WO2001063329A1 - Fibre optique a faible dispersion, et systeme optique de transmission l'utilisant - Google Patents

Fibre optique a faible dispersion, et systeme optique de transmission l'utilisant Download PDF

Info

Publication number
WO2001063329A1
WO2001063329A1 PCT/JP2001/001353 JP0101353W WO0163329A1 WO 2001063329 A1 WO2001063329 A1 WO 2001063329A1 JP 0101353 W JP0101353 W JP 0101353W WO 0163329 A1 WO0163329 A1 WO 0163329A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
dispersion
refractive index
core
wavelength
Prior art date
Application number
PCT/JP2001/001353
Other languages
English (en)
French (fr)
Inventor
Shinichi Arai
Ryuichi Sugizaki
Keiichi Aiso
Naoto Oyama
Jun Terada
Hisashi Koaizawa
Katsunori Inoue
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to KR1020017013227A priority Critical patent/KR20010113806A/ko
Priority to CA002368327A priority patent/CA2368327A1/en
Priority to EP01906252A priority patent/EP1189082A4/en
Priority to BR0104593-8A priority patent/BR0104593A/pt
Publication of WO2001063329A1 publication Critical patent/WO2001063329A1/ja
Priority to US09/983,616 priority patent/US6684018B2/en
Priority to HK02106940.6A priority patent/HK1045564A1/zh
Priority to US10/662,341 priority patent/US6766089B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02238Low dispersion slope fibres
    • G02B6/02242Low dispersion slope fibres having a dispersion slope <0.06 ps/km/nm2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02257Non-zero dispersion shifted fibres, i.e. having a small negative dispersion at 1550 nm, e.g. ITU-T G.655 dispersion between - 1.0 to - 10 ps/nm.km for avoiding nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • G02B6/02271Non-zero dispersion shifted fibres, i.e. having a small positive dispersion at 1550 nm, e.g. ITU-T G.655 dispersion between 1.0 to 10 ps/nm.km for avoiding nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0286Combination of graded index in the central core segment and a graded index layer external to the central core segment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02261Dispersion compensating fibres, i.e. for compensating positive dispersion of other fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/0228Characterised by the wavelength dispersion slope properties around 1550 nm

