WO2001058994A1 - Pulverförmige zusammensetzung auf der basis von wasserlöslichen polymeren - Google Patents

Pulverförmige zusammensetzung auf der basis von wasserlöslichen polymeren Download PDF

Info

Publication number
WO2001058994A1
WO2001058994A1 PCT/EP2001/001367 EP0101367W WO0158994A1 WO 2001058994 A1 WO2001058994 A1 WO 2001058994A1 EP 0101367 W EP0101367 W EP 0101367W WO 0158994 A1 WO0158994 A1 WO 0158994A1
Authority
WO
WIPO (PCT)
Prior art keywords
additives
water
carrier material
building materials
polymer
Prior art date
Application number
PCT/EP2001/001367
Other languages
English (en)
French (fr)
Inventor
Steffen Wache
Mathias Degenkolb
Klaus HÖTZL
Jana Kellermann
Original Assignee
Skw Polymers Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skw Polymers Gmbh filed Critical Skw Polymers Gmbh
Priority to JP2001558137A priority Critical patent/JP2003522091A/ja
Priority to EP01907511A priority patent/EP1263854A1/de
Publication of WO2001058994A1 publication Critical patent/WO2001058994A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/022Agglomerated materials, e.g. artificial aggregates agglomerated by an organic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a powdery composition, processes for its preparation and its use in building materials.
  • Polymer admixtures for building materials such as. B. bitumen, mortar and
  • Filling compounds are well known and widely used. Corresponding polymers or polymer mixtures can be added to these products, for example in solid or in liquid and then mostly aqueous form.
  • aqueous polymer solutions are associated with considerable disadvantages, since e.g. B. their storage is not unproblematic; namely they must not come into contact with corrosion-sensitive metals and are also sensitive to excessive heating and frost.
  • aqueous polymer solutions must be protected against infestation by microorganisms, which means the addition of
  • aqueous polymer solutions for the modification of hot building materials, such as bitumen or asphalt, is particularly problematic since an aqueous polymer solution can only be incorporated very slowly due to the spontaneous development of water vapor that occurs. There is also an increased risk of accidents due to spraying and delay in boiling.
  • aqueous polymer solutions can be completely ruled out in areas of application in which the polymers are required in factory-made dry mixtures. For the reasons mentioned, it is therefore often sensible to incorporate polymers or polymer mixtures in solid form, usually as a powder, into the building materials to be modified.
  • powders In addition to logistical and economic advantages (transport of water), powders also have a number of technical advantages over aqueous preparations.
  • the stabilization before infestation with microorganisms by adding biocides is eliminated, as is the u. U. elaborate measures for tank hygiene.
  • temperatures used for spray drying (up to 200 ° C) have a disadvantageous effect on the polymers to be dried in this way.
  • temperature instability of the polymers can be observed under the conditions of spray drying, which under certain circumstances leads to insoluble residues when the powders are redissolved in water.
  • the spray drying process can lead to different particle size distributions of the powders produced in this way, which has a disadvantageous effect on the dissolving behavior of these powders in aqueous building material systems and can thus negatively influence the product quality of building material mixtures.
  • Condensation products can cause high temperatures at a corresponding pH value to cause resin changes, e.g. B. lead alkaline further condensation.
  • the by-products formed in this way have a disadvantageous effect when such powders are used in building material mixtures.
  • these disadvantages, as well as the high energy requirement of spray drying, are still accepted in order to obtain the polymers in the form of free-flowing, tack-free powders.
  • the invention was therefore based on the object, a powder
  • compositions which does not have the disadvantages mentioned above and which is particularly suitable for long storage and transport times, which is largely insensitive to extreme temperatures, such as frost and heat, which does not require any preservative additives, and which moreover is faster and less dangerous than conventional spray-dried polymer compositions can be incorporated into a hot template.
  • the composition should also be able to be produced using as little energy as possible and should ultimately not adversely affect the properties of products to which the composition is added.
  • a powdery composition based on water-soluble polymers which is characterized in that it a) 5 - 95 wt .-% of a water-soluble polymer consisting of sulfonates of lignin and / or sulfonated melamine, naphthalene and / or ketone-formaldehyde condensation products is built up, and b) contains 5 to 95% by weight of a finely divided mineral carrier material.
  • Lignin sulfonates and melamine, naphthalene and / or ketone-formaldehyde condensation products which are sulfonated for the purpose of water solubility, are known flow agents for inorganic binders and in particular cement-based building materials; but they are also added by building materials to reduce water loss (as so-called "fluidloss additives"), especially when extracting oil.
  • a finely divided mineral carrier material which has a specific surface area of 0.01 to 500 m 2 / g (according to BET in accordance with DIN 66 131) and which is selected in particular from the group of calcium carbonate has proven itself as component b) , Dolomite, quartz powder, quartz sand, silica dust, cristoballite, silica, clays, clay minerals, aluminum silicates (such as bentonites, talc, mica, kaolins, slate powder), pumice powder, brick powder, titanium dioxide, clays, barium sulfate, fly ash, blast furnace slag / slag furnace slag , Portland cement, Portland cement with additives (CEM II and CEM III), alumina cements, gypsum, anhydrite, hemihydrate, lime and mixtures of these materials.
  • Dolomite quartz powder, quartz sand, silica dust, cristoballite, silica, clays, clay minerals, aluminum silicates (such
  • the type of these carrier materials is therefore not subject to any particular restriction. It is important that the respective material (mixture) is compatible with the water-soluble polymer, does not have a negative effect on the effect of the polymer and results in powdery, adhesive and packaging-resistant compositions even in small quantities.
  • the invention also provides for the mineral carrier materials to be used in combination with organic additives such as cellulose powders or fibers and powders or fibers of organic polymers (polyacrylonitrile, polystyrene, etc.).
  • the finely divided carrier material has a preferred particle size of 0.1 to 1,000 ⁇ m.
  • the invention also relates to a method for producing the powdery composition, which is characterized in that the water-soluble polymer (mixture) is incorporated into the respective mineral carrier material (mixture), which is preferably carried out immediately after the polymerization production process.
  • the polymer should be introduced into the mineral support material which has been introduced and, if appropriate, preheated, in as finely divided a form as possible, the polymer being incorporated into the mineral carrier material in at least one step in the form of an aqueous solution, which, according to the invention, is also optionally carried out after intermediate drying can.
  • aqueous solution of the polymer should be dried before the incorporation step (s).
  • the respective water-soluble polymer is sprayed onto a preheated mineral carrier material (for example of the silica type) in the temperature range from 70 to 150 ° C., which should ideally take place in a mixer.
  • a preheated mineral carrier material for example of the silica type
  • a particularly effective incorporation which is associated with a very low consumption of mineral carrier material, can be achieved by atomizing the water-soluble polymer onto the preheated carrier material. The effectiveness drops when the polymer sprays onto the carrier material, is dripped or poured because the surface of the substance to be incorporated becomes smaller in the order given.
  • Carrier materials with a pronounced porous structure such as. B. silicas have a particularly high adsorption capacity.
  • the present invention therefore recommends using mixing devices with low shear forces such as drum mixers, V mixers, tumble mixers or other representatives from the group of free-fall mixers for this type of carrier.
  • cone mixers, ploughshare mixers or spiral mixers with vertically or horizontally arranged mixing tools are also suitable for porous carrier materials.
  • mineral carriers the structure of which cannot be disturbed by the mixing process, all other types of apparatus can also be used, such as dissolvers, screw mixers, twin-screw mixers and air-mix mixers.
  • the present invention provides for one or more drying processes to be carried out during the incorporation of the polymer into the carrier in order to increase the productivity of the carrier material; however, a drying process is also possible, which follows the actual familiarization steps.
  • Another object of the invention is the use of at least one powdery composition according to the present invention in building materials, with bitumen products as building materials on hydraulically setting binders such as building materials based on cement or latent hydraulic binders, building materials based on gypsum, anhydrite or other calcium sulfate, ceramic materials, refractory materials and oil field materials.
  • the compositions according to the invention can also be used in dispersion-based building materials such as dispersion tile adhesive, elastic sealing slurries, primers, mortar additives and in powdery interior and exterior wall paints.
  • powdery compositions according to the invention can also be used in combination as above.
  • Building material groups are used, e.g. B. in bituminous cementitious screeds, grout etc.
  • the incorporation of the powdery composition into the building material is usually carried out together with other building material additives and filler mixtures, building material additives in particular being those which are suitable for
  • Additives such as B. rock flour, pozzolanic and / or latent hydraulic additives, and additives such.
  • the proportion of the composition in the building materials should be 0.05 to 5% by weight, based on the total weight of the building material.
  • the powdered compositions according to the invention have a number of advantages over compositions obtained in a conventional manner in powder form. This is particularly evident in the likewise claimed building material mixture, which is preferably a dry mixture for flowable mortar, and that a) 10 to 50% by weight of the powdery composition according to claims 1 to 5, b) 20 to 60 % By weight of additives, c) 30 to 70% by weight of additives, d) optionally up to 25% by weight of additives, e) optionally up to 10% by weight of a plastic dispersion and f) optionally up to 25% by weight of an inorganic binder.
  • a dry mixture for flowable mortar preferably a dry mixture for flowable mortar
  • a finely divided mineral carrier material mixture consisting of 250 g of cement (CEM I 52.5 R, Milke) and 120 g of limestone powder (CalcicoU W 12) was placed in a dissolver and preheated to 40 ° C. Then 20 g of Melment L 17 G as a water-soluble polymer (40% solution, SKW Trostberg AG; corresponding to 3.2% solids based on CEM I) were incorporated at 2,000 rpm and the mixing process was continued at 2,000 rpm for 25 minutes. This gave a dry, free-flowing powdery composition which was processed with 0.5 g of Tylose H 20 P as an additive and 700 g of sand as an additive to form a finished dry mix for flowable mortar. L2.
  • a finely divided mineral carrier material mixture consisting of 250 g cement (CEM I 52.5 R, Milke) and 120 g limestone powder (CalcicoU W 12) and 700 g sand as an additive were preheated to 45 ° C and placed in a tumble mixer (Bachofen AG, Basel). 32 g of Melment L 10 as a water-soluble polymer (25% strength aqueous solution, SKW Trostberg AG; corresponding to 3.2% solids based on CEM I) were then metered into this mixture and the mixing process continued for 75 minutes. The dry, free-flowing mixture obtained in this way was treated with 15 g of plastic dispersion powder.
  • Example 1 Dry mortar mixture consisting of: 250 g CEM I 52.5 R, Milke 120 g limestone powder (CalcicoU W 12) 700 g sand 8 g Melment F 17 G (corresponds to 3.2% based on CEM I) 0.5 g Tylose H 20 P
  • Example 2 Dry mortar mixture consisting of: 250 g CEM I 52.5 R, Milke 120 g limestone powder (CalcicoU W 12) 700 g sand 8 g Melment F 17 G (corresponds to 3.2% based on CEM I) 0.5 g Tylose H 20 P
  • Example 2 Dry mortar mixture consisting of: 250 g CEM I 52.5 R, Milke 120 g limestone powder (CalcicoU W 12) 700 g sand 8 g Melment F 17 G (corresponds to 3.2% based on CEM I) 0.5 g Tylose H 20 P
  • Example 2 Dry mortar mixture consisting of: 250 g CEM I 52.5 R, Milke 120 g limestone powder (CalcicoU W 12) 700
  • Dry mortar mixture consisting of: 250 g CEM I 52.5 R, Milke 120 g limestone powder (CalcicoU W 12) 700 g sand 8 g Melment F 10 (corresponds to 3.2% based on CEM I) 15 g plastic dispersion powder
  • Example 3 Dry mortar mixture consisting of: 250 g CEM I 52.5 R, Milke 120 g limestone powder (CalcicoU W 12) 700 g sand 8 g Melment F 10 (corresponds to 3.2% based on CEM I) 15 g plastic dispersion powder
  • Standard mortar mixture according to EN-196 consisting of: 450 g CEM I 42.5 R, from Schwenk 1350 g standard sand 9 g Melment F 17 G (corresponds to 2.0% based on CEM I)

