間欠式渦巻噴射弁
DE3624476A1 (de) * 1986-07-19 1988-01-28 Bosch Gmbh Robert Einspritzventil
DE3719459A1 (de) * 1987-06-11 1988-12-29 Bosch Gmbh Robert Kraftstoff-einspritzduese fuer brennkraftmaschinen
US4974565A (en) * 1988-02-26 1990-12-04 Toyota Jidosha Kabushiki Kaisha Fuel swirl generation type fuel injection valve and direct fuel injection type spark ignition internal combustion engine mounted with the fuel injection valve
JP3144136B2 (ja) * 1993-03-31 2001-03-12 株式会社デンソー 三方電磁弁

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952816A (en) * 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
GB702797A (en) * 1950-11-13 1954-01-20 Rudolf L Orange Improvements in or relating to fuel-injection nozzles for internal combustion engines
DE10109345A1 (de) * 2000-02-29 2001-08-30 Denso Corp Kraftstoffeinspritzeinrichtung für einen Verbrennungsmotor
EP1136693A2 (de) * 2000-03-21 2001-09-26 C.R.F. Società Consortile per Azioni Ventilnadel für ein Brennstoffeinspritzventil einer Verbrennungsmaschine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7360722B2 (en) 2005-08-25 2008-04-22 Caterpillar Inc. Fuel injector with grooved check member
US7578450B2 (en) 2005-08-25 2009-08-25 Caterpillar Inc. Fuel injector with grooved check member
DE102019210551A1 (de) * 2019-07-17 2021-01-21 Robert Bosch Gmbh Kraftstoffinjektor

Also Published As

Publication number Publication date
US20050178860A1 (en) 2005-08-18
DE50305850D1 (de) 2007-01-11
US7100847B2 (en) 2006-09-05
JP2005526212A (ja) 2005-09-02
EP1509693A1 (de) 2005-03-02
EP1509693B1 (de) 2006-11-29

Similar Documents

Publication Publication Date Title
DE69918902T2 (de) Brennstoffinjektor
EP1567763B1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
EP2480783B1 (de) Kraftstoff-einspritzventil für eine brennkraftmaschine
EP1509693B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1321661B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1989436A1 (de) Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine
DE10162651A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1373715B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2002048536A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE10205218A1 (de) Ventil zur Steuerung einer Verbindung in einem Hochdruckflüssigkeitssystem, insbesondere einer Kraftstoffeinspitzeinrichtung für eine Brennkraftmaschine
DE10353045A1 (de) Kraftstoffeinspritzventil
EP3055549B1 (de) Kolben-fluidleitung-anordnung, insbesondere steuerkolben-steuerbohrung-anordnung
DE10318989A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102004005451A1 (de) Kraftstoffeinspritzsystem für Brennkraftmaschinen
EP1518049A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2004104406A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2824310B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2005040598A1 (de) Ventil zur steuerung einer verbindung in einem hochdruckflüssigkeitssystem, insbesondere einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
WO2004016938A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE10209116A1 (de) Verfahren zur Herstellung eines Kraftstoffeinspritzventils
DE10050599B4 (de) Einspritzventil mit einem Pumpkolben
WO2004057177A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP1576283A1 (de) Kraftstoffeinspritzventil f r brennkraftmaschinen
EP2655850B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2004027254A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003740006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10508938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004505529

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047018535

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047018535

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003740006

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003740006

Country of ref document: EP