Definitions

  • the present invention relates to a low dispersion optical fiber used for performing wavelength division multiplexing optical transmission in a wavelength band of 1.5 ⁇ m, for example, and an optical transmission system using the low dispersion optical fiber.
  • a representative example of the optical fiber amplifier type optical amplifier is an EDFA (erbium-doped optical fiber amplifier) having the above-mentioned EDF.
  • EDF electronic-doped optical fiber amplifier
  • FIG. 6 (a) and (b) show the transmission band (wavelength 1.555111 band) of the above 1.5 ⁇ band, especially the wavelength band near the wavelength of 150550 nm.
  • An example of the refractive index profile of an optical fiber that has been conventionally proposed as an optical fiber for wavelength division multiplexing optical transmission having a wavelength range is shown.
  • FIG. 6 (a) shows a step-shaped refractive index profile
  • FIG. 6 (b) shows a W-shaped refractive index profile.
  • the optical fiber having the step-shaped refractive index profile has a first core having a smaller refractive index than the center core 1 and a larger refractive index than the center core 5 on the outer peripheral side of the center core 1 having a larger refractive index than the clad 5.
  • the core 2 is formed.
  • an optical fiber having a W-shaped refractive index profile is formed by providing a first side core 2 having a smaller refractive index than the clad 5 on the outer peripheral side of the center core 1 having a larger refractive index than the clad 5. .
  • an optical fiber having a zero dispersion wavelength near a wavelength of 1.55 ⁇ m is called a dispersion shift optical fiber.
  • This dispersion-shifted optical fiber has a zero-dispersion wavelength near 1.55 m, which is the center wavelength of the 1.55 ⁇ band, and therefore has a wavelength of 1.55 ⁇ m.
  • the distortion of the signal light waveform due to the dispersion can be suppressed, the generation of four-wave mixing, which is one of the nonlinear phenomena, becomes remarkable. Therefore, in this dispersion-shifted optical fiber, the waveform of the signal light is distorted by the generated four-wave mixing light, and high-quality wavelength division multiplexing optical transmission cannot be realized.
  • the optical fiber having the W-shaped refractive index profile functions as a dispersion flat optical fiber because the chromatic dispersion deviation is small.
  • the effective core area (effectively propagating area: A eff ) of the optical fiber having the above-mentioned stepped refractive index profile is about 45 m 2
  • the optical fiber of the W-shaped refractive index profile is used.
  • the effective core cross-sectional area of the tipper is, for example, about 30 ⁇ m 2, and the effective core cross-sectional area is as small as about 2/3.
  • the optical fiber in order to apply an optical fiber to a wavelength division multiplexing transmission system, the optical fiber must be cabled. For this purpose, it is required to have a characteristic that can reduce the loss increase due to bending and lateral pressure of the optical fiber. Optical fiber is required.
  • the Raman amplifier expands the wavelength band that can be amplified compared to the conventional EDF A.
  • the wavelength 1450 ⁇ ⁇ ! It is possible to amplify optical signals in a specific wavelength band within the range of ⁇ 165 nm, but studies on optical fibers in this wavelength range have not yet been made.
  • An object of the present invention is, for example, to increase the effective core area and reduce the chromatic dispersion deviation in the operating wavelength range in the operating wavelength range, and furthermore, to reduce bending and lateral pressure in a cable. It is an object of the present invention to provide a low-dispersion optical fiber capable of reducing an increase in loss due to optical fiber and an optical transmission system using the low-dispersion optical fiber. Disclosure of the invention
  • the outer peripheral side of the center core is covered with a first side core
  • the outer peripheral side of the first side core is covered with a second side core
  • the outer peripheral side of the second side core is covered.
  • the refractive index is n 3 and the refractive index of the clad is nc
  • pl> n 3>nc> n 2 is satisfied
  • the relative refractive index difference ⁇ 1 of the maximum refractive index of the center core with respect to the clad is 0. 4% ⁇ ⁇ 1 ⁇ 0.7% and the minimum refraction of the first side core
  • the relative refractive index difference ⁇ 2 of the refractive index to the cladding is 0.30% ⁇ ⁇ 2 ⁇ ⁇ 0.05%, and the ratio of the maximum refractive index of the second side core to the cladding.
  • the refractive index difference ⁇ 3 is 0.2% mm3, and the ratio (1 & 2) of the diameter a1 of the center core to the diameter a2 of the first side core is 0.4 or more and 0.7 or less.
  • the ratio (a3a2) of the diameter a3 of the second side core to the diameter a2 of the first sidecore is 1.6 or less.
  • low-dispersion optical fiber of the second configuration of the present invention in addition to the first configuration, the second cyclic-core are dough flops additive to increase the refractive index of the S i O 2, said concentration distribution of the additive doped in the two-sided core in the radial direction of the optical fiber has a local maximum, and the position of the local maximum is located on the first side relative to the radial center of the second side core. It is characterized by being part of the Docoa side.
  • low-dispersion optical fiber of the third structure of the present invention example pressurized to said second configuration, said additive is characterized by a G e 0 2.
  • the refractive index between the cladding and the second side core is smaller than that of the cladding.
  • a low-refractive-index cladding portion is provided.
  • the low-dispersion optical fiber of the fifth configuration of the present invention has a wavelength of 1450 nn! In addition to the first, second, or third configuration. It is characterized in that it has no zero dispersion in the used wavelength range included in the wavelength range of 650 nm.
  • the low-dispersion optical fiber of the sixth configuration of the present invention has zero dispersion in the working wavelength range included in the wavelength range of 150 to 160 nm in addition to the fourth configuration. Not characterized.
  • the low-dispersion optical fiber of the seventh configuration of the present invention can In addition to the second, third or sixth configuration, the maximum and minimum dispersion values in the wavelength range having an arbitrary 30 nm band included in the wavelength range of 1450 nm to l650 nm Is characterized by a deviation of 2 ps / n rnZ km or less.
  • the low-dispersion optical fiber according to the eighth configuration of the present invention has an arbitrary band of 30 nm included in the wavelength range of wavelengths of 150 to 160 nm in addition to the fourth configuration.
  • the deviation between the maximum value and the minimum value of the dispersion value in the wavelength range is 2 ps / nmkm or less.
  • the low-dispersion optical fiber of the ninth configuration according to the present invention in addition to the above-described fifth configuration, has a wavelength of 144 4 ⁇ ! It is characterized in that the deviation between the maximum value and the minimum value of the dispersion value in the wavelength region having an arbitrary 3Onm band included in the wavelength region of ⁇ 165Onm is 2ps Zn mZkm or less.
  • the optical transmission system having the tenth configuration includes: an optical transmission line including the low dispersion optical fiber according to any one of the first to ninth configurations; !
  • the relative refractive index differences ⁇ 1, ⁇ 2, and ⁇ 3 are defined by the following equations (1) to (3).
  • Room 1 (( ⁇ 1 2 -nc 2 ) / 2 nc X 0 0 (1)
  • room 2 ⁇ ( ⁇ 2 nc 2 nc X 0 0 (2)
  • room 3 ⁇ (n 3 2 -nc 2 ) / 2 nc 2 ⁇ X l OO (3)
  • the low-dispersion optical fiber of the present invention having the above-described configuration has, for example, a wavelength of 1450 ⁇ !
  • the first object is to achieve both the enlargement of the effective core area and the reduction of the chromatic dispersion deviation in the working wavelength range in the setting wavelength range within the range of 1650 nm.
  • the low-dispersion optical fiber of the present invention achieves the first object and reduces the refractive index distribution and the ratio of each core diameter so as to reduce an increase in loss due to bending or lateral pressure when the cable is used. It has been optimized. Therefore, the low-dispersion optical fiber of the present invention achieves both an increase in the effective core area and a reduction in the chromatic dispersion deviation in the operating wavelength range, and a reduction in loss due to bending and lateral pressure when the cable is formed into a cable. Is possible. A specific example of the low dispersion optical fiber of the present invention will be described later in an embodiment.
  • the second rhino-core is doped is additive to increase the refractive index of the S i O 2, of the additive is doped in the second site DoCoMo ⁇
  • the concentration distribution in the radial direction of the optical fiber has a local maximum, and the position of the local maximum is closer to the first side core than the radial center of the second side core.
  • the maximum part of the optical fiber radial concentration distribution of the additive that increases the refractive index of the Si 0 2 doped in the second side core is reduced to the second side.
  • the optical fiber can be easily formed by utilizing the conventional optical fiber manufacturing technology.
  • the wavelength 1450 ⁇ ! Wavelength range within the range of 1650 nm, for example, the wavelength of 1503 ⁇ ! If there is no zero-dispersion in the wavelength range of 11650 nm, for example, when wavelength division multiplexed optical transmission is performed in this wavelength range, the generation of four-wave mixing can be suppressed, so that nonlinear phenomena can be suppressed. Waveform distortion due to the above can be suppressed.
  • the wavelength range used is the wavelength 1450 ⁇ ⁇ ! It can be set arbitrarily within the range of ⁇ 165 nm.
  • the low-dispersion optical fiber of the present invention when the deviation between the maximum value and the minimum value of the partial Chichi in the wavelength band or less 2 ps / n m km, the in the wavelength range of this example, a wavelength division multiplexing optical transmission In this case, waveform distortion due to wavelength dispersion can be suppressed more reliably.
  • the optical transmission system of the present invention uses the optical transmission line including the low dispersion optical fiber, and the wavelength of the optical transmission line including the low dispersion optical fiber is 1450 ⁇ ! This is to reduce the positive chromatic dispersion gradient in the wavelength range of 1650 nm by the negative chromatic dispersion gradient of the dispersion compensation device. Therefore, the optical transmission system of the present invention can provide an optical transmission system capable of high-quality wavelength division multiplex transmission because the chromatic dispersion gradient in the above wavelength band can be made close to zero, and the effect of chromatic dispersion can be further suppressed. Can be built
  • FIG. 1 is a main part showing a refractive index distribution (refractive index distribution on a cross section) in the optical fiber radial direction of one embodiment of a low dispersion optical fiber according to the present invention.
  • FIG. 2 is a main configuration diagram showing the refractive index distribution in the optical fiber radial direction of another embodiment of the low dispersion optical fiber according to the present invention, wherein FIG. ) Is an explanatory view showing a refractive index distribution in a radial direction of an optical fiber of a prototype optical fiber for comparison, and
  • FIG. 3 is a view showing still another embodiment of the low dispersion optical fiber according to the present invention.
  • FIG. 3 is a main part configuration diagram showing a refractive index distribution in an optical fiber radial direction.
  • FIG. 4 is a graph showing the dispersion characteristics of one embodiment of the optical transmission system using the low dispersion optical fiber according to the present invention, together with the dispersion characteristics of the low dispersion optical fiber applied to the optical transmission system.
  • 5A is an explanatory diagram showing a refractive index distribution of a dispersion compensating device applied to one embodiment of the optical transmission system
  • FIG. 5B is a graph showing dispersion characteristics.
  • FIG. 6 is an explanatory diagram showing a refractive index distribution (refractive index distribution on a cross section) in an optical fiber radial direction of an optical fiber conventionally proposed for wavelength division multiplexing optical transmission.
  • FIG. 1 shows a refractive index profile (refractive index distribution structure) of one embodiment of a low dispersion optical fiber according to the present invention.
  • the low dispersion optical fiber has an outer peripheral side of a center core 1 covered with a first side core 2, and an outer peripheral side of the first side core 2 is a second side core. 3 and the outer peripheral side of the second side core 3 is covered with a clad 5.
  • the low dispersion optical fiber has a maximum refractive index of the center core 1 of n 1 and a minimum refractive index of the first side core 2. Assuming that the refractive index is n 2, the maximum refractive index of the second side core 3 is n 3, and the refractive index of the cladding 5 is nc, n 1> n 3>nc> n 2.
  • the most characteristic feature of one embodiment of the present invention is that the relative refractive index difference ⁇ 3 of the maximum refractive index of the second side core 3 to the cladding 5 is 0.2% or more, This means that the maximum value n 3 of the refractive index of the side core 3 is much larger than the refractive index nc of the clad 5.
  • the relative refractive index difference ⁇ 1 of the maximum refractive index of the center core 1 to the clad 5 is 0.4% or more and 0.7% or less (0.4% ⁇ ⁇ 1 ⁇ 0.7%), and the relative refractive index difference ⁇ 2 of the minimum refractive index of the first side core 2 with respect to the clad 5 is not less than 0.30% and not more than 1.05% ( ⁇ 0. 3 0% ⁇ mm 2 ⁇ -0.0 5%).
  • the relative refractive index difference ⁇ 1 of the maximum refractive index of the center core 1 to the cladding 5 is 0.42% or more and 0.62% or less (0.6% or less). 4 2% ⁇ 1 ⁇ 0.6 2%), and the relative refractive index difference ⁇ 2 of the minimum refractive index of the first side core 2 with respect to the clad 5 is not less than 0.25% and not more than 1 0.05%. (1 0.25% ⁇ ⁇ 2 ⁇ _ 0.05%).
  • the ratio (a 1 ⁇ 2) between the diameter a 1 of the center core 1 and the diameter a 2 of the first side core 2 is 0.4 or more and 0.7 or less
  • the second size is The ratio (a3 / a2) of the diameter a3 of the core 3 to the diameter a2 of the first side core 2 is 1.6 or less.
  • the ratio (a3 / a2) of the diameter a3 of the second side core 3 to the diameter a2 of the first side core 2 is desirably 1.5 or less.
  • the composition and the like for forming the optical fiber are not particularly limited.
  • the optical fiber having the refractive index aperture file includes, for example, a center core 1 and a second side core.
  • the G e O 2 doped ⁇ 3, the first site-core 2 is formed by doping F.
  • the additive doped into the second rhino-core 3 is not limited to the G e O 2, additive to increase the refractive index of the S i O 2, for example yo be an A 1 2 0 3 Rere.
  • the concentration profile of the optical fiber radial direction of G e O 2 which is de one-flop to the center core 1 has a maximum portion on the center portion of the center core 1.
  • the concentration distribution of Ge ⁇ 2 doped in the second side core 3 in the radial direction of the optical fiber also has a local maximum at the radial center of the second side core 3.
  • the maximum portion of the concentration distribution of GeO 2 in the radial direction of the optical fiber may be provided.
  • One embodiment of the present invention specifies the refractive index profile and the ratio of the core diameters of the center core 1, the first side core 2, and the second side core 3 as described above, thereby obtaining the effective core area. It is now possible to achieve both expansion and reduction of wavelength dispersion deviation in the operating wavelength range. Further, the low dispersion optical fiber according to one embodiment of the present invention has a small loss due to bending in a wavelength range to be used, and can obtain good characteristics when a cable is used.
  • Low-dispersion optical fiber of one embodiment of the present invention is specifically and the effective core area 4 5 ⁇ ⁇ 2 or more, at a wavelength of 1 5 3 O nm to the wavelength 1 5 6 0 nm
  • the absolute value of the dispersion (unit: ps Zn mZkm) is set to 2 or more and 12 or less so as not to have a zero dispersion wavelength in the used wavelength band.
  • low-dispersion optical fiber of one embodiment of the present invention a dispersion slope that put the used wavelength band in the following 0. 0 5 p S nm 2 / m, the maximum of your Keru dispersed using wavelength region The difference between the value and the minimum value (variance deviation) is set to Sps Zn mZ km or less.
  • the present inventors specify the refractive index profile and the core diameter ratio.
  • various optical fibers were prototyped or simulated, and their characteristics were sought.