Abstract

Die pulverförmige Zusammensetzung auf der Basis von wasserlöslichen Polymeren enthält im wesentlichen a) 5 bis 95 Gew.-% eines wasserlöslichen Polymers, das aus Sulfonaten des Lignins und/oder sulfonierten Melamin-, Naphthalin- und/oder Keton-Formaldehyd-Kondensationsprodukten aufgebaut ist, und b) 5 bis 95 Gew.-% eines feinteiligen mineralischen Trägermaterials mit einer bevorzugten spezifischen Oberfläche von 0,01 bis 500 m2/g. Calciumcarbonat, Dolmit, Tone, Flugaschen, Portlandzemente und Gips sind geeignete typische Trägermaterialien und sollten zu diesem Zweck vorzugsweise eine Teilchengröße von 0,1 bis 1 000 νm aufweisen. Beansprucht wird ferner ein Verfahren zur Herstellung dieser Zusammensetzung, wobei das wasserlösliche Polymer vor allem in das jeweilige Trägermaterial eingearbeitet wird, was insbesondere in Form einer wässrigen Lösung in mindestens einem Schritt erfolgt und auch Zwischentrocknungsschritte umfassen kann. Verwendet werden diese Zusammensetzungen in Mengen von 0,05 bis 5 Gew.-% an Polymer in Baustoffen wie z. B. Bitumenprodukte, Zement, calciumbasierte Baustoffe und/oder Ölfeldbaustoffe, wobei sie auch mit anderen Baustoffadditiven und Füllstoffabmischungen kombiniert werden können. Die pulverförmigen Zusammensetzungen zeichnen sich u. a. durch ihre sehr gute Rieselfähigkeit aus, sie sind klebfrei und äußerst leicht zu dosieren und zu verarbeiten und beeinflussen Produkteigenschaften wie z. B. die Fließfähigkeit positiv.

