WO2001092601A1 - Schutzüberzug für metallische bauelemente - Google Patents

Schutzüberzug für metallische bauelemente Download PDF

Info

Publication number
WO2001092601A1
WO2001092601A1 PCT/EP2001/003990 EP0103990W WO0192601A1 WO 2001092601 A1 WO2001092601 A1 WO 2001092601A1 EP 0103990 W EP0103990 W EP 0103990W WO 0192601 A1 WO0192601 A1 WO 0192601A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layers
erosion
protective coating
hydrophobic
Prior art date
Application number
PCT/EP2001/003990
Other languages
English (en)
French (fr)
Inventor
Harald Reiss
Francisco Blangetti
Original Assignee
Alstom (Switzerland) Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom (Switzerland) Ltd. filed Critical Alstom (Switzerland) Ltd.
Priority to AU2001256266A priority Critical patent/AU2001256266A1/en
Priority to JP2002500788A priority patent/JP3923893B2/ja
Priority to DE10192241.8T priority patent/DE10192241B4/de
Publication of WO2001092601A1 publication Critical patent/WO2001092601A1/de
Priority to US10/306,435 priority patent/US6780509B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/512Hydrophobic, i.e. being or having non-wettable properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Definitions

  • the invention relates to a protective coating for metallic components according to the preamble of claim 1.
  • Protective coatings of this type are primarily intended for components of power engineering systems which are in direct contact with the water used primarily as a working medium in steam power plants.
  • the vaporous working medium partially condenses on the components, or the working medium condensed at other points hits the surfaces of these components in the form of drops at a speed that cannot be neglected. There it not only forms an undesirable condensate film, but also contributes to the destruction of the components by dropping.
  • Drop condensation on the transfer surfaces of capacitors has been known for more than 50 years. Because of the extraordinarily high heat transfer values that can be achieved with this, there is drop condensation in technical systems heat transfer very desirable. However, it has hardly been technically realized so far. Only applications in which mercury is used to achieve drop condensation are known. In the field of steam condensation, special efforts have been made to form drop condensation due to the great importance of the water used there in energy and material conversion processes. Up to now, drop condensation can only be maintained there with the help of additives for a few months. Long-term stable drop condensation has so far not become known in power plant technology. However, it is known that drop condensation can be achieved if the surfaces exposed to steam are not wetted by the condensate.
  • the surfaces must have an interfacial energy that is small compared to the surface tension of the condensate. If the condensate is water, the surfaces or layers are called water-repellent or hydrophobic. The contact angle of water on the surfaces of such layers is more than 90 degrees.
  • the invention is therefore based on the object of demonstrating a protective coating for metallic components which on the one hand has a hydrophobic solid surface and also has a high resistance to drop impact erosion.
  • the invention assumes that the harder the material from which they are made, the greater the resistance to drop erosion of homogeneous surfaces.
  • the resistance to Drop impact erosion therefore increases with the interfacial energy.
  • Metallic or purely ceramic surfaces with a surface energy of a few thousand mJ / m2 are more resistant to drop impact erosion than comparatively soft layers, whose surface energies are only a few tens of mJ / m2.
  • the protective coating according to the invention must have an inhomogeneous structure which comprises at least two layers which have different properties in order to be able to meet both the requirements for non-wettability and erosion stability.
  • the layers of the protective coating are all made of amorphous materials. It is entirely possible to manufacture all layers from the same material.
  • the layers can also be made of another material that has the same properties.
  • the protective coating two types of layers, namely a layer with a high interfacial energy and a hardness between 1500HV and 3000HV.
  • the layer must have highly elastic deformation properties so that it has great erosion stability.
  • the interfacial energy and the elastic deformation properties of the second layer type are reduced compared to the first layer. Their hardness is only 500HV to 1500HV.
  • the number of layers from which the protective coating is constructed is not limited to two layers.
  • a layer is first applied to the surface of a component to be protected, if possible, which has a high interfacial energy, highly elastic deformation properties and a hardness between 1500HV and 3000HV.
  • the thickness of this layer should be 1 ⁇ m to 4 ⁇ m.
  • a second layer with a smaller interfacial energy and less elastic deformation properties is applied to this first layer, its hardness being only 500HV to 1500HV.
  • This layer should be less than 1 ⁇ m to 2 ⁇ m thick.
  • the protective coating is always designed in such a way that the outward-facing, last layer of the structure has hydrophobic properties, and thus has a lower interfacial energy and lower deformation properties than the layer underneath, and has a lower hardness. It is quite possible to build the To extend protective coating if necessary, and to apply an additional layer with great elastic deformation properties to the last-mentioned layer and then in turn to apply a layer with hydrophobic properties to the outside.