  • the relative refractive index difference ⁇ 1 is less than 0.4%, although the effective core area can be increased and the chromatic dispersion can be reduced, the bending loss of the optical fiber tends to increase. It was found that it was difficult to maintain good characteristics when cabled.
  • the relative refractive index difference ⁇ .1 exceeds 0.7%, the chromatic dispersion gradient becomes large, the chromatic dispersion deviation becomes larger than that of the optical fiber having the step-type refractive index profile, or the effective core area is increased. It turned out to be about the optical fiber of a step-type refractive index profile. Therefore, as described above, in one embodiment of the present invention, the relative refractive index difference ⁇ 1 is set to 0.4% or more and 0.7% or less.
  • the relative refractive index difference ⁇ 1 is appropriately set within the above range. However, when the refractive index profile of the center core 1 is an ⁇ -th power profile, the relative refractive index difference ⁇ 1 is made smaller when the refractive index is large. When the fiber is small, it is better to make the relative refractive index difference ⁇ 1 larger.
  • the relative refractive index difference ⁇ 1 is preferably set to 0.53% to 0.60%.
  • the relative refractive index difference ⁇ 2 is set to 0.30% ⁇ ⁇ 2 ⁇ _0.05%.
  • the ratio (a 1 / a 2) of the diameter a 1 of the center core 1 to the diameter a 2 of the first side core 2 becomes smaller, the wavelength 1450 ⁇ ⁇ !
  • the effective cutoff wavelength becomes longer, and it tends to be difficult to operate the optical fiber in a single mode.
  • the ratio (alZa 2) is less than 0.4, the bending loss in the wavelength range of 144 nm to 650 nm is remarkably increased, which is not suitable for the cable.
  • the ratio (al / a2) is set to 0.4 or more and 0.7 or less as described above.
  • the ratio (a 3 / a2) is set to 1.6 or less.
  • One embodiment of the present invention specifies the refractive index profile and the ratio of the core diameter of the low dispersion optical fiber based on the above study. Therefore, one embodiment of the present invention achieves both the enlargement of the effective core area and the reduction of chromatic dispersion deviation in the used wavelength range, suppresses the generation of four-wave mixing, and further reduces the use wavelength.
  • the band -The loss due to bending is small, and good characteristics can be obtained when the cable is used.
  • Table 1 shows, as specific examples of one embodiment of the present invention, relative refractive index differences ⁇ 1, ⁇ 2, ⁇ 3 in Examples 1 to 9 and the core.
  • the ratio of the diameter (alZa2), (a2 / a3), the core diameter (a3) and the characteristics of Examples 1 to 9 are shown.
  • Table 2 shows the characteristics of the comparative example.
  • Crotch Dispersion gradient Cross section Bending loss Unit%% ps nm / km ps nm ⁇ / km dB / m
  • Hyun 1 0.55 -0.45 0.55 -0.8 0.009 37 8.1
  • each of the values of chromatic dispersion, dispersion gradient, effective core area (A eff ), and bending loss is the value at the wavelength of 155 nm. It is.
  • all of the optical fibers of Examples 1 to 9 have an effective cutoff wavelength within the range of wavelengths in the range of 1450 nm to 1650 nm. Is also on the short wavelength side, enabling single-mode operation.
  • the bending loss was 1 dBZm or less, and it was possible to reduce not only the increase in loss due to bending and lateral pressure when making a cable, but also the increase in loss due to minute bending. .
  • Comparative Example 1 shows the optical fiber having the W-shaped refractive index profile shown in (b) of FIG. 6 and Comparative Example 2 shows the optical fiber with the step-shaped refractive index profile shown in (a) of FIG. Each shows an optical fiber.
  • the relative refractive index difference ⁇ 1 was determined in the same manner as in the above-described embodiment, and the relative refractive index difference ⁇ 2 was determined in the same manner as in the above-described embodiment for Comparative Example 1.
  • the relative refractive index difference ⁇ 2 indicates the relative refractive index difference of the maximum refractive index of the first side core 2 with respect to the clad 5, and the maximum refractive index of the first side core 2 is n. 2.
  • the refractive index of the clad 5 was determined from the above equation (2) as nc. -As is clear from the comparison of the characteristics shown in Tables 1 and 2, in each of Examples 1 to 9, the effective core area is larger than Comparative Examples 1 and 2, and the dispersion gradient is Comparative Examples 1 and 2. Less than. Thus, Examples 1 to 9 and Comparative Example 1 1 and 2, it was confirmed that one embodiment of the present invention had good characteristics. That is, one embodiment of the present invention achieves both an increase in the effective core area and a reduction in chromatic dispersion deviation in the operating wavelength range, and furthermore, in the operating wavelength range, bends the optical fiber by 20 ⁇ . The loss due to bending when given is less than 20 dBZm, and good characteristics can be obtained when a cable is used.
  • the low-dispersion optical fiber according to one embodiment of the present invention has a refractive index profile shown in (a) of FIG.
  • the low-dispersion optical fiber according to one embodiment of the present invention is such that the refractive index local maximum where the refractive index of the second side core 3 is the maximum value is larger than the radial center of the second side core 3 by the first side core. It is formed on the two sides.
  • the refractive index aperture file shown in (a) of FIG. 2 is formed in substantially the same manner as the refractive index profile shown in FIG. 1 except for the form of formation of the refractive index maximum. Note that the refractive index maximum portion is preferably located on the first side core 2 side as much as possible.
  • Refractive index profiles shown in of FIG. 2 (a) is, G e O 2 of the optical fiber of the additive that increases the refractive index of the S i O 2 of the second cyclic-core 3 is de-loop This is achieved by setting the position of the local maximum in the radial concentration distribution to be closer to the first side core 2 than the radial center of the second side core 3.
  • One embodiment of the present invention having the above-mentioned refractive index profile has the above-mentioned refractive index profile, so that the effect of shortening the effective cutoff wavelength can be achieved, and the single mode can be surely achieved over the entire use wavelength range.
  • An optical fiber that can be operated in an optical fiber can be used.
  • Table 3 shows the configuration and characteristics of Example 10 as a specific example of one embodiment having the above refractive index profile.
  • Table 3 shows a configuration almost similar to that of Example 10 and is shown in (b) of FIG.
  • the configuration and characteristics of Prototype Example 1 in which the concentration distribution of GeO 2 doped into the second side core 3 is almost uniform in the radial direction of the optical fiber are shown.
  • the present inventors have, for the fiber-I bus having a different parameter Example 1 0, the position of the maximum portion of the fiber-I bus radial concentration distribution of G e 0 2 doped in the second rhino-core 3 Examples 11 and 12 were configured as examples in which the first side core 2 was used. Table 4 shows the configurations and characteristics of these Examples 11 and 12. In Table 4, the position of the local maximum in the concentration distribution of GeO 2 in the optical fiber radial direction is indicated by 0 on the first side core 2 side and 1 on the clad 5 side.
  • Table 4 has substantially the same parameters one motor as in Example 1 1 and Example 1 2, G e 0 2 maxima of the optical fiber radial direction concentration distribution is doped to a second site-core 3
  • the configuration and characteristics of Prototype Examples 2 and 3, which are prototypes with the part position on the side of the clad 5, are shown.
  • the position of the refractive index maximum of the second side core 3 is closer to the first side core than the width 13 of the second side core, there is an effect of adjusting the dispersion value and the dispersion gradient.
  • this method was favorable from the viewpoints of manufacturability and manufacturing variations.
  • the inventor has determined that the relative refractive index differences ⁇ 1, ⁇ 2, ⁇ 3, the ratio (ala 2) of the diameter a 1 of the center core 1 to the diameter a 2 of the first side core 2, and the ratio of the second side core 3
  • the ratio (a 3 / a 2) of the diameter a 3 to the diameter a 2 of the first side core 2 is further increased.
  • the effective cutoff wavelength may be shifted to the longer wavelength side depending on the set value (for example, as in prototype 1). I learned.
  • the optical fiber may not operate in single mode in the operating wavelength range of up to 1650 nm.
  • the present inventor has set the effective cutoff wavelength to the short wavelength side and changed the single mode Various studies were conducted to make it operable.
  • the refractive index distribution of the second side core 3 is set to, for example, the distribution shown in (a) of FIG. 2, the effective cutoff is obtained as in Examples 10, 11, and 12.
  • Example 10, Example 11, and Example 12 have the maximum refractive index portion of the second side core 3 as shown in FIG.
  • the first side core 2 is closer to the first side core 2 than the radial center of the second side core 3. This makes it possible to shift the cut-off wavelength to the shorter wavelength side and achieve an optical fiber that operates in single mode in the operating wavelength range of wavelengths from 450 nm to 165 O nm. Become.
  • the present inventor considers the reason as follows.
  • LP among the propagation modes of the optical fiber.
  • the above LP while minimizing the effect on the mode.
  • m mode ⁇ Single mode operation can be performed by preventing light from propagating to the LP mode.
  • the configuration is specified as described above based on this study. As shown in Tables 3 and 4, the above-described excellent effects can be obtained.
  • the low dispersion optical fiber according to one embodiment of the present invention has a refractive index profile shown in FIG.
  • the low dispersion optical fiber according to one embodiment of the present invention has a refractive index profile shown in FIG. It is formed almost similarly to the aisle, except that a low-refractive-index cladding portion 4 having a smaller refractive index than the cladding 5 is provided between the cladding 5 and the second side core 3.
  • One embodiment of the present invention is configured as described above, and the present inventor has performed the same study as that for specifying the configuration shown in FIG. 2 (a).
  • the configuration shown in Fig. 3 is specified based on this study.By providing the low refractive index cladding part 4, the maximum refractive index part where the refractive index of the second side core 3 becomes the maximum value is obtained. The same effect as in the case where the second side core 3 is formed closer to the first side core 2 than the radial center portion can be obtained.
  • Table 5 includes a low refractive index cladding portion 4.
  • Example 13 The configuration and characteristics of Example 13 as a specific example of the embodiment, and a low refractive index with a configuration substantially similar to that of Example 13
  • the configuration and characteristics of a prototype example 4 formed by omitting the rate cladding section 4 are shown.
  • the provision of the low refractive index cladding portion 4 between the cladding 5 and the second side core 3 allows the effective cutoff wavelength to be on the short wavelength side.
  • An optical transmission system includes an optical transmission path including the low dispersion optical fiber according to at least one embodiment described above, and a wavelength 1450 ⁇ ⁇ ! Chromatic dispersion slope in the wavelength range of ⁇ 1650 nm
  • the arrangement has a negative dispersion compensating device.
  • the optical transmission system according to one embodiment of the present invention is configured such that the positive chromatic dispersion gradient of the optical transmission line including the low dispersion optical fiber is reduced by the dispersion compensation device. It is characterized by.
  • an optical transmission system was constructed by connecting the low dispersion optical fiber of Example 7 having the configuration and characteristics shown in Table 1 and a dispersion compensating device having negative dispersion and a negative chromatic dispersion gradient. .
  • the application example of the dispersion compensating device is formed, for example, by using a dispersion compensating optical fiber having a refractive index profile as shown in FIG. That is, in the application example of the dispersion compensating device, the outer peripheral side of the center core 1 is covered with the first side core 2, the outer peripheral side of the first side core 2 is covered with the second side core 3, and the center core 1 is covered with the second side core 3. It is formed to have a dispersion compensating optical fiber whose outer peripheral side is covered by a cladding 5.
  • a maximum refractive index of the center core 1 is n 1
  • a minimum refractive index of the first side core 2 is ⁇ 2
  • a maximum refractive index of the second side core 3 is ⁇ 3
  • the refractive index of 5 is nc
  • the relative refractive index differences ⁇ 1, ⁇ 2, and ⁇ 3 are different from those of the low dispersion optical fiber.
  • ⁇ 1 is about 2.85%
  • mm2 is about 11%.
  • the ratio of room 3 is about 1.28%.
  • the core diameter ratio (al / a2 / a3) force is about S1 / 3Z3.7.
  • the dispersion characteristic in the wavelength region of 1450 nm to l650 nm is negative dispersion (for example, about 1 lSOps / nm / km or less at the wavelength of 150 nm) and the negative chromatic dispersion gradient (about _ 2. has 1 8 ps / nm 2 / km ), and are both large these absolute values. Therefore, the above optical transmission system In the system, the ratio of the length of the low dispersion optical fiber 7 of Example 7 to the length of the dispersion compensation device was set to 98: 2.
  • the optical transmission system has a dispersion characteristic indicated by a characteristic line a in FIG. 4 in a wavelength range of 1503 nm to 160 nm.
  • the characteristic line b in the figure shows the wavelength of the low-dispersion optical fiber of Example 7 above. The dispersion characteristics in the wavelength range of ⁇ 160 nm are shown.
  • an optical transmission system is constructed by connecting a dispersion compensating device having a negative chromatic dispersion gradient as shown in FIG. 5 (b) to the low dispersion optical fiber 7, for example. It is possible to further reduce the dispersion deviation of the used wavelength range (in this case, the wavelength range of 1450 nm to l650 nm) in the entire optical transmission system. Further, as an example of the dispersion compensating device applied to the optical transmission system according to one embodiment of the present invention, a device having a large absolute value of the negative chromatic dispersion gradient as described above.
  • the optical transmission system of the present invention is a combination of an optical transmission line configured including the low dispersion optical fiber of each of the above embodiments and a dispersion compensation device having a negative chromatic dispersion gradient in the operating wavelength range. This is to reduce the dispersion deviation in the region.
  • the optical transmission system according to the present invention is, as one embodiment thereof, a low dispersion type of each of the above embodiments.
  • An optical transmission line in which another optical fiber, for example, an optical fiber operable in a single mode in a used wavelength range is connected to the optical fiber may be configured.
  • the configuration of the dispersion compensation device applied to one embodiment of the optical transmission line of the present invention is not particularly limited, and is appropriately set.
  • the dispersion compensating device is formed by the dispersion compensating optical fiber as described above, it is easy to form the device and to connect to the optical transmission line including the low dispersion optical fiber.
  • one embodiment of the low dispersion optical fiber of the present invention is that the first side core 2 is doped with GeO 2 and F, and by adjusting the doping amounts thereof, FIG. A refractive index profile as shown in FIGS. 2 and 3 may be used.
  • the composition of one embodiment of the low dispersion optical fiber of the present invention is variously set.
  • the low dispersion optical fiber 150 3 0 ⁇ ⁇ !
  • the wavelength 1450 ⁇ ! A configuration having no zero dispersion in the working wavelength range included in the wavelength range of 1650 nm may be employed. If one embodiment of the low dispersion optical fiber is configured in this manner, the occurrence of four-wave mixing when wavelength division multiplexing transmission is performed in the used wavelength band can be suppressed, so that a wider band wavelength division multiplexing transmission is realized. A suitable low dispersion optical fiber can be obtained.
  • the low-dispersion optical fiber according to the present invention and the optical transmission system using the low-dispersion optical fiber have an increased effective core area and a reduced chromatic dispersion deviation in the used wavelength range.
  • Wavelength multiplexing Suitable for transmission are described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

