WO2001068553A1 - Production d'un compact fritte d'oxyde de zinc et varistance en oxyde de zinc - Google Patents

Production d'un compact fritte d'oxyde de zinc et varistance en oxyde de zinc Download PDF

Info

Publication number
WO2001068553A1
WO2001068553A1 PCT/JP2001/001989 JP0101989W WO0168553A1 WO 2001068553 A1 WO2001068553 A1 WO 2001068553A1 JP 0101989 W JP0101989 W JP 0101989W WO 0168553 A1 WO0168553 A1 WO 0168553A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
oxide
weight
oxide powder
zinc oxide
Prior art date
Application number
PCT/JP2001/001989
Other languages
English (en)
French (fr)
Inventor
Kei Miyamoto
Hiroki Miyamoto
Atsushi Iga
Original Assignee
Osaka Prefectural Government
Zinctopia Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000068389A external-priority patent/JP2001257105A/ja
Priority claimed from JP2000165253A external-priority patent/JP2001348269A/ja
Priority claimed from JP2000288811A external-priority patent/JP2002097071A/ja
Priority claimed from JP2000364078A external-priority patent/JP2002167273A/ja
Priority claimed from JP2001022534A external-priority patent/JP2002226262A/ja
Application filed by Osaka Prefectural Government, Zinctopia Co., Ltd. filed Critical Osaka Prefectural Government
Publication of WO2001068553A1 publication Critical patent/WO2001068553A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • H01C17/06546Oxides of zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • the present invention relates to a zinc oxide-based sintered body as a varistor production material used for surge absorption in an electric circuit, a method for producing the same, a zinc oxide varistor, and a zinc oxide valley using the same It relates to a star device.
  • Zinc oxide varistors are basically zinc oxide and its essential additives, bismuth oxide, cobalt oxide and manganese oxide, and various types that may be added to improve performance. After forming and sintering a zinc oxide raw material mixed powder containing an oxide, the obtained zinc oxide-based sintered body is used to produce the powder.
  • the rising voltage of the zinc oxide varistor rises almost in proportion to the number of zinc oxide grain boundaries in the zinc oxide sintered body existing between the electrodes. That is, the rising voltage rises by about 3 to 4 V per one grain boundary in the sintered body. Therefore, in order to manufacture a zinc oxide varistor for a high voltage of about 200 to 400 V per 1 mm in thickness, what is the average particle size as a raw material? It is necessary to manufacture a zinc oxide-based sintered body containing ZnO particles with a small particle size of about 15 m3 ⁇ 4.
  • the above-mentioned “rise voltage” means a voltage between both terminals when a current of 1 mA flows in a ballast, and is represented by VlmA.
  • the voltage between both terminals when a current of 1 mA flows through a 1 mm thick sample is expressed as VlmA / mm as one of the constants of this material. Therefore,
  • VlmA / fflin means the rising voltage per 1mm thickness of the sample.
  • the basic composition Ru der ZnO- Bi 2 0 3 system oxide zinc Beauty static material for manufacturing there is a eutectic composition having a eutectic temperature of 740 ° C, this ZnO and Bi 2 0 3
  • the two-component mixture easily reacts and sinters even at around 800 ° C.
  • ZnO- Sb 2 0 3 film is readily react with Bi 2 0 3 and a low temperature, between ZnO-ZnO ZnO- Bi 2 0 3 - Sb 2 0 3 chemically stable strong Roh ,. It forms a film of the cyclochlor phase, which further hinders sintering. More specifically, the solid phase pyrochlore phase hinders the formation of the liquid Bi 2 O 3 phase and slows the progress of liquid phase sintering.
  • the Cr 2 0 3 was added to the the al composition ZnO- Bi 2 0 3 - Sb 2 0 3 - (Co0, Mn0, NiO) -
  • the Cr 2 0 3 system, Nono 0 A B click Roa phase ZnO In order to form a liquid phase containing Bi 2 O 3 as a main component by reacting with hydrogen, a high-temperature firing at 1200 ° C. or more is required. And power, while, the once formed Bi 2 0 3 based liquid phase, present in a stable grain boundary even after cooling, Bruno. There is no going back to the illusion phase. Then, the zinc oxide varistor obtained by using the obtained sintered body exhibits excellent initial characteristics.
  • “excellent in electrical characteristics” means, for example, that the leakage current is small and the nonlinear resistance index value (0.1 mA a: 1 mA) described later is high. This means that high current generated instantaneously in an electric circuit with a built-in varistor is absorbed and high voltage is prevented from being generated in the circuit.
  • “excellent reliability” means that when a voltage is applied for a long time, or when a power load is applied at a high temperature for a long time, and the pulse current is increased. This means that the initial electrical characteristics are substantially maintained under various conditions such as when a voltage is applied.
  • conventional zinc oxide varistors have the following intrinsic instabilities.
  • an interstitial zinc atom (so-called “integral steel”) is placed between a lattice point at which a zinc atom constituting a zinc oxide crystal is located and a lattice point at which an oxygen atom is located. ⁇ ⁇ ) exists.
  • the conductivity of zinc oxide is excited by these interstitial channels. It is provided by the emitted electrons.
  • One of the biggest problems with conventional zinc oxide varieties is the various electrical instabilities.
  • One of the electrical instabilities is that if DC or AC voltage is continuously applied to the capacitor for a long period of time, the V-I characteristics deteriorate and the current gradually increases. .
  • the negative charge trapped at the grain boundaries is reduced, so that the barrier function that has contributed to the varistor characteristics is reduced, and the nonlinear resistance characteristics are reduced.
  • an interface having a positive charge in the depletion layer can be used.
  • the stabilization Zn atom is attracted to grain boundaries. In such a situation, when the varistor element is heated, the thermally excited interstitial Zn atoms are more likely to move, and a part of the atoms is reduced by the electric field.
  • N-type semiconductor of Zn O crystals also I by the addition of A 1 2 0 3. Occur.
  • Unstable electrical characteristics of zinc oxide varistors are mainly due to the movement of Zn in the static state. Therefore, if the amount of the interstitial Zn is reduced, In particular, by introducing A1 atoms as donors at the lattice points where Zn atoms are located, electrons from the A1 donor contribute to the electrical conductivity in the zinc oxide particles. There is a need.
  • an object of the present invention is to provide a new technique capable of producing a zinc oxide-based sintered body having uniform properties by sintering at a low temperature.
  • the present invention further uses the sintered body obtained by the above method to produce a zinc oxide varistor excellent in electrical characteristics such as non-linear resistance characteristics and reliability. It also aims to provide technology.
  • the present inventor has conducted various studies in order to solve the above-mentioned problems of the prior art, and as a result, when producing a zinc oxide-based sintered body as a basic material of a zinc oxide barrier, a specific amount of oxidized powder was used.
  • Pre-heat treated mixed oxide powder containing boron hereinafter sometimes referred to as “first pre-heat treated powder”
  • pre-heat treated mixed oxide powder containing a specific amount of chromium oxide hereinafter referred to as “first pre-heat treated powder”.
  • first pre-heat treated powder pre-heat treated powder containing boron
  • first pre-heat treated powder pre-heat treated mixed oxide powder containing a specific amount of chromium oxide
  • mixed oxide preheated powder containing a specific amount of boron oxide and a specific amount of chromium oxide hereinafter referred to as “third preheated powder”.
  • the preheat-treated powder is added to a powder mixture containing zinc oxide and other additives, molded, and sintered at a low temperature. It was found that a zinc oxide-based sintered body with uniform and stable properties could be obtained.
  • a mixed oxide preheat-treated powder containing a specific amount of boron oxide, a specific amount of chromium oxide, and other oxide components (hereinafter referred to as “fourth Preliminarily heat treated powder), and then add this preheat treated powder to a powder mixture containing zinc oxide and other additives, compact, and sinter at low temperature.
  • fourth Preliminarily heat treated powder a mixed oxide preheat-treated powder containing a specific amount of boron oxide, a specific amount of chromium oxide, and other oxide components
  • the present invention provides the following method for producing a zinc oxide-based sintered body:
  • a method for producing a zinc oxide-based sintered body comprising:
  • An oxide mixed powder consisting of 5 to 20% by weight of boron oxide powder and at least 80 to 95% by weight of at least one of bismuth oxide powder, antimony oxide powder and rare earth oxide powder at 300 to 1300 ° C Pulverizing after preliminary heating in step (a) to obtain a first preheat-treated powder having a boron oxide content of 5 to 20% by weight,
  • An oxide mixed powder consisting of 20 to 50% by weight of chromium oxide and at least one of 80 to 50% by weight of at least one of bismuth oxide powder, antimony oxide powder and rare earth oxide powder is used.
  • Zinc oxide powder 81.38 parts by weight, first pre-heat-treated powder containing boron oxide 0.05-2.5 parts by weight, second pre-heat-treated powder containing chromium oxide 0.05-3.0 parts by weight , Powder of cobalt oxide, powder of manganese oxide, and powder of nickel oxide 0.3 or more 5.0 parts by weight, bismuth oxide powder 1.2 to 7.0 parts by weight (including the contribution of the first and second preheated powders), antimony oxide powder 0.1 to 3.0 parts by weight (first and second parts) 2) A process of preparing a zinc oxide-based mixed powder by mixing 0.0001 to 0.05 parts by weight (including aluminum oxide) of aluminum compound powder, including the contribution of the preheat-treated powder.
  • the present invention further provides the following method for producing a zinc oxide-based sintered body:
  • a method for producing a zinc oxide-based sintered body comprising:
  • An oxide mixed powder consisting of 5 to 70% by weight of boron oxide powder and 95 to 30% by weight of chromium oxide powder is preliminarily heated at 300 to 1300 ° C., and then pulverized. Obtaining a third preheat-treated powder having a nitrogen content of 5 to 70% by weight and a chromium oxide content of 95 to 30% by weight;
  • the present invention further provides the following method for producing a zinc oxide-based sintered body:
  • a method for producing a zinc oxide-based sintered body comprising:
  • oxide mixed powder consisting of 75 to 30% by weight is preliminarily heated at 300 to 1300 ° C and then pulverized to obtain a boron oxide content of 5 to 20% by weight and oxidization.
  • a fourth preheat-treated powder having a chromium content of 20 to 50% by weight; 81.38 parts by weight of zinc oxide powder, 0.1 to 5.0 parts by weight of the fourth preheat-treated powder containing boron oxide / chromium oxide, cobalt oxide powder, manganese oxide powder, and nickel oxide powder 0.3 to 5.0 parts by weight of two or three kinds of powders selected from the group consisting of: 1.2 to 7.0 parts by weight of bismuth oxide powder (including the contribution of the fourth preheated powder); 0.1 to 3.0 parts by weight (including the contribution of the fourth preheat-treated powder) and 0.0001 to 0.05 parts by weight of aluminum compound powder (however, aluminum oxide equivalent) To prepare a zinc oxide-based mixed powder by mixing
  • FIG. 1 is a side view showing an outline of a disc type zinc oxide varistor manufactured using a zinc oxide based sintered body according to the present invention.
  • FIG. 2 is a side view showing an outline of an arrester-type zinc oxide varistor manufactured using the zinc oxide-based sintered body according to the present invention.
  • the particle diameters of the initial raw material powder and the mixed powder as the molding material are the same as those of similar powders used in the ordinary method.
  • the particle size of these powders varies depending on the type of oxide and the like, but is usually in the range of about 0.1 to 15 m, and more preferably, 0.5 to 10 m. ffl range.
  • binder may be used to refer to various raw materials, for example, “aluminum compound”.
  • the particle size of the ZnO powder indicates a value determined by electron micrograph observation, and the particle size of the other powders indicates a value determined by laser diffraction analysis.
  • a first preliminary heat-treated powder is prepared in advance as a boron oxide source in a zinc oxide-based molded sintered body.
  • the first preheated powder is composed of hydrogen oxide, bismuth oxide and antimony oxide (antimony trioxide, diantimony tetraoxide and antimony pentoxide). ) And at least one oxide powder selected from the group consisting of rare earth oxides, and uniformly mixed, and the resulting mixed powder is preheated at 300-130 ° C. After that, the heated agglomerate is prepared by grinding. If a small amount of the first pre-heat treated powder is to be produced, After being melted by heat, it is preferable to rapidly cool and pulverize by a known wet method or dry method. For mass production,
  • pulverizing is preferred. In order to make the properties of the first preheated powder more uniform, it is preferable to perform heating and pulverization twice or more.
  • the rare earth elements used in the form of oxides as the components contained in the first preheated powder are atomic numbers 2KSc) and 39 ( ⁇ ). In addition, elements of 57 (La) to 71 (Lu) are used. Among these, Y, La, Nd, Pr, etc. are more preferable, etc.
  • the boron oxide content in the first preliminary heat-treated powder is usually about 5 to 20% by weight, More preferably, the content is about 7 to 15% by weight.Before blending boron oxide into the first preheat-treated powder, it is possible to mainly control the growth of ZnO grains and improve the performance. In this way, effects such as an improvement in the reliability of the risk are achieved.
  • a second preheat-treated powder is prepared in advance as a chromium oxide source in the sintered body.
  • the second preheated powder comprises chromium oxide, bismuth oxide, antimony oxide (at least one of antimony trioxide, diantimony tetroxide and antimony pentoxide) and rare earth elements.
  • At least one oxide powder selected from the group consisting of oxides is uniformly mixed, and the resulting mixed powder is preheated at 300 to 1300 ° C. After that, the heated agglomerate is prepared by crushing.
  • the use of the pulverization method according to the heating temperature is the same as that for the first preheated powder.
  • the rare earth element used in the form of oxide as a component contained in the second preliminarily heat-treated powder is the same as in the case of the first preliminarily heat treated powder.
  • the chromium oxide content in the second preheat-treated powder is usually about 20 to 50% by weight, and more preferably about 25 to 40% by weight.
  • Bismuth oxide and antimony oxide (one or more of antimony trioxide, nithanium tetroxide and antimony pentoxide) and rare earth oxides in the second preheated powder The content of one kind is usually about 80 to 50% by weight, and more preferably about 75 to 60% by weight of c- chromium oxide in such a second preheat-treated powder.
  • the zinc oxide-based sintered body according to the first aspect of the present invention comprises:-a mixed powder raw material containing zinc oxide powder as a main component and the first and second preliminary heat-treated powders. It is manufactured by the following method.
  • the first preliminary heat-treated powder containing boron oxide 0.05 to 2.5 parts by weight, chromium oxide Including 2nd Preliminary heat treatment powder G.
  • 0.05 parts by weight (equivalent to aluminum oxide) are mixed, wet-pulverized or dry-pulverized according to a conventional method, and if necessary, sieved to obtain a molding material having a predetermined particle size.
  • a zinc oxide-based mixed powder is prepared.
  • At least one of at least two members selected from the group consisting of cobalt oxide, manganese oxide and nickel oxide contained in the zinc oxide-based mixed powder Preferably have a valence greater than divalent.
  • these oxides are thermally decomposed during the firing of the molded body, which will be described later, to form a solid solution with zinc oxide as a divalent oxide, and the generated high-pressure oxygen is closed in the molded body. Form pores. As a result, the effect of improving the electrical characteristics of the varistor is achieved.
  • Anore Mi Niumu containing organic compounds such as Shiyu c acid Aluminum bromide is Can be used. These are the Aluminum Niu-time compound of, A100H, A1 (OH) ( CH 3 C00) 2.
  • A1 (N0 3) 3 ⁇ 9H 2 0 such as is good Ri favored arbitrariness.
  • the zinc oxide-based mixed powder may be made of germanium oxide, niobium oxide, lead oxide, gay oxide, tin oxide, tantalum oxide, titanium oxide, tungsten oxide, or titanium oxide. At least one selected powder can be added.
