WO2001077653A1 - X-ray inspection system - Google Patents

X-ray inspection system Download PDF

Info

Publication number
WO2001077653A1
WO2001077653A1 PCT/JP2001/002989 JP0102989W WO0177653A1 WO 2001077653 A1 WO2001077653 A1 WO 2001077653A1 JP 0102989 W JP0102989 W JP 0102989W WO 0177653 A1 WO0177653 A1 WO 0177653A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
inspection system
image
measured
output
Prior art date
Application number
PCT/JP2001/002989
Other languages
English (en)
French (fr)
Inventor
Makoto Suzuki
Hiroshige Mori
Tomikazu Yonezawa
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to EP01919808A priority Critical patent/EP1281953B1/en
Priority to AU2001246853A priority patent/AU2001246853A1/en
Priority to US10/257,004 priority patent/US6876722B2/en
Priority to JP2001574861A priority patent/JP3513136B2/ja
Publication of WO2001077653A1 publication Critical patent/WO2001077653A1/ja
Priority to US11/020,038 priority patent/US7356117B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Definitions

  • the present invention relates to an X-ray inspection system for inspecting an object to be measured based on an X-ray fluoroscopic image of the object to be moved at a predetermined speed, and particularly to an in-line inspection system for inspecting an object to be transported by a belt conveyor or the like.
  • the present invention relates to a device used for a nondestructive inspection device.
  • an X-ray inspection system using X-rays has been known as a system for non-destructively inspecting an internal state of an object to be measured.
  • the X-ray inspection system irradiates the object with X-rays divergently output from one point of the X-ray source in a fixed angle direction, and images the X-rays transmitted through the object with an X-ray imager. Inspection of the internal state and the like of the object to be measured is carried out.
  • an X-ray inspection system for inspecting a plurality of objects to be measured that are successively moving on a line such as a belt conveyor is disclosed in Japanese Patent Application Laid-Open No. H11-108858. It is disclosed in the gazette.
  • the purpose of this X-ray inspection system is to obtain a clear X-ray fluoroscopic image in X-ray imaging of a moving object to be measured. That is, when the device under test passes on a straight line connecting the X-ray source and the X-ray imager, a gate signal is transmitted to the X-ray imager, and the operation of the X-ray imager is controlled by the gate signal. Then, an X-ray fluoroscopic image was taken at the moment when the object to be measured crossed between the X-ray source and the X-ray imager.
  • the X-ray inspection system had a problem in sensitivity.
  • the imaging time of the X-ray imager it is necessary to reduce the imaging time of the X-ray imager to obtain the required resolution, but if the imaging time is reduced, the X-ray The amount of transmitted X-rays received by the imager was reduced, resulting in a decrease in sensitivity.
  • the present invention solves the above-mentioned problems, and provides a method for X-ray imaging of a moving object to be measured. And to provide an x-ray inspection system that can achieve both the required resolution and sufficient sensitivity.
  • An X-ray inspection system includes: an X-ray source that irradiates a moving object with X-rays; An X-ray imager having a conversion surface, and an output surface for receiving an electron image emitted from the X-ray electron conversion surface and outputting an X-ray fluoroscopic image of the DUT in response to the incident electron image; A position detecting means for detecting the position of the object to be measured, and, based on the position of the object to be detected detected by the position detecting means, the flow of the electron image from the X-ray electron conversion surface to the output surface is deflected and output. Deflecting means for forming an electronic image on a predetermined area on the surface.
  • the traveling direction of the electron image converted and emitted by the X-ray electron conversion surface is deflected based on the position of the object to be measured. Can be done.
  • an X-ray fluoroscopic image can be formed on a predetermined area of the output surface.
  • the X-ray source may be a pulsed X-ray source that outputs X-rays when an object to be measured is within an imaging range of an X-ray imaging device.
  • a pulsed X-ray source in this way, it is possible to reduce the amount of X-ray irradiation on a moving object to be measured. Further, if X-rays are output only when the object to be measured is within the imaging range, it is possible to suppress the output of X-rays that may adversely affect the human body and the like.
  • the X-ray imager further includes an electrode that regulates a flow of an electron image toward the output surface by applying a voltage between the X-ray electron conversion surface and the output surface. It is good. By providing the electrodes for restricting the flow of the electron image toward the output surface, it is possible to control the imaging time of the object to be measured by the X-ray imaging device. Thereby, the resolution of the X-ray fluoroscopic image of the moving object to be measured can be improved.
  • the X-ray imager further includes an electrode that regulates a flow of an electron image toward the output surface by applying a voltage between the X-ray electron conversion surface and the output surface.
  • the regulation of the flow of the electron image is released after outputting the X-ray from the pulsed X-ray source, and the flow of the electron image is regulated before stopping the output of the X-ray from the pulsed X-ray source. good.
  • the imager can be controlled so as not to capture images, and can capture images with stable X-rays.
  • the X-ray source may be a point light source
  • the output surface may be a fluorescent screen that emits fluorescence when an electron image is incident thereon.
  • the position detecting means includes an object-to-be-measured detecting means for detecting the object-to-be-measured before reaching the imaging range of the X-ray imaging device.
  • the position of the measured object within the imaging range may be obtained based on the elapsed time from the time when the measured object is detected.
  • the object to be measured within the X-ray imaging range can be detected by detecting the object to be measured moving in a certain direction at a predetermined speed before reaching the X-ray imaging range. Can be easily calculated from the detection time and elapsed time.
  • the device under test detection means includes one light emitting element for irradiating light to the object to be measured and two light receiving devices provided at different points and receiving light output from the light emitting device. And a distance between the light-emitting element and the movement path of the measured object is detected from a time interval at which light output from the light-emitting element to each light-receiving element is blocked by the measured object. good. In this way, the light output from one light-emitting element is received by two light-receiving elements provided at different points, and the time at which the device under test is detected by each light-receiving element is detected.
  • the above-described X-ray inspection system is an X-ray inspection system including an X-ray source and an X-ray image imaging device that are arranged to face each other across the measured object passage path, wherein the X-ray image imaging device includes an X-ray electron conversion material and An X-ray imager is provided with an output phosphor screen facing the X-ray electron conversion material.
  • the X-ray imager captures the electron image between the X-ray electron conversion material and the output phosphor screen at a speed synchronized with the moving speed of the DUT. It deflects the flow.
  • the imaging time of the object to be measured P can be lengthened. However, both the required resolution and sufficient sensitivity can be achieved. Further, it is preferable that the above-described X-ray inspection system starts deflection in response to a predetermined trigger generated based on the position of the object to be measured.
  • FIG. 1 is a block diagram showing the X-ray inspection system of the first embodiment.
  • FIG. 2 is a cross-sectional view showing the X-ray gates II.
  • Figures 3A, 3B, and 3C show changes in electron orbitals.
  • FIG. 4 is a diagram showing the control of the current conducted to the deflection coil.
  • FIG. 5 is a diagram for explaining a method of calculating a position by the position detecting means.
  • FIG. 6 is a timing chart showing control by the timing circuit.
  • FIG. 7 is a diagram showing signals at a pulse X-ray source, a deflection circuit, and X-ray gates I and I.
  • FIG. 8 is a diagram specifically showing the relationship between the deflection distance and the exposure time.
  • FIG. 9 is a block diagram showing an X-ray inspection system according to the second embodiment.
  • FIG. 10 is a evening chart showing the control by the evening circuit.
  • FIG. 11 is a diagram showing signals at a pulse X-ray source, a deflection circuit, and an X-ray gate.
  • FIG. 12 is a block diagram showing an X-ray inspection system according to the third embodiment.
  • FIG. 13 is a timing chart showing control by the timing circuit.
  • FIG. 14 is a diagram showing signals at the pulse X-ray source, the deflection circuit, and the X-ray gate.
  • Figure 15 is an explanatory diagram of the X-ray inspection system.
  • Figure 16 is an explanatory diagram of the X-ray inspection system.
  • FIG. 17 is a timing chart of the deflection current and the gate signal supplied to the X-ray inspection system X-ray gates I and I 40.
  • FIG. 1 is a block diagram showing an X-ray inspection system 10 of the present embodiment.
  • the X-ray inspection system 10 is used for inspecting a tablet (measurement object) P that is placed on a belt conveyor 12 and moves in a certain direction.
  • the X-ray inspection system 10 is composed of a belt conveyor 12 that transports the loaded tablets P at a constant speed V, and a pulse X-ray source 14 that irradiates pulse X-rays toward the tablets P on the belt conveyor 12 X-ray gate image intensifier (hereinafter referred to as “X-ray gate I ⁇ I”) 40 facing the pulse X-ray source 14 across the belt conveyor 12 and X-ray gate I ⁇ 14
  • a CCD camera 18 that captures the X-ray fluoroscopic image acquired by 0, and a processing determination device 28 that determines the quality of the tablet P based on the captured X-ray fluoroscopic image and performs processing such as sorting.