明 細 書 低分散光ファイバおよびその低分散光ファイバを用いた光伝送システム 技術分野
本発明は、 例えば波長 1 . 5 μ m帯において波長分割多重光伝送を行 なう ときに用いる低分散光ファィバおよびその低分散光ファィバを用い た光伝送システムに関するものである。 背景技術
情報化社会の発展によ り、 通信情報量が飛躍的に増大する傾向にあり 、 光ファイバ通信における高速大容量化は、 必要かつ、 不可欠の課題と なっている。 この高速大容量化へのアプローチと して、 E r 3 +を添加 したエルビウム添加光ファイバ (E D F ) などの希土類添加光ファイバ を用いることによ り、 光信号を光のまま増幅できる光ファイバアンプタ ィプの光増幅器が開発された。 この光ファイバアンプタイプの光増幅器 の開発によつて信号光の大電力化が急速に発展しつつある。
また、 その一方で、 光通信における通信容量の拡大のために、 異なる 波長を持つ光信号を 1本の光ファイバで伝送する波長分割多重光伝送方 式による通信の開発が行われている。 この波長分割多重光伝送方式を用 いた光通信システム (波長分割多重光伝送システム) に前記光ファイバ アンプタイプの光増幅器を適用することによ り、 さらなる通信容量の拡 大および長距離伝送の実現化が期待される。
前記光ファイバアンプタイプの光増幅器の代表例と して、 上記 E D F を有する E D F A (エルビウム添加光ファイバ型アンプ) がある。 この E D F Aを用い、 例えば E D F Αの利得帯域である波長 1 . 5 m帯 ( 波長 1 5 2 0 n n!〜 1 6 2 0 n m) の波長を伝送帯域と して上記波長分 割多重光伝送を行なう こ とが検討されている。
第 6図の ( a )、 ( b ) は、 上記波長 1. 5 μ πι帯のう ち、 特に波長 1 5 5 0 n m近傍の波長帯 (波長 1. 5 5 111帯) を伝送帯域 (使用波長 域) と した波長分割多重光伝送用の光ファイバと して従来提案されてい る光ファイバの屈折率プロファイルの例を示す。 第 6図の ( a ) は階段 型の屈折率プロファイルを示し、 同図の ( b ) は W型の屈折率プロファ ィノレを示す。
階段型屈折率プロファイルの光ファイバは、 クラッ ド 5 よ り屈折率が 大きいセンタコア 1の外周側に、 センタコア 1 よ り も屈折率が小さく 、 かつ、 クラッ ド 5 よりは屈折率が大きい第 1サイ ドコア 2を設けて形成 されている。 一方、 W型屈折率プロファイルの光ファイバは、 クラッ ド 5 より も屈折率が大きいセンタコア 1の外周側に、 クラッ ド 5 より も屈 折率が小さい第 1サイ ドコア 2を設けて形成されている。
上記階段型屈折率プロファイルの光ファイバのうち、 波長 1 . 5 5 μ m近傍に零分散波長を有する光ファイバは分散シフ ト光ファイバと呼ば れている。 この分散シフ ト光ファイバは、 波長 1 . 5 5 μ πι帯の中心波 長である波長 1. 5 5 m近傍に零分散波長を有していることから、 波 長 1. 5 5 μ m近傍における分散による信号光波形の歪みを抑制できる 反面、 非線形現象の一つである 4光波混合の発生が顕著となる。 したが つて、 この分散シフ ト光ファイバは、 発生した 4光波混合光によって信 号光の波形に歪みが生じてしまい、 高品質の波長分割多重光伝送を実現 することができない。 - そこで、 上記階段型屈折率プロファイルの光ファイバのう ち、 零分散 波長を波長 1 . 5 5 μ πι帯からずら した光ファイバも開発されているが 、 この種の光ファイバは波長 1. 5 5 m帯の分散勾配が大きいことが 知られている。 それゆえ、 この種の光ファイバは、 波長分割多重光伝送 での使用波長域内での波長分散偏差 (使用波長域における波長分散の最 大値と最小値との差) を小さくすることが困難である。 したがって、 こ の種の光ファイバを用いた場合、 波長分割多重光伝送用と して用いる使 用波長域を広くすることができない。
一方、 前記 W型屈折率プロファイルの光ファイバは、 上記波長分散偏 差が小さいため分散フラッ ト光ファイバとして機能する。 しかしながら 、 上記階段型屈折率プロファイルの光ファイバの実効コア断面積 (実効 的に光が伝搬する領域 : A e f f ) が約 4 5 m 2であるのに対し、 W型 屈折率プロフアイルの光フ了ィパの実効コア断面積が例えば約 3 0 μ m 2であり、 実効コア断面積が 2ノ 3程度と小さい。 このよ うに、 実効コ ァ段面積が小さいと、 波長分割多重光伝送において、 光ファイバ内で生 じる非線形現象により伝送信号が劣化してしまう といった問題があった そこで、 第 6図の ( c ) に示すようなセグメントコア型の屈折率プロ ファイルを有する光ファイバにより実効コア断面積を拡大する提案され ている。 なお、 第 6図の ( c ) において、 1はセンタコア、 2は第 1サ イ ドコア、 3は第 2サイ ドコア、 5はクラッ ドである。 しかしながら、 この種の光ファイバは、 波長 1 . 5 μ m帯の波長分散勾配が大きく、 同 波長域での波長分散偏差が大きいため、 この提案の光ファイバを波長分 割多重伝送に適用した場合、 波長分散による信号光波形劣化が顕著にな つてしまう といった問題が生じる。
また、 光ファイバを波長分割多重伝送システムに適用するためには、 光ファイバをケーブル化しなければならない。 そのためには、 光フアイ バの曲げや側圧による損失増加を低減できる特性を有するものが求めら れるので、 これらの曲げ特性が良好であることも波長分割多重伝送用の 光ファイバには求められる。
しかしながら、 上記の如く、 高品質な波長分割多重伝送システムを実 現するために必要な実効コア断面積の拡大と波長分散偏差の低減を両立 できる光ファイバは未だ実現されておらず、 加えて、 上記曲げ損失特性 も良好な光ファイバを実現することは困難であった。
さらに、 近年、 光増幅器と して、 ラマン増幅器が実用化されよう とし ている。 ラマン増幅器は従来の E D F Aと比較して増幅可能な波長帯域 が拡大し、 例えば波長 1 4 5 0 η π!〜 1 6 5 0 n mの範囲内の特定の波 長帯の光信号を増幅することが可能となるが、 この波長範囲における光 フアイバの検討はまだ進んでいない。
本発明は、 上記課題を解決するためになされたものである。 本発明の の目的は、 例えば使用波長域において、 実効コア断面積の拡大と使用波 長域における波長分散偏差の低減とを両立することができ、 しかも、 ケ 一ブル化したときの曲げや側圧による損失増加を低減できる低分散光フ ァィバおよびその低分散光ファィバを用いた光伝送システムを提供する ことにある。 発明の開示
本発明の第 1構成の低分散光ファイバは、 センタコアの外周側を第 1 サイ ドコアで覆い、 該第 1サイ ドコアの外周側を第 2サイ ドコアで覆い 、 該第 2サイ ドコアの外周側をクラッ ドで覆って形成される分散シフ ト 光ファイバであって、 前記センタコアの最大屈折率を n 1、 前記第 1サ ィ ドコアの最小屈折率を n 2、 前記第 2-サイ ドコアの最大屈折率を n 3 、 前記クラ ッ ドの屈折率を n c と したとき、 p l >n 3 >n c >n 2 と成 し、 前記センタコアの最大屈折率の前記クラッ ドに対する比屈折率差 Δ 1が 0. 4 %≤ Δ 1 ≤ 0. 7 %であり、 前記第 1サイ ドコアの最小屈折 率の前記クラッ ドに対する比屈折率差 Δ 2が一 0. 3 0 %^ Δ 2 ^— 0 . 0 5 %であり、 前記第 2サイ ドコアの最大屈折率の前記クラ ッ ドに对 する比屈折率差 Δ 3が 0. 2 % 厶 3 と成し、 前記センタコアの直径 a 1 と前記第 1サイ ドコアの直径 a 2 との比 ( 1 & 2 ) が 0. 4以上 0. 7以下と成し、 前記第 2サイ ドコアの直径 a 3 と前記第 1サイ ドコ ァの直径 a 2 との比 ( a 3 a 2 ) が 1. 6以下と成していることを特 徴とする。
また、 本発明の第 2構成の低分散光ファイバは、 上記第 1構成に加え 、 前記第 2サイ ドコアには S i O 2の屈折率を上昇させる添加物が ドー プされており、 該第 2サイ ドコアに ドープされている前記添加物の光フ アイバ径方向の濃度分布は極大部を有して該極大部の位置が前記第 2サ ィ ドコアの径方向中心部よ り も第 1サイ ドコア側と成していることを特 徴とする。
さらに、 本発明の第 3構成の低分散光ファイバは、 上記第 2構成に加 え、 前記添加物は G e 02であることを特徴とする。
さらに、 本発明の第 4構成の低分散光ファイバは、 上記第 1又は第 2 又は第 3構成に加え、 前記クラッ ドと第 2サイ ドコアとの間に前記クラ ッ ドより も屈折率が小さい低屈折率クラッ ド部が設けられていることを 特徴とする。
さらに、 本発明の第 5構成の低分散光ファイバは、 上記第 1又は第 2 又は第 3構成に加え、 波長 1 4 5 0 n n!〜 1 6 5 0 n mの波長域に含ま れる使用波長域に零分散を有していないことを特徴とする。
さらに、 本発明の第 6構成の低分散光ファイバは、 上記第 4構成に加 え、 波長 1 4 5 0 n m〜 l 6 5 0 n mの波長域に含まれる使用波長域に 零分散を有していないことを特徴とする。
さらに、 本発明の第 7構成の低分散光ファイバは、 上記第 1 または第 2または第 3または第 6構成に加え、 波長 1 4 5 0 n m〜 l 6 5 0 n m の波長域に含まれる任意の 3 0 n mの帯域を有する波長域における分散 値の最大値と最小値との偏差が 2 p s /n rnZ k m以下であることを特 徴とする。
さらに、 本発明の第 8構成の低分散光ファイバは、 上記第 4構成に加 え、 波長 1 4 5 0 n m〜 l 6 5 0 n mの波長域に含まれる任意の 3 0 n mの帯域を有する波長域における分散値の最大値と最小値との偏差が 2 p s /n m k m以下であることを特徴とする。
さらに、 本発明の第 9構成の低分散光ファイバは、 上記第 5構成に加 え、 波長 1 4 5 Ο η π!〜 1 6 5 O n mの波長域に含まれる任意の 3 O n mの帯域を有する波長域における分散値の最大値と最小値との偏差が 2 p s Zn mZk m以下であることを特徴とする。
さらに、 本発明の第 1 0構成の光伝送システムは、 上記第 1構成乃至 第 9構成のいずれか一つの低分散光ファィバを含んで構成された光伝送 路と、 波長 1 4 5 0 η π!〜 1 6 5 0 n mの波長域における波長分散勾配 が負の分散補償デバィスとを設け、 前記波長域における前記光伝送路の 正の波長分散勾配を前記分散補償デバィスによつて低減する構成と した ことを特徴とする。
なお、 本明細書において、 上記各比屈折率差 Δ 1、 Δ 2、 Δ 3は、 以 下の式 ( 1 ) 〜 ( 3 ) により定義している。 厶 1 = {(η 1 2- n c 2) / 2 n c X 0 0 ( 1 ) 厶 2 = { ( η 2 n c 2 n c X 0 0 ( 2 ) 厶 3 = { ( n 32 - n c 2) / 2 n c 2} X l O O ( 3 ) 上記構成の本発明の低分散光フアイバは、 例えば波長 1 4 5 0 η π!〜 1 6 5 0 n mの範囲内の設定波長域において、 実効コア断面積の拡大と 使用波長域における波長分散偏差の低減とを両立することを第 1の目的 と している。 本発明の低分散光ファイバは、 この第 1の目的を達成し、 かつ、 ケーブル化したときの曲げや側圧による損失増加を低減すること ができるように、 屈折率分布および各コア径の比を最適化したものであ る。 したがって、 本発明の低分散光ファイバは、 実効コア断面積の拡大 と使用波長域における波長分散偏差の低減とを両立し、 しかも、 ケープ ル化したときの曲げや側圧による損失増加を低減することが可能と.なる 。 なお、 本発明の低分散光ファイバについての具体的な例については実 施形態例において後述する。
また、 本発明の低分散光ファイバにおいて、 第 2サイ ドコアには S i O 2の屈折率を上昇させる添加物が ドープされており、 該第 2サイ ドコ ァに ドープされている前記添加物の光ファィバ径方向の濃度分布は極大 部を有して該極大部の位置が前記第 2サイ ドコアの径方向中心部より も 第 1サイ ドコア側と成している構成のものがある。 また、 クラッ ドと第
2サイ ドコアとの間に前記クラッ ドより も屈折率が小さい低屈折率クラ ッ ド部が設けられている構成のものがある。
これらの構成においては、 実効遮断波長を短波長化することが可能で ある。 そのため、 これらの構成によれば、 実効コア断面積のより一層の 拡大と使用波長域における波長分散偏差のより一層の低減を図り、 かつ 、 シングルモード動作可能な優れた低分散光ファイバとすることができ る。
さらに、 上記の如く、 第 2サイ ドコアに ドープした S i 0 2の屈折率 を.上昇させる添加物の光ファイバ径方向濃度分布の極大部を第 2サイ ド コアの径方向中心部より も第 1サイ ドコア側とした構成において、 前記 添加物を G e O 2とすると、 従来の光フアイパ製造技術を生かして上記 光ファイバを容易に形成することができる。
さらに、 本発明の低分散光ファイバにおいて、 波長 1 4 5 0 η π!〜 1 6 5 0 n mの範囲内の使用波長域、 例えば波長 1 5 3 0 η π!〜 1 5 6 0 n mの波長域に零分散を有していない構成とすると、 この波長域におい て例えば波長分割多重光伝送を行なったときに、 4光波混合の発生を抑 制できるので非線形現象による波形の歪みが抑制可能となる。 なお、 上 記使用波長域は、 波長 1 4 5 0 η π!〜 1 6 5 0 n mの範囲内で任意に設 定することが可能である。
さらに、 本発明の低分散光ファイバにおいて、 上記波長域における分 散値の最大値と最小値との偏差を 2 p s / n m k m以下とすると、 こ の波長域において例えば波長分割多重光伝送を行なったときに、 波長分 散による波形の歪みがより確実に抑制できる。
さらに、 本発明の光伝送システムは、 上記低分散光ファイバを含む光 伝送路を用い、 しかも、 この低分散光ファイバを含む光伝送路の波長 1 4 5 0 η π!〜 1 6 5 0 n mの波長域における正の波長分散勾配を分散補 償デバイスの負の波長分散勾配により低減するものである。 したがって 、 本発明の光伝送システムは、 上記波長帯における波長分散勾配を零に 近づけることができ、 波長分散の影響をより一層抑制できるために、 高 品質な波長分割多重伝送可能な光伝送システムを構築することができる
