JP6775606B2 - 極端紫外光生成システム - Google Patents
極端紫外光生成システム Download PDFInfo
- Publication number
- JP6775606B2 JP6775606B2 JP2018561161A JP2018561161A JP6775606B2 JP 6775606 B2 JP6775606 B2 JP 6775606B2 JP 2018561161 A JP2018561161 A JP 2018561161A JP 2018561161 A JP2018561161 A JP 2018561161A JP 6775606 B2 JP6775606 B2 JP 6775606B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- control unit
- laser light
- laser
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 264
- 238000012546 transfer Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 description 161
- 230000008569 process Effects 0.000 description 132
- 238000012545 processing Methods 0.000 description 69
- 230000036278 prepulse Effects 0.000 description 53
- 230000008859 change Effects 0.000 description 32
- 230000009471 action Effects 0.000 description 17
- 230000005484 gravity Effects 0.000 description 14
- 238000013459 approach Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000005469 synchrotron radiation Effects 0.000 description 6
- 239000013076 target substance Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/008—Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/0816—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/105—Scanning systems with one or more pivoting mirrors or galvano-mirrors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
Description
この極端紫外光生成システムにおいて、制御部は、バースト信号が第1の状態から第2の状態となった後、第1の状態に戻るまでの期間に、アクチュエータの制御を複数回行う。
あるいは、制御部は、バースト信号が第1の状態から第2の状態となった後、第1の状態に戻るまでの期間に、所定の周期でアクチュエータの制御を行う。
あるいは、制御部は、バースト信号が第1の状態から第2の状態となった後、第1の状態に戻るまでの期間に、光センサで検出される反射光の光量が所定値より小さくなるごとにアクチュエータの制御を行う。
あるいは、光センサは、転写光学系と、イメージセンサと、を含み、バースト信号が第1の状態である期間に、第1の露光時間でターゲットを撮像し、バースト信号が第2の状態である期間に、第1の露光時間より長い第2の露光時間でターゲットを撮像する。
1.極端紫外光生成システムの全体説明
1.1 構成
1.2 動作
2.比較例に係るEUV光生成システム
2.1 構成
2.1.1 ターゲット供給部
2.1.2 レーザ装置
2.1.3 レーザ光進行方向制御部
2.1.4 レーザ光集光光学系及びEUV集光ミラー
2.1.5 EUV光センサ
2.2 動作
2.2.1 ターゲットの出力
2.2.2 パルスレーザ光の出力
2.2.3 パルスレーザ光の伝送
2.2.4 パルスレーザ光の集光
2.2.5 EUV重心位置に基づくレーザ光の光路軸の制御
2.3 課題
3.光センサ80を備えたEUV光生成システム
3.1 構成
3.2 動作
3.2.1 メインフロー
3.2.2 反射光の光量が最大となるようにX方向の集光位置を制御する処理
3.3 作用
4.早期にワーニングを発行するEUV光生成システム
4.1 反射光の光量が最大となるようにX方向の集光位置を制御する処理
5.ステージ刻み幅を変更可能なEUV光生成システム
5.1 反射光の光量が最大となるようにX方向の集光位置を制御する処理
5.1.1 反射光の光量Lが増加するX方向にステージを制御する処理
5.1.2 ステージをX方向にスキャンして反射光を検出可能な集光位置を探す処理
5.2 作用
6.Y方向の集光位置を制御するEUV光生成システム
6.1 メインフロー
6.1.1 反射光の輝点の位置が目標位置に近づくようにY方向の集光位置を制御する処理
6.2 作用
7.X方向の集光位置の制御をスキップするEUV光生成システム
7.1 メインフロー
8.レーザ光進行方向制御部のミラーを制御するEUV光生成システム
8.1 構成
8.2 動作
8.2.1 反射光の光量が最大となるようにX方向の集光位置を制御する処理
8.2.1.1 反射光の光量Lが増加するθx方向にミラー傾斜角を制御する処理
8.2.1.2 ミラー傾斜角をθx方向にスキャンして反射光を検出可能な集光位置を探す処理
8.3 作用
9.レーザ光進行方向制御部のミラーによってY方向の集光位置を制御するEUV光生成システム
9.1 動作
9.1.1 反射光の輝点の位置が目標位置に近づくようにY方向の集光位置を制御する処理
10.レーザ光集光光学系のステージとレーザ光進行方向制御部のミラーとの両方を制御するEUV光生成システム
10.1 構成
10.2 動作
10.2.1 反射光の光量が最大となるようにX方向の集光位置を制御する処理
10.2.1.1 反射光の光量Lが増加するθx方向にミラー傾斜角を制御し、その後X方向にステージを制御する処理
10.2.1.1.1 ステージ制御サブルーチン
10.3 作用
11.反射光の光量Lの低下を監視するEUV光生成システム
11.1 構成
11.2 動作
11.3 作用
12.X方向の集光位置の制御をスキップしてもY方向の集光位置を制御するEUV光生成システム
12.1 メインフロー
12.2 作用
13.バーストON期間において使用されるターゲットセンサとバーストOFF期間において使用される光センサとを兼用したEUV光生成システム
13.1 構成
13.2 動作
13.2.1 メインフロー
13.3 作用
14.補足
1.1 構成
図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる。本願においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含む。チャンバ2は、密閉可能に構成されている。ターゲット供給部26は、例えば、チャンバ2の壁を貫通するように取り付けられている。ターゲット供給部26から出力されるターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含むことができるが、これらに限定されない。