  • a lens for imaging the X-ray fluoroscopic image acquired by the X-ray gate I • I 40 on the light-receiving part of the CCD camera 18 16 are provided.
  • An object-to-be-measured detecting means 30 is provided upstream of the belt conveyor 12 in the imaging range where X-ray imaging is performed.
  • the object-to-be-measured detecting means 30 is composed of a light emitting diode 32 emitting light toward the tablets P on the belt conveyor 12 and two photodiodes arranged in parallel with the belt conveyor 12 with the belt conveyor 12 interposed therebetween. It consists of 34, 36.
  • the two photodiodes 34 and 36 are connected to the timing circuit 20. As a result, the timing circuit 20 moves at a constant speed V.
  • the position of the tablet P can be calculated based on the time when the photodiodes 34 and 36 detected the tablet P and the time elapsed from the detection time.
  • the timing circuit 20 includes an X-ray power supply 22 for controlling X-rays output from the pulse X-ray source 14 and an X-ray gate power supply 2 for opening and closing the gates of the X-ray gates I and I 40. 6 and a deflecting circuit 24 for controlling a deflecting coil 44 provided on the outer periphery of the X-ray gates I ⁇ I 40, and each operation timing is controlled by an evening timing signal.
  • the deflection starts in synchronization with this arrival time, What is necessary is just to deflect the flow of the electron image in synchronization with the moving speed of P. That is, the output of the timing circuit 20 is a predetermined trigger generated based on the position of the tablet P, and the deflection is started in response to this trigger.
  • FIG. 2 is a cross-sectional view showing the X-ray gates I and I40.
  • the X-ray gate I • 140 has an X-ray electron conversion surface 42 that converts the incident X-ray image into an electron image, and an output fluorescent surface 46 that emits fluorescence when the electron image is incident. It is constituted by being sealed in a decompressed container 49. Further, an accelerating electrode 48 is provided on the inner periphery of the container 49, and by controlling the voltage applied to the accelerating electrode 48, the gate control of the X-ray gate I Can be done.
  • the output phosphor screen 46 is set to a high potential, the electron image traveling from the X-ray electron conversion surface 42 to the output phosphor screen 46 is accelerated. Conversely, if the output phosphor screen 46 is set to a low potential, The flow of the electron image from the X-ray electron conversion surface 42 to the output fluorescent surface 46 is regulated. Next, the operation of the X-ray inspection system 10 will be described.
  • the tablet P to be measured is placed on the belt conveyor 12 and moves at a constant speed V to the right in FIG.
  • first light blocking time When the tablet P blocks the light output from the light emitting diode 32 to the first photodiode 34, the time (hereinafter, referred to as “first light blocking time”) is transferred from the first photodiode 34 to the timing circuit 20. Sent.
  • second light-blocking time the time (hereinafter referred to as “second light-blocking time”) is transmitted from the second photodiode 36 to the timing circuit. Sent to 20.
  • the timing circuit 20 detects the position of the tablet P based on the second light-shielding time transmitted from the second photodiode 36. That is, since the feed speed V of the belt conveyor 12 is determined in advance, the timing circuit 20 can calculate the current position of the tablet P based on the second light shielding time and the elapsed time from the second light shielding time. Wear. Then, based on this position information, that is, the elapsed time from the second light-shielding time, the timing circuit 20 outputs a timing signal to the pulse X-ray power supply 22, the deflection circuit 24, and the X-ray gate power supply 26. Control.
  • FIGS. 3A, 3B, and 3C show the relationship between the deflection current to be conducted to the deflection coil 44 and the electron trajectory. I do.
  • the deflection coil 44 is schematically shown inside the container 40 to clarify the direction of conduction of the deflection current, and the direction in which the tablet P moves is indicated by X.
  • the Y-axis is the straight line connecting the center of the electron conversion surface 42, and the axis from the back of the paper to the front is the Z-axis.
  • FIGS. 3A, 3B, and 3C are diagrams showing, in chronological order, a state in which the tablets P conveyed by the belt conveyor 12 pass through the origin 0.
  • FIG. 3A, 3B, and 3C are diagrams showing, in chronological order, a state in which the tablets P conveyed by the belt conveyor 12 pass through the origin 0.
  • the X-ray image transmitted through the tablet P is displayed on the X-ray electron conversion surface 42. It is incident on the negative area of the X axis.
  • an X-ray image is incident on the X-ray electron conversion surface 42, an electron image is emitted from the X-ray electron conversion surface 42, and the emitted electron image is accelerated by the accelerating electrode 48 to the output fluorescent surface 46.
  • a counterclockwise current in FIG. 3A is conducted to the deflection coil 44 as shown in FIG. 3A to generate a magnetic field B in the Z-axis direction.
  • the electron image traveling from the X-ray electron conversion surface 42 to the output fluorescent surface 46 is The light is shifted in the X-axis direction due to the Moment of Lenz force from the magnetic field B, and is incident on almost the center of the output fluorescent screen 46.
  • the transmission X-ray image of the tablet P becomes an X-ray. It is incident on the positive region of the X-axis on the electron conversion surface 42.
  • the clockwise current in FIG. 3C is conducted to the deflecting coil 44 to generate a magnetic field B in the negative direction of the Z axis, thereby forming an electron image. Deflected in the negative direction of the X axis, and an electron image is made to enter almost the center of the output phosphor screen 46.
  • the current flowing through the deflection coil 44 shall be + in the clockwise direction in Figs. 3A, 3B and 3C.
  • the result is shown in Fig. 4. That is, a negative current is conducted to the deflection coil 44 at time t2, and the current is reduced as the tablet P approaches the origin 0. This is to reduce the amount of deflection as the tablet P approaches the origin 0.
  • tablets
  • the direction of the current is reversed, and thereafter, the current is controlled to increase as the tablet P moves away from the origin. Then, the current is set to 0 at time t6.
  • the magnitude of the current conducted to the deflection coil 44 is such that the electron image output from the X-ray electron conversion surface 42 is deflected to form an X-ray fluoroscopic image at the center of the output fluorescent screen 46. That's it. Therefore, the amount of current conducted to the deflection coil 4 4 is
  • the pulse X-ray source 14 is a point light source
  • the position of the transmitted X-ray image projected on the X-ray electron conversion surface 42 is not only the position of the tablet P in the X-axis direction but also the Y-axis direction. Rank It also changes depending on the location.
  • the position of the tablet P in the X-axis direction is calculated based on the elapsed time from the second light-shielding time. However, since the first light-shielding time is also obtained, the Y-axis of the tablet P is obtained. It is also possible to detect the position in the direction, that is, the distance from the pulse X-ray source 14, whereby the position and position of the X-ray image transmitted through the tablet P and incident on the X-ray electron conversion surface 42 are detected. You can calculate the moving speed. This will be described with reference to FIG. As shown in FIG.
  • the positional relationship between the elements constituting the object-to-be-measured detecting means 30 is such that the first photodiode 34 and the second photodiode 36 move the tablet P at a distance d.
  • the distance between the straight line connecting the light receiving surfaces of the two photodiodes 34 and 36 and the light emitting diode 32 is D.
  • V, V x O / X ⁇ ⁇ '2
  • V ⁇ / ⁇ t
  • the position of the X-ray image transmitted through the tablet P and incident on the X-ray electron conversion surface 42 can also be calculated, and the amount of current conducted to the deflection coil 44 Can be controlled.
  • the tablet P is projected on the output fluorescent screen 46 when passing through the origin 0.
  • the X-ray fluoroscopic image must always enter the center of the output phosphor screen 46 During this time, the X-ray fluoroscopic image of the tablet P appears stationary at the center of the output phosphor screen 46.
  • timing signals output from the timing circuit 20 to the X-ray power supply 22, the deflection circuit 24, and the X-ray gate power supply 26 will be described.
  • the X-ray power supply 22, the deflection circuit 24, and the X-ray gate power supply 26 are all controlled based on the elapsed time from the second light shielding time t0.
  • Figure 6 is a chart showing the timing.
  • the tablet P is detected by the second photodiode 36 at time t0, and the signal 70 from the second photodiode 36 to the timing circuit 20 becomes ON. Since the feed speed V of the belt conveyor 12 is constant, the timing circuit 20 calculates a time t3 at which the tablet P enters the imaging range and a time t5 at which the tablet P deviates from the imaging range. When is within the imaging range, the timing signal 73 to the X-ray gate power supply 26 is turned on, that is, a voltage is applied by the accelerating electrode 48 so that the output fluorescent screen 46 becomes a high potential and the tablet P Imaging of the X-ray fluoroscopic image.
  • the timing circuit 20 turns on the timing signal 71 from the timing circuit 20 to the X-ray power supply 22 at the time t1 before the time t3, and outputs the X-ray from the pulse X-ray source 14
  • the timing signal 72 from the timing circuit 20 to the deflecting circuit 24 is turned on to conduct current to the deflecting coil 44.
  • FIG. 7 shows a change in the X-ray intensity output from the pulse X-ray source 14 and a change in the current flowing through the deflection coil 44 at this time.
  • the X-ray intensity 81 after being output from the pulse X-ray source 14 at time t1, rapidly rises, becomes almost stable near the maximum intensity of X-rays, and approaches time t7 when X-ray output stops. Fall.
  • the amount of current 82 flowing through the deflection coil 44 causes deflection distortion near time t2 when the current starts to flow and time t6 when the current stops, but basically, the time from time t2 to time t2. It changes linearly with respect to the time axis until t6.
  • the X-rays output from the pulsed X-ray source 14 are not completely pulsed, and there are rising and falling portions at the start and end of the X-ray output, and the current flowing through the deflection coil 44 Since the deflection distortion also occurs, accurate imaging is performed during this time. Can not do.
  • the X-ray gates I and I 40 are used, and the current flowing through the pulse X-ray power supply 14 and the deflection coil 44 is in a stable state, that is, the X-ray gate is between time t3 and time t5.
  • the gate of I ⁇ I 40 is opened to take X-ray fluoroscopic images of tablet P.
  • the X-ray dose 83 incident on the X-ray gate I ⁇ 140 can be substantially pulsed.
  • the deflection current 82 can avoid deflection distortion occurring at the beginning and end of deflection.
  • the X-ray fluoroscopic images controlled by the X-ray gates I and I 40 as described above are captured by the CCD camera 18 and transmitted to the processing determination device 28.
  • the processing determination device 28 performs processing such as sorting tablets P based on the captured X-ray fluoroscopic image.
  • a deflection coil 44 is provided at the X-ray gates I and I 40 to deflect the trajectory of the electron image emitted from the X-ray electron conversion surface 42 so as to be positioned at the position of the tablet P. Instead, an image is formed almost at the center of the output phosphor screen 46. As a result, since the moving tablet P can be imaged while being stopped on the output phosphor screen 46, the exposure time can be secured even if the moving speed of the tablet P increases, and the sensitivity can be increased. Can be
  • the tablet P is placed on the belt conveyor 12 and moves rightward in FIG. 8 at a speed of 1 (mZs). Since the tablet P is moving on a line that internally divides the pulse X-ray source 14 and the X-ray gate I ⁇ 140 into 1: 5, it is incident on the X-ray electron conversion surface 42 of the X-ray gate I ⁇ I 40 The penetrating X-ray image of tablet P moves to the right in Fig. 8 at a speed of 5 (m / s).
  • the X-ray inspection system 10 is configured such that the transmitted X-ray image on the X-ray electron conversion surface 42 moves, for example, by 10 (mm) while the electron output from the X-ray electron conversion surface 42 moves. Can be deflected and kept stationary on the output phosphor screen 46. In effect,
  • the X-ray inspection system 10 of the present embodiment can ensure both resolution and sensitivity when observing the tablet P having a high moving speed.
  • the X-ray inspection system 50 of the second embodiment shown in FIG. 9 has the same basic configuration as the X-ray inspection system 10 of the first embodiment, except that the pulse X-ray source 14 is replaced by an X-ray. The difference is that source 52 is used.
  • the X-ray source 52 is continuously turned ON, and the timing circuit 20 does not control the X-ray power supply 22 as shown in FIG. That is, an ON signal 71 is always input to the X-ray power supply 22 from a power supply circuit (not shown). Then, the timing circuit 20 turns on the timing signal 73 to the deflection circuit 24 at time t2, and then turns on the evening signal 74 to the X-ray gate power supply 26 at time t3 to perform imaging. I do. This facilitates the control by the timing circuit 20 and continuously outputs X-rays. Therefore, as shown in Fig. 11, a complete pulse X-ray is seen from the X-ray gate I • 140. Is obtained.
  • the X-ray inspection system 60 of the third embodiment shown in FIG. 12 has the same basic configuration as the X-ray inspection system 10 of the first embodiment, but is replaced with X-ray gates I and I 4 °. The difference is that X-ray II 62 which does not have a gate function is used.
  • the X-ray II 62 is continuously turned on, and the timing circuit 20 does not control the X-ray gate as shown in FIG. That is, an ON signal 73 is input to the X-ray gate power supply 26 from a power supply circuit (not shown).
  • the timing circuit 20 turns on the timing signal 72 to the deflection circuit 24 at time t 11, and then turns on the timing signal 71 to the X-ray power supply 22 at time t 12.
  • the control by the timing circuit 20 becomes easy, and the distortion of the deflection current 82 as shown in FIG. 14 can be avoided.
  • a combination of one light emitting diode 32 and two photodiodes 34, 36 is used as the object detection means 30 for the tablet P, and the tablet P Is calculated, but the position is not limited to the above embodiment as long as the position of the tablet P can be detected.
  • the tablet P may be photographed with a video camera, and the position of the tablet P passing through the imaging range may be analyzed.
  • the device under test may be a combination of one light-emitting diode and one photodiode.
  • the above-described X-ray inspection system is an X-ray inspection system including an X-ray source 14 and an X-ray image pickup device 40 (16, 18) which are arranged to face each other with the passage of the object P therebetween.
  • the X-ray image pickup device 40 includes an X-ray electron conversion material 42 and an output fluorescent screen 46 disposed opposite to the X-ray electron conversion material 42. It deflects the flow of the electron image between the X-ray electron conversion material 40 and the output phosphor screen 46 at a speed synchronized with the moving speed of the electron beam.
  • the X-ray electron conversion material 40 and the output phosphor screen are synchronized at the speed synchronized with the moving speed of the DUT P. Since the flow of the electron image is deflected between 46 and 46, the imaging time of the object P can be lengthened, and therefore, both the required resolution and sufficient sensitivity can be realized.
  • the above-described X-ray inspection system starts deflection in response to a predetermined trigger generated based on the position of the object P to be measured. That is, since the time at which the object P arrives in the space between the X-ray source 14 and the X-ray imager 40 can be obtained, the deflection is started in synchronization with the arrival time, and the object under measurement is started. The flow of the electron image was deflected in synchronization with the moving speed of P.
  • the output of the timing circuit 20 is a predetermined trigger generated based on the position of the device under test P, and the deflection is started in response to this trigger.
  • the position of the object P is detected in a non-contact manner, and the trigger is generated based on the detected position.
  • This may be configured to detect the position of the object P using physical contact, and to generate the trigger one based on the detected position.
  • FIG. 15 is an explanatory diagram of the X-ray inspection system having such a configuration, and shows only the changes from the above-described embodiment.
  • a configuration may be adopted in which a restraint means for restraining the position of the object to be measured and a release means for releasing the restraint are provided, and the trigger is generated after a lapse of a predetermined time from the release operation.
  • FIG. 16 is an explanatory diagram of the X-ray inspection system having such a configuration, and shows only the changes from the above-described embodiment.
  • the object to be measured P is restrained at a specific position on the belt conveyor 12 by restraining means (stopper STP and actuator ACT fixed to the stopper STP), and the actuator ACT moves upward. And the stopper is released, and functions as a releasing means.
  • This release operation is performed by a trigger applied to the actuating controller ACT from the control controller SCT.
  • the trigger is supplied to the X-ray gate I140 as a deflection signal via the delay circuit DLY. . Therefore, the trigger for starting the deflection is generated after a lapse of a predetermined time from the release operation. This predetermined time is calculated in advance based on the moving speed of the belt conveyor 12 and the distance to the shooting position.
  • the configuration may be such that deflection is performed independently of the position of the object P to be measured.
  • FIG. 17 is a timing chart of the deflection current and the gate signal supplied to the deflection coil 44 of the X-ray gate I ⁇ 140 of the X-ray inspection system having such a configuration.
  • the difference from FIG. 1 is that the deflection is performed independently of the position of the DUT.
  • the deflection current which was at the speed of the belt conveyor 12 (accurately, the speed of the X-ray image on the photoelectric surface of the X-ray gate II of the object P), was supplied to the deflection coil 44 as a deflection signal. However, you can always keep still images.
  • the deflection current is a sawtooth wave.
  • the gate signals of X-ray gates I and I40 are turned off.
  • the gate signal is off, the output of the X-ray imager is prohibited. Thereby, a clearer image can be obtained.
  • the output image can be captured either by moving the device under test P at the interval (1/30 second) or by setting the imaging time arbitrarily in accordance with the NTSC system (one frame per 1/30 second). Use a high-speed camera.
  • the X-ray imaging device was provided with the CCD camera 18 arranged opposite to the output phosphor screen 46, but the position of the object P was measured by itself.
  • the image may be detected by the image pickup mechanism, that is, the CCD camera 18.
  • the video signal constituting the image changes. Therefore, this signal change is detected and the deflection is started.
  • the time required for the measured object to reach the position where the image is captured at the center of the X-ray gates I and I 40 and the deflection speed synchronized with the movement can be calculated based on the movement speed of the belt conveyor 12.
  • the trigger is generated when an operator who looks at the object P turns on a switch (corresponding to the timing circuit 20 in FIG. 1) for starting deflection. It may be that.
  • the belt conveyor 112 is moved at a constant speed, but this may not be constant. That is, if the speed of the belt conveyor 112 is detected in real time by an encoder or the like, the above-described deflection can be performed in accordance with the moving speed of the workpiece P.
  • the present invention relates to an X-ray inspection system for inspecting an object to be measured based on an X-ray fluoroscopic image of the object to be moved at a predetermined speed, and in particular, an inline non-destructive inspection for an object to be transported by a belt conveyor or the like. It can be used for inspection equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

曰月糸田 β
X線検査システム
技術分野
本発明は、 所定速度で移動する被測定物の X線透視像に基づいて該被測定物を 検査する X線検査システムに関し、 特に、 ベルトコンベアなどで運搬される被測 定物を検査するィンライン非破壊検査装置に用いられるものに関する。
背景技術
従来から、 被測定物の内部状態等を非破壊で検査するシステムとして、 X線を 利用した X線検査システムが知られている。 X線検査システムは、 X線源の 1点 から一定角度方向に発散出力された X線を被測定物に照射し、 その被測定物を透 過した X線を X線撮像器により撮像することにより、 その被測定物の内部状態等 を検査するものである。
そして、 この X線検査システムを用いて、 ベルトコンベア等のライン上を次々 に移動してくる複数の被測定物を検査する X線検査システムが、 特開平 1 1一 1 0 8 8 5 8号公報に開示されている。 この X線検査システムは、 移動している被 測定物の X線撮像において、 明瞭な X線透視像を得ることを目的としている。 す なわち、 X線源と X線撮像器とを結ぶ直線上を被測定物が通過する際に、 ゲート 信号を X線撮像器に送信し、 このゲート信号によって X線撮像器の動作を制御し て、 被測定物が X線源と X線撮像器との間を横切る瞬間に X線透視像の撮像を行 つていた。
発明の開示
しかしながら、 上記 X線検査システムは、 感度の面で問題を有していた。 すな わち、 被測定物の移動速度が増加すれば、 必要な解像度を得るために X線撮像器 による撮像時間を短縮する必要があるが、 撮像時間が短縮されれば必然的に X線 撮像器の受ける透過 X線の量が少なくなり、感度の低下を招く結果となっていた。 そこで、 本発明は上記課題を解決し、 移動している被測定物の X線撮像におい て、 必要な解像度と十分な感度の両方を実現できる x線検査システムを提供する ことを目的とする。
本発明に係る X線検査システムは、 移動している被測定物に X線を照射する X 線源と、 被測定物に対応した X線像が入射されると電子像に変換する X線電子変 換面、 及び X線電子変換面から放出された電子像が入射されると共に入射された 電子像に対応して被測定物の X線透視像を出力する出力面を有する X線撮像器と、 被測定物の位置を検知する位置検知手段と、 位置検知手段によって検知された被 測定物の位置に基づいて、 X線電子変換面から出力面へ向かう電子像の流れを偏 向して出力面上の所定領域に電子像を結像させる偏向手段とを備えることを特徴 とする。
このように X線電子変換面と出力面との間に偏向手段を備えることで、 X線電 子変換面で変換され放出された電子像の進行方向を、 被測定物の位置に基づいて 偏向させることができる。 これにより、 移動する被測定物を透過した X線が、 X 線電子変換面の異なる位置に入射する場合も、 出力面の所定の領域に X線透視像 を結像させることができる。
上記 X線検査システムにおいて、 X線源は、 被測定物が X線撮像器の撮像範囲 にある場合に X線を出力するパルス X線源であることを特徴としても良い。 この ようにパルス X線源を用いることとすれば、 移動する被測定物への X線照射量を 低減できる。 また、 被測定物が撮像範囲にある場合にのみ X線を出力することと すれば、人体等に悪影響を及ぼす危険のある X線の出力を抑制することができる。 上記 X線検査システムにおいて、 X線撮像器は、 X線電子変換面と出力面との 間に電圧を印加することによって、 出力面へ向かう電子像の流れを規制する電極 をさらに備えることを特徴としても良い。 このように出力面へ向かう電子像の流 れを規制する電極を備えることとすれば、 X線撮像器による被測定物の撮像時間 を制御することができる。 これにより、 移動する被測定物の X線透視像の解像度 を向上できる。 上記 X線検査システムにおいて、 X線撮像器は、 X線電子変換面と出力面との 間に電圧を印加することによって、 出力面へ向かう電子像の流れを規制する電極 をさらに備え、 電極は、 パルス X線源から X線を出力した後に電子像の流れの規 制を解除し、 パルス X線源からの X線出力を停止する前に電子像の流れを規制す ることを特徴としても良い。 このように電極によって X線電子変換面と出力面と の間に印加する電圧によって電子像の流れを制御することで、 パルス X線の立ち 上がりや立ち下がりに生じる不安定な部分において、 X線撮像器は撮像しないよ うに制御でき、 強度の安定した X線によつて撮像可能となる。
上記 X線検査システムにおいて、 X線源は点光源であることを特徴としても良 く、 出力面は電子像が入射されることによって蛍光を発する蛍光面であっても良 い o
上記 X線検査システムにおいて、 位置検知手段は、 X線撮像器の撮像範囲に到 る前に被測定物を検知する被測定物検知手段を備え、 被測定物検知手段による被 測定物の検知と、 被測定物が検知された時刻からの経過時間とに基づいて、 撮像 範囲内の被測定物の位置を求めることを特徴としても良い。 このように被測定物 検知手段によって、 一定の方向に所定速度で移動している被測定物を X線の撮像 範囲に到る前に検知することで、 X線撮像範囲内での被測定物の位置を検知時刻 と経過時間から容易に算出できる。
上記 X線検査システムにおいて、 被測定物検知手段は、 被測定物に光を照射す る 1個の発光素子と、 異なる地点に設けられると共に発光素子から出力された光 を受光する 2個の受光素子とを備え、 発光素子から各受光素子へ出力された光が 被測定物によって遮られた時刻の時間間隔から、 被測定物の移動経路と発光素子 との距離を検知することを特徴としても良い。 このように 1個の発光素子から出 力された光を異なる地点に設けられた 2個の受光素子で受光し、 被測定物が各受 光素子で検出される時刻を検出することにより、 一定の方向に所定速度で移動し ている被測定物の移動経路と発光素子との距離を容易に算出することができる。 上述の X線検査システムは、 被測定物通過経路を挟んで対向配置される X線源 及び X線像撮像器を備えた X線検査システムにおいて、 X線像撮像器は X線電子 変換材料及び X線電子変換材料に対向配置された出力蛍光面を備え、 X線像撮像 器は被測定物の移動速度に同期した速度で、 X線電子変換材料と出力蛍光面との 間の電子像の流れを偏向するものである。
被測定物の移動速度に同期した速度で、 X線電子変換材料と出力蛍光面との間 の電子像の流れが偏向されるので、被測定物 Pの撮像時間を長くすることができ、 したがって、 必要な解像度と十分な感度の両方を実現することができる。 また、 上述の X線検査システムは、 被測定物の位置に基づいて発生する所定のトリガ一 に応じて偏向を開始するものであることが好ましい。
図面の簡単な説明
図 1は第 1実施形態の X線検査システムを示すプロヅク図である。
図 2は X線ゲート I · Iを示す断面図である。
図 3 A, 図 3 B, 図 3 Cは電子軌道の変化を示す図である。
図 4は偏向コイルに導通させる電流の制御を示す図である。
図 5は位置検知手段による位置の算出方法を説明する図である。
図 6はタイミング回路による制御を示すタイミングチャートである。
図 7はパルス X線源、 偏向回路、 及び X線ゲート I · Iでの信号を示す図であ る。
図 8は偏向距離と露光時間との関係を具体的に示す図である。
図 9は第 2実施形態の X線検査システムを示すブロック図である。
図 1 0は夕ィミング回路による制御を示す夕ィミングチャートである。
図 1 1はパルス X線源、 偏向回路、 及び X線ゲートでの信号を示す図である。 図 1 2は第 3実施形態の X線検査システムを示すブロック図である。
図 1 3はタイミング回路による制御を示すタイミングチャートである。
図 1 4はパルス X線源、 偏向回路、 及び X線ゲートでの信号を示す図である。 図 1 5は X線検査システムの説明図である。
図 1 6は X線検査システムの説明図である。
図 1 7は X線検査システム X線ゲート I · I 4 0に与えられる偏向電流及びゲ 一ト信号のタイミングチャートである。
発明を実施するための最良の形態
以下、 図面と共に本発明に係る X線検査システムの好適な実施形態について詳 細に説明する。 なお、 図面の説明においては同一要素には同一符号を付し、 重複 する説明を省略する。
図 1は、 本実施形態の X線検査システム 1 0を示すブロック図である。 X線検 査システム 1 0は、 ベルトコンベア 1 2上に載置されて一定方向に移動している 錠剤 (被測定物) Pを検査するために用いられる。 X線検査システム 1 0は、 載 置された錠剤 Pを一定速度 Vで運搬するベルトコンベア 1 2と、 ベルトコンベア 1 2上の錠剤 Pに向かってパルス X線を照射するパルス X線源 1 4と、 ベルトコ ンベア 1 2を挟んでパルス X線源 1 4と対向された X線ゲートイメージィンテン シファイア (以下、 「X線ゲート I · I」 という) 4 0と、 X線ゲート I · 1 4 0によって取得された X線透視像を撮像する C C Dカメラ 1 8と、 撮像された X 線透視像に基づいて錠剤 Pの良否を判定して選別等の処理を行う処理判定装置 2 8と、 を備えている。 X線ゲート I · I 4 0と C C Dカメラ 1 8との間には、 X 線ゲート I · I 4 0で取得した X線透視像を C C Dカメラ 1 8の受光部に結像さ せるためのレンズ 1 6が設けられている。
また、 X線撮像がなされる撮像範囲のベルトコンベア 1 2の上流には、 被測定 物検知手段 3 0が設けられている。 被測定物検知手段 3 0は、 ベルトコンベア 1 2上の錠剤 Pに向かって発光する発光ダイオード 3 2と、 ベルトコンベア 1 2を 挟んでベルトコンベア 1 2と平行に配置された 2個のフォトダイオード 3 4、 3 6とから構成されている。 2個のフォトダイオード 3 4、 3 6はタイミング回路 2 0に接続されている。 これにより、 タイミング回路 2 0は一定速度 Vで移動す る錠剤 Pの位置を、 フォトダイオード 3 4、 3 6が錠剤 Pを検知した時刻と、 検 知時刻からの経過時間に基づいて算出できる。
そして、 タイミング回路 2 0は、 パルス X線源 1 4から出力する X線の制御を 行う X線電源 2 2と、 X線ゲート I · I 4 0のゲートの開閉を行う X線ゲート電 源 2 6と、 X線ゲート I · I 4 0の外周に設けられた偏向コイル 4 4の制御を行 う偏向回路 2 4とに接続され、 それぞれの動作タイミングを夕イミング信号によ つて制御する。
X線源 1 4と X線ゲ一ト I · I 4 0との間の空間に錠剤 Pが到着する時刻を求 めることができるので、 この到着時刻に同期して偏向を開始し、 錠剤 Pの移動速 度に同期して電子像の流れを偏向すればよい。 すなわち、 タイミング回路 2 0の 出力は、 錠剤 Pの位置に基づいて発生する所定のトリガ一であって、 このトリガ —に応じて前記偏向は開始される。
次に、 X線ゲート I · I 4 0について説明する。 図 2は、 X線ゲート I · I 4 0を示す断面図である。 X線ゲート I · 1 4 0は、 入射された X線像を電子像に 変換する X線電子変換面 4 2と、 電子像が入射すると蛍光を発する出力蛍光面 4 6とが、 ほぼ真空に減圧された容器 4 9に封入されて構成されている。 また、 容 器 4 9の内周には加速電極 4 8が設けられており、 この加速電極 4 8に印加する 電圧を制御することによって、 X線ゲート I · I 4 0のゲート制御を行うことが できる。 すなわち、 出力蛍光面 4 6側を高電位とすれば X線電子変換面 4 2から 出力蛍光面 4 6へ向かう電子像は加速され、 逆に出力蛍光面 4 6側を低電位とす れば X線電子変換面 4 2から出力蛍光面 4 6へ向かう電子像の流れは規制される。 次に、 X線検査システム 1 0の動作について説明する。 被測定物である錠剤 P はベルトコンベア 1 2に載置されて、 図 1における右方向に一定速度 Vで移動し ている。 錠剤 Pが発光ダイオード 3 2から第一フォトダイオード 3 4へ出力され た光を遮ると、 その時刻 (以下、 「第一遮光時刻」 という) が第一フォトダイォ ード 3 4からタイミング回路 2 0へ送信される。 さらに、 錠剤 Pがベルトコンペ ァ 1 2によって運搬されて発光ダイオード 3 2から第二フォトダイオード 3 6へ 出力された光を遮ると、 その時刻 (以下、 「第二遮光時刻」 という) が第ニフォ トダイオード 3 6からタイミング回路 2 0へ送信される。
タイミング回路 2 0は、 第ニフォトダイオード 3 6から送信された第二遮光時 刻に基づいて、 錠剤 Pの位置検知を行う。 すなわち、 ベルトコンベア 1 2の送り 速度 Vはあらかじめ決まっているので、 タイミング回路 2 0は、 第二遮光時刻と 第二遮光時刻からの経過時間とによって、 錠剤 Pの現在位置を算出することがで きる。そして、この位置情報、すなわち第二遮光時刻からの経過時間に基づいて、 タイミング回路 2 0はパルス X線電源 2 2、 偏向回路 2 4、 及び X線ゲート電源 2 6に夕ィミング信号を出力して制御する。
次に、 本実施形態の特徴である偏向コイル 4 4の制御について、 偏向コイル 4 4に導通させる偏向電流と電子軌道の関係を示す図 3 A、 図 3 B、 図 3 Cを参照 しながら説明する。 図 3 A、 図 3 B、 図 3 Cにおいては、 偏向電流の導通方向を 明確にするため偏向コイル 4 4を容器 4 0の内部に模式的に記載し、 また錠剤 P の移動する方向を X軸、 パルス X線源 1 4と X線ゲート I · I 4 0の X線電子変 換面 4 2の中心とを結ぶ直線を Y軸、 紙面の奥から手前に向かう軸を Z軸とし、 X軸、 Y軸、 及び Z軸の交点を原点 0としている。 そして図 3 A、 図 3 B、 図 3 Cは、 ベルトコンベア 1 2によって運搬される錠剤 Pが原点 0を通過する時の様 子を時系列的に示す図である。
図 3 Aに示されるように錠剤 Pが X軸の負領域 (図 3 Aにおける Y軸の上側) にある場合には、 錠剤 Pを透過した X線像は X線電子変換面 4 2上の X軸の負領 域に入射する。 X線電子変換面 4 2に X線像が入射すると、 X線電子変換面 4 2 から電子像が放出され、 放出された電子像は加速電極 4 8によって加速されて出 力蛍光面 4 6に入射する。 この過程において、 図 3 Aに示すように偏向コイル 4 4に図 3 Aにおける反時計周りの電流を導通させて、 Z軸方向の磁界 Bを発生さ せる。これによつて、 X線電子変換面 4 2から出力蛍光面 4 6へ向かう電子像は、 磁界 Bから口一レンツ力を受けて X軸方向にシフトし、 出力蛍光面 4 6のほぼ中 心に入射することになる。
図 3 Bに示されるように、 錠剤 Pが移動して錠剤 Pが原点 0に来た場合は、 錠 剤 Pの透過 X線像は X線電子変換面 4 2の中心に入射する。 この場合には磁界 B を発生させる必要はなく、 X線電子変換面 4 2から放出された電子像は、 そのま ま出力蛍光面 4 6の中央に入射される。
図 3 Cに示されるように、 さらに錠剤 Pが移動して X軸の正領域 (図 3 Aにお ける Y軸の下側) にある場合には、 錠剤 Pの透過 X線像は X線電子変換面 4 2上 の X軸の正領域に入射する。 この場合は、 図 3 Aに示す場合とは逆に偏向コイル 4 4に図 3 Cにおける時計周りの電流を導通させて、 Z軸の負方向の磁界 Bを発 生させることによって、 電子像を X軸の負方向へ偏向させて出力蛍光面 4 6のほ ぼ中央に電子像を入射させる。
図 3 A、 図 3 B、 図 3 Cに示すような磁界を発生させるため、 偏向コイル 4 4 に導通させる電流は、 図 3 A、 図 3 B、 図 3 Cにおける時計周り方向を +とする と、 図 4に示すようになる。 すなわち、 時刻 t 2に偏向コイル 4 4に—方向の電 流を導通させ、 錠剤 Pが原点 0に近づくに従って電流量を小さくする。 これは、 錠剤 Pが原点 0に近づくに従って偏向量を小さくするためである。 そして、 錠剤
Pが原点 0を通過する時刻 t 4に電流の方向を反転させ、 その後錠剤 Pが原点か ら離隔するに従って電流量を増加するように制御される。 そして、 時刻 t 6に電 流を 0にする。
この際に偏向コイル 4 4に導通させる電流の大きさは、 X線電子変換面 4 2か ら出力された電子像を偏向させて出力蛍光面 4 6の中心に X線透視像を形成する 大きさである。 従って、 偏向コイル 4 4に導通させる電流量は X線電子変換面 4
2に入射する透過 X線像の位置に応じて変化する。
ここで、 パルス X線源 1 4は点光源であるため、 X線電子変換面 4 2に投影さ れる透過 X線像の位置は、 X軸方向の錠剤 Pの位置だけではなく、 Y軸方向の位 置によっても変化する。
本実施形態では、 第二遮光時刻からの経過時間によつて錠剤 Pの X軸方向の位 置を算出することとしているが、 第一遮光時刻をも取得しているので、 錠剤 Pの Y軸方向の位置、 すなわちパルス X線源 1 4からの距離も検知することが可能で あり、 これによつて錠剤 Pを透過して X線電子変換面 4 2に入射される X線像の 位置及び移動速度を計算できる。 この点について、 図 5を参照して説明する。 図 5に示すように、 被測定物検知手段 3 0を構成する各要素の位置関係は、 第一フ オトダイォ一ド 3 4と第二フォトダイォ一ド 3 6が距離 dを隔てて錠剤 Pの移動 方向と平行に配置され、 2個のフォトダイオード 3 4、 3 6の各受光面をつなぐ 直線と発光ダイオード 3 2との距離は Dである。
この状態で第一遮光時刻と第二遮光時刻との間隔を A tとすれば、 その間の錠 剤 Pの移動距離は tである。 三角形の相似関係を利用して、 錠剤 Pの軌跡と 発光ダイオード 3 2との間隔 Xは、
X = D X V A t / d · · ·①
と算出される。 パルス X線源 1 4と X線ゲート I · 1 4 0とが、 図 5に示す発光 ダイオード 3 2とフォトダイオード 3 4、 3 6に対応する位置に配置されている とすれば、 X線電子変換面 4 2に入射する透過 X線像の移動速度 V ' は、
V, = V x O/X · · '②
であり、 ②に①を代入して、
V = ά/Δ t
と算出される。 この結果と第二遮光時刻からの経過時間とに基づいて、 錠剤 Pを 透過して X線電子変換面 4 2に入射する X線像の位置も算出でき、 偏向コイル 4 4に導通させる電流量を制御できる。
以上のように偏向コィル 4 4に導通させる電流を制御して、 電子軌道を偏向さ せる磁界 Bを発生させることによって、 錠剤 Pが原点 0を通過する際に出力蛍光 面 4 6に投影される X線透視像は、 常に出力蛍光面 4 6の中央に入射されること となり、 この間錠剤 Pの X線透視像は出力蛍光面 4 6の中央で静止して見える。 次に、 タイミング回路 2 0から X線電源 2 2、 偏向回路 2 4及び X線ゲート電 源 2 6に出力されるタイミング信号について説明する。 X線電源 2 2、 偏向回路 2 4及び X線ゲート電源 2 6は、 いずれも第二遮光時刻 t 0からの経過時間に基 づいて制御される。 図 6は、 それそれのタイミングを示すチャートである。
図 6に示すように、錠剤 Pが時刻 t 0に第二フォトダイオード 3 6で検知され、 第ニフォトダイオード 3 6からのタイミング回路 2 0への信号 7 0が O Nになる。 タイミング回路 2 0は、 ベルトコンベア 1 2の送り速度 Vが一定であることから 錠剤 Pが撮像範囲に入る時刻 t 3及び撮像範囲から逸脱する時刻 t 5を算出し、 タイミング回路 2 0は錠剤 Pが撮像範囲内にある場合に X線ゲート電源 2 6への タイミング信号 7 3を O Nし、 すなわち加速電極 4 8によって出力蛍光面 4 6側 が高電位となるように電圧を印加して錠剤 Pの X線透視像の撮像を行う。そして、 タイミング回路 2 0は、 時刻 t 3より前の時刻 t 1にタイミング回路 2 0から X 線電源 2 2へのタイミング信号 7 1を O Nにしてパルス X線源 1 4から X線を出 力し、 時刻 t 1と時刻 t 3との間にある時刻 t 2にタイミング回路 2 0から偏向 回路 2 4へのタイミング信号 7 2を O Nして偏向コイル 4 4に電流を導通させる。 このときのパルス X線源 1 4から出力される X線強度の変化及び偏向コイル 4 4を流れる電流の変化を図 7に示す。 X線強度 8 1は、 時刻 t 1にパルス X線源 1 4から出力された後、 急速に立ち上がって X線の最大強度付近でほぼ安定し、 X線出力を停止する時刻 t 7に向かって立ち下がる。 また、 偏向コイル 4 4を流 れる電流量 8 2は、 電流の流れ始めである時刻 t 2及び電流を停止する時刻 t 6 付近ではそれぞれ偏向歪みが生じるが、 基本的には時刻 t 2から時刻 t 6まで時 間軸に対して直線的に変化する。
上記のように、 パルス X線源 1 4から出力される X線は完全なパルス状ではな く、 X線出力の開始及び終了時に立ち上がり及び立ち下がり部分が存在し、 偏向 コイル 4 4を流れる電流にも偏向歪みが生じるため、 この間は正確な撮像を行う ことができない。
本実施形態の X線検査システムでは X線ゲート I · I 40を用い、 パルス X線 電源 14及び偏向コイル 44を流れる電流が安定した状態、 すなわち時刻 t 3か ら t 5の間に X線ゲート I · I 40のゲートを開いて錠剤 Pの X線透視像を撮像 している。 これにより、 図 7に示すように、 X線ゲート I · 140に入射される X線量 83は、 ほぼパルス状とすることができる。 また、 偏向電流 82について も偏向の始めと終わりに生じる偏向歪みを回避することができる。
上記のように制御されて X線ゲート I · I 40で取得された X線透視像は、 C CDカメラ 18で撮像されて処理判定装置 28に送信される。 処理判定装置 28 では、 撮像された X線透視像に基づいて、 錠剤 Pの選別等の処理を行う。
本実施形態の X線検査システム 10では、 X線ゲート I · I 40に偏向コイル 44を設け、 X線電子変換面 42から放出された電子像の軌道を偏向させて、 錠 剤 Pの位置に依らないで出力蛍光面 46のほぼ中央に結像させている。 これによ つて、 移動している錠剤 Pを出力蛍光面 46に静止させて撮像することができる ので、 錠剤 Pの移動速度が増加しても露光時間を確保することができ、 感度を高 めることができる。
この点について、 図 8に示す具体的な例に基づいて説明する。 まず、 図 8に示 す X線検査システム 10について説明すると、 錠剤 Pはベルトコンベア 12に載 置されて速度 1 (mZs) で図 8の右方向に移動している。 錠剤 Pはパルス X線 源 14と X線ゲート I · 140とを1 : 5に内分する線上を移動しているので、 X線ゲ一ト I · I 40の X線電子変換面 42に入射する錠剤 Pの透過 X線像は、 速度 5 (m/s) で図 8の右方向に移動している。
この場合に、 錠剤 Pを解像度 0. 5 (mm) で撮像するためには、 シャッター 時間丁が、
T二 0. 5 (mm) 7 (5000 (mm/s) ) =1/10000 (s) となるように X線ゲートを制御しなければならない。 しかし、 実際には 1 (ms) 以下のシャッ夕一時間での撮像は、 感度不足のため不可能である。
本実施形態の X線検査システム 1 0は、 X線電子変換面 4 2上で透過 X線像が、 例えば 1 0 (mm) 移動する間にわたって、 X線電子変換面 4 2から出力された 電子の軌道を偏向させ、 出力蛍光面 4 6上に静止させることができる。 これによ つて実質的に、
1 0 (mm) / 0 . 5 (mm) = 2 0 (倍)
の時間、 すなわち 2 (m s ) の十分な露光時間を得ることができる。
以上に具体的な例を挙げて示したように、 本実施形態の X線検査システム 1 0 は、 移動速度の大きい錠剤 Pを観察する際に解像度と感度の両方を確保すること ができる。
次に、 本発明の第 2実施形態について説明する。 図 9に示す第 2実施形態の X 線検査システム 5 0は、 第 1実施形態の X線検査システム 1 0と基本的な構成は 同一であるが、 パルス X線源 1 4に代えて X線源 5 2を用いている点が異なって いる。
第 2実施形態において、 X線源 5 2は連続的に O Nとし、 図 1 0に示すように タイミング回路 2 0は X線電源 2 2の制御を行わない。 すなわち、 図示しない電 源回路から X線電源 2 2に常に O Nの信号 7 1を入力する。 そして、 タイミング 回路 2 0は、 時刻 t 2に偏向回路 2 4へのタイミング信号 7 3を O Nし、 続いて 時刻 t 3に X線ゲート電源 2 6への夕ィミング信号 7 4を O Nして撮像を行う。 これにより、 タイミング回路 2 0による制御が容易になると共に、 X線を連続的 に出力しているので、 図 1 1に示すように X線ゲート I · 1 4 0から見て完全な パルス X線が得られる。
次に、 本発明の第 3実施形態について説明する。 図 1 2に示す第 3実施形態の X線検査システム 6 0は、 第 1実施形態の X線検査システム 1 0と基本的な構成 は同一であるが、 X線ゲート I · I 4◦に代えてゲート機能を有しない X線 I I 6 2を用いている点が異なっている。 第 3実施形態において、 X線 I I 6 2は連続的に O Nとし、 図 1 3に示すよう にタイミング回路 2 0は X線ゲートの制御を行わない。 すなわち、 図示しない電 源回路から X線ゲート電源 2 6に常に O Nの信号 7 3を入力する。 そして、 タイ ミング回路 2 0は時刻 t 1 1に偏向回路 2 4へのタイミング信号 7 2を O Nし、 続いて時刻 t 1 2に X線電源 2 2へのタイミング信号 7 1を O Nする。 これによ り、 タイミング回路 2 0による制御が容易になると共に、 図 1 4に示すように偏 向電流 8 2の歪みを避けることができる。
以上、 本発明の実施形態について詳細に説明してきたが、 本発明は上記実施形 態に限定されるものではない。
上記実施形態では、 錠剤 Pの被測定物検知手段 3 0として 1個の発光ダイォ一 ド 3 2と 2個のフォトダイオード 3 4、 3 6を組み合わせたものを用い、 これと 経過時間から錠剤 Pの位置を算出しているが、 錠剤 Pの位置が検知できるもので あれば上記実施形態に限定されない。 例えばビデオカメラで錠剤 Pを撮影して、 撮像範囲を通過する錠剤 Pの位置を解析することとしても良い。
また、 錠剤 Pの移動経路が狭い範囲に限定されている場合や、 錠剤 Pの移動経 路が X線ゲート I · I側に近接しており、 錠剤 Pの移動経路の変動によって X線 ゲート I · I上に投影される透過 X線像の移動速度が大きく変化しない場合には、 被測定物検知手段は 1個の発光ダイオードと 1個のフォトダイオードを組み合わ せたものでも良い。
上述の X線検査システムは、 被測定物 Pの通過経路を挟んで対向配置される X 線源 1 4及び X線像撮像器 4 0 ( 1 6, 1 8 ) を備えた X線検査システムにおい て、 X線像撮像器 4 0は X線電子変換材料 4 2及び X線電子変換材料 4 2に対向 配置された出力蛍光面 4 6を備え、 X線像撮像器 4 0は被測定物 Pの移動速度に 同期した速度で、 X線電子変換材料 4 0と出力蛍光面 4 6との間の電子像の流れ を偏向するものであった。
被測定物 Pの移動速度に同期した速度で、 X線電子変換材料 4 0と出力蛍光面 4 6との間の電子像の流れが偏向されるので、 被測定物 Pの撮像時間を長くする ことができ、 したがって、 必要な解像度と十分な感度の両方を実現することがで ぎる。
また、 上述の X線検査システムは、 被測定物 Pの位置に基づいて発生する所定 のトリガーに応じて偏向を開始するものであった。 すなわち、 X線源 1 4と X線 撮像器 4 0との間の空間に被測定物 Pが到着する時刻を求めることができるので、 この到着時刻に同期して偏向を開始し、 被測定物 Pの移動速度に同期して電子像 の流れが偏向された。 換言すれば、 タイミング回路 2 0の出力は、 被測定物 Pの 位置に基づいて発生する所定のトリガ一であって、 このトリガ一に応じて前記偏 向は開始される。
また、 上述の X線検査システムにおいては、 被測定物 Pの位置が非接触で検出 され、 検出された位置に基づいて、 前記トリガ一が発生されるものであった。 これは、 被測定物 Pの位置を物理的接触を利用して検出し、 検出された位置に 基づいて、 前記トリガ一を発生させる構成としてもよい。
図 1 5は、 このような構成の X線検査システムの説明図であり、 上述の実施形 態との変更点のみを示してある。 ベルトコンベア 1 2上の特定位置に被測定物 P が到達すると、 被測定物 Pにレバー Lが押され、 レバー Lの移動経路上に配置さ れたスィッチ Sがオンとなり、 これに同期してトリガー (偏向信号) が出力され る。
また、 上述の X線検査システムにおいて、 被測定物の位置を拘束する拘束手段 と、 拘束を解放する解放手段とを備え、 前記トリガーを前記解放動作から所定時 間経過後に発生させる構成としてもよい。
図 1 6は、 このような構成の X線検査システムの説明図であり、 上述の実施形 態との変更点のみを示してある。 ベルトコンベア 1 2上の特定位置に被測定物 P は拘束手段 (ストッパー S T P及びストッパー S T Pに固定されたァクチユエ一 夕 A C T ) によって拘束されており、 ァクチユエ一夕 A C Tが上方向に移動する とストッパーが解放し、 解放手段として機能する。 この解放動作はス夕一トコン トロ一ラ S CTからァクチユエ一夕 ACTに与えられるトリガ一によって行われ るが、 トリガ一は遅延回路 DLYを介して偏向信号として X線ゲート I · 140 に与えられる。 したがって、 偏向を開始させるトリガーは、 前記解放動作から所 定時間経過後に発生することとなる。 この所定時間は、 ベルトコンベア 12の移 動速度と撮影位置までの距離に基づいて予め算出されている。
また、 上述の X線検査システムにおいて、 被測定物 Pの位置とは独立に偏向を 行う構成としてもよい。
図 17は、 このような構成の X線検査システムの X線ゲート I · 140の偏向 コイル 44に与えられる偏向電流及びゲート信号のタイミングチャートである。 図 1のものとの相違点は、 偏向が被測定物の位置とは独立に行われる点である。 ベルトコンベア 12の速度 (正確には被測定物 Pの X線ゲ一ト I Iの光電面上で の X線像の速度) にあった、 偏向電流を偏向信号として偏向コイル 44に流すこ とにより、 常に静止画像を取りつづけることができる。 偏向電流は鋸波である。 鋸波の帰線区間 (ブランキング) は、 X線ゲート I · I 40のゲート信号をオフ とする。ゲ一ト信号がオフの場合、 X線撮像器の出力が禁止される。これにより、 更に鮮明な画像を得ることができる。また、出力像の撮像には、 NTSC方式(1 /30秒に 1コマ) に併せて、 被測定物 Pを当該間隔 (1/30秒) で移動させ るか、 任意に撮像時間が設定できる高速カメラを用いる。
また、 図 1, 図 2に示した X線検査システムにおいては、 X線撮像器は、 出力 蛍光面 46に対向配置された CCDカメラ 18を備えていたが、 被測定物 Pの位 置を自身の撮像機構、 すなわち、 CCDカメラ 18によって検出してもよい。 C CDカメラ 18から出力された画像の端部に被測定物 Pが掛かった場合、 この画 像を構成する映像信号が変化するので、この信号変化を検知し、偏向を開始する。 被測定物が X線ゲート I · I 40の中央部で撮像される位置に到達する時間、 移 動に同期した偏向速度は、ベルトコンベア 12の移動速度に基づいて演算できる。 また、 上述の X線検査システムにおいて、 前記トリガ一は、 被測定物 Pを目視 した作業者が偏向を開始するためのスィツチ (図 1におけるタイミング回路 2 0 に相当) をオンすることによって発生することとしてもよい。
また、 上述の X線検査システムにおいては、 ベルトコンベア一 1 2は一定の速 度で移動することとしたが、 これは一定でなくてもよい。 すなわち、 ベルトコン ベア一 1 2の速度をエンコーダ等でリアルタイムに検出すれば、 被測定物 Pの移 動速度に併せて上記偏向を行うこともできる。
以上の X線検査システムによれば、 偏向機能を有する X線撮像器を用いること によって、 移動している被測定物を高感度、 かつ解像度良く撮像することが可能 となる。
産業上の利用可能性
本発明は、 所定速度で移動する被測定物の X線透視像に基づいて該被測定物を 検査する X線検査システム、 特に、 ベルトコンベアなどで運搬される被測定物を 検査するィンライン非破壊検査装置に利用することができる。

Claims

請求の範囲
1 . 移動している被測定物に X線を照射する X線源と、
前記被測定物に対応した X線像が入射されると電子像に変換する X線電子変換 面、 及び前記 X線電子変換面から放出された前記電子像が入射されると共に入射 された前記電子像に対応して前記被測定物の X線透視像を出力する出力面を有す る X線撮像器と、
前記被測定物の位置を検知する位置検知手段と、
前記位置検知手段によって検知された前記被測定物の位置に基づいて、 前記 X 線電子変換面から前記出力面へ向かう前記電子像の流れを偏向して前記出力面上 の所定領域に前記電子像を結像させる偏向手段と、
を備えることを特徴とする X線検査システム。
2 . 前記 X線源は、 前記被測定物が前記 X線撮像器の撮像範囲にある場 合に X線を出力するパルス X線源であることを特徴とする請求の範囲第 1項記載 の X線検査システム。
3 . 前記 X線撮像器は、 前記 X線電子変換面と前記出力面との間に電圧 を印加することによって、 前記出力面へ向かう前記電子像の流れを規制する電極 をさらに備えることを特徴とする請求の範囲第 1項に記載の X線検査システム。
4 . 前記 X線撮像器は、 前記 X線電子変換面と前記出力面との間に電圧 を印加することによって、 前記出力面へ向かう前記電子像の流れを規制する電極 をさらに備え、
前記電極は、 前記パルス X線源から X線を出力した後に前記電子像の流れの規 制を解除し、 前記パルス X線源からの X線出力を停止する前に前記電子像の流れ を規制することを特徴とする請求の範囲第 2項に記載の X線検査システム。
5 . 前記 X線源は点光源であることを特徴とする請求の範囲第 1項に記 載の X線検査システム。
6 . 前記出力面は、 前記電子像が入射されることによって蛍光を発する 蛍光面であることを特徴とする請求の範囲第 1項に記載の X線検査システム。
7 . 前記位置検知手段は、
前記 X線撮像器の撮像範囲に到る前に、 前記被測定物を検知する被測定物検知 手段を備え、
前記被測定物検知手段による前記被測定物の検知と、 前記被測定物が検知され た時刻からの経過時間とに基づいて、 撮像範囲内の前記被測定物の位置を求める ことを特徴とする請求の範囲第 1項に記載の X線検査システム。
8 . 前記被測定物検知手段は、
前記被測定物に光を照射する 1個の発光素子と、
異なる地点に設けられると共に前記発光素子から出力された光を受光する 2個 の受光素子と、 を備え、
前記発光素子から前記各受光素子へ出力された光が前記被測定物によって遮ら れた時刻の時間間隔から、 前記被測定物の移動経路と前記発光素子との距離を検 知することを特徴とする請求の範囲第 7項に記載の X線検査システム。
9 . 被測定物通過経路を挟んで対向配置される X線源及び X線像撮像器 を備えた X線検査システムにおいて、 前記 X線像撮像器は X線電子変換材料及び 前記 X線電子変換材料に対向配置された出力蛍光面を備え、 前記 X線像撮像器は 前記被測定物の移動速度に同期した速度で、 前記 X線電子変換材料と前記出力蛍 光面との間の電子像の流れを偏向することを特徴とする X線検査システム。
1 0 . 前記被測定物の位置に基づいて発生する所定のトリガーに応じて前 記偏向を開始することを特徴とする請求の範囲第 9項に記載の X線検査システム。
1 1 . 前記被測定物の位置が非接触で検出され、 検出された位置に基づい て、 前記トリガ一は発生されることを特徴とする請求の範囲第 1 0項に記載の X 線検査システム。
1 2 . 前記被測定物の位置が物理的接触を利用して検出され、 検出された 位置に基づいて、 前記トリガーは発生されることを特徴とする請求の範囲第 1 0 項に記載の X線検査システム。
13. 前記被測定物の位置を拘束する拘束手段と、 前記拘束を解放する解 放手段とを備え、 前記トリガーは、 前記解放動作から所定時間経過後に発生され ることを特徴とする請求の範囲第 10項に記載の X線検査システム。
14. 前記被測定物の位置とは独立に偏向を行うことを特徴とする請求の 範囲第 9項に記載の X線検査システム。
15. 前記 X線撮像器は、 前記出力蛍光面に対向配置された CCDカメラ を備え、 前記 C C Dカメラによって前記被測定物の位置が検出されることを特徴 とする請求の範囲第 11項に記載の X線検査システム。
16. 前記トリガ一は、 前記被測定物を目視した作業者が前記偏向を開始 するためのスィツチをオンすることによって発生することを特徴とする請求の範 囲第 10項に記載の X線検査システム。
PCT/JP2001/002989 2000-04-06 2001-04-06 X-ray inspection system WO2001077653A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01919808A EP1281953B1 (en) 2000-04-06 2001-04-06 X-ray inspection system
AU2001246853A AU2001246853A1 (en) 2000-04-06 2001-04-06 X-ray inspection system
US10/257,004 US6876722B2 (en) 2000-04-06 2001-04-06 X-ray inspection system
JP2001574861A JP3513136B2 (ja) 2000-04-06 2001-04-06 X線検査システム
US11/020,038 US7356117B2 (en) 2000-04-06 2004-12-23 X-ray inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-105225 2000-04-06
JP2000105225 2000-04-06

Publications (1)

Publication Number Publication Date
WO2001077653A1 true WO2001077653A1 (en) 2001-10-18

Family

ID=18618632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002989 WO2001077653A1 (en) 2000-04-06 2001-04-06 X-ray inspection system

Country Status (5)

Country Link
US (2) US6876722B2 (ja)
EP (1) EP1281953B1 (ja)
JP (1) JP3513136B2 (ja)
AU (1) AU2001246853A1 (ja)
WO (1) WO2001077653A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2803394B1 (fr) * 1999-12-30 2003-04-25 Thomson Tubes Electroniques Systeme de detection d'image radiologique pour generateur de rayons x a balayage
WO2001077653A1 (en) * 2000-04-06 2001-10-18 Hamamatsu Photonics K.K. X-ray inspection system
US20050207655A1 (en) * 2004-03-22 2005-09-22 Nasreen Chopra Inspection system and method for providing feedback
US9141764B2 (en) 2010-11-12 2015-09-22 Edge Medical Properties, Llc System and method for online integrated multiple tablet ordering
US9334096B2 (en) 2004-10-01 2016-05-10 Edge Medical Properties, Llc Multiple inspection system and method that inspects different medications
US8123036B2 (en) 2004-10-01 2012-02-28 Edge Medical Properties, Llc Pill assembly for pill packaging and delivery systems
US9710866B2 (en) * 2005-09-30 2017-07-18 Edge Medical, Llc System and method for processing a multiple prescription order
US9238518B2 (en) 2004-10-01 2016-01-19 Edge Medical Properties, Llc Inspection system and method with a control process that inspects different medications
US10315450B1 (en) 2006-10-24 2019-06-11 Edge Medical Properties, Llc System and method for generating an integrated label for container housing multi-script pouches
US7289601B2 (en) * 2004-12-01 2007-10-30 Imascope Inc. Digital image collector for X-ray systems
US10435192B2 (en) 2011-05-16 2019-10-08 Edge Medical Properties, Llc Multiple inspection system and method that inspects different medications
JP6034786B2 (ja) * 2011-07-26 2016-11-30 富士フイルム株式会社 放射線撮影装置及びその制御方法、並びに放射線画像検出装置
JP6506356B2 (ja) * 2017-07-26 2019-04-24 ファナック株式会社 物品搬送システム及び搬送システム制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910085A (ja) * 1972-05-24 1974-01-29
JPS5348045B2 (ja) * 1974-03-06 1978-12-26
JPS63100360A (ja) * 1986-10-17 1988-05-02 Hitachi Medical Corp X線荷物検査装置
JPH10206352A (ja) * 1997-01-23 1998-08-07 Elco:Kk X線異物検査装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25118E (en) * 1957-11-26 1962-01-30 X-ray beam
US3758723A (en) * 1972-01-18 1973-09-11 Imagex Inc X-ray inspection system
US3917947A (en) * 1973-01-26 1975-11-04 Borden Inc Foreign particle detector
NL7402868A (nl) * 1974-03-04 1975-09-08 Philips Nv Teleivsie opneem-weergeefsysteem geschikt voor een kontinue en een kortdurende informatie-opname en voor een kontinue weergave.
US4076984A (en) * 1976-06-23 1978-02-28 Jury Vasilievich Gromov Introscope
JPS5852474B2 (ja) 1976-10-14 1983-11-22 三菱電機株式会社 鋼管溶断装置
JPS607292A (ja) * 1983-06-27 1985-01-16 Toshiba Corp 立体x線テレビ装置
US4736397A (en) * 1985-12-16 1988-04-05 Applied Intellegent Systems, Inc. Radiation image inspection apparatus
DE4005111A1 (de) * 1990-02-17 1991-08-22 Philips Patentverwaltung Roentgendiagnostikgeraet mit mitteln zur vergroesserten visuellen darstellung eines waehlbaren ausschnitts des gesamt-bildbereichs
US5194726A (en) * 1991-06-17 1993-03-16 U.S. Philips Corp. X-ray imaging system with observable image during change of image size
US5367552A (en) * 1991-10-03 1994-11-22 In Vision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
US5394455A (en) * 1993-04-30 1995-02-28 The Regents Of The University Of California Digitally aided microfluoroscopy and fluorospot system and method of using the same
JPH06311981A (ja) 1993-04-30 1994-11-08 Shimadzu Corp X線撮像装置
US5805663A (en) * 1997-05-08 1998-09-08 Futec, Inc. Radiation imaging method and system
DE19731346C2 (de) * 1997-06-06 2003-09-25 Lpkf Laser & Electronics Ag Leiterbahnstrukturen und ein Verfahren zu deren Herstellung
JP3854702B2 (ja) 1997-10-07 2006-12-06 浜松ホトニクス株式会社 X線検査システム
US6115449A (en) * 1998-10-10 2000-09-05 Nanotek Instruments, Inc. Apparatus for quantitative stereoscopic radiography
US6928145B2 (en) * 2000-02-01 2005-08-09 Canon Kabushiki Kaisha Radiographic apparatus
WO2001077653A1 (en) * 2000-04-06 2001-10-18 Hamamatsu Photonics K.K. X-ray inspection system
US6628745B1 (en) * 2000-07-01 2003-09-30 Martin Annis Imaging with digital tomography and a rapidly moving x-ray source
JP4110024B2 (ja) * 2003-03-31 2008-07-02 本田技研工業株式会社 小型車両におけるエンジンの燃料噴射装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910085A (ja) * 1972-05-24 1974-01-29
JPS5348045B2 (ja) * 1974-03-06 1978-12-26
JPS63100360A (ja) * 1986-10-17 1988-05-02 Hitachi Medical Corp X線荷物検査装置
JPH10206352A (ja) * 1997-01-23 1998-08-07 Elco:Kk X線異物検査装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1281953A4 *

Also Published As

Publication number Publication date
US6876722B2 (en) 2005-04-05
EP1281953B1 (en) 2012-08-01
US20030142784A1 (en) 2003-07-31
US7356117B2 (en) 2008-04-08
EP1281953A1 (en) 2003-02-05
JP3513136B2 (ja) 2004-03-31
EP1281953A4 (en) 2005-12-21
US20050100130A1 (en) 2005-05-12
AU2001246853A1 (en) 2001-10-23

Similar Documents

Publication Publication Date Title
WO2001077653A1 (en) X-ray inspection system
JP3145486B2 (ja) イメージングフローサイトメータ
KR900008385B1 (ko) X선 노출용 마스크의 회로 패턴에서 결함을 검출하는 방법 및 장치
KR100731455B1 (ko) X선 발생 장치, x선 촬상 장치 및 x선 검사 시스템
US7301620B2 (en) Inspecting apparatus, image pickup apparatus, and inspecting method
WO2002023581A1 (fr) Appareil pour inspection de masque
CN114543987A (zh) 确定靶在极紫外光源中的移动性质
WO2016147255A1 (ja) ターゲット撮像装置及び極端紫外光生成装置
JP2004257884A (ja) X線異物検査方法及び装置
JP2696471B2 (ja) 基板半田付け状態検査装置
TWI275899B (en) Imaging system and method for capturing images of a moving object
JPH0465490B2 (ja)
US20230175985A1 (en) Inspection device
US20230042588A1 (en) Imaging unit, mass spectrometer, and mass spectrometry method
JP2001004559A (ja) X線検査装置
JP6193608B2 (ja) 検査装置および検査用画像データの生成方法
WO2023228482A1 (ja) 放射線検出装置、放射線検出システム、及び放射線検出方法
US11742171B2 (en) Method for imaging a sample
US20240280711A1 (en) Radiation detector, trigger signal generator, and radiation analyzing system
JP2709959B2 (ja) イメージセンサ素子の感度補正方法
JP2001227932A (ja) マスク検査装置
JP2816388B2 (ja) 電子線装置
JPS597270A (ja) 電子ビ−ムを用いた試料電位測定装置
JPH04361162A (ja) 速度分布測定装置
JPH0465775A (ja) 容器内液体中の異物検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 574861

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10257004

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001919808

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001919808

Country of ref document: EP