  • the adhesive strength of the protective coating on the component must be very high so that it cannot be detached from the effects of external forces over time. The same applies to the adhesive forces between the layers. If the adhesive forces between a component and the normally first, inner, erosion-resistant layer of the protective cover are too low, so that the protective cover can be removed quickly, the first inner layer of the protective cover can also be covered by a layer with a smaller interfacial energy and lower elastic deformation properties are formed. A layer with a high interfacial energy, highly elastic deformation properties and a hardness between 1500HV and 3000HV is then applied to this layer. The protective coating ends with a hydrophobic layer. According to the invention, each layer structure can be expanded as required, if the circumstances so require. In this way, a layer with a high interfacial energy and highly elastic deformation properties can again be coated with a hydrophobic layer with a smaller interfacial energy and lower elastic deformation properties become. In any case, make sure
  • the protective coating according to the invention can also be designed such that a layer with a high interfacial energy is first applied to a component to be protected. This layer follows outwards to a layer with a lower interfacial energy. The construction of the protective coating continues in this alternating form and is completed with a layer with a lower interfacial energy. However, the protective coating is constructed in such a way that transitions between the layers are smooth, so that gradient layers are formed which have no discrete interfaces. The construction of such a protective coating has the advantage that the mechanical couplings between the layers are reinforced.
  • the erosion resistance of a coated component can be increased by 60% compared to a comparable component made of titanium without a protective coating.
  • the surfaces of a coated and an uncoated component were exposed to the effects of a liquid.
  • the drops of the Liquid hit the surfaces of the components at a speed of at least 200 m / s.
  • the erosion resistances of both components were compared after more than 5 * 10 7 drops.
  • the protective coating is always limited to the outside by a hydrophobic layer, the formation of a condensate film on the surface of the protective coating is completely prevented.
  • a film is capable of partially or completely absorbing the kinetic energy of the droplets hitting the surface of the protective coating.
  • the energy of the drops is introduced into the protective coating, where there is strong damping of the mechanical deformation due to multiple reflections between different, alternating elastic or plastic areas
  • Fig. 2 shows a variant of the protective cover shown in Fig. 1.
  • Fig. 1 shows a protective coating 1, which is applied to a tube 2.
  • the tube 2 is made of titanium and belongs to a condenser that is part of a steam power plant (not shown here).
  • the protective coating 1 is formed by two layers 3 and 4, the former having erosion-resistant properties and the second having hydrophobic properties.
  • Layer 3 has an interfacial energy of 30 to 2500 mJ / m 2 . It also has highly elastic deformation properties. The ratio of elastic to plastic mechanical deformation in this layer is at least 6 to in a standard hardness test. 10.
  • Layer 3 also has a hardness of 1500 to 3000 HV. In the embodiment shown here, its thickness is 3 ⁇ m.
  • Layer 4 has an interfacial energy that is significantly smaller than the interfacial energy of layer 3. It is at most about 20 mJ / m 2 . The same applies to the elastic Deformation properties and hardness, which is only 500HV to 1500HV. Layer 4 is 1 ⁇ m thick. Both layers 3 and 4 are made of amorphous carbon i in the embodiment shown here. Another amorphous material, or one that does not belong to the group of amorphous materials, can of course also be used to form layers 3 and 4. However, all materials in question must have the same properties with regard to hardness, interfacial energy and elastic deformation.
  • an addition of silicon and / or fluorine is added to the amorphous material in a known manner.
  • an erosion-resistant layer 3 is first applied to the surface of the tube 2.
  • the hydrophobic layer 4 is applied directly to the layer 3. It is thereby achieved that a vaporous working medium 6, which condenses on the surface of the component 2 or is already condensed at another point and hits the surface of the layer 4 in the form of drops 7, cannot form a closed condensate film. Rather, the drops 7 stick only for a short time. If the circumstances require, a further layer sequence consisting of a layer 3 and a layer 4 can be applied to the layer 4.
  • Fig. 2 shows a variant of the protective coating 1. It is used when the adhesive forces between a component
  • a hydrophobic layer 4 with the properties explained in the description of FIG. 1 is first applied to the component 2 with a thickness of 1 ⁇ m.
  • a layer 3 then follows with the layers in the description of FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Ein solcher Schutzüberzug (1) ist für metallische Bauelemente (2) von energietechnischen Anlagen bestimmt, die in unmittelbarem Kontakt mit dem vor allem in Dampfkraftwerken als Arbeitsmedium verwendeten Wasser stehen. Das dampfförmige Arbeitsmedium (6) bildet nicht nur einen unerwünschten Kondensatfilm, sondern trägt auch zu der Zerstörung der Bauelemente (2) durch Tropfenschlag bei. Mit dem erfindungsgemäßen Schutzüberzug (1) werden diese Nachteile beseitigt. Der Schutzüberzug (1) weist einen inhomogenen Aufbau auf, der wenigstens zwei Schichten (3 und 4) umfasst, die aus einem amorphen Werkstoff gefertigt sind. Die Schichten (3 und 4) verfügen über unterschiedliche Eigenschaften, mit denen sowohl die Nichtbenetzbarkeit als auch die Erosionsstabilität der Bauelemente (2) erreicht wird.