図面の簡単な説明
第 1図は、 本発明に係る低分散光ファィバの 1つの実施形態例の光フ アイバ径方向に対する屈折率分布 (横断面上の屈折率分布) を示す要部 構成図であり、 第 2図は、 ( a ) が本発明に係る低分散光ファイバの別 の 1つの実施形態例の光ファイバ径方向に対する屈折率分布を示す要部 構成図であり、 ( b ) が比較のために試作した光ファイバの光ファイバ 径方向に対する屈折率分布を示す説明図であり、 第 3図は、 本発明に係 る低分散光ファイバのさらに別の 1つの実施形態例の光ファイバ径方向 に対する屈折率分布を示す要部構成図である。
第 4図は、 本発明に係る低分散光ファイバを用いた光伝送システムの 1つの実施形態例の分散特性を、 この光伝送システムに適用した低分散 光ファイバの分散特性と共に示すグラフであり、 第 5図は、 ( a ) が上 記光伝送システムの 1つの実施形態例に適用した分散補償デバイスの屈 折率分布を示す説明図であり、 ( b ) が分散特性を示すグラフであり、 第 6図は、 従来波長分割多重光伝送用と して提案されている光ファイバ の光ファイバ径方向に対する屈折率分布 (横断面上の屈折率分布) を示 す説明図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従い各実施の形態 に基づきこれを説明する。 なお、 各実施形態例の説明において、 従来例 と同一名称部分には同一符号を付し、 その重複説明は省略する。 第 1図 は、 本発明に係る低分散光ファィバの 1つの実施形態例の屈折率プロフ アイル (屈折率分布構造) を示す。
同図に示すように、 本発明の 1つの実施形態例の低分散光ファイバは 、 センタコア 1の外周側を第 1サイ ドゴァ 2で覆い、 該第 1サイ ドコア 2の外周側を第 2サイ ドコア 3で覆い、 該第 2サイ ドコア 3の外周側を クラッ ド 5で覆って形成されている。 また、 この低分散光ファイバは、 前記センタコア 1の最大屈折率を n 1、 前記第 1サイ ドコア 2の最小屈 折率を n 2、 前記第 2サイ ドコア 3の最大屈折率を n 3、 前記クラッ ド 5の屈折率を n c と したとき、 n 1 >n 3 >n c >n 2 と成してレヽる。 本発明の 1つの実施形態例において最も特徴的なことは、 第 2サイ ド コア 3の最大屈折率のクラッ ド 5に対する比屈折率差 Δ 3を 0. 2 %以 上と して、 第 2サイ ドコア 3の屈折率の最大値 n 3をクラッ ド 5の屈折 率 n c よ り も遥かに大きく したことである。 また、 本発明の 1つの実施 形態例において、 前記センタコア 1の最大屈折率のクラ ッ ド 5に対する 比 S折率差 Δ 1は 0. 4 %以上0. 7 %以下 ( 0. 4 %≤ Δ 1 ≤ 0. 7 %) と し、 前記第 1サイ ドコア 2の最小屈折率のクラッ ド 5に対する比 屈折率差 Δ 2は一 0. 3 0 %以上一 0. 0 5 %以下 (ー 0. 3 0 %≤厶 2≤ - 0. 0 5 %) と している。
なお、 本発明の 1つの実施形態例において望ましい形態は、 前記セン タコア 1の最大屈折率のクラッ ド 5に対する比屈折率差 Δ 1 を 0. 4 2 %以上 0. 6 2 %以下 ( 0. 4 2 % Δ 1 ≤ 0. 6 2 %) と し、 前記第 1サイ ドコア 2の最小屈折率のクラッ ド 5に対する比屈折率差 Δ 2を一 0. 2 5 %以上一 0. 0 5 %以下 (一 0. 2 5 %≤ Δ 2≤ _ 0. 0 5 % ) とすることである。
また、 本発明の 1つの実施形態例において、 センタコア 1 の直径 a 1 と第 1サイ ドコア 2の直径 a 2 との比 ( a 1 ^ 2 ) は 0. 4以上 0. 7以下、 第 2サイ ドコア 3の直径 a 3 と第 1サイ ドコア 2の直径 a 2 と の比 ( a 3 / a 2 ) は 1. 6以下と している。 なお、 第 2サイ ドコア 3 の直径 a 3 と第 1サイ ドコア 2の直径 a 2 との比 ( a 3 / a 2 ) は 1. 5以下であることが望ましい。 ―
また、 本発明の 1つの実施形態例の低分散光ファイバにおいて、 光フ ァィバを形成する組成等は特に限定されるものではない。 上記屈折率プ 口ファイルを有する光ファイバは、 例えばセンタコア 1 と第 2サイ ドコ ァ 3に G e O 2を ドープし、 第 1サイ ドコア 2には Fをドープして形成 される。 なお、 第 2サイ ドコア 3にドープされる添加物は、 G e O 2に 限らず、 S i O 2の屈折率を上昇させる添加物、 例えば A 1 203などで あってもよレヽ。
第 1図に示す例においては、 前記センタコア 1にド一プされている G e O 2の光ファイバ径方向の濃度分布は、 センタコア 1の中心部に極大 部を有している。 第 2サイ ドコア 3に ドープされている G e 〇 2の光フ アイバ径方向の濃度分布も第 2サイ ドコア 3の径方向中心部に極大部を 有している。 なお、 センタコア 1の中心部以外に G e O 2の光ファイバ 径方向の濃度分布の極大部を有していてもよい。
本発明の 1つの実施形態例は、 屈折率プロファイルおよび、 センタコ ァ 1 と第 1サイ ドコア 2 と第 2サイ ドコア 3のコア径の比を上記のよう に特定することにより、 実効コア断面積の拡大と使用波長域における波 長分散偏差の低減とを両立できるようにした。 また、 本発明の 1つの実 施形態例の低分散光ファイバは、 使用波長域において、 曲げによる損失 が小さく、 ケーブル化した際に良好な特性を得ることができるものであ る。
本発明の 1つの実施形態例の低分散光ファイバは、 具体的には、 実効 コア断面積を 4 5 μ ηι2以上と し、 かつ、 波長 1 5 3 O n m〜波長 1 5 6 0 n mにおける分散の絶対値 (単位 p s Zn mZk m) を 2以上 1 2 以下と して使用波長帯に零分散波長を有しないようにしている。 さらに 、 本発明の 1つの実施形態例の低分散光ファイバは、 使用波長域におけ る分散勾配を 0. 0 5 p S n m2 / m以下と して、 使用波長域にお ける分散の最大値と最小値との差 (分散偏差) を S p s Zn mZ k m以 下と している。
なお、 本発明者は、 上記屈折率プロファイルおよびコア径比を特定す るにあたり、 様々な光ファイバを試作又はシミ ュ レーショ ンし、 その特 性を求めた。 その結果、 前記比屈折率差 Δ 1が 0. 4 %未満の場合、 実 効コア断面積の拡大および波長分散の低勾配化は実現できるものの、 光 ファイバの曲げ損失が大きく なる傾向にあり、 ケーブル化したときに良 好な特性を維持することが困難であることが分かった。
一方、 比屈折率差 Δ.1が 0. 7 %を越えると、 波長分散勾配が大き く なり、 波長分散偏差が前記階段型屈折率プロファイルの光ファイバよ り も大きく なつたり、 実効コア断面積が階段型屈折率プロフアイルの光フ アイパ程度になってしま う ことが分かった。 そこで、 前記の如く 、 本発 明の 1つの実施形態例は、 比屈折率差 Δ 1を 0. 4 %以上 0. 7 %以下 と した。
なお、 比屈折率差 Δ 1は、 上記範囲内で適宜設定されるものであるが 、 センタコア 1の屈折率プロファイルが α乗プロファイルの場合、 ひが 大きいときには比屈折率差 Δ 1 を小さめにし、 ひが小さいときには比屈 折率差 Δ 1を大きめにするとよい。 なお、 屈折率プロファイルが α乗プ 口ファイルの場合とは、 屈折率形状がコアの中心部を中心と した y =— X ttの曲線形状を呈していることを意味する。 代表的な例を挙げると、 αが 4〜 6の場合、 比屈折率差 Δ 1を 0. 5 3 %〜 0 · 6 0 %とするこ とが好ましい。
また、 比屈折率差 Δ 2を一 0. 3 0 %未満とすると、 波長分散勾配が 小さく なるものの、 実効コァ断面積も小さく なつてしま う。 また、 比屈 折率差 Δ 2を一 0. 0 5 %より大きくすると、 実効コア断面積が大きく なるものの、 波長分散勾配が従来の階段型屈折率プロファイル光フアイ バと同程度に大きく なつてしま う。 そこで、 本発明の 1つの実施形態例 は、 前記の如く、 比屈折率差 Δ 2を、 一 0. 3 0 %≤ Δ 2 ^_ 0. 0 5 %と した。 さらに、 上記屈折率プロファイルの光ファイバにおいて、 センタコア 1の直径 a 1 と第 1サイ ドコア 2の直径 a 2 との比 ( a 1 / a 2 ) が小 さく なるに従い、 波長 1 4 5 0 η π!〜 1 6 5 0 n mの波長域で低い曲げ 損失を得難く なる傾向がある。 また、 実効遮断波長が長波長化して光フ アイバをシングルモー ド動作させることが難しく なる傾向がある。 そし て、 前記比 ( a l Z a 2 ) が 0. 4未満のときには、 波長 1 4 5 0 n m 〜 1 6 5 0 n mの波長域における曲げ損失の増大が顕著になり、 ケープ ルに適さない。
—方、 前記比 ( a l / a 2 ) が 0. 7 よ り大きく なると、 波長分散を 低分散の値とすることが困難となり、 波長 1 4 5 0 η π!〜 1 6 5 0 n m の波長域における波長分割多重光伝送に適さなく なる。 そこで、 本発明 の 1つの実施形態例は、 前記の如く 、 前記比 ( a l , a 2 ) を 0. 4以 上 0. 7以下と した。
また、 第 2サイ ドコア 3の径が大きく なり、 第 2サイ ドコア 3の直径 a 3 と第 1サイ ドコア 2の直径 a 2 との比 ( a 3 / a 2 ) 力 1 . 6 を越 えると、 実効遮断波長が長波長化してしまいシングルモー ド動作しなく なってしま う。 そこで、 本発明の 1つの実施形態例は、 前記比 ( a 3 / a 2 ) を 1. 6以下と した。
本発明の 1つの実施形態例は、 上記検討に基づいて低分散光ファイバ の屈折率プロファイルおよびコア径の比を特定したものである。 したが つて、 本発明の 1つの実施形態例は、 実効コア断面積の拡大と使用波長 域における波長分散偏差の低減とを両立し、 かつ、 4光波混合の発生を 抑制し、 さらに、 使用波長帯において、 -曲げによる損失が小さく、 ケー ブル化した際に良好な特性を得ることができる。
例えば、 表 1 には、 本発明の 1つの実施形態例の具体例と して、 実施 例 1〜実施例 9における比屈折率差 Δ 1 、 Δ 2、 Δ 3および、 前記コア 径の比 ( a l Z a 2 )、 ( a 2 / a 3 )、 コア径 ( a 3 ) と、 各実施例 1 〜 9の特性が示されている。 なお、 表 2には、 比較例の特性が示されて いる。
(表 1 )
Δ1 Λ2 Δ3 a1/a2 膨散 分 i½s 案効 ァ 曲げ报失 直径 a 3 単位 % % % ps nm/km pS nm* Km dB/m μ m
0 ) 2 実謹 0.50 ■0.05 0.40 0.45 0.80 4.1 0.044 54 3.5 18.4
誦 2 0.$8 -0.15 0.35 0.42 0.75 -2.5 0.035 48 2.0 18.4 実議 0.47 •0.10 0.42 0.475 0.80 2.6 0.026 56 8.5 19.1 実膽 0.57 -0.15 0.45 0,454 0.78 2.2 0.045 61 9.9 19.2 実讓 5 0.55 -0.10 0.37 0.445 0.75 3.2 0.032 58 3.1 21.2 綱 6 0.54 ■0.12 0.41 0.457 0.81 5.8 0.054 69 2.5 19.4 実施例 7 053 •0.15 0.35 0,533 0.75 5.2 0.046 55 1.1 18.5 実讓 β 0.56 -0.20 0.27 0.67 0.68 5.2 0.048 53 0.5 17.4 実施例 9 0.58 -0.20 0.31 0.63 0.71 4.0 0.045 50 0.05 16.3
A1 A2 a1/a2 実効コア
波腿 分散勾配 断面積 曲げ損失 単位 % % ps nm/km ps nm^/km dB/m
顯 1 0.55 -0.45 0.55 -0.8 0.009 37 8.1
謂 2 0.8 02 0.36 0.5 0.0845 45 1.8 なお、 表 1、 表 2において、 波長分散と分散勾配と実効コア断面積 ( A e f f )、 曲げ損失の各値は、 いずれも波長 1 5 5 ◦ n mにおける値で ある。 また、 表 1には示していないが、 実施例 1〜 9のいずれの光ファ ィバも、 実効遮断波長が波長 1 4 5 0 n m〜 l 6 5 O n mの範囲内の使 用波長域より も短波長側となっており、 シングルモード動作可能と成し ている。
特に、 実施例 8、 9では、 曲げ損失が 1 d B Z m以下となり、 ケープ ル化したときの曲げや側圧による損失増加だけでなく、 微小な曲げによ る損失の増加を低減することができる。
また、 表 2において、 比較例 1は、 第 6図の ( b ) に示した W型屈折 率プロファイルの光ファイバ、 比較例 2は同図の ( a ) に示した階段型 屈折率プロフアイルの光フアイバをそれぞれ示している。 表 2において も、 比屈折率差 Δ 1は、 上記実施形態例と同様にして求めたものであり 、 比屈折率差 Δ 2は、 比較例 1については上記実施形態例と同様にして 求めた。 なお、 比較例 2について、 比屈折率差 Δ 2は第 1サイ ドコア 2 の最大屈折率のクラッ ド 5に対する比屈折率差を示すものと し、 第 1サ ィ ドコア 2の最大屈折率を n 2、 クラッ ド 5の屈折率を n c と して前記 式 ( 2 ) より求めた。 - 表 1 、 2に示す特性を比較すると明らかなよ うに、 実施例 1〜 9のい ずれにおいても、 実効コア断面積は比較例 1、 2より も大きく、 分散勾 配は比較例 1 、 2より も小さい。 このよ うに、 実施例 1〜 9 と比較例 1 、 2との比較によって、 本発明の 1つの実施形態例は良好な特性を有す ることを確認できた。 すなわち、 本発明の 1つの実施形態例は、 実効コ ァ断面積の拡大と使用波長域における波長分散偏差の低減とを両立し、 さらに、 使用波長域において、 光ファイバに 2 0 φの曲げを与えたとき の曲げによる損失が 2 0 d B Z m以下で小さく、 ケーブル化した際に良 好な特性を得られる。
