EP1989436A1 - Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine - Google Patents

Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine

Info

Publication number
EP1989436A1
EP1989436A1 EP07712013A EP07712013A EP1989436A1 EP 1989436 A1 EP1989436 A1 EP 1989436A1 EP 07712013 A EP07712013 A EP 07712013A EP 07712013 A EP07712013 A EP 07712013A EP 1989436 A1 EP1989436 A1 EP 1989436A1
Authority
EP
European Patent Office
Prior art keywords
fuel injection
injection device
valve element
guide
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07712013A
Other languages
English (en)
French (fr)
Other versions
EP1989436B1 (de
Inventor
Wolfgang Braun
Dirk Vahle
Martin Katz
Alexander Wernau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1989436A1 publication Critical patent/EP1989436A1/de
Application granted granted Critical
Publication of EP1989436B1 publication Critical patent/EP1989436B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves

Definitions

  • the invention relates to a fuel injection device for an internal combustion engine according to the preamble of claim 1.
  • a fuel injection device with which the fuel can be injected directly into its associated combustion chamber of an internal combustion engine.
  • a valve element is arranged in a housing, which in the region of a fuel outlet opening has a total pressure acting in the opening direction of the valve element.
  • a control surface acting in the closing direction is present, which delimits a control chamber.
  • the control surface acting in the closing direction is larger than the pressure surface acting in the opening direction when the valve element is open.
  • Fuel pressure such as that provided by a fuel rail (rail).
  • the pressure applied to the control surface is lowered until the hydraulic force resultant in the opening direction on the pressure surface exceeds the force acting in the closing direction. As a result, opening of the valve element is effected.
  • this fuel injection device Prerequisite for the operation of this fuel injection device is a seal between that area in which the comparatively small acting in the opening direction Pressure surface is present, and that portion of the valve element in which the comparatively large acting in the closing direction control surface is present. Leakage fluid is discharged in the known fuel injection device from the region of the seal via a leakage line.
  • Object of the present invention is to develop a fuel injection device of the type mentioned so that it is as simple and inexpensive builds and can be used at a very high operating pressure.
  • the fuel injection device should work safely even in the presence of manufacturing tolerances.
  • the freedom of design of the fuel injection device is significantly increased by the hydraulic coupling of two separate parts of the valve element, because it can be optimally adapted to the respective location within the fuel injection device, the respective parts of the valve element.
  • the elastic properties of the valve element can be optimally adapted to the intended area of use by an appropriate choice of the material used and the dimensions.
  • the manufacture of the valve element as a whole is considerably simplified since parts with a constant diameter are also used. This allows a structure of the fuel injection device with simple parts, which on the one hand facilitates the production and on the other hand allows a small construction.
  • numerous components of previous devices can continue to be used for realizing the present invention.
  • Another advantage of the hydraulic coupler is the compensation of tolerances, which simplifies the manufacture and assembly. The coupling of two parts of the valve element by means of a hydraulic coupler also allows the realization of a certain motion damping.
  • the hydraulic coupler can be easily realized, and work required on the housing side is simplified.
  • the guide element separate from the housing according to the invention, a misalignment of the sleeve relative to a housing-side sealing surface cooperating therewith is furthermore minimized. This comes into play particularly when the first part of the valve element is particularly long, and when the sleeve is guided particularly narrow on the first part of the valve element. Leaks in the coupling space are minimized through or even completely prevented. An elaborate and costly Einmessrata can therefore be omitted. A wear-related change in the functional properties of the fuel injection device according to the invention is reduced. By the leadership by means of the guide element manufacturing tolerances are compensated, which ensures a secure injector function.
  • the fuel injection device is particularly simple in construction when the sleeve is supported on the guide element.
  • a sealing surface on the guide element, on which the sleeve is supported are formed exactly at right angles to the guide axis of the guide element, so that a slanted position of the sleeve guided on the first part relative to the sealing surface on the guide element is particularly clearly minimized.
  • Guide portion of the guide member or a complementary portion of the first part of the valve element is a leading from one side to the other side of the guide member fluid passage is present.
  • Such a separation of the functions allows each an optimal design.
  • the fluid passage can be formed by a guide play between the guide element and the first part of the valve element. This is manufacturing technology particularly easy to implement.
  • the guide element comprises a stroke stop for the second part of the valve element.
  • Measured values could be adjusted via a selection group of setting elements the correct stroke value.
  • the production of the fuel injection device is further simplified when the guide element comprises a passage opening, preferably with a flow restrictor, which connects a pressure chamber in the region of the valve seat with a high-pressure chamber.
  • the guide element between two housing bodies of the fuel injection device may be jammed, with its contact surfaces are designed with the housing bodies so that their centroid lies at least approximately on a central axis of a guide portion of the guide member.
  • the sleeve is acted upon by a spring which is supported on a shoulder which is formed on the first part of the valve element.
  • a preassemblable unit the at least the first part of the valve element, the Sleeve and the spring and optionally the guide element comprises.
  • damage to the high-precision guidance between the sleeve and the first part of the valve element during final assembly are thereby avoided.
  • the housing and thus its manufacture is simplified because now a smooth through hole can be provided without grading for receiving the valve element in the housing. This also improves the high-pressure resistance of the fuel injection device, and its greater storage volume
  • sleeve is acted upon by a first spring, which is supported on a shoulder which is formed on one side of a ring member which is acted upon on the other side by a second spring, at least indirectly on Housing supported, and which is coupled via a coupling element with the valve element in the closing direction.
  • the guide element can have a centering section, preferably a centering collar, which centers the guide element with respect to a housing body. At least indirectly, this also the valve element and other remote from the coupler areas of the housing are centered to each other.
  • FIG. 1 shows a schematic representation of an internal combustion engine with a fuel
  • Figure 2 is a schematic and partially sectioned view of a first
  • FIG. 3 is a more detailed illustration of a portion of the fuel injector of Figure 2;
  • Figure 4 is a plan view of a guide element of the fuel injection device of
  • FIG. 3
  • Figure 5 is a section along the line V-V of Figure 4.
  • Figure 6 is a view similar to Figure 2 of a portion of a second embodiment of a fuel injection device
  • Figure 7 is a view similar to Figure 2 of a portion of a third embodiment of a fuel injection device
  • Figure 8 is a view similar to Figure 2 of a fourth embodiment.
  • Figure 9 is a view similar to Figure 2 of a fifth embodiment.
  • an internal combustion engine carries the reference numeral 10. Overall, it serves to drive a motor vehicle, not shown.
  • a high-pressure conveyor 12 promotes
  • Fuel from a fuel reservoir 14 in a fuel pressure accumulator 16 ("Rail").
  • Fuel injectors 18 are connected, which inject the fuel directly into them associated combustion chambers 20.
  • Each of the fuel injection devices 18 also has a low-pressure connection 21, via which they are connected to a low-pressure region, present with the fuel reservoir 14.
  • the fuel injectors 18 may be formed in a first embodiment according to Figures 2 and 3:
  • the fuel injector 18 shown therein comprises in the present embodiment, a housing 22 having a nozzle body 24, a main body 26 and an end body 28. It is also possible one-piece design of main body 26 and end body 28.
  • a stepped recess 30 is provided in the longitudinal direction, in which a needle-like valve element 32 is received. This is in two parts: it consists of a control piston 34 and a nozzle needle 36th
  • the nozzle needle 36 has pressure surfaces 38 which delimit a pressure chamber 40 and their hydraulic force resulting in the opening direction of the nozzle needle 36 shows. At its lower end in FIG. 2, the nozzle needle 36 cooperates with a housing-side valve seat (not numbered) in a manner not shown in FIG. In this way, fuel outlet openings 42 can be separated from the pressure chamber 40 or connected thereto.