Description

Schutzüberzu für metallische Bauelemente
Beschreibung
Die Erfindung bezieht sich auf einen Schutzüberzug für metallische Bauelemente gemäß dem Oberbegriff des Patentanspruchs 1.
Solche Schutzüberzüge sind vor allem für Bauelemente von energietechnischen Anlagen vorgesehen, die in unmittelbarem Kontakt mit dem vor allem in Dampfkraftwerken als Arbeitsmedium verwendeten Wasser stehen. Das dampfförmige Arbeitsmedium kondensiert teilweise auf den Bauelementen, bzw. das an anderen Stellen kondensierte Arbeitsmedium trifft in Form vom Tropfen mit einer nicht zu vernachlässigenden Geschwindigkeit auf die Oberflächen dieser Bauelemente auf. Dort bildet es nicht nur einen unerwünschten Kondensatfilm, sondern trägt auch zu der Zerstörung der Bauelemente durch Tropfenschlag bei.
Tropfenkondensation auf den Übertragungsflächen von Kondensatoren ist seit mehr als 50 Jahren bekannt. Wegen der damit erzielbaren, außergewöhnlich hohen Werte des Wärmeübergangs ist Tropfenkondensation in technischen Anlagen der Wärmeübertragung sehr erwünscht. Dennoch ist sie technisch bisher kaum verwirklicht worden. Es sind lediglich Anwendungen bekannt, bei denen Quecksilber verwendet wird, um eine Tropfenkondensation zu erreichen. Auf dem Gebiet der Dampfkondensation wurden besondere Anstrengungen unternommen, eine Tropfenkondensation wegen der hohen Bedeutung des dort verwendeten Wassers in Energie- und StoffUmwandlungsprozessen auszubilden. Tropfenkondensation kann dort bis jetzt jedoch nur mit Hilfe von Zusatzstoffen über einige Monate aufrecht erhalten werden. Langzeitstabile Tropfenkondensation ist in der Kraftwerkstechnik bisher nicht bekannt geworden. Es ist jedoch bekannt, dass Tropfenkondensation dann erzielt werden kann, wenn die mit einem Dampf beaufschlagten Oberflächen vom Kondensat nicht benetzt werden. Hierzu müssen die Oberflächen eine Grenzflächenenergie aufweisen, die klein ist im Vergleich zur Oberflächenspannung des Kondensats. Ist das Kondensat Wasser, so werden die Oberflächen oder Schichten als wasserabweisend oder hydrophob bezeichnet. Der Kontaktwinkel von Wasser beträgt auf den Oberflächen solcher Schichten mehr als 90 Grad.
Herstellungsverfahren für hydrophobe Oberflächen oder Schichten sind aus der Literatur bekannt . In Turbinen und Kraftwerkskondensatoren unterliegen sie jedoch der Tropfenschlagerosion. Diese führt je nach Nässegehalt des Dampfes, Tropfengröße und Tropfengeschwindigkeit sowie Einschlagsrate zu einem frühzeitigen Verschleiß von Turbinen- und Kondensatorbauteilen. Mit den bisher verwendeten speziell gehärteten Legierungen und Rohrwerkstoffen sowie den Beschichtungen auf Turbinenoder Kondensatorbauteilen konnte der Verschleiß nur mit großem Materialaufwand und hohen Fertigungskosten reduziert, jedoch nicht beseitigt werden.
Es ist es bisher nicht gelungen, hydrophobe Oberflächen oder Schichten unter Beibehaltung von Kontaktwinkeln von mehr als 90 Grad mit einer unbeschränkten Lebensdauer zu entwickeln. Das gleiche gilt auch für absolut erosionsfeste Oberflächen und Schichten für Bauelemente von energietechnischen Anlagen wie Turbinen und Kondensatoren.
Der Erfindung liegt deshalb die Aufgabe zugrunde, einen Schutzüberzug für metallische Bauelemente aufzuzeigen, der zum einen eine hydrophobe feste Oberfläche hat und zudem einen hohen Widerstand gegen Tropfenschlagerosion aufweist.
Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst .
Bei der Erfindung wird davon ausgegangen, dass der Widerstand gegen Tropfenschlagerosion homogener Oberflächen um so größer ist, je härter der Werkstoff ist, aus dem sie gefertigt sind. Je härter eine Oberfläche ist, um so mehr Energie muß aufgewendet werden, um die Oberfläche zu verformen, oder Teile aus ihr zu entfernen. Der Widerstand gegen Tropfenschlagerosion nimmt also mit der Grenz lächenenergie zu. Metallische oder rein keramische Oberflächen mit einer Grenz lächenergie von einigen Tausend mJ/m2 sind gegen Tropfenschlagerosion widerstandsfähiger als vergleichsweise weiche Schichten, deren Grenzflächenergien nur einige zehn mJ/m2 betragen.
Im Fall von Wasser als Fluid ist auf einer harten Oberfläche deren Grenzflächspannung somit groß gegen die Oberflächenspannung des Wassers. Das bedeutet, dass eine erosionsfeste, homogene, harte Oberfläche um so kleinere Benetzungswinkel mit Wasser bildet, je stabiler sie gegen Tropfenschlagerosion ist. Anderseits kann davon ausgegangen werden, dass niederenergetische Oberflächen, die vorzügliche hydrophobe Eigenschaften aufweisen, keinen großen Widerstand gegen Tropfenschlagerosion aufweisen.
Auf Grund dieser Sachverhalte muß der erfindungsgemäße Schutzüberzug einen inhomogen Aufbau aufweisen, der wenigstens zwei Schichten umfasst, die unterschiedliche Eigenschaften haben, um sowohl die Forderungen nach Nichtbenetzbarkeit als auch Erosionsstabilität erfüllen zu können. Die Schichten des Schutzüberzugs werden alle aus amorphen Werkstoffen gefertigt. Es ist durchaus möglich, alle Schichten aus dem gleichen Werkstoff zu fertigen. Die Schichten können auch aus einem anderen Werkstoff gefertigt werden, der die gleichen Eigenschaften besitzt. Erfindungsgemäß weist der Schutzüberzug zwei Typen von Schichten auf, und zwar eine Schicht mit einer hohen Grenzflächenenergie und einer Härte zwischen 1500HV und 3000HV. Die Schicht muß erfindungsgemäß hochelastische Deformationseigenschaften aufweisen, damit sie über eine große Erosionsstabilität verfügt. Die Grenzflächenenergie und die elastischen Deformationseigenschaften des zweiten Schichttyps sind gegenüber der erst genannten Schicht reduziert. Ihre Härte beträgt nur 500HV bis 1500HV. Die Anzahl der Schichten, aus denen der Schutzüberzug aufgebaut ist, ist jedoch nicht auf zwei Schichten begrenzt .