図1を参照に、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射する。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射される。
2.1 構成
図2及び図3は、比較例に係るEUV光生成システム11aの構成を示す一部断面図である。図2及び図3に示されるように、EUV光の出力方向をZ方向とする。ターゲットの出力方向と反対の方向をY方向とする。Z方向とY方向との両方に垂直な方向をX方向とする。図2は−X方向の位置からX方向に見たEUV光生成システム11aを示す。図3はZ方向の位置から−Z方向に見たEUV光生成システム11aを示す。
チャンバ2aの内部には、レーザ光集光光学系22aと、EUV集光ミラー23と、ターゲット回収部28と、EUV集光ミラーホルダ81と、プレート82及び83とが設けられている。チャンバ2aには、ターゲット供給部26が取り付けられている。
チャンバ2aの外部には、レーザ装置3と、第1のガイドレーザ3pgと、第2のガイドレーザ3mgと、レーザ光進行方向制御部34aと、EUV光生成制御部5とが設けられている。EUV光生成制御部5は、図示しないプロセッサ及びメモリを含む。
ターゲット供給部26は、チャンバ2aの壁面に形成された貫通孔2bを貫通するように配置されている。貫通孔2bの周囲のチャンバ2aの壁面と、ターゲット供給部26との間には、図示しないシール手段が配置されている。シール手段により、貫通孔2bの周囲のチャンバ2aの壁面とターゲット供給部26との間が密閉される。
ターゲット供給部26は、図示しないXZステージを備えている。EUV光生成制御部5は、図1を参照しながら説明したターゲットセンサ4の出力に基づいてXZステージを制御する。XZステージの制御により、ターゲット27がプラズマ生成領域25を通るようにターゲット27の軌道を調整することができる。
レーザ装置3は、プリパルスレーザ3pと、メインパルスレーザ3mとを含む。プリパルスレーザ3pは、プリパルスレーザ光31pを出力するように構成されている。メインパルスレーザ3mは、メインパルスレーザ光31mを出力するように構成されている。プリパルスレーザ3pは、例えば、YAGレーザ装置、あるいは、Nd:YVO4を用いたレーザ装置で構成される。メインパルスレーザ3mは、例えば、CO2レーザ装置で構成される。プリパルスレーザ3p及びメインパルスレーザ3mの各々は、レーザ発振器及び必要に応じてレーザ増幅器を含む。YAGレーザ装置とは、レーザ発振器及びレーザ増幅器のいずれか又は両方に、レーザ媒質としてYAG結晶を用いるレーザ装置である。CO2レーザ装置とは、レーザ発振器及びレーザ増幅器のいずれか又は両方に、レーザ媒質としてCO2ガスを用いるレーザ装置である。プリパルスレーザ3p及びメインパルスレーザ3mの各々は、本開示におけるドライブレーザに相当する。
レーザ光進行方向制御部34aは、高反射ミラー341及び342を含む。高反射ミラー341及び342は、プリパルスレーザ光31p及び第1のガイドレーザ光G1の光路に配置されている。高反射ミラー341は、ホルダ343に支持されている。高反射ミラー342は、ホルダ344に支持されている。ホルダ343には、アクチュエータP1が取付けられている。ホルダ344には、アクチュエータP2が取付けられている。
プレート82は、チャンバ2aに固定されている。EUV集光ミラー23は、EUV集光ミラーホルダ81を介してプレート82に固定されている。
図3に示されるように、EUV光センサ70c〜70eが、それぞれチャンバ2aの壁面に取り付けられている。
2.2.1 ターゲットの出力
EUV光生成制御部5は、ターゲット供給部26に制御信号を出力する。ターゲット供給部26の内部に貯蔵されたターゲット物質は、図示しないヒータによって、当該ターゲット物質の融点以上の温度に維持される。ターゲット供給部26の内部のターゲット物質は、ターゲット供給部26の内部に供給される不活性ガスによって加圧される。
ターゲット回収部28は、プラズマ生成領域25を通過したターゲット27を回収する。
EUV光生成制御部5は、第1のトリガ信号を、プリパルスレーザ3pに出力する。プリパルスレーザ3pは、第1のトリガ信号に従って、プリパルスレーザ光31pを出力する。EUV光生成制御部5は、第1のトリガ信号を出力した後、第2のトリガ信号を、メインパルスレーザ3mに出力する。メインパルスレーザ3mは、第2のトリガ信号に従って、メインパルスレーザ光31mを出力する。このようにして、レーザ装置3は、プリパルスレーザ光31p及びメインパルスレーザ光31mを、この順で出力する。プリパルスレーザ光31pは、ピコ秒オーダーのパルス時間幅を有することが好ましい。ピコ秒オーダーとは、1ps以上、1ns未満を意味する。
第1のガイドレーザ3pgは、第1のガイドレーザ光G1を出力し、第2のガイドレーザ3mgは、第2のガイドレーザ光G2を出力する。
プリパルスレーザ光31p、第1のガイドレーザ光G1、メインパルスレーザ光31m、及び第2のガイドレーザ光G2は、レーザ光進行方向制御部34aに入射する。
ビームポジション及びポインティングは、センサ413に入射したレーザ光の位置及び方向をそれぞれ示す。EUV光生成制御部5は、プリパルスレーザ光31p及び第1のガイドレーザ光G1のビームポジション及びポインティングに基づいて、アクチュエータP1及びP2をそれぞれ制御する。アクチュエータP1及びP2をそれぞれ制御することにより、プリパルスレーザ光31p及び第1のガイドレーザ光G1のビームポジション及びポインティングが同時に変化する。
EUV光生成制御部5は、メインパルスレーザ光31m及び第2のガイドレーザ光G2のビームポジション及びポインティングに基づいて、アクチュエータM1及びM2をそれぞれ制御する。アクチュエータM1及びM2をそれぞれ制御することにより、メインパルスレーザ光31m及び第2のガイドレーザ光G2のビームポジション及びポインティングが同時に変化する。
プリパルスレーザ光31p、第1のガイドレーザ光G1、メインパルスレーザ光31m、及び第2のガイドレーザ光G2は、レーザ光進行方向制御部34aを経て、パルスレーザ光32としてレーザ光集光光学系22aに導かれる。
パルスレーザ光32は、レーザ光集光光学系22aに含まれる軸外放物面凸面ミラー221によって反射されることによりビーム拡大される。軸外放物面凸面ミラー221によって反射されたパルスレーザ光32は、楕円面凹面ミラー222によって反射され、パルスレーザ光33としてプラズマ生成領域25に集光される。説明の便宜上、パルスレーザ光33は、プリパルスレーザ光31p、第1のガイドレーザ光G1、メインパルスレーザ光31m、及び第2のガイドレーザ光G2を含むものとする。但し、第1のガイドレーザ光G1又は第2のガイドレーザ光G2として連続光を用いることが妨げられるわけではない。
本開示は上述の構成に限られず、プリパルスレーザ光31pとメインパルスレーザ光31mとの間に、第2のプリパルスレーザ光がターゲットに照射されてもよい。
プラズマ生成領域25に集光されるパルスレーザ光33の光路軸がドロップレット状のターゲット27の中心からずれると、EUV光のエネルギー低下などの問題が生じる。従って、パルスレーザ光33の光路軸は、ターゲット27の中心に近くなるように制御されることが望ましい。
しかしながら、パルスレーザ光33の光路軸とターゲット27の中心とのずれを直接計測することは困難な場合がある。そこで、EUV光生成制御部5は、以下の原理により、EUV重心位置を指標としてパルスレーザ光33の光路軸を制御する。
EUV光生成制御部5は、Y方向及びX方向の少なくとも1つのEUV重心位置に基づいて、パルスレーザ光33の光路軸を制御する。例えば、EUV光生成制御部5は、Y方向及びX方向のEUV重心位置が0に近づくように、レーザ光集光光学系アクチュエータ84を制御する。これにより、プラズマ生成領域25に集光されるパルスレーザ光33の光路軸とドロップレット状のターゲット27の中心との差を小さくすることができる。