  • the amount of each of these optional additives is usually 1.0 part by weight or less, more preferably about 0.5 part by weight, based on 81.38 parts by weight of zinc oxide. Also, when two or more kinds of optional additives are blended, the total amount is usually 1.0 part by weight or less, and more preferably about 0.5 part by weight. When these optional additives are used, effects such as control of the ZnO particle size and improvement of the varistor reliability are better achieved.
  • the zinc oxide-based mixed powder obtained above is molded into a predetermined shape according to a conventional method, and then sintered at about 800 to 1100 ° C, more preferably about 850 to 1000 ° C. .
  • the sintering of the compact may be carried out according to a conventional method.
  • the compact was heated to a sintering temperature at a speed of about 40 to 60 ° C / hr. Thereafter, the temperature is maintained at the same temperature for about 5 to 15 hours, and then the sintered body is cooled to room temperature at a rate of about 40 to 60 ° C / hr.
  • a sintered body that is a base material for manufacturing a zinc oxide varistor is obtained.
  • the obtained sintered body is preferably heat-treated at about 500 to 800 ° C (more preferably, about 550 to 750 ° C). By this heat treatment, a y-bismuth phase is formed as a bismuth oxide main component phase.
  • a third preheat-treated powder is prepared in advance as a boron oxide source and a chromium oxide source for producing a zinc oxide-based molded sintered body.
  • the third preliminarily heat-treated powder is an oxide mixed powder consisting of boron oxide powder ⁇ -70% by weight and chromium oxide powder 95- 30% by weight. After that, it is prepared by crushing.
  • the zinc oxide-based sintered body according to the second aspect of the present invention uses a mixed powder raw material containing zinc oxide powder as a main component and the third preheat-treated powder, and It is manufactured by the method.
  • the mixture is wet-pulverized or dry-pulverized and sieved as necessary to prepare a zinc oxide-based mixed powder as a molding material having a predetermined particle size.
  • the second embodiment of the present invention is the same as the first embodiment of the present invention except that a third preheat-treated powder is used as a boron oxide source and a chromium oxide source. is there.
  • a fourth preheat-treated powder is prepared in advance as a boron oxide source and a chromium oxide source for producing a zinc oxide-based molded sintered body.
  • the fourth preheated powder is an oxide selected from the group consisting of 5 to 20% by weight of boron oxide powder, 20 to 50% by weight of chromium oxide powder, bismuth oxide powder, antimony oxide powder and rare earth powder. It is prepared by preliminarily heating an oxide mixed powder consisting of at least one kind of powder of 75 to 30% by weight at 300 to 1300 ° C, and then pulverizing it.
  • the zinc oxide-based sintered body according to the third aspect of the present invention comprises the following method using a mixed powder raw material containing zinc oxide powder as a main component and the fourth preheated powder. It is manufactured more.
  • G parts by weight (including the contribution from the above fourth preheated powder) and 0.0001 to 0.05 parts by weight of aluminum compound powder (however converted to aluminum oxide) are mixed, and the mixture is mixed according to a conventional method.
  • the mixture is wet-pulverized or dry-pulverized and sieved as necessary to prepare a zinc oxide-based mixed powder as a molding material having a predetermined particle size.
  • the third embodiment of the present invention is the same as the first embodiment of the present invention except that the above-mentioned fourth preheat-treated powder is used as a boron oxide source and a chromium oxide source.
  • the zinc oxide varistor according to the present invention is manufactured using the zinc oxide-based sintered body obtained as described above, for example, as follows.
  • the shape of the zinc oxide plate and the manufacturing method are the same as those in the case of the known technology, and are not particularly limited.
  • a disk-type capacitor or a lister shown in FIG. After soldering, a portion other than the portion where the lead wire is attached is covered with a non-conductive layer (for example, a resin layer such as an epoxy resin).
  • a non-conductive layer for example, a resin layer such as an epoxy resin.
  • a known coating material is applied to the circumferential surface of the columnar zinc oxide-based sintered body 11 and fired to insulate it.
  • the electrode 13 is formed by spraying a metal aluminum electrode material on the upper and lower surfaces to form the electrode 13.
  • This type of varistor is housed in a container (not shown) surrounded by insulators, connected to electrodes, and used as an arrestor in accordance with a conventional method.
  • the zinc oxide-based mixed powder according to the present invention is formed into a thin plate according to a conventional method, and the obtained thin plate-shaped compact and the metal electrode material are alternately laminated. When the obtained laminate is fired, a laminated zinc oxide varistor can be obtained.
  • the invention's effect according to the present invention, by using a zinc oxide-based raw material mixed powder having a specific composition, even when the mixed powder compact is sintered at a low temperature, the composition is uniform and the properties are improved. A stable zinc oxide-based sintered body is obtained.
  • boron oxide and chromium oxide Prior to the preparation of the raw material mixed powder, a small amount of the components, boron oxide and chromium oxide, are separately mixed with other oxide components and heat-treated in advance, or boron oxide and chromium oxide are mixed. Heat treatment in advance, or heat treatment in advance by mixing boron oxide and chromium oxide with other oxidizing components such as antimony oxide. Compared to the conventional technology in which most of the components are mixed and preliminarily heat-treated, the heat treatment energy is greatly reduced and the production process is shortened, so the production cost of zinc oxide varistors is reduced. Can be reduced.
  • a zinc oxide slurry is manufactured using the obtained sintered body, a product having excellent electrical characteristics such as non-linear resistance characteristics and reliability can be obtained. More specifically, it not only has excellent initial characteristics, but also has stability against AC / DC, pulse application, and stability against heat treatment at 500 ° C to 800 ° C. Also excellent in properties. In addition, the yield rate is improved because the incidence of defective products is reduced.
  • the method for manufacturing a zinc oxide varistor according to the present invention can provide a product having a high rise voltage, which has been difficult to achieve with a conventional manufacturing method.
  • the density of interstitial ions (interstitial zinc atoms) in the zinc oxide particles is 1.5 ⁇ 10 16 / cm 3 or less. is there.
  • a zinc oxide-based sintered body having excellent electrical properties can be obtained by low-temperature sintering at 950 ° C. or lower, depending on the raw material composition. Therefore, the zinc oxide-based sintered body is formed into a sheet, alternately laminated with the electrode material, sintered, and then the electrodes are connected by a predetermined contact method, thereby forming a laminated mold. Varistors can be obtained.
  • a firing temperature of 1200 ° C or more is required in order to provide good characteristics to a laminated type pulse electrode, so it is necessary to use a noble metal such as platinum as an electrode material. There was.
  • a zinc oxide-based sintered body can be manufactured at 950 ° C. or lower, it is possible to use relatively inexpensive silver as an electrode material. Benefits are obtained. ,
  • the particle diameters of the initial raw material powder and the powder after heat treatment and pulverization are as follows.
  • B 2 0 3 powder and Cr 2 0 3 and powder 1 1 mono-mixed (molar ratio), after heat treatment for 5 hours at atmospheric atmosphere at 500 ° C, for a stabilized Jill Konia and Kona ⁇ Me di A Using a Malone pot By the this milling Te Ri to obtain a third preliminary heat treatment powder containing B 2 0 3 / Cr 2 0 3.
  • the obtained molded body After drying the obtained compounded powder and pressing it into a disc, the obtained molded body is heated in the air at a speed of 50 ° C for a time of 10 hours, and is kept at 900 ° C for 10 hours. The temperature was decreased to room temperature in ° C and Z hours, and the zinc oxide-based sintered body (hereafter, the zinc oxide-based sintered body was heat-treated. ").
  • the obtained sintered body had a thickness of 1.2 mm and a diameter of 14 mra. Then, the obtained sintered body was heat-treated at 700 ° C for 1 hour.
  • FIG. 1 is a schematic perspective view of a disc type zinc oxide plate made using the zinc oxide based sintered body of the present invention.
  • An aluminum layer (not shown) is formed by spraying aluminum on both surfaces of the sintered body 1 obtained as described above, and then the formed aluminum layer is formed.
  • electrode 3 was formed by spraying copper. After the lead wire 5 is soldered to the electrode 3, the sintered body other than the lead wire portion and the electrode portion are coated with a resin, whereby the zinc oxide varistor according to the present invention is obtained.
  • the electrical properties of the zinc oxide slurry obtained in this way were evaluated.
  • a non-linear value obtained by using the voltage for 1 mm thickness between both terminals when a current of 1 mA flows that is, the rising voltage VI niA / mm, VlraA, and VO.1 mA
  • the resistance index was measured at 0.1 mA and 1 mA.
  • the nonlinear resistance index 0.1 IkalinA may be simply referred to as a value.
  • the larger the nonlinear resistance index the greater the surge absorption capacity.
  • the nonlinear resistance characteristics in the low current region were evaluated at VlmA / VO.
  • VlmA / VO.01mA When VlmA / VO.01mA is 1.15 or less, the leakage current is small, and attention to heat generation is unnecessary, and the varistor element has excellent stability.
  • the reliability of the varistor against a DC load was evaluated. That is, after applying a 0.5 ⁇ DC load for 500 hours in a high-temperature atmosphere of 80 ° C to the power supply, the cooling is performed, and the rate of change of the riser voltage VlmA of the power supply is reduced. That is, the DC load change rate AVlmAVVlmA was measured. Variation Rate of rise in voltage VlmA ⁇ The smaller the value of VlmA / VlmA, the more stable the electrical characteristics of the zinc oxide varistor and the higher the reliability.
  • the reliability of the current surge with respect to the current surge was evaluated as follows.
  • the change rate of the Norris evening rise voltage VlmA that is, the surge change rate ⁇ VlmA / VlmA was measured.
  • Table 1 shows the evaluation results of the electrical characteristics of the three types of varistors obtained in Example 1.
  • VlmA / Vlm / The absolute value of VlmA / Vlm / is 5% or less, which is excellent in reliability. Also, as is clear from the results shown in Table 1, there was little variation in the electrical characteristics within the same mouthpiece.
  • the preparation of the resin mixture is performed by forming the zinc oxide mixed powder obtained by spray drying into a columnar shape by the IPCRubber Isostatic Press (rubber isostatic press) method, and applying bismuth borosilicate-based powder to the side of the obtained molded body.
  • a mixture of glass powder and MnO 2 was applied and baked at 900 ° C. or 950 ° C. for 10 hours each to obtain two types of columnar zinc oxide-based sintered bodies.
  • the size of the obtained two types of zinc oxide based sintered bodies was 32 mm in diameter and 28 m in height.
  • FIG. 2 is an oblique view of a zinc oxide varnish of an aluminum type prepared using a zinc oxide based sintered body according to the present embodiment.
  • Element electrodes 13 are formed on the upper and lower surfaces of the zinc oxide based sintered body 11 by aluminum spraying.
  • a side surface insulating film 15 made of a mixture of my force and resin is formed on the side surface of the zinc oxide based sintered body; The film forms a zinc oxide-based varistor element.
  • Table 2 shows the current-voltage characteristics of the aluminum oxide zinc oxide varistor device obtained in this example.
  • the service life is one of the most important evaluation items of Ares.
  • the test was performed under the conditions of an ambient temperature of 130 ° C and a charge rate of 95%.
  • the initial Ir was almost unchanged for both devices over 100 hours of testing. Therefore, when used as a gapless area for a gas press, it was found that a service life of 100 years or more was guaranteed under the conditions of an ambient temperature of 70 ° C and a charge rate of 80%.
  • Y 2 0 3 powder 2: 1: 1 mixture of 3 types of powders in the Hare by will (on Monore spoon), 5 under the atmosphere 410 ° C
  • heat treatment is again performed under the same conditions, and pulverization is performed using a mono-male pot with a stabilized zirconia as a pulverization medium. to obtain a B 2 0 3 / Cr 2 0 3 / Y 2 0 3 content fourth preliminary heat treatment powder.
  • the obtained molded body was fired at 900 ° C or 950 ° C.
  • a part of both mouthpieces was subjected to a heat treatment at 700 ° C., and in the same manner as in Example 1, a zinc oxide glass was prepared, and its electrical characteristics were evaluated. Table 3 shows the results.
  • the zinc oxide varistor manufactured using the zinc oxide-based sintered body according to the present embodiment has a good non-linear resistance characteristic, and can be used for a long-time DC load or for a surge.
  • the absolute value of the rate of change of the rising voltage VlmA (AVlmA / VlinA) was 5% or less, indicating excellent reliability.
  • B 2 0 3 powder in Sb 2 0 3 powder (each powder each particle size average particle size. 2 to 3 mu in the) the molar ratio of 2: 1 and by cormorants mixed under 370 ° C air atmosphere to become 5 Tokukan after heat treatment, Ri by the and the child to be finely pulverized by a mono Ma Hollow down the pop door ball Lumpur mil to a stable di Noreko two ⁇ and the grinding menu di a, b 2 0 3 / Sb 2 0 3 containing the first preliminary heat treatment powder (yield the average particle size of about 0.5 to 1.5 1.
  • Bi 2 0 3 powder Cr 2 0 3 powder 1 (particle size, respectively it mean particle ⁇ . 2 to 3 m of the powder) the molar ratio: 1 become mixed as, 500 under an air atmosphere After heat treatment at 5 ° C for 5 hours, the material is pulverized with a ball mill of mono-malon pot using stabilized zirconia as a pulverizing medium.
  • the green body After drying the raw material-blended powder obtained and pressing it into a disk, the green body is heated at a rate of 50 ° C / hour in the air and heated at 900 ° C or 1000 ° C. After holding for 10 hours, cooling rate 50 ° C / hour Then, the temperature was lowered to obtain a sintered body composed of two types of rods.
  • the size of the sintered body was 1.2 mni in thickness and 14 Dim in diameter.
  • a part of the two kinds of the obtained sintered bodies was kept at 700 ° C for 1 hour to perform a heat treatment.
  • the zinc oxide-based sintered body obtained according to the present example can be sintered even at a temperature as low as 900 ° C., and the zinc oxide varistor produced using this sintered body is: Excellent non-linear resistance characteristics, and the absolute value of the rate of change of the rising voltage VimA ⁇ VlmA / VlmA is 5% or less, even with a long-term DC load or surge. Excellent in reliability I was In addition, the electrical characteristics and variation in the same lot were small.
  • the variation in the electrical characteristics between different lots is also different from the variation in the electrical characteristics in the same lot. Equally small power.
  • B 2 0 3 powder and Sb 2 0 3 powder and a 2: 1 powder were mixed in a molar ratio of - 1 and Cr 2 0 3 and a powder and Sb 2 0 3 powder 1: mixed powder at a molar ratio of Body-2 and each under air atmosphere
  • a silver electrode material is applied to both surfaces of the zinc oxide-based sintered body obtained above, baked at 700 ° C to form electrodes, and then a lead wire is soldered to form a zinc oxide varistor. It was made.
  • Table 5 shows the measurement results of the electrical characteristics of the varistors.
  • the zinc oxide-based sintered body of this example can be sintered even at a low temperature of 900 to 950 ° C.
  • the zinc oxide varistor produced using the obtained sintered body has good non-linear resistance characteristics, and has a rising voltage VlmA for long-time DC load and surge. Rate of change ( ⁇
  • a Bi 2 0 3 powder and Cr 2 0 3 powder 1 The mixed powder 1 molar ratio - was subjected 2 to Netsusho sense for 5 hours under air atmosphere 500 ° C, stabilized Jirukonia the Ri by the and the child to be milled in a ball mil of grinding main di Athos mono Ma Russia down the pop door to obtain a synthetic powder 2 composed of Bi 2 0 3 and Cr 2 0 3 Metropolitan.
  • the zinc oxide varistor manufactured using the zinc oxide-based sintered body according to the present example has a good non-linear resistance characteristic and can withstand a long-term DC load. Also, it is clear that the absolute value of the rate of change of the rising voltage VlmA / VlmA / VlmA is 5% or less with respect to the surge current, indicating excellent reliability.