Zur Ausbildung des Schutzüberzugs wird auf die Oberfläche eines zu schützenden Bauelements zunächst, wenn möglich, eine Schicht aufgetragen, die eine hohe Grenzflächenenergie, hochelastische Deformationseigenschaften und eine Härte zwischen 1500HV und 3000HV aufweist. Die Dicke dieser Schicht sollte 1 μm bis 4 μm betragen. Auf diese erste Schicht wird eine zweite Schicht mit kleinerer Grenzflächenenergie und geringeren elastischen Deformationseigenschaften aufgetragen, wobei ihre Härte nur 500HV bis 1500HV beträgt. Diese Schicht sollte weniger als 1 μm bis 2 μm dick sein. Erfindungsgemäß wird der Schutzüberzug immer so ausgebildet, dass die nach außen gerichtete, letzte Schicht des Aufbaus hydrophobe Eigenschaften aufweist, und damit gegenüber der darunter liegenden Schicht eine kleinere Grenzflächenenergie und geringere Deformationseigenschaften hat, sowie eine geringere Härte besitzt. Es ist durchaus möglich, den Aufbau des Schutzüberzugs bei Bedarf noch zu erweitern, und auf die letztgenannte Schicht noch eine zusätzliche Schicht mit großen elastischen Deformationseigenschaften und darauf wiederum als Abschuß nach außen eine Schicht mit hydrophoben Eigenschaften aufzutragen.
Die Haftfestigkeit des Schutzüberzug auf dem Bauelement muß sehr groß sein, damit dieser im Laufe der Zeit nicht durch die Einwirkungen äußerer Kräfte abgelöst werden kann. Das Gleiche gilt auch für die Adhäsionskräfte der Schichten untereinander. Sind die Adhäsionskräfte zwischen einem Bauelement und der normaler Weise ersten, innen liegenden, erosionsbeständigen Schicht des Schutzüberzugs zu gering, so dass von einem schnellen Ablösen des Schutzüberzugs auszugehen ist, so kann die erste innen liegende Schicht des Schutzüberzugs auch durch eine Schicht mit kleinerer Grenzflächenenergie und geringeren elastischen Deformationseigenschaften gebildet werden. Auf diese Schicht wird dann eine Schicht mit einer hohen Grenzflächenenergie, hochelastischen Deformationseigenschaften und einer Härte zwischen 1500HV und 3000HV aufgetragen. Den Abschluss des Schutzüberzugs bildet wieder eine hydrophobe Schicht. Erfindungsgemäß kann jeder Schichtenaufbau beliebig erweitert werden, falls es die Gegebenheiten erfordern. So kann auf eine Schicht mit einer hohen Grenzflächenenergie und hochelastischen Deformationseigenschaften wieder eine hydrophobe Schicht kleinerer Grenzflächenenergie und geringeren elastischen Deformationseigenschaften aufgetragen werden. In jedem Fall ist sicher zu stellen,
Schutzüberzugs nach außen bildet .
Der erfindungsgemäße Schutzüberzug kann auch so ausgebildet werden, dass auf ein zu schützendes Bauelement zunächst eine Schicht mit einer hohen Grenzflächenenergie aufgetragen wird. Dieser Schicht folgt nach außen zu eine Schicht mit einer geringeren Grenzflächenenergie. Der Aufbau des Schutzüberzugs wird in dieser alternierenden Form fortgesetzt und mit einer Schicht mit geringerer Grenzflächenenergie abgeschlossen. Der Aufbau des Schutzüberzug wird hierbei jedoch so durchgeführt, dass Übergänge zwischen den Schichten gleitend sind, derart dass Gradientenschichten gebildet werden, weiche keine diskreten Grenzflächen aufweisen. Der Aufbau eines solchen Schutzüberzugs hat den Vorteil, daß die mechanischen Kopplungen zwischen den Schichten noch verstärkt werden.
Mit Hilfe eines der oben beschriebenen Schutzüberzüge, dessen Schichten alle aus amorphem Kohlenstoff oder anderen, harten, elastischen Werkstoffen geeigneter Grenzflächenergien gefertigt sind, kann der Erosionswiderstand eines beschichteten Bauelements gegenüber einem vergleichbaren Bauelement aus Titan ohne Schutzüberzug um 60 % erhöht werden. Bei diesem Vergleich wurden die Oberflächen eines beschichteten und eines unbeschichteten Bauelements den Einwirkungen einer Flüssigkeit ausgesetzt. Die Tropfen der Flüssigkeit trafen mit einer Geschwindigkeit von mindestens 200 m/s auf die Oberflächen der Bauelemente auf. Der Vergleich der Erosionswiderstände beider Bauelemente erfolgte nach mehr als 5 * 107 Tropfeneinschlägen.
Da der Schutzüberzug nach außen immer von einer hydrophoben Schicht begrenzt ist, wird die Bildung eines Kondensatfilms auf der Oberfläche des Schutzüberzugs vollständig verhindert. Ein solcher Film ist in der Lage, schon über der Grenzschicht des Schutzüberzugs die kinetische Energie der auftreffenden Tropfen teilweise oder vollständig zu absorbieren. Die Energie der Tropfen wird in den Schutzüberzug eingeleitet, wo eine starke Dämpfung der mechanischen Deformation durch Vielfachreflektionen zwischen bereichsweise unterschiedlichen, abwechselnd elastischen bzw. plastischen