Description

Pulverförmige Zusammensetzung auf der Basis von wasserlöslichen Polymeren
Beschreibung
Gegenstand der vorliegenden Erfindung ist eine pulverförmige Zusammensetzung, Verfahren zu ihrer Herstellung sowie deren Nerwendung in Baustoffen.
Polymerbeimischungen für Baustoffe, wie z. B. Bitumen, Mörtel und
Spachtelmassen sind bestens bekannt und weit verbreitet. Entsprechende Polymere oder Polymergemische können diesen Produkten beispielsweise in fester oder in flüssiger und dann meist wässriger Form beigemischt werden.
Insbesondere die Nerwendung wässriger Polymerlösungen ist jedoch mit erheblichen Nachteilen verbunden, da z. B. deren Lagerung nicht unproblematisch ist; sie dürfen nämlich nicht mit korrosionsempfindlichen Metallen in Berührung kommen und sind außerdem empfindlich gegen starke Erwärmung sowie gegen Frosteinwirkung. Außerdem müssen wässrige Polymerlösungen vor dem Befall durch Mikroorganismen geschützt werden, was die Zugabe von
Konservierungsmitteln und unter Umständen aufwendige Maßnahmen zur Tankhygiene notwendig macht.
Die Nerwendung wässriger Polymerlösungen für die Modifizierung von heißen Baustoffen, wie Bitumen oder Asphalt ist besonders problematisch, da eine wässrige Polymerlösung durch die hierbei auftretende spontane Wasserdampfentwicklung nur sehr langsam eingearbeitet werden kann. Außerdem besteht eine erhöhte Unfallgefahr durch Spritzen und Siedeverzug.
Die Nerwendung wässriger Polymerlösungen kann in Anwendungsbereichen, in denen die Polymere in werksseitig vorgefertigten Trockenmischungen benötigt werden, vollkommen ausgeschlossen sein. Aus den genannten Gründen ist es deshalb oftmals sinnvoll, Polymere oder Polymergemische in fester Form und zwar meistens als Pulver, in die zu modifizierenden Baustoffe einzuarbeiten.
Neben logistischen und ökonomischen Vorteilen (Transport von Wasser) haben Pulver gegenüber wässrigen Zubereitungen auch eine Reihe technischer Vorzüge. Die Stabilisierung vor dem Befall mit Mikroorganismen durch Zugabe von Bioziden entfällt ebenso wie die u. U. aufwendigen Maßnahmen zur Tankhygiene.
Es ist bekannt, Polymerpulver durch Versprühen von wässrigen Polymerlösungen in einem Heißluftstrom (Sprühtrocknung) herzustellen, wobei vorteilhafterweise Sprühhilfsmittel zugesetzt werden.
Die bei der Sprühtrocknung angewendeten Temperaturen (bis zu 200 °C) wirken sich jedoch nachteilig auf die so zu trocknenden Polymere aus. So ist zum Beispiel eine Temperaturinstabilität der Polymere unter den Bedingungen der Sprühtrocknung zu beobachten, was unter Umständen zu unlöslichen Rückständen bei der Wiederauflösung der Pulver in Wasser führt.
Zudem kann der Sprühtrocknungsvorgang verfahrensbedingt zu unterschiedlichen Korngrößenverteilungen der so hergestellten Pulver führen, was sich nachteilig auf das Auflöseverhalten dieser Pulver in wässrigen Baustoffsystemen auswirkt und somit die Produktqualität von Baustoffgemischen negativ beeinflussen kann.
Bei der Sprühtrocknung von sulfonierten Melamin-Formaldehyd-
Kondensationsprodukten können hohe Temperaturen bei entsprechendem pH-Wert zu Harzveränderungen, wie z. B. alkalischer Weiterkondensation führen. Die so entstehenden Nebenprodukte wirken sich bei der Anwendung solcher Pulver in Baustoff gemischen nachteilig aus. Diese Nachteile, wie auch der hohe Energiebedarf der Sprühtrocknung, werden aber nach wie vor in Kauf genommen, um die Polymere in Form rieselfähiger, klebfreier Pulver zu erhalten.
Der Erfindung lag daher die Aufgabe zugrunde, eine pulverförmige
Zusammensetzung bereitzustellen, die die oben genannten Nachteile nicht aufweist und die insbesondere für lange Lager- und Transportzeiten geeignet ist, die weitgehend unempfindlich gegen extreme Temperaturen, wie Frost und Hitze ist, die keine Konservierungsmittelzusätze erfordert und die darüber hinaus schneller und gefahrloser als herkömmliche sprühgetrocknete Polymerzusammensetzungen in eine heiße Vorlage einarbeitbar ist. Die Zusammensetzung sollte außerdem unter möglichst geringem Energieeinsatz herstellbar sein und schließlich die Eigenschaften von Produkten, die mit der Zusammensetzung versetzt werden, nicht nachteilig beeinflussen.
Gelöst wurde diese Aufgabe mit einer pulverförmigen Zusammensetzung auf der Basis von wasserlöslichen Polymeren, die dadurch gekennzeichnet ist, dass sie a) 5 - 95 Gew.-% eines wasserlöslichen Polymers, das aus Sulfonaten des Lignins und/oder sulfonierten Melamin-, Naphthalin- und/oder Keton- Formaldehyd-Kondensationsprodukten aufgebaut ist, und b) 5 - 95 Gew.-% eines feinteiligen mineralischen Trägermaterials enthält.
Überraschenderweise konnte festgestellt werden, dass man mit Hilfe dieser Kombination aus einem wasserlöslichen Polymer und einem feinteiligen mineralischen Trägermaterial rieselfähige, klebfreie und sehr leicht zu verarbeitende pulverförmige Zusammensetzungen erhält, die zudem ohne großen technischen Aufwand einfach herzustellen und einfach und billig zu verpacken sind und die sich besonders gut für lange Transport- und Lagerzeiten eignen, da keine Konservierungsmittel erforderlich sind und keine Frostgefährdung besteht. Außerdem sind sie leicht und schnell auch in heiße Vorlagen, wie z. B. in eine heiße Bitumenschmelze, einarbeitbar. Die in der erfindungsgemäßen pulverförmigen Zusammensetzung enthaltenen wasserlöslichen Polymere unterliegen im Rahmen ihrer Definition keiner besonderen Beschränkung. Wichtig ist lediglich, dass sie sich gut auf die erfindungsgemäß verwendeten Trägermaterialien aufbringen lassen und in dieser trägergebundenen Form nach Einarbeitung in die Matrix noch die gewünschte Wirkung entfalten.
Sulfonate des Lignins sowie Melamin-, Naphthalin- und/oder Keton- Formaldehyd-Kondensationsprodukte, die zum Zweck der Wasserlöslichkeit sulfoniert sind, stellen bekannte Fließmittel für anorganische Bindemittel und insbesondere zementbasierte Baustoffe dar; sie werden von Baustoffen aber auch zur Verminderung des Wasserverlustes (als sog. „fluidloss additives") vor allem bei der Erdölförderung zugesetzt.
Im Sinne der vorliegenden Erfindung hat sich als Komponente b) ein feinteiliges mineralisches Trägermaterial bestens bewährt, das eine spezifische Oberfläche von 0,01 bis 500 m2/g (nach BET gemäß DIN 66 131) aufweist und das insbesondere ausgewählt ist aus der Gruppe Calciumcarbonat, Dolomit, Quarzmehl, Quarzsand, Silicastaub, Cristoballit, Kieselsäure, Tone, Tonmineralien, Aluminiumsilicate (wie z. B. Bentonite, Talk, Glimmer, Kaoline, Schiefermehl), Bimsmehl, Ziegelmehl, Titandioxid, Tonerden, Bariumsulfat, Flugaschen, Hüttensand/Ηochofenschlacke, Portlandzement, Portlandzement mit Zumahlstoffen (CEM II und CEM III), Tonerdezemente, Gips, Anhydrit, Halbhydrat, Kalk sowie Gemische aus diesen Materialien.
Der Typ dieser Trägermaterialien unterliegt somit keiner besonderen Beschränkung. Wichtig ist, dass sich das jeweilige Material(-gemisch) gut mit dem wasserlöslichen Polymer verträgt, die Wirkung des Polymers nicht negativ beeinflusst und bereits in geringen Mengen pulverförmige verklebungs- und verpackungsresistente Zusammensetzungen ergibt. Daneben sieht die Erfindung ebenfalls vor, die mineralischen Trägermaterialien in Kombination mit organischen Zusätzen wie Cellulosepulvern bzw. -fasern sowie Pulvern bzw. Fasern organischer Polymere (Polyacrylnitril, Polystyrol etc.) zu verwenden.
Das feinteilige Trägermaterial besitzt eine bevorzugte Teilchengröße von 0,1 bis 1.000 μm.
Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung der pulverförmigen Zusammensetzung, das dadurch gekennzeichnet ist, dass das wasserlösliche Polymer(-gemisch) in das jeweilige mineralische Trägermaterial(- gemisch) eingearbeitet wird, was bevorzugt unmittelbar nach dem Polymerisations-Herstellungsprozess erfolgt. Dabei sollte das Polymer in das vorgelegte und ggf. vorgewärmte mineralische Trägermaterial in so fein verteilter Form wie möglich eingebracht werden, wobei das Polymer in Form einer wässrigen Lösung in mindestens einem Schritt in das mineralische Trägermaterial eingearbeitet wird, was erfindungsgemäß auch ggf. nach Zwischentrocknung erfolgen kann.
Vorgesehen ist ebenfalls, die wässrige Lösung des Polymer vor dem oder den Einarbeitungsschritt(-en) zwischenzutrocknen.
Gemäß einer bevorzugten Ausführungsform wird das jeweilige wasserlösliche Polymer im Temperaturbereich von 70 bis 150 °C auf ein vorgewärmtes mineralisches Trägermaterial (bspw. vom Typ einer Kieselsäure) aufgesprüht, was idealerweise in einem Mischer erfolgen sollte.
Eine besonders effektive Einarbeitung, die verbunden ist mit einem sehr geringen Verbrauch an mineralischem Trägermaterial, kann durch Vernebelung des wasserlöslichen Polymers auf das vorgewärmte Trägermaterial erreicht werden. Die Effektivität sinkt dabei, wenn das Polymer auf das Trägermaterial versprüht, getropft bzw. geschüttet wird, weil in der angegebenen Reihenfolge die Oberfläche der einzuarbeitenden Substanz kleiner wird.
Von besonderem Interesse ist weiterhin die Mischtechnik bei der Einarbeitung, die sich sehr stark am Typ des verwendeten Trägermaterials orientiert.
Trägermaterialien mit einer ausgeprägten porösen Struktur, wie z. B. Kieselsäuren, weisen ein besonders hohes Adsorptionsvermögen auf.
Mischer, an deren Mischwerkzeugen hohe Scherkräfte wirksam werden, können die poröse Struktur zerstören, wodurch die in den Hohlräumen festgehaltenen Polymere wieder herausgepresst werden. Die vorliegende Erfindung empfiehlt daher, für diesen Trägertyp Mischapparate mit geringen Scherkräften wie Trommelmischer, V-Mischer, Taumelmischer oder andere Vertreter aus der Gruppe der Freifallmischer zu verwenden.
Darüber hinaus sind für poröse Trägermaterialien Konusmischer, Pflugscharmischer oder Spiralmischer mit vertikal oder horizontal angeordneten Mischwerkzeugen ebenfalls geeignet. Für mineralische Träger, deren Struktur durch den Mischprozess nicht gestört werden kann, sind auch alle anderen Apparatetypen nutzbar, wie Dissolver, Schneckenmischer, Doppelschneckenmischer und Air-Mix-Mischer.
Wie bereits erwähnt, sieht die vorliegende Erfindung vor, einen oder mehrere Trocknungsprozesse während der Einarbeitung des Polymers in den Träger durchzuführen, um die Ergiebigkeit des Trägermaterials zu steigern; möglich ist aber auch ein Trocknungsprozess, der sich an die eigentlichen Einarbeitungsschritte anschließt.
Ein weiterer Gegenstand der Erfindung ist die Verwendung von mindestens einer pulverförmigen Zusammensetzung gemäß vorliegender Erfindung in Baustoffen, wobei als Baustoffe Bitumenprodukte, auf hydraulisch abbindenden Bindemitteln wie Zement bzw. latent hydraulischen Bindemitteln basierende Baustoffe, Gips-, Anhydrit- oder sonstige Calciumsulfat- basierende Baustoffe, keramische Massen, Feuerfestmassen und Olfeldbaustoffe in Frage kommen. Schließlich können die erfindungsgemäßen Zusammensetzungen auch in dispersionsbasierenden Baustoffen wie Dispersionsfliesenklebera, elastischen Dichtschlämmen, Grundierungen, Mörtelhaftzusätzen sowie in pulverförmigen Innen- und Außenwandfarben eingesetzt werden.
Die erfindungsgemäßen pulverförmigen Zusammensetzungen können aber auch in Kombination o. g. Baustoffgruppen verwendet werden, z. B. in bitumenhaltigen zementären Fließestrichen, Vergußmörteln etc.
Die Einarbeitung der pulverförmiges Zusammensetzung in den Baustoff erfolgt in der Regel zusammen mit anderen Baustoffadditiven und Fullstoffabmischungen, wobei als Baustoffadditive insbesondere solche in Frage kommen, die aus
Zusatzstoffen, wie z. B. Gesteinsmehl, puzzolanische und/oder latent hydraulische Zusätze, und Zusatzmitteln, wie z. B. Kunststoffdispersionen, Wasserretentionsmittel, Verdickungsmittel, Verzögerer, Beschleuniger, Luftporenbildner, Entschäumer und Netzmittel, bestehen. Der Anteil der Zusammensetzung in den Baustoffen sollte erfindungsgemäß bei 0,05 bis 5 Gew - % bezogen auf das Gesamtgewicht des Baustoffs betragen.
Die erfindungsgemäßen pulverförmigen Zusammensetzungen weisen eine Reihe von Vorteilen gegenüber auf herkömmliche Weise gewonnenen Zusammensetzungen in Pulverform auf. Dies wird vor allem an dem ebenfalls beanspruchten Baustoffgemisch deutlich, bei dem es sich bevorzugt um eine Trockenmischung für fließfähig Mörtel handelt, und das a) 10 bis 50 Gew.-% der pulverförmigen Zusammensetzung nach den Ansprüchen 1 bis 5, b) 20 bis 60 Gew.-% an Zusatzstoffen, c) 30 bis 70 Gew.-% an Zuschlagstoffen, d) ggf. bis 25 Gew.-% an Zusatzmitteln, e) ggf. bis 10 Gew.-% einer Kunststoff-Dispersion und f) ggf. bis 25 Gew.-% eines anorganischen Bindemittels enthält.
Die nachfolgenden Beispiele belegen die Vorteile der vorliegenden Erfindung.
Beispiele Erfindungsbeispiele:
Beispiel 1
Trockenmischung für fließfähige Mörtel
1.1:
Ein feinteiliges mineralisches Trägermaterialgemisch bestehend aus 250 g Zement (CEM I 52,5 R, Fa. Milke) und 120 g Kalksteinmehl (CalcicoU W 12) wurde in einen Dissolver gegeben und auf 40 °C vorgewärmt. Dann wurden bei 2 000 UpM 20 g Melment L 17 G als wasserlösliches Polymer (40 %ige Lösung, SKW Trostberg AG; entsprechend 3,2 % Feststoff bezogen auf CEM I) eingearbeitet und der Durchmischungsprozess 25 Minuten bei 2 000 UpM fortgeführt. Hierdurch wurde eine trockene, rieselfähige pulverförmige Zusammensetzung erhalten, die mit 0,5 g Tylose H 20 P als Zusatzmittel und 700 g Sand als Zuschlagstoff zu einer fertigen Trockenmischung für fließfähige Mörtel verarbeitet wurde. L2 .
Ein feinteiliges mineralisches Trägermaterialgemisch bestehend aus 250 g Zement (CEM I 52,5 R, Fa. Milke) und 120 g Kalksteinmehl (CalcicoU W 12) sowie 700 g Sand als Zuschlagstoff wurden auf 45 °C vorgewärmt und in einen Taumelmischer (Bachofen AG, Basel) gegeben. Zu dieser Mischung wurden dann 32 g Melment L 10 als wasserlösliches Polymer ( 25 %ige wässrige Lösung, SKW Trostberg AG; entsprechend 3,2 % Feststoff bezogen auf CEM I) dosiert und der Mischprozess 75 Minuten fortgeführt. Die so erhaltene trockene, rieselfähige Mischung wurde mit 15 g Kunststoff-Dispersionspulver vergütet.
Beispiel 2
Normmörtelmischung
450 g Zement (CEM I 42,5 R, Fa. Schwenk) als Trägermaterial wurden in einem Dissolver vorgelegt und bei 2 000 UpM mit 22,5 g Melment L 17 G als wasserlösliches Polymer (40 %ige wässrige Lösung, SKW Trostberg AG; entsprechend 2,0 % Feststoff bezogen auf CEM I) versetzt. Aus dem Durchmischungsprozess, der 25 Minuten bei 2 000 UpM fortgeführt wurde, erhielt man eine trockene, rieselfähige pulverförmige Zusammensetzung, zu der abschließend 1 350 g Normsand gemischt wurden.
Vergleichsbeispiele
Beispiel 1 Trockenmörtelmischung bestehend aus: 250 g CEM I 52,5 R, Fa. Milke 120 g Kalksteinmehl (CalcicoU W 12) 700 g Sand 8 g Melment F 17 G (entspricht 3,2 % bezogen auf CEM I) 0,5 g Tylose H 20 P Beispiel 2
Trockenmörtelmischung bestehend aus: 250 g CEM I 52,5 R, Fa. Milke 120 g Kalksteinmehl (CalcicoU W 12) 700 g Sand 8 g Melment F 10 (entspricht 3,2 % bezogen auf CEM I) 15 g Kunststoff-Dispersionspulver Beispiel 3
Normmörtelmischung nach EN-196 bestehend aus: 450 g CEM I 42,5 R, Fa. Schwenk 1350 g Normsand 9 g Melment F 17 G (entspricht 2,0 % bezogen auf CEM I)
Untersuchungsergebnisse:
Die erfindungsgemäßen Trockenmischungen für fließfähige Mörtel (Erfindungsbeispiele 1.1 und 1.2) und die Normmörtelmischung (Erfindungsbeispiel 2) sowie die Vergleichsbeispiele 1 bis 3 wurden auf ihre anwendungstechnischen Eigenschaften hin untersucht. Dazu wurde zum einen bei den Trockenmörtelmischungen ein Fließmaß in Anlehnung an die UEATC (franz. Norm) bestimmt und zum anderen für die Normmörtelmischungen (Erfindungsbeispiel 2 und Vergleichsbeispiel 3) das Ausbreitmaß nach EN-196:
Figure imgf000012_0001
W/Z = 0,61
*1 W/Z = 0,39 (Ausbreitmaß ohne Fließmittel 15,5 cm bei W/Z = 0,5)

Claims

Ansprüche
1. Pulverförmige Zusammensetzung auf der Basis von wasserlöslichen Polymeren, dadurch gekennzeichnet, dass sie a) 5 bis 95 Gew.-% eines wasserlöslichen Polymers, das aus Sulfonaten des Lignins und/oder sulfonierten Melamin-, Naphthalin- und/oder Keton-Formaldehyd- Kondensationsprodukten aufgebaut ist, und b) 5 bis 95 Gew.-% eines feinteiligen mineralischen Trägermaterials enthält.
2. Zusammensetzung nach Anspruch 1 , dadurch gekennzeichnet, dass das feinteilige mineralische Trägermaterial eine spezifische Oberfläche von 0,01 bis 500 m2/g (nach BET gemäß DIN 66 131) aufweist.
3. Zusammensetzung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Trägermaterial ausgewählt ist aus der Gruppe Calciumcarbonat, Dolomit, Quarzmehl, Quarzsand, Silicastaub,
Cristoballit, Kieselsäure, Tone, Tonmineralien, Aluminiumsilicate (wie z. B. Bentonite, Talk, Glimmer, Kaoline, Schiefermehl), Bimsmehl, Ziegelmehl, Titandioxid, Tonerden, Bariumsulfat, Flugaschen, Hüttensand/Hochofenschlacke, Portlandzement, Portlandzement mit Zumahlstoffen (CEM II und CEM III), Tonerdezemente, Gips, Anhydrit,
Halbhydrat, Kalk sowie Gemische aus diesen Materialien.
4. Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das mineralische Trägermaterial in Kombination mit organischen Zusätzen wie Cellulosepulvem bzw. -fasern sowie
Pulvern bzw. Fasern organischer Polymere verwendet wird.
5. Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Trägermaterial eine mittlere Teilchengröße von 0,1 bis 1000 / m aufweist.
6. Verfahren zur Herstellung der Zusammensetzung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das wasserlösliche Polymer, vorzugsweise unmittelbar nach dem Polymerisations- Herstellungsprozess, in das mineralische Trägermaterial eingebracht wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Polymer in Form einer wässrigen Lösung in mindestens einem Schritt, ggf. nach Zwischentrocknung, in das mineralische Trägermaterial eingearbeitet wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die wässrige Lösung des Polymer vor dem/den Einarbeitungsschritt(en) zwischengetrocknet wird.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass man das wasserlösliche Polymer auf ein vorgewärmtes mineralisches Trägermaterial bei 70 bis 150 °C aufsprüht.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass man bei einem Trägermaterial mit einer porösen Struktur Mischer mit geringen Scherkräften, wie z. B. Freifallmischer, einsetzt.
11. Verwendung einer Zusammensetzung nach einem der Ansprüche 1 bis 5 in Baustoffen, in einer Menge von 0,05 bis 5 Gew.-% an Polymer bezogen auf das Gesamtgewicht des Baustoffs.
12. Verwendung nach Anspruch 11 , dadurch gekennzeichnet, dass man als Baustoffe Bitumenprodukte, auf hydraulisch abbindenden Bindemitteln wie Zement bzw. latent hydraulischen Bindemitteln basierende Baustoffe, Gips-, Anhydrit- oder sonstige Calciumsulfat- basierende Baustoffe, keramische Massen, Feuerfestmassen,
Olfeldbaustoffe und dispersionsbasierende Baustoffe oder Mischungen davon einsetzt.
13. Verwendung nach einem der Ansprüche 11 und 12, dadurch gekennzeichnet, dass die pulverförmigen Zusammensetzung mit anderen Baustoffadditiven und Fullstoffabmischungen kombiniert wird.
14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, dass die anderen Baustoffadditive aus Zusatzstoffen, wie z. B. Gesteinsmehl, puzzolanische und/oder latent hydraulische Zusätze, und
Zusatzmitteln, wie z. B. Kunststoffdispersionen, Wasserretentionsmittel, Verdickungsmittel, Verzögerer, Beschleuniger, Luftporenbildner, Entschäumer und Netzmittel, bestehen.
15. Baustoffgemisch, bevorzugt Trockenmischung für fließfähige Mörtel, enthaltend a) 10 bis 50 Gew.-% der pulverförmigen Zusammensetzung nach einem der Ansprüche 1 bis 5, b) 20 bis 60 Gew.-% an Zusatzstoffen, c) 30 bis 70 Gew.-% an Zuschlagstoffen, d) ggf. bis 25 Gew.-% an Zusatzmitteln, e) ggf. bis 10 Gew.-% einer Kunststoff-Dispersion und f) ggf. bis 25 Gew.-% eines anorganischen Bindemittels.
PCT/EP2001/001367 2000-02-09 2001-02-08 Pulverförmige zusammensetzung auf der basis von wasserlöslichen polymeren WO2001058994A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001558137A JP2003522091A (ja) 2000-02-09 2001-02-08 水溶性ポリマーを基礎とする粉末状組成物
EP01907511A EP1263854A1 (de) 2000-02-09 2001-02-08 Pulverförmige zusammensetzung auf der basis von wasserlöslichen polymeren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005707.1 2000-02-09
DE2000105707 DE10005707B4 (de) 2000-02-09 2000-02-09 Pulverförmige Zusammensetzung auf der Basis von wasserlöslichen Polymeren

Publications (1)

Publication Number Publication Date
WO2001058994A1 true WO2001058994A1 (de) 2001-08-16

Family

ID=7630339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/001367 WO2001058994A1 (de) 2000-02-09 2001-02-08 Pulverförmige zusammensetzung auf der basis von wasserlöslichen polymeren

Country Status (5)

Country Link
US (1) US20030004246A1 (de)
EP (1) EP1263854A1 (de)
JP (1) JP2003522091A (de)
DE (1) DE10005707B4 (de)
WO (1) WO2001058994A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134080A1 (en) * 2005-06-15 2006-12-21 Solvay (Société Anonyme) Use of particles of calcium carbonate in the production of construction materials
WO2007008711A2 (en) * 2005-07-08 2007-01-18 George Mason University Synthetic nanoparticle soil materials
EP2423265A1 (de) * 2010-08-24 2012-02-29 Omya Development AG Verfahren zur Herstellung von Zement-, Mörtel-, Betonzusammensetzungen, die einen Füllstoff auf Calciumcarbonat-Basis enthalten, der mit einem Superweichmacher (vor)behandelt wurde, erhaltene Zusammensetzungen und Zementprodukte und deren Anwendungen
CN102875067A (zh) * 2012-08-25 2013-01-16 马鞍山豹龙新型建材有限公司 一种含有改性纳米矿物粉的加气砖
CN103626442A (zh) * 2012-08-23 2014-03-12 双辽市国锋水泥制品有限公司 粉煤灰蒸压砖砌筑专用砂浆及制备方法
CN104628332A (zh) * 2015-01-19 2015-05-20 霍邱皋新建材有限公司 一种节能环保的防裂免烧空心砖及其制备方法
RU2574513C2 (ru) * 2010-08-24 2016-02-10 Омиа Интернэшнл Аг Способ изготовления композиций цемента, строительных растворов, бетона, содержащих наполнитель на основе карбоната кальция, (предварительно) обработанный суперпластификатором, полученные композиции и цементные продукты и их применение
CN108275974A (zh) * 2018-01-11 2018-07-13 中国恩菲工程技术有限公司 透水砖及利用飞灰制备透水砖的方法
CN110922154A (zh) * 2019-12-16 2020-03-27 湖南昌迅科技环保股份有限公司 一种石膏基保温板及其制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050014002A1 (en) * 2003-07-15 2005-01-20 Ramesh Varadaraj Lignin-solids compositions
CN1878736A (zh) * 2003-10-03 2006-12-13 新南创新有限公司 由飞灰制造制品
US7347895B2 (en) * 2004-09-16 2008-03-25 United States Gypsum Company Flexible hydraulic compositions
DE102004060748A1 (de) * 2004-12-15 2006-06-22 Bruno Lampka Mörtel
DE102005060947A1 (de) 2005-12-20 2007-06-28 Construction Research & Technology Gmbh Pulverförmige Polykondensationsprodukte
US20080051502A1 (en) * 2006-08-22 2008-02-28 Derosa Gregory Soil amendment composition for athletic fields and method of making the same
US9302448B2 (en) 2006-08-23 2016-04-05 United States Gypsum Company Flexible cementitious membrane composite and associated crack-isolation floor systems
CA2735603A1 (en) * 2008-09-16 2010-03-25 United States Gypsum Company Electrical heater with a resistive neutral plane
CN101575418B (zh) * 2009-06-19 2011-06-22 华南理工大学 一种高磺化度高分子量木质素基高效减水剂及其制备方法
GB2490166B (en) * 2011-04-21 2015-11-25 Fumi Minerals Ltd Weighting agent for use in subterranean wells
EP2548978A1 (de) 2011-07-21 2013-01-23 Clariant S.A., Brazil Bindemittelzusammensetzung zur Agglomeration von Feinmineralien und Pelletierungsverfahren, der diese Zusammensetzung verwendet
CN103130462A (zh) * 2013-03-03 2013-06-05 马龙同欣建筑材料有限公司 一种新型免烧砖及其生产工艺
CN103359991B (zh) * 2013-07-04 2014-10-29 陕西理工学院 一种夹心结构的建筑垃圾保湿砖的制备方法
KR101402853B1 (ko) * 2013-12-02 2014-06-02 주식회사 강탄산업 콘크리트 구조물 표면 처리제 조성물 및 표면처리방법
JP6975157B2 (ja) * 2016-09-23 2021-12-01 日本製紙株式会社 セメント組成物用添加剤及びセメント組成物
CN107586083A (zh) * 2017-09-19 2018-01-16 常州朋悦纺织品有限公司 一种瓷砖粘结专用水泥基粘结剂
CN108821731A (zh) * 2018-07-20 2018-11-16 张莉敏 一种节能环保建筑材料及其制备方法
CN110316986A (zh) * 2019-08-21 2019-10-11 山东鲁碧建材有限公司 一种镁基胶凝材料及其制备方法
CN111943634A (zh) * 2020-08-11 2020-11-17 苏州鑫銮极泰建筑材料有限公司 适用于多种墙体抹灰的预拌砂浆及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH493439A (de) * 1966-02-11 1970-07-15 Sueddeutsche Kalkstickstoff Baumaterialgemisch
CH533657A (de) * 1970-03-10 1973-02-15 Sueddeutsche Kalkstickstoff Bindemittel
FR2221420A1 (en) * 1973-03-17 1974-10-11 Sueddeutsche Kalkstickstoff Cement-based flooring composition - contains an amino-s-triazine condensate
JPH07247152A (ja) * 1994-03-10 1995-09-26 Nippon Paper Ind Co Ltd コンクリートの製造法
DE19603805A1 (de) * 1996-02-02 1997-08-07 Dotternhaus Portland Zement Bindemittelmischung zur Herstellung mineralischer hüttensandfreier Dichtwandmassen und Verfahren zur Herstellung dieser Bindemittelmischung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919451A (en) * 1973-07-09 1975-11-11 Rohm & Haas Method for finishing leather and leather substitutes
JP3266674B2 (ja) * 1992-11-19 2002-03-18 クミアイ化学工業株式会社 植物成長調整剤組成物
US6017562A (en) * 1997-04-28 2000-01-25 Arch Chemicals, Inc. Non-spherical and non-platelet crystalline forms of pyrithione salts
US5895116A (en) * 1997-08-25 1999-04-20 W.R. Grace & Co. -Conn. Mobile admixture product manufacturing and delivery process and system
AU9585698A (en) * 1997-09-30 1999-04-23 Bj Services Company Multi-functional additive for use in well cementing
US6372037B1 (en) * 2000-05-12 2002-04-16 Lignotech Usa, Inc. Set retarders for foamed cements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH493439A (de) * 1966-02-11 1970-07-15 Sueddeutsche Kalkstickstoff Baumaterialgemisch
CH533657A (de) * 1970-03-10 1973-02-15 Sueddeutsche Kalkstickstoff Bindemittel
FR2221420A1 (en) * 1973-03-17 1974-10-11 Sueddeutsche Kalkstickstoff Cement-based flooring composition - contains an amino-s-triazine condensate
JPH07247152A (ja) * 1994-03-10 1995-09-26 Nippon Paper Ind Co Ltd コンクリートの製造法
DE19603805A1 (de) * 1996-02-02 1997-08-07 Dotternhaus Portland Zement Bindemittelmischung zur Herstellung mineralischer hüttensandfreier Dichtwandmassen und Verfahren zur Herstellung dieser Bindemittelmischung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 01 31 January 1996 (1996-01-31) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134080A1 (en) * 2005-06-15 2006-12-21 Solvay (Société Anonyme) Use of particles of calcium carbonate in the production of construction materials
EP1893546B1 (de) 2005-06-15 2019-12-25 Imertech Sas Verwendung von calciumcarbonatpartikeln in der herstellung von baumaterialien
WO2007008711A2 (en) * 2005-07-08 2007-01-18 George Mason University Synthetic nanoparticle soil materials
WO2007008711A3 (en) * 2005-07-08 2008-01-17 Univ George Mason Synthetic nanoparticle soil materials
RU2574513C2 (ru) * 2010-08-24 2016-02-10 Омиа Интернэшнл Аг Способ изготовления композиций цемента, строительных растворов, бетона, содержащих наполнитель на основе карбоната кальция, (предварительно) обработанный суперпластификатором, полученные композиции и цементные продукты и их применение
US9133056B2 (en) 2010-08-24 2015-09-15 Omya International Ag Process for the preparation of cement, mortars, concrete compositions containing a calcium carbonate-based filler (pre)—treated with a superplasticizer, compositions and cement products obtained and their applications
WO2012025813A1 (en) * 2010-08-24 2012-03-01 Omya Development Ag Process for the preparation of cement, mortars, concrete compositions containing a calcium carbonate - based filler (pre) -treated with a superplasticizer, compositions and cement products obtained and their applications
RU2621784C1 (ru) * 2010-08-24 2017-06-07 Омиа Интернэшнл Аг Цементная композиция
US9963387B2 (en) 2010-08-24 2018-05-08 Omya International Ag Process for the preparation of cement, mortars, concrete compositions containing a calcium carbonate—based filler (pre)—treated with a superplasticizer, compositions and cement products obtained and their applications
EP2423265A1 (de) * 2010-08-24 2012-02-29 Omya Development AG Verfahren zur Herstellung von Zement-, Mörtel-, Betonzusammensetzungen, die einen Füllstoff auf Calciumcarbonat-Basis enthalten, der mit einem Superweichmacher (vor)behandelt wurde, erhaltene Zusammensetzungen und Zementprodukte und deren Anwendungen
CN103626442A (zh) * 2012-08-23 2014-03-12 双辽市国锋水泥制品有限公司 粉煤灰蒸压砖砌筑专用砂浆及制备方法
CN102875067A (zh) * 2012-08-25 2013-01-16 马鞍山豹龙新型建材有限公司 一种含有改性纳米矿物粉的加气砖
CN104628332A (zh) * 2015-01-19 2015-05-20 霍邱皋新建材有限公司 一种节能环保的防裂免烧空心砖及其制备方法
CN108275974A (zh) * 2018-01-11 2018-07-13 中国恩菲工程技术有限公司 透水砖及利用飞灰制备透水砖的方法
CN110922154A (zh) * 2019-12-16 2020-03-27 湖南昌迅科技环保股份有限公司 一种石膏基保温板及其制备方法

Also Published As

Publication number Publication date
JP2003522091A (ja) 2003-07-22
DE10005707B4 (de) 2004-10-14
US20030004246A1 (en) 2003-01-02
EP1263854A1 (de) 2002-12-11
DE10005707A1 (de) 2001-10-31

Similar Documents

Publication Publication Date Title
DE10005707B4 (de) Pulverförmige Zusammensetzung auf der Basis von wasserlöslichen Polymeren
EP1966103B1 (de) Pulverförmige polykondensationsprodukte
EP1236702B1 (de) Wasserglasenthaltende Baustoffmischung
DE10164824B4 (de) Verwendung einer Masse aus Wasser und einer Bindemittelmischung im Feuerfestbereich
DE3920662A1 (de) Verwendung von ethylenoxid/propylenoxid-blockcopolymeren in hydraulisch abbindenden massen sowie die so erhaltenen massen
DE19905488A1 (de) Pulverförmige Polymerzusammensetzungen auf der Basis von Polyethercarboxylaten
EP2462075A1 (de) Zusammensetzung für einen feuerleichtstein mit hohem anorthitanteil
CH678423A5 (de)
EP1608604B1 (de) Pulverförmige baustoffzusammensetzung
WO2016071298A1 (de) Verfahren zur herstellung von granulaten aus zementzusammensetzungen
DE1771962A1 (de) Trockene Polymer-Zementmasse
EP2609055B1 (de) Beschleuniger
EP2313350B1 (de) Verfahren zur entstaubung einer pulverförmigen baustoffzusammensetzung
DE102019213361A1 (de) Verfahren zur Herstellung von hydrothermal gehärteten Poren- oder Schaumbetonformkörpern und mittels des Verfahrens hergestellter Poren- oder Schaumbetonformkörper
DE602004004788T2 (de) Verfahren zur herstellung von stabilisiertem anhydrit iii aus gips und so erhaltenes hydraulisches bindemittel
DE69912487T2 (de) Zusatzmittel für anorganische Bindemittel auf Basis eines hydrogenierten Disaccharids, diese Zusatzmittel enthaltende anorganische Bindemittel und Verfahren zu ihrer Herstellung
EP2313351B1 (de) Pulverförmige baustoffzusammensetzungen enthaltend langkettige dialkylether
EP2695866B1 (de) Modifiziertes rheologieadditiv
WO2010105979A1 (de) Polymermodifizierter zement
EP3700967B1 (de) Sprühtrocknungsverfahren
EP3837323A1 (de) Effizientes netzmittel durch trägerung
DE69817489T2 (de) Verfahren zur Herstellung eines Betonproduktes
DE10124149B4 (de) Selbstnivellierende Anhydritfließestrichmischung
DE10116849C2 (de) Verwendung einer hydraulischen Bindemittelmischung für ein Metallgussverfahren
DE1126792B (de) Trockene Putzmoertelmischung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001907511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10182220

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 558137

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001907511

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001907511

Country of ref document: EP