Description

明 細 書
酸化亜鉛焼結体の製造方法および酸化亜鉛バ リ ス夕
技 術 分 野
本発明は、 電気回路中のサー ジ吸収などに用い られ るバ リ スタ製造材料と しての酸化亜鉛系焼結体とその 製造方法および酸化亜鉛バ リ スタ と これを用いた酸化 亜鉛バ リ スタ装置に関する。
背 景 技 術
酸化亜鉛バリ スタは、 基本的には、 酸化亜鉛と必須 添加物であ る酸化 ビスマス、 酸化コバル トおよび酸化 マ ンガンと、 さ らに性能向上のために添加される こ と があ る各種の酸化物とを含む酸化亜鉛原料混合粉末を 成形 し、 焼成した後、 得られた酸化亜鉛系焼結体を用 いて、 舞造される。
酸化亜鉛バリ スタ の立ち上がり 電圧は、 電極間に存 在する酸化亜鉛系焼結体内の酸化亜鉛粒界の数にほぼ 比例 して上昇する。 すなわち、 立ち上がり電圧は、 焼 結体内の一つの粒界当た り 3〜 4V程度上昇する。 した がって、 厚さ 1mm 当た り 200〜 400V程度の高電圧用の 酸化亜鉛バ リ スタを製造するためには、 原料と して、 平均粒径?〜 15 m¾度の粒径の小さい ZnO粒子を含有 する酸化亜鉛系焼結体を製造する必要がある。 従来、高電圧用酸化亜鉛バ リ ス夕を製造するために、 Sb203、 Si02などの ZnO粒子成長抑制剤を原料中に配合 'する こ と によ り 、 ZnO粒子の成長を抑制する方法が用 い られている。 この Sb203は、 酸化亜鉛バ リ スタの非 直線抵抗特性を安定化させる とい う 重要な機能をも発 揮する ので、 必要不可欠な添加成分である。
なお、 上記の 「立ち上がり 電圧」 とは、 バリ ス夕 に 1mAの電流を流した時の両端子間の電圧を意味してお り 、 VlmAで表わされる。そ して、厚さ 1mmの試料に 1mA の電流を流した時の両端子間の電圧をこ の材料の定数 の一つと して、 VlmA/mm で表わ している。 従っ て、
" VlmA/fflin" で表される値が、 試料 1mmの厚さ当た り の 立ち上が り 電圧を意味する。
しか しながら、 従来技術において、 高性能の高電圧 用酸化亜鉛バリ ス夕を得る ためには、 原料混合物粉末 の成形物を 1150〜 1300°Cと い う 高い温度で焼成する 必要があ る。 こ の様な高温度で焼成を行う 場合には、 大気中において も Bi203、 Co304な どが多量に蒸発する。 蒸発 した Bi 203は、 反応性が高いので、 例えば、 炉材 料、容器材料な どのセラ ミ ッ ク スを容易に腐食させる。 すなわち、 原料混合物成形体の焼成を高温度で行う 場 合には、 電力消費量の増大のみな らず、 Bi,03な どの含 有成分蒸発によ る飛散とそれに伴う 炉材料、 容器材料 などの消耗をもた らすので、 よ り低温度での原料混合 物成形体の焼成を可能とする新 しい技術の確立が要望 されている。
さ らに、 原料混合物成形体の焼成温度が高い場合に は、 焼成炉内の温度が不均一とな り やすいので、 被焼 成物であ る成形体の異な る設置個所において、 焼成温 度、 昇温速度、 B i 203および Sb203の蒸気圧などに差が 生 じて、 酸化亜鉛系焼結体の特性およびこれを使用 し て製造される酸化亜鉛バ リ スタ の特性にパ'ラ ツキを生 じゃすいな どの問題を生 じる。
上記の問題に対処するために、 従来組成の酸化亜鉛 バ リ スタ用原料混合物成形体の焼成温度を低 く する と 十分な焼結がおこ なわれないので、 ZnOの粒径にバラ ツキが生じて、 最終的に得られる酸化亜鉛パ リ ス夕の 立ち上が り 電圧が急激に高 く な り 、 非直線抵抗特性が 低下する。 さ らに、 酸化亜鉛バ リ スタ の電力負荷、 パ ルス電流負荷などによる劣化が進みやす く なるな どの 問題も生 じる。
酸化亜鉛バリ スタ製造用の基本原料粉体に S b 203
Cr203 S i02な どを添加 した混合粉体を加圧成形 し、 焼 成する と、 昇温過程で Sb203が昇華して Z nO粒子の表 面を覆い、 さ らに ZnO と反応 して、 ZnO粒子同士の接 触を妨げて、 ZnO粒子の成長を抑制する働きをする。
本来、 酸化亜鉛バ リ スタ製造用原料の基本組成であ る ZnO- Bi203系には、 740°Cの共晶温度をもつ共晶組成 があるので、 この ZnO と Bi 203との二成分混合物は、 800 °C近傍においても、 容易に反応 し、 焼結する。 しか る に、 こ の二成分混合物に対する添加物中に Sb203が 存在する場合には、 上,述の通り 、 Sb203が低温で昇華し て ZnO粒子の周 り を覆う こ とによ り 、 ZnO粒子と Bi203 粒子間の接触を妨害 し、 これ ら 2 成分間の反応を抑制 するので、 原料混合物成形体の焼結が困難となる。 さ らに、 ZnO- Sb203膜が Bi 203 と低温で容易に反応 して、 ZnO-ZnO間に ZnO- Bi 203 - Sb203の化学的に安定 した強固 なノ、。ィ ロ ク ロア相の膜を形成 し、 これがさ らに焼結を 阻害する 。 よ り 詳細には、 こ の固相のパイ ロ ク ロア相 は、 液相の Bi203相の生成を妨げて、 液相焼結の進行 を遅 らせる。
酸化亜鉛バリ スタ用原料においては、 さ らに鉄族酸 化物が配合される ので、 ZnO- Bi 203 - Sb203 - (Co0、 Mn0、 NiO)系となる。 こ の場合に も、 原料成形体の焼成に際 して、 ハ°ィ ロ ク ロア相力 ZnO と反応して Bi 203を主成 分とする液相を形成するためには、 1200°C以上の高温 焼成を必要とする。 しかも、 この系では、 高温で Bi203 を主成分 とする液相が形成されたと して も、 冷却課程 で逆の反応がおき るので、 室温において焼結体内の ZnO粒界にパイ ロ ク ロア相が生 じる。 こ の様に、 焼結 体の粒界に Bi203相が形成される こ とな く 、 代わ り に パイ ロク ロア相が存在する場合には、 優れた特性を発 揮するバ リ ス夕 は得られない。
上記組成にさ ら に Cr203が添加された ZnO- Bi203 - Sb203— (Co0、 Mn0、 NiO )— Cr203系では、 ノヽ0イ ロ ク ロァ相 が ZnO と反応して Bi203を主成分とする液相を形成す るためには、 やは り 1200°C以上の高温焼成を必要とす る という 問題点があ る。 し力、 しながら、 ひとたび形成 された Bi203系液相は、 冷却後に も安定に粒界に存在 して、 ノ、。ィ ロ ク ロア相に逆戻りする こ とはない。 そ し て、 得られた焼結体を使用 して得られる酸化亜鉛バリ スタ は、 優れた初期特性を示す。
Sb203の昇華を抑制するために、Bi 203と Sb203とから なる粉体混合物を予め熱処理(通常 500〜600 °C程度) を施 した後、 ZnO に添加する こ とが、 原料混合物成形 体の焼結促進に効果的であ る こ とが知 られている。 す なわち、 こ の方法によれば、原料混合物成形体を 900 °C で焼成する場合において も、 Sb203の昇華が抑制され、 ZnO粒子表面におけるパイ ロ ク ロア相などの膜形成カ 抑制されるので、 焼結はかな り 良好に進行する。 しか しながら、 こ の様に して調製された焼結体からは、 安 定した電気的特性を有する酸化亜鉛バ リ スタ は得 られ ない。
酸化亜鉛バリ スタ において、 「電気特性が優れてい る」 とは、 例えば、 漏れ電流が少な く 、 かつ後述する 非直線抵抗指数値(0. 1 mA a: 1 mA )が高いこ と に起因 して バ リ スタが組み込まれた電気回路で瞬間的に発生 した 高電流を吸収 し、 回路中での高電圧発生を防止する こ とを意味する。 ま た、 「信頼性が優れている」 とは、 パ リ ス夕 に対 し、 長時間電圧を印加 した場合、 或いは 高温下で長時間電力負荷を加えた場合、 さ らにはパル ス電流を印加 した場合な どの種々 の条件下において も 初期の電気的特性が実質的に維持される こ とを意味す る。 しか しながら、 従来の酸化亜鉛バ リ スタ は、 下記 の様な本質的な不安定性を有 している。
すなわち、 通常の酸化亜鉛においては、 酸化亜鉛結 晶を構成する亜鉛原子が位置する格子点と酸素原子が 位置する格子点との間に、格子間亜鉛原子(いわゆるィ ン夕 一ス テ ィ シ ャ ル Ζ η )が存在する。 酸化亜鉛の導電 性は、これ らのィ ンターステ ィ シ ャノレ Ζιι原子か ら励起 された電子によ り 、 もた らされる。 従来の酸化亜鉛バ リ ス夕における最大の問題点の一つは、 種々 の電気的 不安定性である。 この電気的不安定性の一つに、 長時 間にわた り直流または交流の電圧をバ リ ス夕 に印加 し つづける と V- I 特性が劣化 して、 次第に電流が増加す る現象があ る。 ま た、 焼結体構造の酸化亜鉛バ リ ス夕 を 700 °C前後の熱処理に供する と、 V-I 特性が急激に劣 化する現象も認め られる。 特に、 後者の場合には、 漏 れ電流が大き く な り 、実用化不可能となる こ と もある。 焼結体構造の酸化亜鉛バ リ スタ における これ ら二種の V - I 特性の劣化現象は、 酸化亜鉛粒子の粒界に沿っ て 生ずる空乏層内でのィ ンタ一ステ ィ .シ ャノレ の移動 によ り、 発生する。 アル ミ ニウ ムを添加 しない原料 を使用する場合には、 従来の製造方法で作成 した酸化 亜鉛バリ ス夕では、 n型半導体と しての酸化亜鉛粒子 内に、 ィ ン夕 — スティ シ ャル Zn原子から供給された 2 〜 7 X 1017個 /era3程度の伝導電子が存在する と推定さ れる。実験的には、酸化亜鉛パ、 リ スタ 中に存在する ZnO 粒子中の伝導電子の数は、 Mukae, Tsuda and
Nagasawa の方法で求める こ とができ る
( レ apaci tance- vs - Vol tage Characteristics of ZnO Varistors", J. Appl. Phys. , 50 [ 6 ] 4475 - 76 ( 1977 ) ) 0 純粋酸化亜鉛結晶においては、 ZnO 中のイ ンタ一ス ティ シ ャ ル Zn原子の濃度は、焼成時の雰囲気温度が高 く なる と増大する こ とが知 られている。 ま た、 スパ ッ タ ー法によ り 、 酸素中で酸化亜鉛膜を形成 した場合に は、ィ ンタ ーステ ィ シ ャノレ Zn原子は殆ど生成さ れない こ とが知 られている。
ZnO粉体に B i 203、 Co304、 Cr203、 Mn02、 N i O、 S b203 な どの粉体を適宜選択 して配合 し、 得 られた混合物を 加圧成型 し、 高温大気中で焼結する と、 きわめて高い 非直線抵抗特性を持つ酸化亜鉛バ リ ス夕が得 られる。 これらの焼結体では、 結晶粒界両側に存在する n型半 導体 ZnO 中の伝導電子が粒界に捕獲されるので、 粒界 の両側に空乏層が形成されて、 粒界の両側に電子の移 動を阻止するバ リ ア層、 いわゆる "ダブル · シ ョ ッ ト キ . バ リ ア " が形成される。 n型 Z nO半導体の主な電 気伝導の担い手は、ィ ンタ一ステ ィ シ ャル Zn原子に由 来する伝導電子であ るので、 空乏層内にはプラス · チ ャ一 ジを持っ たイ ンタースティ シ ャル Z n原子が残る ことにな る。