Deformationseigenschaften hervorgerufen wird. Durch die enge mechanische Kopplung der äußeren Schicht des Schutzüberzugs an die unmittelbar darunter liegende Schicht mit einer hohen Grenzflächenenergie und hoher Elastizität wird sichergestellt, daß die äußere Schicht des Schutzüberzugs auch bei einem kontinuierlichen Auftreffen von Tropfen mit der oben beschriebenen Geschwindigkeit eine höhere Lebensdauer hat, als das der Fall ist, wenn das Bauelement nur mit einer hydrophoben Schicht überzogen ist .
Weitere erfinderische Merkmale sind in den abhängigen Ansprüchen gekennzeichet . Die Erfindung wird nachfolgend an Hand schematischer Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 einen Schutzüberzug auf einem Bauelement,
Fig. 2 eine Variante des in Fig. 1 gezeigten Schutzüberzugs .
Fig. 1 zeigt einen Schutzüberzug 1, der auf ein Rohr 2 aufgetragen ist . Das Rohr 2 ist aus Titan gefertigt und gehört zu einem Kondensator, der Bestandteil eines Dampfkraftwerks ist (hier nicht dargestellt) . Der Schutzüberzug 1 wird bei dem hier dargestellten Ausführungsbeispiel durch zwei Schichten 3 und 4 gebildet, wobei die erst genannte erosionsbeständige und die zweite hydrophobe Eigenschaften aufweist. Die Schicht 3 besitzt eine Grenzflächenenergie von 30 bis 2500 mJ/m2. Ferner verfügt sie über hochelastische Deformationseigenschaften. Das Verhältnis von elastischer zu plastischer mechanischer Deformation beträgt bei dieser Schicht bei einem Standard- Härtetest mindestens 6 bis. 10. Die Schicht 3 hat zudem eine Härte von 1500 bis 3000HV. Ihre Dicke beträgt bei dem hier dargestellten Ausführungsbeispiel 3 μm. Die Schicht 4 weist eine Grenzflächenenergie auf, die deutlich kleiner ist als die Grenzflächenenergie der Schicht 3. Sie beträgt höchstens etwa 20 mJ/m2. Das gleiche gilt für die elastischen Deformationseigenschaften und die Härte, die nur 500HV bis 1500HV beträgt. Die Schicht 4 ist 1 μm dick. Beide Schichten 3 und 4 sind bei dem hier dargestellten Ausführungsbeispiel aus amorphem Kohlenstoffi gefertigt. Für die Ausbildung der Schichten 3 und 4 kann selbstverständlich auch ein anderer amorpher Werkstoff, oder ein solcher, der nicht zu der Gruppe der amorphen Werkstoff gehört, verwendet werden. Alle in Betracht kommenden Werkstoffe müssen jedoch die gleichen Eigenschaften hinsichtlich Härte, Grenzflächenenergie und elastischer Deformation aufweist. Damit die Schicht 4 ihre hydrophoben Eigenschaften erhält, wird dem amorphen Werkstoff in bekannter Weise ein Zusatz an Silizium und/oder Fluor beigemischt. Wie Fig. 1 zeigt, ist auf die Oberfläche des Rohrs 2 als erstes eine erosionsbeständige Schicht 3 aufgebracht. Die hydrophobe Schicht 4 ist unmittelbar auf die Schicht 3 aufgetragen. Dadurch wird erreicht, dass ein dampfförmiges Arbeitsmedium 6, das auf der Oberfläche des Bauelements 2 kondensiert oder an einer anderen Stelle bereits kondensiert ist, und in Form von Tropfen 7 auf die Oberfläche der Schicht 4 auftrifft, keinen geschlossenen Kondensatfilm ausbilden kann. Vielmehr bleiben die Tropfen 7 nur kurzfristig haften. Falls es die Gegebenheiten erfordern, kann auf die Schicht 4 eine weitere Schichtenfolge bestehend aus einer Schicht 3 und einer Schicht 4 aufgetragen werden. Es ist gleichgültig, wie viele Schichten letztendlich alternierend übereinander auf die Oberfläche des Bauelements 2 aufgebracht werden. Hierbei sind lediglich folgende Punkte zu beachten. Es muß sichergestellt werden, dass die letzte Schicht, welche den Schutzüberzug 1 nach außen begrenzt, immer eine hydrophobe Schicht 3 ist. Ferner ist darauf zu achten, dass der Wärmewiderstand der Schichtenfolge nicht zu groß und die mechanische Stabilität des gesamten Aufbaus des Überzugs nicht beeinträchtigt wird.
Fig. 2 zeigt eine Variante des Schutzüberzugs 1. Sie wird dann angewendet, wenn die Adhäsionskräfte zwischen einem Bauelement
2, das hier ebenfalls als Rohr ausgebildet ist, und der verwendeten erosionsbeständigen Schicht 3 nicht ausreichend groß sind, so dass davon auszugehen ist, der Schutzüberzug 1 sich sehr bald von der Oberfläche es Bauelements 2 lösen könnte. In diesem Fall wird zunächst eine hydrophobe Schicht 4 mit den in der Beschreibung zu Fig. 1 erläuterten Eigenschaften 1 μm dick auf das Bauelement 2 aufgetragen. Es folgt dann eine Schicht 3 mit den in der Beschreibung zu Fig.
1 erläuterten Eigenschaften. Sie wird mit einer Dicke von 1 μm bis 3 μm aufgebracht. Diese alternierende Folge von Schichten
3, 4 kann beliebig fortgesetzt werden. Es sind jedoch auch hier die gleichen Bedingungen zu beachten, wie sie in der Beschreibung zu Fig. 1 erläutert sind. Die Begrenzung des Schutzüberzugs 1 nach außen muß jedoch auch hier eine hydrophobe Schicht 4 bilden.
Bei der Ausbildung der in den Figuren 1 und 2 gezeigten und in den zugehörigen Beschreibungen erläuterten Schutzüberzüge 1 ist es möglich, anstelle von diskreten Grenzflächen zwischen den Schichten gleitende Übergänge zwischen den Eigenschaften der Schichten 3 und 4 auszubilden. Das kann durch geeignete, gleitende Einstellungen der Beschichtungsparameter erreicht werden. So beispielsweise durch eine entsprechende Einstellung der Biasspannung, wenn die Beschichtung mittels Gasentladung erfolgt .

Claims

Patentansprüche
Schutzüberzug für metallische Bauelemente (2) , die mit dem Kondensat eines flüssigen Mediums unmittelbar in Kontakt stehen, dadurch gekennzeichnet , dass wenigstens zwei, vorzugsweise mehrere Schichten (3, 4), aus einem amorphen Werkstoffen übereinander aufgetragen sind.
Schutzüberzug nach Anspruch 1, dadurch gekennzeichnet, dass eine oder mehrere erosionsbeständige Schichten (3) und eine oder mehrere hydrophobe Schichten (4) übereinander aufgetragen sind, und dass sowohl die erosionsbeständige Schichten (3) als auch die hydrophobe Schichten (4) aus einem amorphen Werkstoff bestehen.
Schutzüberzug nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die erosionsbeständigen Schichten (3) und hydrophoben Schichten (4) alternierend aufgetragen sind, und dass die nach außen weisende Grenzschicht immer eine hydrophobe Schicht (3) ist.
Schutzüberzug nach einem der Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass auf die Oberfläche des Bauelements (2) in Abhängigkeit von der Größe der Adhäsionskraft zuerst eine erosionsbeständige Schicht (3) oder eine hydrophobe Schicht (4) aufgetragen ist. Schutzüberzug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jede erosionsbeständige Schicht (3) eine hohe Grenzflächenenergie, hochelastische Deformationseigenschaften und eine Härte zwischen 1500HV und 3000HV. aufweist , dass jede hydrophobe Schicht (4) eine Grenzflächenenergie und Deformationseigenschaften hat, die kleiner sind als die einer erosionsbeständigen Schicht (3), und dass jede hydrophobe Schicht (4) eine Härte zwischen 500HV bis 1500HV hat.
Schutzüberzug nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die erosionsbeständigen und die hydrophoben Schichten (3, 4) aus amorphem Kohlenstoff gefertigt sind.
PCT/EP2001/003990 2000-05-27 2001-04-06 Schutzüberzug für metallische bauelemente WO2001092601A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2001256266A AU2001256266A1 (en) 2000-05-27 2001-04-06 Protective coating for metallic components
JP2002500788A JP3923893B2 (ja) 2000-05-27 2001-04-06 金属製構成要素のための保護コーティング
DE10192241.8T DE10192241B4 (de) 2000-05-27 2001-04-06 Schutzüberzug für metallische Bauelemente
US10/306,435 US6780509B2 (en) 2000-05-27 2002-11-27 Protective coating for metallic components, metallic component having the coating and method of forming the coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10026477.8 2000-05-27
DE10026477A DE10026477A1 (de) 2000-05-27 2000-05-27 Schutzüberzug für metallische Bauelemente

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/306,435 Continuation US6780509B2 (en) 2000-05-27 2002-11-27 Protective coating for metallic components, metallic component having the coating and method of forming the coating

Publications (1)

Publication Number Publication Date
WO2001092601A1 true WO2001092601A1 (de) 2001-12-06

Family

ID=7643892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/003990 WO2001092601A1 (de) 2000-05-27 2001-04-06 Schutzüberzug für metallische bauelemente

Country Status (5)