  • the nozzle needle 36 has a smaller diameter portion 44 and a larger diameter portion 46. With the section 46, the nozzle needle 36 is guided longitudinally displaceable in the nozzle body 24.
  • the control piston 34 is received in the main body 26.
  • An upper end region 48 of the control piston 34 in FIG. 2 is designed as a guide, which is received and guided in a sleeve-like extension of the end body 28.
  • a spring 50 is supported by a through a
  • Ring collar 52 formed shoulder on the control piston 34 and acts on the control piston 34 in the closing direction.
  • the upper axial end face of the control piston 34 in FIG. 2 forms a hydraulic control surface 54 which acts in the closing direction of the valve element 32. It delimits, together with the end body 28, a control chamber 56.
  • the control chamber 56 is connected via an inlet throttle 58, which is present in the sleeve-like extension of the end body 28, with an existing present between the sleeve-like extension of the end body 28 and the main body 26 annular space 60, which in turn is connected to the high pressure port 17.
  • the annular space 60 is formed by the recesses 30 incorporated therein.
  • the control chamber 56 is also connected to a 2/2-way valve 66 through an outlet throttle 64 provided in the end body 28. Depending on the switching position, this connects or blocks the outlet throttle 64 to the Low pressure port 21 down.
  • the annular space 60 is also connected via at least one channel 68 to the pressure chamber 40.
  • Guide element 70 has a base plate 72 and a molded-on this cylindrical extension 74 which forms a guide collar, which has a centering function. Concentric with the extension 74, a guide bore 76 forming a guide region is present in the guide element 70, which cooperates with a guide on the lower end region 77 of the control piston 34 in FIGS. 2 and 3.
  • the upper and lower sides of the base plate 72 are formed as high-pressure sealing surfaces 78, in the installation position a secure seal of the housing 22, in particular the annular space 60 and lying within the guide member 70 spaces, with respect to the environment of the fuel injector 18 is ensured.
  • the position of the center of gravity of the center axis also belongs. This is achieved by a corresponding design of the outer contour of the base plate 72, in such a way that the centroid is at least approximately on a central axis (not shown) of the guide bore 76.
  • a bore approach 80 is incorporated, which is concentric with the guide bore 76 and has a larger diameter than this.
  • the diameter of the bore extension 80 is also greater than the diameter of the portion 46 of the nozzle needle 36. In this way, the bore extension 80 forms a stroke stop for the nozzle needle 36 in a manner yet to be illustrated.
  • the base plate 72 of the guide element 70 is also an eccentric passage opening or bore 82 introduced in the installation position part of
  • Channel 68 is.
  • the passage opening 82 must comprise a flow restrictor, as indicated in Figure 2.
  • a sealing surface representing an end face 85 of the extension 74 is worked very precisely at right angles to the axis of the guide bore 76.
  • the sleeve 88 belongs to a hydraulic coupler 92, through which the first part of the valve element 32, namely the control piston 34, with the second part of the valve element 32, namely the nozzle needle 36 is coupled.
  • the hydraulic coupler 92 for this purpose comprises a hydraulic coupling chamber 94 with subspaces 94a and 94b, between the sleeve 88, the guide member 70, the lower end portion of the control piston 34 in Figures 2 and 3 and the upper end portion of the nozzle needle in Figures 2 and 3 36 is formed.
  • the volume formed by the guide play between the guide bore 76 and the guide 77 on the control piston 34 is dimensioned so that the subspaces 94a and 94b of the coupling space 94 form a coherent control volume without hydraulic influence. Said volume thus forms a fluid passage from one side to the other of the guide element 70.
  • the fluid passage could also comprise at least one groove in the guide bore 76 and / or at least one flattening on the control piston 34.
  • the fuel injection device 18 shown in Figures 2 and 3 operates as follows: In the initial state, with de-energized switching valve 66, the control chamber 56 is separated from the low pressure port 21 and connected via the inlet throttle 58 to the high pressure port 17 and thus to the rail 16. In the control chamber 56 is thus the same pressure as in the annulus 60. This prevails over the channel 68 in the pressure chamber 40. Due to certain unavoidable leaks by the leadership of the nozzle needle 36 in the nozzle body 24 and the sleeve 88 on the control piston 34 is also in Coupling chamber 94 this pressure on.
  • the switching valve 66 is energized, the outlet throttle 64 is connected to the low-pressure connection 21. As a result, the pressure in the control chamber 56 decreases. The sum now results in a force acting in the opening direction of the control piston 34 force. This now begins to move against the force of the spring 50 in Figures 2 and 3 upwards. As a result of the increase in volume, the pressure in the coupling space 94 drops. Due to the pressure relationship between the force difference between an end surface 96 of the nozzle needle 36 delimiting the coupling space 94 and the pressure surfaces 38, the nozzle needle 36 also moves in the figures 2 and 3 upwards, so it rises from its valve seat in the region of the fuel outlet openings 42. Thus, fuel from the rail 16 via the high-pressure port 17, the annular space 60, the channel 68, the pressure chamber 40 and the fuel outlet openings 42 are injected into the combustion chamber 20.
  • the stroke of the nozzle needle 36 is limited by the stroke stop 80.
  • the stroke of the nozzle needle 36 can, as shown in Figures 2 to 5, on the processing of the bore approach 80 or by a paragraph processing on the end face 96 of the nozzle needle 36 can be realized.
  • the sealing surface 78 simultaneously forms the stroke stop for the end face 96 of the nozzle needle 36 (see Figure 6).
  • control piston 34 will continue its lifting movement. Therefore, the free lift of the control piston 34 must always be greater than the maximum stroke of the nozzle needle 36. Due to the narrow guide clearance between the sleeve 88 and the control piston 34 and the resulting low leakage into the coupling chamber 94, the control piston 34 is braked so much in its stroke movement, that he can do only a little extra movement.
  • a Hubeinstellelement 97 is disposed between the end face 96 and the stroke stopper 80, through which in addition an adjustment of a desired stroke of the nozzle needle 36 is possible.
  • the switching valve 66 is brought back into its closed position, in which the connection of the control chamber 56 is locked to the low pressure port 21. Via the inlet throttle 58, the pressure in the control chamber 56 increases continuously. As a result, the control piston 34 is again moved in the closing direction, since the pressure in the coupling chamber 94 is initially lower than in the control chamber 56. As a result, the pressure rises in the
  • FIG. 8 shows an alternative embodiment of a fuel injection device 18. It is not only here, but in principle that such elements and areas that have equivalent functions to previously described elements and areas, the same reference numerals and are not explained again in detail. For the sake of simplicity, only those reference signs which are required to explain the differences from a previous exemplary embodiment are essentially entered.
  • the spring 90 which urges the sleeve 88 surrounding the coupling space 94 against the guide element 70, is not supported on the main body 26 but on the annular collar 52 or the shoulder formed by it. Both springs 90 and 50 thus act on the same annular collar 52 of the control piston 34. When designing the spring 50, therefore, the force component of the spring 90 acting in the opening direction must be taken into account.
  • Another difference to the embodiment of Figures 2 and 3 lies in the two-part end body 28. This was divided so that the outlet throttle 64 in the remaining end body 28 and the inlet throttle 58 is in the now separate sleeve 99.
  • the spring 50 presses the sleeve 99 via the sealing surface or sealing edge (without reference numeral) against the end body 28 and thus generates a sufficient separation of the annular space 60 relative to the control chamber 56th
  • the advantage of the fuel injector shown in Figure 8 18 over that of Figures 2 and 3 is that the control piston 34 with the sleeve 99, the spring 50, the spring 90 and the sleeve 88 can form a preassembled unit, so that at the later assembly of all components of the fuel injection device 18, the sleeves 99 and 88 no longer need to be separated from the control piston 34.
  • the recess 30 in the main body 26 of the housing 22 may be designed as a smooth through-hole, which allows the establishment of a comparatively large annular space 60 and a correspondingly large storage volume for the fuel.
  • FIG. 9 A similar variant is shown in FIG. 9: In this case, instead of an annular collar 52 in the control piston 34, there is a circumferential groove 100, into which an annular coupling element 102 is inserted, against which, in turn, only in the closing direction of the valve element 32, a ring element 104 is supported. At this attack on the one hand, the spring 90 and on the other hand, the spring 50. Again, the control piston 34 with the sleeve 99, the spring 50, the sleeve 88 and the spring 90th and the coupling element 102 and the ring element 104 form a preassembled unit, which can be mounted as such and used in the final assembly in the recess 30 in the main body 26 of the housing 22.