図4は、図2及び図3に示されるEUV光生成システム11aにおけるバースト信号及びEUV光エネルギーの時間的な推移を示す。露光装置6は、EUV光の出力のONとOFFとの切替えをEUV光生成システム11aに指示するためのバースト信号を出力する。バースト信号は、第1の状態と第2の状態との間で変化する。第1の状態において、バースト信号は第1の電圧を有し、バーストON期間を示す。第2の状態において、バースト信号は第2の電圧を有し、バーストOFF期間を示す。
3.1 構成
図5は、本開示の第1の実施形態に係るEUV光生成システム11bの構成を示す一部断面図である。第1の実施形態において、EUV光生成システム11bは、上述の比較例の構成に加えて、タイマ51と、光センサ80と、を含む。
光センサ80は、例えば、図示しない転写光学系と、図示しないイメージセンサと、を含む。イメージセンサは、例えばCCDセンサで構成される。プラズマ生成領域25において第1のガイドレーザ光G1が照射されたターゲット27の像がイメージセンサの受光面に結像するように、転写光学系が配置される。光センサ80は、イメージセンサによって撮影されたプラズマ生成領域25及びその周辺の画像を、検出結果としてEUV光生成制御部5に出力する。
従って、像27dの光量を検出し、この検出結果に基づいて、第1のガイドレーザ光G1の光路軸がX方向又は−X方向にずれているか否かを算出することができる。
3.2.1 メインフロー
図7は、第1の実施形態における光路軸調整の処理手順を示すフローチャートである。EUV光生成制御部5は、以下の処理により、バーストOFF期間における光路軸調整を行う。以下のフローチャートにおいて、NはNOと判定された場合の分岐先を示し、YはYESと判定された場合の分岐先を示す。
次に、S200において、EUV光生成制御部5は、バースト信号の立下りを検出したか否かを判定する。EUV光生成制御部5がバースト信号の立ち上がりを検出した場合や、EUV光生成制御部5がバースト信号の変化を検出しない場合には、S200の判定結果はNOとなる。EUV光生成制御部5がバーストON期間の終了又はバーストOFF期間の開始を検出した場合には、S200の判定結果がYESとなる。バースト信号の立下りを検出した場合(S200:YES)、EUV光生成制御部5は、S300に処理を進める。バースト信号の立下りを検出しない場合(S200:NO)、EUV光生成制御部5は、S400に処理を進める。
S400において、EUV光生成制御部5は、バースト信号がバーストOFF期間を示しているか否かを判定する。バースト信号がバーストOFF期間を示していない場合(S400:NO)、EUV光生成制御部5は、処理をS100に戻す。バースト信号がバーストOFF期間を示している場合(S400:YES)、EUV光生成制御部5は、処理をS500に進める。
S500において、EUV光生成制御部5は、タイマ51のカウント値Tの値をタイマ51から読み込む。
次に、S1000において、EUV光生成制御部5は、タイマ51のカウントを0から開始する。S1000の後、EUV光生成制御部5は、処理をS200に戻す。
図9は、第1の実施形態において計測される反射光の光量が最大となるようにX方向の集光位置を制御する処理の詳細を示すフローチャートである。図9に示される処理は、図7のS700のサブルーチンとして、EUV光生成制御部5によって行われる。
まず、S703において、EUV光生成制御部5は、図示しないカウンタnの値を初期値0に設定する。カウンタnは、反射光の光量が最大となるX方向の集光位置を推定するために、光センサ80によって反射光の光量を計測した回数を数えるカウンタである。
X0: ステージ初期位置、
ΔX: ステージ刻み幅、
XLL:ステージ下限位置、
XUL:ステージ上限位置、
N: カウンタ最大値、
Y0: Y方向の基準位置
ここで、ステージは、図2を参照しながら説明したプレート83及びレーザ光集光光学系アクチュエータ84によって構成させるステージである。カウンタnの最大値Nは、光センサ80によって反射光の光量を計測しようとする回数に相当する。
次に、S706において、EUV光生成制御部5は、カウンタnの値がカウンタ最大値N以上であるか否かを判定する。カウンタnの値がカウンタ最大値N未満である場合(S706:NO)、EUV光生成制御部5は、S707に処理を進める。カウンタnの値がカウンタ最大値N以上である場合(S706:YES)、EUV光生成制御部5は、S711に処理を進める。
Xn=X0+[−(N−1)/2+(n−1)]×ΔX
例えば、カウンタ最大値Nが5に設定されている場合、カウンタnの値は1から5まで順次カウントアップされる。カウンタnの値1、2、3、4、及び5に対応するXnの値は、それぞれ、X0−2ΔX、X0−ΔX、X0、X0+ΔX、及びX0+2ΔXとなる(図10の横軸を参照)。
次に、S710において、EUV光生成制御部5は、光センサ80から画像データを受信して、この画像データに基づいて輝点情報を計測する。輝点情報は、反射光の輝点の位置の座標(Pzn,Pyn)及び反射光の光量Lを含む。反射光の輝点の位置の座標(Pzn,Pyn)は、Z座標Pznと、Y座標Pynとで表される。反射光の輝点の位置の座標(Pzn,Pyn)は、画像データに含まれる輝点の重心位置として算出することができる。反射光の光量Lは、画像データに含まれる各画素の輝度を積分することにより算出することができる。S710の後、EUV光生成制御部5は、S705に処理を戻して、S705からS710までの処理を繰り返す。これにより、S710において、カウンタ最大値Nに相当する数の座標(Pzn,Pyn)及び光量Lの値が算出される。
次に、S713において、EUV光生成制御部5は、レーザ光集光光学系アクチュエータ84を制御して、ステージ位置を座標(Xb,Y0)に移動させる。このようにステージのX方向位置を制御することにより、第1のガイドレーザ光G1のX方向の集光位置が最適位置に制御される。
S713の後、EUV光生成制御部5は、本フローチャートによる処理を終了し、図7に示される処理に戻る。
EUV光生成制御部5は、導出された近似曲線に基づいて、反射光の光量Lが最大となるようなステージのX方向位置Xbを算出する。
第1の実施形態によれば、バーストOFF期間において、第1のガイドレーザ光G1の反射光の光量が最大となるようにX方向の集光位置を制御する。これにより、次のバーストON期間の開始当初におけるプリパルスレーザ光31pがターゲット27に対して所望の位置に照射される。そして、バーストON期間の開始当初におけるEUV光エネルギーを所望の範囲内とすることが可能となる。
また、第1の実施形態によれば、バースト信号の立下り後の経過時間をタイマ51がカウントする。そして、タイマ51が一定値に達するごとに、集光位置が制御される。これにより、バーストOFF期間において集光位置を制御する頻度を低減することができる。
また、第1の実施形態によれば、反射光の光量が最大となるようなX方向の集光位置を算出するために近似曲線を用いる。これにより、少ない測定回数で適切な集光位置を算出することができる。
4.1 反射光の光量が最大となるようにX方向の集光位置を制御する処理
図11は、本開示の第2の実施形態において、計測される反射光の光量が最大となるようにX方向の集光位置を制御する処理の詳細を示すフローチャートである。第2の実施形態においては、図9に示される処理の代わりに、図11に示される処理が行われる点で第1の実施形態と異なる。他の点については、第2の実施形態は第1の実施形態と同様である。