こ の様な焼結体に対 し、 外部か ら電圧が印加されて い-ない場合において も、 空乏層內では強い電界が働い ているので、 空乏層内のプラ ス · チャ ージを持っ たィ ンタ一ステ ィ シ ャ ル Zn原子は、粒界に向けて引力を受 けている。 このよ う な焼結体において、 外部から電圧 が印加される と、 電圧は薄い空乏層に対してのみ作用 するので、 一方の空乏層内ではさ ら に大きな電界が働 く こ とにな る。 イ ンタ一スティ シ ャル Z n原子は、 比較 的移動しやすいので、その一部は粒界に向けて移動 し、 粒界に達する。 その結果、 プラス , チ ャージを持っ た イ ンタ 一スティ シ ャノレ Z n原子は、 マイ ナス ' チ ャー ジ を持っ た酸素原子と結合 して、 中性の Zn O となる。 同 時に粒界に捕獲されていたマイ ナス · チ ャ ージが減少 するので、 バリ スタ特性に寄与 していたバリ ア機能が 低 く な り 、 非直線抵抗特性が低下する。 上述の様に、 焼結体に外部か ら電圧が印加されていない場合におい て も、 空乏層内では強い電界が働いているので、 空乏 層内のプラ ス ' チ ャージを持っ たイ ンタ 一スティ シ ャ ノレ Z n原子は、 粒界に向けて引力を受けている。 こ のよ う な状況において、 バ リ スタ素子が加熱される と、 熱 励起されたイ ンタ ーステ ィ シ ャル Z n原子は移動 しや す く な り 、その一部は電界によ り 粒界に向けて移動 し、 粒界でマイ ナス · チ ャー ジを持っ た酸素原子と結合 し て中性の ZnOを形成して、 バ リ スタの非直線抵抗特性 を低下させる。 以上のよ う に、 Z nO結晶の半導体化は、 主と して製造プロセスにおいて 自然に生ずるィ ンタ ー スティ シ ャ ノレ Z n原子によ っ て もた ら され、それ故に電 気的不安定性を伴っ ている。
Zn O結晶の n型半導体化は、 A 1203の添加によ って も . 生じる。特に高電流域における電流 電圧非直線抵抗特 性を向上 させるためには、 酸化亜鉛粒子内の電気伝導 度を上げる こ とが重要であ るが、 自然発生的なイ ン夕 ースティ シ ャ ル Z n原子によ り もた ら される電気伝導 度のみでは、 その改善は不十分である。
そ こ で、特に高電流域における電流-電圧非直線抵抗 特性の向上を計るべ く 、 ドナ一 と して A 1203を添加す る こ とに よ り 、 Z n O粒子内の電気伝導度を上げる こ と に成功 している。 しかしながら、 A 1203を添加する場合 において も、 空乏層内にプラ ス · チャ ー ジを持っ たィ ンタ ース ティ シ ャ ル Zn原子が存在する限 り 、 A 1203を 添加 しない場合と同様に、 電気的な不安定性という 問 題は、 解消できない。 すなわち、 電圧印加、 熱処理な どに際 して、 バリ ア機能の低下が生じて、 非直線抵抗 特性が低下し、 もれ電流が増大する とい う 問題は、 解 消 しない。 特に、 焼結体への電極焼き付け、 焼結体側 面への絶縁膜塗布形成な どのために熱処理を施した際 には、 低電流域における非直線抵抗特性の低下が大き いと。
50 0 °C〜 600 °C程度の温度域において、 酸化亜鉛バ リ スタ製造用の焼結体を予め熱処理 してお く こ とによ り 、 AC印加に対する安定性を改善する方法も 、 採用 されて いる。 こ の方法においては、 焼結体の予備的熱処理に よ り 、 バ リ スタ性能の劣化原因であ っ た空乏層内のィ ンタ 一ス テ ィ シ ャル Zn イ オ ンが減少 し、その結果、 I - V 特性の不安定性は幾分緩和される も のの、 本質的な問 題解決には至っていない。
酸化亜鉛バ リ スタ の不安定な電気的特性は、 主にィ ン夕 一ステ ィ シ ャ ノレ Zn の移動に起因する ので、ィ ン タ ー ステ ィ シ ャ ル Zn量を少な く する と と も に、 Zn原子 が位置する格子点に ドナ一 と して A 1原子を置換導入 する こ とによ り 、 A 1 ドナーからの電子が酸化亜鉛粒子 内の電気伝導性に寄与する様にする必要がある。
イ ンタ一スティ シ ャル Z n量を減少させるためには、 酸化亜鉛を高温度で高い酸素分圧雰囲気中に保持する こ とが必要である と考え られる。 その具体的な一つの 方法と して、 バリ スタ素子の製造に際 し、 高酸素圧下 で酸化亜鉛成形体を焼結する こ とが考え られるが、 こ の方法は、 実用的に不利である。 上述の通 り、、 ノ リ ス夕素子用或いはバ リ ス夕装置用 の酸化亜鉛系焼結体に関 しては、 製造時の焼結温度の 低温化と焼結体における電気特性の安定化とい う.二つ の大きな課題が存在する。
USP5, 739, 742号明細書は、 B203粉末、 Cr203粉末、 Ge02粉末、 .La203粉末、 MgO粉末、 Nb205粉末、 Nd203粉 末、 PbO粉末ヽ Sb203粉末ヽ Si02粉末ヽ Sn02粉末ヽ Ta205 粉末、 Nb205粉末、 W03粉末および Y203粉末から選ばれ る少な く と も 1 種と Bi203粉末との粉末混合物を 400 〜 700 °Cで予備加熱し、粉砕 して合成粉末を形成 した後 こ の合成粉末と酸化ニ ッ ケル粉末、 酸化コバル ト粉末 および酸化マ ンガン粉末の少な く と も 1 種とを酸化亜 鉛粉末に添加 し、 得られた原料混合物を 750〜 1100°C で焼結してなる酸化亜鉛セラ ミ ッ ク ス、 その製造方法 および酸化亜鉛バ リ ス夕を開示 している。
USP5, 739, 742号明細書に記載された技術によれば、 特 に低温度で昇華 しゃすい Sb203粉末と Bi203粉末とその 他の添加成分粉末とを含む粉末混合物を予め低温で予 備熱処理する こ と によ り 、 Sb203粉末の昇華を抑制 して 原料混合物の低温焼結を達成している。しかしながら、 主成分である酸化亜鉛の量に比較すれば少量である と はいえ、 バ リ スタの工業的生産においては、 Sb203粉末 と B i 203粉末とその他の成分とか らなる添加成分量は かな り大量となるので、 これ らの予備熱処理によ り得 られる合成粉末の性状にバラ ツキが生 じやすい。 その 結果、 最終的に得られる個 々 のバ リ ス タ の電気的特性 が安定せず、 信頼性に欠ける場合があ る。
発 明 の 開 示
従って、 本発明は、. 低温度での焼結によ り 、 性状の 均質な酸化亜鉛系焼結体を製造 し得る新たな技術を提 供する こ とを主な 目 的とする。
本発明は、 さ らに、 上記の方法によ り得 られた焼結 体を使用 して、 非直線抵抗特性な どの電気的特性およ び信頼性に優れた酸化亜鉛バ リ スタを製造する技術を 提供する こ とをも 目 的とする。
本発明者は、 上記従来技術の問題点を解消するため に、 研究を重ねた結果、 酸化亜鉛バリ ス夕の基礎材料 となる酸化亜鉛系焼結体を製造する に際 μ、 特定量の 酸化ホウ素を含有する混合酸化物予備熱処理粉体(以 下「第 1 予備熱処理粉体」 とい う こ とがあ る)と特定量 の酸化ク ロ ムを含有する混合酸化物予備熱処理粉体 (以下 「第 2 予備熱処理粉体」 とい う こ とがあ る)とを それぞれ調製した後、 これらの予備熱処理粉体を酸化 亜鉛とその他の添加成分とを含む粉体混合物に添加 し 成形 し、 低温で焼結する場合には、 組成が均一で、 か つ性状が安定した酸化亜鉛系焼結体が得られる こ とを 見 し /こ 。
また、 本発明者の研究によれば、 特定量の酸化ホウ 素と特定量の酸化ク ロムを含有する混合酸化物予備熱 処理粉体(以下「第 3 予備熱処理粉体」 という こ とがあ る)を調製した後、こ の予備熱処理粉体を酸化亜鉛とそ の他の添加成分とを含む粉体混合物に添加 し、成形 し、 低温で焼結する場合に も、 やは り 組成が均一で、 かつ 性状が安定した酸化亜鉛系焼結体が得られる こ とを見 H"i しプ 。
さ らに、 本発明者の研究によれば、 特定量の酸化ホ ゥ素と特定量の酸化ク ロ ム と他の酸化物成分とを含有 する混合酸化物予備熱処理粉体(以下「第 4 予備熱処理 粉体」 という こ とがある)を調製 した後、 この予備熱処 理粉体を酸化亜鉛とその他の添加成分とを含む粉体混 合物に添加 し、 成形 し、 低温で焼結する場合に も、 や はり 組成が均一で、 かつ性状が安定した酸化亜鉛系焼 結体が得 られる こ とを見出 した。
さ らにま た、 上記の 3 つの手法によ り 得られた焼結 体を使用 して酸化亜鉛バリ スタ を製造する場合には、 非直線抵抗特性な どの電気的特性および信頼性に優れ た製品が低コス 卜 で得られる こ とを見出 した。
すなわち、 本発明は、 下記の酸化亜鉛系焼結体の製 造方法を提供する :
酸化亜鉛系焼結体の製造方法であ っ て、
酸化ホウ素粉末 5〜 20 重量% と、酸化 ビスマス粉末、 酸化アンチモ ン粉末および希土類酸化物粉末の少な く と も 1 種 80〜 95 重量% とか らなる酸化物混合粉末を 30 0〜 1 300 °Cで予備的加熱を行っ た後、粉砕する こ と に よ り 、 酸化ホウ素含有量 5〜 20 重量%の第 1 予備熱処 理粉体を得る工程、
酸化ク ロ ム 20〜 50 重量% と、 酸化ビスマス粉末、 酸 化ア ンチモ ン粉末および希土類酸化物粉末の少な く と も 1 種 80〜 50重量% とか らなる酸化物混合粉末を 3 0 0 〜 1 30 0 °Cで予備的加熱を行っ た後、 粉砕する こ とによ り 、酸化ク ロ ム含有量 20〜 50重量%の第 2 予備熱処理 粉体を得る工程、
酸化亜鉛粉末 8 1. 38重量部、 前記酸化ホウ素含有第 1 予備熱処理粉体 0. 05〜 2. 5重量部、 前記酸化グロ ム 含有第 2 予備熱処理粉体 0 . 05〜 3 . 0重量部、 酸化コバ ル ト粉末、 酸化マ ンガン粉末および酸化ニ ッ ケル粉末 からなる群から選ばれた粉末の 2 種または 3 種 0. 3〜 5. 0 重量部、 酸化ビスマス粉末 1.2〜 7.0重量部(第 1 および第 2 予備熱処理粉体によ る寄与分を含む)、酸化 ア ンチモ ン粉末 0. 1〜 3.0 重量部(第 1 および第 2 予備 熱処理粉体によ る寄与分を含む)およびアルミ ニゥム 化合物粉末 0.0001〜 0. 05 重量部(但し酸化アル ミ ニゥ ム換算量)を混合 して酸化亜鉛系混合粉体を調製する 工程、
前記酸化亜鉛系混合粉体を成形する工程、 および 前記工程で得 られた成形体を 800°C〜 11Q0°Cで焼結 する工程
を備えた方法。
本発明は、 さ らに下記の'酸化亜鉛系焼結体の製造方 法を提供する : .
酸化亜鉛系焼結体の製造方法であ って、
酸化ホウ素粉末 5〜 70重量%と酸化ク ロム粉末 95〜 30 重量% とか らなる酸化物混合粉末を 300〜 1300°Cで 予備的加熱を行っ た後、 粉砕する こ と に よ り 、 酸化ホ ゥ素含有量 5~ 70重量%および酸化ク ロ ム含有量 95〜 30 重量%の第 3 予備熱処理粉体を得る工程、
酸化亜鉛粉末 81.38重量部、前記酸化ホウ素/酸化ク ロム含有第 3予備熱処理粉体 0.08〜 3.0 重量部、 酸化 コバル ト粉末、 酸化マ ンガン粉末および酸化ニ ッ ケル 粉末からなる群か ら選ばれた粉末の 2 種または 3 種 0.3〜 5.0 重量部、 酸化 ビスマス粉末 1, 2〜 7.0 重量部、 酸化ア ン チモ ン粉末 0.1〜 3.0 重量部およ びアル ミ 二 ゥム化合物粉末 0.0001〜 0.05重量部(但 し酸化アル ミ ニゥ ム換算量)を混合 して酸化亜鉛系混合粉体を調製 する工程、
前記酸化亜鉛系混合粉体を成形する工程、 および 前記工程で得られた成形体を 800°C〜 1100DCで焼結 する工程
を備えた方法。
本発明は、 さ らに下記の酸化亜鉛系焼結体の製造方 法を提供する :
酸化亜鉛系焼結体の製造方法であ って、