Abstract

Eine Kraftstoff-Einspritzvorrichtung (18) für eine Brennkraftmaschine umfasst ein Gehäuse (22) und ein in dem Gehäuse (22) angeordnetes Ventilelement (32). Dieses arbeitet im Bereich einer Kraftstoff-Austrittsöffnung (42) mit einem Ventilsitz zusammen. Es wird vorgeschlagen, dass mindestens ein erstes Teil (34) und ein zweites Teil (36) des Ventilelements (32) über einen hydraulischen Koppler (92) miteinander gekoppelt sind, welcher einen Koppelraum (94) aufweist, der wenigstens bereichsweise durch eine auf dem ersten Teil (34) geführte Hülse (88) begrenzt wird, und dass sie ein Führungselement (70) umfasst, welches einen kopplerseitigen Endbereich des ersten Teils (34) des Ventilelements (32) führt.

Description

Titel
Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
Beschreibung
Die Erfindung betrifft eine Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1.
Vom Markt her bekannt ist eine Kraftstoff-Einspritzvorrichtung, mit der der Kraftstoff direkt in einen ihr zugeordneten Brennraum einer Brennkraftmaschine eingespritzt werden kann. Hierzu ist in einem Gehäuse ein Ventilelement angeordnet, welches im Bereich einer Kraftstoff- Austrittsöffnung eine insgesamt in Öffnungsrichtung des Ventilelements wirkende Druckfläche aufweist. Am entgegengesetzten Ende des Ventilelements ist eine in Schließrichtung wirkende Steuerfläche vorhanden, welche einen Steuerraum begrenzt. Die in Schließrichtung wirkende Steuerfläche ist insgesamt größer als die bei geöffnetem Ventilelement in Öffnungsrichtung wirkende Druckfläche.
Bei geschlossener Kraftstoff-Einspritzvorrichtung liegt an einem Bereich der in Öffnungsrichtung wirkenden Druckfläche und an der in Schließrichtung wirkenden Steuerfläche ein hoher
Kraftstoffdruck an, wie er beispielsweise von einer Kraftstoff- Sammelleitung (Rail) bereitgestellt wird. Zum Öffnen des Ventilelements wird der an der Steuerfläche anliegende Druck abgesenkt, bis die in Öffnungsrichtung wirkende hydraulische Kraftresultierende an der Druckfläche die in Schließrichtung wirkende Kraft übersteigt. Hierdurch wird ein Öffnen des Ventilelements bewirkt.
Voraussetzung für die Funktionsweise dieser Kraftstoff-Einspritzvorrichtung ist eine Abdichtung zwischen jenem Bereich, in dem die vergleichsweise kleine in Öffnungsrichtung wirkende Druckfläche vorhanden ist, und jenem Bereich des Ventilelements, in dem die vergleichsweise große in Schließrichtung wirkende Steuerfläche vorhanden ist. Leckagefluid wird bei der bekannten Kraftstoff-Einspritzvorrichtung aus dem Bereich der Abdichtung über eine Leckageleitung abgeführt.
Aufgabe der vorliegenden Erfindung ist es, eine Kraftstoff-Einspritzvorrichtung der eingangs genannten Art so weiterzubilden, dass sie möglichst einfach und preiswert baut und bei einem sehr hohen Betriebsdruck eingesetzt werden kann. Außerdem soll die Kraftstoff- Einspritzvorrichtung auch bei Vorliegen von Fertigungstoleranzen sicher funktionieren.
Offenbarung der Erfindung
Diese Aufgabe wird durch eine Kraftstoff-Einspritzvorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben. Weitere für die Erfindung wesentliche Merkmale sind in der nachfolgenden Beschreibung und in den Figuren angegeben, wobei diese Merkmale auch in ganz unterschiedlichen Kombinationen für die Erfindung wesentlich sein können, ohne dass hierauf jeweils explizit hingewiesen wird.
Vorteile der Erfindung
Bei der erfindungsgemäßen Kraftstoff-Einspritzvorrichtung wird durch die hydraulische Kopplung zweier separater Teile des Ventilelements die Freiheit bei der Auslegung der Kraftstoff-Einspritzvorrichtung erheblich erhöht, denn es können die jeweiligen Teile des Ventilelements jeweils an den Ort innerhalb der Kraftstoff-Einspritzvorrichtung optimal angepasst werden. Beispielsweise können die elastischen Eigenschaften des Ventilelements durch eine entsprechende Wahl des verwendeten Materials und der Dimensionen optimal an den vorgesehenen Einsatzbereich angepasst werden. Darüber hinaus wird die Herstellung des Ventilelements insgesamt wesentlich vereinfacht, da auch Teile mit konstantem Durchmesser verwendet werden. Dies gestattet einen Aufbau der Kraftstoff-Einspritzvorrichtung mit einfachen Teilen, was zum einen die Fertigung erleichtert und zum anderen eine kleine Bauweise ermöglicht. Zur Realisierung der vorliegenden Erfindung können darüber hinaus zahlreiche Komponenten bisheriger Vorrichtungen weiter verwendet werden. Ein weiterer Vorteil des hydraulischen Kopplers ist der Ausgleich von Toleranzen, was die Fertigung und die Montage vereinfacht. Die Kopplung zweier Teile des Ventilelements mittels eines hydraulischen Kopplers gestattet darüber hinaus die Realisierung einer gewissen Bewegungsdämpfung.
Durch die erfindungsgemäß vorgesehene Hülse kann der hydraulische Koppler einfach realisiert werden, gehäuseseitig notwendige Arbeiten werden vereinfacht. Durch das erfindungsgemäß vorgesehene vom Gehäuse separate Führungselement wird darüber hinaus ein Schiefstandsfehler der Hülse bezüglich einer mit dieser zusammenarbeitenden gehäuseseitigen Dichtfläche minimiert. Dies kommt besonders dann zum Tragen, wenn das erste Teil des Ventilelements besonders lang ist, und wenn die Hülse auf dem ersten Teil des Ventilelements besonders eng geführt ist. Undichtigkeiten am Koppelraum werden hindurch minimiert oder sogar gänzlich verhindert. Ein aufwändiger und kostenträchtiger Einmessprozess kann daher entfallen. Eine verschleißbedingte Änderung der Funktionseigenschaften der erfindungsgemäßen Kraftstoff-Einspritzvorrichtung wird verringert. Durch die Führung mittels des Führungselements werden Fertigungstoleranzen ausgeglichen, was eine sichere Injektorfunktion gewährleistet.
Konstruktiv besonders einfach ist die Kraftstoff-Einspritzvorrichtung, wenn sich die Hülse an dem Führungselement abstützt. In diesem Fall kann eine Dichtfläche am Führungselement, an der sich die Hülse abstützt, exakt im rechten Winkel zur Führungsachse des Führungselements ausgebildet werden, so dass ein Schiefstand der auf dem ersten Teil geführten Hülse gegenüber der Dichtfläche am Führungselement besonders deutlich minimiert wird.
In Weiterbildung hierzu wird vorgeschlagen, dass mindestens in einem Teil eines