次に、 本発明に係る低分散光ファィバの別の実施形態例について説明 する。 以下に説明する本発明に係る低分散光ファイバの 1つの実施形態 例は、 第 2図の ( a ) に示す屈折率プロファイルを有する。 本発明の 1 つの実施形態例の低分散光ファィバは、 第 2サイ ドコア 3の屈折率が最 大値となる屈折率極大部を第 2サイ ドコア 3の径方向中心部より も第 1 サイ ドコア 2側に形成したものである。 第 2図の ( a ) に示す屈折率プ 口ファイルは、 上記屈折率極大部の形成形態以外は第 1図に示した屈折 率プロファイルとほぼ同様に形成されている。 なお、 屈折率極大部は、 できる限り第 1サイ ドコア 2側にあることが好ましい。
第 2図の ( a ) に示す屈折率プロフアイルは、 第 2サイ ドコア 3に ド ープされている S i O 2の屈折率を上昇させる添加物と しての G e O 2 の光ファイバ径方向濃度分布の極大部の位置を前記第 2サイ ドコア 3の 径方向中心部より も第 1サイ ドコア 2側とすることによ り達成される。 上記屈折率プロファイルを有する本発明の 1つの実施形態例は、 上記 屈折率プロファイルを有することから、 実効遮断波長を短波長化する効 果を奏することができ、 確実に使用波長域全域でシングルモー ド動作で きる光ファイバとすることができる。 - 例えば、 表 3には、 上記屈折率プロファイルを有する 1つの実施形態 例の具体例と しての実施例 1 0の構成および特性が示されている。 なお 、 表 3には、 実施例 1 0とほぼ同様の構成で、 第 2図の ( b ) に示すよ うに、 第 2サイ ドコア 3に ドープする G e O 2の濃度分布を光フアイバ 径方向にほぼ均一と した試作例 1 の構成および特性が示されている。
(表 3 )
Figure imgf000020_0001
さらに、 本発明者は、 実施例 1 0 と異なるパラメータを有する光ファ ィバについて、 第 2サイ ドコア 3に ドープされている G e 0 2の光ファ ィバ径方向濃度分布の極大部の位置を第 1サイ ドコア 2側にした実施例 と して、 実施例 1 1および実施例 1 2を構成した。 表 4には、 これらの 実施例 1 1 と実施例 1 2の構成および特性が示されている。 なお、 表 4 においては、 G e O 2の光フアイバ径方向濃度分布の極大部の位置を、 第 1サイ ドコア 2側を 0、 クラッ ド 5側を 1 と して示している。
また、 表 4には、 実施例 1 1および実施例 1 2 とほぼ同様のパラメ一 タを有し、 第 2サイ ドコア 3に ドープされている G e 0 2の光ファイバ 径方向濃度分布の極大部の位置をクラッ ド 5側にして試作した試作例で ある試作例 2および試作例 3の構成および特性が示されている。
(表 4 )
Figure imgf000021_0001
これらの表から明らかなように、 第 2サイ ドコア 3に ドープする G e o 2の濃度分布の違いによって実効遮断波長が大きく異なっている。 ここで、 表 4の例では、 曲げ損失を約 1 d B / mと した場合の諸特性 の変化を示しており、 第 2サイ ドコア 3の屈折率極大部を第 2サイ ドコ ァ 3の径方向中心部より も第 1サイ ドコア 2側とすることにより、 例え ば分散値および分散勾配がわずかに増大する傾向がある。 しかし、 分散 値および分散勾配の値は第 2サイ ドコア 3の屈折率極大部を移動させる 以外の手法で調整が可能である。 例えば、 センタコア 1または第 1サイ ドコア 2の屈折率などを変化させればよい。
好ましくは、 第 2サイ ドコア 3の屈折率極大部の位置を第 2サイ ドコ ァの幅の 1 3より も第 1サイ ドコア側になるようにすると、 分散値や 分散勾配の調整効果がある。 また、 このよ うにすると、 製造性や製造時 のばらつきの観点からも良好であった。
本発明者は、 上記比屈折率差 Δ 1 、 Δ 2、 Δ 3および、 センタコア 1 の直径 a 1 と第 1サイ ドコア 2の直径 a 2 との比 ( a l a 2 )、 第 2 サイ ドコア 3の直径 a 3 と第 1サイ ドコア 2の直径 a 2 との比 ( a 3 / a 2 ) を、 第 1図の説明で示した特定した範囲内で設定することにより 、 実効コア断面積をより一層拡大し、 かつ、 使用波長域における波長分 散偏差を低減しょう と したときに、 設定値によっては (例えば試作例 1 のように) 実効遮断波長が長波長側になってしまう場合もあることを知 つた。
すなわち、 一般に、 光ファイバに第 2サイ ドコア 3を設けることによ り実効コア断面積 A e f f を大きく しょう とすると、 カッ トオフ波長が長 波長側に移動する。 そして、 例えば表 3-の試作例 1のように波長 1 4 5 0 η π!〜 1 6 5 0 n mの範囲内の使用波長域でシングノレモー ド動作しな いような光ファイバとなってしま う場合がある。
そこで、 本発明者は、 実効遮断波長を短波長側にしてシングルモード 動作可能とするために、 様々な検討を行なった。 その結果、 第 2サイ ド コア 3の屈折率分布を例えば第 2図の ( a ) に示すような分布にすると 、 実施例 1 0、 実施例 1 1、 実施例 1 2のよ うに、 実効遮断波長を短波 長側にして、 実効コア断面積の拡大と使用波長谁における波長分散偏差 の低減をより一層高レベルに実現することができることを見出した。 すなわち、 第 2図の ( a ) およぴ表 3、 表 4に示した実施例 1 0、 実 施例 1 1、 実施例 1 2のよ うに、 第 2サイ ドコア 3の屈折率極大部を第 2サイ ドコア 3の径方向中心部より も第 1サイ ドコア 2側とする。 この ことにより、 カツ トオフ波長を短波長側に移動させ、 波長 1 4 5 0 n m 〜 1 6 5 O n mの範囲内の使用波長域でシングルモー ド動作する光ファ ィバとすることが可能となる。
この理由を、 本発明者は以下のように考察している。 すなわち、 光フ アイバの伝搬モー ドのうち、 L P。m ( m = 2、 3 · · · ) あるいは L モー ドは光ファイバ径方向の広い範囲に電界分布を有するもので ある。 そのため、 第 2サイ ドコア 3の屈折率極大部を第 2サイ ドコア 3 の径方向中心部より も第 1サイ ドコア 2側とすることにより、 光フアイ バを伝搬する光の L P。ェモードへの影響を小さく と どめながら、 上記 L P。mモードゃ L P モードへの光が伝搬しないようにして、 シング ルモー ド動作できるよ うになる。
本発明の 1つの実施形態例は、 この検討に基づいて上記の如く構成を 特定したものであるから、 表 3、 表 4に示したように、 上記優れた効果 を奏することができる。
次に、 本発明に係る低分散光ファイバのまた別の 1つの実施形態例に ついて説明する。 以下に説明する本発明に係る低分散光ファイバの 1つ の実施形態例は、 第 3図に示す屈折率プロファイルを有する。 本発明の 1つの実施形態例の低分散光ファイバは、 第 1図に示した屈折率プロフ アイルとほぼ同様に形成されているが、 クラッ ド 5 と第 2サイ ドコア 3 との間にクラッ ド 5 よ り も屈折率が小さい低屈折率クラッ ド部 4が設け られている。
本発明の 1つの実施形態例は以上のよ うに構成されており、 本発明者 は第 2図の ( a ) に示した構成を特定する際の検討と同様の検討を行な つた。 第 3図に示す構成はこの検討に基づいて特定したものであり、 低 屈折率クラッ ド部 4を設けることによ り、 第 2サイ ドコア 3の屈折率が 最大値となる屈折率極大部を第 2サイ ドコア 3の径方向中心部より も第 1サイ ドコア 2側に形成する場合と同様の効果を奏することができる。 例えば、 表 5には、 低屈折率クラッ ド部 4を有する.実施形態例の具体 例と しての実施例 1 3の構成および特性と、 実施例 1 3 とほぼ同様の構 成で低屈折率クラッ ド部 4を省略して形成した試作例 4の構成および特 性が示されている。 この表から明らかなよ うに、 クラッ ド 5 と第 2サイ ドコア 3 との間に低屈折率クラッ ド部 4を設けることによ り、 実効遮断 波長を短波長側にすることができる。
(表 5 )
Figure imgf000025_0001
次に、 本発明に係る光伝送システムの 1 つの実施形態例について説明 する。 本発明の 1つの実施形態例の光伝送システムは、 上記説明した少 なく と も 1つの実施形態例の低分散光フアイバを含んで構成された光伝 送路と、 波長 1 4 5 0 η π!〜 1 6 5 0 n mの波長域における波長分散勾 配が負の分散補償デバイスとを有している。 また、 本発明の 1つの実施 形態例の光伝送システムは、 上記低分散光フアイバを含んで構成された 光伝送路の正の波長分散勾配を前記分散補償デバイスによつて低減する 構成と したことを特徴としている。
一例と して、 表 1に示した構成および特性を有する実施例 7の低分散 光ファイバと、 負の分散と負の波長分散勾配を有する分散補償デバィス とを接続して光伝送システムを構築した。
なお、 上記分散補償デバイスの適用例は、 例えば第 5図の ( a ) に示 すような屈折率プロファイルを有する分散補償光ファイバを有して形成 される。 すなわち、 上記分散補償デバイスの適用例は、 センタコア 1 の 外周側を第 1サイ ドコア 2で覆い、 該第 1サイ ドコア 2の外周側を第 2 サイ ドコア 3で覆い、 該第 2サイ ドコア 3の外周側をクラッ ド 5で覆つ た分散補償光ファィバを有して形成されている。
上記分散補償光ファイバは、 前記センタコア 1の最大屈折率を n 1 、 前記第 1サイ ドコア 2の最小屈折率を η 2、 前記第 2サイ ドコア 3の最 大屈折率を η 3、 前記クラッ ド 5の屈折率を n c と したとき、 n 1 >n 3 >n c >n 2 と成している。 この分散補償光ファイバは、 前記比屈折 率差 Δ 1、 Δ 2、 Δ 3の各値が上記低分散光ファイバと異なり、 例えば Δ 1が約 2. 8 5 %、 厶 2が約一 1 %、 厶 3が約 1. 2 8 %と成してい る。 また、 コァ径比 ( a l / a 2 / a 3 ) 力 S 1 / 3 Z 3. 7程度である また、 上記分散補償デバイスの適用例は、 第 5図の ( b ) に示すよう に、 波長 1 4 5 O n m〜 l 6 5 0 n mの波長域における分散特性が負の 分散 (例えば波長 1 5 5 0 n mにおいて、 約一 l S O p s /n m/ k m 以下) と負の波長分散勾配 (約 _ 2. 1 8 p s / n m2/ k m) を有し ており、 かつ、 これらの絶対値が共に大きい。 そこで、 上記光伝送シス テムにおいて、 実施例 7の低分散光ファイバ 7の長さ と分散補償デバィ スの長さの比を 9 8対 2 と した。
本発明の 1つの実施形態例の光伝送システムは、 波長 1 5 3 0 n m〜 1 6 0 O n mの波長域において、 第 4図の特性線 a に示す分散特性を有 している。 また、 同図の特性線 bには、 上記実施例 7の低分散光フアイ ノく 7の波長 1 5 3 0 η π!〜 1 6 0 0 n mの波長域における分散特性が示 されている。
第 4図から明らかなよ うに、 低分散光ファイバ 7に、 例えば第 5図の ( b ) に示したよ うな、 負の波長分散勾配を有する分散補償デバイスを 接続して光伝送システムを構築すると、 光伝送システム全体における使 用波長域 (この場合波長 1 4 5 0 n m〜 l 6 5 0 n mの範囲内の波長域 ) の分散偏差をより一層低減できる。 また、 本発明の 1つの実施形態例 の光伝送システムに適用する分散補償デバイスは、 その一例と して、 上 記のよ うに負の波長分散勾配の絶対値が大きいデバイスが挙げられる。
このよ うな分散補償デバイスを適用すると、 上記のよ うに、 デバイス の長さを短くすることができる。 したがって、 上記のよ うな分散補償デ バイスの適用は、 分散特性以外の、 非線形特性等に影響を及ぼす割合を 小さく し、 上記各実施形態例の低分散光ファイバの良好な特性を持つ、 高品質の波長分割多重光伝送可能な光伝送システムの形成を可能とする なお、 本発明は上記各実施形態例に限定されることはなく 、 様々な実 施の態様を採り得る。 例えば、 本発明の光伝送システムは、 上記各実施 形態例の低分散光ファィバを含んで構成された光伝送路と、 使用波長域 の波長分散勾配が負の分散補償デバィスとを組み合わせて使用波長域に おける分散偏差を小さ くするものである。 しがたつて、 本発明の光伝送 システムは、 その 1つの実施形態例と して、 上記各実施形態例の低分散 光ファイバに他の光ファイバ、 例えば使用波長域においてシングルモー ド動作可能な光ファイバを接続した光伝送路を構成してもよい。
また、 本発明の光伝送路の 1つの実施形態例に適用する分散補償デバ イスの構成は特に限定されるものではなく、 適宜設定されるものである 。 ただし、 分散補償デバイスを上記のように分散補償光ファイバによ り 形成すると、 デバイスの形成および低分散光ファィバを含んで構成され た光伝送路との接続等を行ないやすい。
また、 低分散光ファィバの上記各実施形態例では、 センタコア 1 と第 2サイ ドコア 3に G e 0 2を ドープし、 第 1サイ ドコア 2に Fを ドープ した。 しかしながら、 本発明の低分散光ファイバの 1つの実施形態例は 、 第 1サイ ドコア 2に G e O 2と Fを ドープし、 これらの ドープ量を調 整することによ り、 第 1図、 第 2図、 第 3図に示すよ うな屈折率プロフ アイルと してもよい。 さ らに、 本発明の低分散光ファイバの 1つの実施 形態例における組成は様々に設定されるものである。
さ らに、 低分散光ファイバの上記各実施形態例では、 1 5 3 0 η π!〜 1 5 6 0 n mの波長域において零分散を有さない構成と したが、 波長 1 4 5 0 η π!〜 1 6 5 0 n mの波長域に含まれる使用波長域に零分散を有 さない構成と してもよい。 低分散光ファイバの 1つの実施形態例をこの よ うに構成すると、 使用波長域において波長分割多重伝送を行なったと きの 4光波混合の発生を抑制できるために、 よ り広帯域の波長分割多重 伝送に適した低分散光ファィバとすることができる。 産業上の利用可能性 - 以上のよ うに、 本発明に係る低分散光ファイバおよびその低分散光フ ァィバを用いた光伝送システムは、 実効コア断面積の拡大と使用波長域 における波長分散偏差の低減とを両立することができるので、 波長多重 伝送に適している。

Claims

冃 求 の 範 囲
1. センタコアの外周側を第 1サイ ドコアで覆い、 該第 1サイ ドコアの 外周側を第 2サイ ドコアで覆い、 該第 2サイ ドコアの外周側をクラッ ド で覆って形成される分散シフト光ファイバであって、 前記センタコアの 最大屈折率を η 1、 前記第 1サイ ドコアの最小屈折率を η 2、 前記第 2 サイ ドコアの最大屈折率を η 3、 前記クラッ ドの屈折率を n c と したと き、 n 1 >n 3 >n c >n 2 と成し、 前記センタコアの最大屈折率の前記 クラッ ドに対する比屈折率差厶 1が 0. 4 %≤ Δ 1 ≤ 0. 7 %であり、 前記第 1サイ ドコアの最小屈折率の前記クラッ ドに対する比屈折率差 Δ
2がー 0. 3 0 %≤ Δ 2≤— 0. 0 5 %であり 、 前記第 2サイ ドコアの 最大屈折率の前記クラッ ドに対する比屈折率差 Δ 3が 0. 2 %≤ Δ 3 と 成し、 前記センタコァの直径 a 1 と前記第 1サイ ドコァの直径 a 2 との 比 ( a l Z a 2 ) が 0. 4以上 0. 7以下と成し、 前記第 2サイ ドコア の直径 a 3 と前記第 1サイ ドコァの直径 a 2 との比 ( a 3 / a 2 ) が 1
. 6以下と成していることを特徴とする低分散光ファイバ。
2. 第 2サイ ドコアには S i O 2の屈折率を上昇させる添加物が ドープ されており、 該第 2サイ ドコアに ドープされている前記添加物の光ファ ィバ径方向の濃度分布は極大部を有して該極大部の位置が前記第 2サイ ドコアの径方向中心部よ り も第 1サイ ドコア側と成していることを特徴 とする請求の範囲第 1項記載の低分散光ファイバ。
3. 添加物は G e O 2であることを特徴とする請求の範囲第 2項記載の 低分散光ファイバ。
4. クラッ ドと第 2サイ ドコアとの間に前記クラ ッ ドよ り も屈折率が小 さい低屈折率クラッ ド部が設けられていることを特徴とする請求の範囲 第 1項又は第 2項又は第 3項記載の低分散光ファィバ。
5. 波長 1 4 5 0 n n!〜 1 6 5 0 n mの波長域に含まれる使用波長域に 零分散を有していないことを特徴とする請求の範囲第 1項又は第 2項又 は第 3項記載の低分散光ファイバ。
6. 波長 1 4 5 0 η π!〜 1 6 5 0 n mの波長域に含まれる使用波長域に 零分散を有していないことを特徴とする請求の範囲第 4項記載の低分散 光ファイバ。
7. 波長 1 4 5 0 η π!〜 1 6 5 O n mの波長域に含まれる任意の 3 O n mの帯域を有する波長域における分散値の最大値と最小値との偏差が 2 p s /n mZk m以下であることを特徴とする請求の範囲第 1項又は第 2項又は第 3項又は第 6項記載の低分散光ファィバ。
8. 波長 1 4 5 0 n m〜 l 6 5 O n mの波長域に含まれる任意の 3 O n mの帯域を有する波長域における分散値の最大値と最小値との偏差が 2 p s Zn mZ k m以下であることを特徴とする請求の範囲第 4項記載の 低分散光ファイバ。
9. 波長 1 4 5 Ο η π!〜 1 6 5 O n mの波長域に含まれる任意の 3 O n mの帯域を有する波長域における分散値の最大値と最小値との偏差が 2 p s Zn m/k m以下であることを特徴とする請求の範囲第 5項記載の 低分散光ファイバ。
1 0. 請求の範囲第 1項乃至請求の範囲第 9項のいずれか一つに記載の 低分散光ファイバを含んで構成された光伝送路と、 波長 1 4 5 0 n m〜
1 6 5 0 n mの波長域における波長分散勾配が負の分散補償デバィスと を設け、 前記波長域における前記光伝送路の正の波長分散勾配を前記分 散補償デバイスによって低減する構成と-したことを特徴とする低分散光 ファイバを用いた光伝送システム。
PCT/JP2001/001353 2000-02-25 2001-02-23 Fibre optique a faible dispersion, et systeme optique de transmission l'utilisant WO2001063329A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020017013227A KR20010113806A (ko) 2000-02-25 2001-02-23 저분산광파이버 및 그 저분산광파이버를 사용한광전송시스템
CA002368327A CA2368327A1 (en) 2000-02-25 2001-02-23 Low-dispersion optical fiber and optical transmission system using the low-dispersion optical fiber
EP01906252A EP1189082A4 (en) 2000-02-25 2001-02-23 OPTICAL FIBER WITH LOW DISPERSION AND THIS USING OPTICAL TRANSMISSION SYSTEM
BR0104593-8A BR0104593A (pt) 2000-02-25 2001-02-23 Fibra ótica de baixa dispersão e sistema de transmissão usando a fibra ótica de baixa dispersão
US09/983,616 US6684018B2 (en) 2000-02-25 2001-10-25 Low-dispersion optical fiber and optical transmission system using the low-dispersion optical fiber
HK02106940.6A HK1045564A1 (zh) 2000-02-25 2002-09-24 低色散光纖和採用這種低色散光纖的光傳輸系統
US10/662,341 US6766089B2 (en) 2000-02-25 2003-09-16 Low-dispersion optical fiber and optical transmission system using the low-dispersion optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-49089 2000-02-25
JP2000049089 2000-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/983,616 Continuation US6684018B2 (en) 2000-02-25 2001-10-25 Low-dispersion optical fiber and optical transmission system using the low-dispersion optical fiber