Country Link
US (1) US6780509B2 (de)
JP (1) JP3923893B2 (de)
AU (1) AU2001256266A1 (de)
DE (2) DE10026477A1 (de)
WO (1) WO2001092601A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141110B2 (en) 2003-11-21 2006-11-28 General Electric Company Erosion resistant coatings and methods thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10056242A1 (de) 2000-11-14 2002-05-23 Alstom Switzerland Ltd Kondensationswärmeübertrager
JP2005518490A (ja) * 2001-11-19 2005-06-23 アルストム テクノロジー リミテッド ガスタービンのための圧縮機
EP1562018A1 (de) * 2004-02-03 2005-08-10 Siemens Aktiengesellschaft Wärmetauscherrohr, Wärmetauscher und Verwendung
JP4735309B2 (ja) * 2006-02-10 2011-07-27 トヨタ自動車株式会社 耐キャビテーションエロージョン用部材及びその製造方法
EP1925782A1 (de) * 2006-11-23 2008-05-28 Siemens Aktiengesellschaft Unbenetzbare Flächenbeschichtung von Nassdampfturbinenbauteilen
DE102007015450A1 (de) * 2007-03-30 2008-10-02 Siemens Ag Beschichtung für Dampfkondensatoren
US7892660B2 (en) * 2007-12-18 2011-02-22 General Electric Company Wetting resistant materials and articles made therewith
JP5244495B2 (ja) * 2008-08-06 2013-07-24 三菱重工業株式会社 回転機械用の部品
JP6091758B2 (ja) 2012-02-27 2017-03-08 三菱重工業株式会社 熱交換器
JP6003778B2 (ja) 2013-04-03 2016-10-05 株式会社デンソー 熱交換器の製造方法
JP6793039B2 (ja) * 2014-04-09 2020-12-02 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. ターボ機関の構成部品を液滴侵食から保護する方法、構成部品及びターボ機関
US11157717B2 (en) * 2018-07-10 2021-10-26 Next Biometrics Group Asa Thermally conductive and protective coating for electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899366A (en) * 1973-10-31 1975-08-12 Allied Chem Treated substrate for the formation of drop-wise condensates and the process for preparing same
EP0179582A2 (de) * 1984-10-09 1986-04-30 Energy Conversion Devices, Inc. Aus mehreren Schichten bestehender Überzug wobei die Aussenschicht aus ungeordnetem korrosionsbeständigem Bor und Kohlenstoff besteht
EP0625588A1 (de) * 1993-05-21 1994-11-23 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Plasmapolymer-Schichtenfolge als Hartstoffschicht mit definiert einstellbarem Adhäsionsverhalten
JPH08337874A (ja) * 1995-06-13 1996-12-24 Matsushita Electric Ind Co Ltd 基材表面被覆層及びその形成方法並びに熱交換器用フィン及びその製造方法。
WO1996041901A1 (de) * 1995-06-12 1996-12-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von plasmapolymer-schichten in stofftransport- oder wärmetauschersystemen
US5593794A (en) * 1995-01-23 1997-01-14 Duracell Inc. Moisture barrier composite film of silicon nitride and fluorocarbon polymer and its use with an on-cell tester for an electrochemical cell
DE19644692A1 (de) * 1996-10-28 1998-04-30 Abb Patent Gmbh Beschichtung sowie ein Verfahren zu deren Herstellung

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142157A (ja) 1983-02-03 1984-08-15 Konishiroku Photo Ind Co Ltd 記録ヘツド
JPS62178975A (ja) 1986-02-03 1987-08-06 Ricoh Co Ltd 電子写真感光体
DD258341A3 (de) * 1986-03-14 1988-07-20 Hochvakuum Dresden Veb Verfahren zur herstellung haftfester ic-schichten
JP2580154B2 (ja) * 1987-03-23 1997-02-12 三菱重工業株式会社 金属の積層コ−テイング膜
JPH01309780A (ja) * 1988-02-22 1989-12-14 Mitsui Eng & Shipbuild Co Ltd 半田コテ先
JP2616797B2 (ja) 1988-03-09 1997-06-04 株式会社高純度化学研究所 プラズマ重合膜の形成法
DE3821614A1 (de) * 1988-06-27 1989-12-28 Licentia Gmbh Deckschicht aus amorphem kohlenstoff auf einem substrat, verfahren zur herstellung der deckschicht und verwendung der deckschicht
DE3832692A1 (de) * 1988-09-27 1990-03-29 Leybold Ag Dichtungselement mit einem absperrkoerper aus einem metallischen oder nichtmetallischen werkstoff und verfahren zum auftragen von hartstoffschichten auf den absperrkoerper
JPH0344485A (ja) * 1989-07-12 1991-02-26 Matsushita Refrig Co Ltd 熱交換器用フィン材
JPH04171615A (ja) 1990-11-02 1992-06-18 Chubu Electric Power Co Inc 碍子
JP2949863B2 (ja) 1991-01-21 1999-09-20 住友電気工業株式会社 高靱性多結晶ダイヤモンドおよびその製造方法
US5728465A (en) * 1991-05-03 1998-03-17 Advanced Refractory Technologies, Inc. Diamond-like nanocomposite corrosion resistant coatings
US5707717A (en) * 1991-10-29 1998-01-13 Tdk Corporation Articles having diamond-like protective film
US5609948A (en) * 1992-08-21 1997-03-11 Minnesota Mining And Manufacturing Company Laminate containing diamond-like carbon and thin-film magnetic head assembly formed thereon
DE4417235A1 (de) * 1993-05-21 1994-11-24 Fraunhofer Ges Forschung Plasmapolymer-Schichtenfolge als Hartstoffschicht mit definiert einstellbarem Adhäsionsverhalten
BE1008229A3 (nl) * 1993-10-29 1996-02-20 Vito Werkwijze voor het aanbrengen van een tegen slijtage beschermende laag op een substraat.
US6410144B2 (en) * 1995-03-08 2002-06-25 Southwest Research Institute Lubricious diamond-like carbon coatings
DE19523208A1 (de) * 1995-06-27 1997-01-02 Behr Gmbh & Co Wärmeübertrager, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage
US6110329A (en) * 1996-06-25 2000-08-29 Forschungszentrum Karlsruhe Gmbh Method of manufacturing a composite material
ATE211510T1 (de) * 1997-02-04 2002-01-15 Bekaert Sa Nv Beschichtung enthaltend filme aus diamantartigem kohlenstoff und diamantartigem nanokomposit
DE19745621C1 (de) * 1997-10-16 1998-11-19 Daimler Benz Aerospace Airbus Verfahren zur Enteisung von einer Eisbildung ausgesetzten Flächen an Luftfahrzeugen
US6335086B1 (en) * 1999-05-03 2002-01-01 Guardian Industries Corporation Hydrophobic coating including DLC on substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899366A (en) * 1973-10-31 1975-08-12 Allied Chem Treated substrate for the formation of drop-wise condensates and the process for preparing same
EP0179582A2 (de) * 1984-10-09 1986-04-30 Energy Conversion Devices, Inc. Aus mehreren Schichten bestehender Überzug wobei die Aussenschicht aus ungeordnetem korrosionsbeständigem Bor und Kohlenstoff besteht
EP0625588A1 (de) * 1993-05-21 1994-11-23 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Plasmapolymer-Schichtenfolge als Hartstoffschicht mit definiert einstellbarem Adhäsionsverhalten
US5593794A (en) * 1995-01-23 1997-01-14 Duracell Inc. Moisture barrier composite film of silicon nitride and fluorocarbon polymer and its use with an on-cell tester for an electrochemical cell
WO1996041901A1 (de) * 1995-06-12 1996-12-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von plasmapolymer-schichten in stofftransport- oder wärmetauschersystemen
JPH08337874A (ja) * 1995-06-13 1996-12-24 Matsushita Electric Ind Co Ltd 基材表面被覆層及びその形成方法並びに熱交換器用フィン及びその製造方法。
DE19644692A1 (de) * 1996-10-28 1998-04-30 Abb Patent Gmbh Beschichtung sowie ein Verfahren zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 04 30 April 1997 (1997-04-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7141110B2 (en) 2003-11-21 2006-11-28 General Electric Company Erosion resistant coatings and methods thereof
US7431566B2 (en) 2003-11-21 2008-10-07 General Electric Company Erosion resistant coatings and methods thereof

Also Published As

Publication number Publication date
US20030118843A1 (en) 2003-06-26
DE10026477A1 (de) 2001-11-29
DE10192241B4 (de) 2018-12-13
DE10192241D2 (de) 2003-06-05
US6780509B2 (en) 2004-08-24
JP2003535221A (ja) 2003-11-25
JP3923893B2 (ja) 2007-06-06
AU2001256266A1 (en) 2001-12-11

Similar Documents

Publication Publication Date Title
EP1344013B1 (de) Kondensationswärmeüberträger
DE10192241B4 (de) Schutzüberzug für metallische Bauelemente
DE10056241B4 (de) Niederdruckdampfturbine
DE19521344C5 (de) Verwendung von Plasmapolymer-Hartstoff-Schichtenfolgen als Funktionsschichten in Stofftransport - oder Wärmetauschersystemen
DE102008056578B4 (de) Verfahren zur Herstellung einer Erosionsschutzschicht für aerodynamische Komponenten und Strukturen
DE102012102087A1 (de) Bauteil mit einer metallurgisch angebundenen Beschichtung
WO2005031038A1 (de) Verschleissschutzschicht, bauteil mit einer derartigen verschleissschutzschicht sowie herstellverfahren
WO2000079611A1 (de) Piezoaktor mit temperaturkompensation
WO2009049597A2 (de) Verschleissschutzbeschichtung
DE4222340A1 (de) Wärmerohr
DE4238859C1 (de) Drosselvorrichtung, insbesondere Drosselventil
EP0951580B1 (de) Verfahren zur Herstellung einer Beschichtung
EP2390467A1 (de) Schutzschicht zur Vermeidung von Tropfenschlagerosion
DE102008032431A1 (de) Kondensator, Verfahren zum Herstellen eines Kondensators sowie Verfahren zum Vorbereiten eines Betriebs eines Kondensators
WO2019122229A1 (de) Korrosions- und erosionsbeständige beschichtung für turbinenschaufeln von gasturbinen
DE102008014272A1 (de) Beschichtung für ein Wärmeübertragungselement, Wärmeübertragungselement, Wärmeübertragungsvorrichtung und Verfahren zur Herstellung einer Beschichtung
EP2805021B1 (de) Verfahren zur herstellung einer keramischen schicht auf einer aus einer ni-basislegierung gebildeten oberfläche
EP1331412B1 (de) Verfahren zur Herstellung einer Lager- oder Antriebsvorrichtung mit beschichteten Elementen
DE3118238A1 (de) Rohrkompensator fuer rohrleitungen mit heissen medien
WO2009138063A1 (de) Schutzschicht und verfahren zum herstellen einer schutzschicht
DE3543875C2 (de)
WO2015125081A1 (de) Mikromechanisches bauteil mit reduzierter kontaktflache und verfahren zu dessen herstellung
DE102020212752A1 (de) Verfahren zum Herstellen eines Rotors für eine Strömungsmaschine, Rotor für eine Strömungsmaschine und Strömungsmaschine mit einem Rotor
DE19644693A1 (de) Beschichtung sowie ein Verfahren zu deren Herstellung
DE102019124080A1 (de) Verfahren zur Instandsetzung von DLC-beschichteten Bauteilen und DLC-beschichtetes Flugzeugbauteil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10306435

Country of ref document: US

REF Corresponds to

Ref document number: 10192241

Country of ref document: DE

Date of ref document: 20030605

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10192241

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607