Führungsbereichs des Führungselements oder einem komplementären Bereich des ersten Teils des Ventilelements ein von einer Seite zur anderen Seite des Führungselements führender Fluiddurchlass vorhanden ist. Damit erfolgt eine eindeutige Funktionstrennung insoweit, als der Führungsbereich des Führungselements eine reine Führungsfunktion und die Hülse eine reine Dichtfunktion aufweisen. Eine solche Trennung der Funktionen gestattet jeweils eine optimale Auslegung. In konkreter Weiterbildung hierzu kann der Fluiddurchlass durch ein Führungsspiel zwischen dem Führungselement und dem ersten Teil des Ventilelements gebildet werden. Dies ist fertigungstechnisch besonders einfach realisierbar. Ferner wird bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Kraftstoff- Einspritzvorrichtung vorgeschlagen, dass das Führungselement einen Hubanschlag für das zweite Teil des Ventilelements umfasst. Dies ist vor allem bei solchen Kraftstoff-Einspritzvorrichtungen von Vorteil, mit denen vergleichsweise große Kraftstoffmengen eingespritzt werden sollen, beispielsweise bei Nutzkraftfahrzeugen. Bei einer solchen Kraftstoff-Einspritzvorrichtung konnte es aufgrund von deren mehrteiliger Bauart durch Fertigungstoleranzen in den Längenmaßen zu starken Hubtoleranzen kommen. Bisher wurden diese durch das Einmessen eines Einstellelements reduziert. Dabei musste vor der Montage der Einzelteile der Kraftstoff-Einspritzvorrichtung jedes relevante Einbaumaß mit Einfluss auf die Hubtoleranz vermessen werden. Aus diesen
Messwerten konnte über eine Auswahlgruppe an Einstellelementen der korrekte Hubwert eingestellt werden.
Mit dem nun in das Führungselement integrierten Hubanschlag für das zweite Teil des Ventilelements kann eine solche Vorgehensweise vermieden werden, was die Montage vereinfacht. Ist jedoch aufgrund sonstiger Erfordernisse eine Einstellbarkeit des Hubes des zweiten Teils des Ventilelements notwendig, kann dies weiterhin durch die Anordnung eines Hubeinstellelements zwischen dem zweiten Teil des Ventilelements und dem Hubanschlag im bzw. am Führungselement erfolgen.
Die Herstellung der Kraftstoff-Einspritzvorrichtung wird nochmals vereinfacht, wenn das Führungselement eine Durchgangsöffnung, vorzugsweise mit einer Strömungsdrossel umfasst, die einen Druckraum im Bereich des Ventilsitzes mit einem Hochdruckraum verbindet.
Um eine optimale Abdichtung des Koppelraums sowie des Hochdruckraums oder eines
Fluidkanals zu gewährleisten, kann das Führungselement zwischen zwei Gehäusekörpern der Kraftstoff-Einspritzvorrichtung verklemmt sein, wobei seine Kontaktflächen mit den Gehäusekörpern so gestaltet sind, dass deren Flächenschwerpunkt wenigstens in etwa auf einer Mittelachse eines Führungsbereichs des Führungselements liegt.
Vorgeschlagen wird ferner, dass die Hülse von einer Feder beaufschlagt wird, die sich an einer Schulter abstützt, die am ersten Teil des Ventilelements ausgebildet ist. Dies gestattet die Realisierung einer vormontierbaren Einheit, die mindestens das erste Teil des Ventilelements, die Hülse und die Feder und gegebenenfalls das Führungselement umfasst. Neben der Zeitersparnis bei der Endmontage der Kraftstoff-Einspritzvorrichtung werden hierdurch auch Schäden an der hochpräzisen Führung zwischen Hülse und erstem Teil des Ventilelements bei der Endmontage vermieden. Außerdem entfällt die sonst erforderliche verliersichere Zwischenlagerung der Hülse während des Montage- und Einmessprozesses der Feder. Die durch eine solche Zwischenlagerung bestehende Gefahr einer Verschmutzung oder eine Beschädigung oder gar eines Verlierens der Hülse wird eliminiert. Darüber hinaus wird das Gehäuse und somit dessen Herstellung vereinfacht, da nun eine glatte Durchgangsbohrung ohne Stufung für die Aufnahme des Ventilelements im Gehäuse vorgesehen werden kann. Damit verbessert sich auch die Hochdruckfestigkeit der Kraftstoff-Einspritzvorrichtung, und deren größeres Speichervolumen
(Raum zwischen Ventilelement und Durchgangsbohrung im Gehäuse) führt zu einer Reduzierung von Druckschwingungen.
Eine Alternative hierzu besteht darin, dass die Hülse von einer ersten Feder beaufschlagt wird, die sich an einer Schulter abstützt, die auf der einen Seite eines Ringelements ausgebildet ist, welches auf der anderen Seite von einer zweiten Feder beaufschlagt wird, die sich wenigstens mittelbar am Gehäuse abstützt, und welches über ein Koppelelement mit dem Ventilelement in dessen Schließrichtung gekoppelt ist.
Das Führungselement kann einen Zentrierabschnitt, vorzugsweise einen Zentrierbund, aufweisen, welcher das Führungselement gegenüber einem Gehäusekörper zentriert. Mindestens mittelbar werden hierdurch auch das Ventilelement und weitere, vom Koppler fernliegende Bereiche des Gehäuses zueinander zentriert.
Zeichnungen
Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung näher erläutert. In der Zeichnung zeigen:
Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit einer Kraftstoff-
Einspritzvorrichtung; Figur 2 eine schematisierte und teilweise geschnittene Darstellung einer ersten
Ausführungsform der Kraftstoff-Einspritzvorrichtung von Figur 1 ;
Figur 3 eine detailliertere Darstellung eines Bereichs der Kraftstoff-Einspritzvorrichtung von Figur 2;
Figur 4 eine Draufsicht auf ein Führungselement der Kraftstoff-Einspritzvorrichtung von
Figur 3;
Figur 5 einen Schnitt längs der Linie V-V von Figur 4;
Figur 6 eine Darstellung ähnlich Figur 2 eines Bereichs einer zweiten Ausführungsform einer Kraftstoff-Einspritzvorrichtung;
Figur 7 eine Darstellung ähnlich Figur 2 eines Bereichs einer dritten Ausführungsform einer Kraftstoff-Einspritzvorrichtung;
Figur 8 eine Darstellung ähnlich Figur 2 einer vierten Ausführungsform; und
Figur 9 eine Darstellung ähnlich Figur 2 einer fünften Ausführungsform.
Beschreibung der Ausführungsbeispiele
In Figur 1 trägt eine Brennkraftmaschine insgesamt das Bezugszeichen 10. Sie dient vorliegend zum Antrieb eines nicht gezeigten Kraftfahrzeugs. Eine Hochdruckfördereinrichtung 12 fördert
Kraftstoff aus einem Kraftstoff- Vorratsbehälter 14 in einen Kraftstoff-Druckspeicher 16 ("Rail").
In diesem ist der Kraftstoff- beispielsweise Diesel oder Benzin - unter sehr hohem Druck gespeichert. An das Rail 16 sind mittels jeweils eines Hochdruckanschlusses 17 mehrere