Publications (1)

Publication Number Publication Date
WO2001063329A1 true WO2001063329A1 (fr) 2001-08-30

Family

ID=18571075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001353 WO2001063329A1 (fr) 2000-02-25 2001-02-23 Fibre optique a faible dispersion, et systeme optique de transmission l'utilisant

Country Status (9)

Country Link
US (2) US6684018B2 (ja)
EP (1) EP1189082A4 (ja)
KR (1) KR20010113806A (ja)
CN (1) CN1178080C (ja)
BR (1) BR0104593A (ja)
CA (1) CA2368327A1 (ja)
HK (1) HK1045564A1 (ja)
RU (1) RU2216755C2 (ja)
WO (1) WO2001063329A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895140B2 (en) 2001-10-29 2005-05-17 Fujikura, Ltd. Single-mode optical fiber and composite optical line

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189082A4 (en) * 2000-02-25 2005-01-12 Furukawa Electric Co Ltd OPTICAL FIBER WITH LOW DISPERSION AND THIS USING OPTICAL TRANSMISSION SYSTEM
AU2002231425A1 (en) 2000-08-16 2002-02-25 Corning Incorporated Optical fiber with large effective area, low dispersion and low dispersion slope
JP2002341157A (ja) * 2001-03-15 2002-11-27 Fujikura Ltd 波長多重伝送路およびこれに用いる分散補償光ファイバ
US20030059186A1 (en) * 2001-09-26 2003-03-27 Hebgen Peter G. L-band dispersion compensating fiber and transmission system including same
JP2003156649A (ja) * 2001-11-19 2003-05-30 Furukawa Electric Co Ltd:The 光ファイバ
JP2003227959A (ja) * 2002-02-04 2003-08-15 Furukawa Electric Co Ltd:The 波長多重伝送用単一モード光ファイバ
KR20040075982A (ko) 2002-02-15 2004-08-30 코닝 인코포레이티드 저기울기 분산 편이 광섬유
JP2005534963A (ja) * 2002-07-31 2005-11-17 コーニング・インコーポレーテッド 大なる実効面積、低傾斜及び低ゼロ分散である非ゼロ分散シフト光ファイバ
US20040076392A1 (en) * 2002-10-17 2004-04-22 Bickham Scott R. Low Kappa, dual-moat DC fiber and optical transmission line
JP2004177817A (ja) * 2002-11-28 2004-06-24 Sumitomo Electric Ind Ltd 光ファイバおよび光モジュール
US7103251B2 (en) * 2002-12-31 2006-09-05 Corning Incorporated Dispersion flattened NZDSF fiber
KR100506311B1 (ko) * 2003-01-20 2005-08-05 삼성전자주식회사 광대역 분산 제어 광섬유
US6959137B2 (en) * 2003-06-11 2005-10-25 Fitel U.S.A. Corporation Large-effective-area inverse dispersion compensating fiber, and a transmission line incorporating the same
US7024083B2 (en) * 2004-02-20 2006-04-04 Corning Incorporated Non-zero dispersion shifted optical fiber
JP4286863B2 (ja) 2004-10-22 2009-07-01 株式会社フジクラ 光ファイバ
US7106934B1 (en) 2005-06-30 2006-09-12 Corning Incorporated Non-zero dispersion shifted optical fiber
US8693834B2 (en) * 2011-08-15 2014-04-08 Corning Incorporated Few mode optical fibers for mode division multiplexing
JP6890638B2 (ja) * 2019-08-05 2021-06-18 京セラ株式会社 光ファイバー給電システム及び光ファイバーケーブル
JP6889225B2 (ja) * 2019-10-21 2021-06-18 京セラ株式会社 光ファイバー給電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004941A1 (en) * 1996-07-31 1998-02-05 Corning Incorporated Dispersion compensating single mode waveguide
JPH1184159A (ja) * 1997-09-10 1999-03-26 Furukawa Electric Co Ltd:The 分散フラットファイバ
WO1999030193A1 (fr) * 1997-12-05 1999-06-17 Sumitomo Electric Industries, Ltd. Fibre optique a dispersion plate
EP0938001A1 (en) * 1998-02-18 1999-08-25 Lucent Technologies Inc. Dual window wdm optical fiber communication
WO2000063732A1 (fr) * 1999-04-16 2000-10-26 Sumitomo Electric Industries, Ltd. Fibre optique et ligne de transmission optique comprenant cette fibre
WO2000070378A1 (fr) * 1999-05-17 2000-11-23 The Furukawa Electric Co., Ltd. Fibre optique et ligne de transmission optique comprenant la fibre optique

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE972828C (de) 1955-05-13 1959-10-01 Maschf Augsburg Nuernberg Ag Regeleinrichtung fuer eine Gasfederung von Fahrzeugen
JPH01184159A (ja) * 1988-01-19 1989-07-21 Nitsuko Corp プリンタ装置
US5822488A (en) * 1995-10-04 1998-10-13 Sumitomo Electric Industries, Inc. Single-mode optical fiber with plural core portions
JPH09211249A (ja) * 1995-11-28 1997-08-15 Sumitomo Electric Ind Ltd シングルモード光ファイバ
TW342460B (en) * 1996-01-16 1998-10-11 Sumitomo Electric Industries A dispersion shift fiber
CA2229280A1 (en) * 1997-02-12 1998-08-12 Sumitomo Electric Industries, Ltd. Dispersion-shifted fiber
DE19712828A1 (de) 1997-03-26 1998-10-15 Sick Ag Lichtgitter und Verfahren zu seiner Herstellung
JPH10339819A (ja) 1997-06-05 1998-12-22 Furukawa Electric Co Ltd:The 光増幅用光ファイバ
RU2183027C2 (ru) * 1997-12-30 2002-05-27 Самсунг Электроникс Ко., Лтд. Одномодовое оптическое волокно
BR9815860A (pt) * 1998-04-30 2001-10-30 Sumitomo Electric Industries Fibra ótica
FR2783609B1 (fr) * 1998-09-17 2002-08-30 Cit Alcatel Fibre optique monomode optimisee pour les hauts debits
WO2000033113A1 (fr) * 1998-12-03 2000-06-08 Sumitomo Electric Industries, Ltd. Fibre optique a correction de dispersion et ligne de transmission optique comprenant ladite fibre optique
CA2326131A1 (en) * 1999-02-22 2000-08-31 The Furukawa Electric Co., Ltd. Optical transmission line, negative dispersion optical fiber used for the optical transmission line, and optical transmission system comprising optical transmission line
US6301422B1 (en) * 1999-04-28 2001-10-09 Corning Incorporated Large effective area fiber having a low total dispersion slope
WO2001018575A1 (fr) * 1999-09-09 2001-03-15 Fujikura Ltd. Fibre optique a dispersion decalee
EP1189082A4 (en) * 2000-02-25 2005-01-12 Furukawa Electric Co Ltd OPTICAL FIBER WITH LOW DISPERSION AND THIS USING OPTICAL TRANSMISSION SYSTEM
JP4531954B2 (ja) * 2000-09-01 2010-08-25 古河電気工業株式会社 光ファイバおよびその光ファイバを用いた光伝送路
US6519402B2 (en) * 2000-11-27 2003-02-11 Fujikura, Ltd. Dispersion compensating optical fiber, and dispersion compensating optical fiber module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004941A1 (en) * 1996-07-31 1998-02-05 Corning Incorporated Dispersion compensating single mode waveguide
JPH1184159A (ja) * 1997-09-10 1999-03-26 Furukawa Electric Co Ltd:The 分散フラットファイバ
WO1999030193A1 (fr) * 1997-12-05 1999-06-17 Sumitomo Electric Industries, Ltd. Fibre optique a dispersion plate
EP0938001A1 (en) * 1998-02-18 1999-08-25 Lucent Technologies Inc. Dual window wdm optical fiber communication
WO2000063732A1 (fr) * 1999-04-16 2000-10-26 Sumitomo Electric Industries, Ltd. Fibre optique et ligne de transmission optique comprenant cette fibre
WO2000070378A1 (fr) * 1999-05-17 2000-11-23 The Furukawa Electric Co., Ltd. Fibre optique et ligne de transmission optique comprenant la fibre optique

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIE L. ET AL.: "Non-zero dispersion shifted fiber with low dispersion slope", PROCEEDINGS OF APCC/OECC '99, 18 October 1999 (1999-10-18) - 22 October 1999 (1999-10-22), BEIJING, CHINA, pages 1373 - 1374, XP002942178 *
LIU Y. ET AL.: "Design and fabrication of locally dispersion-flattened large effective area fibers", ECOC '98, 22 September 1998 (1998-09-22) - 24 September 1998 (1998-09-24), MADRID, SPAIN, pages 37 - 38, XP002942179 *
See also references of EP1189082A4 *
YOKOYAMA, YOSHIO ET AL.: "Practically feasible dispersion flattened fibers produced by vad technique", ECOC '98, 22 September 1998 (1998-09-22) - 24 September 1998 (1998-09-24), MADRID, SPAIN, pages 131 - 132, XP002942180 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895140B2 (en) 2001-10-29 2005-05-17 Fujikura, Ltd. Single-mode optical fiber and composite optical line

Also Published As

Publication number Publication date
US6766089B2 (en) 2004-07-20
EP1189082A1 (en) 2002-03-20
KR20010113806A (ko) 2001-12-28
US20020102085A1 (en) 2002-08-01
US20040062500A1 (en) 2004-04-01
BR0104593A (pt) 2002-01-08
CN1178080C (zh) 2004-12-01
CA2368327A1 (en) 2001-08-30
HK1045564A1 (zh) 2002-11-29
RU2216755C2 (ru) 2003-11-20
CN1363049A (zh) 2002-08-07
US6684018B2 (en) 2004-01-27
EP1189082A4 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
WO2001063329A1 (fr) Fibre optique a faible dispersion, et systeme optique de transmission l&#39;utilisant
JP4494691B2 (ja) 光伝送路
CA2277332C (en) Dispersion-flattened optical fiber
JP3369389B2 (ja) 分散シフト光ファイバ
JP4999063B2 (ja) 光ファイバ
JP5307114B2 (ja) 光ファイバ
JP4460065B2 (ja) 非線形光ファイバおよび非線形光デバイスならびに光信号処理装置
JPH1184158A (ja) 波長分割多重伝送用の光伝送リンクおよびそのリンクを構成する光ファイバ
JP4443788B2 (ja) 光ファイバおよびその光ファイバを用いた光通信システム
JP2002162529A (ja) 光ファイバおよびその光ファイバを用いた光通信システム
US7164832B2 (en) Optical fiber and optical communication system employing the optical fiber
JP3886771B2 (ja) Wdm用シングルモード光ファイバ及び複合光線路
JP3439615B2 (ja) 分散シフト光ファイバおよびその製造方法
JP2001311849A (ja) 低分散光ファイバおよびその低分散光ファイバを用いた光伝送システム
JP2001356223A (ja) 分散補償光ファイバの接続構造
JP4346328B2 (ja) 光伝送路
JP2000275461A (ja) 分散シフト光ファイバ
JPH1096828A (ja) 誘導ブリルアン散乱抑圧光ファイバ
JP3725435B2 (ja) 光ファイバ
JPH11119046A (ja) 分散シフト光ファイバ
JP2003172843A (ja) 光ファイバおよびその光ファイバを用いた光ファイバモジュールならびに光増幅器
JP2005311486A (ja) 光伝送路
JP4087412B2 (ja) 分散シフト光ファイバ
JP2003241001A (ja) 分散補償光ファイバ、光ファイバモジュールおよび光増幅器
JP2007293351A (ja) 低分散光ファイバおよびその低分散光ファイバを用いた光伝送システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800324.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/00427/DE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001906252

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN ID IN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2368327

Country of ref document: CA

Ref document number: 2368327

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017013227

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09983616

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001906252

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001906252

Country of ref document: EP