WO2016147255A1 - ターゲット撮像装置及び極端紫外光生成装置 - Google Patents

ターゲット撮像装置及び極端紫外光生成装置 Download PDF

Info

Publication number
WO2016147255A1
WO2016147255A1 PCT/JP2015/057502 JP2015057502W WO2016147255A1 WO 2016147255 A1 WO2016147255 A1 WO 2016147255A1 JP 2015057502 W JP2015057502 W JP 2015057502W WO 2016147255 A1 WO2016147255 A1 WO 2016147255A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
target
shutter
light
imaging
Prior art date
Application number
PCT/JP2015/057502
Other languages
English (en)
French (fr)
Inventor
裕計 細田
隆之 薮
秀往 星野
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2015/057502 priority Critical patent/WO2016147255A1/ja
Priority to PCT/JP2016/056804 priority patent/WO2016147910A1/ja
Priority to JP2017506452A priority patent/JP6689255B2/ja
Publication of WO2016147255A1 publication Critical patent/WO2016147255A1/ja
Priority to US15/671,691 priority patent/US10141186B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/006X-ray radiation generated from plasma being produced from a liquid or gas details of the ejection system, e.g. constructional details of the nozzle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Definitions

  • the present disclosure relates to an apparatus for generating extreme ultraviolet (EUV) light.
  • EUV extreme ultraviolet
  • an extreme ultraviolet (EUV) light generation device that generates extreme ultraviolet (EUV) light with a wavelength of about 13 nm and a reduced projection reflection optical system (Reduced Projection Reflective Optics) are provided to meet the demand for fine processing of 32 nm or less.
  • EUV extreme ultraviolet
  • Reduced Projection Reflective Optics Reduced Projection Reflective Optics
  • an LPP Laser Produced Plasma
  • DPP discharge
  • Three types of devices have been proposed: a Produced (Plasma) system and an SR (Synchrotron Radiation) system using orbital radiation.
  • Patent application publication 2007-528607 Patent Application Publication No. 2014-175474 International Patent Application PCT / JP2014 / 074594
  • a target imaging device detects passage of a droplet output from a target supply unit as a target in a predetermined region where extreme ultraviolet light is generated, and detects the passage of the droplet.
  • a droplet detector that outputs a detection signal to the light source, an illumination light source that illuminates the droplet detected by the droplet detector, and reflected light from the droplet that has been irradiated with the illumination light.
  • An image sensor that picks up the image of the droplet by receiving light, a shutter device that includes a shutter that switches propagation and blocking of the light including the reflected light to the image sensor, and an exposure signal that causes the image sensor to perform imaging
  • a shutter for opening and closing the shutter is operated. And it outputs the jitter-off signal, and a control unit for multiple exposure on the imaging device the light reflected from the droplet may be provided.
  • An extreme ultraviolet light generation apparatus includes a chamber in which a target supplied to an internal plasma generation region is converted into plasma by irradiation with laser light to generate extreme ultraviolet light, and the target is used as a droplet.
  • a target supply unit that supplies the target to the plasma generation region by outputting into the chamber, and the target supply unit in a direction substantially perpendicular to the droplet trajectory output from the target supply unit.
  • a target stage to be moved; a droplet detector that detects passage of the droplet between the target supply unit and the plasma generation region; and outputs a detection signal each time passage of the droplet is detected; Illuminating the droplet detected by the droplet detector.
  • An illumination light source that irradiates light, an image sensor that receives the reflected light from the droplet caused by the irradiation of the illumination light, and images the droplet; and light that includes the reflected light to the image sensor
  • a shutter device that includes a shutter that switches between propagation and blocking, and an exposure signal that causes the imaging device to perform imaging, and when the detection signal is input while the exposure signal is being output, opens and closes the shutter.
  • a control unit that outputs a shutter opening / closing signal for causing the reflected light from the droplet to be subjected to multiple exposure on the imaging device, and controlling the target stage based on the multiple exposure image output from the imaging device; , May be provided.
  • An extreme ultraviolet light generation apparatus includes a chamber that generates extreme ultraviolet light by irradiating a target supplied to an internal plasma generation region with laser light to generate plasma, and the laser light
  • a laser device for outputting, a target supply unit for supplying the target as a droplet to the plasma generation region, and the target supply unit in a direction substantially perpendicular to the trajectory of the droplet output from the target supply unit
  • a droplet detector that detects the passage of the droplet between the target stage that moves the target, the target supply unit, and the plasma generation region, and outputs a detection signal each time passage of the droplet is detected
  • illumination light on the droplets detected by the droplet detector An illumination light source to irradiate, an image sensor that receives reflected light from the droplet caused by the irradiation of the illumination light and images the droplet, and propagation of light including the reflected light to the image sensor;
  • a shutter device including a shutter for switching off, a trigger signal for outputting a laser beam to the laser device based on the
  • FIG. 1 schematically illustrates the configuration of an exemplary LPP EUV light generation system.
  • FIG. 2 shows a partial configuration of the EUV light generation apparatus including the target imaging apparatus.
  • FIG. 3A is a diagram for explaining a configuration of a droplet detector included in the EUV light generation apparatus shown in FIG.
  • FIG. 3B is a diagram for explaining the configuration of the illumination light source unit of the orbital imaging unit provided in the EUV light generation apparatus shown in FIG.
  • FIG. 3C is a diagram for explaining the configuration of the imaging unit of the orbital imaging unit provided in the EUV light generation apparatus shown in FIG.
  • FIG. 1 schematically illustrates the configuration of an exemplary LPP EUV light generation system.
  • FIG. 2 shows a partial configuration of the EUV light generation apparatus including the target imaging apparatus.
  • FIG. 3A is a diagram for explaining a configuration of a droplet detector included in the EUV light generation apparatus shown in FIG.
  • FIG. 3B is a diagram for explaining the configuration of the illumination light source unit of the orbital
  • FIG. 4A shows a time chart relating to the image acquisition of the droplet in the control unit shown in FIG.
  • FIG. 4B shows an example of an image of a droplet imaged by the imaging unit of the trajectory imaging unit shown in FIG.
  • FIG. 5A shows an example of an image of a droplet imaged by the imaging unit of the trajectory imaging unit shown in FIG.
  • FIG. 5B shows a time chart relating to acquisition of an image of a droplet in the control unit shown in FIG. 2 during a burst operation.
  • FIG. 5C illustrates an example of a droplet image captured by the imaging unit of the orbital imaging unit illustrated in FIG. 2 during the burst operation.
  • FIG. 6 is a diagram for explaining the configuration of the imaging unit of the orbit imaging unit included in the EUV light generation apparatus according to the first embodiment.
  • FIG. 7A shows a time chart relating to acquisition of an image of a droplet in the control unit of the EUV light generation apparatus according to the first embodiment.
  • FIG. 7B illustrates an example of a droplet image captured by the imaging unit of the trajectory imaging unit illustrated in FIG. 6.
  • FIG. 8 is a diagram for explaining the configuration of the imaging unit of the trajectory imaging unit in the first modification of the first embodiment.
  • FIG. 9 is a diagram for explaining the configuration of the imaging unit of the trajectory imaging unit in Modification 2 of the first embodiment.
  • FIG. 10 is a diagram for explaining the configuration of the trajectory imaging unit in the third modification of the first embodiment.
  • FIG. 7A shows a time chart relating to acquisition of an image of a droplet in the control unit of the EUV light generation apparatus according to the first embodiment.
  • FIG. 7B illustrates an example of a droplet image captured by the imaging
  • FIG. 11 is a diagram for explaining a configuration of an EUV light generation apparatus including a trajectory imaging unit according to the second embodiment.
  • FIG. 12A is a diagram for explaining a configuration of an EUV light generation apparatus including a trajectory imaging unit according to the third embodiment.
  • FIG. 12B shows an example of an image of a droplet imaged by the imaging unit of the trajectory imaging unit shown in FIG. 12A.
  • FIG. 13A shows a configuration of an image intensifier unit as an example of a shutter device.
  • FIG. 13B shows a configuration of an image intensifier unit as an example of a shutter device.
  • FIG. 14 is a block diagram illustrating a hardware environment of each control unit.
  • Orbital imaging unit included in EUV light generation apparatus includes modification 3 of the first embodiment 9.1 Configuration 9.2 Operation 10. 10. Orbit imaging unit included in EUV light generation apparatus of second embodiment 10.1 Configuration 10.2 Operation 10.3 Operation 11. 11. Orbital imaging unit included in EUV light generation apparatus according to the third embodiment 11.1 Configuration 11.2 Operation 12. Shutter device 12.1 Image intensifier unit 12.2 PLZT polarization shutter 13. Hardware environment of each control unit
  • the target imaging device 40 detects the passage of the droplet 271 output from the target supply unit 26 as the target 27 in a predetermined region where extreme ultraviolet light is generated, and each time the passage of the droplet 271 is detected.
  • a droplet detector 41 that outputs a detection signal, an illumination light source 421a that irradiates illumination light to the droplet 271 detected by the droplet detector 41, and reflected light from the droplet 271 that is irradiated with the illumination light
  • An image sensor 422a that receives the light and images the droplet 271; a shutter device 422d that includes a shutter that switches between propagation and blocking of light including reflected light to the image sensor 422a; and an exposure signal that causes the image sensor 422a to perform imaging.
  • the jitter outputs a shutter closing signal for opening and closing may include a control unit 8A to multiple exposure on the imaging device 422a reflected light from the target 27. Therefore, the target imaging device 40 according to the present disclosure can acquire an image of the droplet 271 that does not include plasma light while performing multiple exposure of images of a plurality of different droplets 271 near the plasma generation position. For this reason, the control unit 8A can improve the accuracy of the trajectory control of the droplet 271 based on the image acquired by the imaging element 422a.
  • the “target” is an object to be irradiated with laser light introduced into the chamber.
  • the target irradiated with the laser light is turned into plasma and emits EUV light.
  • a “droplet” is a form of target supplied into the chamber.
  • “Plasma light” is radiation light emitted from a plasma target. The emitted light includes EUV light.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • the EUV light generation apparatus 1 may be used together with at least one laser apparatus 3.
  • a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26.
  • the chamber 2 may be sealable.
  • the target supply unit 26 may be attached so as to penetrate the wall of the chamber 2, for example.
  • the material of the target substance supplied from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • a window 21 may be provided in the through hole, and the pulse laser beam 32 output from the laser device 3 may pass through the window 21.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 may have first and second focal points.
  • On the surface of the EUV collector mirror 23, for example, a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed.
  • the EUV collector mirror 23 is preferably arranged such that, for example, the first focal point thereof is located in the plasma generation region 25 and the second focal point thereof is located at the intermediate focal point (IF) 292.
  • a through hole 24 may be provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 may pass through the through hole 24.
  • the EUV light generation apparatus 1 may include an EUV light generation control unit 5, a target sensor 4, and the like.
  • the target sensor 4 may have an imaging function, and may be configured to detect the presence, trajectory, position, speed, and the like of the target 27.
  • the EUV light generation apparatus 1 may include a connection unit 29 that allows the inside of the chamber 2 and the inside of the exposure apparatus 6 to communicate with each other.
  • a wall 291 in which an aperture 293 is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
  • the laser beam traveling direction control unit 34 may include an optical element for defining the traveling direction of the laser beam and an actuator for adjusting the position, posture, and the like of the optical element.
  • the pulsed laser beam 31 output from the laser device 3 may pass through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enter the chamber 2.
  • the pulse laser beam 32 may travel through the chamber 2 along at least one laser beam path, be reflected by the laser beam collector mirror 22, and be irradiated to the at least one target 27 as the pulse laser beam 33.
  • the target supply unit 26 may be configured to output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 may be irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the pulse laser beam is turned into plasma, and EUV light 251 can be emitted from the plasma along with the emission of light of other wavelengths.
  • the EUV light 251 may be selectively reflected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be condensed at the intermediate condensing point 292 and output to the exposure apparatus 6.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation controller 5 may be configured to control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may be configured to process image data of the target 27 imaged by the target sensor 4.
  • the EUV light generation controller 5 may perform at least one of timing control for outputting the target 27 and control of the output direction of the target 27, for example.
  • the EUV light generation control unit 5 performs at least one of, for example, control of the oscillation timing of the laser device 3, control of the traveling direction of the pulse laser light 32, and control of the focusing position of the pulse laser light 33. Also good.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • EUV light generation apparatus including target imaging device [4.1 Configuration: Overall]
  • the configuration of the EUV light generation apparatus 1 including the target imaging apparatus 40 will be described with reference to FIG. 2 may be a configuration of the target imaging unit 40 corresponding to the target supply unit 26 and the target sensor 4 in the EUV light generation apparatus 1 shown in FIG. Note that the chamber 2 is not shown in FIG.
  • the target supply unit 26 may be placed on the target stage 74.
  • the target stage 74 may be a biaxial stage that moves the target supply unit 26 with respect to the chamber 2.
  • the target stage 74 may be a stage that moves the target supply unit 26 in the X-axis direction and the Z-axis direction.
  • the target supply unit 26 may be configured to output a droplet-shaped target 27 through the nozzle 262 toward the plasma generation region 25.
  • the moving path of the target 27 that moves from the nozzle 262 to the plasma generation region 25 may be a droplet trajectory F.
  • the target imaging device 40 may include a droplet detector 41, a trajectory imaging unit 42, and a control unit 8.
  • the droplet detector 41 and the trajectory imaging unit 42 may be disposed in the chamber 2.
  • the droplet detector 41 may be disposed on the droplet trajectory F.
  • the droplet detector 41 may be arranged on the downstream side in the moving direction of the target 27 with respect to the nozzle 262.
  • the orbit imaging unit 42 may be disposed between the droplet detector 41 and the plasma generation region 25.
  • the trajectory imaging unit 42 may be arranged on the droplet trajectory F so as to image the target 27 passing through the region upstream of the plasma generation region 25 in the moving direction of the target 27.
  • the imaging region by the trajectory imaging unit 42 may be a region away from the plasma generation region 25 to the 17 mm target supply unit 26 side.
  • the trajectory imaging unit 42 may be arranged to image the target 27 from a direction substantially orthogonal to the droplet trajectory F, such as the X-axis direction in the drawing.
  • the control unit 8 may be connected to the droplet detector 41, the orbit imaging unit 42, the target stage 74, the EUV light generation control unit 5, and the laser device 3.
  • the configuration of the droplet detector 41 will be described with reference to FIG. 3A.
  • the droplet detector 41 may include a line beam light source unit 411 and a light receiving unit 412.
  • the line beam light source unit 411 and the light receiving unit 412 may be arranged so as to face each other across the droplet trajectory F that is the trajectory of the droplet 271 as one form of the target 27.
  • the line beam light source unit 411 and the light receiving unit 412 may be installed through windows 411c and 412c arranged on the chamber wall 2a, respectively.
  • the line beam light source unit 411 may be configured to output a line beam.
  • the line beam light source unit 411 may be arranged so that the output line beam intersects the target trajectory F.
  • the line beam light source unit 411 may include a light source 411a such as a CW laser, a high-intensity lamp, and an LED, and a line beam optical system 411b including a cylindrical lens.
  • the light receiving unit 412 may be arranged so that the line beam output from the line beam light source unit 411 is incident through the target trajectory F.
  • the light receiving unit 412 may include a light receiving optical system 412b and a light receiving element 412a including a line sensor such as a photodiode array.
  • the light receiving element 412a may be connected to the control unit 8.
  • the light receiving element 412a may receive the line beam output from the line beam light source unit 411 via the light receiving optical system 412b.
  • the configuration of the trajectory imaging unit 42 will be described with reference to FIGS. 3B and 3C.
  • the trajectory imaging unit 42 may include an illumination light source unit 421 illustrated in FIG. 3B and an imaging unit 422 illustrated in FIG. 3C.
  • the illumination light source unit 421 may be configured to irradiate the droplet 271 with illumination light through a window 421c disposed on the chamber wall 2a.
  • the illumination light source unit 421 may include an illumination light source 421a and an illumination optical system 421b.
  • the illumination light source 421a may be a laser, an LED, or the like.
  • the imaging unit 422 is arranged such that the reflected light reflected by the droplet 271 from the illumination light source unit 421 enters through the window 422c arranged on the chamber wall 2a. It's okay.
  • the imaging unit 422 may include an imaging element 422a and an imaging optical system 422b.
  • the image sensor 422a may include a CCD that can capture a two-dimensional image.
  • the image sensor 422a may be connected to the control unit 8.
  • FIG. 4A is a time chart related to the control of the control unit 8 shown in FIG. 2, and is a time chart when the image measurement of the droplet 271 before reaching the plasma generation region 25 is performed.
  • the EUV light generation control unit 5 may output the droplet 271 from the target supply unit 26 toward the plasma generation region 25. Thereafter, the droplet 271 can pass the line beam output from the line beam light source unit 411. Note that the target supply unit 26 may output the droplets 271 at an interval of 10 ⁇ S, for example.
  • the light receiving unit 412 corresponds to the detection of the droplet 271 as shown in FIG. A detection signal may be output.
  • the control unit 8 may output an exposure signal to the imaging unit 422 of the trajectory imaging unit 42.
  • the control unit 8 may output an exposure signal to the imaging unit 422 of the trajectory imaging unit 42 without being based on whether or not a detection signal is input.
  • the imaging unit 422 may start imaging when an exposure signal is input.
  • the control unit 8 may output a trigger signal for instructing laser oscillation to the laser device 3 at a timing delayed by a predetermined delay time TL from the timing at which the detection signal is input.
  • the delay time TL is determined so that when the droplet 271 corresponding to the detection signal reaches the plasma generation region 25, the laser beam output from the laser device 3 is irradiated to the droplet 271. You can leave.
  • the laser device 3 may output the pulse laser beam 31 when a trigger signal is input.
  • the pulse laser beam 31 may irradiate the droplet 271 via the laser beam traveling direction control unit 34 and the laser beam collector mirror 22. Thereby, plasma light can be generated.
  • the control unit 8 may stop outputting the exposure signal after a predetermined time has elapsed since the exposure signal was output.
  • an exposure time is defined as a predetermined time from when the output of the exposure signal is started until the output of the exposure apparatus is stopped.
  • the exposure time may be several milliseconds.
  • the exposure time may be 8 mS, for example.
  • the imaging unit 422 of the orbital imaging unit 42 may multiplex-expose images of a plurality of droplets 271 irradiated with illumination light from the illumination light source unit 421 while an exposure signal is input.
  • the control unit 8 may output an image readout signal to the imaging unit 422 in order to read an image from the imaging unit 422.
  • the control unit 8 may acquire the image output from the imaging unit 422.
  • FIG. 4B shows an example of an image that the control unit 8 can acquire from the imaging unit 422.
  • the image shown in FIG. 4B can be, for example, an integrated image of droplets 271 that have passed through a circular illumination range. For this reason, the trajectory of an elliptical or linear droplet 271 can be included in the image.
  • the control unit 8 may calculate the trajectory position of the droplet 271 based on the image acquired from the imaging unit 422.
  • the acquired image can be, for example, an image including an ellipse or a line indicating the locus of the droplet 271 as shown in FIG. 4B.
  • the control unit 8 may calculate the center position of the ellipse or line on the image coordinates.
  • the control unit 8 may recognize the calculated center position of the trajectory of the droplet 271 as the actual trajectory position of the droplet 271.
  • the control unit 8 may move the target stage 74 based on the certified actual trajectory position so that the droplet 271 passes through the desired plasma generation position.
  • the control unit 8 sets the trajectory that the droplet 271 should pass based on the position information of the plasma generation position designated in advance from the exposure apparatus 6 via the EUV light generation control unit 5 as shown in FIG.
  • the trajectory position specified by the image coordinates may be calculated.
  • the control unit 8 moves the target stage 74 on the image coordinates based on the difference between the trajectory position specified by the droplet 271 to pass and the actual trajectory position of the droplet 271 actually obtained.
  • the plasma generation position designated by the exposure apparatus 6 may be a specific spatial position in the plasma generation region 25.
  • the Z direction may correspond to the horizontal direction on the image of FIG. 4B acquired by the imaging unit 422. For this reason, when an image as shown in FIG. 4B is acquired, the target stage 74 may be moved in the Z direction. At this time, the amount of movement of the target stage 74 may be determined based on the magnification of the image shown in FIG. 4B and the number of difference pixels.
  • the trajectory of the droplet 271 can be controlled by moving the target stage 74 using the image acquired by the trajectory imaging unit 42. For this reason, plasma can be stably generated at a desired plasma generation position designated by the exposure apparatus 6.
  • the trajectory imaging unit 42 should perform imaging at the timing when the droplet 271 to be imaged has moved to a position close to the plasma generation region. There may be a request for.
  • the distance between the droplet 271 to be imaged and the plasma generation region 25 can be, for example, several tens to several hundreds ⁇ m.
  • the imaging region of the orbit imaging unit 42 can be a region including the plasma generation region 25 in the imaging region. For this reason, as shown in FIG. 5A, an image of plasma light may be reflected in the image acquired by the trajectory imaging unit 42. For this reason, calculation of the actual orbital position of the droplet 271 may be difficult due to the influence of the image of the plasma light.
  • the burst operation may be an operation in which the EUV light generation apparatus 1 repeats a burst light emission period in which EUV light is continuously generated and a burst pause period in which EUV light is not generated.
  • the burst operation may be frequently used when the exposure apparatus 6 performs wafer exposure.
  • control of the control unit 8 included in the EUV light generation apparatus 1 on the premise of the burst operation will be described with reference to FIGS. 5B and 5C.
  • the description of the same configuration, control and operation as those of the EUV light generation apparatus 1 shown in FIGS. 2, 3A to 3C and 4A to 4B is omitted.
  • the arrangement of the trajectory imaging unit 42 which is a premise of the control illustrated in FIGS. 5B and 5C may be an arrangement when the distance between the droplet 271 to be imaged and the plasma generation region 25 is short.
  • FIG. 5B is a time chart related to the control of the control unit 8 accompanied by a burst operation, and is a time chart when performing image measurement of the droplet 271 that has reached the vicinity of the plasma generation region 25.
  • the control unit 8 may receive a burst signal from the exposure apparatus 6 via the EUV light generation control unit 5.
  • the burst signal may be a signal output from the exposure apparatus 6 during the burst light emission period, as shown in FIG. 5B.
  • the burst signal may be a signal that designates a burst light emission period and a burst pause period, for example.
  • the control unit 8 may output a trigger signal at the timing when both the detection signal from the light receiving unit 412 of the droplet detector 41 and the burst signal from the exposure apparatus 6 are input. For this reason, the laser apparatus 3 can output a laser beam only during the burst emission period.
  • the control unit 8 may output the exposure signal only during the burst pause period. For this reason, the orbit imaging unit 42 can image the droplet 271 only in the burst pause period in which plasma light is not emitted. Note that the timing of outputting the exposure signal may or may not be synchronized with the timing of inputting the detection signal.
  • the trajectory imaging unit 42 can prevent imaging during the burst light emission period. For this reason, the orbit imaging unit 42 can suppress the imaging of the plasma light. Therefore, for example, as shown in FIG. 5C, the trajectory imaging unit 42 can acquire an image of the droplet 271 that does not include plasma light.
  • the trajectory of the droplet 271 can be controlled only during the burst pause period. For this reason, during the generation of plasma light, the control of the trajectory of the droplet 271 can be in an uncontrolled state. Therefore, even if the trajectory of the droplet 271 fluctuates during the emission of plasma light, the trajectory of the droplet 271 cannot be controlled, and the stability of the operation of the EUV light generation apparatus 1 is reduced. It was.
  • FIG. 6 is a diagram for explaining the configuration of the imaging unit 422A in the orbit imaging unit 42A included in the EUV light generation apparatus 1.
  • the imaging unit 422A in the first embodiment may include a shutter device 422d.
  • the shutter device 422d may be adjacent to the light receiving surface of the image sensor 422a.
  • Other configurations of the imaging unit 422A of the first embodiment may be the same as the configuration of the imaging unit 422 illustrated in FIG. 3C. In the configuration of the imaging unit 422A of the first embodiment, the description of the same configuration as the imaging unit 422 illustrated in FIG. 3C is omitted.
  • the imaging unit 422A in the orbit imaging unit 42A may include a shutter device 422d as shown in FIG.
  • the shutter device 422d may be disposed between the image sensor 422a and the imaging optical system 422b.
  • the shutter device 422d may be connected to the control unit 8A.
  • the shutter device 422d may be, for example, an image intensifier unit (IIU) described later.
  • the imaging region of the orbit imaging unit 42A may be a region including the plasma generation region 25 in the imaging region.
  • the imaging timing of the droplet 271 by the orbit imaging unit 42A may be a timing at which the distance between the droplet 271 to be imaged and the plasma generation region 25 is, for example, a distance of several tens to several hundreds of ⁇ m.
  • Control of the control unit 8A included in the EUV light generation apparatus 1 according to the first embodiment will be described with reference to FIGS. 7A and 7B.
  • the description of the same configuration, control, and operation as those of the EUV light generation apparatus 1 shown in FIGS. 2, 3A to 3C, and 4A to 4B is omitted. To do.
  • FIG. 7A is a time chart relating to the control of the control unit 8A according to the first embodiment, and is a time chart in the case of performing image measurement of the droplet 271 that has reached the vicinity of the plasma generation region 25.
  • control unit 8A may output a shutter open / close signal to the shutter device 422d at a timing delayed by a predetermined delay time TS.
  • the predetermined delay time TS may be determined so that the shutter open / close signal is output several ⁇ S before the plasma generation timing corresponding to the detection signal when the droplet 271 is detected.
  • the predetermined delay time TS may be determined so that the shutter open / close signal is output, for example, 0.2 to 7 ⁇ S before the plasma generation timing.
  • the shutter open / close signal may be a signal for instructing to open the shutter of the shutter device 422d in order to propagate the reflected light from the droplet 271 to the image sensor 422a and to close the shutter to block the reflected light.
  • the shutter open / close signal may be a signal for opening the shutter provided in the shutter device 422d for several ⁇ S, and may be a signal for opening the shutter for about 7 ⁇ S, for example.
  • the shutter opening / closing signal may be a signal for closing the shutter provided in the shutter device 422d at the timing when several ⁇ S has elapsed since the instruction to open the shutter provided in the shutter device 422d has elapsed. For this reason, as shown in FIG.
  • the shutter provided in the shutter device 422d can be in a closed state when plasma light is emitted.
  • the speed of the shutter opening operation and the speed of the shutter closing operation in the shutter device 422d may be an operation speed that is several hundred nS or less.
  • control unit 8A may output an exposure signal to the imaging unit 422A of the orbit imaging unit 42A prior to outputting the shutter opening / closing signal.
  • the controller 8A may start outputting the exposure signal between the input of the detection signal and the output of the shutter open / close signal.
  • the imaging unit 422A may start imaging when the exposure signal output from the control unit 8A is input.
  • the imaging element 422a of the imaging unit 422A can acquire an image while the shutter of the shutter device 422d is open.
  • the controller 8A may output a trigger signal to the laser device 3 by adding a predetermined delay time TL to the detection signal, as shown in FIG. 7A.
  • the laser device 3 may output the pulse laser beam 31 when a trigger signal is input.
  • the pulse laser beam 31 may irradiate the droplet 271 via the laser beam traveling direction control unit 34 and the laser beam collector mirror 22. For this reason, plasma light can be generated.
  • the control unit 8A detects the output of the shutter open / close signal to the shutter device 422d based on the input of the detection signal of the droplet 271 while outputting the exposure signal to the image sensor 422a. It may be performed each time a signal is input. Alternatively, the shutter opening / closing signal may be output to the shutter device 422d only during the burst emission period based on the input of the trigger signal.
  • the image sensor 422a may capture different droplets 271 each time the shutter of the shutter device 422d is opened while the exposure signal is input.
  • the image sensor 422a may perform multiple exposure of the images of the plurality of droplets 271 illuminated by the illumination light source unit 421 while the exposure signal is input.
  • the image sensor 422a may multiplex-expose an image for the time during which the shutter device 422d is open.
  • the imaging element 422a is in a state in which the shutter of the shutter device 422d is closed while the plasma light is being emitted, so that the plasma light can be prevented from entering.
  • the output of the shutter opening / closing signal to the shutter device 422d may be performed based on the input of two detection signals by two different droplets.
  • the shutter may be opened based on the detection signal of the preceding droplet, and the shutter may be closed based on the detection signal of the subsequent droplet.
  • the control unit 8A may output an image readout signal for reading out an image from the image sensor 422a after stopping the output of the exposure signal.
  • the control unit 8A may acquire the image output from the image sensor 422a.
  • the control unit 8A can acquire an image as shown in FIG. 7B, for example.
  • the control unit 8A can be used for controlling the trajectory of the droplet 271 using the acquired image, similarly to the case of the image shown in FIG. 4B.
  • the orbit imaging unit 42A of the first embodiment it is possible to suppress the plasma light generated in the plasma generation region 25 from entering the imaging element 422a by the operation of the shutter device 422d. Further, the orbit imaging unit 42A can image the droplet 271 located near the plasma generation position. The orbital imaging unit 42A can perform multiple exposure of images of a plurality of different droplets 271 near the plasma generation position. Therefore, the trajectory imaging unit 42A can acquire an image of the droplet 271 that does not include plasma light while performing multiple exposure of images of a plurality of different droplets 271 near the plasma generation position. Therefore, the control unit 8A can improve the accuracy of the trajectory control of the droplet 271 based on the image acquired by the trajectory imaging unit 42A. In addition, the trajectory control of the droplets 271 may be possible even during the generation of plasma light during the burst emission period. Therefore, the stability of the operation of the EUV light generation apparatus can be improved.
  • FIG. 8 is a diagram for explaining the configuration of the imaging unit 422B of the orbital imaging unit 42B included in the EUV light generation apparatus 1 of Modification 1 of the first embodiment.
  • the imaging unit 422B of Modification Example 1 of the first embodiment may include a collimating optical system 422f. Further, unlike the imaging unit 422A of the first embodiment shown in FIG. 6, the imaging unit 422B of Modification 1 in the first embodiment has an imaging optical system 422e disposed between the shutter device 422d and the imaging element 422a. May be.
  • Other configurations of the imaging unit 422B according to Modification 1 of the first embodiment may be the same as the configuration of the imaging unit 422A illustrated in FIG. In the configuration of the imaging unit 422B according to Modification 1 of the first embodiment, the description of the same configuration as the imaging unit 422A illustrated in FIG. 6 is omitted.
  • the shutter device 422d may be disposed between the collimating optical system 422f and the imaging optical system 422e.
  • the collimating optical system 422f may be configured to collimate the reflected light from the droplet 271 and enter the shutter device 422d.
  • the imaging optical system 422e may be configured to form an image of light that has been collimated by the collimating optical system 422f and transmitted through the shutter device 422d on the light receiving surface of the imaging element 422a.
  • the collimated light can be incident on the shutter device 422d.
  • the shutter provided in the shutter device 422d is a polarization shutter or the like
  • distortion of the image of the droplet 271 due to transmission through the shutter device 422d can be suppressed. Therefore, the measurement accuracy of the trajectory of the droplet 271 based on the image acquired by the imaging unit 422B can be improved.
  • FIG. 9 is a diagram for explaining the configuration of the imaging unit 422C of the orbital imaging unit 42C included in the EUV light generation apparatus 1 of Modification 2 of the first embodiment.
  • the imaging unit 422C of Modification 2 in the first embodiment includes a first relay optical system 422g and a second relay optical system 422h. It's okay.
  • the imaging unit 422C of Modification Example 2 in the first embodiment includes a first relay optical system 422g and a second relay optical system 422h instead of the collimating optical system 422f and the imaging optical system 422e in the imaging unit 422B illustrated in FIG. May be arranged.
  • Other configurations in the imaging unit 422C of Modification 2 in the first embodiment may be the same as the configuration of the imaging unit 422B illustrated in FIG. In the configuration of the imaging unit 422C according to Modification 2 of the first embodiment, the description of the same configuration as the imaging unit 422A illustrated in FIG. 6 and the imaging unit 422B illustrated in FIG. 8 is omitted.
  • the shutter device 422d may be disposed between the first relay optical system 422g and the second relay optical system 422h.
  • the first relay optical system 422g may be configured to image the reflected light from the droplet 271 on the light receiving surface of the shutter device 422d.
  • the second relay optical system 422h may be configured to form an image of the light transmitted through the shutter device 422d on the light receiving surface of the image sensor 422a.
  • an image of the droplet 271 can be formed on the light receiving surface of the shutter device 422d.
  • the shutter provided in the shutter device 422d is an image intensifier (IIU) using a microchannel plate (MCP) or the like
  • the image of the droplet 271 is blurred due to transmission through the shutter device 422d. Can be suppressed. Therefore, the measurement accuracy of the trajectory of the droplet 271 based on the image acquired by the imaging unit 422C can be improved.
  • FIG. 10 is a diagram for explaining the configuration of the trajectory imaging unit 42D included in the EUV light generation apparatus 1 according to Modification 3 of the first embodiment.
  • the imaging unit 422D of Modification 3 in the first embodiment includes a partial reflection mirror 422i. It's okay.
  • the illumination light source 422j and the illumination optical system 422k may be arranged in the imaging unit 422A illustrated in FIG.
  • Other configurations in the imaging unit 422D of Modification 3 in the first embodiment may be the same as the configuration of the imaging unit 422A illustrated in FIG.
  • the same configuration as the imaging unit 422A illustrated in FIG. 6, the imaging unit 422B illustrated in FIG. 8, and the imaging unit 422C illustrated in FIG. Is omitted.
  • the imaging unit 422D may include a partial reflection mirror 422i.
  • the imaging unit 422D may include an imaging element 422a, an imaging optical system 422b, a shutter device 422d, a partial reflection mirror 422i, an illumination light source 422j, and an illumination optical system 422k in the same casing.
  • the partial reflection mirror 422i may reflect the illumination light output from the illumination light source 422j toward the droplet 271.
  • the partial reflection mirror 422i may transmit the reflected light from the droplet 271 that has been irradiated with the illumination light to the imaging optical system 422b.
  • the window 422c may transmit the illumination light output from the illumination light source 422j and transmit the reflected light from the droplet 271.
  • the partial reflection mirror 422i may be a polarization beam splitter.
  • the illumination light source 422j may output polarized light reflected by the polarization beam splitter, and a ⁇ / 4 plate may be disposed in the optical path from the partial reflection mirror 422i to the droplet 271.
  • a ⁇ / 2 plate may be disposed in the illumination light path from the illumination light source 422j to the partial reflection mirror 422i.
  • the trajectory imaging unit 42D can be configured compactly. Moreover, since reflected light can be detected from the direction in which the droplet 271 is irradiated with illumination light, the measurement accuracy of the image of the droplet 271 can be improved.
  • FIG. 11 is a diagram for explaining the configuration of the trajectory imaging unit 42E provided in the EUV light generation apparatus 1 of the second embodiment.
  • the trajectory imaging unit 42E according to the second embodiment is different from the trajectory imaging unit 42 illustrated in FIG. 2 in addition to the first illumination light source unit 421P and the first imaging unit 422P, and the second illumination light source unit 421Q and the second imaging unit 422Q. May be arranged.
  • Other configurations of the trajectory imaging unit 42E of the second embodiment may be the same as the configuration of the trajectory imaging unit 42 illustrated in FIG. In the configuration of the trajectory imaging unit 42E of the second embodiment, the description of the same configuration as the trajectory imaging unit 42 shown in FIG. 2 is omitted.
  • the trajectory imaging unit 42E in the second embodiment may include a first illumination light source unit 421P and a first imaging unit 422P, and a second illumination light source unit 421Q and a second imaging unit 422Q. .
  • the first imaging unit 422P may be arranged to image the droplet 271 from the X-axis direction.
  • the second imaging unit 422Q may be arranged to image the droplet 271 from the Z-axis direction.
  • the imaging regions of the first imaging unit 422P and the second imaging unit 422Q may be regions that include the plasma generation region 25 in the imaging region.
  • the timing of imaging the droplet 271 by the first imaging unit 422P and the second imaging unit 422Q is the timing at which the distance between the droplet 271 to be imaged and the plasma generation region 25 is, for example, a distance of several tens to several hundreds of ⁇ m. It may be.
  • the 1st illumination light source part 421P may be arrange
  • the 2nd illumination light source part 421Q may be arrange
  • the target stage 74 may be a stage that moves the target supply unit 26 in the X-axis direction and the Z-axis direction, for example, similarly to the EUV light generation apparatus 1 shown in FIG.
  • the target stage 74 may move the target supply unit 26 in a direction orthogonal to the X-axis direction imaged by the first imaging unit 422P, that is, in the Z-axis direction. Further, the target stage 74 may move the target supply unit 26 in a direction orthogonal to the Z-axis direction imaged by the second imaging unit 422Q, that is, in the X-axis direction.
  • the moving direction of the target stage 74 and the imaging directions of the first imaging unit 422P and the second imaging unit 422Q are not limited to the X-axis direction and the Z-axis direction.
  • One of the moving directions of the target stage 74 may be orthogonal to the imaging direction of the first imaging unit 422P, and the other of the moving directions of the target stage 74 may be orthogonal to the imaging direction of the second imaging unit 422Q.
  • the control unit 8B may output an exposure signal to the first imaging unit 422P and the second imaging unit 422Q. Further, the control unit 8B may acquire each image of the droplet 271 obtained by imaging from each imaging direction from the first imaging unit 422P and the second imaging unit 422Q.
  • the control unit 8B may calculate the amount of movement of the target stage 74 in the direction orthogonal to the imaging direction of the first imaging unit 422P based on the image input from the first imaging unit 422P.
  • the control unit 8B may move the target stage 74 in the direction orthogonal to the imaging direction of the first imaging unit 422P based on the calculated movement amount.
  • the control unit 8B may calculate the amount of movement of the target stage 74 in the direction orthogonal to the imaging direction of the second imaging unit 422Q based on the image input from the second imaging unit 422Q.
  • the control unit 8B may move the target stage 74 in the direction orthogonal to the imaging direction of the second imaging unit 422Q based on the calculated movement amount.
  • an image of the droplet 271 can be acquired from two directions by the first imaging unit 422P and the second imaging unit 422Q. For this reason, the accuracy of the trajectory control of the droplet 271 can be improved based on the respective images output from the first imaging unit 422P and the second imaging unit 422Q.
  • FIG. 12A is a diagram for explaining the configuration of the orbit imaging unit 42F included in the EUV light generation apparatus 1 of the third embodiment.
  • the trajectory imaging unit 42F of the third embodiment has an imaging direction of an imaging unit 422R included in the trajectory imaging unit 42F.
  • the imaging unit 422R may be arranged so as to be in a direction substantially along the trajectory direction 271.
  • Other configurations in the trajectory imaging unit 42F of the third embodiment may be the same as the configurations of the trajectory imaging unit 42 illustrated in FIG. In the configuration of the trajectory imaging unit 42F of the third embodiment, the description of the same configuration as that of the trajectory imaging unit 42 illustrated in FIG. 2 is omitted.
  • the imaging unit 422R may be arranged so that the imaging direction is substantially parallel to the trajectory direction of the droplet 271 (for example, the Y-axis direction).
  • the imaging unit 422R may be arranged so that an angle difference between the imaging direction and the trajectory direction of the droplet 271 is small.
  • the imaging unit 422R may be arranged so that the imaging direction is substantially perpendicular to the moving direction of the target stage 74.
  • the vertical and horizontal directions on the image acquired by the imaging unit 422R may substantially coincide with the two directions that are the moving directions of the target stage 74.
  • the imaging region of the imaging unit 422R may be a region that includes the plasma generation region 25 in the imaging region.
  • the imaging timing of the droplet 271 by the imaging unit 422R may be a timing at which the distance between the droplet 271 to be imaged and the plasma generation region 25 is, for example, a distance of several tens to several hundreds of ⁇ m.
  • an image of the droplet 271 can be acquired with the direction substantially parallel to the traveling direction of the droplet 271 as an imaging direction. Therefore, the difference in distance between the trajectory position specified by the droplet 271 requested from the exposure apparatus 6 and the actual trajectory position of the droplet 271 can be specified in two directions on a single image. . Therefore, the same effect can be obtained as when a plurality of images are acquired by imaging from different directions.
  • the shutter devices 422d included in the imaging units 422A to 422D, the first imaging unit 422P, the second imaging unit 422Q, and the imaging unit 422R may be configured as shown in FIGS. 13A and 13B.
  • the shutter device 422d shown in FIGS. 13A and 13B may be an image intensifier (hereinafter referred to as IIU) using a microchannel plate (hereinafter referred to as MCP).
  • IIU image intensifier
  • MCP microchannel plate
  • the IIU may be a vacuum tube capable of acquiring an optical image by amplifying photoelectrons emitted from the photocathode by incident light to form an image on a phosphor screen and emitting light.
  • the IIU using MCP may include a photocathode, an MCP, and a phosphor screen as shown in FIG. 13A.
  • the photocathode and the phosphor screen may be arranged with the MCP interposed therebetween.
  • the IIU may be configured to provide a potential difference between the MCP and the photocathode in response to turning on or off of the gate signal.
  • the potential of the photocathode can be higher than the input side potential of the MCP. In this case, photoelectrons emitted from the photocathode are pulled back to the photocathode and cannot reach the MCP. For this reason, when the gate signal is OFF, the photoelectrons emitted from the photocathode are not multiplied by the MCP, and the image sensor 422a cannot receive the optical image. In this way, the IIU shown in FIG. 13A can realize a shutter function in accordance with ON or OFF of the gate signal.
  • the IIU shown in FIG. 13B may include an entrance window, a photocathode, an MCP, a phosphor screen, and an output window.
  • “p” indicates a photon
  • “e” indicates an electron.
  • the incident window may introduce incident light into the photocathode.
  • the image of the droplet 271 to be imaged may be formed on the photocathode via the entrance window.
  • the photocathode may convert incident light into photoelectrons and emit it to the MCP.
  • the MCP may be formed in a structure in which a number of channels through which photoelectrons pass are bundled.
  • the MCP may emit secondary electrons when the photoelectrons collide with the inner wall of the channel when passing through the channel. Thereby, the MCP may multiply the photoelectrons emitted from the photocathode and emit secondary electrons to the phosphor screen.
  • the phosphor screen may convert the electrons multiplied by the MCP into light and guide it to the output window.
  • the output window may be adjacent to the light receiving surface of the image sensor 422a.
  • the output window may guide light guided from the fluorescent screen to the image sensor 422a as outgoing light.
  • the image sensor 422a can receive the emitted light as an optical image.
  • the output window may include a fiber optic plate that guides light on the phosphor screen.
  • a transfer lens for transferring the optical image of the fluorescent screen to the light receiving surface of the image sensor 422a may be provided between the output window and the image sensor 422a.
  • the shutter device 422d may be a CCD electronic shutter as long as the shutter function can be realized even when plasma light is emitted.
  • the shutter device 422d may be a PLZT polarization shutter.
  • the PLZT polarization shutter may have a configuration in which a plurality of polarizing plates are arranged in the crossed Nicols direction via piezoelectric ceramics. Then, the shutter function may be realized by changing the polarization direction of the polarizing plate by applying a voltage to the piezoelectric ceramic provided between the polarizing plates.
  • the shutter device 422d may be a combination of the various shutters described above and a mechanical shutter.
  • FIG. 14 is a block diagram illustrating an example hardware environment in which various aspects of the disclosed subject matter may be implemented.
  • the exemplary hardware environment 100 of FIG. 14 includes a processing unit 1000, a storage unit 1005, a user interface 1010, a parallel I / O controller 1020, a serial I / O controller 1030, A / D, D / A.
  • the converter 1040 may be included, the configuration of the hardware environment 100 is not limited to this.
  • the processing unit 1000 may include a central processing unit (CPU) 1001, a memory 1002, a timer 1003, and an image processing unit (GPU) 1004.
  • the memory 1002 may include random access memory (RAM) and read only memory (ROM).
  • the CPU 1001 may be any commercially available processor. A dual microprocessor or other multiprocessor architecture may be used as the CPU 1001.
  • FIG. 14 may be interconnected to perform the processes described in this disclosure.
  • the processing unit 1000 may read and execute a program stored in the storage unit 1005, or the processing unit 1000 may read data together with the program from the storage unit 1005.
  • the unit 1000 may write data to the storage unit 1005.
  • the CPU 1001 may execute a program read from the storage unit 1005.
  • the memory 1002 may be a work area for temporarily storing programs executed by the CPU 1001 and data used for the operation of the CPU 1001.
  • the timer 1003 may measure the time interval and output the measurement result to the CPU 1001 according to the execution of the program.
  • the GPU 1004 may process the image data according to a program read from the storage unit 1005 and output the processing result to the CPU 1001.
  • the parallel I / O controller 1020 is connected to parallel I / O devices that can communicate with the processing unit 1000, such as the EUV light generation control unit 5, the control unit 8, the control units 8A to 8C, and the laser beam traveling direction control unit 34. Alternatively, communication between the processing unit 1000 and the parallel I / O devices may be controlled.
  • the serial I / O controller 1030 can communicate with the processing unit 1000 such as the light source 411a, the illumination light source 421a, the illumination light source 422j, the first illumination light source unit 421P, the second illumination light source unit 421Q, the illumination light source unit 421R, and the target stage 74. May be connected to a serial I / O device, and may control communication between the processing unit 1000 and the serial I / O devices.
  • the A / D and D / A converter 1040 includes a temperature sensor, a pressure sensor, various vacuum gauge sensors, a target sensor 4, a light receiving element 412a, an imaging element 422a, a first imaging unit 422P, and a second imaging unit via an analog port. It may be connected to an analog device such as 422Q, may control communication between the processing unit 1000 and these analog devices, or may perform A / D and D / A conversion of communication contents.
  • the user interface 1010 may display the progress of the program executed by the processing unit 1000 to the operator so that the operator can instruct the processing unit 1000 to stop the program or execute the interrupt routine.
  • the exemplary hardware environment 100 may be applied to the configurations of the EUV light generation control unit 5, the control unit 8, the control units 8A to 8C, and the laser beam traveling direction control unit 34 in the present disclosure.
  • these controllers may be implemented in a distributed computing environment, i.e., an environment where tasks are performed by processing units connected via a communications network.
  • the EUV light generation controller 5, the controller 8, the controllers 8A to 8C, and the laser beam traveling direction controller 34 may be connected to each other via a communication network such as Ethernet or the Internet.
  • program modules may be stored in both local and remote memory storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