Kraftstoff-Einspritzvorrichtungen 18 angeschlossen, die den Kraftstoff direkt in ihnen zugeordnete Brennräume 20 einspritzen. Die Kraftstoff-Einspritzvorrichtungen 18 weisen jeweils auch einen Niederdruckanschluss 21 auf, über den sie mit einem Niederdruckbereich, vorliegenden mit dem Kraftstoff- Vorratsbehälter 14, verbunden sind. Die Kraftstoff-Einspritzvorrichtungen 18 können in einer ersten Ausführungsform entsprechend den Figuren 2 und 3 ausgebildet sein: Die dort gezeigte Kraftstoff-Einspritzvorrichtung 18 umfasst im vorliegenden Ausführungsbeispiel ein Gehäuse 22 mit einem Düsenkörper 24, einem Hauptkörper 26 und einem Endkörper 28. Möglich ist auch eine einstückige Ausführung von Hauptkörper 26 und Endkörper 28. Im Gehäuse 22 ist in dessen Längsrichtung eine stufenförmige Ausnehmung 30 vorhanden, in der ein nadelartiges Ventilelement 32 aufgenommen ist. Dieses ist zweiteilig: es besteht aus einem Steuerkolben 34 und einer Düsennadel 36.
Die Düsennadel 36 weist Druckflächen 38 auf, die einen Druckraum 40 begrenzen und deren hydraulische Kraftresultierende in Öffnungsrichtung der Düsennadel 36 zeigt. An ihrem in Figur 2 unteren Ende arbeitet die Düsennadel 36 auf in Figur 2 nicht näher dargestellte Art und Weise mit einem gehäuseseitigen Ventilsitz (ohne Bezugszeichen) zusammen. Auf diese Weise können Kraftstoff- Austrittsöffnungen 42 vom Druckraum 40 getrennt oder mit diesem verbunden werden. Die Düsennadel 36 weist einen Abschnitt 44 mit kleinerem und einen Abschnitt 46 mit größerem Durchmesser auf. Mit dem Abschnitt 46 ist die Düsennadel 36 im Düsenkörper 24 längsverschieblich geführt.
Der Steuerkolben 34 ist im Hauptkörper 26 aufgenommen. Ein in Figur 2 oberer Endbereich 48 des Steuerkolbens 34 ist als Führung ausgearbeitet, der in einem hülsenartigen Fortsatz des Endkörpers 28 aufgenommen und geführt ist. Eine Feder 50 stützt sich an einer durch einen
Ringbund 52 gebildeten Schulter am Steuerkolben 34 ab und beaufschlagt den Steuerkolben 34 in Schließrichtung. Die in Figur 2 obere axiale Endfläche des Steuerkolbens 34 bildet eine in Schließrichtung des Ventilelements 32 wirkende hydraulische Steuerfläche 54. Sie begrenzt zusammen mit dem Endkörper 28 einen Steuerraum 56.
Der Steuerraum 56 ist über eine Zulaufdrossel 58, die in dem hülsenartigen Fortsatz des Endkörpers 28 vorhanden ist, mit einem vorliegend zwischen dem hülsenartigen Fortsatz des Endkörpers 28 und dem Hauptkörper 26 vorhandenen Ringraum 60 verbunden, der wiederum mit dem Hochdruckanschluss 17 verbunden ist. Im Hauptkörper 26 wird der Ringraum 60 durch die in diesen eingearbeiteten Ausnehmungen 30 gebildet. Der Steuerraum 56 ist darüber hinaus durch eine Ablaufdrossel 64, die im Endkörper 28 vorhanden ist, mit einem 2/2-Schaltventil 66 verbunden. Je nach Schaltstellung verbindet oder sperrt dieses die Ablaufdrossel 64 zu dem Niederdruckanschluss 21 hin. Der Ringraum 60 ist ferner über mindestens einen Kanal 68 mit dem Druckraum 40 verbunden.
Zwischen dem Düsenkörper 24 und dem Hauptkörper 26 ist ein Führungselement 70 verklemmt. Dessen genauer Aufbau geht aus den Figuren 4 und 5 hervor: Danach umfasst das
Führungselement 70 eine Basisplatte 72 und einen an diese angeformten zylindrischen Fortsatz 74, der einen Führungsbund bildet, welcher eine Zentrierfunktion hat. Konzentrisch zu dem Fortsatz 74 ist im Führungselement 70 eine einen Führungsbereich bildende Führungsbohrung 76 vorhanden, die in der in den Figuren 2 und 3 dargestellten Einbaulage mit einer Führung am in den Figuren 2 und 3 unteren Endbereich 77 des Steuerkolbens 34 zusammenwirkt. Die Ober- und Unterseiten der Basisplatte 72 sind als Hochdruckdichtflächen 78 ausgebildet, durch die in Einbaulage eine sichere Abdichtung des Gehäuses 22, insbesondere des Ringraums 60 und der innerhalb des Führungselements 70 liegenden Räume, gegenüber der Umgebung der Kraftstoff- Einspritzvorrichtung 18 gewährleistet ist. Zur Darstellung einer guten Dichtwirkung gehört auch die Lage des Flächenschwerpunkts zur Mittelachse. Dies wird durch eine entsprechende Gestaltung der Außenkontur der Basisplatte 72 erreicht, und zwar so, dass der Flächenschwerpunkt wenigstens in etwa auf einer Mittelachse (nicht dargestellt) der Führungsbohrung 76 liegt.
In die Unterseite der Basisplatte 72 ist ein Bohrungsansatz 80 eingearbeitet, der konzentrisch zur Führungsbohrung 76 ist und einen größeren Durchmesser als diese aufweist. Der Durchmesser des Bohrungsansatzes 80 ist auch größer als der Durchmesser des Abschnitts 46 der Düsennadel 36. Auf diese Weise bildet der Bohrungsansatz 80 auf noch darzustellende Art und Weise einen Hubanschlag für die Düsennadel 36. In die Basisplatte 72 des Führungselements 70 ist ferner eine exzentrische Durchgangsöffnung oder -bohrung 82 eingebracht, die in Einbaulage Teil des
Kanals 68 ist. In einigen Fällen der Applikation der Kraftstoff-Einspritzvorrichtung 18 an die Brennkraftmaschine 10 muss die Durchgangsöffnung 82 eine Strömungsdrossel umfassen, wie in Figur 2 angedeutet.
Eine eine Dichtfläche darstellende Stirnseite 85 des Fortsatzes 74 ist sehr exakt rechtwinklig zur Achse der Führungsbohrung 76 gearbeitet. In der in Figur 2 und 3 dargestellten Einbaulage stützt sich an ihr über eine Dichtkante 86 eine Hülse 88 ab, die mit geringem Spiel auf dem Steuerkolben 34 geführt ist. Sie wird von einer Feder 90 gegen das Führungselement 70 beaufschlagt, die sich wiederum an dem Hauptkörper 26 abstützt. Die Hülse 88 gehört zu einem hydraulischen Koppler 92, durch den das erste Teil des Ventilelements 32, nämlich der Steuerkolben 34, mit dem zweiten Teil des Ventilelements 32, nämlich der Düsennadel 36, gekoppelt ist. Der hydraulische Koppler 92 umfasst hierzu einen hydraulischen Koppelraum 94 mit Teilräumen 94a und 94b, der zwischen der Hülse 88, dem Führungselement 70, dem in den Figuren 2 und 3 unteren Endbereich des Steuerkolbens 34 und dem in den Figuren 2 und 3 oberen Endbereich der Düsennadel 36 gebildet ist. Das durch das Führungsspiel zwischen der Führungsbohrung 76 und der Führung 77 am Steuerkolben 34 gebildete Volumen ist so dimensioniert, dass die Teilräume 94a und 94b des Koppelraums 94 ohne hydraulische Beeinflussung ein zusammenhängendes Steuervolumen bilden. Besagtes Volumen bildet also einen Fluiddurchlass von einer Seite zur anderen des Führungselements 70. Alternativ oder zusätzlich könnte der Fluiddurchlass auch mindestens eine Nut in der Führungsbohrung 76 und/oder mindestens eine Abflachung am Steuerkolben 34 umfassen.
Die in den Figuren 2 und 3 dargestellte Kraftstoff-Einspritzvorrichtung 18 arbeitet folgendermaßen: Im Ausgangszustand, bei stromlosem Schaltventil 66, ist der Steuerraum 56 vom Niederdruckanschluss 21 getrennt und über die Zulaufdrossel 58 mit dem Hochdruckanschluss 17 und somit mit dem Rail 16 verbunden. Im Steuerraum 56 liegt somit der gleiche Druck an wie im Ringraum 60. Dieser herrscht über den Kanal 68 auch im Druckraum 40. Aufgrund gewisser nicht vermeidbarer Leckagen durch die Führung der Düsennadel 36 im Düsenkörper 24 und der Hülse 88 auf dem Steuerkolben 34 liegt auch im Koppelraum 94 dieser Druck an. Insgesamt ergibt sich in dieser Konstellation eine in Schließrichtung des Ventilelements 32 wirkende Kraft, welche das Ventilelement 32 gegen den Ventilsitz im Bereich der Kraftstoff- Austrittsöffnungen 42 drückt und die durch die Druckfeder 50 auf den Steuerkolben 34 ausgeübt wird. Kraftstoff kann somit durch die Kraftstoff- Austrittsöffnungen 42 nicht austreten.
Wird nun das Schaltventil 66 bestromt, wird die Ablaufdrossel 64 mit dem Niederdruckanschluss 21 verbunden. Hierdurch sinkt der Druck im Steuerraum 56 ab. In der Summe ergibt sich nun eine in Öffnungsrichtung des Steuerkolbens 34 wirkende Kraft. Dieser beginnt nun, sich entgegen der Kraft der Feder 50 in den Figuren 2 und 3 nach oben zu bewegen. Damit sinkt durch die Volumenvergrößerung der Druck im Koppelraum 94. Durch die sich nun einstellende Druckbeziehungsweise Kraftdifferenz zwischen einer den Koppelraum 94 begrenzenden Endfläche 96 der Düsennadel 36 und den Druckflächen 38 bewegt sich auch die Düsennadel 36 in den Figuren 2 und 3 nach oben, sie hebt also von ihrem Ventilsitz im Bereich der Kraftstoff- Austrittsöffhungen 42 ab. Somit kann Kraftstoff vom Rail 16 über den Hochdruckanschluss 17, den Ringraum 60, den Kanal 68, den Druckraum 40 und über die Kraftstoff-Austrittsöffnungen 42 in den Brennraum 20 eingespritzt werden.
Durch das Führungselement 70 wird das Ventilelement 32 beziehungsweise der Steuerkolben 34 gegenüber der Dichtfläche 86 in Position gehalten. Dadurch wird ein Schiefstand der Hülse 88 gegenüber der Dichtfläche 85 verhindert. Ein solcher Schiefstand würde zu Undichtigkeiten zwischen Ringraum 60 und Koppelraum 94 und somit zu Fehlfunktionen der Kraftstoff- Einspritzvorrichtung 18 führen. Der Hub der Düsennadel 36 wird durch den Hubanschlag 80 begrenzt. Der Hub der Düsennadel 36 kann, wie in den Figuren 2 bis 5 dargestellt ist, über die Bearbeitung des Bohrungsansatzes 80 oder aber durch eine Absatzbearbeitung an der Endfläche 96 der Düsennadel 36 realisiert werden. In diesem Fall bildet die Dichtfläche 78 gleichzeitig den Hubanschlag für die Endfläche 96 der Düsennadel 36 (siehe Figur 6).
Der Steuerkolben 34 wird seine Hubbewegung weiterführen. Daher muss der Freihub des Steuerkolbens 34 immer größer sein als der maximale Hub der Düsennadel 36. Aufgrund des engen Führungsspiels zwischen Hülse 88 und Steuerkolben 34 und der daraus resultierenden geringen Leckage in den Koppelraum 94 wird der Steuerkolben 34 in seiner Hubbewegung jedoch so stark abgebremst, dass er nur eine geringe zusätzliche Bewegung ausführen kann.
In einem in Figur 7 dargestellten alternativen Ausführungsbeispiel ist zwischen der Endfläche 96 und dem Hubanschlag 80 ein Hubeinstellelement 97 angeordnet, durch welches zusätzlich eine Einstellung eines gewünschten Hubes der Düsennadel 36 möglich ist.
Zur Beendigung einer Einspritzung wird das Schaltventil 66 wieder in seine geschlossene Stellung gebracht, in welcher die Verbindung des Steuerraums 56 mit dem Niederdruckanschluss 21 gesperrt ist. Über die Zulaufdrossel 58 steigt der Druck im Steuerraum 56 kontinuierlich an. Hierdurch wird der Steuerkolben 34 wieder in Schließrichtung bewegt, da der Druck im Koppelraum 94 zunächst geringer ist als im Steuerraum 56. In der Folge steigt der Druck im
Koppelraum 94 wegen der Volumenverkleinerung wieder an, was zu einer Schließbewegung der Düsennadel 36 führt. In Figur 8 ist eine alternative Ausfuhrungsform einer Kraftstoff-Einspritzvorrichtung 18 gezeigt. Dabei gilt nicht nur hier, sondern grundsätzlich, dass solche Elemente und Bereiche, welche äquivalente Funktionen zu zuvor beschriebenen Elementen und Bereichen aufweisen, die gleichen Bezugszeichen tragen und nicht nochmals im Detail erläutert sind. Der Einfachheit halber sind im Wesentlichen nur jene Bezugszeichen eingetragen, welche zur Erläuterung der Unterschiede zu einem vorhergehenden Ausführungsbeispiel erforderlich sind.
Im Unterschied zu dem in den Figuren 2 und 3 dargestellten Ausführungsbeispiel stützt sich die Feder 90, welche die den Koppelraum 94 umgebende Hülse 88 gegen das Führungselement 70 beaufschlagt, nicht am Hauptkörper 26, sondern am Ringbund 52 beziehungsweise der durch diesen gebildeten Schulter ab. Beide Federn 90 und 50 greifen also am selben Ringbund 52 des Steuerkolbens 34 an. Bei der Auslegung der Feder 50 muss daher die in Öffnungsrichtung wirkende Kraftkomponente der Feder 90 berücksichtigt werden. Ein weiterer Unterschied zu dem Ausführungsbeispiel der Figuren 2 und 3 liegt im zweigeteilten Endkörper 28. Dieser wurde so geteilt, dass die Ablaufdrossel 64 im verbliebenen Endkörper 28 und die Zulaufdrossel 58 in der nun separaten Hülse 99 liegt. Die Feder 50 drückt dabei die Hülse 99 über deren Dichtfläche oder Dichtkante (ohne Bezugszeichen) gegen den Endkörper 28 und erzeugt so eine ausreichende Trennung des Ringraums 60 gegenüber dem Steuerraum 56.
Der Vorteil der in Figur 8 gezeigten Kraftstoff-Einspritzvorrichtung 18 gegenüber jener der Figuren 2 und 3 besteht darin, dass der Steuerkolben 34 mit der Hülse 99, der Feder 50, der Feder 90 und der Hülse 88 eine vormontierte Einheit bilden kann, so dass bei der späteren Montage aller Komponenten der Kraftstoff-Einspritzvorrichtung 18 die Hülsen 99 und 88 nicht mehr vom Steuerkolben 34 getrennt werden müssen. Außerdem kann die Ausnehmung 30 im Hauptkörper 26 des Gehäuses 22 als glatte Durchgangsbohrung ausgeführt sein, was die Einrichtung eines vergleichsweise großen Ringraums 60 und eines entsprechend großen Speichervolumens für den Kraftstoff ermöglicht.
Eine ähnliche Variante zeigt Figur 9: Bei dieser ist anstelle eines Ringbundes 52 im Steuerkolben 34 eine umlaufende Nut 100 vorhanden, in die ein ringförmiges Koppelelement 102 eingelegt ist, an dem sich wiederum, allerdings nur in Schließrichtung des Ventilelements 32, ein Ringelement 104 abstützt. An diesem greifen einerseits die Feder 90 und andererseits die Feder 50 an. Auch hier kann der Steuerkolben 34 mit der Hülse 99, der Feder 50, der Hülse 88 und der Feder 90 sowie dem Koppelelement 102 und dem Ringelement 104 eine vormontierte Einheit bilden, die als solche gelagert und bei der Endmontage in die Ausnehmung 30 im Hauptkörper 26 des Gehäuses 22 eingesetzt werden kann.

Claims

Ansprüche
1. Kraftstoff-Einspritzvorrichtung (18) für eine Brennkraftmaschine (10), mit einem
Gehäuse (22) und einem in dem Gehäuse (22) angeordneten Ventilelement (32), welches mit einem im Bereich einer Kraftstoff-Austrittsöffnung (42) liegenden Ventilsitz zusammenarbeitet, dadurch gekennzeichnet, dass mindestens ein erstes Teil (34) und ein zweites Teil (36) des
Ventilelements (32) über einen hydraulischen Koppler (92) miteinander gekoppelt sind, welcher einen Koppelraum (94) aufweist, der wenigstens bereichsweise durch eine auf dem ersten Teil (34) geführte Hülse (88) begrenzt wird, und dass sie ein Führungselement (70) umfasst, welches einen kopplerseitigen Endbereich (77) des ersten Teils (34) des Ventilelements (32) führt.
2. Kraftstoff-Einspritzvorrichtung (18) nach Anspruch 1, dadurch gekennzeichnet, dass sich die Hülse (88) an dem Führungselement (70) abstützt.
3. Kraftstoff-Einspritzvorrichtung (18) nach Anspruch 2, dadurch gekennzeichnet, dass mindestens in einem Teil eines Führungsbereichs (76) des Führungselements (70) oder einem komplementären Bereich des ersten Teils des Ventilelements (32) ein von einer Seite zur anderen Seite des Führungselements (70) führender Fluiddurchlass (77) vorhanden ist.
4. Kraftstoff-Einspritzvorrichtung (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Führungselement (70) einen Hubanschlag (80) für das zweite Teil (36) des Ventilelements (32) umfasst.
5. Kraftstoff-Einspritzvorrichtung (18) nach Anspruch 4, dadurch gekennzeichnet, dass zwischen dem zweiten Teil (36) des Ventilelements (32) und dem Hubanschlag (80) ein
Hubeinstellelement (97) angeordnet ist.
6. Kraftstoff-Einspritzvorrichtung (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Führungselement (70) einen Fluidkanal (68) mit einer Durchgangsöffhung (82) umfasst, die einen Druckraum (40) im Bereich des Ventilsitzes wenigstens mittelbar mit einem Hochdruckanschluss (17) verbindet.
7. Kraftstoff-Einspritzvorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die
Durchgangsöffnung eine Strömungsdrossel (82) umfasst.
8. Kraftstoff-Einspritzvorrichtung (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Führungselement (70) zwischen zwei Gehäusekörpern (24, 26) verklemmt ist und seine Kontaktflächen (78) mit den Gehäusekörpern (24, 26) so gestaltet sind, dass deren Flächenschwerpunkt wenigstens in etwa auf einer Mittelachse eines Führungsbereichs (76) des Führungselements (70) liegt.
9. Kraftstoff-Einspritzvorrichtung (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hülse (88) von einer Feder (90) beaufschlagt wird, die sich an einer Schulter (52) abstützt, die am ersten Teil (34) des Ventilelements (32) ausgebildet ist.
10. Kraftstoff-Einspritzvorrichtung (18) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Hülse (88) von einer ersten Feder (90) beaufschlagt wird, die sich an einer Schulter abstützt, die auf der einen Seite eines Ringelements (104) ausgebildet ist, welches auf der anderen Seite von einer zweiten Feder (50) beaufschlagt wird, die sich wenigstens mittelbar am Gehäuse (22) abstützt, und welches über ein Koppelelement (102) mit dem Ventilelement (32) in dessen Schließrichtung gekoppelt ist.
11. Kraftstoff-Einspritzvorrichtung (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Führungselement (70) einen Zentrierabschnitt, vorzugsweise einen
Zentrierbund, aufweist, welcher das Führungselement (70) gegenüber einem Gehäusekörper (26) zentriert.
EP07712013A 2006-02-24 2007-01-12 Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine Active EP1989436B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008648A DE102006008648A1 (de) 2006-02-24 2006-02-24 Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
PCT/EP2007/050300 WO2007098975A1 (de) 2006-02-24 2007-01-12 Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1989436A1 true EP1989436A1 (de) 2008-11-12
EP1989436B1 EP1989436B1 (de) 2010-03-17

Family

ID=37907846

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07712013A Active EP1989436B1 (de) 2006-02-24 2007-01-12 Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine

Country Status (8)

Country Link
US (1) US8146839B2 (de)
EP (1) EP1989436B1 (de)
JP (1) JP4898840B2 (de)
CN (1) CN101389852B (de)
BR (1) BRPI0708231B1 (de)
DE (2) DE102006008648A1 (de)
RU (1) RU2426002C2 (de)
WO (1) WO2007098975A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911966A2 (de) 2006-10-10 2008-04-16 Robert Bosch Gmbh Kraftstoffinjektor für eine Brennkraftmaschine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040680A1 (de) 2008-07-24 2010-01-28 Robert Bosch Gmbh Kraftstoff-Injektor
DE102008041561B4 (de) 2008-08-26 2022-05-19 Robert Bosch Gmbh Kraftstoffinjektor sowie Auslegungsverfahren für einen Kraftstoffinjektor
DE102009007095A1 (de) * 2009-02-02 2010-08-05 Continental Automotive Gmbh Einspritzventil
DE102010030383A1 (de) 2010-06-23 2011-12-29 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung mit hydraulischem Koppler
DE102010039980A1 (de) 2010-08-31 2012-03-01 Man Diesel & Turbo Se Zentriervorrichtung für eine Kraftstoffeinspritzdüse
US8989088B2 (en) 2011-01-07 2015-03-24 Integrated Device Technology Inc. OFDM signal processing in a base transceiver system
CN102996309B (zh) * 2012-12-04 2016-02-03 袁辉 高压共轨喷油器
DE102013221484A1 (de) * 2013-10-23 2015-04-23 Robert Bosch Gmbh Kraftstoffinjektor
CN104454274B (zh) * 2014-12-03 2017-09-29 中国第一汽车股份有限公司无锡油泵油嘴研究所 一种喷油器
CN104847556A (zh) * 2015-05-19 2015-08-19 中国重汽集团重庆燃油喷射系统有限公司 无静态泄漏喷油器
GB201520206D0 (en) * 2015-11-17 2015-12-30 Delphi Internat Operations Luxembourg S À R L Fuel injector
DE102018212665A1 (de) * 2018-07-30 2020-01-30 Robert Bosch Gmbh Kolbenpumpe und Kraftstofffördereinrichtung für kryogene Kraftstoffe

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH495504A (de) * 1968-08-28 1970-08-31 Sopromi Soc Proc Modern Inject Brennstoff-Einspritzventil mit elektromagnetischer Betätigung
DE59308610D1 (de) * 1992-12-23 1998-07-02 Ganser Hydromag Brennstoffeinspritzventil
DE19500706C2 (de) * 1995-01-12 2003-09-25 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen
JPH08296521A (ja) * 1995-02-28 1996-11-12 Isuzu Motors Ltd インジェクタの針弁制御装置
DE19900037A1 (de) * 1999-01-02 2000-07-06 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE10006111A1 (de) * 2000-02-11 2001-08-30 Bosch Gmbh Robert Kraftstoffeinspritzventil
DE10014450A1 (de) * 2000-03-23 2001-09-27 Bosch Gmbh Robert Vorrichtung zur Einspritzung von Kraftstoff mit variablem Einspritzdruckverlauf
DE10033428C2 (de) * 2000-07-10 2002-07-11 Bosch Gmbh Robert Druckgesteuerter Injektor zum Einspritzen von Kraftstoff
DE10248379A1 (de) * 2002-10-17 2004-04-29 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
DE102004004006A1 (de) * 2004-01-27 2005-08-11 Robert Bosch Gmbh Integrierter hydraulischer Druckübersetzer für Kraftstoffinjektoren an Hochdruckspeichereinspritzsystemen
DE102004024282A1 (de) * 2004-05-15 2005-12-01 Robert Bosch Gmbh Pumpe-Düse-Einheit und Pumpe-Leitung-Düse-Einheit
DE102004035313A1 (de) 2004-07-21 2006-02-16 Robert Bosch Gmbh Kraftstoffinjektor mit zweistufigem Übersetzer
DE102004037124A1 (de) * 2004-07-30 2006-03-23 Robert Bosch Gmbh Common-Rail-Injektor
DE102005004738A1 (de) * 2005-02-02 2006-08-10 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Nadelsteuerung für eine Brennkraftmaschine
DE102005012929A1 (de) * 2005-03-21 2006-09-28 Robert Bosch Gmbh Kraftstoffinjektor mit direkter Steuerung des Einspritzventilglieds und variabler Übersetzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007098975A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1911966A2 (de) 2006-10-10 2008-04-16 Robert Bosch Gmbh Kraftstoffinjektor für eine Brennkraftmaschine
EP1911966A3 (de) * 2006-10-10 2009-07-01 Robert Bosch Gmbh Kraftstoffinjektor für eine Brennkraftmaschine

Also Published As

Publication number Publication date
JP4898840B2 (ja) 2012-03-21
WO2007098975A1 (de) 2007-09-07
JP2009527686A (ja) 2009-07-30
DE502007003146D1 (de) 2010-04-29
BRPI0708231A2 (pt) 2011-05-17
DE102006008648A1 (de) 2007-08-30
EP1989436B1 (de) 2010-03-17
CN101389852A (zh) 2009-03-18
RU2008137722A (ru) 2010-03-27
CN101389852B (zh) 2011-07-27
US20090020632A1 (en) 2009-01-22
RU2426002C2 (ru) 2011-08-10
US8146839B2 (en) 2012-04-03
BRPI0708231B1 (pt) 2018-11-21

Similar Documents

Publication Publication Date Title
EP1989436B1 (de) Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine
EP2049787A1 (de) Injektor für ein kraftstoffeinspritzsystem
EP2108080A1 (de) Injektor zum einspritzen von kraftstoff in brennräume von brennkraftmaschinen
EP3535486B1 (de) Brennstoffeinspritzventil zum einspritzen eines gasförmigen und/oder flüssigen brennstoffs
WO2002084106A1 (de) Ventil zum steuern von flüssigkeiten
EP2715103A1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
EP1910663B1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung
EP3055549B1 (de) Kolben-fluidleitung-anordnung, insbesondere steuerkolben-steuerbohrung-anordnung
WO2007141094A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
DE102004005451A1 (de) Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE102012220610B4 (de) Injektor
DE102006029392A1 (de) Injektor
EP2226490B1 (de) Kraftstoffinjektor
EP2199590B1 (de) Kraftstoffinjektor
DE102005041994A1 (de) Kraftstoffinjektor mit direkt betätigbarem Einspritzventilglied und zweistufiger Übersetzung
EP3035520B1 (de) Hydraulische kopplereinheit zur steuerung eines ventils
DE102004051406B4 (de) Kraftstoffinjektor mit einer im Düsenkörper geführten Hohlnadel einer Registerdüse
EP2957760A1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
EP2884088B1 (de) Kraftstoffinjektor
DE102005025138B4 (de) Dosierventil
DE19963934A1 (de) Steuerventil für einen Injektor für ein Kraftstoffeinspritzsystem mit von einem Stößel geführtem Stellglied
EP2035685A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
EP2256332A2 (de) Kraftstoffinjektor mit Druckverstärkerkolben
DE102007034034A1 (de) Injektor
DE102017202734A1 (de) Brennstoffeinspritzventil zum Einspritzen eines gasförmigen und/oder flüssigen Brennstoffs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007003146

Country of ref document: DE

Date of ref document: 20100429

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101220

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220125

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220124

Year of fee payment: 16

Ref country code: FR

Payment date: 20220120

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230324

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230112