酸化ホウ素粉末 5〜 20重量% と酸化ク ロ ム粉末 20〜 50 重量% と、 酸化ビスマス粉末、 酸化ア ンチモ ン粉末 および希土類酸化物粉末か らなる群か ら選ばれた酸化 物粉末の少な く と も 1 種 75〜 30 重量% とからなる酸 化物混合粉末を 300 ~ 1300°Cで予備的加熱を行っ た後、 粉砕する こ とによ り 、 酸化ホウ素含有量 5〜 20 重量% および酸化ク ロ ム含有量 20〜 50重量%の第 4予備熱処 理粉体を得る工程、 酸化亜鉛粉末 81.38重量部、前記酸化ホウ素/酸化ク ロ ム含有第 4 予備熱処理粉体 0. 1〜 5.0 重量部、酸化コ バル ト粉末、 酸化マ ンガン粉末および酸化ニ ッ ケル粉 末か らな る群か ら選ばれた粉末の 2 種ま たは 3 種 0.3 〜 5, 0 重量部、 酸化 ビスマス粉末 1.2〜 7. 0 重量部(第 4 予備熱処理粉体による寄与分を含む)、酸化ァ ンチモ ン粉末 0. 1〜 3· 0 重量部(第 4 予備熱処理粉体によ る寄 与分を含む)およびアル ミ ニゥ ム化合物粉末 0.0001〜 0.05重量部(但し酸化アル ミ ニゥ ム換算量)を混合 し て酸化亜鉛系混合粉体を調製する工程、
前記酸化亜鉛系混合粉体を成形する工程、 および 前記工程で得 られた成形体を 800°C〜 1100°Cで焼結 する工程
を備えた方法。
図面の簡単な説明
図 1 は、 本発明によ る酸化亜鉛系焼結体を用いて製 造されたディ ス ク タイ プの酸化亜鉛バ リ スタの概要を 示す側面図であ る。
図 2 は、 本発明によ る酸化亜鉛系焼結体を用いて製 造されたア レスタ タ イ プの酸化亜鉛バ リ スタ の概要を 示す側面図である。
発明の'詳細な説明 , 本発明において、 当初の粗原料粉体および成形材料 と しての混合粉体の粒径は、 常法において使用されて いる同様の粉体のそれ ら と同様である。 一般に、 これ ら粉体の粒径は、 酸化物の種類などによ り異なるが、 通常 0. 1〜 1 5 m程度の範囲にあ り 、よ り 好ま し く は、 0. 5〜 1 0 ffl程度の範囲にある。
また、 各種の原料について、 例えば、 「アル ミ ニゥ ム化合物」 の様に、 粉体という 用語を省略 して示す場 合がある 。
さ らに、 ZnO粉末の粒径は、 電子顕微鏡写真観察に よ り求めた値を示 し、 他の粉体の粒径は、 レーザ一回 折分析法によ り 求めた値を示す。
本発明の第 1 の態様においては、 酸化亜鉛系成形焼 結体中の酸化ホウ素源と して、 第 1 の予備熱処理粉体 を予め調製する。 第 1 の予備熱処理粉体は、 酸化ホ'ゥ 素と、酸化ビス マ ス、 酸化ア ン チモ ン(三酸化ア ン チモ ン、 四酸化二ア ンチモ ン、 五酸化ア ンチモ ンの少な く と も 1 種)および希土類酸化物からなる群から選ばれ た少な く と も 1 種の酸化物粉末とを均一に混合 し、 得 られた混合粉末を ·30 0〜 1 3 00 °Cで予備加熱 した後、 加 熱集塊物を粉砕する こ とによ り 、 調製する。 第 1 の予 備熱処理粉体を少量生産する場合には、 混合粉末を加 熱熔融させた後、 急冷 し、 公知の湿式法或いは乾式法 で粉砕する こ とが好ま しい。大量生産を行う 場合には、
300〜 450°C程度、 よ り好ま し く.は 350〜 400°C程度で加 熱した後、 粉砕する こ とが好ま しい。 第 1 の予備熱処 理粉体の性状をよ り均一化するためには、 加熱および 粉砕を 2 回或いはそれ以上行う こ とが好ま しい。
第 1 予備熱処理粉体中の含有成分と して酸化物形態 で使用する希土類と しては、 原子番号 2KSc)、 39(Υ). な らびに 57(La)〜 71(Lu〉の元素が挙げられ、 これ らの 中では、 Y、 La、 Nd、 Prなどがよ り 好ま しい。 第 1 予 備熱処理粉体中の酸化ホウ素含有量は、 通常 5〜 20重 量%程度であ り 、 よ り好ま し く は 7~ 15 重量%程度で ある。 酸化ホウ素をこの様な第 1 予備熱処理粉体に予 め配合してお く こ とによ り 、 主に ZnO粒成長の制御、 パ、 リ ス夕 の信頼性向上な どの効果が達成される。
ま た、 焼結体中の酸化ク ロム源と して、 第 2の予備 熱処理粉体を予め調製する。第 2 の予備熱処理粉体は、 酸化ク ロ ムと、 酸化ビスマス、 酸化ア ンチモン(三酸化 ア ンチモ ン、 四酸化二ア ンチモ ン、 五酸化ア ンチモ ン の少な く と も 1 種)および希土類酸化物か らなる群か ら選ばれた酸化物粉末の少な く と も 1 種とを均一に混 合し、 得 られた混合粉末を 300〜 1300°Cで予備加熱 し た後、 加熱集塊物を粉砕する こ と によ り 、 調製する。 加熱温度に応 じた粉砕手法の採用などは、 第 1 予備熱 処理粉体の場合と同様であ る。 第 2予備熱処理粉体中 の含有成分と して酸化物形態で使用する希土類も、 第 1 予備熱処理粉体の場合と同様である。 第 2予備熱処 理粉体中の酸化ク ロ ム含有量は、通常 20〜 50 重量%程 度であ り 、よ り好ま し く は 25〜 40 重量%程度である。 第 2 予備熱処理粉体中の酸化ビスマス、 酸化ア ンチモ ン(三酸化ァ ンチモ ン、四酸化ニァ ンチモ ンおよび五酸 化ア ンチモ ンの 1 種または 2 種以上)および希土類酸 化物の少な く と も 1 種の含有量は、通常 80〜 50 重量% 程度であ り 、よ り 好ま し く は 75〜 60 重量%程度である c 酸化ク ロ ムをこの様な第 2 予備熱処理粉体中に予め配 合 してお く こ と に よ り 、 主に低温焼結時における焼結 の安定化とい う効果が達成される 。
本発明によ る第 1 の態様によ る酸化亜鉛系焼結体は - 酸化亜鉛粉体を主成分と し、 上記第 1 および第 2 の予 備熱処理粉体を含有する混合粉体原料を使用 して、 以 下の手法によ り 、 製造される。
すなわち、 酸ィ匕亜 I& 81.38 重量咅 (Ζη01 モノレ = 81.38g に対応する値を重量部で表す)に対 し、酸化ホウ素含有 第 1 予備熱処理粉体 0. 05〜 2.5重量部、 酸化ク ロム含 有第 2 予備熱処理粉体 G. Q5〜 3.0 重量部、 酸化コバル ト、 酸化マ ンガンおよび酸化ニ ッ ケルからなる群か ら 選ばれた少な く と も 2種 0.3〜 0.5重量部、酸化 ビスマ ス 1.2〜 7. 0 重量部(上記第 1 および第 2 予備熱処理粉 体か らの寄与分を含む)、 酸化ア ンチモ ン 0. 1〜 3.0 重 量部(上記第 1 および第 2 予備熱処理粉体からの寄与 分を含む)およびアル ミ ニウ ム化合物粉末 0.0001〜
0.05 重量部(伹し酸化アル ミ 二ゥ ム換算量)を混合 し、 常法に従っ て、 湿式粉砕或いは乾式粉砕し、 必要な ら ば篩い分け して、 所定の粒径を有する成形材料と して の酸化亜鉛系混合粉体を調製する。
酸化亜鉛系混合粉体中に含まれる酸化コバル ト、 酸 化マ ンガンおよび酸化ニ ッ ケルか らな る群から選ばれ た少な く と も 2種に関 しては、 少な く と も 1 種が 2価 よ り も大きい原子価を有 している こ とが好ま しい。 こ の場合には、 後述する成形体の焼成時にこれら酸化物 が熱分解 して、 2 価酸化物と して酸化亜鉛に固溶する と と もに、 発生した高圧酸素が成形体中に閉気孔を形 成する 。 その結果、 バ リ ス タ の電気的特性の向上とい う効果が達成される。
アル ミ ニゥ ム化合物と しては、 A1(0H)3、 A 1203 · nH20. A100H、 平均粒径 Ο. ΐ μ ιι以下の超微粒アル ミ ナ、 A1(N03)3 · 9H20、 A12(S04)3な どのアルミ ニウム塩、 AKOH) (CH3C00)2、 シユ ウ酸アル ミ ニウムなどのァノレ ミ ニゥム含有有機化合物な どが使用でき る。 これ らの アル ミ ニウ ム化合物と しては、 A100H、A1(OH) (CH3C00)2. A1(N03)3 · 9H20などがよ り好ま しい。
なお、 酸化亜鉛系混合粉体には、 必要に応 じて、 酸 ィ匕ゲルマニウム.、 酸化ニオブ、 酸化鉛、 酸化ゲイ素、 酸化スズ、 酸化タ ンタノレ 、 酸化チタ ン、 酸化タ ングス テ ンから選ばれた少な く と も 1 種の粉体を添加する こ とができ る。 これら任意的添加物の個々 の配合量は、 酸化亜鉛 81.38 重量部に対し、 通常 1.0重量部以下で あ り 、 よ り好ま し く は 0.5重量部程度である。 ま た、 2 種以上の任意的添加物を配合する場合にも、 合計配 合量は通常 1.0重量部以下であ り 、よ り好ま し く は 0.5 重量部程度である。 これ らの任意的添加物を使用する 場合には、 ZnO粒径の制御、 バ リ スタ信頼性の向上な どの効果がよ り 良好に達成される。
次いで、 上記で得 られた酸化亜鉛系混合粉体を常法 に従っ て所定の形状に成形 した後、 800〜 1100°C程度、 よ り好ま し く は 850〜 1000°C程度で焼結する。 成形体 の焼結も、 常法に従っ て行えば良 く 、 例えば、 成形体 を 40〜 60°C /hr程度の速度で焼結温度まで昇温させた 後、 同温度に 5〜 15 時間程度保持 し、 次いで、 焼結体 を 40〜 60°C /hr程度の速度で室温まで降温させる。 か く して、 酸化亜鉛バ リ スタ製造用の基材となる焼結体 が得られる。
得られた焼結体は、 さ ら に 500〜 800°C程度(よ り 好 ま し く は、 550〜 750°C程度)で熱処理を行う こ とが好ま しい。 この熱処理によ り 、 酸化ビスマス主成分相と し て、 y -ビスマス相が形成される。
本発明の第 2 の態様においては、 酸化亜鉛系成形焼 結体を作製するための酸化ホウ素源および酸化ク ロム 源と して、 第 3 の予備熱処理粉体を予め調製する。
第 3 の予備熱処理粉体は、 酸化ホウ素粉末^〜 70 重 量% と酸化ク ロ ム粉末 95〜 30 重量% とか らなる酸化 物混合粉末を 300〜: L 300 °Cで予備的加熱を行っ た後、 粉砕する こ とによ り 、 調製される。
本発明の第 2 の態様によ る酸化亜鉛系焼結体は、 酸 化亜鉛粉体を主成分と し、 上記第 3 予備熱処理粉体を 含有する混合粉体原料を使用 して、以下の手法によ り 、 製造される。
すなわち、 酸化亜鉛 81. 38重量部に対 し、 酸化ホウ 素および酸化ク ロ ムを含有する上記第 3 予備熱処理粉 体 0. 08〜 3. 0重量部、 酸化コバル ト、 酸化マ ンガンお よび酸化ニ ッ ケルからなる群から選ばれた少な く と も 2種 G.3〜 5.0重量部、 酸化ビスマス 1.2〜 7.0 重量部 (上記第 3 予備熱処理粉体か らの寄与分を含む)、 酸化 ア ンチモ ン 0. 1〜 3.0 重量部(上記第 3 予備熱処理粉体 からの寄与分を含む)およびアルミ ニゥム化合物粉末 0.0001〜 05 重量部(伹 し酸化アル ミ ニゥム換算量) を混合 し、 常法に従って、 湿式粉砕或いは乾式粉砕 し、 必要に応 じ篩い分け して、 所定の粒径を有する成形材 料と しての酸化亜鉛系混合粉体を調製する。
本発明の第 2 の態様は、 酸化ホ ウ素源と酸化ク ロ ム ク ロム源と して第 3 の予備熱処理粉体を使用する点以 外では、 本発明の第 1 の態様と同様である。
本発明の第 3 の態様においては、 酸化亜鉛系成形焼 結体を作製するための酸化ホウ素源および酸化ク ロ ム 源と して、 第 4 の予備熱処理粉体を予め調製する。
第 4 の予備熱処理粉体は、 酸化ホウ素粉末 5〜 20 重 量% と酸化ク ロム粉末 20〜 50 重量% と、酸化ビスマス 粉末、 酸化ア ンチモ ン粉末および希土類粉末からなる 群から選ばれた酸化物粉末の少な く と も 1 種 75〜 30 重量% とからなる酸化物混合粉末を 300〜 1300 °Cで予 備的加熱を行っ た後、 粉砕する こ とによ り 、 調製され る。 本発明の第 3 の態様による酸化亜鉛系焼結体は、 酸 化亜鉛粉体を主成分と し、 上記第 4 予備熱処理粉体を 含有する混合粉体原料を使用 して、以下の手法によ り 、 製造される。