EUV光生成装置の動作の安定性を向上させ得る。 ターゲット撮像装置は、極端紫外光が生成される所定領域にターゲットとしてターゲット供給部から出力されたドロップレットの通過を検出し、前記ドロップレットの通過が検出される度に検出信号を出力するドロップレット検出器と、前記ドロップレット検出器により検出された前記ドロップレットに照明光を照射する照明光源と、前記照明光を照射されたことによる前記ドロップレットからの反射光を受光して前記ドロップレットを撮像する撮像素子と、前記撮像素子への前記反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置と、前記撮像素子へ撮像を行わせる露光信号を出力し、前記露光信号を出力している間に前記検出信号が入力されると前記シャッタを開閉動作させるためのシャッタ開閉信号を出力して、前記ドロップレットからの反射光を前記撮像素子に多重露光させる制御部と、を備えてもよい。

Description

ターゲット撮像装置及び極端紫外光生成装置
 本開示は、極端紫外(EUV)光を生成するための装置に関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成する極端紫外(EUV)光生成装置と縮小投影反射光学系(Reduced Projection Reflective Optics)とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲットにレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma:レーザ励起プラズマ)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。
特許出願公表2007-528607号 特許出願公開2014-175474号 国際特許出願PCT/JP2014/074594号
概要
 本開示の1つの観点に係るターゲット撮像装置は、極端紫外光が生成される所定領域にターゲットとしてターゲット供給部から出力されたドロップレットの通過を検出し、前記ドロップレットの通過が検出される度に検出信号を出力するドロップレット検出器と、前記ドロップレット検出器により検出された前記ドロップレットに照明光を照射する照明光源と、前記照明光を照射されたことによる前記ドロップレットからの反射光を受光して前記ドロップレットを撮像する撮像素子と、前記撮像素子への前記反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置と、前記撮像素子へ撮像を行わせる露光信号を出力し、前記露光信号を出力している間に前記検出信号が入力されると前記シャッタを開閉動作させるためのシャッタ開閉信号を出力して、前記ドロップレットからの反射光を前記撮像素子に多重露光させる制御部と、を備えてもよい。
 本開示の1つの観点に係る極端紫外光生成装置は、内部のプラズマ生成領域に供給されたターゲットがレーザ光の照射によりプラズマ化され極端紫外光が生成されるチャンバと、前記ターゲットをドロップレットとして前記チャンバ内に出力することで前記プラズマ生成領域に前記ターゲットを供給するターゲット供給部と、前記ターゲット供給部から出力される前記ドロップレットの軌道に対して略垂直な方向へ、前記ターゲット供給部を移動させるターゲットステージと、前記ターゲット供給部と前記プラズマ生成領域との間において、前記ドロップレットの通過を検出し、前記ドロップレットの通過が検出される度に検出信号を出力するドロップレット検出器と、前記ドロップレット検出器により検出された前記ドロップレットに照明光を照射する照明光源と、前記照明光を照射されたことによる前記ドロップレットからの反射光を受光して前記ドロップレットを撮像する撮像素子と、前記撮像素子への前記反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置と、前記撮像素子へ撮像を行わせる露光信号を出力し、前記露光信号を出力している間に前記検出信号が入力されると前記シャッタを開閉動作させるためのシャッタ開閉信号を出力して、前記ドロップレットからの反射光を前記撮像素子に多重露光させ、前記撮像素子から出力された前記多重露光による画像に基づいて前記ターゲットステージを制御する制御部と、を備えてもよい。
 本開示の1つの観点に係る極端紫外光生成装置は、内部のプラズマ生成領域に供給されたターゲットにレーザ光を照射してプラズマ化することにより極端紫外光を生成するチャンバと、前記レーザ光を出力するレーザ装置と、前記ターゲットをドロップレットとして前記プラズマ生成領域に供給するターゲット供給部と、前記ターゲット供給部から出力される前記ドロップレットの軌道に対して略垂直な方向へ、前記ターゲット供給部を移動させるターゲットステージと、前記ターゲット供給部と前記プラズマ生成領域との間において、前記ドロップレットの通過を検出し、前記ドロップレットの通過が検出される度に検出信号を出力するドロップレット検出器と、前記ドロップレット検出器により検出された前記ドロップレットに照明光を照射する照明光源と、前記照明光を照射されたことによる前記ドロップレットからの反射光を受光して前記ドロップレットを撮像する撮像素子と、前記撮像素子への前記反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置と、前記検出信号の入力に基づいて前記レーザ装置にレーザ光を出力させるトリガ信号を出力し、前記撮像素子へ撮像を行わせる露光信号を出力し、前記露光信号を出力している間に前記トリガ信号の入力に基づいて前記シャッタを開閉動作させるためのシャッタ開閉信号を出力して、前記ドロップレットからの反射光を前記撮像素子に多重露光させ、前記撮像素子から出力された前記多重露光による画像に基づいて前記ターゲットステージを移動する制御部と、を備えてもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP方式のEUV光生成システムの構成を概略的に示す。 図2は、ターゲット撮像装置を含むEUV光生成装置の一部の構成を示す。 図3Aは、図2に示されたEUV光生成装置が備えるドロップレット検出器の構成を説明するための図を示す。 図3Bは、図2に示されたEUV光生成装置が備える軌道撮像部の照明光源部の構成を説明するための図を示す。 図3Cは、図2に示されたEUV光生成装置が備える軌道撮像部の撮像部の構成を説明するための図を示す。 図4Aは、図2に示された制御部におけるドロップレットの画像取得に係るタイムチャートを示す。 図4Bは、図2に示された軌道撮像部の撮像部で撮像されたドロップレットの画像の例を示す。 図5Aは、図2に示された軌道撮像部の撮像部で撮像されたドロップレットの画像の例を示す。 図5Bは、バースト動作中において、図2に示された制御部におけるドロップレットの画像の取得に係るタイムチャートを示す。 図5Cは、バースト動作中において、図2に示された軌道撮像部の撮像部で撮像されたドロップレットの画像の例を示す。 図6は、第1実施形態におけるEUV光生成装置が備える軌道撮像部の撮像部の構成を説明するための図を示す。 図7Aは、第1実施形態におけるEUV光生成装置の制御部におけるドロップレットの画像の取得に係るタイムチャートを示す。 図7Bは、図6に示された軌道撮像部の撮像部で撮像されたドロップレットの画像の例を示す。 図8は、第1実施形態の変形例1における軌道撮像部の撮像部の構成を説明するための図を示す。 図9は、第1実施形態の変形例2における軌道撮像部の撮像部の構成を説明するための図を示す。 図10は、第1実施形態の変形例3における軌道撮像部の構成を説明するための図を示す。 図11は、第2実施形態における軌道撮像部を備えたEUV光生成装置の構成を説明するための図を示す。 図12Aは、第3実施形態における軌道撮像部を備えたEUV光生成装置の構成を説明するための図を示す。 図12Bは、図12Aに示された軌道撮像部の撮像部で撮像されたドロップレットの画像の例を示す。 図13Aは、シャッタ装置の例としてのイメージインテンシファイアユニットの構成を示す。 図13Bは、シャッタ装置の例としてのイメージインテンシファイアユニットの構成を示す。 図14は、各制御部のハードウェア環境を示すブロック図を示す。
実施形態
~内容~
1.概要
2.用語の説明
3.EUV光生成システムの全体説明
 3.1 構成
 3.2 動作
4.ターゲット撮像装置を備えるEUV光生成装置
 4.1 構成:全体
 4.2 構成:ドロップレット検出器
 4.3 構成:軌道撮像部
 4.4 動作
 4.5 作用
5.課題
6.第1実施形態のEUV光生成装置が備える軌道撮像部
 6.1 構成
 6.2 動作
 6.3 作用
7.第1実施形態における変形例1のEUV光生成装置が備える軌道撮像部
 7.1 構成
 7.2 作用
8.第1実施形態における変形例2のEUV光生成装置が備える軌道撮像部
 8.1 構成
 8.2 作用
9.第1実施形態における変形例3のEUV光生成装置が備える軌道撮像部
 9.1 構成
 9.2 作用
10.第2実施形態のEUV光生成装置が備える軌道撮像部
 10.1 構成
 10.2 動作
 10.3 作用
11.第3実施形態のEUV光生成装置が備える軌道撮像部
 11.1 構成
 11.2 作用
12.シャッタ装置
 12.1 イメージインテンシファイアユニット
 12.2 PLZT偏光シャッタ
13.各制御部のハードウェア環境
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
[1.概要]
 本開示は、以下の実施形態を少なくとも開示し得る。
 本開示におけるターゲット撮像装置40は、極端紫外光が生成される所定領域にターゲット27としてターゲット供給部26から出力されたドロップレット271の通過を検出し、ドロップレット271の通過が検出される度に検出信号を出力するドロップレット検出器41と、ドロップレット検出器41により検出されたドロップレット271に照明光を照射する照明光源421aと、照明光を照射されたことによるドロップレット271からの反射光を受光してドロップレット271を撮像する撮像素子422aと、撮像素子422aへの反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置422dと、撮像素子422aへ撮像を行わせる露光信号を出力し、露光信号を出力している間に検出信号が入力されるとシャッタを開閉動作させるためのシャッタ開閉信号を出力して、ドロップレット27からの反射光を撮像素子422aに多重露光させる制御部8Aと、を備えてもよい。
 よって、本開示におけるターゲット撮像装置40は、プラズマ生成位置の近くにおける複数の異なるドロップレット271の像を多重露光しつつ、プラズマ光が含まれないドロップレット271の画像を取得し得る。
 このため、制御部8Aは、撮像素子422aにより取得された画像に基づいて、ドロップレット271の軌道制御の精度を向上させ得る。
[2.用語の説明]
 「ターゲット」は、チャンバに導入されたレーザ光の被照射物である。レーザ光が照射されたターゲットは、プラズマ化してEUV光を放射する。
 「ドロップレット」は、チャンバ内へ供給されたターゲットの一形態である。
 「プラズマ光」は、プラズマ化したターゲットから放射された放射光である。当該放射光にはEUV光が含まれている。
[3.EUV光生成システムの全体説明]
 [3.1 構成]
 図1に、例示的なLPP方式のEUV光生成システムの構成を概略的に示す。
 EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられてもよい。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えば、チャンバ2の壁を貫通するように取り付けられてもよい。ターゲット供給部26から供給されるターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられていてもよい。その貫通孔には、ウインドウ21が設けられてもよく、ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過してもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1及び第2の焦点を有し得る。EUV集光ミラー23の表面には、例えば、モリブデンと、シリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2の焦点が中間集光点(IF)292に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には貫通孔24が設けられていてもよく、貫通孔24をパルスレーザ光33が通過してもよい。
 EUV光生成装置1は、EUV光生成制御部5、ターゲットセンサ4等を含んでもよい。ターゲットセンサ4は、撮像機能を有してもよく、ターゲット27の存在、軌道、位置、速度等を検出するように構成されてもよい。
 また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含んでもよい。接続部29内部には、アパーチャ293が形成された壁291が設けられてもよい。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置されてもよい。
 さらに、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含んでもよい。レーザ光進行方向制御部34は、レーザ光の進行方向を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備えてもよい。
 [3.2 動作]
 図1を参照すると、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するように構成されてもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射されてもよい。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマからEUV光251が、他の波長の光の放射に伴って放射され得る。EUV光251は、EUV集光ミラー23によって選択的に反射されてもよい。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成制御部5は、EUV光生成システム11全体の制御を統括するように構成されてもよい。EUV光生成制御部5は、ターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理するように構成されてもよい。また、EUV光生成制御部5は、例えば、ターゲット27が出力されるタイミング制御及びターゲット27の出力方向等の制御の内の少なくとも1つを行ってもよい。更に、EUV光生成制御部5は、例えば、レーザ装置3の発振タイミングの制御、パルスレーザ光32の進行方向の制御、パルスレーザ光33の集光位置の制御の内の少なくとも1つを行ってもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
[4.ターゲット撮像装置を備えるEUV光生成装置]
 [4.1 構成:全体]
 図2を用いて、ターゲット撮像装置40を含むEUV光生成装置1の構成について説明する。
 図2は、図1に示されたEUV光生成装置1におけるターゲット供給部26、及び、ターゲットセンサ4に相当するターゲット撮像装置40の構成であってもよい。なお図2においてはチャンバ2を図示していない。
 図2に示すように、ターゲット供給部26は、ターゲットステージ74に載置されてよい。
 ターゲットステージ74は、チャンバ2に対して、ターゲット供給部26を移動させる2軸ステージであってよい。ターゲットステージ74は、例えば、X軸方向及びZ軸方向にターゲット供給部26を移動させるステージであってもよい。
 ターゲット供給部26は、ノズル262を介してドロップレット状のターゲット27を、プラズマ生成領域25に向けて出力するように構成されてよい。ノズル262からプラズマ生成領域25に移動するターゲット27の移動経路は、ドロップレット軌道Fであってよい。
 ターゲット撮像装置40は、ドロップレット検出器41と、軌道撮像部42と、制御部8と、を含んでいてよい。ドロップレット検出器41と、軌道撮像部42と、はチャンバ2に配置されてもよい。
 ドロップレット検出器41は、ドロップレット軌道F上に配置されてよい。ドロップレット検出器41は、ノズル262に対してターゲット27の移動方向下流側に配置されてよい。
 軌道撮像部42は、ドロップレット検出器41とプラズマ生成領域25との間に配置されてよい。軌道撮像部42は、ドロップレット軌道F上において、プラズマ生成領域25に対してターゲット27の移動方向上流側の領域を通過するターゲット27を撮像するように配置されてもよい。例えば、軌道撮像部42による撮像領域は、プラズマ生成領域25から17mmターゲット供給部26側に離れた領域であってもよい。
 軌道撮像部42は、例えば図中のX軸方向など、ドロップレット軌道Fに対して略直交する方向から、ターゲット27を撮像するように配置されてよい。
 制御部8は、ドロップレット検出器41と、軌道撮像部42と、ターゲットステージ74と、EUV光生成制御部5と、レーザ装置3と、に接続されてよい。
 [4.2 構成:ドロップレット検出器]
 図3Aを用いて、ドロップレット検出器41の構成について説明する。
 ドロップレット検出器41は、ラインビーム光源部411と、受光部412と、を含んでよい。
 ラインビーム光源部411及び受光部412は、ターゲット27の一形態としてのドロップレット271の軌道であるドロップレット軌道Fを挟んで、対向するように配置されてよい。ラインビーム光源部411及び受光部412は、それぞれチャンバ壁2aに配置されたウインドウ411c,412cを介して、設置されてよい。
 ラインビーム光源部411は、ラインビームを出力するように構成されてよい。
 ラインビーム光源部411は、出力するラインビームがターゲット軌道Fと交差するように配置されてよい。
 ラインビーム光源部411は、CWレーザ、高輝度ランプ、LED等の光源411aと、シリンドリカルレンズ等を含むラインビーム光学系411bと、を含んでよい。
 受光部412は、ラインビーム光源部411から出力されたラインビームが、ターゲット軌道Fを通過して入射されるように、配置されてよい。
 受光部412は、受光光学系412bと、フォトダイオードアレイ等のラインセンサを含む受光素子412aと、を含んでよい。
 受光素子412aは、制御部8に接続されてよい。受光素子412aは、受光光学系412bを介して、ラインビーム光源部411から出力されたラインビームを受光してよい。
 [4.3 構成:軌道撮像部]
 図3B及び図3Cを用いて、軌道撮像部42の構成について説明する。
 軌道撮像部42は、図3Bに示す照明光源部421と、図3Cに示す撮像部422と、を含んでよい。
 照明光源部421は、図3Bに示すように、チャンバ壁2aに配置されたウインドウ421cを介して、ドロップレット271に対して照明光を照射するように構成されてよい。
 照明光源部421は、照明光源421aと、照明光学系421bと、を含んでよい。照明光源421aは、レーザ、LED等であってよい。
 撮像部422は、図3Cに示すように、照明光源部421からの照明光がドロップレット271により反射された反射光が、チャンバ壁2aに配置されたウインドウ422cを介して入射するように配置されてよい。撮像部422は、撮像素子422aと、結像光学系422bと、を含んでもよい。
 撮像素子422aは、2次元画像を撮像可能なCCD等を含んでよい。撮像素子422aは、制御部8に接続されてよい。
 [4.4 動作]
 図4A及び図4Bを用いて、制御部8が行う制御について、説明する。
 図4A及び図4Bにおける説明では、図2及び図3A~図3Cで説明した内容については説明を省略する。
 図4Aは、図2に示した制御部8の制御に係るタイムチャートであって、プラズマ生成領域25に到達する前のドロップレット271の画像計測を行う場合のタイムチャートである。
 先ず、EUV光生成制御部5は、ターゲット供給部26からプラズマ生成領域25に向けて、ドロップレット271を出力してよい。
 その後、ドロップレット271は、ラインビーム光源部411から出力されているラインビームを通過し得る。
 なお、ターゲット供給部26は、例えば10μSの間隔で、ドロップレット271を出力してよい。
 受光部412は、図3Aに示したように、ドロップレット271がラインビーム光源部411から出力されているラインビームを通過すると、図4Aに示すように、ドロップレット271の検出に対応して、検出信号を出力してよい。
 制御部8は、受光部412から出力された検出信号が入力されると、軌道撮像部42の撮像部422に、露光信号を出力してよい。また制御部8は、検出信号の入力の有無に基づくことなく、軌道撮像部42の撮像部422に、露光信号を出力してもよい。
 撮像部422は、露光信号が入力されると、撮像を開始してよい。
 制御部8は、図4Aに示すように、検出信号が入力されたタイミングから所定の遅延時間TLだけ遅延したタイミングで、レーザ装置3にレーザ発振を指示するトリガ信号を出力してよい。
 ここで、遅延時間TLは、検出信号に対応したドロップレット271が、プラズマ生成領域25に到達した時に、レーザ装置3から出力されたレーザ光が、ドロップレット271に照射されるように決定しておいてよい。
 レーザ装置3は、トリガ信号が入力されると、パルスレーザ光31を出力してよい。
 パルスレーザ光31は、レーザ光進行方向制御部34及びレーザ光集光ミラー22を経由してドロップレット271を照射してよい。これにより、プラズマ光が生成し得る。
 制御部8は、図4Aに示すように、露光信号を出力してから所定時間が経過した後に、露光信号の出力を停止してよい。ここで、露光信号の出力が開始されてから、露光装置の出力が停止されるまでの所定時間を、露光時間とする。
 露光時間は、数mSの時間であってよい。露光時間は、例えば8mSであってもよい。
 軌道撮像部42の撮像部422は、露光信号が入力されている間に、照明光源部421による照明光を照射された複数のドロップレット271の像を多重露光してよい。
 制御部8は、撮像部422から画像を読み出すため、撮像部422に画像読出信号を出力してよい。制御部8は、撮像部422から出力された画像を取得してよい。
 ここで、図4Bは、制御部8が撮像部422から取得し得る画像の例を示す。
 図4Bに示された画像は、例えば円形の照明範囲を通過したドロップレット271の積算画像となり得る。このため、画像には、楕円または線状のドロップレット271の軌跡が含まれ得る。
 制御部8は、撮像部422から取得した画像に基づき、ドロップレット271の軌道位置を算出してよい。取得した画像は、例えば、図4Bに示すように、ドロップレット271の軌跡を示す楕円または線を含んだ画像となり得る。制御部8は、楕円または線の中心位置を画像座標上で算出してよい。
 制御部8は、算出したドロップレット271の軌跡の中心位置を、ドロップレット271の実際の軌道位置と認定してよい。制御部8は、ドロップレット271が所望のプラズマ生成位置を通過するように、認定された実際の軌道位置に基づいて、ターゲットステージ74を移動してもよい。
 制御部8は、例えば、予めEUV光生成制御部5を介して露光装置6から指定されるプラズマ生成位置の位置情報に基づき、ドロップレット271が通過すべき軌道として、図4Bに示すように、画像座標上における指定による軌道位置を算出しておいてよい。
 制御部8は、画像座標上において、ドロップレット271が通過すべき指定による軌道位置と、実際に得られたドロップレット271の実際の軌道位置との差分に基づいて、ターゲットステージ74を移動してよい。
 ここで、露光装置6から指定されるプラズマ生成位置は、プラズマ生成領域25内における、特定の空間位置であってよい。
 なお、図2に示したEUV光生成装置1においては、Z方向が、撮像部422が取得した図4Bの画像上における横方向に対応してよい。このため、図4Bに示すような画像を取得した場合には、ターゲットステージ74を、Z方向に移動してよい。
 この際、ターゲットステージ74の移動量は、図4Bに示す画像の倍率や、差分画素数に基づいて、決定されてもよい。
 [4.5 作用]
 以上から、軌道撮像部42により取得される画像を用いて、ターゲットステージ74を移動させることで、ドロップレット271の軌道を制御し得る。このため、露光装置6から指定される所望のプラズマ生成位置において、プラズマを安定的に生成し得る。
[5.課題]
 EUV光生成装置1においては、ドロップレット271の軌道制御の精度を高めるため、撮像対象であるドロップレット271がプラズマ生成領域に近い位置まで移動したタイミングで、軌道撮像部42による撮像を行うべきとの要求があり得る。
 このようなタイミングにおいて撮像しようとする場合、撮像すべきドロップレット271とプラズマ生成領域25との距離は、例えば、数十から数百μmとする配置となり得る。
 しかし、ドロップレット271とプラズマ生成領域25との距離が近い場合、軌道撮像部42の撮像領域は、プラズマ生成領域25を当該撮像領域に含む領域となり得る。
 このため、図5Aに示すように、軌道撮像部42が取得する画像にプラズマ光の像が映り込んでしまうことがあり得る。このため、ドロップレット271の実際の軌道位置の算出は、プラズマ光の像の影響により、困難となることがあり得る。
 そこで、EUV光生成装置1においては、図5Bに示すように、バースト動作におけるバースト休止中にのみ、ドロップレット271を撮像することが考えられていた。
 ここで、バースト動作とは、EUV光生成装置1においてEUV光の連続生成を行うバースト発光期間と、EUV光を生成しないバースト休止期間と、を繰り返す動作であってよい。バースト動作は、露光装置6によるウエハ露光時に頻繁に用いられてよい。
 ここで、図5B及び図5Cを用いて、バースト動作を前提とした、EUV光生成装置1が備える制御部8の制御について、説明する。
 図5B及び図5Cに示す制御部8の制御において、図2、図3A~図3C及び図4A~図4Bに示したEUV光生成装置1と同一の構成、制御及び動作については、説明を省略する。なお、図5B及び図5Cに示す制御の前提となる軌道撮像部42の配置は、撮像すべきドロップレット271とプラズマ生成領域25との距離が近い場合の配置であってよい。
 図5Bは、バースト動作を伴った制御部8の制御に係るタイムチャートであって、プラズマ生成領域25の近くに到達したドロップレット271の画像計測を行う場合のタイムチャートである。
 制御部8は、EUV光生成制御部5を介して、露光装置6からバースト信号を受信してもよい。
 バースト信号は、図5Bに示すように、バースト発光期間の最中に露光装置6から出力される信号であってよい。またバースト信号は、例えば、バースト発光期間と、バースト休止期間と、を指定する信号であってもよい。
 制御部8は、ドロップレット検出器41の受光部412からの検出信号及び露光装置6からのバースト信号が共に入力されているタイミングにおいて、トリガ信号を出力してもよい。このため、レーザ装置3は、バースト発光期間にのみレーザ光を出力し得る。
 また制御部8は、バースト休止期間にのみ露光信号を出力してもよい。このため、軌道撮像部42は、プラズマ光が発光されないバースト休止期間にのみ、ドロップレット271を撮像し得る。
 なお、露光信号の出力のタイミングは、検出信号の入力されるタイミングに同期してもしなくてもよい。
 以上の制御部8の制御により、軌道撮像部42は、バースト発光期間において撮像を行わないようにし得る。このため、軌道撮像部42は、プラズマ光を撮像してしまうことを抑制し得る。よって、軌道撮像部42は、例えば図5Cに示すように、プラズマ光を含まないドロップレット271の画像を取得し得る。
 しかし、以上のような方法では、バースト休止期間しかドロップレット271の軌道の制御を行うことができない。このため、プラズマ光の発生中においては、ドロップレット271の軌道の制御は、無制御の状態となり得る。従って、プラズマ光の発光中にドロップレット271の軌道が変動しても、ドロップレット271の軌道の制御を行うことが出来ず、EUV光生成装置1の動作の安定性が低下するという課題があった。
[6.第1実施形態のEUV光生成装置が備える軌道撮像部]
 [6.1 構成]
 図6を用いて、第1実施形態のEUV光生成装置1が備える軌道撮像部42Aの構成について説明する。
 ここで、図6は、EUV光生成装置1が備える軌道撮像部42Aにおける撮像部422Aの構成を説明するための図を示す。
 第1実施形態における撮像部422Aは、図3Cに示した撮像部422と異なり、シャッタ装置422dが配置されてよい。
 シャッタ装置422dは、撮像素子422aの受光面に隣接していてもよい。
 第1実施形態の撮像部422Aにおけるその他の構成は、図3Cに示した撮像部422の構成と同様であってもよい。
 第1実施形態の撮像部422Aの構成において、図3Cに示した撮像部422と同様の構成については説明を省略する。
 軌道撮像部42Aにおける撮像部422Aは、図6に示すように、シャッタ装置422dを含んでよい。
 シャッタ装置422dは、撮像素子422aと結像光学系422bとの間に配置されてよい。シャッタ装置422dは、制御部8Aに接続されてよい。シャッタ装置422dは、例えば、後述のイメージインテンシファイアユニット(IIU)であってもよい。
 軌道撮像部42Aの撮像領域は、プラズマ生成領域25を撮像領域に含む領域であってよい。
 軌道撮像部42Aによるロップレット271の撮像のタイミングは、撮像すべきドロップレット271とプラズマ生成領域25との距離が、例えば、数十から数百μmの距離となるタイミングであってよい。
 [6.2 動作]
 図7A及び図7Bを用いて、第1実施形態のEUV光生成装置1が備える制御部8Aの制御について、説明する。
 図7A及び図7Bに示す制御部8Aの制御において、図2、図3A~図3C及び図4A~図4Bに示したEUV光生成装置1と同一の構成、制御及び動作については、説明を省略する。
 図7Aは、第1実施形態に係る制御部8Aの制御に係るタイムチャートであって、プラズマ生成領域25の近くに到達したドロップレット271の画像計測を行う場合のタイムチャートである。
 制御部8Aは、ドロップレット検出器41の受光部412から検出信号が入力されると、所定の遅延時間TSだけ遅延したタイミングでシャッタ開閉信号をシャッタ装置422dに出力してよい。
 所定の遅延時間TSは、ドロップレット271を検出したことによる検出信号に対応したプラズマ生成のタイミングに対して、数μS前にシャッタ開閉信号が出力されるように決定しておくとよい。所定の遅延時間TSは、例えば、プラズマ生成のタイミングに対して0.2~7μS前に、シャッタ開閉信号が出力されるように決定しておいてもよい。
 シャッタ開閉信号は、ドロップレット271からの反射光を撮像素子422aに伝搬させるためにシャッタ装置422dのシャッタを開くとともに、反射光を遮断させるためにシャッタを閉じるように指示する信号であってよい。
 シャッタ開閉信号は、数μSの間、シャッタ装置422dに備えられたシャッタを開いた状態にする信号であってよく、例えば7μS程度の間、シャッタを開いた状態にする信号であってよい。
 シャッタ開閉信号は、シャッタ装置422dに備えられたシャッタを開くように指示してから数μSの時間が経過したタイミングで、シャッタ装置422dに備えられたシャッタを閉じる状態にする信号であってよい。このため、シャッタ装置422dに備えられたシャッタは、図7Aに示すように、プラズマ光が発光されている時点において閉じられた状態となり得る。
 ここで、シャッタ装置422dにおけるシャッタが開く動作の速度、シャッタが閉じる動作の速度は、各々数100nS以下となるような動作の速度であってもよい。
 制御部8Aは、図7Aに示すように、シャッタ開閉信号の出力に先立って、軌道撮像部42Aの撮像部422Aに露光信号を出力してよい。制御部8Aは、検出信号の入力からシャッタ開閉信号の出力までの間に、露光信号の出力を開始してもよい。
 撮像部422Aは、制御部8Aから出力された露光信号が入力されたときに、撮像を開始してよい。撮像部422Aの撮像素子422aは、シャッタ装置422dのシャッタが開いている間の画像を取得し得る。
 制御部8Aは、図7Aに示すように、検出信号に所定の遅延時間TLを付加して、レーザ装置3にトリガ信号を出力してよい。
 レーザ装置3は、トリガ信号が入力されると、パルスレーザ光31を出力してよい。
 パルスレーザ光31は、レーザ光進行方向制御部34及びレーザ光集光ミラー22を経由してドロップレット271を照射してよい。このため、プラズマ光が生成し得る。
 制御部8Aは、図7Aに示すように、撮像素子422aに露光信号を出力している間に、ドロップレット271の検出信号の入力に基づくシャッタ装置422dへのシャッタ開閉信号の出力を、当該検出信号が入力される度に行ってよい。あるいは、バースト発光期間の最中のみ、シャッタ装置422dへのシャッタ開閉信号の出力は、トリガ信号の入力に基づいて行うようにしてもよい。
 撮像素子422aは、図7Aに示すように、露光信号が入力されている間に、シャッタ装置422dのシャッタが開いた状態となる度に、異なるドロップレット271を撮像してよい。
 撮像素子422aは、露光信号が入力されている間に、照明光源部421によって照明された複数のドロップレット271の像を多重露光してよい。
 撮像素子422aは、シャッタ装置422dが開いている時間だけの画像を多重露光してよい。
 撮像素子422aは、図7Aに示すように、プラズマ光が発光されている間は、シャッタ装置422dのシャッタが閉じられた状態となっているため、プラズマ光が入射されるのを抑制され得る。
 あるいは、シャッタ装置422dへのシャッタ開閉信号の出力は、異なる2つのドロップレットによる2つの検出信号の入力に基づいて行われてもよい。例えば、先行するドロップレットによる検出信号に基づいてシャッタを開とし、後続するドロップレットの検出信号に基づいてシャッタを閉としてもよい。
 制御部8Aは、露光信号の出力を停止した後に、撮像素子422aから画像を読み出すため画像読出信号を出力してよい。制御部8Aは、撮像素子422aから出力された画像を取得してよい。
 制御部8Aは、例えば図7Bに示すような画像を取得し得る。制御部8Aは、図4Bに示した画像の場合と同様に、取得された画像を用いて、ドロップレット271の軌道の制御に利用し得る。
 [6.3 作用]
 第1実施形態の軌道撮像部42Aによれば、シャッタ装置422dの動作により、プラズマ生成領域25において発生するプラズマ光が、撮像素子422aに入射してしまうことを抑制し得る。
 また、軌道撮像部42Aは、プラズマ生成位置の近くに位置するドロップレット271を撮像し得る。軌道撮像部42Aは、プラズマ生成位置の近くにおける複数の異なるドロップレット271の像を多重露光し得る。
 このため、軌道撮像部42Aは、プラズマ生成位置の近くにおける複数の異なるドロップレット271の像を多重露光しつつ、プラズマ光が含まれないドロップレット271の画像を取得し得る。
 よって、制御部8Aは、軌道撮像部42Aにより取得された画像に基づいて、ドロップレット271の軌道制御の精度を向上させ得る。
 また、バースト発光期間におけるプラズマ光の生成中であっても、ドロップレット271の軌道制御が可能になり得る。よって、EUV光生成装置の動作の安定性が向上し得る。
[7.第1実施形態における変形例1のEUV光生成装置が備える軌道撮像部]
 [7.1 構成]
 図8を用いて、第1実施形態における変形例1のEUV光生成装置1が備える軌道撮像部42Bの構成について説明する。
 ここで、図8は、第1実施形態の変形例1のEUV光生成装置1が備える軌道撮像部42Bの撮像部422Bの構成を説明するための図を示す。
 第1実施形態における変形例1の撮像部422Bは、図6に示した第1実施形態の撮像部422Aと異なり、コリメート光学系422fが配置されてよい。
 また、第1実施形態における変形例1の撮像部422Bは、図6に示した第1実施形態の撮像部422Aと異なり、結像光学系422eがシャッタ装置422dと撮像素子422aとの間に配置されてよい。
 第1実施形態における変形例1の撮像部422Bにおけるその他の構成は、図6に示した撮像部422Aの構成と同様であってもよい。
 第1実施形態における変形例1の撮像部422Bの構成において、図6に示した撮像部422Aと同様の構成については説明を省略する。
 シャッタ装置422dは、コリメート光学系422fと結像光学系422eとの間に配置されてよい。
 コリメート光学系422fは、ドロップレット271からの反射光を平行光化して、シャッタ装置422dに入射するように構成されてよい。
 結像光学系422eは、コリメート光学系422fにより平行光化されて、シャッタ装置422dを透過した光を撮像素子422aの受光面上に結像させるように構成されてよい。
 [7.2 作用]
 第1実施形態における変形例1の撮像部422Bによれば、シャッタ装置422dには、平行光化された光が入射し得る。このため、シャッタ装置422dに備えられるシャッタが偏光シャッタ等である場合には、シャッタ装置422dを透過したことによるドロップレット271の像の歪みが抑制され得る。
 そのため、撮像部422Bにより取得された画像に基づくドロップレット271の軌道の計測精度が向上し得る。
[8.第1実施形態における変形例2のEUV光生成装置が備える軌道撮像部]
 [8.1 構成]
 図9を用いて、第1実施形態における変形例2のEUV光生成装置1が備える軌道撮像部42Cの構成について説明する。
 ここで、図9は、第1実施形態の変形例2のEUV光生成装置1が備える軌道撮像部42Cの撮像部422Cの構成を説明するための図を示す。
 第1実施形態における変形例2の撮像部422Cは、図6に示した撮像部422A及び図8に示した撮像部422Bと異なり、第1リレー光学系422g及び第2リレー光学系422hが配置されてよい。
 第1実施形態における変形例2の撮像部422Cは、図8に示した撮像部422Bにおけるコリメート光学系422f及び結像光学系422eの代わりに、第1リレー光学系422g及び第2リレー光学系422hが配置されてよい。
 第1実施形態における変形例2の撮像部422Cにおけるその他の構成は、図8に示した撮像部422Bの構成と同様であってもよい。
 第1実施形態における変形例2の撮像部422Cの構成において、図6に示した撮像部422A及び図8に示した撮像部422Bと同様の構成については、説明を省略する。
 シャッタ装置422dは、第1リレー光学系422gと第2リレー光学系422hとの間に配置されてよい。
 第1リレー光学系422gは、ドロップレット271からの反射光をシャッタ装置422dの受光面に結像させるように構成されてよい。
 第2リレー光学系422hは、シャッタ装置422dを透過した光を撮像素子422aの受光面上に結像させるように構成されてよい。
 [8.2 作用]
 第1実施形態における変形例2の撮像部422Cによれば、シャッタ装置422dの受光面において、ドロップレット271の像を結像させ得る。このため、シャッタ装置422dに備えられるシャッタがマイクロチャンネルプレート(MCP)を用いたイメージインテンシファイア(IIU)等である場合には、シャッタ装置422dを透過したことによるドロップレット271の像のボケが抑制され得る。
 そのため、撮像部422Cにより取得された画像に基づくドロップレット271の軌道の計測精度が向上し得る。
[9.第1実施形態における変形例3のEUV光生成装置が備える軌道撮像部]
 [9.1 構成]
 図10を用いて、第1実施形態における変形例3のEUV光生成装置1が備える軌道撮像部42Dの構成について説明する。
 ここで、図10は、第1実施形態の変形例3のEUV光生成装置1が備える軌道撮像部42Dの構成を説明するための図を示す。
 第1実施形態における変形例3の撮像部422Dは、図6に示した撮像部422A、図8に示した撮像部422B及び図9に示した撮像部422Cと異なり、部分反射ミラー422iが配置されてよい。
 第1実施形態における変形例3の撮像部422Dは、図6に示した撮像部422Aに、照明光源422j及び照明光学系422kが配置されてよい。
 第1実施形態における変形例3の撮像部422Dにおけるその他の構成は、図6に示した撮像部422Aの構成と同様であってもよい。
 第1実施形態における変形例3の撮像部422Dの構成において、図6に示した撮像部422A、図8に示した撮像部422B及び図9に示した撮像部422Cと同様の構成については、説明を省略する。
 撮像部422Dは、図10に示すように、部分反射ミラー422iが備えられてよい。
 撮像部422Dは、撮像素子422aと、結像光学系422bと、シャッタ装置422dと、部分反射ミラー422iと、照明光源422jと、照明光学系422kとを、同一の筐体内に備えてよい。
 部分反射ミラー422iは、照明光源422jから出力された照明光をドロップレット271に向けて反射してよい。
 部分反射ミラー422iは、照明光を照射されたことによるドロップレット271からの反射光を結像光学系422bに透過させてよい。
 ウインドウ422cは、照明光源422jから出力された照明光を透過させるとともに、ドロップレット271からの反射光を透過させてよい。
 部分反射ミラー422iは、偏光ビームスプリッタであってもよい。その場合、照明光源422jが偏光ビームスプリッタによって反射される偏光の光を出力し、部分反射ミラー422iからドロップレット271までの光路にλ/4板を配置するとよい。あるいは、照明光源422jが偏光ビームスプリッタを透過する偏光の光を出力する場合は、照明光源422jから部分反射ミラー422iまでの照明光路にλ/2板を配置してもよい。
 [9.2 作用]
 第1実施形態における変形例3の撮像部422Dによれば、軌道撮像部42Dをコンパクトに構成し得る。
 また、ドロップレット271へ照明光が照射された方向から反射光を検出し得るため、ドロップレット271の画像の計測精度が向上し得る。
[10.第2実施形態のEUV光生成装置が備える軌道撮像部]
 [10.1 構成]
 図11を用いて、第2実施形態のEUV光生成装置1が備える軌道撮像部42Eの構成について説明する。
 ここで、図11は、第2実施形態のEUV光生成装置1が備える軌道撮像部42Eの構成を説明するための図を示す。
 第2実施形態の軌道撮像部42Eは、図2に示した軌道撮像部42と異なり、第1照明光源部421P及び第1撮像部422Pに加え、第2照明光源部421Q及び第2撮像部422Qが配置されてよい。
 第2実施形態の軌道撮像部42Eにおけるその他の構成は、図2に示した軌道撮像部42の構成と同様であってもよい。
 第2実施形態の軌道撮像部42Eの構成において、図2に示した軌道撮像部42と同様の構成については、説明を省略する。
 第2実施形態における軌道撮像部42Eは、図11に示すように、第1照明光源部421P及び第1撮像部422Pと、第2照明光源部421Q及び第2撮像部422Qと、を含んでよい。
 第1撮像部422Pは、例えば、X軸方向からドロップレット271を撮像するように配置されてよい。
 第2撮像部422Qは、例えば、Z軸方向からドロップレット271を撮像するように配置されてよい。
 第1撮像部422P及び第2撮像部422Qの撮像領域は、プラズマ生成領域25を撮像領域に含む領域であってよい。
 第1撮像部422P及び第2撮像部422Qによるロップレット271の撮像のタイミングは、撮像すべきドロップレット271とプラズマ生成領域25との距離が、例えば、数十から数百μmの距離となるタイミングであってよい。
 第1照明光源部421Pは、ドロップレット271からの反射光が第1撮像部422Pに入射されるように、配置されてよい。
 第2照明光源部421Qは、ドロップレット271からの反射光が第2撮像部422Qに入射されるように、配置されてよい。
 ターゲットステージ74は、図2において示したEUV光生成装置1と同様に、例えば、X軸方向及びZ軸方向にターゲット供給部26を移動させるステージであってよい。
 ターゲットステージ74は、第1撮像部422Pの撮像するX軸方向と直交する方向、つまり、Z軸方向にターゲット供給部26を移動させてよい。
 また、ターゲットステージ74は、第2撮像部422Qの撮像するZ軸方向と直交する方向、つまり、X軸方向にターゲット供給部26を移動させてよい。
 ターゲットステージ74の移動方向と、第1撮像部422P及び第2撮像部422Qの撮像する方向とについては、X軸方向及びZ軸方向に限らなくてもよい。
 ターゲットステージ74の移動方向の一方が第1撮像部422Pの撮像方向と直交し、ターゲットステージ74の移動方向の他方が第2撮像部422Qの撮像方向と直交する関係であってもよい。
 [10.2 動作]
 図11に示す第2実施形態のEUV光生成装置1が備える制御部8Bの制御について、説明する。
 図11に示す制御部8Bの制御において、図4A~図4B及び図7A~図7Bに示したEUV光生成装置1と同一の制御及び動作については、説明を省略する。
 制御部8Bは、第1撮像部422P及び第2撮像部422Qに、露光信号を出力してよい。また制御部8Bは、第1撮像部422P及び第2撮像部422Qから、各々の撮像方向から撮像して得られたドロップレット271の各々の画像を取得してよい。
 制御部8Bは、第1撮像部422Pから入力された画像に基づいて、第1撮像部422Pの撮像方向と直交する方向におけるターゲットステージ74の移動量を算出してよい。
 制御部8Bは、第1撮像部422Pの撮像方向と直交する方向に、算出された移動量に基づいて、ターゲットステージ74を移動させてよい。
 制御部8Bは、第2撮像部422Qから入力された画像に基づいて、第2撮像部422Qの撮像方向と直交する方向におけるターゲットステージ74の移動量を算出してよい。
 制御部8Bは、第2撮像部422Qの撮像方向と直交する方向に、算出された移動量に基づいて、ターゲットステージ74を移動させてよい。
 [10.3 作用]
 第2実施形態における軌道撮像部42Eによれば、第1撮像部422P及び第2撮像部422Qにより、2方向からドロップレット271の画像を取得し得る。
 このため、第1撮像部422P及び第2撮像部422Qから出力された各々の画像に基づいて、ドロップレット271の軌道制御の精度を向上し得る。
[11.第3実施形態のEUV光生成装置が備える軌道撮像部]
 [11.1 構成]
 図12A及び図12Bを用いて、第3実施形態のEUV光生成装置1が備える軌道撮像部42Fの構成について説明する。
 ここで、図12Aは、第3実施形態のEUV光生成装置1が備える軌道撮像部42Fの構成を説明するための図を示す。
 第3実施形態の軌道撮像部42Fは、図2に示した軌道撮像部42及び図11に示した軌道撮像部42Eと異なり、軌道撮像部42Fに含まれる撮像部422Rの撮像方向が、ドロップレット271の軌道方向に略沿う方向となるように、当該撮像部422Rが配置されてよい。
 第3実施形態の軌道撮像部42Fにおけるその他の構成は、図2に示した軌道撮像部42の構成と同様であってもよい。
 第3実施形態の軌道撮像部42Fの構成において、図2に示した軌道撮像部42と同様の構成については、説明を省略する。
 撮像部422Rは、図12Aに示すように、撮像方向がドロップレット271の軌道方向(例えばY軸方向)に略平行な方向となるように、配置されてよい。
 撮像部422Rは、撮像方向とドロップレット271の軌道方向との角度差が小さくなるように、配置されてよい。
 あるいは、撮像部422Rは、撮像方向がターゲットステージ74の移動方向に対して略垂直となるように、配置されてもよい。
 第3実施形態の軌道撮像部42Fにおいて、図12Bに示すように、撮像部422Rにより取得される画像上の縦横の方向は、ターゲットステージ74の移動方向である2方向に略一致してよい。
 撮像部422Rの撮像領域は、プラズマ生成領域25を撮像領域に含む領域であってよい。
 撮像部422Rによるロップレット271の撮像のタイミングは、撮像すべきドロップレット271とプラズマ生成領域25との距離が、例えば、数十から数百μmの距離となるタイミングであってよい。
 [11.2 作用]
 第3実施形態の軌道撮像部42Fによれば、例えば図12Bに示すように、ドロップレット271の進行方向に略平行な方向を撮像方向として、ドロップレット271の画像を取得し得る。
 このため、単一の画像上で、露光装置6から要求されているドロップレット271の指定による軌道位置と、ドロップレット271の実際の軌道位置との距離の差が、2方向に亘り特定し得る。よって、異なる方向から撮像して複数の画像を取得した場合と、同様の効果を得られる。
[12.シャッタ装置]
 [12.1 イメージインテンシファイアユニット]
 撮像部422A~422D、第1撮像部422P、第2撮像部422Q及び撮像部422Rに含まれるシャッタ装置422dは、図13A及び図13Bに示すような構成であってもよい。
 図13A及び図13Bに示すシャッタ装置422dは、マイクロチャンネルプレート(以下、MCPという)を利用したイメージインテンシファイア(以下、IIUという)であってもよい。
 IIUは、入射光により光電面から放出された光電子を増幅して蛍光面に結像及び発光させ、光学像を取得可能な真空管であってもよい。
 ここで、図13Aを用いて、MCPを利用したIIUの動作原理を説明する。
 MCPを利用したIIUは、図13Aに示すように、光電面と、MCPと、蛍光面と、を含んでもよい。
 光電面及び蛍光面は、MCPを挟んで配置されてよい。
 IIUは、ゲート信号のON又はOFFに応じてMCPと光電面との間に電位差を与える構成であってもよい。
 図13Aの(a)に示すように、ゲート信号がONである場合、光電面の電位はMCPの入力側電位より低くなるように構成してもよい。この場合、光電面から放出される光電子は、当該電位差によりMCPに到達し得る。
 このため、ゲート信号がONである場合、光電面から放出される光電子はMCPで増倍され、撮像素子422aは増倍された電子に応じた光学像を受光し得る。
 一方、図13Aの(b)に示すように、ゲート信号がOFFである場合、光電面の電位はMCPの入力側電位より高くなり得る。この場合、光電面から放出される光電子は、光電面に引き戻され、MCPに到達し得ない。このため、ゲート信号がOFFである場合、光電面から放出される光電子はMCPで増倍されず、撮像素子422aは光学像を受光し得ない。
 このようにして、図13Aに示すIIUは、ゲート信号のON又はOFFに応じて、シャッタ機能を実現し得る。
 次に、図13Bを用いて、実際のIIUの動作を説明する。図13Bに示すIIUは、入射窓と、光電面と、MCPと、蛍光面と、出力窓とを含んでもよい。
 なお、図13Bの「p」は光子を示し、「e」は電子を示している。
 入射窓は、入射光を光電面に導入してもよい。
 撮像対象であるドロップレット271の像は、入射窓を介して、光電面に結像されてよい。
 光電面は、入射光を光電子に変換して、MCPに放出してもよい。
 MCPは、光電子を通すチャンネルを多数束ねた構造に形成されてもよい。MCPは、光電子がチャンネルを通過する際にチャンネルの内壁に衝突すると2次電子を放出してもよい。それによりMCPは、光電面から放出された光電子を増倍して2次電子を蛍光面に放出してもよい。
 蛍光面は、MCPで増倍された電子を光に変換し、出力窓に導いてもよい。
 出力窓は、撮像素子422aの受光面に隣接していてもよい。出力窓は、蛍光面から導かれた光を、出射光として撮像素子422aへ導出してもよい。撮像素子422aは、当該出射光を光学像として受光し得る。出力窓は、蛍光面の光を導光するファイバーオプティックプレートを含んでもよい。
 なお、図示していないが、出力窓と撮像素子422aとの間には、蛍光面の光学像を撮像素子422aの受光面に転写する転写レンズを設けてもよい。
 なお、シャッタ装置422dは、プラズマ光が放射されてもシャッタ機能を実現可能であれば、CCD電子シャッタであってもよい。
 [12.2 PLZT偏光シャッタ]
 また、シャッタ装置422dは、PLZT偏光シャッタであってもよい。PLZT偏光シャッタは、複数の偏光板を、圧電セラミクスを介してクロスニコル方向にて配置する構成であってもよい。そして、当該偏光板の間に設けられた圧電セラミクスに電圧を印加することで偏光板の偏光方向を変化させ、シャッタ機能を実現してもよい。
 シャッタ装置422dは、上述した各種のシャッタと機械的シャッタとを組み合わせてもよい。
[13.各制御部のハードウェア環境]
 当業者は、汎用コンピュータまたはプログラマブルコントローラにプログラムモジュールまたはソフトウェアアプリケーションを組み合わせて、ここに述べられる主題が実行されることを理解するだろう。一般的に、プログラムモジュールは、本開示に記載されるプロセスを実行できるルーチン、プログラム、コンポーネント、データストラクチャー等を含む。
 図14は、開示される主題の様々な側面が実行され得る例示的なハードウェア環境を示すブロック図である。図14の例示的なハードウェア環境100は、処理ユニット1000と、ストレージユニット1005と、ユーザインターフェイス1010と、パラレルI/Oコントローラ1020と、シリアルI/Oコントローラ1030と、A/D、D/Aコンバータ1040とを含んでもよいが、ハードウェア環境100の構成は、これに限定されない。
 処理ユニット1000は、中央処理ユニット(CPU)1001と、メモリ1002と、タイマ1003と、画像処理ユニット(GPU)1004とを含んでもよい。メモリ1002は、ランダムアクセスメモリ(RAM)とリードオンリーメモリ(ROM)とを含んでもよい。CPU1001は、市販のプロセッサのいずれでもよい。デュアルマイクロプロセッサや他のマルチプロセッサアーキテクチャが、CPU1001として使用されてもよい。
 図14におけるこれらの構成物は、本開示において記載されるプロセスを実行するために、相互に接続されていてもよい。
 動作において、処理ユニット1000は、ストレージユニット1005に保存されたプログラムを読み込んで、実行してもよい、また、処理ユニット1000は、ストレージユニット1005からプログラムと一緒にデータを読み込んでもよい、また、処理ユニット1000は、ストレージユニット1005にデータを書き込んでもよい。CPU1001は、ストレージユニット1005から読み込んだプログラムを実行してもよい。メモリ1002は、CPU1001によって実行されるプログラムおよびCPU1001の動作に使用されるデータを、一時的に保管する作業領域であってもよい。タイマ1003は、時間間隔を計測して、プログラムの実行に従ってCPU1001に計測結果を出力してもよい。GPU1004は、ストレージユニット1005から読み込まれるプログラムに従って、画像データを処理し、処理結果をCPU1001に出力してもよい。
 パラレルI/Oコントローラ1020は、EUV光生成制御部5、制御部8、制御部8A~C及びレーザ光進行方向制御部34等の、処理ユニット1000と通信可能なパラレルI/Oデバイスに接続されてもよく、処理ユニット1000とそれらパラレルI/Oデバイスとの間の通信を制御してもよい。シリアルI/Oコントローラ1030は、光源411a、照明光源421a、照明光源422j、第1照明光源部421P、第2照明光源部421Q、照明光源部421R及びターゲットステージ74等の、処理ユニット1000と通信可能なシリアルI/Oデバイスに接続されてもよく、処理ユニット1000とそれらシリアルI/Oデバイスとの間の通信を制御してもよい。A/D、D/Aコンバータ1040は、アナログポートを介して、温度センサや圧力センサ、真空計各種センサ、ターゲットセンサ4、受光素子412a、撮像素子422a、第1撮像部422P及び第2撮像部422Q等のアナログデバイスに接続されてもよく、処理ユニット1000とそれらアナログデバイスとの間の通信を制御したり、通信内容のA/D、D/A変換を行ってもよい。
 ユーザインターフェイス1010は、操作者が処理ユニット1000にプログラムの停止や、割込みルーチンの実行を指示できるように、処理ユニット1000によって実行されるプログラムの進捗を操作者に表示してもよい。
 例示的なハードウェア環境100は、本開示におけるEUV光生成制御部5、制御部8、制御部8A~C及びレーザ光進行方向制御部34の構成に適用されてもよい。当業者は、それらのコントローラが分散コンピューティング環境、すなわち、通信ネットワークを介して繋がっている処理ユニットによってタスクが実行される環境において実現されてもよいことを理解するだろう。本開示において、EUV光生成制御部5、制御部8、制御部8A~C及びレーザ光進行方向制御部34は、イーサネットやインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムモジュールは、ローカルおよびリモート両方のメモリストレージデバイスに保存されてもよい。
 上記で説明した実施形態は、変形例を含めて各実施形態同士で互いの技術を適用し得ることは、当業者には明らかであろう。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
 1           …EUV光生成装置
 2           …チャンバ
 5           …EUV光生成制御部
 8、8A~C      …制御部
 25          …プラズマ生成領域
 26          …ターゲット供給部
 40          …ターゲット撮像装置
 41          …ドロップレット検出器
 42、42A~F    …軌道撮像部
 421、421R    …照明光源部
 421a        …照明光源
 422、422A~D、422R…撮像部
 422a        …撮像素子
 422d        …シャッタ装置
 74          …ターゲットステージ
 F           …ドロップレット軌道

Claims (6)

  1.  極端紫外光が生成される所定領域にターゲットとしてターゲット供給部から出力されたドロップレットの通過を検出し、前記ドロップレットの通過が検出される度に検出信号を出力するドロップレット検出器と、
     前記ドロップレット検出器により検出された前記ドロップレットに照明光を照射する照明光源と、
     前記照明光を照射されたことによる前記ドロップレットからの反射光を受光して前記ドロップレットを撮像する撮像素子と、
     前記撮像素子への前記反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置と、
     前記撮像素子へ撮像を行わせる露光信号を出力し、前記露光信号を出力している間に前記検出信号が入力されると前記シャッタを開閉動作させるためのシャッタ開閉信号を出力して、前記ドロップレットからの反射光を前記撮像素子に多重露光させる制御部と、
     を備えるターゲット撮像装置。
  2.  前記制御部は、前記検出信号が入力された後であって前記ドロップレットが前記所定領域に到達するまでの間に、前記シャッタ開閉信号によって前記シャッタを開いて閉じるように前記シャッタ装置を制御する、
     請求項1に記載のターゲット撮像装置。
  3.  前記制御部は、前記検出信号が入力された後であって前記シャッタ開閉信号を前記シャッタ装置に出力する前に、前記露光信号を前記撮像素子に出力する、
     請求項2に記載のターゲット撮像装置。
  4.  前記撮像素子の撮像領域には、前記極端紫外光が生成される前記所定領域が含まれている、
     請求項3に記載のターゲット撮像装置。
  5.  内部のプラズマ生成領域に供給されたターゲットがレーザ光の照射によりプラズマ化され極端紫外光が生成されるチャンバと、
     前記ターゲットをドロップレットとして前記チャンバ内に出力することで前記プラズマ生成領域に前記ターゲットを供給するターゲット供給部と、
     前記ターゲット供給部から出力される前記ドロップレットの軌道に対して略垂直な方向へ、前記ターゲット供給部を移動させるターゲットステージと、
     前記ターゲット供給部と前記プラズマ生成領域との間において、前記ドロップレットの通過を検出し、前記ドロップレットの通過が検出される度に検出信号を出力するドロップレット検出器と、
     前記ドロップレット検出器により検出された前記ドロップレットに照明光を照射する照明光源と、
     前記照明光を照射されたことによる前記ドロップレットからの反射光を受光して前記ドロップレットを撮像する撮像素子と、
     前記撮像素子への前記反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置と、
     前記撮像素子へ撮像を行わせる露光信号を出力し、前記露光信号を出力している間に前記検出信号が入力されると前記シャッタを開閉動作させるためのシャッタ開閉信号を出力して、前記ドロップレットからの反射光を前記撮像素子に多重露光させ、
     前記撮像素子から出力された前記多重露光による画像に基づいて前記ターゲットステージを制御する制御部と、
     を備える極端紫外光生成装置。
  6.  内部のプラズマ生成領域に供給されたターゲットにレーザ光を照射してプラズマ化することにより極端紫外光を生成するチャンバと、
     前記レーザ光を出力するレーザ装置と、
     前記ターゲットをドロップレットとして前記プラズマ生成領域に供給するターゲット供給部と、
     前記ターゲット供給部から出力される前記ドロップレットの軌道に対して略垂直な方向へ、前記ターゲット供給部を移動させるターゲットステージと、
     前記ターゲット供給部と前記プラズマ生成領域との間において、前記ドロップレットの通過を検出し、前記ドロップレットの通過が検出される度に検出信号を出力するドロップレット検出器と、
     前記ドロップレット検出器により検出された前記ドロップレットに照明光を照射する照明光源と、
     前記照明光を照射されたことによる前記ドロップレットからの反射光を受光して前記ドロップレットを撮像する撮像素子と、
     前記撮像素子への前記反射光を含む光の伝搬及び遮断を切り替えるシャッタを含むシャッタ装置と、
     前記検出信号の入力に基づいて前記レーザ装置にレーザ光を出力させるトリガ信号を出力し、
     前記撮像素子へ撮像を行わせる露光信号を出力し、前記露光信号を出力している間に前記トリガ信号の入力に基づいて前記シャッタを開閉動作させるためのシャッタ開閉信号を出力して、前記ドロップレットからの反射光を前記撮像素子に多重露光させ、
     前記撮像素子から出力された前記多重露光による画像に基づいて前記ターゲットステージを移動する制御部と、
     を備える極端紫外光生成装置。
PCT/JP2015/057502 2015-03-13 2015-03-13 ターゲット撮像装置及び極端紫外光生成装置 WO2016147255A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/057502 WO2016147255A1 (ja) 2015-03-13 2015-03-13 ターゲット撮像装置及び極端紫外光生成装置
PCT/JP2016/056804 WO2016147910A1 (ja) 2015-03-13 2016-03-04 ターゲット撮像装置、極端紫外光生成装置及び極端紫外光生成システム
JP2017506452A JP6689255B2 (ja) 2015-03-13 2016-03-04 ターゲット撮像装置、極端紫外光生成装置及び極端紫外光生成システム
US15/671,691 US10141186B2 (en) 2015-03-13 2017-08-08 Target image-capture device, extreme-ultraviolet-light generation device, and extreme-ultraviolet-light generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/057502 WO2016147255A1 (ja) 2015-03-13 2015-03-13 ターゲット撮像装置及び極端紫外光生成装置

Publications (1)

Publication Number Publication Date
WO2016147255A1 true WO2016147255A1 (ja) 2016-09-22

Family

ID=56918782

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/057502 WO2016147255A1 (ja) 2015-03-13 2015-03-13 ターゲット撮像装置及び極端紫外光生成装置
PCT/JP2016/056804 WO2016147910A1 (ja) 2015-03-13 2016-03-04 ターゲット撮像装置、極端紫外光生成装置及び極端紫外光生成システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056804 WO2016147910A1 (ja) 2015-03-13 2016-03-04 ターゲット撮像装置、極端紫外光生成装置及び極端紫外光生成システム

Country Status (3)

Country Link
US (1) US10141186B2 (ja)
JP (1) JP6689255B2 (ja)
WO (2) WO2016147255A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6775606B2 (ja) * 2017-01-12 2020-10-28 ギガフォトン株式会社 極端紫外光生成システム
WO2018211551A1 (ja) * 2017-05-15 2018-11-22 ギガフォトン株式会社 ターゲット計測装置及び極端紫外光生成装置
JPWO2020165942A1 (ja) * 2019-02-12 2021-12-09 ギガフォトン株式会社 極端紫外光生成装置、ターゲット制御方法、及び電子デバイスの製造方法
CN113475164A (zh) * 2019-02-26 2021-10-01 Asml荷兰有限公司 极紫外光源中的目标提供控制装置和方法
US20230269858A1 (en) * 2020-07-06 2023-08-24 Asml Netherlands B.V. Systems and methods for laser-to-droplet alignment
JP2022017863A (ja) * 2020-07-14 2022-01-26 株式会社東京精密 レーザ加工装置、ウェーハ加工システム及びレーザ加工装置の制御方法
JP2023008016A (ja) * 2021-07-05 2023-01-19 ギガフォトン株式会社 極端紫外光生成装置及び電子デバイスの製造方法
CN114040186A (zh) * 2021-11-16 2022-02-11 凌云光技术股份有限公司 一种光学运动捕捉方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109451A (ja) * 2005-10-12 2007-04-26 Komatsu Ltd 極端紫外光源装置の初期アライメント方法
JP2014175474A (ja) * 2013-03-08 2014-09-22 Gigaphoton Inc 極端紫外光生成装置のチャンバ及び極端紫外光生成装置
WO2014189055A1 (ja) * 2013-05-21 2014-11-27 ギガフォトン株式会社 極端紫外光生成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164144B2 (en) 2004-03-10 2007-01-16 Cymer Inc. EUV light source
JP4917014B2 (ja) 2004-03-10 2012-04-18 サイマー インコーポレイテッド Euv光源
JP2013065804A (ja) * 2010-12-20 2013-04-11 Gigaphoton Inc レーザ装置およびそれを備える極端紫外光生成システム
JP6513025B2 (ja) 2013-09-17 2019-05-15 ギガフォトン株式会社 極端紫外光生成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109451A (ja) * 2005-10-12 2007-04-26 Komatsu Ltd 極端紫外光源装置の初期アライメント方法
JP2014175474A (ja) * 2013-03-08 2014-09-22 Gigaphoton Inc 極端紫外光生成装置のチャンバ及び極端紫外光生成装置
WO2014189055A1 (ja) * 2013-05-21 2014-11-27 ギガフォトン株式会社 極端紫外光生成装置

Also Published As

Publication number Publication date
JPWO2016147910A1 (ja) 2017-12-21
US10141186B2 (en) 2018-11-27
WO2016147910A1 (ja) 2016-09-22
US20170358442A1 (en) 2017-12-14
JP6689255B2 (ja) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2016147255A1 (ja) ターゲット撮像装置及び極端紫外光生成装置
US10172225B2 (en) Extreme ultraviolet light generation apparatus
US9497840B2 (en) System and method for creating and utilizing dual laser curtains from a single laser in an LPP EUV light source
KR102482288B1 (ko) 극자외 광원에 대한 계측 시스템
US10420198B2 (en) Extreme ultraviolet light generating apparatus
US9510434B2 (en) Extreme ultraviolet light generating apparatus, method of generating extreme ultraviolet light, concentrated pulsed laser light beam measuring apparatus, and method of measuring concentrated pulsed laser light beam
US10712666B2 (en) Extreme ultraviolet light generation device
WO2017216847A1 (ja) チャンバ装置及び極端紫外光生成装置
US10054861B2 (en) Extreme ultraviolet light generating apparatus and method for generating extreme ultraviolet light
US10209625B2 (en) Extreme ultraviolet light generating apparatus
US10531550B2 (en) Extreme ultraviolet light generation device
US11374379B2 (en) Laser system, extreme ultraviolet light generation apparatus, and extreme ultraviolet light generation method
US20160370706A1 (en) Extreme ultraviolet light generation apparatus
WO2019092831A1 (ja) 極端紫外光生成装置及び電子デバイスの製造方法
WO2002097366A1 (en) Observation device using light and x-ray, exposure system and exposure method
US20230007763A1 (en) Extreme ultraviolet light generation apparatus and electronic device manufacturing method
JP2023506415A (ja) 極端紫外線光源の較正システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WD Withdrawal of designations after international publication

Designated state(s): JP

122 Ep: pct application non-entry in european phase

Ref document number: 15885353

Country of ref document: EP

Kind code of ref document: A1