次に、S702aにおいて、EUV光生成制御部5は、反射光の光量Lが閾値Lminより大きいか否かを判定する。反射光の光量Lが閾値Lminより大きい場合(S702a:YES)、EUV光生成制御部5は、S703に処理を進める。S703以降の処理は、第1の実施形態と同様である。反射光の光量Lが閾値Lmin以下である場合(S702a:NO)、EUV光生成制御部5は、S714に処理を進める。S714において、EUV光生成制御部5は、集光位置の制御が適切になされていないことを示すワーニングを発行する。
第2の実施形態によれば、レーザ光集光光学系アクチュエータ84を駆動する前に反射光の光量Lが不足することがわかった場合に、早期にワーニングを発行することができる。
5.1 反射光の光量が最大となるようにX方向の集光位置を制御する処理
図12は、本開示の第3の実施形態において、計測される反射光の光量が最大となるようにX方向の集光位置を制御する処理の詳細を示すフローチャートである。第3の実施形態においては、図11に示される処理の代わりに、図12〜図14に示される処理が行われる点で第2の実施形態と異なる。他の点については、第3の実施形態は第2の実施形態と同様である。
次に、S702bにおいて、EUV光生成制御部5は、反射光の光量Lが閾値Lmin1より大きいか否かを判定する。反射光の光量Lが閾値Lmin1より大きい場合(S702b:YES)、EUV光生成制御部5は、S730bに処理を進める。反射光の光量Lが閾値Lmin1以下である場合(S702b:NO)、EUV光生成制御部5は、S720bに処理を進める。
S730bにおいて、EUV光生成制御部5は、+X方向又は−X方向のうち、反射光の光量Lが増加するX方向にステージを制御する。S730bの詳細については、図13を参照しながら後述する。S730bの後、EUV光生成制御部5は、本フローチャートの処理を終了し、図7に示される処理に戻る。
図13は、反射光の光量Lが増加するX方向にステージを制御する処理の詳細を示すフローチャートである。図13に示される処理は、図12のS730bのサブルーチンとして、EUV光生成制御部5によって行われる。
次に、S733において、EUV光生成制御部5は、第1方向にステージをΔXa移動させ、図示しない記憶部に移動方向を記憶させる。第1方向は、+X方向でもよいし、−X方向でもよい。ステージの移動距離を示すΔXaについては、図15を参照しながら後述する。
次に、S735において、EUV光生成制御部5は、新たに検出された反射光の光量Lを、移動後の値Lrとして、図示しない記憶部に記憶させる。
ΔL=Lr−Lp
次に、S737において、EUV光生成制御部5は、光量の変化量ΔLの絶対値|ΔL|が所定値ΔLgより大きいか否かを判定する。光量の変化量ΔLの絶対値|ΔL|が所定値ΔLg以下である場合(S737:NO)、反射光の光量Lが極大値付近にあるとみなすことができる。この場合、EUV光生成制御部5は、本フローチャートの処理を終了し、図12に示される処理に戻る。光量の変化量ΔLの絶対値|ΔL|が所定値ΔLgより大きい場合(S737:YES)、EUV光生成制御部5は、S738に処理を進める。
次に、S739において、EUV光生成制御部5は、光量の変化量ΔLが正数であるか否かを判定する。
図14は、ステージをX方向にスキャンして反射光を検出可能な集光位置を探す処理の詳細を示すフローチャートである。図14に示される処理は、図12のS720bのサブルーチンとして、EUV光生成制御部5によって行われる。
次に、S722において、EUV光生成制御部5は、反射光の光量Lを検出する。
次に、S723において、EUV光生成制御部5は、反射光の光量Lが閾値Lmin1より大きいか否かを判定する。
反射光の光量Lが閾値Lmin1より大きい場合(図12のS702b:YES)、ステージの移動距離はΔXaに設定される(図13のS733)。ステージの移動による光量の変化量の絶対値|ΔL|が所定値ΔLgより大きい場合には(図13のS737:YES)、さらにステージの移動が行われる(図13のS740又はS741)。光量の変化量の絶対値|ΔL|が所定値ΔLg以下となった場合には(図13のS737:YES)、集光位置の制御が完了する。
反射光の光量Lが閾値Lmin1以下である場合(図12のS702b:NO)、ステージは下限位置XLLに移動され(図14のS721)、ステージの移動距離はΔXbに設定される(図14のS724)。反射光の光量Lが閾値Lmin1より大きくなった場合(図14のS723:YES)、EUV光生成制御部5の処理は図13の処理に移行する。
図14に示される処理によれば、反射光の光量Lが閾値Lmin1以下でほとんど光量Lを検出できないような場合でも、反射光を検出可能な集光位置を探すことができる。このときのステージの移動距離をΔXbに設定することにより、反射光を検出可能な集光位置を探すための繰返し処理の回数を低減することができる。
図13に示される処理によれば、光量の変化量ΔLの絶対値|ΔL|が所定値ΔLg以下である場合に、反射光の光量Lが極大値付近にあるとみなして集光位置の制御を終了することができる。これにより、反射光の光量が最大となるようにX方向の集光位置を制御する処理を早期に終了することができる。
6.1 メインフロー
図16は、第4の実施形態における光路軸調整の処理手順を示すフローチャートである。第4の実施形態においては、図7に示される処理の代わりに、図16及び図17に示される処理が行われる点で第1〜第3の実施形態と異なる。他の点については、第4の実施形態は第1〜第3の実施形態のうちの任意の1つと同様である。
S700の後、S800cにおいて、EUV光生成制御部5は、光センサ80によって計測される第1のガイドレーザ光G1の反射光の輝点の位置が目標位置に近づくように、レーザ光集光光学系22aによるY方向の集光位置を制御する。例えば図6Cを参照しながら説明したように、反射光の輝点の位置がY方向にずれている場合に、Y方向の集光位置が制御される。Y方向の集光位置を制御する方法の1つの例として、レーザ光集光光学系アクチュエータ84を含むステージを制御する方法がある。S800cの処理の詳細については、図17を参照しながら後述する。S800cの後、EUV光生成制御部5は、処理をS900に進める。
S900以降の処理は、図7に示される処理と同様である。
図17は、第4の実施形態において計測される反射光の輝点の位置が目標位置に近づくようにY方向の集光位置を制御する処理の詳細を示すフローチャートである。図17に示される処理は、図16のS800cのサブルーチンとして、EUV光生成制御部5によって行われる。
次に、S802において、EUV光生成制御部5は、反射光の輝点の現在のY方向位置Pyを計測する。反射光の輝点の現在のY方向位置Pyが、第1のガイドレーザ光G1のY方向の集光位置を示していると考えられる。
次に、S803において、EUV光生成制御部5は、反射光の輝点の現在のY方向位置Pyと反射光の輝点のY方向の目標位置Pytとの差ΔPyを、以下の式により計算する。
ΔPy=Py−Pyt
次に、S804において、EUV光生成制御部5は、差ΔPyの絶対値|ΔPy|が、所定値ΔPytr以下であるか否かを判定する。
S805において、EUV光生成制御部5は、差ΔPyが0に近づくようにステージを制御する。S805の後、EUV光生成制御部5は、S802に処理を戻して、S802からS805までの処理を繰り返す。
第4の実施形態によれば、バーストOFF期間において、ターゲットの軌道を横切るX方向の集光位置を制御することに加えて、ターゲットの軌道に沿ったY方向の集光位置を制御するので、次のバーストON期間の開始時におけるEUV光のエネルギーの安定性を向上することができる。
第4の実施形態においては、S700によりX方向の集光位置を制御することによって反射光の光量Lが十分大きくなった後で、S800cによりY方向の集光位置を制御する。これにより、Y方向の集光位置をより精密に制御することができる。
7.1 メインフロー