すなわち、 酸化亜鉛 81.38 重量部に対 し、 酸化ホウ 素/酸化ク ロ ム含有上記第 4 予備熱処理粉体 0. 1〜 5.0 重量部、 酸化コバル ト、 酸化マ ンガンおよび酸化ニ ッ ゲルからなる群から選ばれた少な く と も 2種 0 · 3〜 5.0 重量部、 酸化ビスマス 1.2〜 7. G 重量部(上記第 4 予備 熱処理粉体からの寄与分を含む)、 酸化ア ンチモ ン 0. 1 〜 3. G 重量部(上記第 4 予備熱処理粉体からの寄与分 を含む)およびアル ミ ニゥム化合物粉末 0.0001〜 0.05 重量部(但し酸化アル ミ ニ ウ ム換算量)を混合 し、 常法 に従って、 湿式粉砕或いは乾式粉砕し、 必要に応 じ篩 い分け して、 所定の粒径を有する成形材料と しての酸 化亜鉛系混合粉体を調製する。
本発明の第 3 の態様は、 酸化ホウ素源と酸化ク ロム ク ロム源と して上記第 4 の予備熱処理粉体を使用する 点以外では、 本発明の第 1 の態様と同様であ る。
本発明による酸化亜鉛バ リ スタ は、 上記で得 られた 酸化亜鉛系焼結体を使用 し、 例えば、 以下の様に して 製造する。 なお、 酸化亜鉛パ リ ス夕の形状、 製造方法 などは公知技術によ るノ リ ス夕 のそれら と同様であ り 特に限定される も のではない。
例えば、 図 1 に示すディ スク タイ プのパ、 リ スタ は、 酸化亜鉛系焼結体 1 の表裏面に銀、 銀合金な どか らな る電極材料 3 を焼き付け形成し、 リ ー ド線 5 を半田付 した後、 リ ー ド線を取り 付けた以外の部分を不導電層 (例えば、 ェポキシ樹脂などの樹脂層)に よ り被覆する こ とによ り 、 製造される。
図 2 に示すア レス夕 タ イ プのノ リ ス夕 は、 円柱型酸 化亜鉛系焼結体 1 1 の円周面に公知の コ ーテ ィ ング材 料を塗布 し、 焼成 して絶縁層 1 5 を形成 した後、 上下 面に金属アル ミ 二ゥムの電極材料を溶射して電極 1 3 を形成する こ とによ り 、 製造される。 このタ イ プのバ リ スタ は、 常法に従って、碍子に囲まれた容器(図示せ ず)内に収容された後、 電極を接続 して、 ア レス夕装置 と して使用 される。
さ らに、 図示は しないが、 常法に従っ て、 本発明に よ る酸化亜鉛系混合粉体を薄板状に成形し、 得 られた 薄板状成形体と金属電極材料とを交互に積層 し、 得ら れた積層体を焼成する場合には、 積層型酸化亜鉛バリ ス タ を得 る こ と も でき る 。
発明の効果 本発明によれば、 特定組成を有する酸化亜鉛系原料 混合粉体を使用する こ とによ り 、 混合粉体成形体を低 温で焼結する場合に も、 組成が均一で、 かつ性状が安 定した酸化亜鉛系焼結体が得られる。
また、 原料混合粉体の調製に先立ち、 少量配合成分 である酸化ホウ素および酸化ク ロムを別個に他の酸化 物成分と混合 して予め熱処理してお く か、 或いは酸化 ホウ素と酸化ク ロムとを併せて予め熱処理してお く か、 或いは酸化ホウ素と酸化ク ロム とを併せて酸化ア ンチ モ ンな どの他の酸化成分と混合 して予め熱処理してお く こ とによ り 、 添加成分の大部分を混合 してを予め予 備熱処理する従来技術に比 して、 熱処理エネルギーが 大巾 に減少 し、 製造'ェ程が短縮される ので、 酸化亜鉛 バ リ スタの製造コ ス トを低減する こ とができ る。
さ らに、 得 られた焼結体を使用 して酸化亜鉛パ リ ス 夕を製造する場合には、 非直線抵抗特性などの電気的 特性および信頼性に優れた製品が得られる。 よ り具体 的には、 初期特性が優れているのみでな く 、 さ らに AC DC、 パルス印加に対する安定性、 5 0 0 °C〜 8 0 0 °Cの熱処 理に対 しする安定性などに も優れている。 また、 不良 品の発生率が低下するので、 歩留ま り が向上する。 本発明による酸化亜鉛バ リ スタの製造方法は、 従来 の製造方法では実現困難であ つ た立ち上がり電圧が高 い製品を得る こ とができ る。
本発明の酸化亜鉛バ リ スタ においては、 酸化亜鉛粒 子内のイ ンタ一ステイ シ ヤ ノレ Ζιι (格子間亜鉛原子)の 存在密度は、 1 . 5 X 1 0 1 6個/ c m 3以下であ る。
本発明によれば、 原料組成にも よ るが、 950 °C以下の 低温度焼結によ り 、 優れた電気特性を有する酸化亜鉛 系焼結体を得る こ とができ る。 従っ て、 酸化亜鉛系焼 結体をシ ー ト状に成形 し、 電極材料と交互に積層 し、 焼結した後、 電極を所定の接繞方法でつな ぐ こ とによ り 、 積層型のバ リ スタを得る こ とができ る。 従来技術 においては、 積層型のパ リ ス夕 に良好な特性を付与す る ためには、 1200 °C以上の焼成温度を必要とするので、 電極材料と して白金な どの貴金属を用いる必要があ つ た。 これに対 し、 9 50 °C以下で酸化亜鉛系焼結体を製造 し得る本発明方法によれば、 電極材料と して比較的低 価格の銀を用いる こ とが可能となる とい う大きな利点 が得られる。 ,
発明を実施する ための最良の形態 以下実施例によ り 、 本発明をさ らに具体的に説明す る o 下記の実施例において、 「部」 とあるのは、 「重量 部」 を意味する。
なお、 各実施例においては、 比較を容易 とするため に 、 アル ミ ニ ウ ム添加量と、 コ バノレ ト 、 マ ンガ ンお よ びニ ッ ケルの酸化物の添加量とを一定と した。
ま た、 当初の原料粉末および熱処理 し、 粉砕 した後 の粉末の粒径は、 以下の通り である。
* ZnO : 0.5~ 1.0 // m '
* Co30い MnOい NiO : 1〜 5 ra
* Bi203ヽ Y203 : 1〜 10 μ m
氺 Sb203、 Sb204、 Sbz05 : 0.5〜 5/z m
* Cr203 : 1〜 5 ^ m
* B203 : 1— 10 in
* 第 1 、 第 2 および第 3 の予備熱処理粉体(ボール ミ ノレで 60'時間粉砕後) : 0.8〜 2.5〃 m
* 成形用混合粉体(ボール ミ ルで 60 時間粉砕後) : 平 均 2.7 m
実施例 1
B203粉末と Cr203粉末とを 1: 1(モル比)で混合 し、大 気雰囲気下 500 °Cで 5 時間熱処理 した後、 安定化ジル コニァを粉碎メ ディ アとするモノ マロ ンポ ッ トを用い て微粉砕する こ とによ り 、 B203/ Cr203を含有する第 3 予備熱処理粉体を得た。
次いで、 酸化亜鉛系焼結体製造用の各種原料を ZnO 粉末 : B203Z Cr203含有第 3 予備熱処理粉体 : Bi 203粉 末と : Co304粉末 : Mn02粉末 : NiO粉末 : Sb203粉末 : Α1(Ν03)3· 9 ΗζΟ-81. 38: 0.4: 3.4: 0. 954: 0. 14: 0.383 : χ : 0, 015(重量比)となる よ う に配合 し、 モノ マ ロ ンポ ッ トのボ一ル ミ ルで湿式混合粉砕 した。 ただ し、 Sb203 の量と して x = 0.2、 0.8 および 1.5 を選択 した。
得 られた配合粉末を乾燥 し、 ディ スク状に加圧成形 したのち、 得られた成形体を大気中で速度 50°C Z時間 で昇温し、 900 °Cで 10 時間保持 した後、 速度 50°C,Z時 間で室温まで降温して、 酸化亜鉛系焼結体 (以下にお いては、 酸化亜鉛系焼結体を熱処理し.たものをも、 単 に 「酸化亜鉛系焼結体」 とい う こ とがある ) を得た。
得 られた焼結体は、 厚さ 1. 2mm、 直径 14mraであ っ た 次いで、 得られた焼結体を 700°Cで 1 時間熱処理した。
図 1 は、 本発明の酸化亜鉛系焼結体を用いて作成 し たディ ス ク タイ プの酸化亜鉛パ リ ス夕 の概略斜面図で ある。 前記の様に して得た焼結体 1 の両面にアル ミ 二 ゥムを溶射する こ とによ り 、 アル ミ ニウム層 (図示せ ず) を形成 した後、 形成されたアル ミ ニウム層上にさ らに銅を溶射する こ とによ り 、 電極 3 を形成した。 電 極 3 に リ ー ド線 5 をはんだ付け した後、 リ ー ド線部分 以外の焼結体および電極部分を樹脂塗装する こ とによ り 、本発明によ る酸化亜鉛バ リ ス タ を得た (以下におい ては、 Sb203量の異なる混合材料か ら得 られる 3 種の焼 結体を用いて得 られる酸化亜鉛系バ リ スタをそれぞれ 実施例 1 - ( 1 )、 実施例 1 - ( 2 )および実施例 1 - ( 3 )と称 する。 実施例 2 以降ににおいて も、 組成の異なる混合 材料か ら得られる焼結体を用いて得られる酸化亜鉛系 ノ リ スタを同様に表示する)。
こ の よ う に して得 られた酸化亜鉛パ リ ス 夕 の電気特 性を評価 した。 初期の電気特性と して、 1 mAの電流を 流 した時の両端子間の 1 mm厚みに対する電圧、 すなわ ち立ち上がり 電圧 VI niA /mm と VlraA と VO. 1mA とを用い て求めた非直線抵抗指数 0. 1 m A a; 1 m Aを測定した。なお 以下において、非直線抵抗指数 0. I ka linAを単に 値 と略称する こ とがある。非直線抵抗指数が大きいほど、 サー ジ吸収能力が大き く なる。 さ らに低電流域におけ る非直線抵抗特性を VlmA/VO. 01mAで評価 した。
VlmA/VO. 01mAが 1. 15以下の値を とる場合には、 漏れ 電流が小さ く 、 発熱に対する注意は不要であ り 、 バ リ スタ素子は安定性に優れている。 さ らに、 直流負荷に対するバ リ スタの信頼性を評価 した。 すなわち、 パ、リ ス夕 に対 し、 80°Cの高温雰囲気 中で 0.5 ヮ ッ 卜の直流負荷を 500 時間印加 した後、 冷 却 して、 パ' リ スタ立ち上がり 電圧 VlmAの変化率、 すな わち直流負荷変化率 AVlmAVVlmAを測定 した。 バ リ ス 夕立ち上がり 電圧 VlmAの変化率△ VlmA/VlmAが小さ い 程、酸化亜鉛バ リ スタの電気特性は安定してお り , 信 頼性が高いこ とを示す。
さ らに、 電流サー ジに対するノ リ ス夕の信頼性を以 下の様に して、 評価 した。 SxSO sec^ 2.5k Aのパル スを 1 G 回印加 した場合のノ リ ス夕立ち上がり電圧 VlmAの変化率、 すなわちサージ変化率△ VlmA/VlmAを 測定 した。
表 1 に実施例 1 で得られたバ リ スタ 3 種の電気特性 の評価結果を示す。
サー ジ変化率の値が小さ いほど、 酸化亜鉛バ リ ス夕 の電気特性が安定 してお り 、 その信頼性が高いこ とを 示 してい る。 いずれも変化率の絶対値が 5 %以下の場 合に信頼性が高いこ とを示 している。 なお、 電気特性 の評価結果を示す数値と して、 同一口 ッ ト 内の最小値 と最大値を示 した。 表 1
Figure imgf000036_0001
表 1 に示す結果から、 本実施例によ る原料混合物粉 体成形体は、 900 °Cとい う 低い温度でも焼結する こ とが でき る こ とが明 らかである。 そ して、 この焼結体を使 用 して得 られたバ リ ス夕 は、 非直線抵抗特性が良好で あ り 、 長時間の直流負荷に対 して も、 また電流のサー ジに対 しても、 立ち上がり 電圧 VlraAの変ィ匕率(△
VlmA/Vlm/ の絶対値が 5 %以下であ り 、 信頼性に優れ ている。 また、 表 1 に示す結果から明 らかな様に、 同 一 口 ッ ト 内での電気特性のバラ ツキも小さかっ た。
さ らに、 表 1 には示 していないが、 本実施例の酸化 亜鉛系焼結体を用いて酸化亜鉛系バリ スタを作成する 場合には、異なる ロ ッ ト 間での電気特性のノ ラ ツキも、 同一ロ ッ ト 内の電気特性のバラ ツキと同様に小さかつ た。
実施例 2
実施例 1 と同様に して調整した B203/Cr203含有第 3 予備熱処理粉体を用いて、 ZnO: B203/Cr203含有第 3 予 備熱処理粉体: Bi 203 : Co304: Mn02: NiO: Sb203 : Al (N03)3 · 9H20 = 81.38 : 0.4 : 4.2 : 0.954 : 0.414 : 0.383 : 0.6 : 0, 015(重量比)とな る よ う に配合 し、モノ マロ ンポ ッ ト のボール ミ ルで湿式混合粉砕した後、 スプレイ ドライ を行って、 酸化亜鉛系混合粉末を得た。 か く して得た 酸化亜鉛系混合粉末を用いて、 ア レ ス 夕を作成 した。
ア レス夕の調製は、 スプレイ ドライ によ っ て得 られ た酸化亜鉛混合粉末を IPCRubber Isostatic Press ; ゴム等方圧プレス)法で柱状に成形 し、得られた成形体 の側面にホウ珪酸 ビスマス系ガラ ス粉末と Mn02との 混合物を塗布 し、 900 °C或いは 950 °Cでそれぞれ 10 時 間の焼成を行う こ とによ り 、 2 種の円柱状酸化亜鉛系 焼結体を得た。 得 られた 2 種の酸化亜鉛系焼結体のサ ィ ズは、 直径 32mm X高さ 28mniであ っ た。 これ らの酸 化亜鉛系焼結体の上下両面にアル ミ ニウム金属を溶射 して電極を形成 した後、円周側面にマイ 力 -樹脂混合物 をコ一テ ィ ング して、 2 種のア レスタ タイ プの酸化亜 鉛ノ リ スタを得た。 VlmA は、 それぞれ VlmA = 6.05kVお よび VlmA = 5.94kVであ っ た。
図 2 は、 本実施例によ り 、 酸化亜鉛系焼結体を用い て作成 したア レ ス夕 タイ プの酸化亜鉛バ リ ス夕の斜面 図である。 酸化亜鉛系焼結体 1 1 の上下両面にアル ミ 二ゥム溶射によ る素子電極 1 3 が形成されている。 ま た、 酸化亜鉛系焼結体の側面にはマイ 力 と樹脂との混 合物からなる側面絶縁膜 1 5 が形成さ;^てお り 、 酸化 亜鉛系焼結体と素子電極と側面絶縁膜とによ り 、 酸化 亜鉛系バ リ スタ素子が形成されている。 表 2 に本実施 例によ り 得られたア レ ス夕 タイ プの酸化亜鉛バ リ スタ 装置の電流-電圧特性を示す。
表 2
Figure imgf000038_0001
表 2 か ら明 らかな様に、 本実施例によ る組成の酸化 亜鉛系焼結体を用いて製造した 2 種のア レスタ タイ プ の酸化亜鉛バリ スタ は、 高電流域において も、 非直線 抵抗特性が優れている こ とがわかる。
次に、 交流課電の加速試験を行う こ と によ り 、 課電 寿命を予測 した。 課電寿命は、 ア レス夕の最も重要な 評価項目 の一つであ る。 こ こでは、 周囲温度 130 °C、 課電率 95 % の条件で試験を行っ た。 そ の結果、 初期 I r は、 両素子と もに 100 時間以上の試験に対 してほと んど変化 しなかっ た。 従っ て、 ギャ ッ プレスのア レス 夕 と して使用 した場合に、 周囲温度 70°C、 課電率 80% の条件下では、 100年以上の寿命が保障される とい う 結果を得た。
実施例 3
B203粉末 : Cr203粉末 :. Y203粉末 =2 : 1 : 1(モノレ上匕)に なる よ う に 3種の粉末を混合し、 大気雰囲気下 410 °C で 5 時間熱処理し、 微粉砕 した後、 再び同条件で熱処 理し、 安定化ジルコニァを粉砕メ ディ ア とするモノ マ ロ ンポ ッ トのボ一ノレミ ノレで微粉砕する こ とによ り 、 B203/Cr203/Y203含有第 4 予備熱処理粉体を得た。
次いで、 実施例 1 と同様の手法によ り 、 試料を作成し た。 すなわち、 nO粉末 : B203/Cr203/Y203含有第 4 予 備熱処理粉体 : Bi203粉末 : Co304粉末 : Mn02粉末 : NiO 粉末: Sb204粉末: 硝酸アル ミ ニゥ ム粉体 = 81, 38 : 0.5 : 4 : 0.954 : 0.414 : 0.383 : 1.0 : 0.015(重量比)とな る よ う に配合 し、 湿式法で 60 時間混合粉砕 した後、 乾燥 し、 造粒 し、 成形 した。 得 られた成形体を 900 °C或い は 950°Cで焼成した。 両口 ッ ト の一部には、 700°Cの熱 処理を施 し、 実施例 1 と同様に して、 酸化亜鉛パリ ス 夕を作製 し、 その電気特性を評価 した。 結果を表 3 に 示す。
表 3
Figure imgf000040_0001
本実施例による酸化亜鉛系焼結体を用いて製造され た酸化亜鉛バリ スタ は、非直線抵抗特性が良好であ り 、 長時間の直流負荷に対して も、またサー ジに対 して も、 立ち上がり 電圧 VlmAの変化率(AVlmA/VlinA)の絶対値 が 5 %以下で、 信頼性に優れていた。 実施例 4
B203粉末 : Sb203粉末 (各粉末の粒径はそれぞれ平均 粒径が 2〜 3 μ in ) をモル比で 2: 1 となる よ う に混合 し 大気雰囲気下 370°Cで 5 特間熱処理した後、 安定化ジ ノレコ ニ ァを粉砕メ ディ ア とするモ ノ マ ロ ンポ ッ ト のボ ール ミ ルで微粉砕する こ と に よ り 、 B203/Sb203含有第 1 予備熱処理粉体(平均粒径約 0.5〜 1.5 1 を得た。
また、 Bi203粉末 : Cr203粉末 (各粉末の粒径はそれ ぞれ平均粒径力 2〜 3 m ) をモル比で 1: 1 となる様に 混合 し、 大気雰囲気下 500 °Cで 5 時間熱処理した後、 安定化ジルコニァを粉砕メ ディ ァとするモノ マ ロ ンポ ッ トのボ一ルミ ノレで微粉砕する こ とによ り 、
Bi203/Cr203含有第 2 予備熱処理粉体(平均粒径約 0.5 〜 1.5 m )を得た。
次に、 ZnO : 前記 B203 /Sb203含有第 1 予備熱処理粉 体: Bi203 :前記 Bi 203/Cr203含有第 2 予備熱処理粉体 : Co304 : Mn02 : NiO : Sb204 : A100H = 81.38 : 0.6 : 2.33 : 1.2 : 0.954 : 0.414 : 0.383 : 1.1 : 0.0024 (重量 J:匕)とな る よ う に配合 し、 湿式法で混合粉碎 した。 得 られた原 料配合粉末を乾燥 し、 ディ ス ク 状に加圧成形 した後、 成形体を大気中昇温速度 50°C/時間で昇温し、 900°C或 いは 1000°Cで 10時間保持 した後、降温速度 50°C /時間 で降温 して、 2 種のロ ッ 卜からなる焼結体を得た。 焼 結体のサイ ズは、 厚さ 1.2mni X直径 14Dimであ っ た。 ま た、得られた焼結体の 2 種の 口 ッ 卜の一部を 700 °Cで 1 時間保持 して、 熱処理を行っ た。
次いで、 実施例 1 の手法に準 じて、 ディ スク タイ プ の酸化亜鉛系バリ スタを作製 し、 それぞれの電気特性 を評価した。
そ の結果を表 4 に示す。
表 4
Figure imgf000042_0001
本実施例によ り得 られた酸化亜鉛系焼結体は、 900°C とい う 低い温度でも焼結する こ とができ、 この焼結体 を用いて作製された酸化亜鉛バ リ スタ は、 非直線抵抗 特性が良好であ り 、 長時間の直流負荷に対 して も、 ま たサージに対 して も、立ち上がり 電圧 VimAの変化率△ VlmA/VlmAの絶対値が 5 %以下であ り 、 信頼性に優れ ていた。 ま た、 同一.ロ ッ ト 内の電気特性のパ、ラ ツキも 小さかっ た。
本実施例による酸化亜鉛系焼結体を用いて酸化亜鉛 バリ スタ を作成する場合には、 異なる ロ ッ ト間の電気 特性のバラ ツキも、 同一ロ ッ ト 内の電気特性のバラ ッ キと同様に小さ力、つ た。
実施例 5
B203粉末と Sb203粉末とを 2: 1 の モル比で混合 した 粉体- 1 および Cr203粉末と Sb203粉末とを 1 : 1 の モル 比で混合 した粉体- 2 とをそれぞれ大気雰囲気下
380°Cで 5時間或いは 600°Cで 5時間の熱処理に供した 後、 安定化ジルコニァを粉砕メ ディ ア とするモ ノ マ ロ ンポ ッ ト のボ一ノレ ミ ルで微粉砕する こ とによ り 、 B203 と Sb203とか らな る合成粉体- 1および Cr203と Sb203と からなる合成粉体 - 2 を得た。
ZnO粉末 : B2O3/Sb203含有合成粉体- 1 : Bi203粉末 : Cr203 /Sb203含有合成粉体- 2 : Co304粉末 : Mn02粉末 : NiO粉末 : Sb204粉末: Al(OH)(CH3COO)2 = 81.38: X: 4.2 : X : 0, 954 : 0, 414 : 0.383 : 0.5 : 0.0065(重量比)とな る よ う に配合し、湿式法で 6G 時間混合粉砕 した後、 実 施例 1 と同様の手法によ り 、酸化亜鉛系焼結体を得た。 ただし、 B203/Sb203含有合成粉体- 1 および
Cr203 /Sb203含有合成粉体- 2量と して、 xUおよび 0, 5 を選択 した。
上記で得 られた酸化亜鉛系焼結体の両面に銀電極材 料を塗布 し、 700°Cで焼きつけて電極を形成した後、 リ ― ド線をはんだ付け して、 酸化亜鉛バ リ スタを作製 し た。 表 5 にバリ スタの電気特性の測定結果を示す。
表 5
Figure imgf000044_0001
表 5 に示す結果か ら、 本実施例の酸化亜鉛系焼結体 は、 900〜 950 °Cという低い温度でも焼結するこ とがで き る こ とが明 らかであ る。 また得られた焼結体を用い て作製した酸化亜鉛バ リ スタは、 非直線抵抗特性が良 好であ り 、 長時間の直流負荷に対して も、 サー ジに 対して も、 立ち上がり 電圧 VlmA の変化率 (△
VlmA/VlmA) の絶対値が 5 %以下で、信頼性が優れてい る。 さ らに、 同一ロ ッ ト 内での電気特性の/ ラ ツキ も 小さかっ た。 さ ら にまた、 本実施例によ る酸化亜鉛系 焼結体を用いて酸化亜鉛バリ スタを作成する場合には 異なる ロ ッ ト間での電気特性のバラ ツキも、 同一ロ ッ ト 内の電気特性のバラ ツキと同様に、 小さかっ た。 実施例 6
B203粉末と Bi 203粉末とを 1.'2のモル比で混合 した 粉体- 1 を大気雰囲気下 370 °Cで 5時間の熱処理に供 し た後、 安定化ジルコニァを粉碎メ ディ アとする モノ マ ロ ンポ ッ 卜 のボール ミ ノレで微粉砕する こ と に よ り 、 B203 と Bi203 とからなる合成粉体- 1 を得た。
一方、 Bi 203粉末と Cr203粉末とを 1 : 1 のモル比で 混合 した粉体 - 2 を大気雰囲気下 500°Cで 5 時間の熱処 理に供した後、 安定化ジルコニァを粉砕メ ディ アとす るモノ マ ロ ンポ ッ トのボール ミ ルで微粉砕する こ とに よ り 、 Bi 203 と Cr203 とからなる合成粉体 2 を得た。
ZnO粉末 : B203 /Bi203含有合成粉体-; I : Bi 203粉末 : Bi203 /Cr203含有合成粉体- 2 : Co304粉末 : Mn02粉末 : NiO粉末 : Sb205粉末 : A100H = 81.38 : 1.2 : 2.8 : 1.2 : 0.954: 0.414 : 0.383 : 1.3 : 0.0024(重量比)となる よ う に配合 し、 湿式法で 60時間混合粉砕した後、 実施 例 1 と同様の手法によ り 、酸化亜鉛系焼結体- 1(焼成温 度 850°C )と-酸化亜鉛系焼結体 - 2(焼成温度 950°C )とを 得た。 次いで、 上記 2 種の酸化亜鉛系焼結体を用いて、 実 施例 1 と同様に して酸化亜鉛バ リ スタ を得た後、 それ らの電気特性を評価 した。 結果を表 6 に示す。
表 6
Figure imgf000046_0001
表 6 に示す結果から、本実施例による酸化亜鉛系焼結 体を用いて作製した酸化亜鉛バ リ スタ は、 非直線抵抗 特'性が良好であ り 、 長時間の直流負荷に対して も、 ま たサー ジ電流に対 しても、立ち上がり 電圧 VlmAの変化 率△ VlmA/VlmA の絶対値が 5 %以下で、 信頼性に優れ ている こ とが明 らかである。

Claims

請 求 の 範 囲
1 . 酸化亜鉛系焼結体の製造方法であ って、
酸化ホウ素粉末 5〜 2G 重量%と、酸化 ビス マス粉末、 酸化ア ンチモ ン粉末および希土類酸化物粉末からなる 群から選ばれた酸化物粉末の少な く と も 1 種 80〜 95 重量% とからなる酸化物混合粉末を 300〜 1300 °Cで予 備的加熱を行っ た後、 粉砕する こ とによ り 、 酸化ホウ 素含有量 5〜 20 重量%の第 1 予備熱処理粉体を得るェ 程、
酸化ク ロ ム 20〜 50 重量% と、 酸化ビスマス粉末、 酸 化ア ンチモ ン粉末および希土類酸化物粉末からなる群 から選ばれた酸化物粉末の少な く と も 1 種 80〜 50 重 量% とか らなる酸化物混合粉末を 300〜 1300°Cで予備 的加熱を行っ た後、 粉砕する こ とによ り、 酸化ク ロ ム 含有量 20〜 50重量%の第 2 予備熱処理粉体を得るェ 程、
酸化亜鉛粉末 81. 38 重量部、 前記酸化ホウ素含有第 1 予備熱処理粉体 0. 05〜 2. 5重量部、 前記酸化ク ロ ム 含有第 2 予備熱処理粉体 0. Q5〜 3.0 重量部、 酸化コバ ノレ ト粉末、 酸化マ ンガン粉末および酸化ニッ ケル粉末 からなる群から選ばれた粉末の 2 種または 3 種 0. 3〜 5. 0 重量部、 酸ィヒビスマ ス粉末 1.2〜 7. 0 重量部(第 1 および第 2 予備熱処理粉体によ る寄与分を含む:)、酸化 ア ンチモ ン粉末 0. 1〜 3.0重量部(第 1 および第 2 予備 熱処理粉体によ る寄与分を含む)およびアル ミ ニゥム 化合物粉末 0.0001〜 0.05重量部(但し酸化アル ミ ニゥ ム換算量)を混合 して酸化亜鉛系混合粉体を調製する 工程、
前記酸化亜鉛系混合粉体を成形する工程、 および 前記工程で得 られた成形体を 800°C〜 1100°Cで焼結 する工程
を備えた方法。
2 . 請求項 1 に記載の酸化亜鉛系焼結体の製造方法に おいて、 得られた焼結体を冷却 した後、 さ らに 500〜 ,800°Cで熱処理する工程を備えた方法。 '
3 . 酸化コバル ト粉末、 酸化マ ンガン粉末および酸化 ニ ッ ケル粉末か らな.る群から選ばれた粉末の.2 種ま た は 3 種中の少な く と も 1 種が、 二価よ り も大きい原子 価を有する酸化物である請求項 1 に記載の酸化亜鉛系 焼結体の製造方法。
4 . アル ミ ニウム化合物が、 A1(0H)3、 A10203 · nH20、 A100H、 超微粒子アル ミ ナ、 アル ミ ニゥム塩およびアル ミ ニゥム化合物か らなる群から選ばれた少な く と も 1 種である請求項 1 に記載の酸化亜鉛系焼結体の製造方 法。
5 . 酸化亜鉛粉末 8 1 . 38重量部に対 し、 さ らに酸化ゲ ルマニウ ム粉末、 酸化ニオブ粉末、 酸化鉛粉末、 酸化 ゲイ素粉末、 酸化ス ズ粉末、 酸化タ ン タ ル粉末、 酸化 チタ ン粉末、 酸化タ ン グス テ ン粉末および希土類酸化 物粉末か らなる群から選ばれた少な く と も 1 種 0 . 1〜 1 . 0重量部を配合する請求項 1 に記載の酸化亜鉛系焼 結体の製造方法。
6 - 請求項 1 ま たは 2 に記載の方法によ り得られた酸 化亜鉛系焼結体に側面絶縁膜と電極とを形成 してなる 酸化亜鉛バ リ ス 夕 。
7 . 積層型酸化亜鉛バ リ スタであ って、
酸化ホウ素粉末 5 ~ 2 0重量% と、酸化 ビス マ ス粉末、 酸化ア ンチモ ン粉末および希土類酸化物粉末からなる 群か ら選ばれた酸化物粉末の少な く と も 1 種 8 0〜 9 5 重量%とからなる酸化物混合粉末を 3 0 0〜 1 3 0 0 °Cで予 備的加熱を行っ た後、 粉砕する こ とによ り 、 酸化ホウ 素含有量 5〜 2 Q重量%の第 1 予備熱処理粉体を調製し、 酸化ク ロ ム 2 0〜 50 重量% と、 酸化 ビスマ ス粉末、 酸 化ア ンチモ ン粉末および希土類酸化物粉末か らな る群 から選ばれた,酸化物粉末の少な く と も 1 種 8 0〜 50 重 量% とか らなる酸化物混合粉末を 300〜 1300°Cで予備 的加熱を行っ た後、 粉砕する こ と に よ り 、 酸化ク ロ ム 含有量 20〜 50重量%の第 2 予備熱処理粉体を調製し、 酸化亜鉛粉末 81.38重量部、 前記酸化ホウ素含有第 1 予備熱処理粉体 0.05〜2.5重量部、 前記酸化ク ロム 含有第 2 予備熱処理粉体 0.05〜 3. Q 重量部、 酸化コバ ノレ ト粉末、 酸化マ ンガ ン粉末および酸化ニ ッ ケル粉末 か らなる群か ら選ばれた粉末の 2 種.ま たは 3 種 0.3〜 5.0 重量部、 酸化ビスマス粉末 1, 2〜 7. G 重量部(第 1 および第 2 予備熱処理粉体によ る寄与分を含む)、酸化 ア ンチモ ン粉末 0.1〜 3.0 重量部(第 1 お よび第 2 予備 熱処理粉体によ る寄与分を含む)およびアル ミ ニ ゥ ム 化合物粉末 0.0001〜 05重量部(但し酸化アル ミ ニゥ ム換算量)を混合 して酸化亜鉛系混合粉体を調製 し、 前記酸化亜鉛系混合粉体を薄板状に成形 し、
得られた薄板状成形体と金属電極材料とを交互に積 層 し、
得られた 層体を焼成してなる積層型酸化亜鉛バ リ ス 夕 。
8 . 酸化亜鉛焼結体の製造方法であ っ て、
酸化ホウ素粉末 5〜 70重量% と酸化ク ロム粉末 95〜 30 重量% とか らな る酸化物混合粉末を 300〜 1300°Cで 予備的加熱を行っ た後、 粉砕する こ と によ り 、 酸化ホ ゥ素含有量 5〜 70重量%お.よび酸化ク ロム含有量 95〜 30 重量%の第 3 予備熱処理粉体を得る工程、
酸化亜 ^粉末 81. 38重量部、前記酸化ホウ素 /酸化ク ロ ム含有第 3予備熱処理粉体 0. 08〜 3.0 重量部、 酸化 コ ノ ル ト粉末、 酸化マ ンガン粉末および酸化ニ ッ ケル 粉末からな る群か ら選ばれた粉末の 2 種ま たは 3 種 0. 3し 5. 0 重量部、 酸化 ビスマス粉末 1. 2〜 7. 0 重量部、 酸化ア ンチモ ン粉末 0. 1〜 3. 0重量部およびアル ミ 二 ゥム化合物粉末 0. 0001〜 0. 05重量部(但 し酸化アル ミ ニゥム換算量)を混合 して酸化亜鉛系混合粉体を調製 する工程、
前記酸化亜鉛系混合粉体を成形する工程、 および 前記工程で得 られた成形体を 800°C〜 1100°Cで焼結 する工程
を備えた方法。
9 . 請求項 8 に記載の酸化亜鉛系焼結体の製造方法に おいて、 焼結体をさ らに 500〜 800°Cで熱処理する工程 を備えた方法。
1 0 . 酸化コバル ト粉末、 酸化マ ンガ ン粉末および酸 化ニ ッ ケル粉末か らなる群から選ばれた粉末の 2 種ま たは 3 種中の少な く と も 1 種が、 二価よ り も大きい原 子価を有する酸化物であ る請求項 8 に記載の酸化亜鉛 系焼結体の製造方法。
1 1 . アル ミ ニゥム化合物が、 A1(0H)3、 A10203 · nH20、 A100H、 超微粒子アル ミ ナ、 アル ミ ニゥ ム塩およびアル ミ ニゥムイビ合物からなる群か ら選ばれた少な く と も 1 種である請求項 8 に記載の酸化亜鉛系焼結体の製造方 法。
1 2 . 酸化亜鉛粉末 81 · 38 重量部に対 し、 さ らに酸化 ゲルマニウム粉末、 酸化ニオブ粉末、 酸化鉛粉末、 酸 化ゲイ素粉末、 酸化スズ粉末、 酸化タ ン タ ル粉末、 酸 化チタ ン粉末、 酸化タ ン グステ ン粉末および希土類酸 化物粉末か らなる群から選ばれた少な く と も 1 種 0. 1 〜 1.0 重量部を配合する請求項 8 に記載の酸化亜鉛系 焼結体の製造方法。
1 3 . 請求項 8 または 9 に記載の方法によ り得られた 酸化亜鉛系焼結体に側面絶縁膜と電極とを形成 してな る酸化亜鉛パ、 リ スタ。
1 4 . 積層型酸化亜鉛バ リ ス夕であ っ て、
酸化ホウ素粉末 5〜 70重量% と酸化ク ロ ム粉末 95〜 30 重量% とからなる酸化物混合粉末を 300〜 1300°Cで 予備的加熱を行っ た後、 粉砕する こ と に よ り 、 酸化ホ ゥ素含有量 5〜了 G重量%および酸化ク ロム含有量の 95 〜 30 重量%の第 3 予備熱処理粉体を調製 し、
酸化亜鉛粉末 81. 38重量部、前記酸化ホゥ素 /酸化ク ロ ム含有第 3予備熱処理粉体 0. 08〜 3. 0重量部、 酸化 コバル ト粉末、 酸化マ ンガ ン粉末および酸化ニ ッ ケル 粉末からなる群か ら選ばれた粉末の 2 種ま たは 3 種 0. 3〜 5. 0 重量部、 酸化 ビスマス粉末 1. 2〜 7.0 重量咅 |5、 酸化ア ンチモ ン粉末 0. 1〜 3.0 重量部およびアル ミ 二 ゥ ム化合物粉末 0. 0001〜 0. 05重量部(但 し酸化アル ミ ニゥム換算量)を混合 して酸化亜鉛系混合粉体を調製 し、
前記酸化亜鉛系混合粉体を薄板状に成形 し、
得られた薄板状成形体と金属電極材料とを交互に積 層 し、
得 られた積層体を焼成 してなる積層型酸化亜鉛バ リ ス 夕 。
1 5 . 酸化亜鉛系焼結体の製造方法であ っ て、
酸化ホウ素粉末 5〜 20重量% と酸化ク ロム粉末 20〜 50重量 と、 酸化ビスマス粉末、 酸化ア ンチモ ン粉末 および希土類酸化物粉末からな る群か ら選ばれた酸化 物粉末の少な く と も 1 種 75〜 30重量% とからなる酸 化物混合粉末を 300〜 1300°Cで予備的加熱を行つ た後、 粉砕する こ とによ り 、 酸化ホウ素含有量 5〜 20 重量% および酸化ク ロ ム含有量 20〜 50重量%の第 4 予備熱 処理粉体を得る工程、.
酸化亜鉛粉末 81.38重量部、前記酸化ホウ素/酸化ク ロム含有第 4 予備熱処理粉体 0. 1〜 5.0 重量部、酸化コ バル ト粉末、 酸化マ ンガン粉末および酸化ニ ッ ケル粉 末からな る群か ら選ばれた粉末の 2 種ま たは 3 種 0.3 〜 5.0 重量部、 酸化 ビス マ ス粉末 1.2〜 7.0 重量部、 酸 化ア ンチモ ン粉末 0. 1〜 3. 0 重量部およびアル ミ ニゥ ム化合物粉末 0.0001〜 05重量部(但 し酸化アル ミ 二 ゥム換算量)を混合 して酸化亜鉛系混合粉体を調製す る工程、
前記酸化亜鉛系混合粉体を成形する工程、 および 前記工程で得 られた成形体を 80CTC〜 li00°Cで焼結 する工程
を備えた方法。
1 6 . 請求項 1 5 に記載の酸化亜鉛系焼結体の製造方 法において、 焼結体をさ らに 500〜 800 °Cで熱処理する 工程を備えた方法。
1 7 . 酸化コバル ト粉末、 酸化マ ンガン粉末および酸 化ニ ッケル粉末か らなる群から選ばれた粉末の 2 種ま たは 3 種中の少な く と も 1 種が、 二価よ り も大きい原 子価を有する酸化物である請求項 1 5 に記載の酸化亜 鉛系焼結体の製造方法。
1 8 . アル ミ ニウム化合物が、 Al(0fi)3、 A10203 · nH20、 A100H、 超微粒子アル ミ ナ、 アル ミ ニゥム塩およびアル ミ ニゥム化合物か らなる群から選ばれた少な く と も 1 種である請求項 1 5 に記載の酸化亜鉛系焼結体の製造 方法。
1 9 . 酸化亜鉛粉末 81.38 重量部に対 し、 さ らに酸化 ゲルマニウム粉末、 酸化ニオブ粉末、 酸化鉛粉末、 酸 ィヒゲイ素粉末、 酸化スズ粉末、 酸化タ ンタル粉末、 酸 化チタ ン粉末、 酸化タ ン グス テ ン粉末および希土類酸 化物粉末からな る群か ら選ばれた少な く と も 1 種 0.1 〜 1.0 重量部を配合する請求項 1 5 に記載の酸化亜鉛 系焼結体の製造方法。
2 0 . 請求項 1 5 ま たは 1 6 に記載の方法によ り 得 ら れた酸化亜鉛系焼結体に側面絶縁膜と電極とを形成し てなる酸化亜鉛パ、 リ ス夕。
2 1 . 酸化亜鉛バ リ スタ であ っ て、
酸化ホウ素粉末 5〜 20重量% と酸化ク ロ ム粉末 20〜 50 重量% と、 酸化ビスマス粉末、 酸化ア ンチモ ン粉末 および希土類酸化物粉末からな る群から選ばれた酸化 物粉末の少な く と も 1 種 75〜 30 重量% とからなる酸 化物混合粉末を 300〜 1300 °Cで予備的加熱を行っ た後、 粉砕する こ とによ り 、 酸化ホウ素含有量 5〜 20 重量% および酸化ク ロ ム含有量の 20〜 50 重量%の第 4 予備 熱処理粉体を調製 し、
酸化亜鉛粉末 '81. 38重量部、前記酸化ホウ素/酸化ク ロム含有第 4 予備熱処理粉体 0. 1〜 5. 0 重量部、酸化コ バル ト粉末、 酸ィヒマンガン粉末および酸化ニ ッ ケル粉 末からなる群か ら選ばれた粉末の 2 種または 3 種 0. 3 〜 5. 0 重量部、 酸化 ビスマス粉末 1. 2〜 7. 0 重量部、 酸 化ア ンチモ ン粉末 0. 1〜 3. 0重量部およびアル ミ ニゥ ム化合物粉末 0. 0001〜 0.05重量部(但 し酸化アル ミ 二 ゥ ム換算量)を混合 して酸化亜鉛系混合粉体を調製し、 前記酸化亜鉛系混合粉体を薄板状に成形 し、
得られた成形体と金属電極材料とを交互に積層 し、 得 られた積層体を焼成してなる積層型酸化亜鉛バ リ ス夕。
PCT/JP2001/001989 2000-03-13 2001-03-13 Production d'un compact fritte d'oxyde de zinc et varistance en oxyde de zinc WO2001068553A1 (fr)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2000-68389 2000-03-13
JP2000068389A JP2001257105A (ja) 2000-03-13 2000-03-13 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタ
JP2000-165253 2000-06-02
JP2000165253A JP2001348269A (ja) 2000-06-02 2000-06-02 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタ
JP2000288811A JP2002097071A (ja) 2000-09-22 2000-09-22 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタとこれを用いた酸化亜鉛バリスタ装置
JP2000-288811 2000-09-22
JP2000-364078 2000-11-30
JP2000364078A JP2002167273A (ja) 2000-11-30 2000-11-30 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタとこれを用いた酸化亜鉛バリスタ装置。
JP2001-22534 2001-01-30
JP2001022534A JP2002226262A (ja) 2001-01-30 2001-01-30 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタとこれを用いた酸化亜鉛バリスタ装置.

Publications (1)

Publication Number Publication Date
WO2001068553A1 true WO2001068553A1 (fr) 2001-09-20

Family

ID=27531442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001989 WO2001068553A1 (fr) 2000-03-13 2001-03-13 Production d'un compact fritte d'oxyde de zinc et varistance en oxyde de zinc

Country Status (1)

Country Link
WO (1) WO2001068553A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227220A1 (zh) * 2020-05-09 2021-11-18 湖南省湘电试研技术有限公司 通过调控氧化铋晶体形态提升氧化锌压敏电阻通流能力的方法与氧化锌电阻片及其制备方法
CN114477993A (zh) * 2022-01-24 2022-05-13 仲恺农业工程学院 一种ZnO材料及其基本性质研究方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667626A2 (en) * 1994-02-10 1995-08-16 Hitachi, Ltd. Voltage non-linear resistor and fabricating method thereof
EP0731065A1 (en) * 1995-03-06 1996-09-11 Matsushita Electric Industrial Co., Ltd Zinc oxide ceramics and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0667626A2 (en) * 1994-02-10 1995-08-16 Hitachi, Ltd. Voltage non-linear resistor and fabricating method thereof
EP0731065A1 (en) * 1995-03-06 1996-09-11 Matsushita Electric Industrial Co., Ltd Zinc oxide ceramics and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227220A1 (zh) * 2020-05-09 2021-11-18 湖南省湘电试研技术有限公司 通过调控氧化铋晶体形态提升氧化锌压敏电阻通流能力的方法与氧化锌电阻片及其制备方法
CN114477993A (zh) * 2022-01-24 2022-05-13 仲恺农业工程学院 一种ZnO材料及其基本性质研究方法和应用

Similar Documents

Publication Publication Date Title
KR20010022821A (ko) 기계적인 분쇄에 의해 생성된 나노 결정체 분말을 기초로 한 배리스터
JP2009537426A5 (ja)
Bai et al. Influence of Bi-Co-O synthetic multi-phase on electrical properties of the ZnO-Bi2O3-MnO2–SiO2 varistors
US3953375A (en) Non-linear voltage titanium oxide resistance element
Wu et al. Effect of SiO 2 addition on the microstructure and electrical properties of ZnO-based varistors
WO2001068553A1 (fr) Production d'un compact fritte d'oxyde de zinc et varistance en oxyde de zinc
JP2005145809A (ja) 酸化亜鉛系焼結体と酸化亜鉛バリスタおよび積層型酸化亜鉛バリスタ.
TWI485122B (zh) Manufacturing method of semiconductor porcelain composition and heater for semiconductor porcelain composition
WO2019146493A1 (ja) 酸素透過素子及びスパッタリングターゲット材
JP2005286228A (ja) 熱電材料および熱電変換素子
JP2002373801A (ja) 酸化亜鉛系焼結体とその製造方法および酸化亜鉛バリスタ
JP2003109807A (ja) 酸化亜鉛系焼結体とその製造方法および酸化亜鉛バリスタ.
JP2000012915A (ja) 熱電変換材料
JP2007158192A (ja) 熱電変換材料およびこの材料を用いた熱電変換素子
JP3323701B2 (ja) 酸化亜鉛系磁器組成物の製造方法
JP2005097070A (ja) 酸化亜鉛系焼結体と酸化亜鉛バリスタ
JP4481704B2 (ja) 熱電変換材料およびそれを用いた熱電変換素子
JPH0236041B2 (ja)
JP2002097071A (ja) 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタとこれを用いた酸化亜鉛バリスタ装置
JP2001089228A (ja) 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタ
JP2001257105A (ja) 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタ
JP2002226262A (ja) 酸化亜鉛磁器組成物とその製造方法および酸化亜鉛バリスタとこれを用いた酸化亜鉛バリスタ装置.
JP3313533B2 (ja) 酸化亜鉛系磁器組成物及びその製造方法
TW201209006A (en) Oxide sintered body and oxide semiconductor thin film
JPH1197751A (ja) 熱電変換材料及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase