WO2001025549A1 - Dispositif de delimitation de la surface d'excavation cible pour engin excavateur, support d'enregistrement prevu a cet effet et unite d'affichage - Google Patents

Dispositif de delimitation de la surface d'excavation cible pour engin excavateur, support d'enregistrement prevu a cet effet et unite d'affichage Download PDF

Info

Publication number
WO2001025549A1
WO2001025549A1 PCT/JP2000/006763 JP0006763W WO0125549A1 WO 2001025549 A1 WO2001025549 A1 WO 2001025549A1 JP 0006763 W JP0006763 W JP 0006763W WO 0125549 A1 WO0125549 A1 WO 0125549A1
Authority
WO
WIPO (PCT)
Prior art keywords
target excavation
excavation surface
positional relationship
vehicle body
target
Prior art date
Application number
PCT/JP2000/006763
Other languages
English (en)
French (fr)
Inventor
Kazuo Fujishima
Hiroshi Watanabe
Hiroshi Ogura
Sadahisa Tomita
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP00962975A priority Critical patent/EP1186720A4/en
Priority to JP2001528272A priority patent/JP4024042B2/ja
Priority to US09/857,066 priority patent/US6532409B1/en
Publication of WO2001025549A1 publication Critical patent/WO2001025549A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool

Definitions

  • Target excavation surface setting device for excavating machine for excavating machine, recording medium and display device
  • the present invention relates to a target digging surface setting device for an excavating machine that sets working conditions of a digging machine such as a hydraulic shovel, a recording medium storing a target digging surface setting program for the excavating machine, and a display device used for the target digging surface setting device.
  • a laser reference surface formed by a laser lighthouse installed outside the vehicle body, an external reference such as water thread, etc. are used in combination with a hydraulic excavator, and a surface with a certain depth from the external reference.
  • an excavation area setting device for area restriction excavation control of construction machinery described in Japanese Patent Application Laid-Open No. Hei 9-53253.
  • a laser receiver is installed on a front member, and a vertical displacement caused by the movement of the vehicle body is corrected by a laser to obtain a continuous linear shape.
  • the excavation surface is formed.
  • This excavation area setting device In, the target excavation plane is set with respect to the laser reference plane, and the relationship between the vehicle body and the target excavation plane is set. Disclosure of the invention
  • the depth from the laser reference plane (external reference) set by the setting device to the target excavation plane is determined by the following equation.
  • setting errors are likely to occur because only numerical values are displayed.
  • An object of the present invention is to easily set a target excavation surface when excavating a surface of a predetermined depth continuously over a long distance using an external standard, and it is unlikely to cause a setting error with respect to the external standard.
  • An object of the present invention is to provide a target excavation surface setting device for an excavating machine, a recording medium thereof, and a display device.
  • the present invention sets a target excavation surface in parallel with an external reference installed outside the vehicle body, controls a front device with respect to the target excavation surface,
  • a target excavation surface setting device of an excavating machine capable of continuously excavating along an excavation surface
  • input means for setting the target excavation surface and detection for detecting a state quantity relating to a position and orientation of the front device
  • performing image calculation processing using the positional relationship calculated by the first calculating means, and generating and outputting an image signal indicating a positional relationship between the vehicle body, an external reference, and a target excavation surface.
  • the operator can see not only the positional relationship between the vehicle body and the target excavation surface but also the laser
  • the target excavation surface can be easily set, and setting errors are less likely to occur.
  • the first calculation means uses a signal of the detection means to calculate a positional relationship of the vehicle body with respect to the external reference, and at least the input means Second means for setting a positional relationship between the external reference and a target excavation surface using a signal.
  • the input means includes numerical value input means for inputting a depth from the external standard to the target excavation surface
  • the first calculation means includes: A third calculating means for calculating a positional relationship between the vehicle body and the external reference, using a signal of the detecting means when the device has a predetermined positional relationship with the external reference, and a signal of the numerical value input means.
  • first setting means for setting a positional relationship between the external reference and a target excavation surface.
  • the first calculating means further uses a calculated value of the third calculating means and a set value of the first setting means to determine a positional relationship between the vehicle body and a target excavation surface.
  • the second computing means converts the computed value of the third computing means into a value of a monitor coordinate system set on a display unit of a display device based on the vehicle body.
  • a second conversion unit that performs a process of displaying the positional relationship between the vehicle body and the target excavation surface on the display unit.
  • the input means may be a direct teach instruction operated when a work implement provided in the front device is at a target depth.
  • the first calculating means calculates a positional relationship between the vehicle body and a target excavation surface using a signal of the detecting means when the direct teach instruction means is operated.
  • a fourth calculating means for calculating a positional relationship between the vehicle body and the external reference using a signal of the detecting means when the front device is in a predetermined positional relationship with respect to the external reference; It has a sixth calculating means for calculating the positional relationship between the external reference and the target excavation surface by using the calculated values of the fourth and fifth calculating means.
  • the first calculation means further calculates a positional relationship between the vehicle body and a target excavation surface using a calculation value of the fifth and sixth calculation means.
  • Computing means wherein the second computing means converts the computed value of the fifth computing means into a value of a monitor coordinate system set on a display unit of a display device based on the vehicle body, and A first conversion unit for performing a process of displaying a positional relationship with an external reference on the display unit; and a calculation value of the fourth calculation unit or the seventh calculation unit converted to a value of the monitor coordinate system with respect to the vehicle body.
  • a second converting means for performing a process of converting and displaying the positional relationship between the vehicle body and the target excavation surface on the display unit.
  • the input means includes a means for setting a gradient of the external reference
  • the first calculating means includes the vehicle body and the external reference including a set value of the gradient.
  • the second computing means generates the image signal so as to display the external reference and the target excavation surface according to the gradient.
  • the target excavation surface setting device uses the image signal of the second calculating means to convert the image indicating the vehicle body and the straight line indicating the external reference and the target excavation surface into the positional relationship.
  • the display device further includes a display device for displaying the information.
  • the first arithmetic means is provided in a first control unit, and the second arithmetic means is a second control unit separate from the first control unit. Be prepared for a bird.
  • the present invention sets a target excavation surface in parallel with an external reference installed outside the vehicle body, and controls a front device for the target excavation surface.
  • Target drilling of a drilling machine that enables continuous drilling along the target drilling surface
  • a signal from the detecting means is used to calculate a positional relationship between the vehicle body, the external reference, and the target excavation surface, and an image calculation process is performed using the calculated positional relationship. It is assumed that an image signal for displaying the positional relationship of is generated and output.
  • the present invention sets a target excavation surface in parallel with an external reference installed outside the vehicle body, and controls a front device for the target excavation surface.
  • the display device of the target digging surface setting device of the digging machine which enables continuous digging along the target digging surface, captures a previously calculated image signal indicating the positional relationship between the vehicle body, the external reference, and the target digging surface.
  • FIG. 1 is a diagram showing a target excavation surface setting device of an excavator according to a first embodiment of the present invention, together with a hydraulic drive device of a hydraulic shovel.
  • FIG. 2 is a diagram showing the appearance of a hydraulic shovel to which the present invention is applied, together with a laser lighthouse and a laser reference plane formed thereby.
  • FIG. 3 is a diagram showing the target excavation surface setting device shown in FIG. 1 together with a hardware configuration of a control unit.
  • FIG. 4 is a diagram showing the target excavation surface setting device shown in FIG. 1 together with the processing function of the control unit.
  • FIG. 5 is a configuration diagram of the setting device shown in FIG.
  • FIG. 6 is a block diagram showing the processing functions of the setting / display processing unit by the numerical value input method shown in FIG.
  • FIG. 7 is an explanatory diagram showing dimensions of each part of the hydraulic excavator to which the target excavation surface setting device of the excavating machine of the present invention is applied, a coordinate system to be used, and a relationship between the vehicle body, the laser reference plane, and the target excavation plane.
  • FIG. 8 is an explanatory diagram of a coordinate system used for the display device (monitor) according to the first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of a first display example on the display device of the target excavation surface setting device of the present invention.
  • FIG. 10 is an explanatory diagram showing an excavation method using the target excavation surface setting device and the display device of the present invention.
  • FIG. 11 is a block diagram illustrating processing functions of a setting / display processing unit using a numerical input method, which is used in a target excavation surface setting device of an excavating machine according to a second embodiment of the present invention.
  • FIG. 12 is an explanatory diagram of a coordinate system used for a display device (monitor) according to the second embodiment of the present invention.
  • FIG. 13 is a block diagram illustrating processing functions of a setting / display processing unit using a numerical input method, used in a target excavation surface setting device of an excavating machine according to a third embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of a coordinate system used for a display device (monitor) according to the third embodiment of the present invention.
  • FIG. 15 is a block diagram illustrating processing functions of a setting / display processing unit using a direct teach method used in a target excavation surface setting device of an excavating machine according to a fourth embodiment of the present invention.
  • FIG. 16 is a block diagram illustrating processing functions of a setting / display processing unit using a direct teach method used in a target excavation surface setting device of an excavating machine according to a fifth embodiment of the present invention.
  • FIG. 17 is a block diagram showing processing functions of a setting / display processing unit using a direct touch method used in a target excavation surface setting device of an excavating machine according to a sixth embodiment of the present invention.
  • FIG. 18 is an explanatory diagram of a second display example on the display device of the target excavation surface setting device of the present invention.
  • FIG. 19 is an explanatory diagram of a third display example on the display device of the target excavation surface setting device of the present invention.
  • FIG. 20 is a diagram showing a target excavation surface setting device of an excavating machine according to still another embodiment of the present invention, together with a processing function of a control unit.
  • FIG. 21 is a block diagram showing processing functions of a setting processing unit and a display processing unit of the control unit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 10 show a target excavation surface setting device and a display device thereof for an excavating machine according to a first embodiment of the present invention, in which the present invention is applied to a hydraulic excavator. .
  • a hydraulic excavator includes a hydraulic pump 2, a pump cylinder 3a, a pump cylinder 3b, a bucket cylinder 3c, a swing motor 3d, and a left and right motor driven by hydraulic oil from the hydraulic pump 2.
  • a plurality of hydraulic actuators including the traveling motors 3e and 3f, and a plurality of operating lever devices 4a to 4f provided corresponding to the hydraulic actuators 3a to 3f, respectively.
  • a plurality of flow control valves 5a to 5f which are controlled by the operation lever devices 4a to 4f and control the flow rate of the pressure oil supplied to the hydraulic actuators 3a to 3f, and a hydraulic pump 2
  • the valve has a relief valve 6 that opens when the discharge pressure exceeds a set value, and a control unit 9 that inputs the operation signals of the operation lever devices 4 a to 4 f and controls the flow control valves 5 a to 5 mm.
  • These are hydraulic drive devices that drive the driven members of the hydraulic shovel. Constitute a.
  • the operation lever devices 4 a to 4 f are electric lever devices that output electric signals as operation signals
  • the flow control valves 5 a to 5 f are electrohydraulic converters that convert electric signals into pilot pressure.
  • the control unit 9 inputs operation signals of the operation lever devices 4a to 4f, generates a flow control valve drive signal corresponding to the input signal, and drives and controls the flow control valves 5a to 5f.
  • the hydraulic excavator has a multi-joint type front device 1A including a boom la that rotates vertically, an arm lb, and a packet (work implement) 1c, and an upper rotating body. 1 d and a lower body 1 e composed of a vehicle body 1 B,
  • the base end of the boom 1a of the front device 1A is supported by the front of the upper swing body 1d.
  • the boom 1a, arm 1b, baguette 1c, upper revolving unit 1d and lower traveling unit le in Fig. 2 are the boom cylinder 3a, arm cylinder 3b, bucket cylinder 3c, and swivel shown in Fig. 1, respectively.
  • the excavator as described above is provided with the target excavation surface setting device according to the present embodiment.
  • the target excavation surface setting device is provided at a setter 7 used for setting a target excavation surface to be finished on a straight line, and at each rotation fulcrum of the boom la, the arm 1b, and the baguette 1c.
  • Angle detectors 8a, 8b, and 8c that detect the respective rotation angles as state quantities related to the position and orientation of the vehicle, and receive laser light generated by a laser lighthouse 10a installed outside the vehicle body.
  • the laser receiver 1 O b installed on the side of the arm 1 b, the two-dimensional display monitor (display device) 12 installed at the diagonally forward corner of the driver's seat in the cab, and the control unit 9 described above It is composed of the included processing functions described later.
  • the laser light generated by the laser lighthouse 10a provides a laser reference plane (external reference) R.
  • FIG. 3 shows a hardware configuration of the control unit 9.
  • the control unit 9 includes an input unit 91, a central processing unit (CPU) 92 composed of a microcomputer, a read only memory (ROM) 93, a random access memory (RAM) 94, and an output unit 95.
  • the input unit 91 includes operation signals from the operation lever devices 4a to 4f, instruction signals from the setting device 7 (setting signals and main switch signals), and angles from the angle detectors 8a, 8b, and 8c. Input the signal and the laser reception signal from the laser receiver 10b and perform AZD conversion.
  • the ROM 93 is a recording medium in which a control program (described later) is stored, and the CPU 92 performs predetermined arithmetic processing on a signal taken in from the input unit 91 in accordance with the control program stored in the ROM 93.
  • the RAM 94 temporarily stores numerical values during the operation.
  • the output unit 95 generates an output signal in accordance with the calculation result of the CPU 92, outputs the flow control valves 5a to 5: the signals of the sneak, and outputs the signal of the vehicle 1B and the laser reference to the monitor 12. Display the surface R and the target excavation surface.
  • FIG. 4 is a functional block diagram showing an outline of the control program stored in the ROM 93 of the control unit 9.
  • the control unit 9 sets the target excavation surface and monitors 1 2. Setting for performing display processing to 2
  • the display processing section 11 includes a display processing section 11 and an excavation control section 14 for performing area-limited excavation control.
  • the setting and display processing unit 11 receives the detection signals of the angle detectors 8a, 8b, and 8c, the signal from the setting unit 7, and the signal from the laser receiver 10b, and receives the signal from the hydraulic excavator 1B.
  • the target excavation surface and the laser reference plane are calculated using the x_z coordinate system (described later) set for the target excavation surface, and the hydraulic excavator displayed on the two-dimensional display monitor 12 is set.
  • the target excavation plane and the laser reference plane are coordinate-converted to the values of the fixedly set x m -z m coordinate system (described later), and the composite processing is performed so that they are superimposed and displayed on the schematic diagram of the hydraulic excavator.
  • synthesis processing is performed to display numerical values such as the distance and gradient data between the laser reference plane and the target excavation plane, and the distance in the depth direction between the bucket and the laser reference plane.
  • the excavation control unit 14 generates a command signal for the flow rate control valves 5 a to 5: f based on the target excavation surface set by the setting / display processing unit 11 so as to perform a known region-limited excavation control. I do.
  • the setting device 7 is composed of operation means such as an operation panel or a switch provided on the grip, and includes an up key 7a for setting a depth from the laser reference plane R and a down key 7b. And up key 7c and down key 7d for setting the gradient, direct teach button 7e, and display sections 7f and 7g.
  • the depth from the laser reference plane R can be set by operating the up key 7a and the down key 7b, and the setting result is displayed on the display section 7f. Is done.
  • the target excavation surface with respect to the vehicle body 1B at that time is calculated and set, and the position of the bucket with respect to the laser reference surface R is determined. It is calculated and set as the depth from the laser reference plane.
  • the slope of the laser reference plane and the target excavation plane can be set by operating the up key 7 down key 7 d, and the setting result is displayed on the display unit 7 g.
  • the setting unit 7 outputs the direct teach signal or the excavation depth signal and the gradient signal of the excavation surface input by the operation to the setting / display processing unit 11.
  • the processing function of (1) is for the case of the numerical value input method, and the conversion into the monitor coordinates is performed based on the body 1B of the hydraulic shovel.
  • FIG. 6 is a block diagram showing the processing function of the setting / display processing unit 11.
  • the setting / display processing unit 11 includes a bucket toe coordinate calculator 11 a, a vehicle body and a laser reference.
  • Surface positional relation calculation unit 11b positional relation (depth) between laser reference plane and target excavation plane storage unit 11c, positional relation calculation between car body and target excavation plane Storage unit 11d, car body Calculation unit 11 e for converting the positional relationship between the laser reference plane and the laser reference plane to monitor coordinates
  • calculation unit 11 f for converting the positional relationship between the vehicle body and the target excavation surface to monitor coordinates, and image generation calculation for the laser reference plane It has the functions of a unit 1lg, a target excavation surface image generation operation unit 1lh, a set value display operation unit 11i, and a vehicle body image generation operation unit 11j.
  • the packet calculation section 11a of the bucket toe Based on the Xz coordinate system set for the vehicle body 1B shown in FIG. 7, the dimensions of each part, and the detection signals of the angle detectors 8a, 8b, and 8c, the packet calculation section 11a of the bucket toe
  • the coordinates (Pvx, Pvz) of the toe's X-z coordinate system are calculated from the following equations (1) and (2).
  • LV Bucket length (distance between bucket rotation center and bucket toe)
  • LA Arm length (distance between arm rotation center and bucket rotation center)
  • LB Boom length (between boom rotation center and arm rotation center) Distance)
  • the Xz coordinate system is an orthogonal coordinate system whose origin is a predetermined position of the vehicle body 1B of the hydraulic shovel, for example, the center of the bottom surface of the vehicle body 1B.
  • the target excavation surface is indicated by a symbol T.
  • the positional relation calculation unit 11b between the vehicle body and the laser reference plane calculates the coordinate value (PLx, P Lz) of the X-z coordinate system of the laser receiver 10b when the laser light is received by the laser receiver 10b. Then, a linear equation of the laser reference plane R in the Xz coordinate system is calculated from the equation and the gradient / 3 set by the setting unit 7.
  • the coordinates (PLx, PLz) of the X-z coordinate system of the laser light receiver 10b when the laser light is received by the laser light receiver 10b are as follows. Based on the detection signal of 8b, calculation is performed by the following equations (1A) and (2A) in the same manner as the above equations (1) and (2).
  • the linear expression of the laser reference plane R in the Xz coordinate system is a straight line having a gradient of 3 passing through the coordinate values (PLx, PLz), and therefore, the following expression (3) is obtained.
  • the positional relationship (depth) between the laser reference plane and the target excavation plane (depth) storage unit 1lc stores a depth set value Ld for the laser reference plane R set by the setting unit 7.
  • the coordinate plane of the x m — z m coordinate system is composed of a two-dimensional dot matrix.
  • the seat Mark (X ml, Z ml) and the display range of the area surrounded by (Xm2, Z m2).
  • a schematic diagram 12c of the excavator is fixedly displayed on the display unit 20, and the origin O m of the ⁇ m — Z ⁇ 1 coordinate system is aligned with the origin O of the X—z coordinate system of the body 1B. It is set at the center of the bottom of the excavator shown in the schematic diagram 12c.
  • the scale K x ml Z X l as in the calculation unit 11 e
  • the linear expression of the target excavation surface T is expressed as follows in the x m — z m coordinate system.
  • Image generation operation unit 1 1 g of the laser reference plane a linear expression of the laser reference plane R obtained by the arithmetic unit 1 1 e, x m of the display unit 20 - image signal to be displayed as a straight line on the z m coordinate plane Is generated and output, and the straight line of the laser reference plane R is displayed on the display unit 20 of the monitor 12 as shown by a broken line 12a in FIG.
  • the target excavation plane image generation calculation unit 1 lh generates and outputs an image signal for displaying the straight line of the target excavation plane T obtained by the calculation unit 11 f on the x m — z m coordinate plane of the display unit 20. Then, the straight line of the target excavation plane T is displayed on the display unit 20 of the monitor 12 as shown by a solid line 12b in FIG.
  • the set value display calculation unit 1 1 i is the slope 3 of the target excavation plane T, the distance Ld in the depth direction between the laser reference plane R and the target excavation plane T, and the distance LPv from the laser reference plane R to the bucket toe. Input and calculate data such as.
  • the equation for calculating the distance LPv is as shown in the following equation (8).
  • the display calculation unit 11 i includes a gradient (set slope) ⁇ of the target excavation plane T, a distance (set depth) Ld between the laser reference plane R and the target excavation plane ⁇ , and a laser reference plane R from distance to Baketsuto toe (the toe depth) LPV, x m of the display unit 20 - z m performs processing for generating and outputting an image signal to be displayed numerically on a coordinate plane, they 9 For example, it is displayed on the upper left of the display unit 20 of the monitor 12.
  • the positional relationship between the vehicle body 1B, the target excavation surface T, and the laser reference surface R and the numerical values attached thereto are displayed on the display unit 20 of the monitor 12 as shown in FIG.
  • the laser lighthouse 10a is operated to set the laser reference plane R so as to be parallel to the target excavation plane to be set.
  • the operator inputs and sets the depth (height) Ld from the laser reference plane R to the target excavation plane T using the keys 7a and 7b of the setting device 7 shown in FIG. I do.
  • the storage unit 11 c stores the depth setting value Ld of the target excavation plane T with respect to the laser reference plane R set by the setting unit 7.
  • the operator further sets the gradient i3 using the keys 7c and 7d of the setting device 7.
  • Step 3 Next, as shown in FIG. 10, the operator moves the front device 1A so that the laser receiver 10b attached to the arm 1b receives the laser beam.
  • the calculation unit lib sets the coordinates (PLx, PLz) of the X-z coordinate system of the laser receiver 10b when the laser light is received by the laser receiver 10b, and the setting unit. From the gradient 0 set by 7, a linear expression of the laser reference plane R in the Xz coordinate system of the vehicle body 1 B is calculated from Expression (3). Further, the calculation and storage unit 1 Id stores the positional relationship between the vehicle body 1 B and the laser reference plane R calculated by the calculation unit 11 b and the depth setting value L d stored in the storage unit 11 c. Then, the primary expression of the target excavation surface T in the Xz coordinate system of the vehicle body 1B is calculated from Expression (4) and stored.
  • the procedure 2 and the procedure up to the calculation of the linear expression of the laser reference plane R in the procedure 3 may be performed after the procedure 3.
  • the display unit 20 of the monitor 12 displays the vehicle 1 B, the laser reference plane R, and the target excavation plane T are displayed as a schematic diagram 12c, a broken line 12a, and a solid line 12b, respectively, and the slope i3 of the target excavation plane T and the target relative to the laser reference plane R.
  • the set depth L d of the excavated surface T and the distance L Pv from the laser reference surface R to the bucket toe are displayed on the upper left of the display section 20.
  • the operator visually recognizes and recognizes the positional relationship between the vehicle body and the target excavation surface and the positional relationship between the laser reference surface and the target excavation surface by looking at the display on the monitor 12, and the setting state is appropriate. Can be confirmed.
  • the operator operates the front device 1A and automatically excavates the target excavation surface T stored in the calculation-storage unit 11d by the area-limited excavation control.
  • the vehicle body 1B is moved as shown in FIG.
  • Step 7 After moving the vehicle body, the operator moves the front device 1A so that the laser receiver 10b attached to the arm lb receives laser light as shown in FIG. With this operation, the calculation unit lib calculates the positional relationship between the vehicle body 1B and the laser reference plane R, and corrects a change in the vehicle body position caused by the movement of the vehicle body 1B.
  • the calculation and storage unit 1 Id is calculated by the calculation unit 1 From the positional relationship between the vehicle body 1 B and the laser reference plane R calculated by 1 b and the depth setting value L d stored in the storage unit 1 1 c, the X-z coordinate system of the vehicle body 1 B is used.
  • the primary equation of the target excavation surface T is calculated from the above equation (4) and updated and stored.
  • Step 8 a change in the position of the vehicle body 1B with respect to the laser reference plane R due to the movement of the vehicle body 1B is corrected, and the target having a predetermined positional relationship with respect to the laser reference plane R is corrected.
  • the area-limited excavation control can be continuously performed on the excavated surface T.
  • the operator operates the front device 1A, and automatically excavates the target excavation surface T stored in the calculation / storage unit 11d by the area limitation excavation control.
  • steps 6 to 8 are repeated to automatically excavate a plane having a predetermined depth and gradient with respect to the laser reference plane R with respect to the laser reference plane R while moving the vehicle body 1B.
  • the lines 12a and 12b indicating the target excavation plane T and the laser reference plane R are displayed on the monitor 12 installed in the cab. Since it is superimposed and displayed on the schematic diagram 12c, not only the positional relationship between the vehicle body 1B and the target excavation surface T, but also the positional relationship between the laser reference surface R and the target excavation surface T can be visually recognized.
  • the target excavation surface T can be easily set without erroneous setting of the target excavation surface when excavating continuously over a long distance to a surface of a predetermined depth.
  • the body 1B and the target excavation plane ⁇ are displayed to the operator in an easy-to-understand manner, and the setting mistake of the target excavation plane ⁇ can be prevented more reliably.
  • the processing function of the setting / display processing unit 11A according to the second embodiment of the present invention will be described using FIG. 11 and FIG. This processing function is based on the numerical input method, and performs conversion into monitor coordinates with reference to the target excavation surface.
  • FIG. 11 the same reference numerals as those in FIG. 6 indicate the same parts.
  • the configuration of the hydraulic shovel according to the present embodiment is the same as that shown in FIGS. 1 and 2, and the hardware configuration of the control unit according to the present embodiment is also the same as that shown in FIG.
  • the setting and display processing unit 11 A power is different from the setting and display processing unit 11 shown in FIG. 6 in that the calculation units 11 e to l 1 h and 11 j in FIG. Calculation unit 1lk for converting the positional relationship between the laser reference plane and the target excavation surface to monitor coordinates, calculation unit 1lAf for converting the positional relationship between the vehicle body and the target excavation surface to monitor coordinates, and image generation of the laser reference plane
  • An arithmetic unit 11 Ag, an image generation operation unit 11 Ah of a target excavation surface, and an image generation operation unit 11Aj of a vehicle body are provided.
  • the calculation unit 11k for converting the positional relationship between the laser reference plane and the target excavation plane into monitor coordinates uses a depth setting value Ld of the target excavation plane T with respect to the laser reference plane R stored in the storage unit 11c. Then, a linear expression of a laser reference plane in an intermediate rectangular coordinate system which is set with a predetermined position on the target excavation plane T (for example, an intersection between the X axis of the Xz coordinate system and the target excavation plane T) as an origin is calculated. Then the linear equation, x m on the display portion 2 0 of the monitor 12 shown in FIG. 12 - is converted into the coordinate values of z m coordinate system.
  • the display unit 20 displays a line 12 b of the goals excavating surface T, x m - z m origin ⁇ m of the coordinate system, the line 12 corresponds to the predetermined position on the target excavation plane T b It is fixedly set to the upper position.
  • Xm- z m seat method of coordinate transformation into target system is the same as that described in the calculating portion 1 1 e of the first embodiment.
  • the calculation unit 1 ⁇ ⁇ for converting the positional relationship between the vehicle body and the target excavation surface into monitor coordinates uses a linear expression of the target excavation surface ⁇ ⁇ ⁇ ⁇ in the ⁇ _ ⁇ coordinate system of the vehicle body 1 ⁇ calculated by the operation unit 1 1 d, and It calculates the position of the vehicle body 1 beta in the coordinate system, and converts the value to a coordinate value of xm- z m coordinate system on the display unit 20 shown in FIG. 12.
  • the position of the vehicle body 1B the position of the origin ⁇ ⁇ ⁇ of the X-z coordinate system is used.
  • the image generation operation unit 11 Ag of the laser reference plane is a laser beam obtained by the operation unit 11 k. Generates and outputs an image signal that displays the linear equation of the reference plane R as a straight line on the X m—Z m coordinate plane of the display unit 20, and processes the straight line of the laser reference plane R to the monitor 12. Display on display unit 20.
  • the vehicle body image generation calculation unit 1 l A j generates an image of the hydraulic excavator body 1 B in a schematic diagram, and displays the generated schematic diagram on the x m — z m coordinate plane of the display unit 20.
  • the image signal to be displayed at the coordinate position calculated by l A f is generated and output, and a schematic diagram thereof is displayed on the display unit 20 of the monitor 12.
  • Image generation operation unit 1 l A h of the target excavation plane, with a gradient / 3 set by the setting device 7, the display unit 2 0 x m - slope passing through the origin ⁇ m of z m-coordinate) of 3 linear Performs processing to generate and output image signals, and displays the straight line of the target excavation surface T on the display unit 20 of the monitor 12.
  • the positional relationship between the vehicle body 1B, the target excavation surface T, and the laser reference surface R is displayed on the display unit 20 of the monitor 12 as shown in FIG.
  • FIG. 13 a processing function of the setting / display processing unit 11B according to the third embodiment of the present invention will be described with reference to FIG. 13 and FIG.
  • This processing function is for the case of the numerical input method, and performs conversion into monitor coordinates with reference to the laser reference plane.
  • FIG. 13 the same reference numerals as those in FIG. 6 indicate the same parts.
  • the configuration of the hydraulic shovel according to the present embodiment is the same as that shown in FIGS. 1 and 2, and the hardware configuration of the control unit according to the present embodiment is also the same as that shown in FIG.
  • the setting / display processing unit 11 B differs from the setting / display processing unit 11 shown in FIG. 6 in that the calculation units 11 e to l 1 h and 11 j in FIG. 6 are replaced.
  • An image generation operation unit 11Bj, an image generation operation unit 11Bh for a target excavation surface, and an image generation operation unit 11Bg for a laser reference surface are provided.
  • the calculation unit 11 Be for converting the positional relationship between the vehicle body and the laser reference plane into monitor coordinates is a linear expression of the laser reference plane R in the X-z coordinate system of the vehicle body 1 B calculated by the calculation unit 11 b.
  • the position of the origin ⁇ of the Xz coordinate system is used as the position of the vehicle body 1B. Further, in FIG.
  • the line 12 a of the laser reference plane R is displayed on the display unit 20, x m - z m origin ⁇ m of the coordinate system, the line 12 corresponding to the predetermined position on the laser reference plane R Fixedly set at the position above a. x m - a method of coordinate transformation to z m coordinate system are the same as described in the calculating portion 11 e of the first embodiment.
  • the arithmetic unit 11 Bk for converting the positional relationship between the laser reference plane and the target excavation plane into monitor coordinates uses the depth setting value Ld of the target excavation plane T with respect to the laser reference plane R stored in the storage unit 11 c. calculates a linear expression of the target excavation plane T in the middle of the orthogonal coordinate system, further the linear equation, x m on the display unit 20 of the monitor 12 shown in FIG. 14 - is converted into the coordinate values of z m coordinate system .
  • Image generation operation unit B j of the vehicle body an image of the vehicle body 1 B of the hydraulic excavator generated by the schematic diagram, the generated schematic diagram x m of the display unit 20 - in z m coordinate plane of the arithmetic unit 1 1 Be Processing for generating and outputting an image signal to be displayed at the calculated coordinate position is performed, and a schematic diagram thereof is displayed on the display unit 20 of the monitor 12.
  • the target excavation plane image generation operation unit 1 l Bh outputs an image signal that displays the linear expression of the target excavation plane T obtained by the operation unit 1 l Bk as a straight line on the Xm-z m coordinate plane of the display unit 20.
  • the processing of generation and output is performed, and the straight line of the target excavation surface T is displayed on the display unit 20 of the monitor 12.
  • the positional relationship between the vehicle body 1B, the target excavation surface T, and the laser reference surface R is displayed on the display unit 20 of the monitor 12, as shown in FIG.
  • the configuration of the hydraulic shovel according to the present embodiment is the same as that shown in FIGS. 1 and 2, and the hardware configuration of the control unit according to the present embodiment is also the same as that shown in FIG.
  • the setting / display processing section 11 C differs from the setting / display processing section 11 shown in FIG. 6 in that the positional relationship (depth) between the laser reference plane and the target excavation plane in FIG. 6 is stored.
  • Positional relation (depth) calculation ⁇ Storage unit 1 1 t is provided.
  • the storage unit 11 s stores the X-z coordinate system of the baguette toe calculated by the bucket toe coordinate calculation unit 11 a when the direct teach signal is input from the setting device 7. From the coordinate values (Pcx, Pcz) of the laser and the gradient 0 of the laser reference plane R set by the setting device 7, the linear expression of the target excavation surface T in the X-z coordinate system of (9) Calculate and store.
  • the storage unit 11 t stores the positional relationship between the vehicle body 1 B and the laser reference plane R calculated by the calculation unit 11 b (laser receiver 10 b
  • the above equation (3) calculated from the coordinate values (PLx, PLz) of the X-z coordinate system of the laser receiver 10 b when the laser beam is received by the laser beam and the gradient) 3 set by the setting device 7 )
  • the calculation formula of the distance Ld in the depth direction is as the following formula (10).
  • the broken line in the figure indicates the flow of processing after the vehicle body has been moved.
  • the primary expression of the laser reference plane R in the x-z coordinate system of the vehicle body 1 B calculated by the calculation unit 1 lb (formula (3) described above), and the laser reference plane R stored in the calculation and storage unit 11 t From the distance Ld and the force in the depth direction of the target excavation surface T and the force, the linear expression of the target excavation surface T in the Xz coordinate system of the vehicle body 1B is calculated from the above-mentioned expression (4).
  • the processing functions of the operation units 11 e to l 1 i are the same as those in the first embodiment shown in FIG.
  • the arithmetic unit 11 f uses the above equation (9) as the primary equation of the target excavation surface T in the X-z coordinate system of the vehicle body 1 B at the first excavation position before the vehicle body movement, and (4) using a formula, a linear expression of the target excavation plane T coordinates x m on the monitor 12 - is converted to z m coordinates.
  • FIGS. 15 and 10 a procedure for setting the target excavation surface by the direct teach method according to the present embodiment and a surface having a predetermined depth and a gradient from the laser reference surface (external reference) R based on the target excavation surface will be described.
  • a processing procedure for continuously excavating the steel will be described. First, the work of setting the target excavation surface and the excavation work at the excavation start position will be described.
  • the operator operates the laser lighthouse 10a to set the laser reference plane R so as to be parallel to the target excavation plane to be set.
  • the operator moves the front device 1A to move the toe of the packet 1c to the point where the toe is to be excavated, and presses the direct teach key 7e shown in FIG. Push. Before and after this, the operator sets the gradient i3 using the keys 7c and 7d of the setting device 7.
  • the arithmetic unit 11a calculates the coordinate values (Pcx, Pcz) of the packet's toe's X-z coordinate system based on the X-z coordinate system and the dimensions of the body 1B shown in FIG. The calculation is performed using equations (1) and (2).
  • the operation 'storage unit 11 s From the coordinates (Pcx, Pcz) of the x-z coordinate system of the baguette toe and the slope of the laser reference plane / 3, the linear expression of the target excavation surface T in the X-z coordinate system of Calculate by equation (9) and store.
  • the operator moves the front device 1A so that the laser light receiver 10b attached to the arm 1b receives the laser beam.
  • the calculation unit lib sets the coordinates (PLx, PLz) of the X-z coordinate system of the laser receiver 10b when the laser light is received by the laser receiver 10b, and the setting unit.
  • a linear expression of the laser reference plane R in the Xz coordinate system of the vehicle body 1B is calculated from Expression (3) based on the gradient / 3 set by 7.
  • the calculation and storage unit 1 1t stores the positional relationship between the vehicle body 1B calculated by the calculation unit 1 1b and the laser reference plane R, and the X of the vehicle 1B stored in the calculation storage unit 11 s.
  • the operations up to calculating the linear expression of the laser reference plane R in steps 2 and 3 may be performed in step 2 after step 3.
  • calculation processing is further performed by the calculation units 11 e to l 1 j.
  • the display unit 20 of the monitor 12 displays the vehicle 1 B and laser reference plane R and target excavation plane T are shown by schematic diagram 12c, broken line 12a and solid line 12b, respectively, and slope of target excavation plane T / 3 and laser reference plane R
  • the set depth L d of the target excavated surface T and the distance L Pv from the laser reference surface R to the bucket toe are displayed on the upper left of the display section 20.
  • the operator visually recognizes and recognizes the positional relationship between the vehicle body and the target excavation surface and the positional relationship between the laser reference surface and the target excavation surface by looking at the display on the monitor 12, and the setting state is appropriate. Can be confirmed.
  • the operator operates the front device 1A to automatically excavate the target excavation surface stored in the calculation / storage unit 11s by the area restriction excavation control.
  • Step 6 When the excavation of the target excavation surface in the predetermined range is completed, the vehicle body 1B is moved as shown in FIG.
  • the operator moves the front device 1A so that the laser receiver 10b attached to the arm lb receives the laser beam, as shown in FIG.
  • the arithmetic unit 1 lb calculates the positional relationship between the vehicle body 1 B and the laser reference plane R, and corrects a change in the vehicle body position caused by the movement of the vehicle body 1 B.
  • the calculation / storage unit 11 s is the vehicle body calculated by the calculation unit 11 b. From the positional relationship between 1 B and the laser reference plane R, and the depth setting value L d stored in the calculation and storage unit 1 1 t, a primary expression of the target excavation plane T in the X-z coordinate system of the vehicle body 1 B Is updated from the above equation (4) and stored.
  • the operator operates the front device 1A and automatically excavates the target excavation surface T stored in the calculation and storage unit 11s by the area limitation excavation control.
  • steps 6 to 8 are repeated to automatically excavate a plane having a predetermined depth and gradient with respect to the laser reference plane R with respect to the laser reference plane R while moving the vehicle body 1B.
  • the calculation unit 1 lb, the calculation unit 11 s and 11 t calculate the positional relationship between the vehicle body 1 B, the laser reference plane R, and the target excavation plane T.
  • the processing for generating and outputting image signals by converting them to tandem coordinates is assumed to be the same as that of the operation units 11 e to l 1 h and 11 j in the first embodiment shown in FIG. .
  • Arithmetic unit 1 le to llh, 1 1 j are for conversion to monitor coordinates on the basis of the vehicle body. However, the conversion into the monitor coordinates may be performed with reference to the target excavation plane or the laser reference plane as in the second and third embodiments.
  • FIGS. 16 and 17 are block diagrams showing processing functions of the setting / display processing unit in such a case.
  • FIG. 16 shows, as a fifth embodiment of the present invention, the setting and display processing unit 11D processing functions when conversion to monitor coordinates is performed with reference to the target excavation surface.
  • FIG. 7 shows a processing function of a setting / display processing unit 11E in a case where conversion into monitor coordinates is performed with reference to a laser reference plane as a sixth embodiment of the present invention.
  • the same reference numerals as those in FIGS. 11 and 15 indicate the same parts.
  • FIG. 17 the same reference numerals as those in FIGS. 13 and 15 indicate the same parts.
  • the display unit 20 of the monitor 12 includes a straight line 12a of the laser reference plane R, a straight line 12b of the target excavation plane T, and a schematic diagram of the body 1B of the excavator.
  • the current bucket tip position 1 is displayed on the display unit 20 screen. 2d is superimposed and a line 12e representing the ground is displayed along the lower traveling body of the vehicle body 1B as an auxiliary line on the screen of the display unit 20.
  • the position of the work implement such as a packet is displayed in a schematic diagram 12d of a bucket, and an inclinometer for detecting the inclination in the longitudinal direction of the vehicle is provided.
  • a line 12 e representing the ground and a schematic diagram 12 a of the vehicle body 1 B are displayed along the lower traveling body of the vehicle body 1 B in an inclined manner according to the detected inclination. Therefore, the current situation, including the current position of work implements, body inclination, and ground conditions, can be more accurately You can figure out.
  • the display processing section is separated from the setting processing section provided in the control unit, and the display processing section is provided in a display processing unit separate from the control unit.
  • FIGS. 20 and 21 members that are the same as those in FIGS. 4 and 6 are denoted by the same reference numerals.
  • control unit 9 F sets a target excavation surface T, and calculates a positional relationship between the body 1 B, the laser reference plane R, and the target excavation surface T. And an excavation control unit 14 for performing excavation control. Further, a display processing unit 11 Fb separate from the control unit 9F is provided.
  • the setting processing unit 11 F a is a bucket toe coordinate calculation unit 11 a, a vehicle body and laser reference plane positional relationship calculation unit 1 lb, and a laser reference plane and a target excavation surface positional relationship.
  • the storage unit 11c has a corner function of calculating the positional relationship between the vehicle body and the target excavation surface.
  • the display processing unit 1 l Fb includes an arithmetic unit 11 e for converting the positional relationship between the vehicle body and the laser reference plane into monitor coordinates, and an arithmetic unit 11 f for converting the positional relationship between the vehicle body and the target excavation surface into monitor coordinates.
  • the functions of the laser reference plane image generation calculation unit 11g, target excavation surface image generation calculation unit 11h, set value display calculation unit 11i, and vehicle body image generation calculation unit 11j Have.
  • the monitor 12 is installed at the diagonally forward corner of the driver's seat in the driver's cab, the control unit 9Fa is installed, for example, at the lower rear of the driver's seat in the driver's cab, and the display processing unit 9b is, for example, Installed in the box.
  • the processing for generating and outputting the image signal is performed by the dedicated processing unit 11 Fb, so that the display processing unit 11 Fb is maintained via the communication satellite.
  • the dedicated processing unit 11 Fb It is easy to have a processing function to generate and output image information of other information such as inspection information, and the display device can be used for multiple purposes.
  • a laser reference plane using a laser beam is used as an external reference. It may be quasi.
  • move the front device so that the toe of the packet touches the water thread press the trigger switch in this state, and detect the angle detectors 8a, 8b, and 8c at that time.
  • the positional relationship between the vehicle body and the laser reference plane may be calculated by the calculation unit 11b using the above.
  • the laser receiver 10b when using the laser reference plane, the laser receiver 10b was installed on the side of the arm, but instead of the laser receiver 10b, the front side of the arm was marked with a panel, paint, etc.
  • the calculation unit lib can calculate the positional relationship between the vehicle body and the laser reference plane as in the case of the water thread.
  • the present invention is not limited to the area-limited excavation control, and may perform other excavation controls when excavating after setting the target excavation surface.
  • the display color and line type are changed visually when drawing the target excavation surface and the external reference surface in those shown in Fig. 9, Fig. 18 or Fig. 19. It may be easier to distinguish them.
  • the operation lever is an electric lever, but may be a hydraulic pilot lever.
  • a goniometer for detecting a rotation angle is used as a means for detecting a state quantity related to the position and orientation of the front device 1A, a stroke of a cylinder may be detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Description

掘削機械の目標掘削面設定装置、 その記録媒体及び表示装置 技術分野
本発明は、 油圧ショベル等の掘削機械の作業条件を設定する掘削機械の目標掘 削面設定装置、 掘削機械の目標掘削面設定プログラムを記録した記録媒体及び目 標掘削面設定装置に用いる表示装置に関する。 背景技術
油圧ショベルでは、 オペレータがブーム等のフロント部材をそれぞれの手動操 作レバ一によって操作しているが、 フロント動作の目視だけから所定深さの溝も しくは所定勾配の法面を正確に掘削しているか否かを判断することは困難である。 そこで、 掘削面の深さや法面の勾配を予め設定し、 この設定された深さや勾配と なるように自動掘削制御するものが知られている。 自動掘削制御をするには、 目 標掘削面を設定する必要がある。 目標掘削面の設定のために 2次元の表示装置を 用いているものとして、 特開昭 6 2 - 1 8 5 9 3 2号公報に記載された掘削機械 の監視装置や、 特開平 5— 2 8 7 7 8 2号公報に記載された掘削機械がある。 特開昭 6 2— 1 8 5 9 3 2号公報や、 特開平 5— 2 8 7 7 8 2号公報に記載さ れた掘削機械では、 車体と目標掘削面とをモニタに画像表示するとともに、 車体 から目標掘削面までの深さや勾配を表示するようにしている。
また、 車体外部に設置されたレーザ灯台により形成されるレ一ザ基準面、 水糸 等の外部基準を利用して油圧ショベルと組み合わせて、 外部基準から一定の深さ •勾配の面を長距離に渡って連続的に掘削する方式として、 例えば、 特開平 9 一 5 3 2 5 3号公報に記載された建設機械の領域制限掘削制御の掘削領域設定装置 がある。
特開平 9 一 5 3 2 5 3号公報に記載された掘削領域設定装置では、 レーザ受光 器をフロント部材に設置し、 車体の移動に伴う上下方向のズレをレーザで補正し て直線状の連続した掘削面を形成する構成となっている。 この掘削領域設定装置 では、 レーザ基準面に対する目標掘削面を設定して、 車体と目標掘削面との関係 を設定するようにしている。 発明の開示
しかしながら、 特開昭 6 2 - 1 8 5 9 3 2号公報や、 特開平 5— 2 8 7 7 8 2 号公報に記載された掘削機械では、 外部基準を用いないものであり、 従って、 外 部基準を表示することもできず、 表示するという考えもないものである。
また、 特開平 9一 5 3 2 5 3号公報に記載された掘削領域設定装置では、 設定 器により設定されたレーザ基準面 (外部基準) から目標掘削面までの深さは、 モ 二夕上に数値表示されるだけであるため、 設定ミスが生じやすいという問題があ つた。
すなわち、 レーザ基準面 (外部基準) を用いる方式では、 レーザ基準面等の外 部基準から一定の深さの面について、 長距離に亘つて、 連続的に掘削を行うが、 そのためには外部基準を用いて目標掘削面の設定を繰り返す必要がある。 従って、 正確な設定をするためには、 オペレータは、 車体と目標掘削面の位置関係だけで なく、 レーザ基準面と目標掘削面の位置関係も把握、 認識する必要がある。 しか しながら、 従来の数値だけ、 又は、 車体と目標掘削面との位置関係だけ表示する 方式では、 レーザ基準面と目標掘削面の位置関係を視覚的に認識し難く、 設定ミ スが生じやすいものである。
本発明の目的は、 外部基準を用い、 所定の深さの面を長距離に亘つて連続的に 掘削する場合の目標掘削面の設定を容易に行え、 外部基準に対し設定ミスを起こ しにくい掘削機械の目標掘削面設定装置、 その記録媒体及び表示装置を提供する ことにある。
( 1 ) 上記目的を達成するために、 本発明は、 車体外部に設置される外部基準 に対して平行に目標掘削面を設定し、 この目標掘削面に対してフロント装置を制 御し、 目標掘削面に沿って連続的に掘削可能とする掘削機械の目標掘削面設定装 置において、 前記目標掘削面を設定するための入力手段と、 前記フロント装置の 位置と姿勢に関する状態量を検出する検出手段と、 前記入力手段及び検出手段の 信号を用い、 前記車体と外部基準と目標掘削面の位置関係を演算する第 1演算手 段と、 前記第 1演算手段で演算した位置関係を用いて画像演算処理を行い、 前記 車体と外部基準と目標掘削面の位置関係を表示する画像信号を生成 ·出力する第
2演算手段とを備えるものとする。
かかる構成で画像表示手段に外部基準面と目標掘削面と車体との位置関係を表 示することにより、 オペレータは、 この表示を見ることにより、 車体と目標掘削 面の位置関係だけでなく、 レーザ基準面と目標掘削面の位置関係を視覚的に把握, 認識して、 設定状態が適切であるか否かを確認することができるので、 外部基準 を用いて、 所定の深さの面まで長距離に亘つて連続的に掘削する場合の目標掘削 面の設定を容易に行え、 設定ミスを起こしにくいものとなる。
( 2 ) 上記 (1 ) において、 好ましくは、 前記第 1演算手段は、 前記検出手段 の信号を用い、 前記外部基準に対する車体の位置関係を演算する第 1手段と、 少 なくとも前記入力手段の信号を用い、 前記外部基準と目標掘削面の位置関係を設 定する第 2手段とを有する。
( 3 ) また、 上記 (1 ) において、 好ましくは、 前記入力手段は、 前記外部基 準から前記目標掘削面までの深さを入力する数値入力手段を含み、 前記第 1演算 手段は、 前記フロント装置が前記外部基準に対し所定の位置関係にあるときの前 記検出手段の信号を用い、 前記車体と外部基準の位置関係を演算する第 3演算手 段と、 前記数値入力手段の信号を用い、 前記外部基準と目標掘削面の位置関係を 設定する第 1設定手段とを有する。
( 4 ) 上記 (3 ) において、 好ましくは、 前記第 1演算手段は、 更に、 前記第 3演算手段の演算値と前記第 1設定手段の設定値を用い、 前記車体と目標掘削面 の位置関係を演算する第 4演算手段を有し、 前記第 2演算手段は、 前記第 3演算 手段の演算値を、 前記車体を基準として表示装置の表示部に設定されるモニタ座 標系の値に変換し、 前記車体と外部基準との位置関係を前記表示部に表示させる 処理を行う第 1変換手段と、 前記第 4演算手段の演算値を前記車体を基準として 前記モニタ座標系の値に変換し、 前記車体と目標掘削面との位置関係を前記表示 部に表示させる処理を行う第 2変換手段とを有する。
( 5 ) また、 上記 (1 ) において、 前記入力手段は、 前記フロント装置に備え られる作業具が目標とする深さにあるときに操作されるダイレクトティーチ指示 手段を含むものであってもよく、 この場合、 前記第 1演算手段は、 前記ダイレク トティーチ指示手段が操作されたときの前記検出手段の信号を用い、 前記車体と 目標掘削面の位置関係を演算する第 4演算手段と、 前記フロント装置が前記外部 基準に対し所定の位置関係にあるときの前記検出手段の信号を用い、 前記車体と 外部基準の位置関係を演算する第 5演算手段と、 前記第 4及び第 5演算手段の演 算値を用い、 前記外部基準と目標掘削面の位置関係を演算する第 6演算手段とを 有するものとなる。
( 6 ) 上記 (5 ) において、 好ましくは、 前記第 1演算手段は、 更に、 前記第 5及び第 6演算手段の演算値を用い、 前記車体と目標掘削面の位置関係を演算す る第 7演算手段を有し、 前記第 2演算手段は、 前記第 5演算手段の演算値を、 前 記車体を基準として表示装置の表示部に設定されるモニタ座標系の値に変換し、 前記車体と外部基準との位置関係を前記表示部に表示させる処理を行う第 1変換 手段と、 前記第 4演算手段又は前記第 7演算手段の演算値を前記車体を基準とし て前記モニタ座標系の値に変換し、 前記車体と目標掘削面との位置関係を前記表 示部に表示させる処理を行う第 2変換手段とを有する。
( 7 ) 更に、 上記 (1 ) において、 好ましくは、 前記入力手段は前記外部基準 の勾配を設定する手段を含み、 前記第 1演算手段は、 前記勾配の設定値も含めて 前記車体と外部基準と目標掘削面の位置関係を演算し、 前記第 2演算手段は、 前 記勾配に応じた前記外部基準と目標掘削面とを表示するよう前記画像信号を生成 する。
( 8 ) また、 上記 (1 ) において、 目標掘削面設定装置は、 前記第 2演算手段 の画像信号を用い、 前記車体を示す画像と前記外部基準及び目標掘削面を示す直 線を前記位置関係で表示する表示装置を更に備える。
( 9 ) また、 上記 (1 ) において、 好ましくは、 前記第 1演算手段は第 1制御 ュニッ卜に備えられ、 前記第 2演算手段は前記第 1制御ュニッ卜と別体の第 2制 御ュニッ卜に備えられる。
( 1 0 ) また、 上記目的を達成するために、 本発明は、 車体外部に設置される 外部基準に対して平行に目標掘削面を設定し、 この目標掘削面に対してフロント 装置を制御し、 目標掘削面に沿って連続的に掘削可能とする掘削機械の目標掘削 面設定プログラムを記録した記録媒体であって、 このプログラムは、 コンビユー 夕に、 前記目標掘削面を設定するための入力手段からの信号と、 前記フロント装 置の位置と姿勢に関する状態量を検出する検出手段からの信号とを用い、 前記車 体と外部基準と目標掘削面の位置関係を演算させ、 この演算した位置関係を用い て画像演算処理を行わせ、 前記車体と外部基準と目標掘削面の位置関係を表示す る画像信号を生成 ·出力させるものとする。
( 1 1 ) 更に、 上記目的を達成するために、 本発明は、 車体外部に設置される 外部基準に対して平行に目標掘削面を設定し、 この目標掘削面に対してフロント 装置を制御し、 目標掘削面に沿って連続的に掘削可能とする掘削機械の目標掘削 面設定装置の表示装置において、 予め演算された前記車体と外部基準と目標掘削 面の位置関係を表示する画像信号を取り込み、 前記車体を示す画像と前記外部基 準及び目標掘削面を示す直線とを前記位置関係で表示する表示部を備えるものと する。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態による掘削機械の目標掘削面設定装置を油 圧ショベルの油圧駆動装置と共に示す図である。
図 2は、 本発明が適用される油圧ショベルの外観をレーザ燈台及びそれにより 形成されるレーザ基準面と共に示す図である。
図 3は、 図 1に示した目標掘削面設定装置を制御ュニットのハード構成と共に 示す図である。
図 4は、 図 1に示した目標掘削面設定装置を制御ュニッ卜の処理機能と共に示 す図である。
図 5は、 図 1に示した設定器の構成図である。
図 6は、 図 4に示した数値入力方式による設定 ·表示処理部の処理機能を示す ブロック線図である。
図 7は、 本発明の掘削機械の目標掘削面設定装置が適用される油圧ショベルの 各部寸法、 使用する座標系、 及び車体とレーザ基準面と目標掘削面との関係を示 す説明図である。 図 8は、 本発明の第 1の実施の形態による表示装置 (モニタ) に用いる座標系 の説明図である。
図 9は、 本発明の目標掘削面設定装置の表示装置における第 1の表示例の説明 図である。
図 1 0は、 本発明の目標掘削面設定装置及び表示装置を用いた掘削方法を示す 説明図である。
図 1 1は、 本発明の第 2の実施の形態による掘削機械の目標掘削面設定装置に 用いる、 数値入力方式による設定 ·表示処理部の処理機能を示すブロック線図で ある。
図 1 2は、 本発明の第 2の実施の形態による表示装置 (モニタ) に用いる座標 系の説明図である。
図 1 3は、 本発明の第 3の実施の形態による掘削機械の目標掘削面設定装置に 用いる、 数値入力方式による設定 ·表示処理部の処理機能を示すブロック線図で ある。
図 1 4は、 本発明の第 3の実施の形態による表示装置 (モニタ) に用いる座標 系の説明図である。
図 1 5は、 本発明の第 4の実施の形態による掘削機械の目標掘削面設定装置に 用いる、 ダイレクトティーチ方式による設定 ·表示処理部の処理機能を示すプロ ック線図である。
図 1 6は、 本発明の第 5の実施の形態による掘削機械の目標掘削面設定装置に 用いる、 ダイレクトティーチ方式による設定 ·表示処理部の処理機能を示すプロ ック線図である。
図 1 7は、 本発明の第 6の実施の形態による掘削機械の目標掘削面設定装置に 用いる、 ダイレクトティ一チ方式による設定 ·表示処理部の処理機能を示すプロ ック線図である。
図 1 8は、 本発明の目標掘削面設定装置の表示装置における第 2の表示例の説 明図である。
図 1 9は、 本発明の目標掘削面設定装置の表示装置における第 3の表示例の説 明図である。 図 2 0は、 本発明の更に他の実施の形態による掘削機械の目標掘削面設定装置 を制御ュニットの処理機能と共に示す図である。
図 2 1は、 図 2 0に示した制御ュニッ卜の設定処理部及び表示処理ュニッ卜の 処理機能を示すブロック線図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を用いて説明する。
図 1〜図 1 0は、 本発明の第 1の実施の形態による掘削機械の目標掘削面設定 装置及びその表示装置を示すもので、 これらは本発明を油圧ショベルに適用した 場合のものである。
図 1において、 油圧ショベルは、 油圧ポンプ 2と、 この油圧ポンプ 2からの圧 油により駆動されるブ一ムシリンダ 3 a、 ァ一ムシリンダ 3 b、 バケツトシリン ダ 3 c、 旋回モー夕 3 d及び左右の走行モータ 3 e, 3 f を含む複数の油圧ァク チユエ一夕と、 これら油圧ァクチユエ一夕 3 a〜 3 f のそれぞれに対応して設け られた複数の操作レバ一装置 4 a〜4 f と、 これら操作レバー装置 4 a〜4 f に よって制御され、 油圧ァクチユエ一夕 3 a〜3 f に供給される圧油の流量を制御 する複数の流量制御弁 5 a〜 5 f と、 油圧ポンプ 2の吐出圧力が設定値以上にな つた場合に開くリリーフ弁 6と、 操作レバ一装置 4 a〜4 f の操作信号を入力し 流量制御弁 5 a〜 5 ίを制御する制御ュニット 9とを有し、 これらは油圧ショベ ルの被駆動部材を駆動する油圧駆動装置を構成している。
本実施の形態では、 操作レバー装置 4 a〜4 f は、 操作信号として電気信号を 出力する電気レバー装置であり、 流量制御弁 5 a〜 5 f は電気信号をパイロット 圧に変換する電気油圧変換手段、 例えば比例電磁弁を両端に備えた電気 ·油圧操 作方式の弁である。 制御ュニット 9は、 操作レバ一装置 4 a〜4 f の操作信号を 入力し、 入力信号に応じた流量制御弁駆動信号を生成して流量制御弁 5 a〜 5 f を駆動 ·制御する。
また、 図 2に示すように、 油圧ショベルは、 垂直方向にそれぞれ回動するブー ム l a、 アーム l b及びパケット (作業具) 1 cからなる多関節型のフロント装 置 1 Aと、 上部旋回体 1 d及び下部走行体 1 eからなる車体 1 Bとで構成され、 フロント装置 1 Aのブーム 1 aの基端は上部旋回体 1 dの前部に支持されている。 図 2のブーム 1 a、 アーム 1 b、 バゲット 1 c、 上部旋回体 1 d及び下部走行 体 l eは、 それぞれ、 図 1に示すブームシリンダ 3 a、 アームシリンダ 3 b、 バ ケットシリンダ 3 c、 旋回モータ 3 d及び左右の走行モー夕 3 e, 3 f によりそ れぞれ駆動され、 それらの動作は操作レバー装置 4 a〜4 f により指示される。 以上のような油圧ショベルに本実施の形態に係わる目標掘削面設定装置が設け られている。 この目標掘削面設定装置は、 直線上に仕上げたい目標掘削面の設定 に用いられる設定器 7と、 ブーム l a, アーム 1 b及びバゲット 1 cのそれぞれ の回動支点に設けられ、 フロント装置 1 Aの位置と姿勢に関する状態量としてそ れぞれの回動角を検出する角度検出器 8 a, 8 b, 8 cと、 車体外部に設置され たレーザ灯台 10 aによって形成されたレーザ光を受光する、 アーム 1 bの側面 に設置されたレーザ受光器 1 O bと、 運転室内の運転席斜め前方のコーナー部に 設置された 2次元表示モニタ (表示装置) 12と、 上記の制御ュニット 9に含ま れる後述する処理機能とで構成されている。 レーザ灯台 10 aによって形成され たレーザ光はレーザ基準面 (外部基準) Rを提供する。
図 3に、 制御ユニット 9のハード構成を示す。 制御ユニット 9は、 入力部 91 と、 マイクロコンピュー夕で構成される中央処理装置 (CPU) 92と、 リード オンリーメモリ (ROM) 93と、 ランダムアクセスメモリ (RAM) 94と、 出力部 95とを有している。 入力部 91は、 操作レバー装置 4 a〜4 fからの操 作信号、 設定器 7からの指示信号 (設定信号及びメインスィッチ信号) 、 角度検 出器 8 a, 8 b, 8 cからの角度信号、 レーザ受光器 10 bからのレーザ受光信 号を入力し、 AZD変換を行う。 ROM93は、 制御プログラム (後述) が記憶 された記録媒体であり、 CPU92は、 ROM93に記憶された制御プログラム に従って入力部 91から取り入れた信号に対して所定の演算処理を行う。 RAM 94は、 演算途中の数値を一時的に記憶する。 出力部 95は、 CPU 92での演 算結果に応じた出力用の信号を作成し、 流量制御弁 5 a〜5 : Πこその信号を出力 し、 また、 モニタ 12に車体 1 Bやレーザ基準面 Rや目標掘削面を表示させる。 図 4に、 制御ュニット 9の ROM 93に記憶された制御プログラムの概要を機 能ブロック図を示す。 制御ユニット 9は、 目標掘削面を設定すると共にモニタ 1 2への表示処理を行う設定 ·表示処理部 1 1と、 領域制限掘削制御を行う掘削制 御部 1 4とを有している。
設定 ·表示処理部 1 1は、 角度検出器 8 a , 8 b , 8 cの検出信号、 設定器 7 からの信号、 レーザ受光器 1 0 bからの信号を入力し、 油圧ショベルの車体 1 B に関して設定された x _ z座標系 (後述) により目標掘削面及びレーザ基準面を 演算し、 目標掘削面を設定すると共に、 2次元表示モニタ 1 2上に表示される油 圧ショベルの模式図に関して固定的に設定された x m— z m座標系 (後述) の値に 目標掘削面及びレーザ基準面を座標変換し、 それらを油圧ショベルの模式図に重 ねて表示する合成処理を行う。 また、 レーザ基準面と目標掘削面との距離及び勾 配データ、 バケツ卜とレーザ基準面との深さ方向の距離等の数値を表示する合成 処理を行う。
掘削制御部 1 4は、 設定 ·表示処理部 1 1で設定された目標掘削面に基づき、 公知の領域制限掘削制御を行うよう流量制御弁 5 a〜5 : f に対する指令信号を生 成する処理を行う。
設定器 7は、 図 5に示すように、 操作パネルあるいはグリップ上に設けられた スィッチ等の操作手段から構成され、 レーザ基準面 Rからの深さを設定するアツ プキー 7 a, ダウンキー 7 bと、 勾配を設定するアップキー 7 c , ダウンキー 7 dと、 ダイレクトティーチボタン 7 eと、 表示部 7 f , 7 gとから構成される。 数値入力方式の場合には、 アップキー 7 a, ダウンキ一7 bを操作することによ り、 レーザ基準面 Rからの深さを設定することができ、 設定結果は、 表示部 7 f に表示される。 また、 ダイレクトティーチ方式の場合には、 ダイレクトティーチ ボタン 7 eが操作されると、 そのときの車体 1 Bに対する目標掘削面が演算され、 設定されるとともに、 レーザ基準面 Rに対するバケツ卜の位置がレーザ基準面か らの深さとして演算され、 設定される。 また、 いずれの場合も、 アップキー 7 ダウンキー 7 dを操作することにより、 レーザ基準面及び目標掘削面の勾配を設 定することができ、 設定結果は、 表示部 7 gに表示される。 設定器 7は、 ォペレ 一夕によって入力された掘削面のダイレクトティーチ信号或いは掘削深さ信号、 及び勾配信号を設定 ·表示処理部 1 1に出力する。
次に、 図 6を用いて、 設定 '表示処理部 1 1の処理機能について説明する。 こ の処理機能は、 数値入力方式による場合のもので、 モニタ座標への変換を油圧シ ョベルの車体 1 Bを基準として行うものである。
図 6は、 設定 ·表示処理部 1 1の処理機能をブロック線図で表したものであり、 設定 ·表示処理部 1 1は、 バケツト爪先の座標演算部 1 1 aと、 車体とレーザ基 準面の位置関係演算部 1 1 bと、 レーザ基準面と目標掘削面の位置関係 (深さ) 記憶部 1 1 cと、 車体と目標掘削面の位置関係演算 ·記憶部 1 1 dと、 車体とレ 一ザ基準面の位置関係をモニタ座標に変換する演算部 1 1 eと、 車体と目標掘削 面の位置関係をモニタ座標に変換する演算部 1 1 f と、 レーザ基準面の画像生成 演算部 1 l gと、 目標掘削面の画像生成演算部 1 l hと、 設定値の表示演算部 1 1 i と、 車体の画像生成演算部 1 1 jの各機能を有している。
バケツト爪先の座標演算部 1 1 aは、 図 7に示す車体 1 Bに関して設定された X— z座標系及び各部寸法と角度検出器 8 a, 8 b, 8 cの検出信号に基づいて、 パケット爪先の X— z座標系の座標値 (Pvx, Pvz) を、 以下の式 (1 ) 及び式 (2) より演算する。
Pvx=LVXcos (αΒ+ αΑ+ aV) +LAXcos (αΒ+ ah)
-f LBXcos αΒ+LFl … (1)
Pvz=-LVXsin (ひ B+ aA+ aV) - LAXsin (αΒ+ αΑ)
-LBXsinaB + LF2 … (2)
LV:バケツト長さ (バケツト回動中心とバケツト爪先間距離) LA:アーム長さ (アーム回動中心とバケツト回動中心間距離) LB:ブーム長さ (ブーム回動中心とアーム回動中心間距離)
LF1 : X— z座標系におけるブーム回動中心の X座標値
LF2: X— z座標系におけるブーム回動中心の z座標値
ひ B: ブーム回動角
αΑ:アーム回動角
«V:バケツト回動角
ここで、 X— z座標系は油圧ショベルの車体 1 Bの所定位置、 例えば車体 1 B の底面中央部を原点とした直交座標系である。 また、 図 7には、 目標掘削面が符 号 Tにて示されている。 車体とレーザ基準面の位置関係演算部 1 1 bは、 レーザ受光器 1 0 bによって レーザ光を受光した際のレーザ受光器 1 0 bの X— z座標系の座標値 (PLx, P Lz) と、 設定器 7によって設定された勾配 /3とから、 X— z座標系におけるレー ザ基準面 Rの一次式を演算する。
ここで、 レーザ受光器 1 0 bによってレーザ光を受光した際のレ一ザ受光器 1 0 bの X— z座標系の座標値 (PLx, PLz) は、 各部寸法と角度検出器 8 a, 8 bの検出信号に基づいて、 上記式 (1) 及び式 (2) と同様に以下の式 (1A) 及 び式 (2A) より演算する。
PLx=LFXcos (αΒ+ αΑ— «L) + LBXcos αΒ+ LF1 … ( 1 A)
PLz=-LFXsin (ひ B+ aA— a L) - LBXsinaB + LF2 ·■· ( 2 A)
LF: アーム回動中心とレーザ受光器 1 0 b間の距離
ah アーム回動中心とバケツト回動中心間直線に対するレーザ受光器 の取り付け角度
また、 X— z座標系におけるレーザ基準面 Rの一次式は、 座標値 (PLx, PL z) を通過する勾配 ;3の直線なので、 以下の式 (3) となる。
z =tan 3 · x+ (PLz— tan/3 · PLx) … (3)
レーザ基準面と目標掘削面の位置関係 (深さ) 記憶部 1 l cは、 設定器 7によ つて設定されたレーザ基準面 Rに対する深さ設定値 L dを記憶する。
車体と目標掘削面の位置関係演算 ·記憶部 1 1 dは演算部 1 1 bによって演算 された車体とレーザ基準面との位置関係と、 記憶部 1 1 cに記憶された深さ設定 値 L dとから、 X— z座標系における目標掘削面 Tの一次式を、 以下の式 (4) より演算する。 例えば、 レーザ基準面 Rの一次式が z =tan 3 · x+ (PLz— tan β · PLx) 、 深さ設定値が L dならば、 目標掘削面 Tの一次式は、
z =tani3 · X + (PLz— tan/3 · PLx) +L d -- (4)
となる。
車体とレーザ基準面の位置関係をモニタ座標に変換する演算部 1 l eは、 レ一 ザ基準面 Rの一次式、 例えば z =tani3 · x+ (PLz— tan/3 · PLx) を図 8に示 すモニタ 1 2の表示部 2 0上の x„,一 zm座標系の座標値に変換する。 図 8におい て、 xm— zm座標系の座標面は 2次元のドットマトリクスで構成されており、 座 標 (Xml, Z ml) , (Xm2, Z m2) で囲まれた領域を表示範囲とする。 また、 表 示部 20には油圧ショベルの模式図 12 cが固定的に表示され、 χm— Zπ1座標系 の原点 Omは、 車体 1 Bの X— z座標系の原点 Oに合わせてその模式図 1 2 cで示 される油圧ショベルの底面中央に設定される。
ここで、 xmlが X— z座標系における X,に相当すると仮定すると、 スケール ニ ^ ,となる。 よって、 レーザ基準面の一次式 z = tan /3 · x+ (PLz-ta n3 · PLx) は、 xm_ zm座標系においては、
zm=tan 3 · xm+ (PLz-tan/3 · PLx) ΧΚ··· (6)
となる。
車体と目標掘削面の位置関係をモニタ座標に変換する演算部 1 1 ίは、 演算部 1 1 eと同様に、 目標掘削面 Tの一次式、 例えば前述の式 (4) 、 z=tan/3 · x + (PLz-tan/3 - PLx) +Ldを、 図 8に示す表示部 20上の x m— z m座標系の 座標値に変換する。 この場合、 演算部 1 1 eと同様にスケール K=xmlZX lとす ると、 目標掘削面 Tの一次式は、 xm— zm座標系においては、
z m=tan 3 · xm+ { (PLz-tani3 · PLx) +L d } ΧΚ··· (7)
となる。
レーザ基準面の画像生成演算部 1 1 gは、 演算部 1 1 eにより得られたレーザ 基準面 Rの一次式を、 表示部 20の xm— zm座標面上に直線として表示する画像 信号を生成 ·出力する処理を行い、 レーザ基準面 Rの直線を図 9に破線 12 aと して示すようにモニタ 1 2の表示部 20に表示させる。
目標掘削面の画像生成演算部 1 l hは、 演算部 1 1 f により得られた目標掘削 面 Tの直線を、 表示部 20の xm— zm座標面上に表示する画像信号を生成 ·出力 する処理を行い、 目標掘削面 Tの直線を図 9に実線 1 2 bとして示すようにモニ 夕 1 2の表示部 20に表示させる。
油圧ショベルの車体の画像生成演算部 1 1 jは、 油圧ショベルの車体 1 Bの画 像を模式図で生成し、 生成された模式図を表示部 20の xm— zm座標面上に、 油 圧ショベルの底面中央が原点〇mに一致するよう固定的に表示する画像信号を生成 -出力する処理を行い、 その模式図を図 9に 1 2 cで示すように、 モニタ 1 2の 表示部 20に表示させる。 設定値の表示演算部 1 1 iは、 目標掘削面 Tの勾配 3、 レーザ基準面 Rと目標 掘削面 Tとの深さ方向の距離 L d及びレーザ基準面 Rからバケツト爪先までの距 離 LPvなどのデータを入力及び演算する。 ここで、 距離 LPvの演算式は、 以下の 式 (8) のようになる。
LPv=Pvz-tan 3 · Pvx- (PLz-tan^ · PLx) … (8)
そして、 表示演算部 1 1 iは、 目標掘削面 Tの勾配 (設定勾配) β、 レーザ基 準面 Rと目標掘削面 Τとの深さ方向の距離 (設定深さ) Ld及びレーザ基準面 R からバケツト爪先までの距離 (爪先深さ) LPvを、 表示部 20の xm— zm座標面 上に数値で表示する画像信号を生成 ·出力する処理を行い、 それらを図 9に示す ように、 例えば、 モニタ 12の表示部 20の左上に表示させる。
以上のようにして、 車体 1 Bと目標掘削面 Tとレーザ基準面 Rの位置関係及び それに付属する数値が、 モニタ 12の表示部 20上に、 図 9に示すように表示さ れる。
次に、 図 6及び図 10を用いて、 本実施の形態による目標掘削面の数値入力方 式による設定手順及びその目標掘削面に基づきレーザ基準面 (外部基準) 尺から 所定深さ ·勾配の面を連続的に掘削する操作手順について説明する。
最初に、 掘削開始位置での目標掘削面の設定作業及び掘削作業について説明す る。
(手順 1 )
最初に、 図 10に示すように、 ォペレ一夕は、 レーザ灯台 10 aを操作して、 設定しょうとする目標掘削面に対して平行になるようにレーザ基準面 Rを設定す る。
(手順 2)
次に、 オペレータは、 図 5に示した設定器 7のキ一 7 a, 7 bを用いて、 レ一 ザ基準面 Rから目標掘削面 Tまでの深さ (高さ) Ldを入力し設定する。 この設 定操作によって、 記憶部 1 1 cは、 設定器 7によって設定されたレーザ基準面 R に対する目標掘削面 Tの深さ設定値 Ldを記憶する。 オペレータは、 更に、 設定 器 7のキ一 7 c, 7 dを用いて、 勾配 i3を設定する。
(手順 3 ) 次に、 オペレータは、 図 1 0に示すように、 アーム 1 bに取り付けられたレー ザ受光器 1 0 bがレーザ光を受光するように、 フロント装置 1 Aを動かす。 この 設定操作により、 演算部 l i bは、 レーザ受光器 1 0 bによってレーザ光を受光 した際のレーザ受光器 1 0 bの X— z座標系の座標値 (P Lx, P Lz) と、 設定器 7によって設定された勾配 0とから、 車体 1 Bの X— z座標系におけるレーザ基 準面 Rの一次式を、 式 (3 ) より演算する。 また、 演算 ·記憶部 1 I dは、 演算 部 1 1 bによって演算された車体 1 Bとレーザ基準面 Rとの位置関係と、 記憶部 1 1 cに記憶された深さ設定値 L dとから、 車体 1 Bの X— z座標系における目 標掘削面 Tの一次式を、 式 (4 ) より演算し、 記憶する。
なお、 手順 2の操作と手順 3のレーザ基準面 Rの一次式を演算するまでの操作 は、 手順 3の後、 手順 2を行うようにしてもよい。
(手順 4 )
手順 2及び手順 3の操作設定の結果、 更に演算部 1 1 e〜l 1 jによる演算処 理が行われ、 図 9に示したように、 モニタ 1 2の表示部 2 0には、 車体 1 Bとレ 一ザ基準面 Rと目標掘削面 Tがそれぞれ模式図 1 2 cと破線 1 2 a及び実線 1 2 bで表示されると共に、 目標掘削面 Tの勾配 i3、 レーザ基準面 Rに対する目標掘 削面 Tの設定深さ L d及びレーザ基準面 Rからバケツト爪先までの距離 L Pvが表 示部 2 0の左上に表示される。
オペレータは、 モニタ 1 2の表示を見ることにより、 車体と目標掘削面の位置 関係、 及びレーザ基準面と目標掘削面の位置関係を視覚的に把握、 認識して、 設 定状態が適切であるか否かを確認することができる。
(手順 5 )
オペレータは、 フロント装置 1 Aを操作し、 領域制限掘削制御により演算 -記 憶部 1 1 dに記憶された目標掘削面 Tを自動掘削する。
(手順 6 )
所定範囲の目標掘削面の掘削が終了すると、 図 1 0に示すように、 車体 1 Bを 移動する。
次に、 移動後の目標掘削面の設定作業及び掘削作業について説明する。
(手順 7 ) 車体の移動後、 オペレータは、 図 1 0に示すように、 アーム l bに取り付けら れたレーザ受光器 1 0 bがレーザ光を受光するように、 フロント装置 1 Aを動か す。 この操作により、 演算部 l i bは、 車体 1 Bとレーザ基準面 Rの位置関係を 演算して、 車体 1 Bの移動によって生じる車体位置の変化を補正する。
ここで、 記憶部 1 1 cに記憶されている設定時に設定器 7によって設定された レーザ基準面に対する深さ設定値 L dは変更がないため、 演算 ·記憶部 1 I dは、 演算部 1 1 bによって演算された車体 1 Bとレーザ基準面 Rとの位置関係と、 記 憶部 1 1 cに記憶された深さ設定値 L dとから、 車体 1 Bの X— z座標系におけ る目標掘削面 Tの一次式を、 上述の式 (4 ) より演算して、 更新記憶する。 これ によって、 車体 1 Bが移動した後も、 車体 1 Bの移動によるレーザ基準面 Rに対 する車体 1 Bの位置の変化は補正され、 レーザ基準面 Rに対して所定の位置関係 にある目標掘削面 Tに対して、 領域制限掘削制御を継続して行うことができる。 (手順 8 )
オペレータは、 フロント装置 1 Aを操作し、 領域制限掘削制御により演算 ·記 憶部 1 1 dに記憶された目標掘削面 Tを自動掘削する。
(手順 9 )
以後、 手順 6〜手順 8を繰り返すことにより、 車体 1 Bを移動しながら、 レー ザ基準面 Rを基準として、 レーザ基準面 Rに対して所定の深さ、 勾配の面を自動 掘削する。
以上のように構成した本実施の形態によれば、 運転室内に設置されたモニタ 1 2上に、 目標掘削面 Tとレーザ基準面 Rを示す線 1 2 a, 1 2 bを、 車体 I Bの 模式図 1 2 cに重ねて表示するので、 車体 1 Bと目標掘削面 Tの位置関係だけで なく、 レーザ基準面 Rと目標掘削面 Tの位置関係も視覚的に認識できるようにな り、 所定の深さの面まで長距離に亘つて連続的に掘削する場合の目標掘削面丁の 設定ミスをすることなく、 目標掘削面 Tの設定を容易に行える。
また、 外部基準面 Rと目標掘削面 Tとの距離及び勾配データ、 作業具とレーザ 基準面 Rとの距離等を数値で表示することにより、 車体 1 Bと目標掘削面 Τ · レ 一ザ基準面 Rとの位置関係を分かり易くオペレータに表示し、 目標掘削面 Τの設 定ミスを更に確実に防ぐことができる。 次に、 図 1 1及び図 12を用いて、 本発明の第 2の実施の形態による設定 '表 示処理部 1 1 Aの処理機能について説明する。 この処理機能は、 数値入力方式に よる場合のもので、 モニタ座標への変換を目標掘削面を基準として行うものであ る。 なお、 図 1 1において、 図 6と同一符号は、 同一部分を示している。
本実施の形態に係わる油圧ショベルの構成は図 1及び図 2に示すものと同様で あり、 本実施の形態に係わる制御ュニットのハード構成も図 3に示すものと同様 である。
図 1 1において、 設定,表示処理部 1 1A力 図 6に示した設定 ·表示処理部 1 1と異なる点は、 図 6における演算部 1 1 e〜l 1 h, 1 1 jに代えて、 レー ザ基準面と目標掘削面の位置関係をモニタ座標に変換する演算部 1 l kと、 車体 と目標掘削面の位置関係をモニタ座標に変換する演算部 1 lA f と、 レーザ基準 面の画像生成演算部 1 1 Agと、 目標掘削面の画像生成演算部 1 1 Ahと、 車体 の画像生成演算部 1 lAj とを備えていることである。
レーザ基準面と目標掘削面の位置関係をモニタ座標に変換する演算部 1 1 kは、 記憶部 1 1 cに記憶されたレーザ基準面 Rに対する目標掘削面 Tの深さ設定値 L dを用い、 目標掘削面 T上の所定位置 (例えば X— z座標系の X軸と目標掘削面 Tとの交点) を原点として設定した中間の直交座標系におけるレーザ基準面尺の 一次式を演算する。 次いで、 この一次式を、 図 12に示すモニタ 12の表示部 2 0上の xm— zm座標系の座標値に変換する。 図 12において、 表示部 20には目 標掘削面 Tの線 12 bが表示され、 xm— zm座標系の原点〇mは、 目標掘削面 T上 の上記所定位置に対応する線 12 b上の位置に固定的に設定される。 Xm— zm座 標系へ座標変換する方法は、 第 1の実施の形態における演算部 1 1 eで説明した のと同様である。
車体と目標掘削面の位置関係をモニタ座標に変換する演算部 1 ΙΑίは、 演算 部 1 1 dで演算した車体 1 Βの χ_ζ座標系における目標掘削面 Τの一次式を用 い、 上記中間の座標系における車体 1 Βの位置を演算し、 その値を図 12に示す 表示部 20上の Xm— zm座標系の座標値に変換する。 車体 1 Bの位置としては X 一 z座標系の原点〇の位置を用いる。
レーザ基準面の画像生成演算部 1 1 Agは、 演算部 1 1 kにより得られたレー ザ基準面 Rの一次式を、 表示部 2 0の X m— Z m座標面上に直線として表示する画 像信号を生成 ·出力する処理を行い、 レーザ基準面 Rの直線をモニタ 1 2の表示 部 2 0に表示させる。
車体の画像生成演算部 1 l A jは、 油圧ショベルの車体 1 Bの画像を模式図で 生成し、 生成された模式図を表示部 2 0の x m— z m座標面上の演算部 1 l A fで 演算された座標位置に表示する画像信号を生成 ·出力する処理を行い、 その模式 図をモニタ 1 2の表示部 2 0に表示させる。
目標掘削面の画像生成演算部 1 l A hは、 設定器 7によって設定された勾配 /3 を用い、 表示部 2 0の x m— z m座標の原点〇mを通る傾き) 3の直線の画像信号を生 成 ·出力する処理を行い、 目標掘削面 Tの直線をモニタ 1 2の表示部 2 0に表示 させる。
以上のようにして、 車体 1 Bと目標掘削面 Tとレーザ基準面 Rの位置関係が、 モニタ 1 2の表示部 2 0上に、 図 9に示すように表示される。
本実施の形態によっても、 第 1の実施の形態と同様の効果を得ることができる。 次に、 図 1 3及び図 1 4を用いて、 本発明の第 3の実施の形態による設定 ·表 示処理部 1 1 Bの処理機能について説明する。 この処理機能は、 数値入力方式に よる場合のもので、 モニタ座標への変換をレーザ基準面を基準として行うもので ある。 なお、 図 1 3において、 図 6と同一符号は、 同一部分を示している。
本実施の形態に係わる油圧ショベルの構成は図 1及び図 2に示すものと同様で あり、 本実施の形態に係わる制御ュニッ卜のハード構成も図 3に示すものと同様 である。
図 1 3において、 設定 ·表示処理部 1 1 Bが、 図 6に示した設定 ·表示処理部 1 1と異なる点は、 図 6における演算部 1 1 e〜l 1 h , 1 1 jに代えて、 車体 とレーザ基準面の位置関係をモニタ座標に変換する演算部 1 I B eと、 レーザ基 準面と目標掘削面の位置関係をモニタ座標に変換する演算部 1 l B kと、 車体の 画像生成演算部 1 1 B jと、 目標掘削面の画像生成演算部 1 1 B hと、 レーザ基 準面の画像生成演算部 1 1 B gを備えていることである。
車体とレーザ基準面の位置関係をモニタ座標に変換する演算部 1 1 B eは、 演 算部 1 1 bで演算した車体 1 Bの X — z座標系におけるレーザ基準面 Rの一次式 を用い、 レーザ基準面 R上の所定位置 (例えば X— z座標系の X軸とレーザ基準 面 Rとの交点) を原点として設定した中間の直交座標系における車体 1 Bの位置 を演算し、 その値を図 14に示す表示部 20上の xm— zm座標系の座標値に変換 する。 車体 1 Bの位置としては X— z座標系の原点〇の位置を用いる。 また、 図 14において、 表示部 20にはレーザ基準面 Rの線 12 aが表示され、 xm— zm 座標系の原点〇mは、 レーザ基準面 R上の上記所定位置に対応する線 12 a上の位 置に固定的に設定される。 xm— zm座標系へ座標変換する方法は、 第 1の実施の 形態における演算部 11 eで説明したのと同様である。
レーザ基準面と目標掘削面の位置関係をモニタ座標に変換する演算部 1 1 B k は、 記憶部 1 1 cに記憶されたレーザ基準面 Rに対する目標掘削面 Tの深さ設定 値 Ldを用い、 上記中間の直交座標系における目標掘削面 Tの一次式を演算し、 更にこの一次式を、 図 14に示すモニタ 12の表示部 20上の xm— zm座標系の 座標値に変換する。
車体の画像生成演算部 B jは、 油圧ショベルの車体 1 Bの画像を模式図で生成 し、 生成された模式図を表示部 20の xm— zm座標面上の演算部 1 1 Beで演算 された座標位置に表示する画像信号を生成 ·出力する処理を行い、 その模式図を モニタ 12の表示部 20に表示させる。
目標掘削面の画像生成演算部 1 l Bhは、 演算部 1 l Bkにより得られた目標 掘削面 Tの一次式を、 表示部 20の Xm— zm座標面上に直線として表示する画像 信号を生成 ·出力する処理を行い、 目標掘削面 Tの直線をモニタ 12の表示部 2 0に表示させる。
レーザ基準面の画像生成演算部 1 l Bgは、 設定器 7によって設定された勾配 ]3を用い、 表示部 20の xm_ zm座標の原点 Omを通る傾き) 3の直線の画像信号を 生成 ·出力する処理を行い、 レーザ基準面 Rの直線をモニタ 12の表示部 20に 表示させる。
以上のようにして、 車体 1 Bと目標掘削面 Tとレーザ基準面 Rの位置関係が、 モニタ 12の表示部 20上に、 図 9に示すように表示される。
本実施の形態によっても、 第 1の実施の形態と同様の効果を得ることができる。 次に、 図 7及び図 1 5を用いて、 本発明の第 4の実施の形態による設定 '表示 処理部 1 1 cの処理機能について説明する。 この処理機能は、 ダイレクトティ一 チ方式による場合のものである。 なお、 図 15において、 図 6と同一符号は、 同 一部分を示している。
本実施の形態に係わる油圧ショベルの構成は図 1及び図 2に示すものと同様で あり、 本実施の形態に係わる制御ュニッ卜のハード構成も図 3に示すものと同様 である。
図 15において、 設定 ·表示処理部 1 1 Cが、 図 6に示した設定 ·表示処理部 1 1と異なる点は、 図 6におけるレーザ基準面と目標掘削面の位置関係 (深さ) 記憶部 1 1 cと、 車体と目標掘削面の位置関係演算 ·記憶部 1 1 dとに代えて、 車体と目標掘削面の位置関係演算 ·記憶部 1 1 sと、 レーザ基準面と目標掘削面 の位置関係 (深さ) 演算 ·記憶部 1 1 tを備えていることである。
目標掘削面の位置関係演算 ·記憶部 1 1 sは、 設定器 7からダイレクトティー チ信号が入力されたときにバケツト爪先の座標演算部 1 1 aによって演算された バゲット爪先の X— z座標系の座標値 (Pcx, Pcz) と、 設定器 7により設定さ れたレーザ基準面 Rの勾配 0とから、 車体 1 Bの X— z座標系における目標掘削 面 Tの一次式を、 以下の式 (9) より演算し、 記憶する。
z =taniS · X + (Pcz-tani3 · Pcx) … (9)
レーザ基準面と目標掘削面の位置関係 (深さ) 演算 ·記憶部 1 1 tは、 演算部 1 1 bによって演算された車体 1 Bとレーザ基準面 Rとの位置関係 (レーザ受光 器 10 bによってレーザ光を受光した際のレーザ受光器 10 bの X— z座標系の 座標値 (PLx, PLz) と、 設定器 7によって設定された勾配 )3とから計算された、 前述した式 (3) で表される X— z座標系におけるレーザ基準面 Rの一次式) と、 演算 ·記憶部 1 1 sに記憶された車体 1 Bの X— z座標系における目標掘削面 T の上記式 (9) の一次式とから、 レーザ基準面 Rと目標掘削面 Tとの深さ方向の 距離 Ldを演算し、 記憶する。 ここで、 深さ方向の距離 Ldの演算式は、 以下の 式 (10) のようになる。
L d = (目標掘削面の一次式の切片)一(レーザ基準面の一次式の切片)… ( 1 0)
また、 図中破線は、 車体移動後の処理の流れを示しており、 車体の移動後は、 演算部 1 l bによって演算された車体 1 Bの x— z座標系におけるレーザ基準面 Rの一次式 (前述の式 (3) ) と、 演算,記憶部 1 1 tに記憶されたレーザ基準 面 Rと目標掘削面 Tの深さ方向の距離 L dと力 ら、 車体 1 Bの X— z座標系にお ける目標掘削面 Tの一次式を、 前述の式 (4) より演算する。
z =tan/3 · X + (PLz-tani3 - PLx) +L d- (4)
演算部 1 1 e〜l 1 iの処理機能は図 6に示す第 1の実施の形態におけるもの と同じである。 ただし、 演算部 1 1 f は、 車体 1 Bの X— z座標系における目標 掘削面 Tの一次式として、 車体移動前の最初の掘削位置では上記式 (9) を用い、 車体移動後は上記 (4) 式を用い、 目標掘削面 Tの一次式をモニタ 12上の座標 系 xm— zm座標に変換する。
以上のように処理された結果、 車体と目標掘削面とレーザ基準面の位置関係及 びそれに付属する数値が、 モニタ 12上に、 図 9に示すように表示される。
次に、 図 15及び図 10を用いて、 本実施の形態による目標掘削面のダイレク トティーチ方式による設定手順及びその目標掘削面に基づきレーザ基準面 (外部 基準) Rから所定深さ ·勾配の面を連続的に掘削する処理手順について説明する。 最初に、 掘削開始位置での目標掘削面の設定作業及び掘削作業について説明す る。
(手順 1 )
最初に、 図 10に示すように、 オペレータは、 レーザ灯台 10 aを操作して、 設定しょうとする目標掘削面に対して平行になるようにレーザ基準面 Rを設定す る。
(手順 2)
次に、 オペレータは、 図 7で二点鎖線で示すように、 フロント装置 1 Aを動か して、 パケット 1 cの爪先を掘削したい点に移動し、 図 5に示したダイレクトテ ィーチキー 7 eを押す。 また、 この前後に、 オペレータは、 設定器 7のキー 7 c, 7 dを用いて、 勾配 i3を設定する。
この設定操作によって、 演算部 1 1 aは、 図 7に示す車体 1 Bの X— z座標系 及び各部寸法に基づいて、 パケット爪先の X— z座標系の座標値 (Pcx, Pcz) を、 式 (1) 及び式 (2) を用いて演算する。 また、 演算 '記憶部 1 1 sは、 そ のバゲット爪先の x— z座標系の座標値 (P cx, P cz) と、 レーザ基準面の勾配 /3とから、 車体 1 Bの X— z座標系における目標掘削面 Tの一次式を、 式 (9 ) により演算し、 記憶する。
(手順 3 )
次に、 オペレータは、 図 1 0に示すように、 アーム 1 bに取り付けられたレ一 ザ受光器 1 0 bがレーザ光を受光するように、 フロント装置 1 Aを動かす。 この 設定操作により、 演算部 l i bは、 レーザ受光器 1 0 bによってレーザ光を受光 した際のレーザ受光器 1 0 bの X— z座標系の座標値 (P Lx, P Lz) と、 設定器 7によって設定された勾配 /3とから、 車体 1 Bの X— z座標系におけるレーザ基 準面 Rの一次式を、 式 (3 ) より演算する。 また、 演算 ·記憶部 1 1 tは、 演算 部 1 1 bによって演算された車体 1 Bとレーザ基準面 Rとの位置関係と、 演算 ' 記憶部 1 1 sに記憶された車体 1 Bの X— z座標系における目標掘削面 Tの一次 式とから、 深さ設定値 L dを式 (1 0 ) より演算し、 記憶する。
なお、 手順 2と手順 3のレーザ基準面 Rの一次式を演算するまでの操作は、 手 順 3の後、 手順 2を行うようにしてもよい。
(手順 4 )
手順 2及び手順 3の操作設定の結果、 更に演算部 1 1 e〜l 1 j による演算処 理が行われ、 図 9に示したように、 モニタ 1 2の表示部 2 0には、 車体 1 Bとレ —ザ基準面 Rと目標掘削面 Tがそれぞれ模式図 1 2 cと破線 1 2 a及び実線 1 2 bで表示されると共に、 目標掘削面 Tの勾配 /3、 レーザ基準面 Rに対する目標掘 削面 Tの設定深さ L d及びレーザ基準面 Rからバケツト爪先までの距離 L Pvが表 示部 2 0の左上に表示される。
オペレータは、 モニタ 1 2の表示を見ることにより、 車体と目標掘削面の位置 関係、 及びレーザ基準面と目標掘削面の位置関係を視覚的に把握、 認識して、 設 定状態が適切であるか否かを確認することができる。
(手順 5 )
オペレータは、 フロント装置 1 Aを操作し、 領域制限掘削制御により演算 ·記 憶部 1 1 sに記憶された目標掘削面を自動掘削する。
(手順 6 ) 所定範囲の目標掘削面の掘削が終了すると、 図 1 0に示すように、 車体 1 Bを 移動する。
次に、 移動後の目標掘削面の設定作業及び掘削作業について説明する。
(手順 7 )
車体の移動後、 オペレータは、 図 1 0に示すように、 アーム l bに取り付けら れたレーザ受光器 1 0 bがレーザ光を受光するように、 フロント装置 1 Aを動か す。 この操作により、 演算部 1 l bは、 車体 1 Bとレーザ基準面 Rの位置関係を 演算して、 車体 1 Bの移動によって生じる車体位置の変化を補正する。
ここで、 演算 ·記憶部 1 1 tに記憶されているレーザ基準面に対する深さ設定 値 dは変更がないため、 演算 ·記憶部 1 1 sは、 演算部 1 1 bによって演算さ れた車体 1 Bとレーザ基準面 Rとの位置関係と、 演算 ·記憶部 1 1 tに記憶され た深さ設定値 L dとから、 車体 1 Bの X— z座標系における目標掘削面 Tの一次 式を、 上述の式 (4 ) より演算して、 更新記憶する。 これによつて、 車体 1 Bが 移動した後も、 車体 1 Bの移動によるレーザ基準面 Rに対する車体 1 Bの位置の 変化は補正され、 レーザ基準面 Rに対して所定の位置関係にある目標掘削面丁に 対して、 領域制限掘削制御を継続して行うことができる。
(手順 8 )
オペレータは、 フロント装置 1 Aを操作し、 領域制限掘削制御により演算 .記 憶部 1 1 sに記憶された目標掘削面 Tを自動掘削する。
(手順 9 )
以後、 手順 6〜手順 8を繰り返すことにより、 車体 1 Bを移動しながら、 レー ザ基準面 Rを基準として、 レーザ基準面 Rに対して所定の深さ、 勾配の面を自動 掘削する。
以上のように構成した本実施の形態によれば、 ダイレクトティーチ方式におい ても、 第 1の実施の形態と同様の効果を得ることができる。
図 1 5に示した実施の形態においては、 演算部 1 l b、 演算 '記憶部 1 1 s, 1 1 tで車体 1 Bとレーザ基準面 Rと目標掘削面 Tの位置関係を演算した後のモ 二夕座標への変換を行い画像信号を生成 ·出力する処理は、 図 6に示す第 1の実 施の形態における演算部 1 1 e〜l 1 h , 1 1 j と同じであるとした。 演算部 1 l e〜 l l h , 1 1 jは車体基準でモニタ座標への変換を行う場合のものである。 しかし、 モニタ座標への変換は、 第 2及び第 3の実施の形態と同様、 目標掘削面 或いはレーザ基準面を基準として行ってもよい。
図 1 6及び図 1 7はそのような場合の設定 ·表示処理部の処理機能を示すプロ ック図である。 つまり、 図 1 6は、 本発明の第 5の実施の形態として、 モニタ座 標への変換を目標掘削面を基準として行う場合の設定 ·表示処理部 1 1 Dの処理 機能を示し、 図 1 7は、 本発明の第 6の実施の形態として、 モニタ座標への変換 をレーザ基準面を基準として行う場合の設定 ·表示処理部 1 1 Eの処理機能を示 す。 図 1 6において、 図 1 1及び図 1 5と同一符号は、 同一部分を示している。 図 1 7において、 図 1 3及び図 1 5と同一符号は、 同一部分を示している。
これら実施の形態によっても、 ダイレクトティーチ方式において、 第 1の実施 の形態と同様の効果を得ることができる。
次に、 図 1 8を用いて、 本発明の目標掘削面設定装置の表示装置における第 2 の表示例について説明する。
図 9において説明したように、 モニタ 1 2の表示部 2 0には、 レーザ基準面 R の直線 1 2 aと、 目標掘削面 Tの直線 1 2 bと、 油圧ショベルの車体 1 Bの模式 図 1 2 cとが表示されているが、 本例においては、 さらに、 目標掘削面とバケツ ト先端の位置関係を明確にするために、 表示部 2 0の画面上に現在のバケツト先 端位置 1 2 dを重ねて表示し、 かつ表示部 2 0の画面上の補助線として、 車体 1 Bの下部走行体に沿って地面を表す線 1 2 eを表示するようにしている。 これに より、 現在の作業具の位置や地面との関係を含め、 現状をさらに正確に把握する ことができる。
次に、 図 1 9を用いて、 本発明の目標掘削面設定装置の表示装置における第 3 の表示例について説明する。
本例においては、 図 1 8の表示例に対し、 パケット等の作業具の位置をバケツ トの模式図 1 2 dで表示し、 かつ車体前後方向の傾斜を検出する傾斜計を備える ことにより、 車体 1 Bの下部走行体に沿って地面を表す線 1 2 e及び車体 1 Bの 模式図 1 2 aを、 検出された傾斜に応じて傾けて表示するようにしている。 従つ て、 現在の作業具の位置や車体の傾斜、 地面の状態を含め、 現状をさらに正確に 把握することができる。
本発明の更に他の実施の形態を図 2 0及び図 2 1により説明する。 本実施の形 態は、 制御ユニットに設けられる設定 '表示処理部から表示処理部を分離し、 表 示処理部を制御ュニットと別体の表示処理ュニットに設けたものである。 図 2 0 及び図 2 1において、 それぞれ図 4及び図 6と同等の部材には同じ符号を付して いる。
図 2 0において、 制御ユニット 9 Fは、 目標掘削面 Tを設定すると共に、 車体 1 Bとレーザ基準面 Rと目標掘削面 Tの位置関係を演算する設定処理部 1 1 F a と、 領域制限掘削制御を行う掘削制御部 1 4とを有している。 また、 制御ュニッ ト 9 Fと別体の表示処理ュニット 1 1 F bが備えられている。
図 2 1において、 設定処理部 1 1 F aは、 バケツト爪先の座標演算部 1 1 aと、 車体とレーザ基準面の位置関係演算部 1 l bと、 レーザ基準面と目標掘削面の位 置関係 (深さ) 記憶部 1 1 cと、 車体と目標掘削面の位置関係演算 ·記憶部 1 1 dの角機能を有している。 表示処理ユニット 1 l F bは、 車体とレーザ基準面の 位置関係をモニタ座標に変換する演算部 1 1 eと、 車体と目標掘削面の位置関係 をモニタ座標に変換する演算部 1 1 f と、 レーザ基準面の画像生成演算部 1 1 g と、 目標掘削面の画像生成演算部 1 l hと、 設定値の表示演算部 1 1 iと、 車体 の画像生成演算部 1 1 jの各機能を有している。
モニタ 1 2は運転室内の運転席斜め前方のコーナー部に設置され、 制御ュニッ ト 9 F aは例えば運転室内の運転席後方下部に設置され、 表示処理ュニット 9 b は例えば運転席側方のコンソールボックスに設置される。
本実施の形態によっても、 第 1の実施の形態と同様の効果が得られる。
また、 本実施の形態によれば、 画像信号を生成 ·出力する処理を専用の処理ュ ニット 1 1 F bで行うようにしたので、 表示処理ユニット 1 1 F bに、 通信衛星 を介した保守 ·点検情報等、 他の情報の画像信号を生成 ·出力する処理機能を持 たせることが容易となり、 表示装置の多目的使用が可能となる。
なお、 本発明の目標掘削面設定装置及び表示装置は、 その詳細が上述の例に限 定されず、 種々の変形が可能である。 一例として、 上記の実施の形態では、 外部 基準としてレーザ光によるレーザ基準面を用いたが、 水糸等、 それ以外の外部基 準であってもよい。 水糸を外部基準とする場合は、 パケットの爪先が水糸に接触 するようフロント装置を動かし、 その状態でトリガスィッチを押し、 そのときの 角度検出器 8 a, 8 b , 8 cの検出値を用いて演算部 1 1 bで車体とレーザ基準 面の位置関係を演算させればよい。 また、 レーザ基準面を用いる場合も、 アーム 側面にレーザ受光器 1 0 bを設置したが、 レーザ受光器 1 0 bに代え、 アーム側 面にパネル、 ペイント等でフロント基準の印を付け、 その印にレーザ光が当たつ たときにトリガスィッチを押すことで、 水糸の場合と同様に、 演算部 l i bで車 体とレーザ基準面の位置関係を演算させることができる。
また、 本発明は、 目標掘削面の設定後の掘削に際しては、 領域制限掘削制御に 限らず、 他の掘削制御を行うようにしてもよいものである。 また、 表示装置への 表示例としては、 図 9、 図 1 8若しくは図 1 9に示したものにおいて、 目標掘削 面と外部基準面を描画する際に表示色や線種を変えて視覚的に区別しやすくして もよいものである。
更に、 上記実施の形態では操作レバ一は電気レバーとしたが、 油圧パイロット レバーでもよい。 また、 フロント装置 1 Aの位置と姿勢に関する状態量を検出す る手段として回動角を検出する角度計を用いたが、 シリンダのストロークを検出 してもよい。 産業上の利用可能性
本発明によれば、 外部基準を用いて、 所定の深さの面まで長距離に亘つて連続 的に掘削する場合の目標掘削面の設定を容易に行うことができるものとなる。

Claims

請求の範囲
1. 車体 (IB) 外部に設置される外部基準 (R) に対して平行に目標掘削面 (T) を設定し、 この目標掘削面に対してフロント装置 (1A) を制御し、 目標掘削面に 沿って連続的に掘削可能とする掘削機械の目標掘削面設定装置において、
前記目標掘削面 (T) を設定するための入力手段 (7) と、
前記フロント装置 (1A) の位置と姿勢に関する状態量を検出する検出手段 (8a, 8b) と、
前記入力手段及び検出手段の信号を用い、 前記車体 (1B) と外部基準 (R) と目 標掘削面 (T) の位置関係を演算する第 1演算手段 (llb,llc;llb,lls,llt) と、 前記第 1演算手段で演算した位置関係を用いて画像演算処理を行い、 前記車体 と外部基準と目標掘削面の位置関係を表示する画像信号を生成 ·出力する第 2演 算手段 (lie- llh,llj) とを備えることを特徴とする掘削機械の目標掘削面設定装
2. 請求項 1記載の掘削機械の目標掘削面設定装置において、
前記第 1演算手段は、
前記検出手段 (8a,8b) の信号を用い、 前記外部基準 (R) に対する車体 (1B) の位置関係を演算する第 1手段 (lib) と、
少なくとも前記入力手段 (7) の信号を用い、 前記外部基準 (R) と目標掘削面 (T) の位置関係を設定する第 2手段 (llc:lls,llt) とを有することを特徴とす る掘削機械の目標掘削面設定装置。
3. 請求項 1記載の掘削機械の目標掘削面設定装置において、
前記入力手段 (7) は、 前記外部基準 (R) から前記目標掘削面 (T) までの深さ を入力する数値入力手段 (7a,7b) を含み、
前記第 1演算手段は、
前記フロント装置 (1A) が前記外部基準に対し所定の位置関係にあるときの前 記検出手段 (8a,8b) の信号を用い、 前記車体 (1B) と外部基準 (R) の位置関係 を演算する第 3演算手段 (lib) と、
前記数値入力手段 (7a, 7b) の信号を用い、 前記外部基準と目標掘削面の位置関 係を設定する第 1設定手段 (11c) とを有することを特徴とする掘削機械の目標掘 削面設定装置。
4 · 請求項 3記載の掘削機械の目標掘削面設定装置において、
前記第 1演算手段は、 更に、 前記第 3演算手段 (lib) の演算値と前記第 1設定 手段 (11c) の設定値を用い、 前記車体 (1B) と目標掘削面 (T) の位置関係を演 算する第 4演算手段 (lid) を有し、
前記第 2演算手段は、
前記第 3演算手段 (lib) の演算値を、 前記車体 (1B) を基準として表示装置 (12) の表示部 (20) に設定されるモニタ座標系の値に変換し、 前記車体と外部 基準 (R) との位置関係を前記表示部に表示させる処理を行う第 1変換手段 (lie, llg) と、
前記第 4演算手段 (lid) の演算値を前記車体 (1B) を基準として前記モニタ座 標系の値に変換し、 前記車体と目標掘削面との位置関係を前記表示部に表示させ る処理を行う第 2変換手段 (llf,llh) とを有することを特徴とする掘削機械の目 標掘削面設定装置。
5. 請求項 1記載の掘削機械の目標掘削面設定装置において、
前記入力手段 (7) は、 前記フロント装置 (1A) に備えられる作業具 (lc) が目 標とする深さにあるときに操作されるダイレクトティーチ指示手段 (7e) を含み、 前記第 1演算手段は、
前記ダイレクトティーチ指示手段 (7e) が操作されたときの前記検出手段 (8a, 8b, 8c) の信号を用い、 前記車体 (1B) と目標掘削面 (T) の位置関係を演算する 第 4演算手段 (11a, lis) と、
前記フロント装置が前記外部基準 (R) に対し所定の位置関係にあるときの前記 検出手段 (8a,8b) の信号を用い、 前記車体と外部基準の位置関係を演算する第 5 演算手段 (lib) と、 前記第 4及び第 5演算手段の演算値を用い、 前記外部基準と目標掘削面の位置 関係を演算する第 6演算手段 (lit) とを有することを特徴とする掘削機械の目標 掘削面設定装置。
6. 請求項 5記載の捆削機械の目標掘削面設定装置において、
前記第 1演算手段は、 更に、 前記第 5及び第 6演算手段 (lib, lit) の演算値を 用い、 前記車体 (1B) と目標掘削面 (T) の位置関係を演算する第 7演算手段 (1 Is) を有し、
前記第 2演算手段は、
前記第 5演算手段 (lib) の演算値を、 前記車体 (1B) を基準として表示装置 (12) の表示部 (20) に設定されるモニタ座標系の値に変換し、 前記車体と外部 基準 (R) との位置関係を前記表示部に表示させる処理を行う第 1変換手段 (lie, llg) と、
前記第 4演算手段 (11a, lis) 又は前記第 7演算手段 (lis) の演算値を前記車 体を基準として前記モニタ座標系の値に変換し、 前記車体 (1B) と目標掘削面と の位置関係を前記表示部に表示させる処理を行う第 2変換手段 (llf,llh) とを有 することを特徴とする掘削機械の目標掘削面設定装置。
7. 請求項 1記載の掘削機械の目標掘削面設定装置において、
前記入力手段 (7) は前記外部基準 (R) の勾配を設定する手段 (7c, 7d) を含み、 前記第 1演算手段 (lib, llc;llb,lls,llt) は、 前記勾配の設定値も含めて前記 車体 (1B) と外部基準 (R) と目標掘削面 (T) の位置関係を演算し、
前記第 2演算手段 (lle-llh,llj) は、 前記勾配に応じた前記外部基準と目標掘 削面とを表示するよう前記画像信号を生成することを特徴とする掘削機械の目標 掘削面設定装置。
8. 請求項 1記載の掘削機械の目標掘削面設定装置において、
前記第 2演算手段 (lle-llh,llj) の画像信号を用い、 前記車体 (1B) を示す画 像 (12c) と前記外部基準 (R) 及び目標掘削面 (T) を示す直線 (12, 12b) を前記 位置関係で表示する表示装置 (12, 20) を更に備えることを特徴とする掘削機械の 目標掘削面設定装置。
9 . 請求項 1記載の掘削機械の目標掘削面設定装置において、
前記第 1演算手段 (l lb,l l c ; l lFa) は第 1制御ユニット (9F) に備えられ、 前 記第 2演算手段 (l i e- l lh,l l j ) は前記第 1制御ユニットと別体の第 2制御ュニッ ト (l lFb) に備えられることを特徴とする掘削機械の目標掘削面設定装置。
1 0 . 車体 (1B) 外部に設置される外部基準 (R) に対して平行に目標掘削面
(T) を設定し、 この目標掘削面に対してフロント装置 (1A) を制御し、 目標掘削 面に沿って連続的に掘削可能とする掘削機械の目標掘削面設定プログラムを記録 した記録媒体 (93) であって、
このプログラムは、 コンピュータ (92) に、
前記目標掘削面 (T) を設定するための入力手段 (7) からの信号と、 前記フロ ント装置 (1A) の位置と姿勢に関する状態量を検出する検出手段 (8a, 8b) からの 信号とを用い、 前記車体 (1B) と外部基準 (R) と目標掘削面 (T) の位置関係を 演算させ、
この演算した位置関係を用いて画像演算処理を行わせ、 前記車体と外部基準と 目標掘削面の位置関係を表示する画像信号を生成 ·出力させることを特徴とする 掘削機械の目標掘削面設定プログラムを記録した記録媒体。
1 1 . 車体 (1B) 外部に設置される外部基準 (R) に対して平行に目標掘削面 (T) を設定し、 この目標掘削面に対してフロント装置 (1A) を制御し、 目標掘削 面に沿って連続的に掘削可能とする掘削機械の目標掘削面設定装置の表示装置 (12) において、
予め演算された前記車体 (1B) と外部基準 (R) と目標掘削面 (T) の位置関係 を表示する画像信号を取り込み、 前記車体を示す画像 G 2c) と前記外部基準及び 目標掘削面を示す直線 (12a,12b) とを前記位置関係で表示する表示部 (20) を備 えることを特徴とする掘削機械の目標掘削面設定装置の表示装置。
PCT/JP2000/006763 1999-10-01 2000-09-29 Dispositif de delimitation de la surface d'excavation cible pour engin excavateur, support d'enregistrement prevu a cet effet et unite d'affichage WO2001025549A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00962975A EP1186720A4 (en) 1999-10-01 2000-09-29 DEVICE FOR SETTING A TARGET TRUCK AREA FOR A EARTH MOVEMENT MACHINE, RECORDING CARRIER THEREFOR AND DISPLAY UNIT
JP2001528272A JP4024042B2 (ja) 1999-10-01 2000-09-29 掘削機械の目標掘削面設定装置、その記録媒体及び表示装置
US09/857,066 US6532409B1 (en) 1999-10-01 2000-09-29 Target excavation surface setting device for excavation machine, recording medium therefor and display unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/281104 1999-10-01
JP28110499 1999-10-01

Publications (1)

Publication Number Publication Date
WO2001025549A1 true WO2001025549A1 (fr) 2001-04-12

Family

ID=17634415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006763 WO2001025549A1 (fr) 1999-10-01 2000-09-29 Dispositif de delimitation de la surface d'excavation cible pour engin excavateur, support d'enregistrement prevu a cet effet et unite d'affichage

Country Status (6)

Country Link
US (1) US6532409B1 (ja)
EP (1) EP1186720A4 (ja)
JP (1) JP4024042B2 (ja)
KR (1) KR100452101B1 (ja)
CN (1) CN1133782C (ja)
WO (1) WO2001025549A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000997A1 (fr) * 2001-06-20 2003-01-03 Hitachi Construction Machinery Co., Ltd. Systeme de telecommande et systeme de telereglage d'engins de construction
JP2010116698A (ja) * 2008-11-12 2010-05-27 Hitachi Constr Mach Co Ltd 油圧ショベルの表示装置
WO2012114870A1 (ja) * 2011-02-22 2012-08-30 株式会社小松製作所 油圧ショベルの作業可能範囲表示装置とその制御方法
JP2012215070A (ja) * 2012-08-02 2012-11-08 Komatsu Ltd 油圧ショベルの作業可能範囲表示装置とその制御方法
JP2020169553A (ja) * 2014-10-27 2020-10-15 ヤンマーパワーテクノロジー株式会社 トラクタ

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10060077A1 (de) * 2000-12-01 2002-06-06 Putzmeister Ag Vorrichtung zur Betätigung des Knickmasts eines Großmanipulators
US6735888B2 (en) * 2001-05-18 2004-05-18 Witten Technologies Inc. Virtual camera on the bucket of an excavator displaying 3D images of buried pipes
US6882283B1 (en) * 2002-05-29 2005-04-19 At&T Corp. Cable plow installation monitor method and apparatus
US6711838B2 (en) * 2002-07-29 2004-03-30 Caterpillar Inc Method and apparatus for determining machine location
JP4233932B2 (ja) * 2003-06-19 2009-03-04 日立建機株式会社 作業機械の作業支援・管理システム
JP4173121B2 (ja) * 2003-09-02 2008-10-29 株式会社小松製作所 建設機械の運転システム
US7640683B2 (en) * 2005-04-15 2010-01-05 Topcon Positioning Systems, Inc. Method and apparatus for satellite positioning of earth-moving equipment
US9439416B2 (en) 2005-11-30 2016-09-13 Eden Research Plc Compositions and methods comprising terpenes or terpene mixtures selected from thymol, eugenol, geraniol, citral, and l-carvone
US7849941B2 (en) * 2006-10-10 2010-12-14 Clark Equipment Company Universal linkage assembly for a power machine
US7925439B2 (en) * 2006-10-19 2011-04-12 Topcon Positioning Systems, Inc. Gimbaled satellite positioning system antenna
KR100916638B1 (ko) * 2007-08-02 2009-09-08 인하대학교 산학협력단 구조광을 이용한 토공량 산출 장치 및 방법
US8135518B2 (en) 2007-09-28 2012-03-13 Caterpillar Inc. Linkage control system with position estimator backup
US7949449B2 (en) * 2007-12-19 2011-05-24 Caterpillar Inc. Constant work tool angle control
CA2759932C (en) * 2009-02-10 2015-08-11 Certusview Technologies, Llc Methods, apparatus, and systems for generating limited access files for searchable electronic records of underground facility locate and/or marking operations
US8572193B2 (en) 2009-02-10 2013-10-29 Certusview Technologies, Llc Methods, apparatus, and systems for providing an enhanced positive response in underground facility locate and marking operations
US8902251B2 (en) 2009-02-10 2014-12-02 Certusview Technologies, Llc Methods, apparatus and systems for generating limited access files for searchable electronic records of underground facility locate and/or marking operations
US20100265472A1 (en) * 2009-02-11 2010-10-21 Chris Campbell Methods and Systems for Laying Out a Design
US8918898B2 (en) 2010-07-30 2014-12-23 Certusview Technologies, Llc Methods, apparatus and systems for onsite linking to location-specific electronic records of locate operations
US8639393B2 (en) * 2010-11-30 2014-01-28 Caterpillar Inc. System for automated excavation planning and control
CL2012000933A1 (es) 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
US8914794B2 (en) 2011-06-30 2014-12-16 Rockwell Automation Technologies, Inc. Multiple deployment of applications with multiple configurations in an industrial automation environment
CN103649426B (zh) * 2012-01-27 2016-05-11 斗山英维高株式会社 建筑机械的操作安全性提高装置
US9574326B2 (en) * 2012-08-02 2017-02-21 Harnischfeger Technologies, Inc. Depth-related help functions for a shovel training simulator
JP5624101B2 (ja) * 2012-10-05 2014-11-12 株式会社小松製作所 掘削機械の表示システム、掘削機械及び掘削機械の表示用コンピュータプログラム
JP5426743B1 (ja) * 2012-10-05 2014-02-26 株式会社小松製作所 掘削機械の表示システム及び掘削機械
JP5938341B2 (ja) * 2012-12-18 2016-06-22 日立建機株式会社 電動式建設機械
US20160201298A1 (en) * 2015-01-08 2016-07-14 Caterpillar Inc. Systems and Methods for Constrained Dozing
WO2016158779A1 (ja) * 2015-03-27 2016-10-06 住友建機株式会社 ショベル
WO2016137017A1 (ja) * 2016-03-28 2016-09-01 株式会社小松製作所 評価装置及び評価方法
JP6689763B2 (ja) * 2017-02-06 2020-04-28 住友建機株式会社 ショベル
IT201700027669A1 (it) * 2017-03-13 2018-09-13 Edilmag S R L Dispositivo di monitoraggio della profondità della benna di un escavatore
AU2018245331B2 (en) * 2017-03-30 2020-07-23 Komatsu Ltd. Control system for a work vehicle, method for setting trajectory of work implement, and work vehicle
DE112017000133B4 (de) * 2017-06-30 2022-12-08 Komatsu Ltd. Erdbewegungsmaschine und Bildaufnahme-System
IT201800006471A1 (it) * 2018-06-19 2019-12-19 Metodo e dispositivo per il controllo della profondita' di scavo di un escavatore.
US20230092265A1 (en) * 2021-09-20 2023-03-23 Deere & Company Laser reference tracking and target corrections for work machines

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106229A (ja) * 1990-08-27 1992-04-08 Hitachi Constr Mach Co Ltd 掘削機の掘削深さ検出装置
JPH06272282A (ja) * 1993-03-22 1994-09-27 Fujita Corp 掘削装置の遠隔操作システム
JPH08246493A (ja) * 1995-03-13 1996-09-24 Hitachi Constr Mach Co Ltd 建設機械の領域制限掘削制御の掘削領域設定装置
WO1998036131A1 (fr) * 1997-02-13 1998-08-20 Hitachi Construction Machinery Co., Ltd. Controleur de creusement de pente de pelle hydraulique, dispositif d'etablissement de la pente cible et procede de formation d'un creusement en pente

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185932A (ja) 1986-02-13 1987-08-14 Komatsu Ltd 掘削機械の作業状態監視装置
JP2912495B2 (ja) 1992-04-13 1999-06-28 新キャタピラー三菱株式会社 多機能ディスプレイモニタ装置とその操作方法
KR0173835B1 (ko) 1994-06-01 1999-02-18 오까다 하지모 건설기계의 영역제한 굴삭제어장치
WO1996027548A1 (fr) * 1995-03-03 1996-09-12 Komatsu Ltd. Dispositif destine a indiquer la plage de mobilite d'un vehicule a grue mobile
JP3112814B2 (ja) 1995-08-11 2000-11-27 日立建機株式会社 建設機械の領域制限掘削制御装置
JP3609164B2 (ja) 1995-08-14 2005-01-12 日立建機株式会社 建設機械の領域制限掘削制御の掘削領域設定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106229A (ja) * 1990-08-27 1992-04-08 Hitachi Constr Mach Co Ltd 掘削機の掘削深さ検出装置
JPH06272282A (ja) * 1993-03-22 1994-09-27 Fujita Corp 掘削装置の遠隔操作システム
JPH08246493A (ja) * 1995-03-13 1996-09-24 Hitachi Constr Mach Co Ltd 建設機械の領域制限掘削制御の掘削領域設定装置
WO1998036131A1 (fr) * 1997-02-13 1998-08-20 Hitachi Construction Machinery Co., Ltd. Controleur de creusement de pente de pelle hydraulique, dispositif d'etablissement de la pente cible et procede de formation d'un creusement en pente

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000997A1 (fr) * 2001-06-20 2003-01-03 Hitachi Construction Machinery Co., Ltd. Systeme de telecommande et systeme de telereglage d'engins de construction
US6782644B2 (en) 2001-06-20 2004-08-31 Hitachi Construction Machinery Co., Ltd. Remote control system and remote setting system for construction machinery
JP2010116698A (ja) * 2008-11-12 2010-05-27 Hitachi Constr Mach Co Ltd 油圧ショベルの表示装置
CN103080436A (zh) * 2011-02-22 2013-05-01 株式会社小松制作所 液压挖掘机的可作业范围显示装置及其控制方法
JP2012172427A (ja) * 2011-02-22 2012-09-10 Komatsu Ltd 油圧ショベルの作業可能範囲表示装置とその制御方法
WO2012114870A1 (ja) * 2011-02-22 2012-08-30 株式会社小松製作所 油圧ショベルの作業可能範囲表示装置とその制御方法
KR101413054B1 (ko) 2011-02-22 2014-06-30 가부시키가이샤 고마쓰 세이사쿠쇼 유압 셔블의 작업 가능 범위 표시 장치와 그 제어 방법
US8886416B2 (en) 2011-02-22 2014-11-11 Komatsu Ltd. Hydraulic shovel operability range display device and method for controlling same
CN103080436B (zh) * 2011-02-22 2015-01-21 株式会社小松制作所 液压挖掘机的可作业范围显示装置及其控制方法
DE112012000111B4 (de) * 2011-02-22 2015-05-07 Komatsu Ltd. Vorrichtung zur Anzeige eines möglichen Arbeitsbereichs in einem Hydraulikbagger und Verfahren zur Steuerung derselben
JP2012215070A (ja) * 2012-08-02 2012-11-08 Komatsu Ltd 油圧ショベルの作業可能範囲表示装置とその制御方法
JP2020169553A (ja) * 2014-10-27 2020-10-15 ヤンマーパワーテクノロジー株式会社 トラクタ
JP6991645B2 (ja) 2014-10-27 2022-01-12 ヤンマーパワーテクノロジー株式会社 トラクタ

Also Published As

Publication number Publication date
KR20010080537A (ko) 2001-08-22
JP4024042B2 (ja) 2007-12-19
EP1186720A4 (en) 2008-11-19
CN1133782C (zh) 2004-01-07
US6532409B1 (en) 2003-03-11
KR100452101B1 (ko) 2004-10-08
EP1186720A1 (en) 2002-03-13
CN1327498A (zh) 2001-12-19

Similar Documents

Publication Publication Date Title
WO2001025549A1 (fr) Dispositif de delimitation de la surface d'excavation cible pour engin excavateur, support d'enregistrement prevu a cet effet et unite d'affichage
KR101713457B1 (ko) 굴착 기계의 시공 관리 장치, 유압 셔블의 시공 관리 장치, 굴착 기계 및 시공 관리 시스템
JP4025140B2 (ja) 掘削機械の表示システム及びそのプログラム
KR100353566B1 (ko) 유압셔블의경사면굴삭제어장치,목표경사면설정장치및경사면굴삭형성방법
JP6872945B2 (ja) 建設機械
JP5921692B1 (ja) 掘削機械の制御システム及び掘削機械
CN107208404B (zh) 工程机械的显示系统
WO2019175917A1 (ja) 作業機械
CN108699802A (zh) 作业机械
CN110905037A (zh) 挖掘机械的显示系统、挖掘机械及挖掘机械的显示方法
US7007415B2 (en) Method and system of controlling a work tool
CN109689978B (zh) 作业机械
EP3922776A1 (en) Excavator
KR100191392B1 (ko) 건설기계의 영역제한 굴삭제어용 굴삭영역 설정장치
JP2001123476A (ja) 掘削機械の表示システム及び記録媒体
US20230392347A1 (en) Work machine
EP3719212A1 (en) System for remapping a control signal for excavator arm movement to a rotatory degree of freedom of a tool
JP3949330B2 (ja) 掘削機械の作業状態監視システム、作業状態表示装置及び記録媒体
JPH05287782A (ja) 多機能ディスプレイモニタシステムとそのシステム の操作方法
JP3497910B2 (ja) 建設機械の領域制限掘削制御の掘削領域設定装置
JP3522878B2 (ja) 建設機械の領域制限掘削制御の掘削領域設定装置
WO2023041131A1 (en) Control system for a construction vehicle and construction vehicle comprising such control system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802137.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2001 528272

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000962975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017006449

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09857066

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000962975

Country of ref document: EP