図18は、第5の実施形態における光路軸調整の処理手順を示すフローチャートである。第5の実施形態においては、図16に示される処理の代わりに、図18に示される処理が行われる点で第4の実施形態と異なる。他の点については、第5の実施形態は第4の実施形態と同様である。
S600の後、S640dにおいて、EUV光生成制御部5は、第1のガイドレーザ光G1の集光位置を現在の集光位置としたままで、反射光の光量Lを検出する。
次に、S650dにおいて、EUV光生成制御部5は、反射光の光量Lが閾値Lmin2より大きいか否かを判定する。
反射光の光量Lが閾値Lmin2より大きい場合(S650d:YES)、EUV光生成制御部5は、S700の処理をスキップして、S800cに処理を進める。
第5の実施形態においては、反射光の光量Lが閾値Lmin2より大きく、X方向の集光位置は所望の範囲内であるとみなせる場合には、S700の処理をスキップする。これにより、光路軸の制御を高速化することができる。
8.1 構成
図19は、本開示の第6の実施形態に係るEUV光生成システム11eの構成を示す一部断面図である。第6の実施形態において、EUV光生成システム11eは、図5に示される第1の実施形態の構成に加えて、アクチュエータP3を含む。アクチュエータP3は、高反射ミラー402のホルダ404に取り付けられている。アクチュエータP3は、高反射ミラー402の姿勢を変更することにより、プリパルスレーザ光31p及び第1のガイドレーザ光G1の反射方向を変更できるように構成されている。
第6の実施形態において、光路軸調整の処理手順のメインフローは図7と同様である。第6の実施形態においては、図7のS700において、X方向の集光位置を制御する方法のもう1つの例として、アクチュエータP3を制御する方法が採用される。S700の詳細について、第3の実施形態におけるレーザ光集光光学系アクチュエータ84の制御を、アクチュエータP3の制御に置き換えた場合について、図20〜図23を参照しながら説明する。但し、第1、第2、第4、及び第5の実施形態についても同様の置き換えが可能である。
図20は、第6の実施形態において計測される反射光の光量が最大となるようにX方向の集光位置を制御する処理の例を示すフローチャートである。図20に示される処理は、図7のS700のサブルーチンとして、EUV光生成制御部5によって行われる。
次に、S720eにおいて、EUV光生成制御部5は、ミラー傾斜角をθx方向にスキャンして、反射光を検出可能な集光位置を探す。S720eの詳細については、図22及び図23を参照しながら後述する。S720eの後、EUV光生成制御部5は、処理をS730eに進める。ここで、θx方向とは、プラズマ生成領域25の近傍における第1のガイドレーザ光G1の光路軸の位置をX方向に移動させるようなミラーの回転方向をいう。
S730eにおいて、EUV光生成制御部5は、+θx方向又は−θx方向のうち、反射光の光量Lが増加するθx方向にミラー傾斜角を制御する。S730eの詳細については、図21を参照しながら後述する。S730eの後、EUV光生成制御部5は、本フローチャートの処理を終了し、図7に示される処理に戻る。
図21は、反射光の光量Lが増加するθx方向にミラー傾斜角を制御する処理の詳細を示すフローチャートである。図21に示される処理は、図20のS730eのサブルーチンとして、EUV光生成制御部5によって行われる。
次に、S733eにおいて、EUV光生成制御部5は、第1方向にミラーをΔθxa回転させ、図示しない記憶部に回転方向を記憶させる。第1方向は、+θx方向でもよいし、−θx方向でもよい。ミラーの回転角度を示すΔθxaについては、図23を参照しながら後述する。
次のS734からS739までの処理は、図13を参照しながら説明したものと同様である。
図22は、ミラー傾斜角をθx方向にスキャンして反射光を検出可能な集光位置を探す処理の詳細を示すフローチャートである。図22に示される処理は、図20のS720eのサブルーチンとして、EUV光生成制御部5によって行われる。
次のS722及びS723の処理は、図14を参照しながら説明したものと同様である。
S723において、反射光の光量Lが閾値Lmin1以下である場合(S723:NO)、EUV光生成制御部5は、S724eに処理を進める。S724eにおいて、EUV光生成制御部5は、ミラー傾斜角の上限値θxulへ近づく方向にミラーをΔθxb回転させる。ここでのミラーの回転角度を示すΔθxbは、上述のΔθxaより大きい値とする。S724eの後、EUV光生成制御部5は、S722に処理を戻してS722からS724eまでの処理を繰り返す。
反射光の光量Lが閾値Lmin1より大きい場合(図20のS702b:YES)、ミラーの回転角度はΔθxaに設定される(図21のS733e)。ミラーの回転による光量の変化量の絶対値|ΔL|が所定値ΔLgより大きい場合には(図21のS737:YES)、さらにミラーの回転が行われる(図21のS740e又はS741e)。光量の変化量の絶対値|ΔL|が所定値ΔLg以下となった場合には(図21のS737:YES)、集光位置の制御が完了する。
反射光の光量Lが閾値Lmin1以下である場合(図20のS702b:NO)、ミラー傾斜角は下限値θxllに制御され(図22のS721e)、ミラーの回転角度はΔθxbに設定される(図22のS724e)。反射光の光量Lが閾値Lmin1より大きくなった場合(図22のS723:YES)、EUV光生成制御部5の処理は図21の処理に移行する。
第6の実施形態によれば、アクチュエータP3による高反射ミラー402の回転によって、プラズマ生成領域25の近傍における第1のガイドレーザ光G1の光路軸の位置を移動させることができる。アクチュエータP3による光路軸の制御は、レーザ光集光光学系アクチュエータ84による光路軸の制御よりも応答性が高いことが期待できる。第6の実施形態によれば、光路軸の制御を高速で行うことができる。
図24を参照して、本開示の第7の実施形態について説明する。第7の実施形態に係るEUV光生成システムの構成は、図19を参照しながら説明したEUV光生成システム11eと同様であり、アクチュエータP3を含む。
第7の実施形態において、光路軸調整の処理手順のメインフローは図16又は図18と同様である。第7の実施形態においては、図16又は図18のS800cにおいて、Y方向の集光位置を制御する方法のもう1つの例として、アクチュエータP3を制御する方法が採用される。
図24は、第7の実施形態において計測される反射光の輝点の位置が目標位置に近づくようにY方向の集光位置を制御する処理の詳細を示すフローチャートである。
まず、S801からS804までの処理は、図17において対応する処理と同様である。
S804において、差ΔPyの絶対値|ΔPy|が所定値ΔPytrより大きい場合(S804:NO)、EUV光生成制御部5は、S805fに処理を進める。
S805fにおいて、EUV光生成制御部5は、差ΔPyが0に近づくようにミラー傾斜角を制御する。S805fの後、EUV光生成制御部5は、S802に処理を戻して、S802からS805fまでの処理を繰り返す。
10.1 構成
図25は、本開示の第8の実施形態に係るEUV光生成システム11gの構成を示す一部断面図である。第8の実施形態において、EUV光生成システム11gは、図19に示される第6の実施形態の構成に加えて、EUV光生成制御部5からレーザ光集光光学系アクチュエータ84への信号線が図示されている。他の点については図19を参照しながら説明したものと同様である。
第8の実施形態においては、バーストOFF期間において、アクチュエータP3とレーザ光集光光学系アクチュエータ84との両方が制御される。
第8の実施形態において、光路軸調整の処理手順のメインフローは図7と同様である。第8の実施形態においては、図7のS700において、X方向の集光位置を制御する方法のもう1つの例として、アクチュエータP3とレーザ光集光光学系アクチュエータ84との両方を制御する方法が採用される。S700の詳細について、第3の実施形態におけるレーザ光集光光学系アクチュエータ84の制御を、アクチュエータP3とレーザ光集光光学系アクチュエータ84との両方の制御に置き換えた場合について、図26〜図28を参照しながら説明する。但し、第1、第2、第4、及び第5の実施形態についても同様の置き換えが可能である。
図26は、第8の実施形態において計測される反射光の光量が最大となるようにX方向の集光位置を制御する処理の例を示すフローチャートである。図26に示される処理は、図7のS700のサブルーチンとして、EUV光生成制御部5によって行われる。
次に、S730gにおいて、EUV光生成制御部5は、+θx方向又は−θx方向のうち、反射光の光量Lが増加するθx方向にミラー傾斜角を制御し、その後X方向にステージを制御する。S730gの詳細については、図27を参照しながら後述する。S730gの後、EUV光生成制御部5は、本フローチャートの処理を終了し、図7に示される処理に戻る。
図27は、反射光の光量Lが増加するθx方向にミラー傾斜角を制御し、その後X方向にステージを制御する処理の詳細を示すフローチャートである。図27に示される処理は、図26のS730gのサブルーチンとして、EUV光生成制御部5によって行われる。
図27において、EUV光生成制御部5は、S740e又はS741eの後、S742gに処理を進める。
次に、S743gにおいて、EUV光生成制御部5は、現在のミラー傾斜角θxが、第1の値θxmin以上、第2の値θxmax以下の範囲に入っているか否かを判定する。第1の値θxmin及び第2の値θxmaxとしては、ミラー傾斜角の変更による収差が無視できる範囲内の数値が設定される。
S744gにおいて、EUV光生成制御部5は、ステージ制御サブルーチンを実行する。ステージ制御サブルーチンについては、図28を参照しながら説明する。
S744gの後、EUV光生成制御部5は、S732に処理を戻す。
図28は、ステージ制御サブルーチンの詳細を示すフローチャートである。
まず、S7441において、EUV光生成制御部5は、ミラー傾斜角を現在のミラー傾斜角θxから初期値θx0に戻す。
ΔXc=F・2(θx−θx0)
ここで、Fは、回転させる高反射ミラー402からプラズマ生成領域25までのレーザ光の光路に沿った距離である。このとき、ΔXcは、sin(F・2(θx−θx0))で表される。しかし、F・2(θx−θx0)の絶対値が十分小さければ、sin(F・2(θx−θx0))は、F・2(θx−θx0)と近似することができる。
S7444の後、EUV光生成制御部5は、本フローチャートの処理を終了し、図27に示される処理に戻る。S7444において検出された反射光の光量Lは、図27のS732において、移動前の値Lpとして、図示しない記憶部に記憶される。
第8の実施形態によれば、第6の実施形態と同様に、アクチュエータP3による高反射ミラー402の回転によって、光路軸の制御を高速で行うことができる。但し、高反射ミラー402の回転によって光路軸の制御を行うと、集光点において収差が発生し、集光性能に悪影響を及ぼす場合がある。そこで、高反射ミラー402の傾斜角θxが一定範囲を超えた場合に、高反射ミラー402の傾斜角を初期値θx0に戻すとともに、高反射ミラー402の傾斜角を初期値θx0に戻したことによる集光点の変化をステージ制御によって補償することができる。
11.1 構成
図29は、本開示の第9の実施形態に係るEUV光生成システム11hの構成を示す一部断面図である。第9の実施形態において、EUV光生成システム11hは、図5に示される構成に対し、タイマ51が設けられていない点で、第1の実施形態と異なる。他の点については、第9の実施形態は第1の実施形態と同様である。また、第2〜第8の実施形態においても、タイマ51を設けない構成とすることにより、同様の変形が可能である。
図30は、第9の実施形態における光路軸調整の処理手順を示すフローチャートである。第9の実施形態においては、図7に示される処理の代わりに、図30に示される処理が行われる点で、第1の実施形態と異なる。他の点については、第9の実施形態は第1の実施形態と同様である。また、第2〜第8の実施形態においても、同様の変形が可能である。
S440hにおいて、EUV光生成制御部5は、反射光の光量Lを検出する。この処理は、バースト信号の立下りからの経過時間に関係なく行われる。
次に、S450hにおいて、EUV光生成制御部5は、反射光の光量Lが閾値Lmin2より大きいか否かを判定する。
反射光の光量Lが閾値Lmin2以下である場合(S450h:NO)、EUV光生成制御部5は、S700に処理を進める。S700の処理は、図7において対応する処理と同様である。但し、S440hにおいて反射光の光量Lを検出済みであるので、S700において、図11又は図12に示されるS701aの処理は省略されてもよい。
S700の後、EUV光生成制御部5は、S800cに処理を進める。S800cの処理は、図16又は図18において説明したものと同様である。
S800cの後、EUV光生成制御部5は、処理をS400に戻す。
あるいは、S800cの処理は、図7と同様に省略されてもよい。その場合には、S700の後、EUV光生成制御部5は、処理をS400に戻す。
反射光の光量Lが閾値Lmin2より大きい場合(図30のS450h:YES)、集光位置の制御はなされず、反射光の光量Lの監視が続けられる。
反射光の光量Lが閾値Lmin2以下となった場合(図30のS450h:NO)、反射光の光量が最大となるように、ステージが制御される(図30のS700)。
第9の実施形態によれば、バーストOFF期間において、反射光の光量Lが閾値Lmin2以下になるごとに集光位置の制御が行われるので、反射光の光量Lが大幅に低下する前に光路軸が調整される。また、バーストOFF期間において、反射光の光量Lが閾値Lmin2以下になるごとに集光位置の制御が行われるので、反射光の光量Lが少ししか変化していない場合には光路軸の調整を省略することができる。
12.1 メインフロー
図33は、第10の実施形態における光路軸調整の処理手順を示すフローチャートである。第10の実施形態においては、図30に示される処理の代わりに、図33に示される処理が行われる点で第9の実施形態と異なる。他の点については、第10の実施形態は第9の実施形態と同様である。
第10の実施形態によれば、反射光の光量Lが閾値Lmin2より大きく、X方向の集光位置が所望の範囲内であるとみなせる場合でも、S800cに処理を進めることにより、Y方向の集光位置を制御することができる。
13.1 構成
図34は、本開示の第11の実施形態に係るEUV光生成システム11jの構成を示す一部断面図である。第9の実施形態において、EUV光生成システム11jは、図3に示される構成に対して、ターゲットセンサと兼用した光センサ80jと、光源部81jとを備えている。他の点については、第11の実施形態は第9の実施形態と同様である。また、第1〜第8の実施形態及び第10の実施形態においても、ターゲットセンサと兼用した光センサ80jと、光源部81jとを備える構成とすることにより、同様の変形が可能である。
光源部81jにおいて、フラッシュランプ41aは、EUV光生成制御部5からの制御信号に基づいて可視光の光を出射する。フラッシュランプ41aから出射した光は、照明光学系41bを介してプラズマ生成領域25に到達する。
あるいは、光センサ80jは、プラズマ生成領域25に到達したターゲット27にプリパルスレーザ光31pが照射された後、メインパルスレーザ光31mが照射される前に、二次ターゲットを撮像することができる。このときも、光シャッタ40dの開時間は例えばナノ秒オーダーに設定される。
あるいは、光センサ80jは、プラズマ生成領域25において二次ターゲットにメインパルスレーザ光31mが照射された後に、プラズマを撮像することができる。このときも、光シャッタ40dの開時間は例えばナノ秒オーダーに設定される。
図35は、第11の実施形態における光路軸調整の処理手順を示すフローチャートである。第11の実施形態においては、図30に示される処理の代わりに、図35に示される処理が行われる点で第9の実施形態と異なる。第11の実施形態において、バーストON期間においては短い露光時間でターゲットが撮像され、バーストOFF期間においては長い露光時間でターゲットが撮像される。他の点については、第11の実施形態は第9の実施形態と同様である。また、第1〜第8の実施形態及び第10の実施形態においても、光シャッタ40dの開時間を変更可能とすることにより、同様の変形が可能である。
S430jの後のS440h以降の処理は、図30において対応する処理と同様である。
第11の実施形態によれば、バーストON期間において使用されるターゲットセンサと、バーストOFF期間において使用される光センサとを兼用したので、チャンバ2aの壁面に取り付けるセンサの数を低減することができる。また、光シャッタの開時間を切替え可能とすることにより、バーストON期間とバーストOFF期間とで適切な使い分けが可能となる。
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
Claims (4)
- 所定領域に向けてターゲットを出力するターゲット供給部と、
外部装置から入力されるバースト信号が第1の状態である期間に、ドライブレーザ光を出力するドライブレーザと、
ガイドレーザ光を出力するガイドレーザと、
前記ドライブレーザから出力される前記ドライブレーザ光の光路軸と、前記ガイドレーザから出力される前記ガイドレーザ光の光路軸と、をほぼ一致させて出力するビームコンバイナと、
前記ビームコンバイナから出力される前記ドライブレーザ光及び前記ガイドレーザ光を前記所定領域に集光するレーザ光集光光学系と、
前記レーザ光集光光学系による前記ドライブレーザ光及び前記ガイドレーザ光の集光位置を変更するアクチュエータと、
前記ガイドレーザ光の前記ターゲットによる反射光を検出する光センサと、
前記バースト信号が前記第1の状態と異なる第2の状態である期間に、前記光センサで検出される前記反射光の光量が大きくなるように前記アクチュエータを制御する制御部と、
を備え、
前記制御部は、前記バースト信号が前記第1の状態から前記第2の状態となった後、前記第1の状態に戻るまでの期間に、前記アクチュエータの制御を複数回行う、
極端紫外光生成システム。 - 所定領域に向けてターゲットを出力するターゲット供給部と、
外部装置から入力されるバースト信号が第1の状態である期間に、ドライブレーザ光を出力するドライブレーザと、
ガイドレーザ光を出力するガイドレーザと、
前記ドライブレーザから出力される前記ドライブレーザ光の光路軸と、前記ガイドレーザから出力される前記ガイドレーザ光の光路軸と、をほぼ一致させて出力するビームコンバイナと、
前記ビームコンバイナから出力される前記ドライブレーザ光及び前記ガイドレーザ光を前記所定領域に集光するレーザ光集光光学系と、
前記レーザ光集光光学系による前記ドライブレーザ光及び前記ガイドレーザ光の集光位置を変更するアクチュエータと、
前記ガイドレーザ光の前記ターゲットによる反射光を検出する光センサと、
前記バースト信号が前記第1の状態と異なる第2の状態である期間に、前記光センサで検出される前記反射光の光量が大きくなるように前記アクチュエータを制御する制御部と、
を備え、
前記制御部は、前記バースト信号が前記第1の状態から前記第2の状態となった後、前記第1の状態に戻るまでの期間に、所定の周期で前記アクチュエータの制御を行う、
極端紫外光生成システム。 - 所定領域に向けてターゲットを出力するターゲット供給部と、
外部装置から入力されるバースト信号が第1の状態である期間に、ドライブレーザ光を出力するドライブレーザと、
ガイドレーザ光を出力するガイドレーザと、
前記ドライブレーザから出力される前記ドライブレーザ光の光路軸と、前記ガイドレーザから出力される前記ガイドレーザ光の光路軸と、をほぼ一致させて出力するビームコンバイナと、
前記ビームコンバイナから出力される前記ドライブレーザ光及び前記ガイドレーザ光を前記所定領域に集光するレーザ光集光光学系と、
前記レーザ光集光光学系による前記ドライブレーザ光及び前記ガイドレーザ光の集光位置を変更するアクチュエータと、
前記ガイドレーザ光の前記ターゲットによる反射光を検出する光センサと、
前記バースト信号が前記第1の状態と異なる第2の状態である期間に、前記光センサで検出される前記反射光の光量が大きくなるように前記アクチュエータを制御する制御部と、
を備え、
前記制御部は、前記バースト信号が前記第1の状態から前記第2の状態となった後、前記第1の状態に戻るまでの期間に、前記光センサで検出される前記反射光の光量が所定値より小さくなるごとに前記アクチュエータの制御を行う、
極端紫外光生成システム。 - 所定領域に向けてターゲットを出力するターゲット供給部と、
外部装置から入力されるバースト信号が第1の状態である期間に、ドライブレーザ光を出力するドライブレーザと、
ガイドレーザ光を出力するガイドレーザと、
前記ドライブレーザから出力される前記ドライブレーザ光の光路軸と、前記ガイドレーザから出力される前記ガイドレーザ光の光路軸と、をほぼ一致させて出力するビームコンバイナと、
前記ビームコンバイナから出力される前記ドライブレーザ光及び前記ガイドレーザ光を前記所定領域に集光するレーザ光集光光学系と、
前記レーザ光集光光学系による前記ドライブレーザ光及び前記ガイドレーザ光の集光位置を変更するアクチュエータと、
前記ガイドレーザ光の前記ターゲットによる反射光を検出する光センサと、
前記バースト信号が前記第1の状態と異なる第2の状態である期間に、前記光センサで検出される前記反射光の光量が大きくなるように前記アクチュエータを制御する制御部と、
を備え、
前記光センサは、転写光学系と、イメージセンサと、を含み、前記バースト信号が前記第1の状態である期間に、第1の露光時間で前記ターゲットを撮像し、前記バースト信号が前記第2の状態である期間に、前記第1の露光時間より長い第2の露光時間で前記ターゲットを撮像する、
極端紫外光生成システム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/000845 WO2018131123A1 (ja) | 2017-01-12 | 2017-01-12 | 極端紫外光生成システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018131123A1 JPWO2018131123A1 (ja) | 2019-11-07 |
JP6775606B2 true JP6775606B2 (ja) | 2020-10-28 |
Family
ID=62840072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018561161A Active JP6775606B2 (ja) | 2017-01-12 | 2017-01-12 | 極端紫外光生成システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10842010B2 (ja) |
JP (1) | JP6775606B2 (ja) |
WO (1) | WO2018131123A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6990701B2 (ja) * | 2017-06-05 | 2022-01-12 | ギガフォトン株式会社 | レーザ装置、及びeuv光生成システム |
WO2020170362A1 (ja) * | 2019-02-20 | 2020-08-27 | ギガフォトン株式会社 | 極端紫外光生成システム及び電子デバイスの製造方法 |
CN114008528A (zh) * | 2019-04-04 | 2022-02-01 | Asml荷兰有限公司 | 激光聚焦模块 |
CN114830037A (zh) * | 2019-12-20 | 2022-07-29 | Asml荷兰有限公司 | 极紫外光源的校准系统 |
JP7471906B2 (ja) * | 2020-05-11 | 2024-04-22 | ギガフォトン株式会社 | 極端紫外光生成装置、ターゲット制御方法、及び電子デバイスの製造方法 |
JP7544316B2 (ja) * | 2020-09-07 | 2024-09-03 | ギガフォトン株式会社 | 極端紫外光生成装置及び電子デバイスの製造方法 |
JP2023183776A (ja) * | 2022-06-16 | 2023-12-28 | ギガフォトン株式会社 | Euv光生成システム、及び電子デバイスの製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7372056B2 (en) * | 2005-06-29 | 2008-05-13 | Cymer, Inc. | LPP EUV plasma source material target delivery system |
US8445876B2 (en) * | 2008-10-24 | 2013-05-21 | Gigaphoton Inc. | Extreme ultraviolet light source apparatus |
JP5368261B2 (ja) * | 2008-11-06 | 2013-12-18 | ギガフォトン株式会社 | 極端紫外光源装置、極端紫外光源装置の制御方法 |
US8000212B2 (en) * | 2009-12-15 | 2011-08-16 | Cymer, Inc. | Metrology for extreme ultraviolet light source |
JP2012178534A (ja) * | 2011-02-02 | 2012-09-13 | Gigaphoton Inc | 光学システムおよびそれを用いた極端紫外光生成システム |
JP2012199512A (ja) | 2011-03-10 | 2012-10-18 | Gigaphoton Inc | 極端紫外光生成装置及び極端紫外光生成方法 |
US8993976B2 (en) * | 2011-08-19 | 2015-03-31 | Asml Netherlands B.V. | Energy sensors for light beam alignment |
JP5932306B2 (ja) | 2011-11-16 | 2016-06-08 | ギガフォトン株式会社 | 極端紫外光生成装置 |
JP6168760B2 (ja) * | 2012-01-11 | 2017-07-26 | ギガフォトン株式会社 | レーザビーム制御装置及び極端紫外光生成装置 |
US9127981B2 (en) * | 2013-08-06 | 2015-09-08 | Cymer, Llc | System and method for return beam metrology with optical switch |
WO2016147255A1 (ja) * | 2015-03-13 | 2016-09-22 | ギガフォトン株式会社 | ターゲット撮像装置及び極端紫外光生成装置 |
-
2017
- 2017-01-12 JP JP2018561161A patent/JP6775606B2/ja active Active
- 2017-01-12 WO PCT/JP2017/000845 patent/WO2018131123A1/ja active Application Filing
-
2019
- 2019-06-07 US US16/434,196 patent/US10842010B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20190313519A1 (en) | 2019-10-10 |
WO2018131123A1 (ja) | 2018-07-19 |
JPWO2018131123A1 (ja) | 2019-11-07 |
US10842010B2 (en) | 2020-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6775606B2 (ja) | 極端紫外光生成システム | |
JP6715259B2 (ja) | 極端紫外光生成装置 | |
JP5603135B2 (ja) | チャンバ装置におけるターゲット軌道を計測及び制御する装置及び方法 | |
US10225918B2 (en) | Extreme ultraviolet light generating apparatus | |
JP6649958B2 (ja) | 極端紫外光生成システム | |
US9661730B2 (en) | Extreme ultraviolet light generation apparatus with a gas supply toward a trajectory of a target | |
EP2767145B1 (en) | Alignment system and extreme ultraviolet light generation system | |
US20180235064A1 (en) | Extreme ultraviolet light generating apparatus | |
US20190289707A1 (en) | Extreme ultraviolet light generation system | |
US10842008B2 (en) | Laser device, and extreme ultraviolet light generation system | |
US9578730B2 (en) | Extreme ultraviolet light generation apparatus and extreme ultraviolet light generation system | |
JP6838155B2 (ja) | レーザシステム、極端紫外光生成装置、及び極端紫外光生成方法 | |
JP6378355B2 (ja) | 極端紫外光生成装置及び極端紫外光の生成方法 | |
WO2017042881A1 (ja) | 極端紫外光生成装置 | |
WO2017163345A1 (ja) | 極端紫外光生成装置及び極端紫外光の重心位置の制御方法 | |
US10869378B2 (en) | Target measuring apparatus and extreme ultraviolet light generation apparatus | |
US20230101779A1 (en) | Euv light generation apparatus, electronic device manufacturing method, and inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201006 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6775606 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |