WO2001024626A1 - Prevention et traitement de maladies associees a la coagulation sanguine - Google Patents

Prevention et traitement de maladies associees a la coagulation sanguine Download PDF

Info

Publication number
WO2001024626A1
WO2001024626A1 PCT/JP2000/006802 JP0006802W WO0124626A1 WO 2001024626 A1 WO2001024626 A1 WO 2001024626A1 JP 0006802 W JP0006802 W JP 0006802W WO 0124626 A1 WO0124626 A1 WO 0124626A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
therapeutic agent
prophylactic
humanized
agent according
Prior art date
Application number
PCT/JP2000/006802
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Saito
Takehisa Kitazawa
Kazutaka Yoshihashi
Kunihiro Hattori
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA002388408A priority Critical patent/CA2388408A1/en
Priority to AT00963006T priority patent/ATE498305T1/de
Priority to JP2001527640A priority patent/JP3859512B2/ja
Priority to US10/089,501 priority patent/US8062638B1/en
Priority to DK00963006.2T priority patent/DK1222854T3/da
Priority to HU0203486A priority patent/HUP0203486A2/hu
Priority to AU74506/00A priority patent/AU7450600A/en
Priority to BR0014667-6A priority patent/BR0014667A/pt
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to CN00813720.XA priority patent/CN1589098A/zh
Priority to DE60045638T priority patent/DE60045638D1/de
Priority to SK444-2002A priority patent/SK4442002A3/sk
Priority to EP00963006A priority patent/EP1222854B1/en
Priority to IL14898000A priority patent/IL148980A0/xx
Priority to MXPA02003278A priority patent/MXPA02003278A/es
Publication of WO2001024626A1 publication Critical patent/WO2001024626A1/ja
Priority to NO20021410A priority patent/NO20021410L/no
Priority to US13/252,455 priority patent/US20120073002A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0271Chimeric animals, e.g. comprising exogenous cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/36Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5094Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for blood cell populations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/106Primate
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a continuous hypercoagulable animal model and a method for producing the same, an agent for preventing or treating a disease in which the hypercoagulable state continues, an agent for preventing or treating a hypercoagulable state caused by an infectious disease, and a vein.
  • the present invention also relates to an agent for preventing or treating arterial thrombosis, and an agent for preventing or treating diseases caused by vascular media thickening.
  • the blood coagulation reaction is a reaction in which the serine protease precursor is activated one after another by an active proteinase, and finally, thrombin is produced to form fibrin.
  • Thrombosis is the result of an excessively elevated blood coagulation reaction caused by changes in plasma coagulation and fibrinolytic system and changes in platelet, leukocyte, and vascular endothelial cell functions with the development of various pathological conditions Occurs.
  • the factor that initiates the blood coagulation reaction is tissue factor. In acute coronary syndromes such as acute myocardial infarction and unstable angina, tissue factors abundant in plaque resulting from the development of atherosclerosis are exposed to blood as the plaque ruptures Starts the blood clotting reaction.
  • tissue factor In the group of disseminated intravascular coagulation associated with sepsis or malignant tumors, activated monocytes and macrophages express tissue factor, and tumor cells express tissue factor. Increases blood coagulation response. Once tissue factor comes into contact with blood, the clotting reaction proceeds within a short period of time and forms a thrombus. Therefore, to prevent thrombus formation It is necessary to stop the blood coagulation reaction, which is not known when it is started, or is constantly occurring. Therefore, an experimental model showing a persistently hypercoagulable state is indispensable for the development of an effective antithrombotic drug. However, all known thrombus models are models that induce thrombus formation in a short time.
  • the present invention aims to provide an experimental model in which a hypercoagulable state is maintained by continuously contacting human tissue factor with blood.
  • the blood clotting reaction is a reaction in which the serine protease precursor is activated one after another by an active protease, and finally fibrin is formed by the generation of thrombin.
  • Thrombosis was exacerbated by the initiation of blood coagulation reaction due to changes in plasma coagulation and fibrinolytic system and changes in platelet, leukocyte, and vascular endothelial cell functions with the development of various pathological conditions As a result.
  • the factor that initiates the blood clotting reaction is tissue factor (T F).
  • TF which is often present in the black as a result of the progression of atherosclerosis, is exposed to blood as the black ruptures.
  • the coagulation reaction starts.
  • activated monocytes and macrophages express TF and tumor cells express TF to enhance the blood coagulation reaction. And this lasts.
  • the blood clotting reaction proceeds within a short period of time and forms a thrombus. Therefore, in order to prevent thrombus formation, it is necessary to prevent the blood coagulation reaction, which is unknown or always occurring, from being started. Therefore, an effective antithrombotic drug needs to be a drug that prevents persistent hypercoagulability.
  • the present invention provides, in the second aspect, It is intended to provide a novel preventive or therapeutic agent for a certain disease.
  • Severe infections are often accompanied by coagulopathy, which causes symptoms such as multiple organ failure and disseminated intravascular coagulation, and it is important to take countermeasures as a factor that worsens the prognosis of patients .
  • systemic infections such as sepsis
  • vascular endothelial cell damage is considered as a mechanism of organ damage.
  • LPS lipopolysaccharide
  • LPS released into the blood activates monocytes to produce tissue factor (TF), causing hypercoagulability and producing cytokines such as TNF, IL-1 ⁇ , and IL-8.
  • TF tissue factor
  • cytokines such as TNF, IL-1 ⁇ , and IL-8.
  • cytokines such as TNF, IL-1 ⁇ , and IL-8.
  • Activated neutrophils adhere to vascular endothelial cells and release cytotoxic substances such as active enzymes and elastase to damage vascular endothelial cells.
  • cytokines cytotoxic substances
  • elastase to damage vascular endothelial cells.
  • the production of TF increases and the hypercoagulable state further progresses.
  • multiple microthrombi occur throughout the body, and circulatory insufficiency of the organs is induced, leading to multiple organ insufficiency.
  • the present invention aims at providing a novel agent for preventing or treating blood coagulation caused by an infectious disease in the third aspect.
  • Slow venous blood flow, damage to the venous wall, and enhanced blood clotting capacity are thought to be important mechanisms for the development of venous thrombosis.
  • invasion such as surgery, resection, and trauma leads to physical damage to the blood vessel wall and abnormalities in the coagulation and fibrinolysis systems, and postoperative recumbency results in slow venous blood flow.
  • the resulting venous thrombus not only causes circulatory failure of the extremities, but also causes fatal pulmonary embolism due to the thrombus itself flowing into the pulmonary artery through the bloodstream, resulting in static Prevention of pulse thrombosis itself is considered important. Therefore, development of a drug capable of effectively preventing or treating venous thrombosis is desired.
  • the present invention aims to provide a novel preventive or therapeutic agent for venous thrombosis.
  • Arterial thrombosis is a disease in which blood clots form in hardened blood vessels and are often fatal when they develop in important organs such as the brain and heart.
  • coronary artery syndrome such as unstable angina and acute myocardial infarction is considered to be a dangerous condition that easily transitions to sudden death.
  • rupture of atherosclerotic plaque and associated thrombus formation are important factors as the pathogenesis.
  • tissue factor which is the factor that initiates thrombus formation, was overexpressed on the cell surface and extracellular interstitium in plaques. Exposure to blood is thought to be a major factor in thrombus formation.
  • the present invention aims at providing a novel preventive or therapeutic agent for arterial thrombosis in the fifth aspect.
  • PTCA Percutaneous coronary angioplasty
  • TF tissue factor
  • the present invention aims to provide a novel agent for preventing or treating a disease caused by vascular media thickening. Disclosure of the invention
  • the present inventors have conducted various studies to solve the first problem, and as a result, it has been found that human tissue factor (TF) can be expressed constantly by introducing a human tissue factor (TF) gene.
  • the present inventors have found that, by transplanting animal cells into experimental animals and increasing the concentration of human tissue and tissue factor in the animals, the state of hypercoagulability in the animals can be maintained for a long period of time. did.
  • the present invention relates to an experimental animal in which a gene encoding human tissue factor (TF) or a part thereof has been introduced and an animal cell capable of expressing the gene has been transplanted.
  • the present invention provides a non-human animal in which the hypercoagulable state is maintained for a long time.
  • a part of the human tissue factor is, for example, a human tissue factor lacking an intracellular region.
  • the animal cell is preferably a mammalian cell. Said mammalian cells are preferably human myeloma cells.
  • the animal is preferably a mouse.
  • the hypercoagulable state includes elevated human tissue factor blood levels, decreased platelets, decreased fibrinogen, increased soluble fibrin monomer-complex concentrations, and thrombin-antithrombin III complex. The increase in concentration is represented by at least one phenomenon.
  • the present invention also relates to the above-described method for producing an animal, wherein a gene encoding human tissue factor (TF) or a part thereof is inserted and an animal cell capable of expressing the gene is used as a non-human experimental animal. Transplanted to And selecting an animal in which the hypercoagulable state persists.
  • TF human tissue factor
  • the present invention also provides a method for screening an antithrombotic drug, which comprises using the above animal.
  • an antibody against human tissue factor (sometimes referred to as an anti-human TF antibody or an anti-TF antibody) causes a state of hypercoagulability. Found that it is possible to prevent the continuation of
  • the present invention provides, in a second aspect, a preventive or therapeutic agent for a disease in which a hypercoagulable state is persistent, comprising an antibody against human tissue factor (human T F).
  • a preventive or therapeutic agent for a disease in which a hypercoagulable state is persistent comprising an antibody against human tissue factor (human T F).
  • the antibody is, for example, a polyclonal antibody.
  • the antibody is preferably a monoclonal antibody.
  • the antibody is preferably a recombinant antibody.
  • the antibody is preferably a modified antibody.
  • the modified antibody is preferably a chimeric antibody or a humanized antibody.
  • the humanized antibody is preferably a version bb, ib, or i-b2 humanized antibody.
  • the antibody is, for example, a modified antibody.
  • the modified antibody is, for example, antibody fragment Fab, F (ab ') 2 or Fv, or single chain Fv (scFv).
  • an antibody against human tissue factor (sometimes referred to as an anti-human TF antibody or an anti-TF antibody) caused an infectious disease. It has been found that a hypercoagulable state can be prevented or treated.
  • the present invention provides, in a third aspect, an agent for preventing or treating hypercoagulable state caused by an infection, comprising an antibody against human tissue factor (human T F).
  • an agent for preventing or treating hypercoagulable state caused by an infection comprising an antibody against human tissue factor (human T F).
  • the antibody is, for example, a polyclonal antibody.
  • the antibody is preferably Or a monoclonal antibody.
  • the antibody is preferably a recombinant antibody.
  • the antibody is preferably a modified antibody.
  • the modified antibody is preferably a chimeric antibody or a humanized antibody.
  • the humanized antibody is preferably a humanized antibody of version bb, ib, or ib2.
  • the antibody is, for example, a modified antibody.
  • the modified antibody is, for example, antibody fragment Fab, F (ab ') 2 or FV, or single chain FV (scFV).
  • venous thrombosis can be caused by an antibody against human tissue factor (sometimes referred to as anti-human TF antibody or anti-TF antibody). It has been found that it can be prevented or treated.
  • human tissue factor sometimes referred to as anti-human TF antibody or anti-TF antibody
  • the present invention provides, in a fourth aspect, an agent for preventing or treating venous thrombosis, comprising an antibody against human tissue factor (human TF).
  • the antibody is, for example, a polyclonal antibody.
  • the antibody is preferably a monoclonal antibody.
  • the antibody is preferably a recombinant antibody.
  • the antibody is preferably a modified antibody.
  • the modified antibody is preferably a chimeric antibody or a humanized antibody.
  • the humanized antibody is preferably a humanized antibody of version bb, i_b, or ib2.
  • the antibody is, for example, a modified antibody.
  • the modified antibody is, for example, an antibody fragment Fab, F (ab ') 2 or Fv, or a single chain Fv (scFv).
  • arterial thrombosis can be caused by an antibody against human tissue factor (sometimes referred to as anti-human TF antibody or anti-TF antibody). It has been found that it can be prevented or treated.
  • human tissue factor sometimes referred to as anti-human TF antibody or anti-TF antibody
  • the present invention relates to a fifth aspect, wherein the human tissue factor (human T A prophylactic or therapeutic agent for arterial thrombosis, comprising an antibody against F).
  • human tissue factor human T A prophylactic or therapeutic agent for arterial thrombosis, comprising an antibody against F.
  • the antibody is, for example, a polyclonal antibody.
  • the antibody is preferably a monoclonal antibody.
  • the antibody is preferably a recombinant antibody.
  • the antibody is preferably a modified antibody.
  • the modified antibody is preferably a chimeric antibody or a humanized antibody.
  • the humanized antibody is preferably a humanized antibody of version bb, ib, or ib2.
  • the antibody is, for example, a modified antibody.
  • the modified antibody is, for example, antibody fragment Fab, F (ab ') 2 or Fv, or single chain Fv (scFv).
  • an antibody against human tissue factor (sometimes referred to as an anti-human TF antibody or an anti-TF antibody) is used to increase vascular media thickness. Disease can be prevented or treated.
  • the present invention provides, in a sixth aspect, a preventive or therapeutic agent for a disease caused by vascular media thickening, comprising an antibody against human tissue factor (human TF).
  • a preventive or therapeutic agent for a disease caused by vascular media thickening comprising an antibody against human tissue factor (human TF).
  • the antibody is, for example, a polyclonal antibody.
  • the antibody is preferably a monoclonal antibody.
  • the antibody is preferably a recombinant antibody.
  • the antibody is preferably a modified antibody.
  • the modified antibody is preferably a chimeric antibody or a humanized antibody.
  • the humanized antibody is preferably a humanized antibody of version bb, ib, or i_b2.
  • the antibody is, for example, a modified antibody.
  • the modified antibody is, for example, an antibody fragment Fab, F (ab ') 2 or Fv, or a single chain Fv (scFv).
  • FIGURES Figure 1 shows H chain chimera ZL chain chimera antibody, H chain humanized version b ZL chain humanized version b antibody, H chain humanized version i ZL chain humanized 5 is a graph comparing the antigen-binding activities of a humanized version b antibody and a heavy chain humanized version i light chain humanized version b2 antibody.
  • Figure 2 shows H chain chimera ZL chain chimera antibody, H chain humanized version b ZL chain humanized version b antibody, H chain humanized version i ZL chain Neutralizing activity of humanized version b antibody and H chain humanized version ino L chain humanized version b antibody on human TF (Fan by TF C) is a graph comparing
  • Figure 3 shows H chain chimera Z light chain chimeric antibody, H chain humanized version b Z light chain humanized version b antibody, H chain humanized version i L chain Neutralizing activity of humanized version b antibody and H chain humanized version i antibody ZL chain humanized version b 2 antibody against human TF (Fac This is a graph comparing the activity of the compound (X-binding inhibitory activity).
  • Figure 4 shows H chain chimera / L chain chimera antibody, H chain humanized version b / L chain humanized version b antibody, H chain humanized version i ZL Neutralization activity of humanized version b antibody and humanized version of heavy chain b antibody and heavy chain version 2 b antibody on human TF (inhibition of plasma coagulation by TF) Activity).
  • Figure 5 shows the time-course changes in tumor volume in mice transplanted with cells transfected with human tissue factor gene (dotted line) and mice transplanted with cells not transfected with the gene (solid line) after tumor cell transplantation. This is the Darafu shown.
  • FIG. 6 shows mice transplanted with cells into which the human tissue factor gene was introduced (dotted line) and mice transplanted with cells into which the gene was not introduced (dotted line).
  • 2 is a graph showing the time course of the plasma concentration of human tissue factor after transplantation of tumor cells in (solid line).
  • Fig. 7 shows the time course of the number of platelets in mice transplanted with cells into which the human tissue factor gene was introduced (dotted line) and in cells transplanted with cells without the gene (solid line) after tumor cell transplantation. It is a graph which shows a change.
  • Figure 8 shows mice transplanted with cells transfected with human tissue factor gene.
  • FIG. 2 is a graph showing the concentration of fibrinogen in 1) as a relative value with 100%.
  • Figure 9 shows mice transplanted with human tissue factor gene-introduced cells.
  • FIG. 10 shows a mouse (dotted line) transplanted with cells into which the human tissue factor gene has been introduced and a mouse transplanted with cells without the gene.
  • the graph shows the time course of the plasma concentration of the thrombin-antithrombin III complex (TAT) after tumor cell transplantation.
  • Figure 11 shows platelets obtained by administering anti-human TF antibody at 1 mg / kg once a week for 3 weeks to mice transplanted with human TF gene-introduced tumor cells from day 45 of implantation. It is a graph which shows a time-dependent change of a number.
  • Figure 12 shows a mouse transplanted with tumor cells transfected with the human TF gene.
  • FIG. 4 is a graph showing the plasma concentration of (sFMC).
  • FIG. 13 shows the results obtained by administering anti-human TF antibody at 1 mg / kg once a week for 3 weeks to mice transplanted with human TF gene-introduced tumor cells from day 45 of implantation.
  • FIG. 6 is a graph showing the plasma concentration of thrombin-antithrombin III complex (TAT) 6 days after the last administration.
  • TAT thrombin-antithrombin III complex
  • FIG. 4 is a graph showing the change over time in the platelet count when IU / kg, 6487.3 IU / kg is continuously administered for 24 hours by an osmotic pump.
  • TF human tissue factor
  • the gene encoding human tissue factor (TF) for use in the first aspect of the present invention has already been cloned, and its nucleotide sequence and the amino acid sequence encoded thereby are also known.
  • the nucleotide sequence encoding full-length human tissue factor and the corresponding amino acid sequence are shown in SEQ ID NO: 103 and
  • a gene coding for TF from which an intracellular region has been removed or a gene coding for a portion maintaining the activity of initiating the blood coagulation system may be used. Good.
  • any expression vector that functions in animal cells can be used.
  • pCOSl pSV2-neo
  • pMAM -neo pSG5, etc.
  • a useful promoter commonly used in mammalian cells the human TF gene, can be expressed by functionally binding a polyA signal to the downstream side of the gene.
  • a promoter / enhancer a human cytomegalo Human cy tomegalovi rus immediate early promoter / enhancer, retrovirus, polymonovirus, adenovirus, siminovirus 4 0 (SV
  • Expression vectors have the following replication origins:
  • phosphotransferase APH 3 ') II or It can contain the I (neo) gene, thymidine kinase (TK) gene, dihydrofolate reductase (DHFR) gene, and the like.
  • a calcium phosphate method, a riboxion method, or the like can be used in addition to an electoral poration method.
  • Cells for introducing this expression vector are not particularly limited as long as they can be transplanted into an experimental animal.
  • various cultured cells can be used.
  • mammalian cells for example, cultured cells derived from human, mouse, rat, hamster, monkey, etc., and particularly tumor cells are preferable.
  • specific examples of cells include human myeloma cell lines such as KP MM2, ARH-77, and mouse leukemia cell lines such as P815, P3888, L1210. it can.
  • mice are mammals other than humans, preferably small laboratory animals such as mice, rats, hamsters, etc., and mice are particularly preferred.
  • the hypercoagulable state is a physical state induced by human TF, and includes, for example, a decrease in platelet count fibrinogen concentration, a soluble fibrin monomer-complex ( s FMC) and thrombin-antithrombin III complex (TAT) Appears as a rising condition.
  • s FMC soluble fibrin monomer-complex
  • TAT thrombin-antithrombin III complex
  • any of a polyclonal antibody and a monoclonal antibody may be used as long as the antibody can prevent the continuation of the hypercoagulable state based on human TF.
  • Monoclonal antibodies are preferred.
  • chimeric antibodies, humanized antibodies, and single chain FV based on monoclonal antibodies can also be used. Humanized antibodies are particularly preferred.
  • any of a polyclonal antibody and a monoclonal antibody can be used as long as it is an antibody capable of inhibiting the persistence of the hypercoagulable state based on human TF.
  • monoclonal antibodies are preferred.
  • chimeric antibodies, humanized antibodies, and single-glutinin FV based on monoclonal antibodies can also be used. Humanized antibodies are particularly preferred.
  • the antibody used in the present invention according to the fourth aspect may be a polyclonal antibody or a monoclonal antibody as long as it is an antibody capable of inhibiting the persistence of the hypercoagulable state based on human TF. Either one is preferred, and monoclonal antibodies are preferred. In addition, chimeric antibodies, humanized antibodies, and single-glutinin FVs based on monoclonal antibodies can also be used. Humanized antibodies are particularly preferred.
  • the antibody used in the fifth aspect of the present invention may be a polyclonal antibody or a monoclonal antibody as long as it is an antibody capable of inhibiting the persistence of the hypercoagulable state based on human TF. Either one may be used, but a monoclonal antibody is preferred.
  • chimeric antibodies, humanized antibodies, and single-glutinin FVs based on monoclonal antibodies can also be used. Humanized antibodies are particularly preferred.
  • the antibody used in the sixth aspect of the present invention may be any antibody that can prevent the continuation of the hypercoagulable state based on human TF.
  • Either a polyclonal antibody or a monoclonal antibody Monoclonal antibodies are preferred.
  • chimeric antibodies, humanized antibodies, and single-chain FVs based on monoclonal antibodies can also be used. Humanized antibodies are particularly preferred.
  • the anti-human TF antibody used in the present invention has an effect of inhibiting the persistence of the hypercoagulable state based on human TF, its origin, type (monoclonal, polyclonal) and Regardless of the shape.
  • the anti-human TF antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means.
  • a monoclonal antibody derived from a mammal is particularly preferable.
  • Monoclonal antibodies derived from mammals include those produced in hybridomas and those produced in hosts transformed with expression vectors containing antibody genes by genetic engineering techniques. This antibody is an antibody that binds to human T F and inhibits human T F from inducing a hypercoagulable state. 2.
  • a monoclonal antibody-producing hybridoma can be basically produced using a known technique as follows. That is, human TF or a part thereof (fragment) is used as a sensitizing antigen, and is immunized according to an ordinary immunization method. It can be produced by fusing and screening monoclonal antibody-producing cells by the usual screening method.
  • a monoclonal antibody may be prepared as follows.
  • human TF used as a sensitizing antigen for obtaining antibodies was obtained by expressing the amino acid sequence of the human TF gene disclosed in Rrissey et al., Cell, Vol. 50, p. 129-135 (1987). That is, after a human TF-encoding gene sequence is introduced into a known expression vector system to transform an appropriate host cell, the desired human TF is isolated from the host cell or the culture supernatant. The protein is purified by known methods. This method is described in Reference Example 1 of the present specification. Furthermore, human TF used as an antigen can be extracted and purified from a ⁇ F-containing biological material such as human placenta by the method described in Reference Example 2 before use.
  • this purified human TF protein is used as a sensitizing antigen.
  • soluble T F from which the transmembrane region at the C-terminal side of human T F has been removed can be produced, for example, by genetic recombination, and this can also be used as a sensitizing antigen.
  • the mammal immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. Rodents such as mice, rats, hamsters, or egrets and monkeys are used.
  • Immunization of an animal with a sensitizing antigen is performed according to a known method.
  • the sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal. More specifically, the sensitizing antigen is diluted and suspended in an appropriate amount with PBS (Phosphate-Buffered Saline) or physiological saline, etc., and then passed through if desired.
  • PBS Phosphate-Buffered Saline
  • physiological saline etc.
  • Ordinary adjuvant for example, Freund's complete adjuvant ⁇ After mixing and emulsifying an appropriate amount of Freund's incomplete adjuvant, administer it to mammals several times every 421 days.
  • an appropriate carrier can be used at the time of sensitization antigen immunization.
  • immune cells are collected from the mammal and subjected to cell fusion. Especially splenocytes O
  • Mammalian myeloma cells are used as the other parent cells to be fused with the immune cells.
  • This myeloma cell is a variety of known cell lines.
  • P3 P3x63Ag8.653
  • the cell fusion between the immune cells and myeloma cells is basically performed by a known method, for example, the method of Milstin et al. (Kohler. G. and Milstein, C., Methods Enzymol. (1981) 73, 3- 46) It can be done according to the above.
  • the cell fusion is performed in a normal nutrient culture solution, for example, in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like is used, and if necessary, an auxiliary agent such as dimethyl sulfoxide may be added to increase the fusion efficiency. it can.
  • the ratio of the immune cells to the myeoma cells can be arbitrarily set. For example, it is preferable that the number of immune cells be 11 to 10 times that of myeloma cells.
  • a culture solution used for the cell fusion for example,
  • FCS fetal calf serum
  • a predetermined amount of the immune cells and myeloma cells are mixed well in the culture medium, and the mixture is heated to about 37 ° C. in advance in a PEG solution (for example, an average molecular weight of 100 to 600). (About 0) at a concentration of usually 30–60% (wZV), and mix to form the desired fused cells (hybri-doma). Subsequently, an appropriate culture solution is successively added, and the operation of removing the supernatant by centrifugation is repeated to remove a cell fusion agent or the like that is unfavorable for the growth of the hybridoma.
  • a PEG solution for example, an average molecular weight of 100 to 600.
  • hybridomas are selected by culturing them in a normal selective culture medium, for example, an HAT culture medium (a culture medium containing hyposanthin, aminopterin and thymidine).
  • HAT culture medium a culture medium containing hyposanthin, aminopterin and thymidine.
  • the culturing in the HAT culture solution is continued for a time (usually several days to several weeks) sufficient for the death of cells (non-fused cells) other than the desired hybridoma.
  • a conventional limiting dilution method is performed, and screening and single-cloning of hybridomas producing the desired antibody are performed.
  • human lymphocytes are sensitized to human TF in vitro and the sensitized lymphocytes derived from human are obtained.
  • the desired human antibody having human TF binding activity can be obtained by fusing it with myeloma cells having the ability of permanent division (see Japanese Patent Publication No. 1-589788).
  • transgenic animals having all or part of the human antibody gene repertoire are administered human TF as an antigen to obtain anti-human TF antibody-producing cells, which are immortalized.
  • a human antibody to human TF may be obtained from the transformed cells (International Patent Application Publication No. WO 94/25585, Publication No.
  • the hybridoma producing the monoclonal antibody thus produced can be subcultured in a normal culture medium, and can be stored for a long time in liquid nitrogen. .
  • a method of culturing the hybridoma according to an ordinary method and obtaining the culture supernatant, or transferring the hybridoma to a mammal compatible therewith A method of administering the substance, growing it, and obtaining it as ascites is employed.
  • the former method is suitable for obtaining high-purity antibodies, while the latter method is suitable for mass production of antibodies.
  • an antibody gene is cloned from a hybridoma, inserted into an appropriate vector, introduced into a host, and produced using a gene recombination technique.
  • a gene recombination technique See, for example, Vandamme, AM et al., Eur. J. Biochem. (1990) 192, 767-775).
  • mRNA encoding the variable (V) region of the anti-human TF antibody is isolated from the hybridoma producing the anti-human TF antibody.
  • the mRNA can be isolated by known methods, for example, guanidine ultracentrifugation (Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294-5299), A
  • mRNA can be directly prepared.
  • cDNA of the antibody V region is synthesized using reverse transcriptase.
  • the synthesis of cDNA is performed using AMV Reverse Transcriptase Firs-strand cDNA Synthesis Kit (manufactured by Seikagaku Corporation) or the like.
  • AMV Reverse Transcriptase Firs-strand cDNA Synthesis Kit manufactured by Seikagaku Corporation
  • 5'-Ampli FINDE R RACE Kit manufactured by Clontech
  • 5'_RACE method using PCR Frohman, .A. Et al., Pro Natl. Acad Sci. USA (1988) 85, 8998-9002, Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) and the like can be used.
  • the target DNA fragment is purified from the obtained PCR product and ligated to the vector DNA. Furthermore, a recombinant vector is prepared from this, introduced into E. coli, etc., and colonies are selected to produce a desired recombinant vector. Then, the nucleotide sequence of the target DNA is confirmed by a known method, for example, a dideoxynucleotide-digestion method.
  • the antibody gene is incorporated into an expression vector so as to be expressed under the control of an expression control region, for example, an enhancer or a promoter.
  • an expression control region for example, an enhancer or a promoter.
  • host cells are transformed with the expression vector to express the antibody.
  • Expression of the antibody gene may be performed by co-transforming host cells by separately incorporating DNA encoding the antibody heavy chain (H chain) or light chain (L chain) into the expression vector, or D to encode chains and light chains
  • the host cell may be transformed by incorporating NA into a single expression vector (see WO94 / 115253).
  • a single expression vector see WO94 / 115253
  • transgenic animals can be used.
  • an antibody gene is prepared as a fusion gene by inserting it into the middle of a gene encoding a protein (eg, goat S casein) that is specifically produced in milk.
  • a DNA fragment containing the fusion gene into which the antibody gene has been inserted is injected into a goat embryo, and the embryo is introduced into a female goat.
  • the desired antibody is obtained from the milk produced by the transgenic jerk or the progeny of the goat that has received the embryo.
  • Hormones may also be used in transgenic enagias as appropriate to increase the amount of milk containing the desired antibody produced from transgenic nickaeggi (Ebert, KM et al., Bio / Technology (1994)). 12, 699-702).
  • a recombinant antibody artificially modified for the purpose of, for example, reducing the antigenicity to humans such as a chimeric antibody or a humanized humanized antibody
  • Antibodies can be used. These modified antibodies can be produced using known methods.
  • Chimeric antibodies are produced by ligating the DNA encoding the antibody V region obtained as described above with the DNA encoding the human antibody C region, incorporating the DNA into an expression vector, and introducing it into a host. To be obtained. Using this known method, chimeric antibodies useful in the present invention can be obtained.
  • the humanized antibody is also referred to as a reshaped human antibody, which complements the complementarity determining region (CDR) of a mammal other than human, eg, mouse, antibody with the complementarity determining region (CDR). Transplanted into the sex-determining region, A known method is also known (see European Patent Application Publication Nos. EP 125023 and WO96 / 025676).
  • a DNA sequence designed to link the CDR of a mouse antibody to the framework region (FR) of a human antibody was constructed by ligating a portion overlapping both terminal regions of both the CDR and FR. It is synthesized by PCR using several oligonucleotides prepared as described above as primers (see the method described in WO98 / 133388).
  • the framework region of the human antibody linked via CDR is selected so that the complementarity-determining region forms a favorable antigen-binding site. If necessary, the amino acid in the framework region in the variable region of the antibody may be substituted so that the complementarity determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato, K et al., Cancer Res. (1993) 53, 851-856).
  • human antibodies are used for the C region of chimeric and humanized antibodies.
  • Cyl, Cr2, Ca3, and Cy4 are used for the H chain, and CA ;, C; i can be used.
  • the human antibody C region may be modified to improve the stability of the antibody or its production.
  • a chimeric antibody is composed of a variable region of an antibody derived from a mammal other than human and a constant region derived from a human antibody.
  • a humanized antibody is composed of a complementarity determining region of a mammal derived from a mammal other than human, and a framework region and a C region derived from a human antibody. Since the humanized antibody has reduced antigenicity in the human body, it can be useful as an active ingredient of the therapeutic agent of the present invention.
  • a method for producing a humanized antibody is specifically described in Reference Example 5.
  • H chain humanized heavy chain
  • V region versions a, b, c, d, and e having the amino acid sequences shown in Tables 1 and 2 were used.
  • the antibody used in the present invention may be an antibody fragment or a modified product thereof, as long as it binds to human TF and inhibits the activity of human TF.
  • the antibody fragment may be Fab, F (ab ') 2 , Fv, or a single-chain Fv obtained by linking FV of H chain or L chain with an appropriate linker. (sc F v).
  • the antibody is treated with an enzyme, for example, papine or pepsin, to generate an antibody fragment, or a gene encoding these antibody fragments is constructed, and this is expressed in an expression vector. After the introduction, it is expressed in a suitable host cell (for example, Co, MS et al., J. Immunol. (1994) 152, 2968-2976, Better, M. & Horwitz, AH Methods in Enzymology).
  • an enzyme for example, papine or pepsin
  • scFv is obtained by linking the H chain V region and L chain V region of the antibody.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. USA (1988) 85, 587 9-5883).
  • the H chain V region and L chain V region in scFv may be derived from any of the antibodies described herein as antibodies. Examples of peptide linkers connecting V regions include amino acid 12 Any single-stranded peptide consisting of 119 residues is used.
  • the DNA encoding scFv encodes the DNA encoding the H chain or H chain V region and the L chain or L chain V region of the antibody.
  • the DNA portion encoding the entire amino acid sequence or the desired amino acid sequence is designated as type III, amplified by a PCR method using a pair of primers defining both ends, and then a part of the peptide binding force is encoded. And a pair of primers that define both ends of the DNA to be linked to an H chain and an L chain, respectively, for amplification.
  • an expression vector containing them and a host transformed with the expression vector can be obtained according to a conventional method.
  • scFv can be obtained according to a conventional method.
  • antibody fragments can be obtained and expressed in the same manner as described above, and can be produced by a host.
  • the “antibody” in the present invention also includes these antibody fragments.
  • an anti-human TF antibody bound to various molecules such as polyethylene glycol (PEG) can also be used.
  • PEG polyethylene glycol
  • the “antibody” in the present invention also includes these modified antibodies.
  • Such a modified antibody can be obtained by chemically modifying the obtained antibody.
  • methods for modifying antibodies have already been established in this field.
  • the antibody gene constructed as described above can be expressed and obtained by a known method.
  • expression can be achieved by functionally binding a commonly used useful promoter, an antibody gene to be expressed, and a poly A signal downstream of the 3 ′ side thereof.
  • Promo One of the enhancers is the human cytomegalovirus early motor, and the human cytomegalovirus immediate ear promoter (enhancer).
  • a promoter from a mammalian cell such as a promoter such as Luos 40 (SV 40) or a promoter derived from a mammalian cell such as a hypertension factor 1 ⁇ (HEF1a). And the like.
  • the SV40 promoter-Z enhancer uses the method of Mulligan et al. (Nature (1979) 277, 108-114), and the HEF1 ⁇ promoter-Z enhancer uses the method of Mizushima et al. Nucleic Acids Res. (1990) 18, 5322) facilitates gene expression.
  • a useful promoter commonly used, a signal sequence for antibody secretion, and an antibody gene to be expressed can be operably linked to express the gene.
  • the promoter include 1 acz promoter and ara B promoter. 1 Use the acz promoter according to the method of Ward et al. (Nature (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427), or use Better et al. When using the araB promoter. (Science (1988) 240, 1041-1043).
  • the pe1B signal sequence Lei, SP et al J. Bacteriol.
  • the expression vector was selected as a selection marker, such as the aminoglycoside trans- ferase (APH) gene, the thymidine kinase (TK) gene, and the bacterial colon xanthin. It may contain a guanine phosphorolibosyltransferase (Ec0gPt) gene, a dihydrofolate reductase (dhfr) gene, and the like.
  • Eukaryotic cells include, for example, established mammalian cell lines, insect cell lines, fungal cells such as filamentous fungal cells, and yeast cells.
  • Prokaryotic cells include, for example, E. coli cells and the like. Bacterial cells.
  • the antibodies used in the present invention are expressed in mammalian cells, such as CH0, COS. Mie, BHK, Vero, HeLa cells.
  • the transformed host cells are cultured in invitro or invivo to produce the desired antibody.
  • Culture of the host cell is performed according to a known method.
  • DMEM, MEM, RPMI164, IMDM can be used as a culture medium, and a serum supplement such as fetal bovine serum (FCS) can be used in combination.
  • FCS fetal bovine serum
  • the antibody expressed and produced as described above can be separated from cells and host animals and purified to homogeneity.
  • the separation and purification of the antibody used in the present invention can be performed using an affinity column.
  • affinity column examples of a force ram using a protein A column include Hyper D, POROS, Sepharose FF (Pharmacia) and the like. Other, normal
  • the separation and purification methods used for proteins may be used, and are not limited. For example, by appropriately selecting and combining chromatographic columns other than the above-mentioned affinity columns, filters, ultrafiltration, salting-out, and permeation, etc., the ability to separate and purify antibodies (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) 0
  • a novel animal model system is required for testing the efficacy of the present invention for the prevention or treatment of diseases in which the hypercoagulable state is persistent, and the details of this evaluation method are described in the same applicant as the present applicant.
  • Animal Model for Hypercoagulability and Method for Producing the Same ".
  • a specific example of the evaluation method is described as Example 1 in the present specification.
  • Example 2 results obtained using the above-mentioned humanized anti-human TF antibody version “i-b2” are shown in Example 2 and FIGS. 11 to 13.
  • the platelet count of mice transplanted with tumor cells containing the human TF gene was about half that of mice not transplanted with the tumor cells.
  • 1 mgZkg of humanized anti-human TF antibody version “i-b2” was repeatedly administered intravenously once a week. Platelet counts were maintained at platelet count levels in non-tumor implanted mice until the end of the experiment three weeks after initiation.
  • the administration of the humanized anti-human TF antibody of the present invention suppressed the increase in the concentrations of soluble fibrin monomer complex (s FMC) and thrombin-antithrombin III complex (TAT). .
  • s FMC soluble fibrin monomer complex
  • TAT thrombin-antithrombin III complex
  • the hypercoagulable state can be observed by prolonging prothrombin time, decreasing plasma fibrinogen concentration, increasing serum fibrin degradation product concentration, and the like.
  • the administration of LPS causes an increase in prothrombin time, a decrease in plasma fibrinogen concentration, and an increase in serum fibrin degradation product concentration.
  • the administration of the anti-human TF antibody of the present invention causes these to decrease.
  • Example 4 specifically describes that the anti-human TF antibody of the present invention has a prophylactic and / or therapeutic effect on venous thrombosis.
  • Example 5 specifically describes that the anti-human TF antibody of the present invention has an effect of preventing or treating arterial thrombosis.
  • Example 6 Confirmation of preventive and therapeutic effects of diseases caused by vascular media thickening
  • Example 6 it was confirmed that the anti-human TF antibody of the present invention has preventive and therapeutic effects of diseases caused by vascular media thickening. This will be described specifically.
  • the therapeutic agent of the present invention is useful for preventing, treating or ameliorating a disease caused by persistent hypercoagulable state, hypercoagulable state caused by infectious disease, venous thrombosis, arterial thrombosis, and disease caused by hypertrophy of vascular media. Used for the purpose of ⁇ )
  • the effective dose is selected in the range of 0.001 mg / kg to 100 mg / kg body weight at a time.
  • a dose between 0.01 and 10 OmgZ kg, preferably between 0.1 and 10 mgZkg, can be chosen.
  • the therapeutic agent containing the anti-human TF antibody of the present invention is not suitable for these administrations. It is not limited.
  • the administration method is not particularly limited, but intravenous injection, intravenous drip injection and the like are preferable.
  • the therapeutic agent containing the anti-human TF antibody of the present invention as an active ingredient can be formulated according to a conventional method (Remington's Pharmaceutical Science, latest edition, Mark Publishing Company, Eastern, USA). It may contain both a pharmaceutically acceptable carrier and additives.
  • Such carriers and pharmaceutical excipients include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, carboxymethyl cellulose, Tritium, sodium polyacrylate, sodium alginate, water-soluble dextran, carboxymethyl starch sodium, pectin, methyl cellulose, ethyl cellulose, xanthan gum, arabic gum , Casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, vaseline, rosin, "rafin, stearinole alcohol, stearic acid, human serum albumin (HSA) , Mannitol, sorbitol, lactose, as a pharmaceutical additive Surfactants, and the like to be.
  • water pharmaceutically acceptable organic solvents
  • collagen collagen
  • polyvinyl alcohol polyvinyl pyrrolidone
  • carboxyvinyl polymer carboxymethyl cellulose
  • Tritium
  • the actual additive is selected from the above alone or in appropriate combination according to the dosage form of the therapeutic agent of the present invention, but is not limited thereto.
  • a purified anti-human TF antibody is dissolved in a solvent such as a physiological saline solution, a buffer solution, a glucose solution and the like, and an anti-adsorption agent such as Tween 80, Tween 20, gelatin, human serum albumin and the like can be used.
  • a solvent such as a physiological saline solution, a buffer solution, a glucose solution and the like
  • an anti-adsorption agent such as Tween 80, Tween 20, gelatin, human serum albumin and the like
  • it may be lyophilized to make a dosage form that can be dissolved and reconstituted before use.
  • sugar alcohols and sugars such as mannitol and glucose can be used.
  • a vector (hTF_pCOS1) obtained by inserting a gene encoding human tissue factor (SEQ ID NO: 103) into an expression vector PCOS1 for animal cells is digested with a restriction enzyme PruI and directly digested.
  • the chain was introduced into a human myeloma cell line K PMM 2 (FERM P-141 170) by electroporation.
  • the plasma concentrations of soluble fibrin mono-complex (s FMC) and thrombin-anti-thrombin III complex (TAT) were determined by transfection of the human tissue factor gene.
  • s FMC soluble fibrin mono-complex
  • TAT thrombin-anti-thrombin III complex
  • Example 2 The effect of the humanized anti-human TF antibody purge ion “i—b 2” in the model described in Example 1 was examined. 5-6 weeks after transplantation of KP MM2 / TF226 to SCID mice (Clear Japan, male, 7 weeks old, weight average about 22 g), the platelet count decreased to about half of that in the non-tumor transplant group. In fact, since the hypercoagulable state was confirmed to be persistent, 1 mg / kg of humanized anti-human TF antibody version ⁇ i_b2 '' was administered once a week 45 days after transplantation. It was administered intravenously.
  • the humanized anti-human TF antibody-administered group received 0.3 mg / kg (1 ml / kg) of humanized anti-human TF antibody version i-b2j, and the vehicle ( 1 ml / kg of 20 mM sodium acetate / 150 mM NaCl, H 6.0) was administered intravenously 10 minutes before the start of continuous LPS infusion.
  • the vehicle 1 ml / kg of 20 mM sodium acetate / 150 mM NaCl, H 6.0
  • blood samples of citric acid and normal blood were collected from the catheter attached to the femoral artery, and the prothrombin time, plasma fibrinogen concentration, and serum fibrin degradation product concentration were measured. It was measured.
  • venous thrombosis induced by venous blood flow stagnation and venous wall injury
  • humanized anti-human TF antibody on venous thrombosis was evaluated.
  • Venous blood flow stagnation was created by ligation of blood vessels.
  • polidocanol Esophageal varicose vein treatment, Croisler
  • cynomolgus monkeys Male cynomolgus monkeys (estimated age 3-4 years, weight 2.97-3.99 kg) were used (Guangxi Primate Laboratory Animal Research Center, obtained from the People's Republic of China). The cynomolgus monkey was anesthetized with isoflurane and laughter, and the left and right internal jugular veins were exposed. The heart side of the exposed part of the blood vessel was completely ligated. The head side of the exposed blood vessel was reversibly ligated. A catheter was inserted into the blood vessel between both ligatures from the heart side. The blood in the blood vessel was removed, and the inside was washed with physiological saline. 0.5% polidocanol was injected into the blood vessel from a catheter. Simultaneously with the removal of the catheter, the immediately upstream portion of the catheter insertion site was reversibly ligated.
  • the humanized anti-human TF antibody version “i-b2” was administered intravenously at doses of 0.3 mg / kg and 1.5 mg / k 2 hours before the onset of venous thrombus formation.
  • Vascular stenosis and arterial wall injury were created by tightly ligating the blood vessel with a rounded 20G needle and removing the needle. This model simulates the stenosis of a blood vessel due to arteriosclerosis and arterial wall injury due to plaque rupture.
  • cynomolgus monkeys Male cynomolgus monkeys (estimated age 3-5 years, weight 3.55-3.99 kg) were used (Guangxi Primate Laboratory Animal Research Center, obtained from the People's Republic of China). The cynomolgus monkey was anesthetized with ketamine hydrochloride (intramuscular administration) and butanol (intramuscular administration) to expose the right common carotid artery. The blood flow was monitored for about 5 minutes by attaching a Doppler flowmeter probe to the blood vessel. After confirming that the blood flow was almost constant, vascular stenosis and arterial wall injury were induced downstream of the probe.
  • Rinji cynomolgus monkey purchasedd from Cary Co., Ltd., breeding Vietnamese monkeys, estimated age 415 years
  • ketaral 5 to 10 mgZkg im and vent valpital 15 to 20 mg / kg
  • the cervical artery was exposed by incising the cervix, a fogati catheter (3 to 5 F) was inserted through the external carotid artery, the balloon was inflated, and the intima was rubbed five times. After scraping, the force catheter was removed and the wound was sutured.
  • the patient was euthanized and the carotid artery was removed. At this time, the contralateral carotid artery, which had not undergone balloon injury, was similarly removed.
  • Humanized anti-human TF antibody version "i-b2" is 0.3 mg kg Was administered intravenously over 1 minute 10 minutes before vascular injury.
  • the extracted carotid artery was formalin-fixed, a tissue specimen was prepared, HE staining and Elastica wanggison staining were performed, and the media area was measured by image analysis.
  • the humanized anti-human TF antibody version “i—b2” strongly suppressed the thickening of the media. Therefore, the humanized anti-human TF antibody version “i_b2” effectively prevents the vascular tissue itself from growing, thereby preventing the luminal area from becoming narrower in the distant stage. It was suggested that restenosis could be prevented.
  • the platelet count was about half that of the non-tumor transplanted group, confirming the persistence of the hypercoagulable state.
  • Soluble human T F (sh T F) was prepared as follows.
  • Human TF penetrating region (amino acid at position 220) A gene coding for a fragment obtained by substituting FLAG ⁇ peptide M2 for the following gene was used as an expression vector for mammalian cells (neomycin resistance gene, (Including the DHFR gene) and introduced into CHO cells.
  • the cDNA sequence of human TF was referred to the report of James H. Morrissey et al. (Cell (1987) 50, 129-135).
  • the gene sequence and amino acid sequence of this soluble human T F are shown in SEQ ID NOS: 101 and 102.
  • the drug selection was performed using G418, the expressing cells were selected, and the expression was amplified using methotrexate to establish shTF expressing cells.
  • the cells were cultured in a serum-free medium CHO-S-SF MII (GIBCO) to obtain a culture supernatant containing shTF.
  • Q-Sepharose Fast Flow diluted twice with the same volume of 40 mM Tris-HCl buffer (pH 8.5) and equilibrated with 20 mM Tris-HCl buffer (pH 8.5) After adding to the column (100 mL, Pharmacia Biotech), washing with the same buffer containing 0.1 M NaCl, the NaCl concentration was adjusted to 0.3 M, and sh TF was added to the column.
  • TF from human placenta was performed according to the method of Ito et al. (Ito, T. et al., J. Biochem. 114, 691-696, 1993). That is, human placenta was treated with tris containing 1 O mM benzomidine, I mM fluorinated permethyl sulfonyl, 1 mM diisopropylfluorophosphate and 0.02% sodium azide. After homogenization in buffered saline (TBS, pH 7.5), the precipitate is defatted with cold acetate, and the defatted powder obtained is suspended in the above buffer containing 2% Triton X-100. To solubilize TF.
  • Affinity chromatography was performed using Concanaval in A-Sepharose 4B column (Pharmacia) and Sepharose 4B column (Pharmacia) to which anti-TF antibody was bound to obtain purified TF.
  • This was concentrated with an ultrafiltration membrane (PM-10, Amicon) and stored at 4 ° C as a purified sample.
  • the TF content in the purified sample was quantified by a recombinant ELISA using a commercially available anti-TF monoclonal antibody (American Diagnostica) and a polyclonal antibody (American Diagnosti ca) in a sandwich ELISA.
  • the purity of the purified sample was confirmed by silver staining of the SDS-PAGE obtained using a 420% concentration gradient polyacrylamide gel.
  • TF Purified human TF (about 70 ug / ml) was mixed with an equal volume of Freund's complete adjuvant (Difc0), emulsified, and then emulsified. Immunization was performed subcutaneously in the abdomen of Cirrus River at a concentration of 10 ⁇ g / mouse as TF. On days 12, 18, and 25 after the first immunization, booster immunized subcutaneously with TF mixed with Freund's incomplete adjuvant to give 5 zg / mouse, and final immunization on day 32 TF solution diluted with PBS was intraperitoneally administered to 5 jug Z mice.
  • Freund's complete adjuvant Difc0
  • spleen cells were prepared from four mice, and fused with the mouse myeoma cell line P3U1 having a cell number of about 1/5 using the polyethylene glycol method.
  • the fused cells were suspended in RPMI-164 medium (Lifetech oriental) containing 10% fetal bovine serum (hereinafter referred to as RPMI-medium), and 400 wells per mouse were placed in a 96-well plate. Seeded.
  • RPMI-medium containing 10% fetal bovine serum
  • HAT-medium condimed HI
  • Hybridomas selected by the screening method described below were cloned by performing two limiting dilutions.
  • limiting dilution 0.8 cells were seeded per well in two 96-well plates.
  • the TF binding activity and TF neutralizing activity shown below were measured, and the mouse was selected.
  • the resulting clones were adapted from HAT-medium to RPMI-medium, and after confirming that there was no decrease in antibody productivity due to the adaptation, limiting dilution was performed again to complete cloning.
  • a hybridoma producing six antibodies (ATR-2, 3, 4, 5, 5, 7 and 8) that strongly inhibit the binding between the TFZ factor-VIIa complex and factor X was established. .
  • the ascites of the established Hypri-doma was prepared according to a conventional method. Ie, the hybridoma 1 0 6 passaged in in vitro, and transplanted into the peritoneal cavity of B a 1 b / c male mice that had been administered beforehand Me mineral oil in twice intraperitoneally. One to two weeks after transplantation, ascites was collected from mice whose abdomen was enlarged.
  • Human bladder cancer-derived cell line J82 (Fair DS et al., J, Bio 1. Chem., 262, 11692-11698, 1987), which is known to express TF at a high level, was introduced from ATCC. R PM I - in the medium, and subcultured and maintained in 3 7 ° C, 5% C 0 2, 1 0 0% humidity conditions.
  • C e 1 1 — ELI S A was performed as follows. That is, the blocking buffer was removed from the plate prepared as described above, and an anti-TF antibody solution or a hybridoma culture supernatant was added and reacted at room temperature for 1.5 hours. Wash with PBS containing 0.05% Tween 20 and react for 1 hour with goat anti-mouse IgG (H + L) (Zymed) conjugated with alkaline phosphatase. One hour after the addition of 1 mgZml of p-nitrophenylphosphonium sodium (Sigma), the cells were bound to J82 cells by measuring the absorbance at 405/655 nm one hour later. The amount of anti-TF antibody was determined.
  • the anti-TF antibody solution or the hybridoma culture supernatant diluted to a predetermined concentration of 101 and the factor X solution of I0 ⁇ ⁇ (3.245 zg / ml ) (Celsus Laborato rise) was added and the reaction was carried out for 45 minutes, and the reaction was stopped by adding 0.5 ME1 of MEDTA. 2 mM S — 2 2 2 2 solution
  • Plasma coagulation inhibitory activity measurement system (Daiichi Pure Chemicals) was added in 501, and the change in absorbance at 405 nm for 30 minutes was used as the factor Xa production activity of TF. In this method, the activity of an antibody that inhibits the binding of Factor X to the TFZFactor Vila complex can be measured. 6. Plasma coagulation inhibitory activity measurement system
  • the antibody isotype of the hybridoma culture supernatant or purified antibody was confirmed using a mouse monoclonal antibody isotyping kit (Amersham), and the results are shown in Table 8.
  • MRNA was prepared from the hybridoma ATR-5 (IgG1 ⁇ ) obtained in Reference Example 2 using Quick Prep mRNA Purification Ki “Pharmacia Biotech.” Each hybridoma cell was prepared according to the instructions attached to the kit. After homogenizing completely with the extraction buffer, the mRNA was purified using an oligo (dT) -cellulose span column, and ethanol precipitation was performed, and the mRNA precipitate was dissolved in the elution buffer. (2) Preparation and amplification of cDNA for gene encoding mouse antibody V region
  • Cloning of the gene encoding the H chain V region of the mouse monoclonal antibody against human TF was performed using the 5'-RACE method (Frohman, MA et al., Pro Natl. Acad. Sci. USA, 85, 8998). -9002, 1988; Belyavsky, A. et al., Nucleic Acid Res. 17, 2919-2932, 1989).
  • a Marathon cDNA Amplification Kit (CL0N TECH) was used, and the operation was performed according to the instructions attached to the kit.
  • RNA prepared as described above was used as a type I, and a cDNA synthesis primer attached to the kit was added thereto, followed by reacting with reverse transcriptase at 42 ° C. for 60 minutes to form cDNA. Reverse transcription was performed. Incubate this with DNA polymerase I, DNA ligase and RNase H at 16 ° C for 1.5 hours, and with T4D polymerase at 16 ° C for 45 minutes. Was used to synthesize a double-stranded cDNA. The double-stranded cDNA was extracted with phenol and ethanol, and collected by ethanol precipitation.
  • a cDNA adapter was connected to both ends of the double-stranded cDNA.
  • the reaction mixture was 10 mM Tricine-KOH (pH 8.5), 0.1 mM
  • the 5'-side primer has primer 1 attached to the kit and the 3'-side primer has MHC-G1 primer (SEQ ID NO: 1 ST Jones, et al., Biotechnology, 9, 88- 89, 1991).
  • PCR solution for ATR-5 antibody H chain V region is 100 mM Tris — HC1 (pH 8.0), 100 mM KC l, 6 mM (NH 4 ) 2 SO 4 , 0.1% Triton X—100, 0.01% BSA, 0.2 mM d NTP s (d ATP, d GTP, d CTP, d TTP), 1 mM M g C l 2, 2. 5 units of KODDNA poly ra one peptidase (Toyobo), 3 0 ⁇ 5 0 pm 0 1 e of adapter primer 1, as well as MH C-G 1 ply Ma one , And a reaction mixture 1-5Z1 of cDNA linked cDNA adapters.
  • Cloning of the gene encoding the L chain V region of the mouse monoclonal antibody against human TF was performed by the 5'-RACE method (Frohman, MA et al., Proc. Natl. Acad. Sci. USA, 85 , 8998-9002, 1988; Belyavsky, A. et al., Nucleic Acid Res. 17, 2919-2932, 1989).
  • Marathon cDNA Amplification Kit (CL0NTECH) was used, and the operation was performed according to the instructions attached to the kit.
  • Approximately 1 g of the mRNA prepared as described above is used as type I, a cDNA synthesis primer is added, and reverse transcription to cDNA is performed by reacting with reverse transcriptase at 42 ° C for 60 minutes. Went.
  • Double-stranded cDNA was synthesized.
  • the double-stranded cDNA was extracted with a phenol and a lip mouth form, and recovered by ethanol precipitation.
  • T4 DNA ligase By reacting overnight at 16 ° C with T4 DNA ligase, cDNA adapters were ligated to both ends of the double-stranded cDNA.
  • the reaction mixture was 10 mM Tricine-K0H (pH 8.5), 0.1 mM It was diluted 50-fold with an EDTA solution.
  • 5'-side primer is adapter 1 primer
  • 3'-side primer is MK C primer (SEQ ID NO: 2) (ST Jones, et al., Biotechnology, 9, 88-89, 1991) It was used.
  • PCR solution 1 0 0/1 2 0 mM T ris in 1 - HC 1 (p H 8. 0), l O mM KC 1, 6 mM (NH 4) 2 S 0 4, 0. 1% T riton X—100, 0.001% BSA, 0.2 mM dNTPs (dATP, dGTP, dCTP, dTTP) .1 mM MgC12.2.5 units It contains KODDNA polymerase (Toyobo Co., Ltd.), an adapter-primer of 30 to 50 pm 01 e-1 and a reaction mixture 11 of MK C primer and cDNA ligated with cDNA adapter.
  • KODDNA polymerase Toyobo Co., Ltd.
  • ?. 1 is a 1 ⁇ Thermal Cycler 480 (PerkinElmer) using a temperature cycle of 94 ° C for 30 seconds, 55 ° C for 30 seconds, and 74 ° C for 1 minute. Performed 30 times.
  • the PCR reaction mixture was extracted with phenol and chloroform, and the amplified DNA fragment was recovered by ethanol precipitation.
  • the DNA fragment was digested with the restriction enzyme XmaI (New England Biolabs) at 37 ° C for 1 hour.
  • the Xma I digestion mixture was separated by agarose gel electrophoresis using 2% to 3% NuSieve GTG agarose (FMC BioProducts), and the H chain V region was approximately 500 bp long and the L chain V region Then, an agarose piece containing a DNA fragment of about 500 bp in length was cut out.
  • the agarose fragments were extracted with phenol and black-mouthed form, and the DNA fragment was precipitated with ethanol.
  • 10 mM Tris-HC1 pH 8.0
  • TE 1 mM EDTA solution
  • the ligation mixture was added to Escherichia coli JM109 competent cells (Futan gene) 100-1 and incubated on ice for 30 minutes and at 42 ° C for 1 minute.
  • This transformant is cultured overnight at 37 ° C in 3 ml or 4 ml of LB medium containing 50 g / m1 ampicillin (hereinafter referred to as LBA medium), and QIAprep Spin Plasmid Kit is extracted from the cell fraction. Plasmid DNA was prepared using (QIAGEN) and the nucleotide sequence was determined. (4) Determination of the nucleotide sequence of the gene encoding the mouse antibody V region
  • the nucleotide sequence of the cDNA coding region in the above plasmid was determined by DNA Sequencer 373A (Perkin-Elmer) using Dye Terminator Cycle Sequencing FS Ready Reaction Kit (Perkin-Elmer). Using M13 Primer M4 (Takara Shuzo) (SEQ ID NO: 3) and M13 Primer RV (Takara Shuzo) (SEQ ID NO: 4) as sequencing primers, the sequence was determined by confirming the base sequences in both directions.
  • the mouse H derived from the thus obtained hybridoma ATR-5 The plasmid containing the gene encoding the V chain region was named ATR-5HvZpUC19, and the plasmid containing the gene encoding the L chain V region was named ATR-5L VZP UC. Named 1 9. Plasmid ATR—5H The nucleotide sequence (including the corresponding amino acid sequence) of the gene encoding the H chain V region of each mouse antibody contained in VZP UC19 is shown in SEQ ID NOS: 5 and 99, respectively.
  • nucleotide sequence (including the corresponding amino acid sequence) of the gene encoding the L chain V region of each mouse antibody contained in plasmid ATR-5LV / pUC19 is shown in SEQ ID NO: 6 and SEQ ID NO: 6, respectively. Shown in 100.
  • a chimeric ATR-5 antibody was prepared in which the mouse ATR-5 antibody V region was linked to the human antibody C region.
  • a chimeric antibody expression vector was constructed by linking the gene encoding the ATR-5 antibody V region to an expression vector encoding the human antibody C region.
  • the ATR-5 antibody H chain V region was modified by the PCR method in order to ligate it to an expression vector encoding the human antibody H chain C region.
  • the 5'-side primer ch5HS (SEQ ID NO: 7) hybridizes to the 5'-end of the V region-encoding DNA and has a Kozak consensus sequence (Kozak,. Et al., J. Mol). Biol., 196, 947-950, 1987) and a restriction enzyme S a1I recognition sequence.
  • the 3′-side primer ch5HA was designed to hybridize to the 3′-end of the DNA encoding the J region and to have a recognition sequence for the restriction enzyme NheI.
  • PCR solution 1 0 0 1 in 1 2 0 mM T ris - HC 1 (p H 8. 0), 1 0 mM KC 1, 6 mM (NH 4) 2 S 0 4, 0. 1% T riton X— 1 0 0, 0.0 0 1 1% BSA, 0 2 mM dNTPs (dATPdGTPdCTPdTTP), 1 mM MgCl22.5 2.5 units of KOD DNA polymerase (Toyobo), 5 Opmo 1e contains the ch5 HS primer, the ch5 HA primer, and 1 n1 plasmid ATR5HvZpUC19 as type I DNA.
  • PCR was performed using DNA Thermal Cycler 480 (PerkinElmer) with a temperature cycle of 30 seconds at 94 ° C, 30 seconds at 55 ° C, and 1 minute at 74 ° C. I went there.
  • the PCR reaction mixture was extracted with phenol and black form, and the amplified DNA fragment was recovered by ethanol precipitation.
  • the DNA fragment was digested with the restriction enzyme Nhel I (Takara Shuzo) at 37 ° C for 1 hour and then with the restriction enzyme Sa1I (Takara Shuzo) at 37 ° C for 1 hour.
  • the digestion mixture was separated by agarose gel electrophoresis using 3% NuSievert GTG agarose (FMC BioPdcuts), and an agarose fragment containing a DNA fragment of about 450 bp was cut out.
  • the agarose pieces were extracted with phenol and black form, and the DNA fragments were precipitated with ethanol and then dissolved in TE201.
  • a modified PUC19 vector (hereinafter referred to as CVIDEC) into which a recognition sequence of restriction enzymes NheISa1I and Sp1IBg111 was introduced was used.
  • the gene fragment encoding the mouse H chain V region prepared as described above and the CVIDEC vector prepared by digestion with NheI and Sa1I were subjected to DNA ligase-short kit ver. 2 (Takara Shuzo) and reacted at 16 ° C for 1 hour according to the attached prescription and ligated.
  • This ligation mixture was added to Escherichia coli JM109 competent cells (Futan gene) 100-1 and left on ice for 30 minutes and at 42 ° C for 1 minute. Then add 300 ⁇ 1 of Hi-Competence Broth (Futan Gene) and incubate at 37 ° C for 1 hour. The Escherichia coli was sowed on the plate and incubated at 37 ° C overnight to obtain an Escherichia coli transformant. This transformant was cultured overnight at 37 ° C. in 3 ml of LBA medium, and plasmid DNA was prepared from the cell fraction using a QIAprep Spin Plasmid Kit (QIAGEN).
  • the nucleotide sequence of the cDNA coding region in plasmid was converted to Dye Terminator.
  • the ATR-5 antibody L chain V region was modified by the PCR method to ligate it to an expression vector encoding the human antibody L chain C region.
  • the 5'-side primer ch5LS (SEQ ID NO: 9) hybridizes to the 5'-end of the DNA encoding the V region and has a Kozak consensus sequence (Kozak, M. et al., J. Mol. Biol., 196, 947-950, 1987) and the restriction enzyme BglII recognition sequence.
  • 3′-side primer ch5 LA (SEQ ID NO: 10) is designed to hybridize to the 3 ′ end of DNA coding for the J region and to have a recognition sequence for the restriction enzyme Sp1I. did.
  • PCR solution 1 0 0 ⁇ 1 2 0 mM T ris in 1 - HC 1 (p H 8. 0), 1 0 mM KC l, 6 mM (NH 4) 2 S 0 4, 0. 1% T riton X—100, 0.001% BSA, 0.2 mM dNTPs (dATP, dGTP, dCTP, dTTP 1 mM MgCl 2 , 2.5 units of KOD DNA polymerase (Toyobo), 50 pmo 1 e ch5 LS primer, h5 LA primer, and type I DNA. Containing 11 plasmids ATR5LvZpUC19. PCR was performed using DNA Thermal Cycler 480 (Perkin-Elmer) for 30 cycles at 94 ° C for 30 seconds, 55 ° C for 30 seconds, and 74 ° C for 1 minute. went.
  • DNA Thermal Cycler 480 Perkin-Elmer
  • the PCR reaction mixture was extracted with phenol and black form, and the amplified DNA fragment was recovered by ethanol precipitation.
  • the DNA fragment was digested with the restriction enzyme Sp1I (Takara Shuzo) at 37 ° C. for 1 hour, and then digested with the restriction enzyme Bg1II (Takara Shuzo) at 37 ° C. for 1 hour.
  • the digestion mixture was separated by agarose gel electrophoresis using 3% NuSieve GTG agarose (FMC BioProducts), and an agarose fragment containing a DNA fragment of about 400 bp in length was cut out.
  • the agarose pieces were extracted with phenol and lip form, and the DNA fragments were precipitated with ethanol and then dissolved in 20/1 TE.
  • the gene fragment encoding the mouse L chain V region prepared as described above and the CVIDEC vector prepared by digestion with Sp1I and Bg1II were combined with DNA ligase kit kit ver.2 (Takara Shuzo). ) And allowed to react at 16 ° C for 1 hour according to the attached prescription, and ligated.
  • This ligation mixture was added to Escherichia coli JM109 competent cells (Futan gene) 100-1 and left on ice for 30 minutes and at 42 ° C for 1 minute. Next, add 300 ⁇ 1 of Hi-Competence Broth (Futan Gene), incubate at 37 ° C for 1 hour, then spread the E. coli on 100 ⁇ gZm 1 LBA agar medium, and then The mixture was incubated overnight at C to obtain an E. coli transformant. This transformant was cultured overnight at 37 ° C in 3 ml of LBA medium, and plasmid DNA was prepared from the cell fraction using a QIAprep Spin Plasmid Kit (QIAGEN).
  • the nucleotide sequence of the cDNA coding region in the plasmid was determined by DNA Sequencer 373A (Perkin-Elmer) using Dye Terminator Cycle Sequencing FS Ready Reaction KiK Perkin-Elmer). Using Ml3 Primer M4 (Takara Shuzo) and Ml3 Primer RV (Takara Shuzo) as sequencing primers, the sequences were determined by confirming the nucleotide sequences in both directions.
  • the ATR-5 antibody contains a gene encoding the L chain V region, and has a Bg111 recognition sequence and a Kozak consensus sequence on the 5'-side and an Sp1I recognition sequence on the 3'-side. The mid was named ch ATR 5 LV / CVIDEC.
  • a chimeric antibody expression vector was constructed using the antibody expression vector introduced by IDEC.
  • an IgGl-type antibody expression vector N5KG1 (V) and an IgG4-type antibody expression vector N5KG4P were used as the vector.
  • a gene coding for the ATR-5 H chain V region is inserted into the Sail — N hel site immediately before the human antibody H chain C region of the expression vector N5KG1 (V) or N5KG4P, and By linking the gene encoding the ATR-5 L chain V region to the Bg1II-Sp1I site immediately before the antibody L chain C region, the chimeric ATR-5 antibody expression vector Produced.
  • Plasmid ch ATR5HvZC VIDEC was digested with the restriction enzyme NheI (Takara Shuzo) at 37 ° C. for 3 hours, and then with the restriction enzyme Sail (Takara Shuzo) at 37 ° C. for 3 hours.
  • the digestion mixture was separated by agarose gel electrophoresis using 1.5% NuSieve GTG agarose (FMC BioProducts), and an agarose fragment containing a DNA fragment of about 450 bp in length was cut out.
  • the agarose fragments were extracted with phenol and chloroform, and the DNA fragments were precipitated with ethanol. Dissolved in E201.
  • the expression vectors N5KG1 (V) and N5KG4P were digested with the restriction enzyme NheI (Takara Shuzo) at 37 for 3 hours, and then at 37 ° C with the restriction enzyme Sa1I (Takara Shuzo). Digested for 3 hours. This digestion mixture was separated by agarose gel electrophoresis using 1.5% NuSieve GTG agarose (FMC BioProducts), and an agarose piece containing a DNA fragment of about 900 Obp in length was cut out. The agarose pieces were extracted with phenol and black form, and the DNA fragments were precipitated with ethanol and then dissolved in TE601.
  • N5KG4P was ligated using a DNA religion kit ver. 2 (Takara Shuzo) at 16 ° C for 1 hour according to the attached prescription.
  • the ligation mixture was added to Escherichia coli JM109 competent cells (Futan gene) 100-1 and allowed to stand on ice for 30 minutes and at 42 ° C for 1 minute. Then, add 300 ⁇ l of Hi-Competence Broth (Futan Gene), incubate at 37 ° C for 1 hour, then spread the E. coli on 100 zgZm 1 LBA agar medium, and then The mixture was incubated overnight at C to obtain an E. coli transformant. The transformant was cultured overnight at 37 ° C in 3 ml of LBA medium, and plasmid DNA was prepared from the cell fraction using a QIAprep Spin Plasmid Kit (QIAGEN). Plasmids containing the gene encoding the chimera ATR-5 antibody H chain were designated as ch ATR5 Hv / N5KG1 (V) and chATR5HvZN5KG4P, respectively.
  • v ZN5KG4P was digested with restriction enzymes Bg1II (Takara Shuzo) and Sp1I (Takara Shuzo) at 37 ° C for 1.5 hours.
  • the digestion mixture was separated by agarose gel electrophoresis using 1.5% NuSieve GTG agarose (FMC BioProducts), and an agarose fragment containing a DNA fragment of about 940 Obp in length was cut out.
  • the agarose pieces were extracted with phenol and black form, and the DNA fragments were precipitated with ethanol and then dissolved in TE20;
  • This ligation mixture was added to Escherichia coli JM109 competent cells (Futan gene) 100-1 and left on ice for 30 minutes and at 42 ° C for 1 minute. Then, add 3001 of Hi-Competence Broth (Futan Gene), incubate at 37 ° C for 1 hour, then spread this E. coli on 100 ⁇ g Zm1 LBA agar medium, and then incubate at 37 ° C. The mixture was incubated overnight at C to obtain an E. coli transformant. This transformant was transformed with 11 in 2 XYT medium containing 50 / zg / 1 ampicillin.
  • plasmid DNA was prepared from the bacterial cell fraction using PI asmid Maxi Kit (QIAGEN).
  • the plasmids containing the gene encoding the chimeric ATR-5 antibody were named ch ATR5 / N5KG1 (V) and chATR5 / N5KG4P, respectively.
  • the expression plasmid was transfused into COS-7 cells, and the chimeric antibody was transiently expressed.
  • the electroporated cells were suspended in DMEM medium (GIBC0) containing 5% Ultra Low IgG I fetal serum (GIBC0), and the cells were resuspended. and cultured in C 0 2 Lee Nkyubeta one with cm culture dish. After culturing for 24 hours, the culture supernatant was removed by aspiration, and a serum-free medium HBCH 0 (Albin Scientific) was newly added. After a further 72 hours of culture, the culture supernatant was collected and cell debris was removed by centrifugation.
  • DMEM medium GIBC0
  • GIBC0 Ultra Low IgG I fetal serum
  • Chimeric antibodies were purified from the culture supernatant of C0S-7 cells using rProtein A Sepharose Fast Flow (Pharmacia Biotech) as follows.
  • the column was filled with 1 ml of rProtein A Sepharose Fast Flow, and the column was equilibrated by flowing 10 volumes of TBS. After applying the culture supernatant of COS-7 cells to the equilibrated column, the column was washed with 10 volumes of TBS.
  • the adsorbed antibody fraction was eluted from the column by flowing 13.5 ml of 2.5 m MHC1 (pH 3.0), and immediately, 1.5 ml of 1 MT ris-HCl ( The eluate was neutralized by adding pH 8.0).
  • the purified antibody fraction was subjected to ultrafiltration twice using cent revep 100 (Am icon) to obtain 50 mM Tris-HCl containing 150 mM NaCl.
  • the solvent was replaced with (H7.6) (hereinafter referred to as TBS), and the mixture was finally concentrated to about 1.5 ml.
  • the expression plasmid was introduced into CH0 cells (DG44) conditioned to CHO-SSFMII serum-free medium (GIBC0).
  • Plasmid ch ATR5 / N5KG1 (V) or chATR5ZN5KG4P is cut into linear DNA by restriction enzyme SspI (Takara Shuzo) and extracted with phenol and black-mouthed form. The DNA was recovered by ethanol precipitation.
  • the linearized plasmid was transduced into DG44 cells by electroporation using a GenePu1 ser apparatus (Bio Rad).
  • PBS DG 4 4 cells 0. 7 8 ml which is suspended at a cell concentration of 1 x 1 0 7 cells / ml, plus Mi de 1 0 ⁇ g was added, 1, 5 0 0 V, 2 5 ⁇ ⁇ ⁇ A pulse was given with an F capacitance.
  • the humanized ATR-5 antibody H chain was prepared by CDR-grafting by the PCR method.
  • humanized ATR-5 antibody heavy chain version “a” having FR derived from human antibody L39130 DDBJ, Gao L. et al., Unpublished, 1995
  • seven PCR primers were used.
  • CDR—Grafting primers hR5Hv1S (SEQ ID NO: 11), hR5HV2S (SEQ ID NO: 12) and hR5Hv4S (SEQ ID NO: 13) are sense DNA
  • the CDR grafting primers hR5Hv3A (SEQ ID NO: 14) and hR5Hv5A (SEQ ID NO: 15) have an antisense DNA sequence, and Each primer has a complementary sequence of 18-35 bp at both ends.
  • hR5HvlS recognizes the Kozak consensus sequence (Kozak, M, et al., J. MoI. Biol. 196, 947—950, 1987) and SalI recognition. HR5Hv5A was designed to have a Nhel recognition site.
  • the external primer 5HvPrS (SEQ ID NO: 16) is CDR grafting primer hR5HvlS and hR5HvPrA (SEQ ID NO: 17) is CDR grafting primer hR5HV5 Has homology with A.
  • CDR—Grafting primer hR5Hv1S, hR5Hv2S, hR5Hv3A hR5Hv4S and hR5Hv5A, and external primer hR 5HvPrS and hR5HvPrA were synthesized and purified by Pharmacia Biotech.
  • PCR was performed using KOD DNA polymerase (Toyobo Co., Ltd.) with 120 mM Tris—HC1 (pH 8.0), 10 mM KCl, 6 mM (NH 4 ) 2 SO 4 in 9 . 0. 1% T riton X- 1 0 0, 0. 0 0 1% BSA, 0.
  • a piece of agarose containing a DNA fragment of about 430 bp in length was cut out, and 3 times (ml Zg) of TE was added, followed by phenol extraction, phenol / mouth opening form extraction, and opening / closing form extraction.
  • the DNA fragment was purified. After the purified DNA was precipitated with ethanol, one third of the amount was dissolved in 17/1 water.
  • the obtained PCR reaction mixture is Vector and CVIDEC prepared by digesting with NheI and Sa1I, using DNA ligation kit ver. 2 (Takara Shuzo) and ligating according to the attached prescription. did.
  • the ligation mixture was added to Escherichia coli JM109 competent cells (Futan gene) 1001, and the mixture was allowed to stand on ice for 30 minutes and at 42 ° C for 1 minute. Next, add 300 ⁇ 1 of Hi-Competence Broth (Futan Gene), incubate at 37 ° C for 1 hour, then spread the E. coli on LBA agar medium, and incubate at 37 ° C overnight. Then, an E. coli transformant was obtained. The transformant was cultured overnight at 37 ° C. in 3 ml of LBA medium, and plasmid DNA was prepared from the cell fraction using a QIAprep Spin Plasmid Kit (QIAGEN).
  • QIAprep Spin Plasmid Kit QIAGEN
  • the nucleotide sequence of the cDNA coding region in the plasmid was determined by DNA Sequencer 373A (Perkin-Elmer) using Dye Terminator Cycle Sequencing FS Ready Reaction Kit (Perkin-Elmer;). Using Ml3 Primer M4 (Takara Shuzo) and Ml3 Primer RV (Takara Shuzo), the sequences were determined by confirming the nucleotide sequences in both directions.
  • SEQ ID NO: 18 shows the nucleotide sequence of humanized H chain version "a" contained in plasmid hATR5Hva / CVIDEC and the corresponding amino acid sequence. The amino acid sequence of version "a” is shown in SEQ ID NO: 19.
  • F 3 RFFS (SEQ ID NO: 20) and F 3 RFBS (SEQ ID NO: 21) have a sense DNA sequence and include F 3 RFFA (SEQ ID NO: 22) and F 3 RFBA (SEQ ID NO: 22). No. 23) has an antisense DNA sequence.
  • F 3 R FFS and F 3 R FFA have sequences complementary to each other, and have BalI and Xhol recognition sequences at both ends.
  • F3RFBS and F3RFBA have sequences complementary to each other, and have XhoI and NcoI recognition sequences at both ends.
  • FR3 was substituted for human antibody P0 1825 (SWISS-PR0T, Poljak RJ. Et al., Biochemistry, 16, 3412-3420, 1977). Four DNA primers to code were prepared.
  • F 3 NMF S (SEQ ID NO: 24) and F 3 NMB S (SEQ ID NO: 25) have sense DNA sequences
  • F 3 NMFA (SEQ ID NO: 26) and F 3 NMBA (SEQ ID NO: 27) has an antisense DNA sequence.
  • F 3 NMF S and F 3 NMF A have sequences complementary to each other, and have B aI I and Xhol recognition sequences at both ends.
  • F3NMBS and F3NMBA have sequences complementary to each other, and have XhoI and NcoI recognition sequences at both ends.
  • F 3 RFFS, F 3 RFBS, F 3 RFFA, F 3 RFBA, F 3 NMF S, F 3 NMB S, F 3 NMF A and F 3 NMB A were synthesized by Pharmacia Biotech. Anneal F 3 RFFS and F 3 RFFA, F 3 RFBS and F 3 RFBA, and Elimination was performed with BaI and XhoI, NcoI and XhoI, respectively. These were introduced into a plasmid hATR5HvaZCVIDEC (Ba1I / NcoI) prepared by digesting them with Ball and NcoI, and the nucleotide sequence was determined. The plasmid having the correct sequence was named hATR5HvbZCVIDEC.
  • SEQ ID NO: 28 shows the nucleotide sequence of humanized H chain version "b" contained in plasmid hATR5HvbZCVIDEC and the corresponding amino acid sequence.
  • the amino acid sequence of version "b” is shown in SEQ ID NO: 29.
  • F 3 NMF S and F 3 NMB A, F 3 NMB S and F 3 NMB A were annealed and digested with BalI and XhoI, NcoI and XhoI, respectively. These were introduced into plasmid hATR5HvaCVIDEC (BaII / coI) prepared by digesting with BalI and NcoI, and the nucleotide sequence was determined. A plasmid having the correct sequence was designated as hATR5HvcZCVIDEC.
  • SEQ ID NO: 30 shows the nucleotide sequence of humanized H chain version "c" contained in plasmid hATR5HvcZCVIDEC and the corresponding amino acid sequence. The amino acid sequence of version "c" is shown in SEQ ID NO: 31.
  • F 3 EPS (SEQ ID NO: 32) has a sense DNA sequence
  • F 3 EPA (SEQ ID NO: 33) has an antisense DNA sequence
  • 3 ′ of the primer —Terminal is 18 bp phase It has a complementary sequence.
  • the external primers F3PrS (SEQ ID NO: 34) and F3PrA (SEQ ID NO: 35) have homology with FR-shuffling primers F3EPS and F3EPA. It can also be used for other FR 3 shuffling.
  • FR—Shuffling primer F 3 VHS (SEQ ID NO: 36) has a sense DNA sequence
  • F 3 VHA (SEQ ID NO: 37) has an antisense DNA sequence
  • the 3′-end of the primer is It has a complementary sequence of 18 bp.
  • F3EPS, F3EPA, F3PrS, F3PrA, F3VHS and F3VHA were synthesized by Pharmacia Biotech.
  • PCR was performed using KOD DNA Polymerase (Toyobo Co., Ltd.) and 1 aM FR-shuffling primer F 3 EPS and F 3 EPA, or F 3 VHS and F 3 the VHA respectively 5 ⁇ 1, 0. 2 mM of d NTP s, 1. O mM of M g C l 2, 2. 5 U K 0 DD ⁇ ⁇ poly ra attached buffer under the condition including one zero of the 5 times in a temperature cycle of 30 ° C at 94 ° C, 1 minute at 50 ° C, 1 minute at 74 ° C, and an external primer of 10 Opmo 1 e. F3PrS and F3PrA were added and the same temperature cycle was performed 25 times.
  • DNA fragments amplified by the PCR method were separated by agarose gel electrophoresis using 2% Nu Sieve GTG agarose (FMC Bio. Products). 4 Cut a piece of agarose containing a 24 bp DNA fragment, add 3 volumes (ml / g) of TE, and extract with phenol, phenol. The fragment was purified. After precipitating the purified DNA with ethanol, Was dissolved in water 14 ⁇ 1. The resulting PCR reaction mixture was digested with BalI and Ncol, and plasmid hATR5Hva / CVIDEC (BalI / NcoI) prepared by digesting these with BalI and Ncol. I) and the nucleotide sequence was determined.
  • Plasmids having the correct sequence were designated as hATR5Hvd / CVIDEC and hATR5HveZCVIDEC.
  • Plasmid h ATR5 Hvd / CVIDEC contains the nucleotide sequence of humanized H chain version "d" and the corresponding amino acid sequence in SEQ ID NO: 38, and the amino acid sequence in version "d". The amino acid sequence is shown in SEQ ID NO: 39.
  • the nucleotide sequence of humanized H chain version “e” contained in the plasmid h ATR5 Hve / CVIDEC and the corresponding amino acid sequence are shown in SEQ ID NO: 40, and The amino acid sequence of "e” is shown in SEQ ID NO: 41.
  • Versions "f” and “g” were prepared by replacing the FR3 of version "a” with FR3 from another human antibody by the FR-shuffling method.
  • Version "f” is FR3 derived from human antibody L04345 (DDBJ Hillson JL. Et al., J. Exp. Med. 178 331-336, 1993), and version “g” is S78322 (DDBJ Bejcek BE.
  • L04345 human antibody L04345
  • version "g” is S78322 (DDBJ Bejcek BE.
  • two primers encoding FR3 were synthesized.
  • the FR-shutting primer F 3 SSS (SEQ ID NO: 42) of version “f” has a sense DNA sequence, and the F 3 SSA (SEQ ID NO: 43) has an antisense DNA sequence;
  • the 3'-end of the primer has an 18 bp complementary sequence.
  • the 3'-end of the primer has an 18 bp complementary sequence.
  • F 3 SSSF 3 SSAF 3 CDS and F 3 CDA were synthesized and purified by Pharmacia Biotech. PCR was performed using KOD DNA polymerase (Toyobo Co., Ltd.), and 1 M of FR-Schifferund Primer F3SSS or F3SSA or F3CDS was added to the reaction mixture of 1001.
  • F 3 CDA was added to each buffer under conditions that contained 5 ⁇ l each, 0.2 mM dNTPS, 1.O mM MgC12, and 2.5 U KOD DNA polymerase. Use at 94 ° C for 30 seconds, 50 ⁇ for 1 minute, 7
  • DNA fragments amplified by the PCR method were separated by agarose gel electrophoresis using 2% Nu Sieve GTG agarose (FMC Bio. Products). 4 A piece of agarose containing a DNA fragment of 24 bp in length was excised, 3 times (ml Zg) of TE was added, and DNA extraction was performed by phenol extraction, phenol. The fragment was purified. After the purified DNA was precipitated with ethanol, one third of the amount was dissolved in water 141. The obtained PCR reaction mixture was digested with BalI and Ncol, and plasmid hATR5Hva / CVIDEC (BalIZNCOI) prepared by digesting these with BalI and Ncol And the nucleotide sequence was determined.
  • BalIZNCOI plasmid hATR5Hva / CVIDEC
  • Plasmids having the correct sequence were named hATR5Hvf / CVIDEC and hATR5Hvg / CVIDEC.
  • the nucleotide sequence of the humanized H-chain version "f" contained in the plasmid h ATR5 ⁇ f / CVIDEC, the corresponding amino acid sequence, and the version "f" amino acid sequence are shown in SEQ ID NOs. Shown in 46 and 47.
  • Version “h” was prepared by substituting the FR3 of version "a” with FR3 from another human antibody by the FR-shuffling method. Version “h” codes for FR3 to replace FR3 from human antibody Z26827 (DDBJ, Van Der Stoep et al., J. Ex P. Med., 177, 99-107, 1993). Two primers were synthesized. Version “h” of FR—shuffling primer F3 ADS (SEQ ID NO: 50) has a sense DNA sequence and F3 ADA (SEQ ID NO: 51) has an antisense DNA sequence. The 3'-end of the primer has a complementary sequence of 18 bp.
  • F 3 ADS and F 3 ADA were synthesized and purified by Pharmacia Biotech. PCR was performed using KODDNA polymerase (Toyobo Co., Ltd.), and 1 ⁇ of FR_shuttle ring primer 1 F 3 ADS and F 3 ADA were added to the 100 1 reaction mixture at 5 / zl each. , 0. 2 mM of d NTP s, 1. O mM of M g C l 2, 2. the 5 U KOD
  • a piece of agarose containing a 24 bp long DNA fragment was cut out, 3 volumes (ml Zg) of TE were added, and the DNA fragment was extracted by phenol extraction, phenol ⁇ ⁇ mouth extraction, and ⁇ mouth extraction. Purified. After precipitating the purified DNA with ethanol, Dissolved in water 14 / zl. The resulting PCR reaction mixture was digested with BalI and Ncol, and plasmid hATR5HvaZCVIDEC (Bal1) prepared by digesting these with BalI and Ncol. I / NcoI) and the nucleotide sequence was determined. The plasmid having the correct sequence was named h ATR SH v hZC VIDEC.
  • SEQ ID NO: 52 shows the nucleotide sequence of humanized H chain version "h" contained in plasmid h ATR5 Hvh / CVIDEC and the corresponding amino acid sequence.
  • the amino acid sequence of version "h” is shown in SEQ ID NO: 53.
  • Nos. "I” and “j” were produced by replacing the FR3 of version "a” with FR3 from another human antibody by the FR-shuffling method.
  • No. "i” is FR3 derived from human antibody U95239 (DDBJ, Manhei mer-Lory AJ., Unpub 1 i shed), and
  • No. "j” is L 0 3 1 4 7 (DDBJ, Collet TA. Et al., Pro Natl. Acad. Sci. USA, 89, 10026-10030, 1992).
  • F3 MMS (SEQ ID NO: 54) has a sense DNA sequence and F3MMA (SEQ ID NO: 55) has antisense It has a sense DNA sequence and the 3'-end of the primer has an 18 bp complementary sequence.
  • F 3 BMS (SEQ ID NO: 56) has a sense DNA sequence and F 3 BMA (SEQ ID NO: 57) has an antisense It has a DNA sequence and the 3'-end of the primer has an 18 bp complementary sequence.
  • F3MMS, F3MMA, F3BMS and F3BMA were synthesized and purified by Pharmacia Biotech.
  • PCR was performed using Ampli Taq Gold (PerkinElmer), 10 0 n 1 reaction mixture containing 1 ⁇ M FR—shuffling primer F 3 MMS and F 3 MMA, or F 3 BMS and F 3 BMA 51 each, 0.2 mM d NT P s, 1.5 mM MgCl 2 , 2.5 U Ampli Taq Gold, using attached buffer for 30 seconds at 94 ° C, 1 at 50 ° C 5 minutes at 74 ° C for 1 minute, then add 100 pmo 1 e of external primers F3PrS and F3PrA and repeat the same temperature cycle. We performed 25 times.
  • the DNA fragment amplified by the PCR method was separated by agarose gel electrophoresis using 2% Nu Sieve GTG agarose (FMC Bio. Products). Cut out a piece of agar mouth containing a 24 bp DNA fragment, add 3 volumes (ml Zg) of TE, extract with phenol, extract with phenol and black mouth, extract with black mouth was used to purify the DNA fragment. After the purified DNA was precipitated with ethanol, one third of the amount was dissolved in water 141. The resulting PCR reaction mixture is
  • Plasmids having the correct sequence were designated as hATR5Hvi / CVIDEC and hATR5Hvi / CVIDEC. Plasmid h ATR 5 H Vi i ZCV I D E C
  • amino acid sequence is shown in SEQ ID NOs: 58 and 59.
  • nucleotide sequence of humanized H chain version" j "contained in plasmid hATR5Hvj / CVIDEC
  • amino acid sequence and the amino acid sequence of version "j" are shown in SEQ ID NOs: 60 and 61.
  • F2MPS and F2MPA were synthesized and purified by Pharmacia Biotech.
  • F 2 MPS and F 2 MP A were merged, and the mixture was erased with EcoT22I and Ba1I.
  • Plasmids hATR5HvbZCVIDEC (EcoT22I / Ba1I) and hATR5HvdZCVIDEC prepared by digesting this with EcoT22I and BaII (EcoT22I / Ba1I) and the nucleotide sequence was determined. Plasmids having the correct sequence were designated as hATR5Hvbl / CVIDEC and hATR5Hvd1 / CVIDEC.
  • nucleotide sequence of the humanized H-chain version "b1" contained in the plasmid h ATR5 Hvb1 / CVIDEC, the corresponding amino acid sequence, and the version "b1" amino acid sequence This is shown in SEQ ID NOs: 64 and 65.
  • nucleotide sequence of humanized H-chain version "d1" contained in plasmid hATR5Hvdl / CVIDEC, the corresponding amino acid sequence, and the amino acid of version "d1" The acid sequence is shown in SEQ ID NOs: 66 and 67.
  • SEQ ID NO: 69 has an antisense DNA sequence. In addition, they have sequences complementary to each other, and have recognition sequences of Ec0T22I and Ball at both ends. F2VHS and F2VHA were commissioned to Pharmacia Biotech for synthesis and purification.
  • F2VHS and F2VHA were annealed and digested with EcoT22I and Bal1.
  • a plasmid prepared by digesting this with Ec0T22I and Ba1I hATR5HvbZC VIDEC (Ec0T22I / Ba1I) and hATR5 H vd / CVIDEC
  • Plasmid h ATR5 HV b3 ZC VIDEC contains the nucleotide sequence of humanized H chain version "b3", the corresponding amino acid sequence, and the version "b3" amino acid sequence Are shown in SEQ ID NOs: 70 and 71.
  • nucleotide sequence of humanized H chain version “d 3” contained in plasmid h ATR5 Hvd 3 / CVIDEC the corresponding amino acid sequence and version “d 3” The amino acid sequences of are shown in SEQ ID NOs: 72 and 73.
  • the humanized ATR5 antibody L chain was prepared by CDR-grafting by PCR. Framework region from human antibody Z37332 (DDBJ, Welschof M et al., J. Immunol. Methods, 179, 203-214, 1995). Seven PCR primers were used to prepare a humanized antibody L chain (version "a") having the following.
  • CDR—Grafting Primer h5LV1S (SEQ ID NO: 74) and h5LV4S (SEQ ID NO: 7′5) represent the sense DNA sequence and CDR5 Priming Primer h5Lv2A (SEQ ID NO: 76) ), H5LV3A (SEQ ID NO: 77) and h5LV5A (SEQ ID NO: 78) have antisense DNA sequences and have a complementary sequence of 20 bp at each end of each primer. .
  • the external primers h5LvS (SEQ ID NO: 79) and h5LVA (SEQ ID NO: 80) have homology to the CDR grafting primers h5LV1S and h5Lv5A.
  • the PCR solution should contain 12,000 in 100 ⁇ 1? ⁇ T ris - HC 1 (p H 8. 0), 1 0 mM KC 1, 6 mM (NH 4) 2 S 0 4, 0. 1% T riton X- 1 0 0, 0. 0 0 1% BSA 0.2 mM dNTPs (dATP, dGTP, dCTP, dTTP), 1 mM MgC12.2.5 units of KODDNA polymerase (Toyobo), 5 pmole It contains CDR grafting primers h5LvlS, h5LV2A, h5Lv3A, h5Lv4S, and h5Lv5A.
  • PCR uses DNA Thermal Cycler 480 (Perkin-Elmer),
  • the PCR reaction mixture was separated by agarose gel electrophoresis using 3% NuSieve GTG agarose (FMC BioProducts), and an agarose piece containing a DNA fragment of about 400 bp in length was cut out.
  • the agarose pieces were extracted with a phenol and a lip mouth form, and the DNA fragments were recovered by ethanol precipitation.
  • the recovered DNA fragment was digested with the restriction enzymes Sp1I (Takara Shuzo) and Bg1II (Takara Shuzo) at 37 ° C. for 4 hours.
  • the digestion mixture was extracted with phenol and phenol-form, and DNA fragments were precipitated with ethanol and then dissolved in TE101.
  • Sp1I-Bg1II DNA fragment containing the gene encoding the L-chain V region of the humanized antibody prepared as described above and digestion with Sp1I and Bg1II The CVIDEC vector prepared as described above was ligated using DNA ligation kit kit ver. 2 (Takara Shuzo) at 16 for 1 hour according to the attached prescription.
  • the nucleotide sequence of the cDNA coding region in plasmid was converted to Dye Terminator.
  • the nodes "b”, “c”, and “n” were prepared by replacing the FR3 of the node “a” (FR_shuffling).
  • Version "b” contains FR3 from human antibody S68699 (DDBJ, Hougs L et al., Exp. Clin. Immunogen et., 10, 141-151, 1993), and NO.
  • FR3 derived from human antibody P01607 SWISS-PR0T, Epp 0 et al., Biochemistry, 14, 4943-4952, 1975 was used, respectively.
  • Primer F3SS (SEQ ID NO: 83) and F3SA (SEQ ID NO: 84) that encode FR3 of version "b", or FR3 of version "c"
  • the coding primers F 3 RS (SEQ ID NO: 85) and F 3 RA (SEQ ID NO: 86) have complementary sequences to each other, and have recognition sequences for the restriction enzymes KpnI and PstI at both ends.
  • F3SS, F3SA, F3RS, and F3RA were commissioned to Pharmacia Biotech for synthesis and purification. Anneal by treating F 3 SS and F 3 SA or F 3 RS and F 3 RA of each 10 Opmo 1 e at 96 ° C for 2 minutes and at 50 ° C for 2 minutes. A double-stranded DNA fragment was prepared.
  • the digestion mixture was separated by agarose gel electrophoresis using 1.5% NuSieve GTG agarose (FMC BioProducts), and an agarose fragment containing a DNA fragment of about 300 bp in length was cut out.
  • the agarose pieces were extracted with phenol and black hole form, and the DNA fragments were precipitated with ethanol and dissolved in TE.
  • This ligation mixture was added to E. coli JM109 competent cells (Futan gene) 100-1 and left on ice for 30 minutes and at 42 ° C for 1 minute. Next, add 300 a1 of Hi-Competence Broth (Futatsu Gene), incubate at 37 ° C for 1 hour, then spread the E. coli on LBA agar medium, and overnight at 37 ° C. E. coli transformants were obtained by incubation. The transformant was cultured overnight at 37 ° C. in 3 ml of LBA medium, and plasmid DNA was prepared from the cell fraction using a QIAprep Spin Plasmid Kit (QIAGEN).
  • QIAprep Spin Plasmid Kit QIAGEN
  • the nucleotide sequence of the cDNA coding region in the plasmid was determined by DNA Sequencer 373A (PerkinElmer) using Dye Terminator Cycle Sequencing FS Ready Reaction Kit (Perkin-Elmer). M13 Primer M4 (Takara Shuzo) and Ml3 Primer RV (Takara) The sequence was determined by confirming the base sequence in both directions using Sake Brewery.
  • Plasmids containing a gene encoding version "b” or version "c” in which the humanized antibody L-chain version "a” has been substituted for FR3 are each expressed in h.
  • the amino acid sequence is shown in SEQ ID NOs: 87 and 88.
  • Versions “b1,” and “b2,” were prepared by substituting FR2 of version “b,”.
  • Version “b1” contained a human antibody.
  • FR2 derived from S65921 (DDBJ, Tonge DW et al., Year Immunol., 7, 56-62, 1993), and human antibody X93625 (DDBJ, Cox JP et al., Eur. J. Immunol., 24, 827-836, 1994).
  • F2XA SEQ ID NO: 94
  • F2XA SEQ ID NO: 94
  • F2SA, F2XS and F2XA were synthesized by Pharmacia Biotech.
  • Plasmid h ATR SL v bZC V I D E C was digested with restriction enzymes A ⁇ ⁇ ⁇ (Takara Shuzo) and Spe I (Takara Shuzo) for 1 hour at 37 ° C.
  • the digestion mixture was separated by agarose gel electrophoresis using 1.5% NuSieve GTG agarose (FMC BioProducts), and an agarose piece containing a DNA fragment of about 300 bp in length was cut out.
  • the agarose pieces were extracted with phenol and chloroform, and the DNA fragments were precipitated with ethanol and then dissolved in TE.
  • Af ⁇ II—Spel DNA fragment encoding version “b1” or “b2” of FR2 prepared as described above was digested with Afi11 and SpeI to obtain FR2.
  • the hATR 5 L vb / CVIDEC vector from which DNA was removed was reacted with DNA Ligation Kit ver. 2 (Takara Shuzo) at 16 ° C for 1 hour according to the attached protocol.
  • This ligation mixture was added to Escherichia coli JMl 109 combined cells (Fujitsu Jin) 100 / Z1 and left on ice for 30 minutes and at 42 ° C for 1 minute. Then, add 3001 Hi-Competence Broth (Nippon Gene), incubate at 37 ° C for 1 hour, spread the E. coli on LBA agar medium, and incubate at 37 ° C overnight. Then, an E. coli transformant was obtained. This transformant was cultured overnight at 37 ° C in 4 ml of LBA medium, and plasmid DNA was prepared from the cell fraction using a QIAprep Spin Plasmid Kit (QIAGEN).
  • QIAprep Spin Plasmid Kit QIAGEN
  • the nucleotide sequence of the cDNA coding region in plasmid is Cycle Sequencing FS Ready Reaction Kit (Perkin-Elmer) was used and determined by DNA Sequencer 373A (Perkin-Elmer). Using M13 Primer M4 (Takara Shuzo) and M13 Primer RV (Takara Shuzo) as primers for sequencing, the sequence is determined by confirming the base sequence in both directions.
  • the “b 1” amino acid sequence is shown in SEQ ID NOs: 95 and 96.
  • the nucleotide sequence of the humanized L-chain version "b2" contained in the plasmid hATR5Lvb2 / CVIDEC and the corresponding amino acid sequence and version "b” The amino acid sequence of 2 "is shown in SEQ ID NOs: 97 and 98.
  • the plasmid hATR5Hva / CVIDEC containing the H chain V region was digested with NheI and Sa1I, and the cDNA fragment of the humanized H chain V region was recovered.
  • 5ChATR5 / N5KG4P (SalI / N) prepared by digesting antibody expression plasmid, chATR5ZN5KG4P with NheI and Sa1I. hel).
  • the plasmid thus prepared was named hHva-chLvZN5KG4P.
  • the plasmid hATR5 containing the H chain V region is digested with NheI and Sa1I, and the cDNA fragment of the humanized H chain V region is recovered, and ch ATR-5 Antibody expression plasmid, ch A TR5ZN5KG4P was introduced into ch ATR5 / N5KG4P (SalI / NheI) prepared by digestion with NheI and Sa1I.
  • the plasmid thus produced was named hHvb—chLvZN5KG4P.
  • Plasmid containing H chain V region h ATR 5 Hvc / CVIDE C Digestion of h ATR 5 Hv dZC VIDEC and h ATR 5 Hv eZC VIDEC with NheI and SalI to form humanized H
  • a chATR-5 antibody expression plasmid vector, ch ATR-5 / N5KG4P was prepared by digesting the cDNA fragment of the chain V region with NheI and Sa1I. It was introduced into ATR5 / N5KG4P (SalI / NheI).
  • the plasmids prepared in this way were called hHvc—chLvZN5KG4P, hHvd—chLv / N5KG4P and hHve-chLv / N5KG4P. I named it.
  • Plasmids containing the H chain V region hATR5Hvf / CVIDEC and hATR5HvhZCVIDEC are digested with NheI and Sa1I, and the human H chain V region cDNA fragment
  • the chATR-5ZN5KG4P (S) prepared by digesting the chATR-5 antibody expression plasmid vector, chATR5ZN5KG4P with NheI and Sa1I. al I / N hel).
  • the plasmids thus produced were named hHvf_chLv / N5KG4P and hHvh—chLv / N5KG4P.
  • a plasmid containing the H chain V region hATR5HviZC VIDEC and hATR5HvjZC VIDEC are digested with NheI and Sa1I, and the cDNA fragment of the humanized H chain V region is obtained.
  • the chATR-5ZN5KG4P was prepared by digesting chATR-5 antibody expression plasmid vector, chATR5ZN5KG4P with NheI and Sa1I. (Sal I / N he I). It is made in this way
  • the plasmids were named hHvi-chLv / N5KG4P and hHvj-chLv / N5KG4P.
  • Plasmids containing the H chain V region hATR5Hvb1 / CVIDEC and hATR5Hvd1ZCVIDEC are digested with NheI and Sa1I, and the humanized H chain V region cDNA
  • the ch ATR 5 / N 5 KG 4 P prepared by recovering the fragment and digesting the ch ATR -5 antibody expression plasmid vector, ch ATR 5 ZN 5 KG 4 P with Nhe I and Sa 1 I (Sal I / N he I).
  • the plasmids thus produced were named hHvb1—chLv / N5KG4P and hHvdl—chLv / N5KG4P.
  • the humanized L chain was evaluated by expressing the humanized antibody in combination with the chimera H chain using the antibody expression vector N5KG4P.
  • the agarose pieces were extracted with phenol and black form, and the DNA fragments were precipitated with ethanol and dissolved in TE.
  • the SpiI-B1II DNA fragment containing the gene encoding the humanized L-chain V region of each of these versions and the ch ATR excised with Sp1I and Bg111 5 HvZN 5 KG 4 P was used with DNA Ligation Kit ver. 2 (Takara Shuzo) according to the attached prescription, at 16 and 1 hour. And allowed to react.
  • the ligation mixture was added to Escherichia coli JM109 competent cells (Nippon Gene) 100-1 and left on ice for 30 minutes and at 42 ° C for 1 minute. Next, add 3001 Hi-Competence Broth (Futtsu Gene), incubate at 37 ° C for 1 hour, then spread the E. coli on LBA agar medium, and incubate at 37 ° C overnight. As a result, an E. coli transformant was obtained.
  • Plasmids into which the genes encoding the chimeric H chain and the humanized L chain were introduced were chHv—hLva / N5KG4 P. chHv—hLvb / N5KG4 P, chHv-hLvc / N5KG4P. ChHv-hLvb1 / N5KG4P and chHv-hLvb2 / N5KG4P.
  • Plasmid h ATR 5 Hva / CVIDEC containing the H chain V region is digested with NheI and Sa1I, and the human DNA is recovered.
  • ATR-5 antibody digestion of plasmid ch HV-hLVa / N5KG4P containing L chain version "a" cDNA sequence with NheI and Sa1I It was introduced into the prepared hLvaZN5KG4P (SalI / NheI).
  • the plasmid thus prepared was named hHva-hlVaZN5KG4P.
  • Plasmids hATR5HvbZCVIDEC and hATR5Hvc / CVIDEC containing the H chain V region were digested with NheI and Sa1I, and the cDNA fragment of the humanized H chain V region was digested with NheI and Sa1I.
  • the plasmid chHv—hLvaZN5KG4P containing the sequence of the humanized ATR-15 antibody light chain version “a” cDNA was added to NheI and Sa1I. Digest And introduced into hLva / N5KG4P (SalI / NheI).
  • the plasmids thus produced were named hHvb-hlVva / N5KG4P and hHvc-hlLVa / N5KG4P.
  • h ATR 5 Hv dZCV IDEC and h ATR 5 H ve ZC VIDEC are digested with NheI and Sa1I to form humanized H
  • the cDNA fragment of the V region of the chain is recovered, and the plasmid containing the sequence of the humanized ATR-5 antibody L chain version "b" cDNA is synthesized with the chH v _ h L v bZN 5 KG4 P N It was introduced into hLvb / N5KG4P (SalI / Nhel) prepared by digestion with heI and Sa1I.
  • the plasmids thus produced were designated as hHvb--hLvbZN5KG4P, hHvd-hLvb / N5KG4P and hHve-hLvb / N5KG4P. Named.
  • Plasmid containing the V region of the H chain h ATR 5 Hvf ZC VIDE C Digestion of h ATR 5 H vg / CVIDEC and h ATR 5 H vh / CVIDEC with NheI and SalI to form a humanized H chain
  • the cDNA fragment of the V region was recovered, and the plasmid chHv—hLvb / N5KG4P containing the sequence of the humanized ATR-5 antibody light chain version "b" cDNA was added to Nhe.
  • the resultant was introduced into hLvbZN5KG4P (SalI / Nhel) prepared by digestion with I and Sa1I.
  • the plasmids thus produced are named hHvf — hLvbZN5KG4P, hHvg-hLvb / N5KG4P and hHvh—hLvbZN5KG4P. did.
  • Plasmids containing the H chain V region h ATR5 H vi ZC VIDEC and hATR 5 H vj ZC VIDEC are digested with NheI and Sa1I to obtain a humanized H chain V region cDNA fragment.
  • ATR Plasmid ch H v—h containing L-chain version “b” cDNA sequence of antibody 5 antibody h prepared by digesting L vb / N 5 KG4 P with NheI and SaII It was introduced into LvbZN5KG4P (SalI / Nhel).
  • the plasmids thus produced were named hH vi — hLvb / N5KG4P and hHvj-hLvb / N5KG4P.
  • Plasmids containing the H chain V region h ATR5 Hvb1 ZC VIDEC and hATR5 Hvdl ZC VIDEC are digested with NheI and Sa1I to obtain the humanized H chain V region cDNA DNA.
  • the fragment was recovered, and plasmid chHv—hLvbZN SKGAP containing the sequence of the humanized ATR_5 antibody L chain version “b” cDNA was converted to NheI and Sa1I.
  • hLvb / N5KG4P SalI / NheI
  • the plasmids thus produced were named hHvbl-hlvb / N5KG4P and hHvd1-hlLvb / N5KG4P.
  • Plasmids hATR5Hvb3CVIDEC and hATR5Hvd3 / CVIDEC containing the H chain V region are digested with NheI and Sa1I, and the cDNA of the humanized H chain V region is obtained. The fragments were recovered, and the plasmid chHv—hLvb // N5KG4P containing the sequence of the humanized ATR-5 antibody light chain version "b" cDNA was added to NheI and S This was introduced into hLvbZN5KG4P (SalI / NheI) prepared by digestion with a1I. The plasmids thus produced were named hHvb3—hLvbZN5KG4P and hHvd3—hLvbZN5KG4P.
  • the plasmid h ATR5 Hvb / CVIDEC containing the H chain V region is digested with NheI and Sa1I, and the cDNA fragment of the H chain V region is recovered and transformed into a human form.
  • ATR-5 antibody light chain version "b1" and Plasmids containing the sequence of the "b2" cDNA are digested with NheI and SalI, with chHv—hLvbl / N5KG4P and chHv_hLvb2ZN5KG4P This was introduced into hLvblZN5KG4P (SaliZNhel) and hLvb2ZN5KG4P (Sa1iZNheI) prepared by the above procedure.
  • the plasmids thus produced were named hHvb-hlvb1ZN5KG4P and hHvb-hlLvb2ZN5KG4P.
  • Plasmid h ATR 5 H vi ZC VIDEC containing the H chain V region is digested with NheI and Sa1I, and the cDNA fragment of the humanized H chain V region is recovered, and the humanized ATR -5 antibody light chain version "b1" and
  • Plasmids containing the sequence of "b2" cDNA are digested with NheI and SalI, chHv-hLvblN5KG4P and chHv-hLvb2ZN5KG4P. was introduced into the h L vbl ZN 5 KG 4 P prepared (S al I ZN he I) and h L vb 2 / N 5 KG 4 P (S a 1 I ZN he I) by.
  • the plasmids thus produced were named hH vi — hLvbl / N5KG4P and hHvi—hLvb2ZN5KG4P.
  • the expression plasmid was transiently expressed in COS-7 cells in order to evaluate the antigen-binding activity and neutralizing activity of the humanized antibody.
  • the constructed expression plasmid vector is transferred to a GenePu1ser device.
  • Electroporation after a 10 minute recovery period at room temperature Are cells were suspended in 5% Ultra Low I gG ⁇ Shi calf serum (GI BC0) you containing DMEM medium (GIBCO), C 0 2 b using 1 0 cm culture dish or 1 5 cm culture dishes The cells were cultured in an incubator. After culturing for 24 hours, the culture supernatant was removed by suction, and a serum-free medium HBCH 0 (Farbin Scientific) was newly added. After further culturing for 72 or 96 hours, the culture supernatant was collected and cell debris was removed by centrifugation.
  • the antibody was purified from the culture supernatant of COS-7 cells using an Affi Gel Protein A MAPSII kit (Bio-Rad) or rProtein A Sepharose Fast Flow (Pharmacia Biotech). Purification using the Aff iGel Protein A MA PSII kit was performed according to the instructions attached to the kit. Purification using rProtein A Sepharose Fast Flow was performed as follows.
  • the column was filled with 1 ml of rProtein A Sepharose Fast Flow, and the column was equilibrated by flowing 10 times the amount of TBS. After applying the culture supernatant of COS-7 cells to the equilibrated column, the column was washed with 10 times the amount of TBS. Next, the adsorbed antibody fraction was eluted from the column by flowing 13.5 ml of 2.5 mM HC1 (pH 3.0). The eluate was neutralized by adding 1.5 ml of 1 M Tris-HCl (pH 8.0).
  • the purified antibody fraction was subjected to ultrafiltration using cent rep rep 30 or 100 (amicon) two to three times to replace the solvent with TBS, and finally to about 1. It was concentrated to 5 ml.
  • An ELISA plate for antibody concentration measurement was prepared as follows. Fix each well of the 96-well plate for ELISA (Maxisorp, NUNC). A solution prepared with a phase buffer (0.1 M Na HC 03 0.02% Na N 3 , pH 9.6) (hereinafter referred to as CB) to a concentration of 1 zgZml. Protein immobilized with anti-human IgG antibody (BioSource) 100 ⁇ 1 and diluted with 200 n1 buffer (5 OmM Tris-HCl, ImM Mg Cl 2 , 0.1 MN a C 0.0 5% Tween 20, 0.0 2% Na N 3 , 1% ⁇ Serum albumin
  • BSA BSA
  • DB pH 8.1
  • Cell ELISA plates for antigen binding measurement were prepared as follows.
  • the cells used were human bladder cancer cells J82 (ATCCHTB-1). Crowded seeded 1 X 1 0 5 pieces of J 8 2 cells in 6 0 hole of 9 6-well plates for cell culture. This was cultured for 1 day at C 0 2 Lee Nkyubeta one (RPMI 1 6 4 0 medium containing 1 0% fetal bovine serum (GIBC0)), to allow the cells to be attached thereto. The culture was discarded and each well was washed twice with 3001 PBS. PBS containing 4% paraformaldehyde ( (Hereinafter referred to as PFA / PBS) was added to each well, and the mixture was allowed to stand on ice for 10 minutes to immobilize the cells.
  • PFA / PBS paraformaldehyde
  • PFAZPBS was discarded, and each well was washed twice with 3001 PBS, and then blocked with 2501 DB.
  • the culture supernatant or purified antibody was serially diluted with DB, and 100 a1 was added to each well.
  • the substrate solution was added, and then the absorbance at 405/655 nm was measured using a Microplate Reader (Bio-Rad).
  • Neutralizing activities of mouse antibodies, chimeric antibodies, and humanized antibodies were measured using the factor Xa production inhibitory activity of human placenta-derived thromboplastin, Thromborel S (Behringwerke AG), as an index. That is, a buffer (TBS containing 5 mM CaCl 2 , 0.1% BSA) in 1.25 mg / m 1 of Thromborel S 101 and 10 l of antibody diluted to an appropriate concentration 60 01 was added, and the mixture was reacted in a 96-well plate at room temperature for 1 hour.
  • chromogenic substrate solution was prepared by dissolving test team chromogenic substrate S_222 (Chromogenix) according to the package insert, diluting it twice with purified water, and then adding the polylene solution (0.6 mg / m1 to oxadimethyl). And SI GMA) at a ratio of 1: 1.
  • An antibody (a-a) was prepared by combining the humanized H-chain version "a” and the humanized L-chain version "a”, and the antigen binding ability was examined by ce11 ELISA. Low binding to antigen at high concentration I was down. The activity of neutralizing the antigen by inhibiting FXa production was also considerably weaker than that of the positive control chimeric antibody. Therefore, it was decided to perform version-up of the humanized H and L chains by FR-shuffling. The chimeric antibody used here was evaluated using an antibody expressed and purified in COS-7 cells.
  • Antibodies (“b-ch”, “c-ch”, and “d-ch”) combining humanized H chains and chimeric L chains, versioned up by FR-shuffling, were used.
  • "d-ch” showed the same antigen-binding activity as the chimeric antibody
  • "b-ch” and "c-ch” slightly It showed poor antigen binding activity.
  • the antigen-neutralizing ability was almost the same for "b-ch” and slightly weaker for "d-ch” than the chimeric antibody as a positive control.
  • the version "c-ch” had considerably weaker activity than the chimeric antibody. Therefore, humanized H chain versions "b” and “d” were purges which are considered to show high activity in humanized H chain.
  • the chimeric antibody used here was C0S-7 cells. The evaluation was carried out using the antibody expressed and purified in Example 1.
  • Antibodies ("bb” and “bc”, respectively) were prepared by combining the humanized H chain version "b” with the humanized L chain versions "b” and “c”. The antigen binding ability and the antigen neutralizing ability were measured. All antibodies showed slightly lower activities than the chimeric antibody in both antigen-binding ability and antigen-neutralizing ability.
  • Db showed the same antigen-binding activity as the chimeric antibody, and "bb” Higher concentrations showed slightly inferior antigen binding activity.
  • the antigen neutralizing ability is higher than that of the positive control chimeric antibody.
  • Bb had slightly weaker activity, and "db” had much weaker activity than the chimeric antibody. Therefore, it was shown that “bb” is a version having high antigen activity neutralizing ability, and "db” is a version having high antigen binding ability.
  • Antibodies in which humanized L-chain version “e” was combined with chimera L-chain and humanized purge ion "b”, respectively
  • the antigen binding ability of "e_ch” showed the same activity as that of the chimeric antibody, but the expression level of "e-b” was very low and the antigen binding ability was almost lost.
  • the antigen-neutralizing ability of "e-ch” was much weaker than that of the chimeric antibody. Therefore, it was considered that the combination of the H-chain version “e” with the L-chain version “b” was bad.
  • An antibody (“b-b2”) is prepared by combining a humanized H chain version "b” with a humanized L chain version "b2”, and has an antigen-binding ability and Compatibility was measured.
  • the antigen binding ability was slightly inferior to the chimeric antibody.
  • the antigen neutralizing ability exceeded the activity of "bb", but did not reach the activity of "ib”.
  • antibody-expressing gene vectors were added to CH0 cells (DG44) conditioned to serum-free medium. Introduced. Plasmid DNA, hHvb-hLvb / N5KG4P.hHvi — hLvbZN SKGAP and hHvi-hLvb2 / N5KG4P are restricted enzymes SspI (Takara Shuzo) ) To obtain a linear form, extracted with phenol and chloroform, and purified by ethanol precipitation.
  • the linearized expression gene vector was introduced into DG44 cells using an electoral poration device (Gene Pulser; BioRad).
  • the DG 4 4 cells were suspended in 1 x 1 0 7 Zm l fine ⁇ degree into PBS, the suspension of about 0.1 the DNA to a 8 ml 0 also properly is a 5 0 ⁇ g was added, 1, A pulse was applied at a capacitance of 500 V, 25 F.
  • HT hypoxanthine-thymidine
  • HT hypoxanthine-thymidine
  • HT hypoxanthine-thymidine
  • CHO—S—SF MII medium containing HT and lm gZml of GENE TIC IN (GIBCO) to 100 0 1 Z well, and add it to 500 ng / ml GENETICIN selective medium. After conversion, cells into which the antibody gene had been introduced were selected.
  • the medium was replaced with fresh medium once every 3 to 4 days, and approximately 2 weeks after the conversion to the selective medium, 4 to 5 days after that, the cells were observed to grow well. A part of the culture supernatant was collected. The antibody concentration expressed in this culture supernatant was measured by the antibody concentration measurement ELISA described above, and cells with high antibody production were selected.
  • the DG44 cell line expressing the humanized antibodies ("b-b", "i-b” and "i-b2") selected as described above was placed in a 2 L roller-one bottle (CONI NG). Used in a 500 ml Z bottle of CH 0—S—SFM II medium. After culturing for several days, the culture broth was collected, fresh 1 ⁇ 2CHO—S—SFMII medium was added, and cultivation was performed again. The culture broth was centrifuged to remove cell debris and filtered through a 0.22 ⁇ 01 or 0.45 ⁇ m finole letter. This was repeated to obtain a total of about 2 L of the culture supernatant. The obtained culture supernatant was used for ConSep to which Protein A affinity column (Poros) was connected.
  • ConSep Protein A affinity column
  • the antibody was purified using an LC100 system (Millipore).
  • An ELISA plate for antibody concentration measurement was prepared as follows. Each well of a 96-well plate for ELISA (Maxisorp, NUNC) was prepared with a goat anti-human IgG antibody (BioSource) 100-fi 1 prepared with CB to a concentration of 1 ⁇ gZml, After shading and blocking with 200 fi DB, the antibody-expressed CH0 cell culture supernatant or purified antibody was serially diluted with DB and added to each well.
  • the Cell Elisa plate for antigen binding measurement was prepared as follows.
  • the cells were human bladder cancer cells J8 (ATCCH
  • J82 cells were seeded. This was cultured in a C02 incubator for one day (RPMI164 medium containing 10% fetal calf serum (GIBCO)) to allow the cells to adhere. Discard the culture and wash each well twice with PBS Was cleaned. PFA / PBS was added to each well in an amount of 100 ⁇ , and allowed to stand on ice for 10 minutes to immobilize the cells.
  • RPMI164 medium containing 10% fetal calf serum (GIBCO) fetal calf serum
  • PFAZPBS was discarded, and each well was washed twice with 300 oz of PBS, and then blocked with 250 s of DB.
  • the purified antibody was serially diluted with DB at 10 z gZml at a common ratio of 2, and 1001 was added to each well.
  • 100 ⁇ l of alkaline phosphatase-conjugated anti-human IgGy antibody (BioSource) diluted 100-fold with DB was added. added. Incubate for 1 hour at room temperature, wash with RB, add 100 ⁇ 1 of the substrate solution, and then measure the absorbance at 405 x 655 nm using a Micro croplate Reader (Bio-Rad) did.
  • Factor Xa production inhibitory activity of the humanized antibody was measured using, as an index, the activity of inhibiting the production of Factor Xa by human placenta-derived thromboplastin, Thromborel S (Behrngwerke AG). That is, 5 11 37111 1 1 1 11 romborel S 1 0 ⁇ 1 antibody 1 0 1 in buffer (5 mM of C a C 1 2, TBS containing 0.1% of BSA) and 6 0 ⁇ 1 added The reaction was carried out at room temperature for 1 hour in a 96-well plate. 200 ⁇ g / m antibody in buffer
  • Serial dilution was performed at a common ratio of 5 from 1.
  • H-factor X (Celsus' Laboratories) of 3.245 ⁇ gZm l and the H-factor of 82.5 n gZm l V I Ia
  • the chromogenic substrate solution is prepared by dissolving test team chromogenic substrate S-222 (Chromogenix) according to the package insert and mixing it with a polyprene solution (0.6 mg 1 to oxadimethyrin bromide, SI GMA) 1: 1. did.
  • Factor-X binding inhibitory activity of the humanized antibody was determined by using a human placenta-derived thromboplastin, Thromborel SC (Behringwerke AG), to form a complex of TF and Factor Vil a in advance, and to produce Factor Xa of the complex.
  • Factor X binding inhibitory activity was measured using the inhibitory activity as an index. That is, 5 mg / ml Thromborel S 10 ⁇ 1 and 82.5 ng Zml of human Factor VIIa (Enzym Research) 10; ⁇ l in buffer (5 mM CaC 12 and TBS containing 0.1% BSA) 601 were added, and the mixture was allowed to react for 1 hour at room temperature in a 96-well plate.
  • the antibody solution was added to the mixture, and the mixture was reacted at room temperature for 5 minutes. Then, 1001 of 3.245 ⁇ g / ml of human Factor X (Celsus' Laboratories) was added, and further added. The reaction was carried out at room temperature for 45 minutes.
  • the antibody was serially diluted with buffer at 200; (z gZml at a common ratio of 2.
  • the reaction was stopped by adding 101 of 5 M EDTA. To this was added 50 // 1 of a coloring substrate solution, and the absorbance at 45/5/655 nm was measured with MicroplateReadre (BioRad). At room temperature
  • the reaction was carried out for 30 minutes, and the absorbance at 450 nm was again measured.
  • the change in absorbance for 30 minutes without addition of the antibody was taken as 100% activity, and the residual activity (%) was calculated from the change in absorbance for each.
  • chromogenic substrate solution dissolve test team chromogenic substrate S-222 (Chromogenix) according to the package insert, and add to the polyprene solution (0.6 mg gZml). Xiadimethyl bromide (SI GMA) in a 1: 1 ratio.
  • the TF neutralizing activity (plasma coagulation inhibitory activity) of the humanized antibody was measured using prothrombin time using human placenta-derived thromboplastin, Thromborel S (Behrngwerke AG) as an index. That is, human plasma (Cosmo 'Bio) 100 ⁇ 1 was added to a sample cup, and 50/1 of antibody diluted to various concentrations was added thereto, followed by heating at 37 for 3 minutes. 50 ⁇ 1 of 1.25 mg / m 1 Thromborel S, which had been preliminarily heated to 37 ° C., was added to initiate plasma coagulation. This coagulation time was measured at Amelung KC-10A (both M'C Medical) connected to Ame lung CR-A.
  • Amelung KC-10A both M'C Medical
  • the antibody was serially diluted with TBS containing 0.1% BSA (hereinafter referred to as BSA-TBS) at a common ratio of 2 from 80 ⁇ g / m1.
  • BSA-TBS 0.1% BSA
  • the measured clotting time without antibody was defined as 100% TF plasma clotting activity
  • the TF residual activity was calculated from the respective clotting times when the antibody was added, based on a calibration curve plotting the S concentration and the clotting time.
  • Calibration curves were created by measuring the concentrations of various Thromborel S and their clotting times. Add 50 fi 1 of BSA-TBS to appropriately diluted Thromborel S, 50 ⁇ 1, heat at 37 ° C for 3 minutes, and remove human plasma previously heated to 37 ° C. Coagulation was started by adding 1001, and the coagulation time was measured. Thromborel S was serially diluted with a Hanks buffer (GIBCO) containing 25 mM CaC12 at a common ratio of 2 from 6.25 mgZml. The horizontal axis plots the Thromborel S concentration and the vertical axis plots the coagulation time in a log-logarithmic graph, which was used as a calibration curve.
  • GEBCO Hanks buffer

Description

明 細 書 血液凝固関連疾患の予防及び治療 発明の分野
本発明は、 持続的血液凝固亢進動物モデル及びその作製方法、 血 液凝固亢進状態が継続している疾患の予防又は治療剤、 感染症に起 因する血液凝固亢進状態の予防又は治療剤、 静脈又は動脈の血栓症 の予防又は治療剤、 及び血管中膜肥厚に起因する、 疾患の予防又は 治療剤に関する。 背景技術
血液凝固反応はセ リ ンプロテア一ゼ前駆体が次々 に活性型プロテ ァ一ゼにより活性化されて、 最終的に ト ロ ンビンが生成するこ とで フ イ ブリ ンが形成される反応である。 血栓症は、 各種の病的状態の 進展に伴い血漿中の凝固 · 線溶系の変化、 血小板や白血球、 血管内 皮細胞の機能が変化するこ とで血液凝固反応が開始され過剰に亢進 した結果と して生じる。 血液凝固反応の開始因子が組織因子である 。 急性心筋梗塞や不安定狭心症などの急性冠動脈症候群では、 動脈 硬化が進展した結果生じたプラーク内に多く存在する組織因子がプ ラ一クの破綻にと もなつて血液に露出するこ とで血液凝固反応が開 始される。
また、 敗血症や悪性腫瘍に随伴して生じる播種性血管内凝固症候 群では、 活性化された単球ゃマク ロフ ァ一ジなどが組織因子を発現 したり腫瘍細胞が組織因子を発現することで血液凝固反応を亢進さ せている。 一旦、 組織因子が血液に接触すると血液凝固反応は短時 間の内に進み血栓を生成する。 従って、 血栓形成を予防するために は何時開始されるか分からない、 あるいは常に生じている血液凝固 反応を阻止する必要がある。 従って、 有効な抗血栓薬の開発には、 持続的に凝固亢進状態を示す実験モデルが不可欠である。 しかしな がら、 一般に知られている血栓モデルはいずれも短時間で血栓形成 を誘発するモデルである。
そこで、 本発明は 1 つの観点において、 ヒ 卜組織因子を持続的に 血液に接触させることで凝固亢進状態が持続する実験モデルを提供 しょう とするものである。
血液凝固反応はセリ ンプロテアーゼ前駆体が次々に活性型プロテ ァーゼにより活性化されて、 最終的に トロンビンが生成するこ とで フイ ブリ ンが形成される反応である。 血栓症は、 各種の病的状態の 進展に伴い血漿中の凝固 · 線溶系の変化、 血小板や白血球、 血管内 皮細胞の機能が変化することで血液凝固反応が開始され過'剰に亢進 した結果と して生じる。 血液凝固反応の開始因子が組織因子 (T F ) である。
急性心筋梗塞や不安定狭心症などの急性冠動脈症候群では、 動脈 硬化が進展した結果生じたブラ一ク内に多く存在する T Fがブラ一 クの破綻にともなつて血液に露出することで血液凝固反応が開始さ れる。 また、 敗血症や悪性腫瘍に随伴して生じる播種性血管内凝固 症候群では、 活性化された単球やマクロファージなどが T Fを発現 したり腫瘍細胞が T Fを発現することで血液凝固反応を亢進させて おり、 これが持続する。 一旦、 T Fが血液に接触すると血液凝固反 応は短時間の内に進み血栓を生成する。 従って、 血栓形成を予防す るためには何時開始されるか分からない、 あるいは常に生じている 血液凝固反応を阻止する必要がある。 従って、 有効な抗血栓薬と し ては、 血液凝固亢進状態の持続を阻止する医薬が必要である。
従って本発明は、 第 2の観点において、 血液凝固状態が持続して いる疾患の新規な予防又は治療剤を提供しようとするものである。 重症感染症にはしばしば凝固異常症が伴い、 多臓器不全や播種性 血管内凝固症候群のような症状を引き起こ し、 患者の予後を悪化さ せる要因と してその対策が重要とされている。 重症感染症、 なかで も敗血症のような全身感染症においては、 臓器障害の発生機序と し て、 血管内皮細胞の障害が考えられている。 敗血症、 と く にグラム 陰性菌敗血症ではその菌体成分である リポポリサッカライ ド (L P S ) が重要な役割を演じている。
血液中に遊離した L P Sは、 単球を活性化して組織因子 (T F ) を産生させることで凝固亢進状態を引き起こすとともに、 T N Fや I L - 1 β , I L— 8 などのサイ トカイ ンを産生 ' 放出させること で好中球や血管内皮細胞を活性化する。 活性化された好中球は血管 内皮細胞に接着して活性酵素やエラスターゼなどの細胞傷害物質を 放出して血管内皮細胞を傷害する。 サイ トカイ ンで活性化され、 ま た好中球により傷害された血管内皮細胞では T Fの産生が高まり凝 固亢進状態はさ らに進行する。 その結果、 全身で微小血栓が多発し 、 臓器の循環不全が誘発されることで多臓器不全へと進展する。
このため、 感染症に起因する血液凝固状態の予防又は治療剤の開 発が望まれている。
従って本発明は、 第 3の観点において、 感染症に起因する血液凝 固状態の新規な予防又は治療剤を提供しよう とするものである。 静脈血栓が発症する機序と して、 静脈血流の遅滞、 静脈壁の損傷 および血液凝固能の亢進が重要と考えられている。 特に、 手術や分 挽、 外傷などの侵襲は血管壁への物理的損傷や凝固 · 線溶系の異常 を招き、 術後の臥床は静脈血流の遅滞をもたらす。 その結果生じた 静脈血栓は四肢の循環不全を来すのみならず、 血栓そのものが血流 に乗って肺動脈に流入することで致死的な肺塞栓症を来すため、 静 脈血栓症そのものの予防が重要とされている。 そこで、 静脈血栓を 有効に予防又は治療できる医薬の開発が望まれている。
従って本発明は、 第 4の観点において、 静脈血栓症の新規な予防 又は治療剤を提供しよう とするものである。
動脈血栓症は硬化が進展した血管に血栓が生じる疾患であり、 脳 や心臓などの重要な臓器で発症すると しばしば致命的となる。 特に 、 不安定狭心症や急性心筋梗塞などの冠動脈症候群は、 突然死に移 行しやすい危険な病態と考えられている。 最近はその発症機序と し て動脈硬化ブラークの破綻とそれに伴う血栓形成が重要な要因であ ることが明らかとなつてきた。
さ らに、 血栓形成の開始因子である組織因子 (T F ) がプラーク 内の細胞表面や細胞外間質に過剰に発現されていることが明らかと なり、 プラークの破綻に伴う組織因子 (T F ) の血液への露出が血 栓形成の主要な要因であると考えられている。
このため、 動脈血栓症の予防又は治療のための新規な医薬の開発 が望まれている。
従って本発明は、 第 5の観点において、 動脈血栓症の新規な予防 又は治療剤を提供しよう とするものである。
経皮的冠動脈形成術 ( P T C A ) は虚血性心疾患の治療法と して 重要な位置を占めているが、 処置後数ケ月以降に発生する再狭窄が この治療法の有用性を阻害し、 問題となっている。 再狭窄の成因と して内皮細胞の傷害に起因した急性期、 亜急性期の血栓形成の重要 性が明らかとなってきている。 傷害を受けた内皮細胞や内皮下組織 の平滑筋細胞、 線維芽細胞などが発現する組織因子 (T F ) の血液 との接触が血栓形成には重要である。 生じた血栓を覆うように新た に血管壁の細胞が増生し、 血管内腔面積を狭小化する。 また、 血管 組織自体の増生と血管径の収縮も血管内腔面積の狭小化には重要で あり、 これらが再狭窄の直接の要因となる。 そこで、 再狭窄を有効 に予防又は治療することができる医薬が求められている。
従って本発明は、 第 6の観点において、 血管中膜肥厚に起因する 疾患の新規な予防又は治療剤を提供しよう とするものである。 発明の開示
本発明者らは、 前記第 1 の課題を解決すべく種々検討を行った結 果、 ヒ ト組織因子 (T F ) 遺伝子を導入するこ とにより ヒ ト組織因 子を恒常的に発現することができる動物細胞を実験動物に移植して 動物中のヒ ト組,織因子濃度を上昇せしめることにより、 該動物にお ける血液凝固亢進状態を長期間維持することができることを見出し 、 本発明を完成した。
従って本発明は第 1 の観点において、 ヒ ト組織因子 (T F ) 又は その一部分をコー ドする遺伝子が揷入されていて該遺伝子を発現す ることができる動物細胞が移植されている実験動物であって、 血液 凝固亢進状態が長期間持続する非ヒ ト動物を提供する。
前記ヒ ト組織因子の一部分は、 例えば細胞内領域を欠く ヒ ト組織 因子である。 前記動物細胞は好ま しく は哺乳動物細胞である。 前記 哺乳動物細胞は好ま しく はヒ ト骨髄腫細胞である。 前記動物は、 好 ま しく はマウスである。 前記血液凝固亢進状態は、 ヒ ト組織因子血 中濃度の上昇、 血小板の減少、 フイ ブリ ノ一ゲンの減少、 可溶性フ イ ブリ ンモノマ一複合体濃度の上昇及びトロンビン—アンチ トロ ン ビン I I I 複合体濃度の上昇の少なく とも 1 つの現象により表わされ 。
本発明はまた、 上記の動物の作製方法において、 ヒ ト組織因子 ( T F ) 又はその一部分をコー ドする遺伝子が挿入されており該遺伝 子を発現することができる動物細胞を非ヒ ト実験動物に移植し、 そ して血液凝固亢進状態が持続する動物を選択することを特徴とする 方法を提供する。
本発明はまた、 上記の動物を用いることを特徴とする抗血栓薬の スク リ一ニング方法を提供する。
前記第 2 の課題を解決すべく種々検討した結果、 本発明者らは、 ヒ 卜組織因子に対する抗体 (抗ヒ ト T F抗体、 又は抗 T F抗体と称 する場合がある) により、 血液凝固亢進状態の持続を阻止すること ができることを見出した。
従って、 本発明は、 第 2の観点において、 ヒ ト組織因子 (ヒ ト T F ) に対する抗体を含んで成る、 血液凝固亢進状態が持続している 疾患の予防又は治療剤を提供する。
前記抗体は、 例えばポリ クローナル抗体である。 前記抗体は、 好 ま しく はモノ ク ローナル抗体である。 前記抗体は、 好ま しく は組換 え型抗体である。 前記抗体は、 好ま しく は改変抗体である。 前記改 変抗体は、 好ま しく はキメラ抗体又はヒ ト型化抗体である。 前記ヒ ト型化抗体は、 好ま しく はバージョ ン b— b, i — b、 又は i 一 b 2 のヒ ト型化抗体である。 前記抗体は、 例えば抗体修飾物である。 前記抗体修飾物は、 例えば抗体断片 F a b, F ( a b ' ) 2 も しく は F v、 又はシングルチェイ ン F v ( s c F v ) である。
前記第 3 の課題を解決すべく種々検討した結果、 本発明者らは、 ヒ 卜組織因子に対する抗体 (抗ヒ ト T F抗体、 又は抗 T F抗体と称 する場合がある) により、 感染症に起因する血液凝固亢進状態を予 防又は治療することができることを見出した。
従って、 本発明は、 第 3の観点において、 ヒ ト組織因子 (ヒ ト T F ) に対する抗体を含んで成る、 感染症に起因する血液凝固亢進状 態の予防又は治療剤を提供する。
前記抗体は、 例えばポリ クローナル抗体である。 前記抗体は、 好 ま し く はモノ ク ローナル抗体である。 .前記抗体は、 好ま し く は組換 え型抗体である。 前記抗体は、 好ま しく は改変抗体である。 前記改 変抗体は、 好ま しく はキメ ラ抗体又はヒ ト型化抗体である。 前記ヒ ト型化抗体は、 好ま し く はバージ ョ ン b— b, i — b、 又は i — b 2のヒ ト型化抗体である。 前記抗体は、 例えば抗体修飾物である。 前記抗体修飾物は、 えば抗体断片 F a b, F ( a b ' ) 2 も しく は F V、 又はシングルチヱイ ン F V ( s c F V ) である。
前記第 4の課題を解決すべく種々検討した結果、 本発明者らは、 ヒ ト組織因子に対する抗体 (抗ヒ ト T F抗体、 又は抗 T F抗体と称 する場合がある) により、 静脈血栓症を予防又は治療することがで きることを見出した。
従って、 本発明は、 第 4の観点において、 ヒ ト組織因子 (ヒ ト T F) に対する抗体を含んで成る、 静脈血栓症の予防又は治療剤を提 供する。
前記抗体は、 例えばポ リ ク ローナル抗体である。 前記抗体は、 好 ま しく はモノ ク ローナル抗体である。 前記抗体は、 好ま しく は組換 え型抗体である。 前記抗体は、 好ま しく は改変抗体である。 前記改 変抗体は、 好ま しく はキメ ラ抗体又はヒ ト型化抗体である。 前記ヒ ト型化抗体は、 好ま しく はバージ ョ ン b— b, i _ b、 又は i — b 2のヒ ト型化抗体である。 前記抗体は、 例えば抗体修飾物である。 前記抗体修飾物は、 例えば抗体断片 F a b, F ( a b ' ) 2 も し く は F v、 又はシングルチヱイ ン F v ( s c F v) である。
前記第 5の課題を解決すべく種々検討した結果、 本発明者らは、 ヒ ト組織因子に対する抗体 (抗ヒ ト T F抗体、 又は抗 T F抗体と称 する場合がある) により、 動脈血栓症を予防又は治療することがで きることを見出 した。
従って、 本発明は、 第 5の観点において、 ヒ ト組織因子 (ヒ ト T F) に対する抗体を含んで成る、 動脈血栓症の予防又は.治療剤を提 供する。
前記抗体は、 例えばポ リ ク 口一ナル抗体である。 前記抗体は、 好 ま し く はモノ ク 口一ナル抗体である。 前記抗体は、 好ま し く は組換 え型抗体である。 前記抗体は、 好ま しく は改変抗体である。 前記改 変抗体は、 好ま し く はキメ ラ抗体又はヒ ト型化抗体である。 前記ヒ ト犁化抗体は、 好ま しく はバー ジ ョ ン b— b, i 一 b、 又は i — b 2の ヒ ト型化抗体である。 前記抗体は、 例えば抗体修飾物である。 前記抗体修飾物は、 例えば抗体断片 F a b, F (a b ' ) 2 も しく は F v、 又はシングルチェイ ン F v ( s c F v) である。
前記第 6の課題を解決すべく種々検討した結果、 本発明者らは、 ヒ ト組織因子に対する抗体 (抗ヒ ト T F抗体、 又は抗 T F抗体と称 する場合がある) により、 血管中膜肥厚に起因する疾患を予防又は 治療するこ とができるこ とを見出した。
従って、 本発明は、 第 6の観点において、 ヒ ト組織因子 (ヒ ト T F) に対する抗体を含んで成る、 血管中膜肥厚に起因する疾患の予 防又は治療剤を提供する。
前記抗体は、 例えばポ リ ク ローナル抗体である。 前記抗体は、 好 ま し く はモノ ク 口一ナル抗体である。 前記抗体は、 好ま し く は組換 え型抗体である。 前記抗体は、 好ま し く は改変抗体である。 前記改 変抗体は、 好ま しく はキメ ラ抗体又はヒ ト型化抗体である。 前記ヒ 卜型化抗体は、 好ま しく はバージ ョ ン b— b, i — b、 又は i _ b 2のヒ ト型化抗体である。 前記抗体は、 例えば抗体修飾物である。 前記抗体修飾物は、 例えば抗体断片 F a b, F ( a b ' ) 2 も し く は F v、 又はシングルチヱイ ン F v ( s c F v) である。 図面の簡単な説明 図 1 は、 H鎖キメ ラ Z L鎖キメ ラ抗体、 H鎖ヒ ト型化バージ ョ ン b Z L鎖ヒ ト型化バー ジ ョ ン b抗体、 H鎖ヒ ト型化バージ ョ ン i Z L鎖ヒ ト型化バージ ョ ン b抗体、 及び H鎖ヒ ト型化バ一ジ ョ ン i L鎖ヒ ト型化バージ ョ ン b 2抗体の抗原結合活性を比較したグラフ である。
図 2 は、 H鎖キメ ラ Z L鎖キメ ラ抗体、 H鎖ヒ ト型化バージ ョ ン b Z L鎖ヒ ト型化バ一ジ ョ ン b抗体、 H鎖ヒ ト型化バージ ョ ン i Z L鎖ヒ ト型化バージ ョ ン b抗体、 及び H鎖ヒ ト型化バ一ジ ョ ン i ノ L鎖ヒ ト型化バージ ョ ン b 2抗体の、 ヒ ト T Fに対する中和活性 ( T Fによるフ ァ ク ター X a産生阻害活性) を比較したグラフである o
図 3 は、 H鎖キメ ラ Z L鎖キメ ラ抗体、 H鎖ヒ ト型化バージ ョ ン b Z L鎖ヒ ト型化バ一ジ ョ ン b抗体、 H鎖ヒ ト型化バージ ョ ン i L鎖ヒ ト型化バ一ジ ョ ン b抗体、 及び H鎖ヒ ト型化バ一ジ ョ ン i Z L鎖ヒ ト型化バージ ョ ン b 2抗体の、 ヒ ト T Fに対する中和活性 ( フ ァ ク ター X結合阻害活性) を比較したグラ フである。
図 4 は、 H鎖キメ ラ/ L鎖キメ ラ抗体、 H鎖ヒ ト型化バージ ョ ン b / L鎖ヒ ト型化バージ ョ ン b抗体、 H鎖ヒ ト型化バー ジ ョ ン i Z L鎖ヒ ト型化バージ ョ ン b抗体、 及び H鎖ヒ ト型化バージ ョ ン i ノ L鎖ヒ ト型化バージ ョ ン b 2抗体の、 ヒ ト T Fに対する中和活性 ( T Fによる血漿凝固阻害活性) を比較したグラ フである。
図 5 は、 ヒ ト組織因子遺伝子が導入された細胞を移植したマウス (点線) 及び該遺伝子が導入されていない細胞を移植したマウス ( 実線) における腫瘍体積の、 腫瘍細胞移植後の経時変化を示すダラ フである。
図 6 は、 ヒ ト組織因子遺伝子が導入された細胞を移植したマウス (点線) 及び該遺伝子が導入されていない細胞を移植したマウス ( 実線) における、 ヒ ト組織因子の血漿中濃度の、 腫瘍細胞移植後の 経時変化を示すグラフである。
図 7 は、 ヒ ト組織因子遺伝子が導入された細胞を移植したマウス (点線) 及び該遺伝子が導入されていない細胞を移植したマウス ( 実線) における、 血小板の数の、 腫瘍細胞移植後の経時変化を示す グラフである。
図 8 は、 ヒ 卜組織因子遺伝子が導入された細胞を移植したマウス
(点線) 及び該遺伝子が導入されていない細胞を移植したマウス ( 実線) における、 フイ ブリ ノ一ゲンの血漿中濃度の、 腫瘍細胞移植 後の経時変化を、 腫瘍細胞を移植してない対照マウス (N o r m a
1 ) におけるフイ ブリ ノ一ゲンの濃度を 1 0 0 %と した相対値と し て示すグラフである。
図 9 は、 ヒ ト組織因子遺伝子が導入された細胞を移植したマウス
(点線) 及び該遺伝子が導入されていない細胞を移植したマウス ( 実線) における、 可溶性フイ ブリ ンモノ マ一複合体 ( s F M C ) の 血漿中濃度の、 腫瘍細胞移植後の経時変化を示すグラフである。
図 1 0 は、 ヒ ト組織因子遺伝子が導入された細胞を移植したマウ ス (点線) 及び該遺伝子が導入されていない細胞を移植したマウス
(実線) における、 トロンビン一アンチ トロ ンビン I I I 複合体 (T A T ) の血漿中濃度の、 腫瘍細胞移植後の経時変化を示すグラ フで める。
図 1 1 は、 ヒ ト TF遺伝子を導入した腫瘍細胞を移植したマウスに 、 移植 45日目から抗ヒ 卜 TF抗体を lmg/kgで週 1 回、 3 週間にわたつ て投与した場合の血小板数の経時的変化を示すグラフである。
図 1 2 は、 ヒ 卜 TF遺伝子を導入した腫瘍細胞を移植したマウスに
、 移植 45日目から抗ヒ ト TF抗体を lmg/kgで週 1 回、 3 週間にわたつ て投与した場合の、 最終投与の 6 日後のフイ ブリ ンモノ マー複合体 (sFMC) の血漿中濃度を示すグラフである。
図 1 3 は、 ヒ ト TF遺伝子を導入した腫瘍細胞を移植したマウスに 、 移植 45日目から抗ヒ ト TF抗体を lmg/kgで週 1 回、 3 週間にわたつ て投与した場合の、 最終投与の 6 日後の トロンビン一アンチ トロ ン ビン III 複合体 (TAT ) の血漿中濃度を示すグラフである。
図 1 4 は、 ヒ ト TF遺伝子を導入した腫瘍細胞を移植したマウスに 、 移植 49日目に抗ヒ ト TF抗体 lmg/kgを単回投与、 または低分子量へ パリ ン 601.5 IU/kg, 1900.3 IU/kg, 6487.3 IU/kgを浸透圧ポンプで 2 4時間持続投与した場合の、 血小板数の経時的変化を示すグラフ である。 発明の実施の形態
第 1 の観点の本発明において使用するためのヒ 卜組織因子 (T F ) をコー ドする遺伝子はすでにクローニングされており、 その塩基 配列及びそれにより コー ドされるァ ミ ノ酸配列も知られている (H. Morrisseyら、 Cell, Vol. 50, p.129-135 (1987) 。 全長ヒ ト組織 因子をコ一ドする塩基配列及び対応するァミ ノ酸配列を配列番号 : 1 0 3及び 1 0 4 に示す。 本発明においては、 例えば細胞内領域が 除去された T Fをコー ドする遺伝子でもよく、 また血液凝固系を開 始する活性を維持している部分をコ一ドする遺伝子でもよい。
この遺伝子を動物細胞に導入し発現せしめるためのベクタ一と し ては、 動物細胞において機能する任意の発現べクターを使用するこ とができ、 例えば p C O S l , p S V 2 - n e o , p M A M - n e o, p S G 5 などを用いることができる。 本発明では哺乳類細胞で 常用される有用なプロモータ一、 ヒ ト T F遺伝子、 その 3, 側下流 にポリ Aシグナルを機能的に結合させて発現させることができる。 例えば、 プロモータ一 /ェンハ ンサ一と しては、 ヒ トサイ トメガロ ウ イ ノレス前期プロモータ ー /ェ ンノヽ ンサ一 (human cy tomegalovi ru s immediate early promoter/enhancer リ や、 レ トロウイ ノレス、 ポ リ オ一マウ イ ノレス、 アデノ ウ イ ノレス、 シ ミ ア ンゥ イ ノレス 4 0 ( S V
4 0 ) 等のウ ィ ルスプロモータ一、 あるいはヒ トェロ ンゲ一シ ヨ ン フ ァ クター 1 a (HEF1 a ) などの哺乳類細胞由来のプロモータ一 ェ ンハ ンサ一等が挙げられる。 発現ベクターには複製起源と して、
5 V 4 0 、 ポリオ一マウ ィ ルス、 アデノ ウイルス等の由来のものを 用いるこ とができ、 さ らに選択マ一力一と して、 ホスホ トラ ンスフ エラ一ゼ A P H ( 3 ' ) IIまたは I (neo ) 遺伝子、 チミ ジンキナ —ゼ (T K) 遺伝子、 ジヒ ドロ葉酸還元酵素 (D H F R) 遺伝子等 を含むこ とができる。
また、 細胞への遺伝子導入方法は、 エレク ト 口ポーレーシ ヨ ン法 の他、 リ ン酸カルシウム法、 リ ボフ ヱク シヨ ン法等を用いることが できる。 この発現ベクターを導入するための細胞と しては、 実験動 物に移植可能なものであれば特に限定されない。 このためには種々 の培養細胞を使用することができ、 例えば哺乳類細胞、 例えばヒ ト 、 マウス、 ラ ッ ト、 ハムスター、 モンキー等由来の培養細胞、 特に 腫瘍細胞が好ま しい。 細胞の具体例と しては、 K P MM 2, A R H — 7 7 などのヒ ト骨髄腫細胞株、 P 8 1 5, P 3 8 8 , L 1 2 1 0 などのマウス白血病細胞株等が使用できる。
本発明において使用する実験動物は、 ヒ ト以外の哺乳類であり、 好ま しく は実験用小動物、 例えばマウス、 ラ ッ ト、 ハムスター等で あり、 マウスが特に好ま しい。
第 2 の観点の本発明において、 血液凝固亢進状態とは、 ヒ ト T F により惹起される身体状態であって、 例えば、 血小板数ゃフ イ ブリ ノーゲン濃度の低下、 可溶性フイ ブリ ンモノマ一複合体 ( s F M C ) や ト ロ ンビン一アンチ トロ ンビン III 複合体 (T A T) 濃度の上 昇などの状態と して現われる。
本発明において使用する抗体と しては、 ヒ ト T Fに基く血液凝固 亢進状態の持続を阻止するこ とができる抗体であればポ リ ク ローナ ル抗体又はモノ ク ローナル抗体のいずれでもよいが、 モノ ク ローナ ル抗体が好ま しい。 また、 モノ ク ローナル抗体に基く キメ ラ抗体、 ヒ ト型化抗体、 シ ングルチェイ ン F Vなどを使用するこ と もできる 。 ヒ ト型化抗体が特に好ま しい。
第 3 の観点の本発明において使用する抗体と しては、 ヒ ト T Fに 基く血液凝固亢進状態の持続を阻止することができる抗体であれば ポ リ ク 口ーナル抗体又はモノ ク ローナル抗体のいずれでもよいが、 モノ ク ローナル抗体が好ま しい。 また、 モノ ク ローナル抗体に基く キメ ラ抗体、 ヒ ト型化抗体、 シ ングルチヱイ ン F Vなどを使用する こ と もできる。 ヒ ト型化抗体が特に好ま しい。
第 4の観点の本発明において使用する抗体と しては、 ヒ ト T Fに 基く血液凝固亢進状態の持続を阻止することができる抗体であれば ポ リ ク ローナル抗体又はモノ ク 口一ナル抗体のいずれでもよい力く、 モノ ク ローナル抗体が好ま しい。 また、 モノ ク ローナル抗体に基く キメ ラ抗体、 ヒ ト型化抗体、 シ ングルチヱイ ン F Vなどを使用する こ ともできる。 ヒ ト型化抗体が特に好ま しい。
第 5 の観点の本発明において使用する抗体と しては、 ヒ ト T Fに 基く血液凝固亢進状態の持続を阻止することができる抗体であれば ポ リ ク ローナル抗体又はモノ ク ロ一ナル抗体のいずれでもよいが、 モノ ク ローナル抗体が好ま しい。 また、 モノ ク ローナル抗体に基く キメ ラ抗体、 ヒ ト型化抗体、 シ ングルチヱイ ン F Vなどを使用する こと もできる。 ヒ ト型化抗体が特に好ま しい。
第 6 の観点の本発明において使用する抗体と しては、 ヒ ト T Fに 基く血液凝固亢進状態の持続を阻止することができる抗体であれば ポ リ ク ロ一ナル抗体又はモノ ク ロ一ナル抗体のいずれでもよい力 モノ ク ローナル抗体が好ま しい。 また、 モノ ク ローナル抗体に基く キメ ラ抗体、 ヒ ト型化抗体、 シングルチヱイ ン F Vなどを使用する こ と もできる。 ヒ ト型化抗体が特に好ま しい。
1 . 抗ヒ ト T F抗体
本発明で使用される抗ヒ 卜 T F抗体は、 ヒ ト T Fに基く 血液凝固 亢進状態の持続を阻止する効果を有する ものであれば、 その由来、 種類 (モノ ク ローナル、 ポ リ ク ローナル) および形状を問わない。
本発明で使用される抗ヒ ト T F抗体は、 公知の手段を用いてポ リ ク ローナルまたはモノ ク ローナル抗体と して得るこ とができる。 本発明で使用される抗ヒ ト T F抗体と して、 特に哺乳動物由来の モノ ク ローナル抗体が好ま しい。 哺乳動物由来のモノ ク ローナル抗 体は、 ハイプリ ドーマに産生される もの、 および遺伝子工学的手法 により抗体遺伝子を含む発現べクターで形質転換した宿主に産生さ れる ものを含む。 この抗体はヒ ト T F と結合することにより、 ヒ ト T Fが血液凝固亢進の状態を惹起するのを阻害する抗体である。 2 . 抗体産生ハイブリ ドーマ
モノ ク ローナル抗体産生ハイプリ ドーマは、 基本的には公知技術 を使用 し、 以下のよう にして作製できる。 すなわち、 ヒ ト T F又は その一部分 (断片) を感作抗原と して使用 して、 これを通常の免疫 方法にしたがって免疫し、 得られる免疫細胞を通常の細胞融合法に よって公知の親細胞と融合させ、 通常のスク リ 一ニング法により、 モノ ク ローナル抗体産生細胞をスク リ ーニングするこ とによって作 製できる。
具体的には、 モノ ク ローナル抗体を作製するには次のよう にすれ ばよい。
まず、 抗体取得の感作抗原と して使用される ヒ ト T Fを、 J. H. Mo rrissey ら、 Cell, Vol.50, p.129-135 (1987)に開示されたヒ ト T F遺伝子 Ζアミ ノ酸配列を発現することによって得る。 すなわち、 ヒ ト T Fをコ一 ドする遺伝子配列を公知の発現べクター系に揷入し て適当な宿主細胞を形質転換させた後、 その宿主細胞中または培養 上清中から目的のヒ ト T Fタンパク質を公知の方法で精製する。 こ の方法を、 本明細書の参考例 1 に記載する。 さ らに、 抗原と して使 用するヒ 卜 T Fは参考例 2 に記載する方法により ヒ ト胎盤などの Τ F含有生物材料から抽出、 精製して使用することもできる。
次に、 この精製ヒ ト T Fタンパク質を感作抗原と して用いる。 あ るいは、 ヒ ト T Fの C一末端側の膜貫通領域を除去した可溶性 T F を例えば遺伝子組換えにより作製することもでき、 これを感作抗原 と して使用することもできる。
感作抗原で免疫される哺乳動物と しては、 特に限定されるもので はないが、 細胞融合に使用する親細胞との適合性を考慮して選択す るのが好ま しく、 一般的にはげつ歯類の動物、 例えば、 マウス、 ラ ッ ト、 ハムスター、 あるいはゥサギ、 サル等が使用される。
感作抗原を動物に免疫するには、 公知の方法にしたがって行われ る。 例えば、 一般的方法と して、 感作抗原を哺乳動物の腹腔内また は皮下に注射することにより行われる。 具体的には、 感作抗原を Ρ B S (Phosphate-Buffered Saline ) や生理食塩水等で適当量に希 釈、 懸濁したものを所望により通.常のアジュバン ト、 例えばフロイ ン ト完全ァジュバン トゃフロイ ン ト不完全ァジュバン トを適量混合 し、 乳化後、 哺乳動物に 4 一 2 1 日毎に数回投与する。 また、 感作 抗原免疫時に適当な担体を使用することもできる。
このように哺乳動物を免疫し、 血清中に所望の抗体レベルが上昇 するのを確認した後に、 哺乳動物から免疫細胞を採取し、 細胞融合 に付されるが、 好ま しい免疫細胞と しては、 特に脾細胞が挙げられ る o
前記免疫細胞と融合される他方の親細胞と して、 哺乳動物のミエ ローマ細胞を用いる。 このミエローマ細胞は、 公知の種々の細胞株
、 例えば、 P3 (P3x63Ag8.653) (Kearney, J. F. et al. , J. Immunol.
(1979) 123, 1548-1550), P3x63Ag8U.1 (Yel ton, D. B. et al. , C urrent Top i s in Microbiology and Immunology (1978) 81, 1-7) , NS-1 (Kohler. G. and Milstein, C. Eur. J. Immunol. (1976) 6, 5 11-519), MPC-11 (Margulies. D. H. et al. , Cell (1976) 8, 405-4 15), SP2/0 (Shulman, M. et al. , Nature (1978) 276, 269-270),
F0 (de St. Groth, S. F. and Scheidegger, D. J. , J. Immunol. eth ods (1980) 35, 1-21), S194 (Trowbridge, I. S. J. Exp. Med. (1978 ) 148, 313-323), R210 (Galfre, G. et al. , Nature (1979) 277,
131-133) 等が好適に使用される。
前記免疫細胞と ミエローマ細胞との細胞融合は、 基本的には公知 の方法、 たとえば、 ミ ルスティ ンらの方法 (Kohler. G. and Milste in, C., Methods Enzymol. (1981) 73, 3-46) 等に準じて行う こと ができる。
より具体的には、 前記細胞融合は、 例えば細胞融合促進剤の存在 下に通常の栄養培養液中で実施される。 融合促進剤と しては、 例え ばポリエチレングリ コール ( P E G) 、 センダイウ ィ ルス ( H V J ) 等が使用され、 更に所望により融合効率を高めるためにジメチル スルホキシ ド等の補助剤を添加使用することもできる。
免疫細胞と ミエ口一マ細胞との使用割合は任意に設定することが できる。 例えば、 ミエローマ細胞に対して免疫細胞を 1 一 1 0倍と するのが好ま しい。 前記細胞融合に用いる培養液と しては、 例えば
、 前記ミエローマ細胞株の増殖に好適な R P M I 1 6 4 0培養液、
ME M培養液、 その他、 この種の細胞培養に用いられる通常の培養 液が使用可能であり、 さ らに、 牛胎児血清 (F C S ) 等の血清補液 を併用することもできる。
細胞融合は、 前記免疫細胞と ミエローマ細胞との所定量を前記培 養液中でよく混合し、 予め 3 7 °C程度に加温した P E G溶液 (例え ば平均分子量 1 0 0 0 — 6 0 0 0程度) を通常 3 0 — 6 0 % (wZ V ) の濃度で添加し、 混合するこ とによって目的とする融合細胞 ( ハイプリ ドーマ) を形成する。 続いて、 適当な培養液を逐次添加し 、 遠心して上清を除去する操作を繰り返すことによりハイプリ ドー マの生育に好ま しく ない細胞融合剤等を除去する。
このようにして得られたハイプリ ドーマは、 通常の選択培養液、 例えば H A T培養液 (ヒポ サンチン、 アミ ノプテリ ンおよびチミ ジンを含む培養液) で培養することにより選択される。 上記 H A T 培養液での培養は、 目的とするハイプリ ドーマ以外の細胞 (非融合 細胞) が死滅するのに十分な時間 (通常、 数日〜数週間) 継続する 。 ついで、 通常の限界希釈法を実施し、 目的とする抗体を産生する ハイブリ ドーマのスク リ一ニングおよび単一クロ一ニングを行う。
また、 ヒ ト以外の動物に抗原を免疫して上記ハイプリ ドーマを得 る他に、 ヒ ト リ ンパ球を i n V i t r oでヒ ト T Fに感作し、 感 作リ ンパ球をヒ ト由来の永久分裂能を有する ミエローマ細胞と融合 させ、 ヒ ト T Fへの結合活性を有する所望のヒ ト抗体を得ることも できる (特公平 1 — 5 9 8 7 8号公報参照) 。 さらに、 ヒ ト抗体遺 伝子の全てまたは一部のレパ一 ト リーを有する トランスジヱニッ ク 動物に抗原となるヒ ト T Fを投与して抗ヒ 卜 T F抗体産生細胞を取 得し、 これを不死化させた細胞からヒ ト T Fに対するヒ ト抗体を取 得してもよい (国際特許出願公開番号 WO 9 4 / 2 5 5 8 5号公 報、 WO 9 3 Z 1 2 2 2 7号公報、 WO 9 2 Z 0 3 9 1 8号公 報、 WO 9 4 / 0 2 6 0 2号公報参照) 。 このようにして作製されるモノ ク ローナル抗体を産生するハイブ リ ドーマは、 通常の培養液中で継代培養することが可能であり、 ま た、 液体窒素中で長期保存することが可能である。
当該ハイプリ ドーマからモノ ク ローナル抗体を取得するには、 当 該ハイプリ ドーマを通常の方法にしたがい培養し、 その培養上清と して得る方法、 あるいはハイプリ ドーマをこれと適合性がある哺乳 動物に投与して増殖させ、 その腹水と して得る方法などが採用され る。 前者の方法は、 高純度の抗体を得るのに適しており、 一方、 後 者の方法は、 抗体の大量生産に適している。
モノ ク口一ナル抗体の製造の例を参考例 2 に具体的に記載する。 この例においては、 A T R— 2, 3, 4, 5, 7及び 8 と称する 6 種類のモノ クロ一ナル抗体を得ており、 いずれも本発明において使 用することができるが、 A T R— 5が特に好ま しい。
3. 組換え型抗体
本発明では、 モノ ク ローナル抗体と して、 抗体遺伝子をハイプリ ドーマからクローニングし、 適当なベクターに組み込んで、 これを 宿主に導入し、 遺伝子組換え技術を用いて産生させた組換え型のも のを用いることができる (例えば、 Vandamme, A.M. et al., Eur. J . Biochem. (1990) 192, 767- 775,参照) 。
具体的には、 抗ヒ ト T F抗体を産生するハイプリ ドーマから、 抗 ヒ ト T F抗体の可変 (V) 領域をコー ドする mRNAを単離する。 mRNAの単離は、 公知の方法、 例えば、 グァニジン超遠心法 (Ch irgwin, J. M. et al. , Biochemistry (1979) 18, 5294-5299) 、 A
G P C法 (Chomczynski, P. and Sacchi, N., Anal. Biochem. (198
7) 162, 156- 159)等により行って全 R N Aを調製し、 mRNA Purific ation Kit (Pharmacia製) 等を使用して目的の m R N Aを調製する o また、 QuickPrep mRNA Purification Kit (Pharmac i aS¾ ) を用い
l 8 ることにより mRNAを直接調製することもできる。
得られた mR N Aから逆転写酵素を用いて抗体 V領域の c D N A を合成する。 c D N Aの合成は、 AMV Reverse Transcriptase Firs t - strand cDNA Synthesis Kit (生化学工業社製) 等を用いて行う 。 また、 c D N Aの合成および増幅を行うには、 5 ' -Ampl i FINDE R RACE Kit (Clontech製) および P C Rを用いた 5 ' _ R A C E法 (Frohman, . A. et al., Pro Natl. Acad. Sci. USA (1988) 85, 8 998 - 9002, Belyavsky, A. et al. , Nucleic Acids Res. (1989) 17 , 2919-2932)等を使用することができる。
得られた P C R産物から目的とする DNA断片を精製し、 ベクタ 一 DNAと連結する。 さ らに、 これより組換えベクターを作製し、 大腸菌等に導入してコロニ一を選択して所望の組換えべクタ一を調 製する。 そして、 目的とする D N Aの塩基配列を公知の方法、 例え ば、 ジデォキシヌ ク レオチ ドチヱイ ンタ一ミネーシヨ ン法等により 確認する。
目的とする抗ヒ ト T F抗体の V領域をコ一 ドする DNAを得たの ち、 これを、 所望の抗体定常領域 (C領域) をコー ドする DNAを 含有する発現べクターへ組み込む。
本発明で使用される抗ヒ ト T F抗体を製造するには、 抗体遺伝子 を発現制御領域、 例えば、 ェンハンサ一、 プロモーターの制御のも とで発現するよう発現べクタ一に組み込む。 次に、 この発現べクタ —により、 宿主細胞を形質転換し、 抗体を発現させる。
抗体遺伝子の発現は、 抗体重鎖 (H鎖) または軽鎖 (L鎖) をコ 一ドする D N Aを別々に発現べクタ一に組み込んで宿主細胞を同時 形質転換させてもよいし、 あるいは H鎖および L鎖をコー ドする D
NAを単一の発現べクタ一に組み込んで宿主細胞を形質転換させて もよい (WO 9 4 / 1 1 5 2 3号公報参照) 。 また、 組換え型抗体の産生には上記宿主細胞だけではなく、 トラ ンスジエニッ ク動物を使用することができる。 例えば、 抗体遺伝子 を、 乳汁中に固有に産生される蛋白質 (ャギ Sカゼイ ンなど) をコ 一 ドする遺伝子の途中に挿入して融合遺伝子と して調製する。 抗体 遺伝子が挿入された融合遺伝子を含む D N A断片をャギの胚へ注入 し、 この胚を雌のャギへ導入する。 胚を受容したャギから生まれる トラ ンスジエニッ クャギまたはその子孫が産生する乳汁から所望の 抗体を得る。 また、 トラ ンスジ ニッ クャギから産生される所望の 抗体を含む乳汁量を増加させるために、 適宜ホルモンを トラ ンスジ エニックャギに使用 してもよい (Ebert, K. M. et al., Bio/Techno logy (1994) 12, 699-702)。
組換え抗体の製造方法の一例を参考例 3 に具体的に記載する。
4. 改変抗体
本発明では、 上記抗体のほかに、 ヒ トに対する異種抗原性を低下 させること等を目的と して人為的に改変した遺伝子組換え型抗体、 例えば、 キメラ抗体、 ヒ ト型化 (H u m a n i z e d ) 抗体を使用 できる。 これらの改変抗体は、 既知の方法を用いて製造することが できる。
キメ ラ抗体は、 前記のようにして得た抗体 V領域をコ一 ドする D N Aをヒ ト抗体 C領域をコー ドする D N Aと連結し、 これを発現べ クタ一に組み込んで宿主に導入し産生させることにより得られる。 この既知の方法を用いて、 本発明に有用なキメ ラ抗体を得ることが できる。
ヒ ト型化抗体は、 再構成 ( r e s h a p e d ) ヒ ト抗体とも称さ れ、 これは、 h ト以外の哺乳動物、 例えばマウス抗体の相補性決定 領域 (C D R ; complementarity determining region) をヒ ト抗体 の相補性決定領域へ移植したものであり、 その一般的な遺伝子組換 え手法も知られている (欧州特許出願公開番号 E P 1 2 5 0 2 3 号公報、 WO 9 6 / 0 2 5 7 6号公報参照) 。
具体的には、 マウス抗体の C D Rとヒ 卜抗体のフ レームワーク領 域 (framework region; F R) とを連結するように設計した D N A 配列を、 C D R及び F R両方の末端領域にオーバーラップする部分 を有するように作製した数個のオリ ゴヌ ク レオチ ドをプライマーと して用いて P C R法により合成する (WO 9 8 / 1 3 3 8 8号公 報に記載の方法を参照) 。
C D Rを介して連結されるヒ ト抗体のフ レームワーク領域は、 相 補性決定領域が良好な抗原結合部位を形成するものが選択される。 必要に応じ、 再構成ヒ ト抗体の相補性決定領域が適切な抗原結合部 位を形成するように、 抗体の可変領域におけるフ レームワーク領域 のアミ ノ酸を置換してもよい (Sato, K. et al. , Cancer Res. (19 93) 53, 851-856)。
キメ ラ抗体及びヒ ト型化抗体の C領域には、 ヒ ト抗体のものが使 用され、 例えば H鎖では、 C y l , C r 2 , C ァ 3, C y 4を、 L 鎖では C A;, C ;iを使用することができる。 また、 抗体またはその 産生の安定性を改善するために、 ヒ ト抗体 C領域を修飾してもよい o
キメ ラ抗体は、 ヒ ト以外の哺乳動物由来抗体の可変領域とヒ ト抗 体由来の定常領域とからなる。 一方、 ヒ ト型化抗体は、 ヒ ト以外の 哺乳動物由来抗体の相補性決定領域と、 ヒ 卜抗体由来のフ レームヮ ーク領域および C領域とからなる。 ヒ ト型化抗体はヒ ト体内におけ る抗原性が低下されているため、 本発明の治療剤の有効成分と して 有用でめる。
キメ ラ抗体の作製方法は参考例 4 に具体的に記載する。
また、 ヒ ト型化抗体の作製方法を参考例 5 に具体的に記載する。 この参考例においては、 ヒ ト型化重鎖 (H鎖) 可変領域 (V領域) として、 表 1 及び表 2 に示すアミ ノ酸配列を有するバ一ジョ ン a, b , c, d, e, f , g, h, i, j , b l, d 1 , b 3及び d 3 を用いた。
H鎖 V領域のァ ミ ノ酸配列
FR1 CDR1 FR2
1 2 3 4
123456789012345678901234567890 12345 67890123456789
L39130(a) QVQLLBSGAVLARPGTSVKISCKASGFNIK DYYMH WVKQRPGQGLEWIG
Z34963(b)
M30885(c)
M62723(d)
Z80844(e)
L04345(f)
S78322(g)
Z26827(h)
U95239(i)
L03147(j)
P01742(bl) R-A M
P01742(dl) R-A
Z80844(b3) R-A
Z80844(d3) R-A
z
QS WGGSDYTLVTV GYAM
31 3456789012 78902
Figure imgf000026_0001
9Ζ9η/Τ0 OAV また、 ヒ ト型化軽鎖 ( L鎖) V領域と して、 表 3 に示すア ミ ノ酸 配列を有するバージ ョ ン a, b, c, b 1及び b 2を用いた。
表 3
L鎖 V領域のアミノ酸配列
FR1 CDR1 FR2 CDR2
1 2 3 4 5
12345678901234567890123 45678901234 567890123456789 0123456 Z37332(a) D IQMTQSPSSLSASVGDRVTITC KASQD IKSFLS WYQQKPGKAPKLL IY YATSLAD
S68699(b)
P01607(c)
S65921 (bl) F S -- T
X93625(b2) E—— S
FR3 CDR3 FR4
6 7 8 9 10
78901234567890123456789012345678 901234567 8901234567 Z37332(a) GVPSRFSGSGSGTDFTLT I SSLQPEDFATYYC LQHGESPYT FGGGTKVE IK
S68699(b) Y
P01607(c) Y 1 ---一
S65921 (bl) Y
X93625(b2) Y
そして、 上記の Η鎖 V領域の種々のバージョ ンと、 L鎖 V領域の 種々のバージョ ンを組合わせて抗原結合能、 及び T F中和活性につ いて評価した結果、 参考例 6及び参考例 7 に記載する通り、 「Η鎖 V領域バー ジ ョ ン」 一 「 L鎖 V領域バ一ジ ョ ン」 と して表示する場 合 「 b _ b」 、 「 i 一 b」 、 及び 「 i — b 2」 が特に高活性を示し た。 なお、 これらのヒ ト型化抗体の抗原結合能を図 1 に示し、 ヒ ト T F中和活性 (T Fによるファクター X a産生阻害活性) を図 2 に 示し、 ヒ ト T F中和活性 (ファクタ一 X結合阻害活性) を図 3 に示 し、 そしてヒ ト T F中和活性 (T Fによる血漿凝固阻害活性) を図 4 に示す。
5. 抗体修飾物
本発明で使用される抗体は、 ヒ ト T Fに結合し、 ヒ ト T Fの活性 を阻害するかぎり、 抗体の断片又はその修飾物であってよい。 例え ば、 抗体の断片と しては、 F a b, F ( a b ' ) 2 , F v、 または H鎖若しく は L鎖の F Vを適当なリ ンカ一で連結させたシ ングルチ ヱイ ン F v ( s c F v ) が挙げられる。
具体的には、 抗体を酵素、 例えばパパイ ン、 ペプシ ンで処理し抗 体断片を生成させるか、 または、 これらの抗体断片をコー ドする遺 伝子を構築し、 これを発現べクタ一に導入した後、 適当な宿主細胞 で発現させる (例えば、 Co, M. S. et al., J. Immunol. (1994) 152 , 2968-2976, Better, M. & Horwi tz, A. H. Methods in Enzymology
(1989) 178, 476-496, Plueckthun, A, & Skerra, A. ethods in Enzymology (1989) 178, 497-515, Lamoyi, B. , Methods in Enzym ology (1986) 121, 652-663, Rousseaux, J. et al. , ethods in Enzymology (1986) 121, 663-669, Bird, R. E. et al., TIBTECH ( 1991) 9, 132- 137参照) 。
s c F vは、 抗体の H鎖 V領域と L鎖 V領域とを連結することに より得られる。 この s c F Vにおいて、 H鎖 V領域と L鎖 V領域は 、 リ ンカ一、 好ま しく はペプチ ドリ ンカ一を介して連結される (Hu ston, J. S. et al. , Proc. Natl. Acad. Sci. U. S.A. (1988) 85, 587 9-5883) 。 s c F vにおける H鎖 V領域および L鎖 V領域は、 本明 細書に抗体と して記載されたもののいずれの由来であってもよい。 V領域を連結するペプチ ドリ ンカ一と しては、 例えばアミ ノ酸 1 2 一 1 9残基からなる任意の一本鎖べプチ ドが用いられる。
s c F vをコー ドする DNAは、 前記抗体の H鎖または H鎖 V領 域をコー ドする D N A、 および L鎖または L鎖 V領域をコー ドする. D N Aのうち、 それらの配列のうちの全部又は所望のァ ミ ノ酸配列 をコー ドする DNA部分を铸型と し、 その両端を規定するプライマ 一対を用いて P C R法により増幅し、 次いで、 さ らにペプチ ドリ ン 力一部分をコー ドする DNA、 およびその両端が各々 H鎖、 L鎖と 連結されるように規定するプライマー対を組み合せて増幅すること により得られる。
また、 一旦 s c F vをコー ドする DNAが作製されると、 それら を含有する発現べクタ一、 および該発現べクタ一により形質転換さ れた宿主を常法に従って得ることができ、 また、 その宿主を用いる ことにより、 常法に従って s c F vを得ることができる。
これら抗体の断片は、 前記と同様にしてその遺伝子を取得し発現 させ、 宿主により産生させることができる。 本発明における 「抗体 」 にはこれらの抗体の断片も包含される。
抗体の修飾物と して、 ポリエチレングリ コール (P E G) 等の各 種分子と結合した抗ヒ ト T F抗体を使用することもできる。 本発明 における 「抗体」 にはこれらの抗体修飾物も包含される。 このよう な抗体修飾物は、 得られた抗体に化学的な修飾を施すことによって 得ることができる。 なお、 抗体の修飾方法はこの分野においてすで に確立されている。
6. 組換え型抗体または改変抗体の発現および産生
前記のように構築した抗体遺伝子は、 公知の方法により発現させ 、 取得することができる。 哺乳類細胞の場合、 常用される有用なプ 口モータ一、 発現させる抗体遺伝子、 その 3 ' 側下流にポリ Aシグ ナルを機能的に結合させて発現させることができる。 例えばプロモ 一ターノエンハンサーと しては、 ヒ トサイ トメガロウ ィ ルス前期プ 口モーター, ェンノヽ ンサ— ^ human cytomegalovirus immediate ea r 1 y promoter/enhancer) を挙げるこ と力くできる。
また、 その他に本発明で使用される抗体発現に使用できるプロモ 一夕一 Zェンハンサ一と して、 レ ト ロ ウ イ ノレス、 ポリオ一マウ イ ノレ ス、 アデノ ウ イ ルス、 シ ミ ア ンウ ィ ルス 4 0 ( S V 4 0 ) 等のウ イ ノレスプロモータ一/ェンハ ンサ一、 あるいはヒ トェロ ンゲー シ ヨ ン フ ァ ク ター 1 α (H E F 1 a ) などの哺乳類細胞由来のプロモータ 一 Zェンハンサ一等が挙げられる。
S V 4 0 プロモータ一 Zェンハンサーを使用する場合は Mulligan らの方法 (Nature (1979) 277, 108-114) により、 また、 H E F 1 αプロモータ一 Zェンハ ンサーを使用する場合は Mizushima らの方 法 (Nucleic Acids Res. (1990) 18, 5322) により、 容易に遺伝子 発現を行う こ とができる。
大腸菌の場合、 常用される有用なプロモータ一、 抗体分泌のため のシグナル配列及び発現させる抗体遺伝子を機能的に結合させて当 該遺伝子を発現させることができる。 プロモーターと しては、 例え ば 1 a c z プロモータ一、 a r a Bプロモーターを挙げるこ とがで きる。 1 a c z プロモータ一を使用する場合は Wardらの方法 (Natu re (1989) 341, 544-546; FASEB J. (1992) 6, 2422-2427) により 、 あるいは a r a Bプロモーターを使用する場合は Betterらの方法 (Science (1988) 240, 1041-1043)により発現するこ とができる。 抗体分泌のためのシグナル配列と しては、 大腸菌のペリ ブラズム に産生させる場合、 p e 1 B シグナル配列 (Lei, S. P. et al J. Ba cteriol. (1987) 169, 4379 - 4383) を使用すればよい。 そ して、 ぺ リ ブラズムに産生された抗体を分離した後、 抗体の構造を適切に組 み直して ( r e f o l d ) 使用する。 複製起源と しては、 S V 4 0、 ポ リオ一マウ ィ ルス、 アデノ ウィ ルス、 ゥシパピ口一マウ ィルス (B P V) 等の由来のものを用いる ことができ、 さ らに、 宿主細胞系で遺伝子コ ピー数増幅のため、 発 現べク タ一は、 選択マーカ一と してア ミ ノ グリ コ シ ド トラ ンスフ ヱ ラーゼ (A P H) 遺伝子、 チ ミ ジンキナーゼ (TK) 遺伝子、 大腸 . 菌キサンチングァニンホスホリ ボシル トラ ンスフ ェラ一ゼ ( E c 0 g P t ) 遺伝子、 ジヒ ドロ葉酸還元酵素 ( d h f r ) 遺伝子等を含 むこ とができる。
本発明で使用される抗体の製造のために、 任意の発現系、 例えば 真核細胞又は原核細胞系を使用することができる。 真核細胞と して は、 例えば樹立された哺乳類細胞系、 昆虫細胞系、 真糸状菌細胞お よび酵母細胞などの真菌細胞等が挙げられ、 原核細胞と しては、 例 えば大腸菌細胞等の細菌細胞が挙げられる。
好ま しく は、 本発明で使用される抗体は、 哺乳類細胞、 例えば C H 0, C O S. ミ エ口一マ、 BHK, V e r o, H e L a細胞中で 発現される。
次に、 形質転換された宿主細胞を i n V i t r 0または i n v i v oで培養して目的とする抗体を産生させる。 宿主細胞の培養 は公知の方法に従い行う。 例えば、 培養液と して、 DMEM, ME M, R PM I 1 6 4 0, I MDMを使用することができ、 牛胎児血 清 (F C S) 等の血清補液を併用するこ と もできる。
7. 抗体の分離、 精製
前記のように発現、 産生された抗体は、 細胞、 宿主動物から分離 し均一にまで精製するこ とができる。 本発明で使用される抗体の分 離、 精製はァフィ二ティ 一カラムを用いて行う こ とができる。 例え ば、 プロテイ ン Aカラムを用いた力ラムと して、 Hyper D, POROS, Sepharose F. F. (Pharmacia 製) 等が挙げられる。 その他、 通常の タンパク質で使用されている分離、 精製方法を使用すればよく、 何 ら限定されるものではない。 例えば、 上記ァフィ二ティーカラム以 外のクロマ トグラフィ ーカラム、 フィルタ一、 限外濾過、 塩析、 透 析等を適宜選択、 組み合わせることにより、 抗体を分離、 精製する こ と力 でさる (Antibodies:A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988)0
8 - 1. 血液凝固亢進状態の持続の阻止作用の測定
本発明の血液凝固亢進状態が持続している疾患の予防又は治療の 薬効の試験には、 新規な動物モデル系が必要であり、 この評価方法 の詳細は、 本件と同一出願人の 「持続的血液凝固亢進動物モデル及 びその作製方法」 と題する特許出願の明細書に記載されている。 そ の評価方法の具体例を本件明細書に実施例 1 と して記載する。
また、 上記のヒ ト型化抗ヒ ト T F抗体バージ ョ ン 「 i — b 2」 を 用いた結果を実施例 2及び図 1 1 〜 1 3 に示す。 この実験において は、 実施例 1 に示す動物モデル系において、 ヒ ト T F遺伝子を含有 する腫瘍細胞を移植したマウスの血小板数が該腫瘍細胞を移植しな かったマウスの血小板数に比べて約半分に減少した後 (移植後 5 〜 6週間) 1 mgZkgのヒ ト型化抗ヒ ト T F抗体バ一ジ ョ ン 「 i 一 b 2 」 を 1週間に 1 回静脈内に反復投与したところ、 投与開始後 3週間 で実験を終了するまで、 血小板数は腫瘍を移植しなかったマウスの 血小板数レベルに維持された。
また、 本発明のヒ ト型化抗ヒ ト T F抗体の投与により可溶性フィ ブリ ンモノマー複合体 ( s F M C) 及びト ロ ンビン一アンチ ト ロ ン ビン III 複合体 (T A T) 濃度の上昇が抑制された。 この結果、 本 発明の抗ヒ ト T F抗体の投与により血液凝固亢進状態の持続が阻止 され、 正常な状態が維持されることが確認された。
8 — 2. 感染症に起因する血液凝固亢進状態の治療効果の確認 血液凝固亢進状態は、 プロ トロンビン時間の延長、 血漿中フイ ブ リ ノ一ゲン濃度の低下、 血清中フィ プリ ン分解産物濃度の上昇など により観察することができる。 L P Sの投与によりプロ トロ ンビン 時間の延長、 血漿中フイ ブリ ノ一ゲン濃度の低下、 及び血清中フィ ブリ ン分解産物濃度の上昇が生じるが、 本発明の抗ヒ ト T F抗体の 投与によりそれらは抑制された。 従って、 本発明の抗ヒ ト T F抗体 は、 感染症に起因する血液凝固亢進状態の予防又は治療に有効であ ることが確認された。
この効果を、 実施例 3 に具体的に記載する。
8 - 3 . 静脈血栓の予防 · 治療効果の確認
本発明の抗ヒ ト T F抗体が静脈血栓の予防 · 治療効果を有するこ とを、 実施例 4 において具体的に記載する。
8 — 4 . 動脈血栓症の予防 · 治療効果の確認
本発明の抗ヒ ト T F抗体が動脈血栓症の予防 '治療効果を有する ことを、 実施例 5 において具体的に記載する。
8 - 5 . 血管中膜肥厚に起因する疾患の予防 · 治療効果の確認 本発明の抗ヒ ト T F抗体が血管中膜肥厚に起因する疾患の予防 · 治療効果を有することを、 実施例 6 において具体的に記載する。
9 . 投与方法および製剤
本発明の治療剤は、 血液凝固亢進状態が持続する疾患、 感染症に 起因する血液凝固亢進状態、 静脈血栓症、 動脈血栓症、 及び血管中 膜の肥厚に起因する疾患の予防、 治療又は改善を目的と して使用さ れ^ )
有効投与量は、 一回につき体重 1 kgあたり 0 . 0 0 1 mgから 1 0 0 O mgの範囲で選ばれる。 あるいは、 0 . 0 1 〜 1 0 O mgZ kg、 好 ま しく は 0 . 1 〜 1 0 mgZ kgの投与量を選ぶことができる。 しかし ながら、 本発明の抗ヒ ト T F抗体を含有する治療剤はこれらの投与 量に制限される ものではない。
投与方法は特に限定されないが、 静脈注射、 点滴静脈注射等が好 ま しい。
本発明の抗ヒ ト T F抗体を有効成分と して含有する治療剤は、 常 法にしたがって製剤化することができ (Remington' s Pharmaceutic al Science, latest edition, Mark Publishing Company, Eastern, 米国) 、 医薬的に許容される担体や添加物を共に含むものであつ てもよい。
このような担体および医薬添加物の例と して、 水、 医薬的に許容 される有機溶剤、 コラーゲン、 ポリ ビニルアルコール、 ポリ ビニル ピロ リ ドン、 カルボキシビ二ルポ リ マ一、 カルボキシメ チルセル口 ースナ ト リ ウム、 ポ リ アク リル酸ナ ト リ ウム、 アルギン酸ナ ト リ ウ ム、 水溶性デキス トラ ン、 カルボキシメ チルスターチナ ト リ ウム、 ぺクチン、 メ チルセルロース、 ェチルセルロース、 キサンタ ンガム 、 アラ ビアゴム、 カゼイ ン、 寒天、 ポリエチレングリ コール、 ジグ リセリ ン、 グリ セリ ン、 プロ ピレングリ コール、 ワセリ ン、 ノ、"ラフ イ ン、 ステア リノレアルコール、 ステア リ ン酸、 ヒ ト血清アルブミ ン (H S A) 、 マンニ トール、 ソルビ トール、 ラク トース、 医薬添加 物と して許容される界面活性剤等が挙げられる。
実際の添加物は、 本発明治療剤の剤型に応じて上記の中から単独 で又は適宜組み合わせて選ばれるが、 もちろんこれらに限定するも のではない。 例えば、 注射用製剤と して使用する場合、 精製された 抗ヒ ト T F抗体を溶剤、 例えば生理食塩水、 緩衝液、 ブドウ糖溶液 等に溶解し、 これに吸着防止剤、 例えば T w e e n 8 0, Tw e e n 2 0、 ゼラチン、 ヒ ト血清アルブミ ン等を加えたものを使用する ことができる。 あるいは、 使用前に溶解再構成する剤形とするため に凍結乾燥したものであってもよく、 凍結乾燥のための賦形剤と し ては、 例えば、 マンニ トール、 ブ ドウ糖等の糖アルコールや糖類を 使用することができる。 実施例
次に、 実施例により本発明をさ らに具体的に説明する。
実施例 1. 実験用マウスの作製
ヒ ト組織因子をコー ドする遺伝子 (配列番号 : 1 0 3 ) を動物細 胞用発現ベクター P C O S 1 に揷入したベクター (h T F _ p C O S 1 ) を制限酵素 P r u Iで消化し、 直鎖にしたものをヒ ト骨髄腫 細胞株 K PMM 2 (F E RM P - 1 4 1 7 0 ) にエレク トロポレ —シヨ ンにより導入した。
なお、 p C O S l は H E F— PMh— gァ 1 (WO 9 2 / 1 9 7
5 9参照) から、 E c 0 R 1および S m a 1消化により抗体遺伝子 を削除し、 E c o R l — N o t l — B a mH l A d a t o r ( 宝酒造) を連結することにより構築した。 これを、 l mgZmLの G 4 1 8を含有する R PM I 1 6 4 0 ( 2 0 % F C S h I L— 6 : 4 n gZm l含有) 培地に培養し、 増殖してきた細胞について、 抗ヒ ト組織因子抗体 ( A m e r i c a n D i a g n o s t i c a ) を 用いて、 ヒ ト組織因子を発現する細胞をフローサイ トメ ト リ一によ り確認した。 これにより、 ヒ ト組織因子遺伝子を導入した細胞株 K PMM 2 /T F 2 2 6を得た。
前記ヒ ト組織因子遺伝子を導入する前の親株 (K P MM 2ノ p a r e n t ) 及び遺伝子を揷入した株 K PMM 2 /T F 2 2 6を、 4 ngZmLのヒ ト I L— 6及び 2 0 %ゥシ胎児血清を含む R P M I — 1
6 4 0において培養した。 こう して増殖させた K PMM 2 /T F 2 2 6細胞及び親株 K PMM 2 ZP a r e n t細胞を別々の S C I D マウス (入手先 : 日本ク レア、 雄、 7週齢、 体重平均約 2 2 g) の 側腹部の皮下に 1 x 1 0 7 個移植し、 経時的に、 腫瘍体種、 血液中 の血小板数、 血漿中のヒ ト組織因子濃度、 フイ ブリ ノ一ゲン濃度、 可溶性フ イ ブリ ンモノマー複合体 ( s F M C ) 濃度、 及びト ロ ンビ ンーアンチ トロンビン I I I 複合体 (T A T ) 濃度の変化を調べた。 この結果、 図 5 に示す通り、 いずれのマウスにおいても腫瘍体積 は経時的に増加した。 しかしながら、 図 6 に示す通り、 ヒ ト組織因 子の血漿中濃度は、 ヒ ト組織因子遺伝子が導入された細胞を移植し たマウスにおいては経時的に上昇したが該遺伝子が導入されていな い細胞を移植したマウスにおいては全く上昇しなかった。 また、 図 7及び図 8 に示す通り、 ヒ ト組織因子遺伝子が導入された細胞を移 植したマウスにおいては、 それぞれ血小板及びフイ ブリ ノーゲンが 経時的に減少し、 これらの血液凝固成分が消耗されたことが示され た。 これに対して、 ヒ ト組織因子遺伝子が導入されていない細胞を 移植したマウスにおいては、 これらの血液凝固成分の減少 (消耗) は生じな力、つた。
また、 図 9及び図 1 0 に示す通り、 それぞれ可溶性フイ ブリ ンモ ノマ一複合体 ( s F M C ) 及びトロンビン一アンチ トロンビン I I I 複合体 (T A T ) の血漿中濃度は、 ヒ ト組織因子遺伝子が導入され た細胞を移植したマウスにおいては経時的に上昇し、 血液凝固亢進 状態が進行していることが示された。 これに対して、 ヒ ト組織因子 遺伝子が導入されていない細胞を移植したマウスにおいては、 前記 の血液凝固一関連成分濃度の上昇は見られなかった。
以上の結果、 ヒ ト組織因子遺伝子が導入された細胞を移植したマ ウスにおいては、 血液凝固亢進状態が長期間持続していることが確 認され、 本発明の動物が、 持続的凝固亢進モデル動物と して有用で あることが確認された。
実施例 2 . 実施例 1 に記載のモデルにおけるヒ ト型化抗ヒ ト T F抗体パージ ヨ ン 「 i — b 2 」 の効果を検討した。 K P MM 2 /T F 2 2 6を S C I Dマウス (日本ク レア、 雄、 7週齢、 体重平均約 2 2 g) に移 植した 5〜 6週間後に血小板数が腫瘍非移植群の約半分ぐらいにな り、 凝固亢進状態の持続が確認されたので、 移植後 4 5 日後より 1 mg/kgのヒ 卜型化抗ヒ ト T F抗体バー ジ ョ ン 「 i _ b 2」 を 1週間 に 1 回静脈内投与した。 その結果、 ヒ ト型化抗ヒ ト T F抗体バ一ジ ヨ ン 「 i 一 b 2」 投与の 3 日後には血小板数は腫瘍非移植群以上に まで回復し、 投与開始から実験を終了した 3週間目までの間、 血小 板数は腫瘍非移植群のレベルを維持した (図 1 1 ) 。
また、 3 回目のヒ ト型化抗ヒ ト T F抗体バージョ ン 「 i — b 2」 投与の 6 日目に血漿中の可溶性フイ ブリ ンモノ マー複合体 ( s F M C ) 濃度および ト ロ ンビン一ア ンチ ト ロ ン ビン III 複合体 (T A T ) 濃度を測定したところ、 抗体投与により これらの上昇は抑制され ていた (図 1 2および図 1 3 ) 。 これらの結果から、 ヒ ト型化抗ヒ ト T F抗体バー ジ ョ ン 「 i 一 b 2」 は凝固亢進状態が長期間持続す るモデルにおいて、 週 1 回の投与で凝固状態を安定して正常レベル に維持する作用を有していた。
実施例 3.
イソフルラン麻酔下の力二クイザル (中華人民共和国 · 南寧 · 広 西霊長類実験動物研究セ ンタ—より輸入、 雌雄半々、 推定年齢 5 - 7 歳、 体重 2.99- 5.81 kg) に生理食塩水にて溶解した LPS を 1 mg/kg/ hr (2 ml/kg/hr) の用量で 6 時間静脈内に持続注入した。 ヒ ト型化 抗ヒ ト TF抗体投与群の個体にはヒ ト型化抗ヒ ト TF抗体 「パージョ ン i-b2j を 0.3 mg/kg (1 ml/kg) 、 対照群の個体には溶媒 (20 mM so dium acetate/ 150 mM NaCl, H 6.0 ) を 1 ml/kg 、 それぞれ LPS 持続注入開始の 10分前に静脈内投与した。 LPS持続注入終了時に大腿動脈に装着しておいたカテーテルより クェン酸採血及び通常採血を行い、 プロ ト ロ ンビン時間、 血漿中フ イ ブリ ノ 一ゲン濃度、 血清中フ ィ プリ ン分解産物濃度を測定した。 その結果、 表 4 のように LP S 注入によりプロ ト ロ ンビン時間は延長 し、 血漿中フ イ ブリ ノ一ゲン濃度は減少、 血清中フ イ ブリ ン分解産 物濃度は上昇し、 血液凝固亢進状態が惹起されたが、 ヒ ト型化抗ヒ ト T F抗体 「バージ ョ ン i — b 2 」 を投与しておいた群ではこれら の変化は強く抑制された。 このこ とから、 ヒ ト型化抗ヒ ト T F抗体 「バー ジ ョ ン i 一 b 2 」 は感染症に由来する凝固亢進状態を抑制で きるこ とが明らかとなった。
表 4
LPS注入による血液凝固亢進に対するヒト型化抗ヒ卜 TF抗体の効果
Figure imgf000038_0001
※平均士標準誤差
実施例 4 .
静脈血流の鬱滞と静脈壁の傷害で誘発した静脈血栓モデルを用レ、 て、 静脈血栓症に対する ヒ ト型化抗ヒ ト T F抗体の効果を評価した 。 静脈血流の鬱滞は血管の結紮により作製した。 静脈壁の傷害は、 「ポ リ ドカノ ール (食道静脈瘤治療薬、 ク ロイ スラー社) 」 を用い て惹起した。
推定年齢 3〜4 歳、 体重 2. 97〜3. 99kgの雄の力二クイザル (広西 霊長類実験動物研究センター、 中華人民共和国より入手) を用いた 。 力二クイザルをイソフルラ ン及び笑気で麻酔し、 左右内頸静脈を 露出させた。 血管露出部の心臓側を完全に結紮した。 血管露出部の 頭部側は可逆的に結紮した。 両結紮部の間の血管に心臓側からカテ 一テルを挿入した。 血管内の血液を除去し、 内部を生理食塩水で洗 浄した。 血管内にカテーテルより 0. 5 % ポリ ドカノールを注入した 。 カテーテルを除去すると同時に、 カテーテル揷入部位の直上流部 を可逆的に結紮した。
5 分後、 心臓側の可逆的結紮部位を解除し、 ポリ ドカノールを除 いた。 頭部側の可逆的結紮部位を解除し、 少量の血液を流した後、 心臓側の可逆的結紮部位を結紮した。 血管内に血液が満たされた後 、 頭部側の可逆的結紮部位を結紮した。 血栓作製部位の長さは 1. 5 cmになるように調整した。 30分後、 形成された血栓湿重量を測定し た。 評価には左右内頸静脈内の血栓湿重量の合計を用いた。 ヒ ト型 化抗ヒ ト TF抗体バージョ ン 「 i — b 2」 は 0. 3 mg/kg 及び 1. 5 mg/k の用量で、 静脈血栓形成開始の 2 時間前に静脈内投与した。
結果を表 5 に示した。 ヒ ト型化抗ヒ ト TF抗体の投与に.より形成さ れる血栓重量は減少した。 従って、 ヒ ト型化抗ヒ ト TF抗体が静脈血 栓形成の予防効果を有することが明らかになつた。
¾ 5_
力二クイザル静脈血栓モデルにおけるヒ 卜型化抗ヒ ト T F抗体の効果
Figure imgf000040_0001
Figure imgf000040_0002
実施例 5 .
血管狭窄と動脈壁傷害で誘発した動脈血栓モデルを用いて、 動脈 血栓症に対するヒ ト型化抗ヒ ト TF抗体の効果を評価した。 血管狭窄 及び動脈壁傷害は、 先端を丸めた 20G 針を挟んで血管を強く結紮し 、 その針を除去することで作製された。 動脈硬化による血管狭窄と プラーク破綻に伴う動脈壁傷害を摸したモデルである。
推定年齢 3〜 5歳、 体重 3. 55〜3. 99kgの雄の力二クイザル (広西 霊長類実験動物研究センター、 中華人民共和国より入手) を用いた 。 力二クイザルを塩酸ケタ ミ ン (筋肉内投与) 及びブ トフ ァノール (筋肉内投与) で麻酔し、 右総頸動脈を露出した。 血管に ドッブラ —式血流計プローブを装着し、 約 5 分間血流量をモニターした。 血 流がほぼ一定であることを確認した後、 プローブの下流にて血管狭 窄及び動脈壁傷害を惹起した。
その後 15分間血流量を観察し、 血栓形成による血管閉塞時間を測 定した。 右総頸動脈の結紮を除去した後、 ヒ ト型化抗ヒ ト TF抗体投 与を行う場合は投与を行った。 左総頸動脈においても、 同様に血栓 形成による血管閉塞時間を測定した。 ヒ ト型化抗ヒ ト TF抗体 「 i 一 b 2 」 は 0.3 mg/kg 及び 1.5 mg/kg の用量で、 左総頸動脈血栓形成 開始の 1 時間前に静脈内投与した。
結果を表 6 に示した。 ヒ ト型化抗ヒ ト TF抗体の投与により、 血管 閉塞時間が減少した。 従って、 ヒ 卜型化抗ヒ ト TF抗体が動脈血栓形 成の予防効果を有することが明らかとなった。
表 6
力二クイザル動脈血栓症モデルにおけるヒ 卜型化抗ヒ 卜 TF抗体の効果
Figure imgf000041_0001
Figure imgf000041_0002
※いずれも群の平均値
実施例 6.
力二クイザル ( (株) ケアリーより購入、 ベ トナム産繁殖サル、 推定年齢 4 一 5歳) をケタラール 5〜 1 0 mgZkg, imおよびべン ト バルピタール 1 5〜 2 0 mg/kg, iv麻酔下に、 頸部を切開して頸動 脈を露出し、 外頸動脈よりフ ォガティ カテーテル ( 3〜 5 F ) を揷 入してバルーンを膨らませて 5回血管内膜を擦過した。 擦過後、 力 テーテルを抜き去り傷口を縫合し、 1 ヶ月後、 安楽死させて頸動脈 を摘出した。 この時バル一ン傷害を行わなかった対側の頸動脈につ いても同様に摘出した。
ヒ ト型化抗ヒ ト T F抗体バージ ョ ン 「 i — b 2」 は 0. 3 mg kg の用量を血管傷害の 1 0分前に 1分かけて静脈内投与した。 摘出し た頸動脈はホルマリ ン固定した後、 組織標本を作製し、 H E染色お よびエラスチカワ ンギーソ ン染色を行い、 画像解析により、 中膜面 積を測定した。 その結果、 表 7 に示す様に、 ヒ ト型化抗ヒ ト T F抗 体バー ジ ョ ン 「 i — b 2」 は中膜の肥厚を強く抑制した。 このこと から、 ヒ ト型化抗ヒ ト T F抗体バー ジ ョ ン 「 i _ b 2」 は血管組織 自体の増生を抑制することで遠隔期に生じる内腔面積の狭小化を防 ぎ、 有効に再狭窄を予防できることが示唆された。
表 7 非傷害血管 傷害血管
動物番号 中膜面積(mm2) 中膜面積(mm2)
1.06 2.15 (203%) 対照群 0.74 1.45 (196%)
0.82 1.78 (217%)
4 0.75 1.15 (153%) 抗ヒ ト
5 0.78 0.96 (123%)
TF抗体
6 0.86 0.98 (114%)
(非傷害側に対する百分率) 実施例 7.
実施例 1 に記載のモデルにおけるヒ ト型化抗ヒ ト T F抗体バージ ヨ ン 「 i— b 2」 と低分子量へパ リ ンの効果を検討した。 KPMM2/TF
226 を S C I Dマウス (日本ク レア、 雄、 7週齢、 体重平均約 24g
) に移植した 6〜 7週間後に血小板数が腫瘍非移植群の約半分ぐら いになり、 凝固亢進状態の持続が確認されたので、 移植後 4 9 日目 に lmg Zkgのヒ ト型化抗ヒ ト T F抗体バ一ジ ョ ン 「 i一 b 2 」 を静 脈内投与または低分子量へパ リ ン 601.5 IU/kg, 1900.3 IU/kg, 6487
4 o .3 IU/kgを 2 4時間持続放出する浸透圧ポンプを皮下に埋め込むこ とにより持続投与した。 その結果、 ヒ ト型化抗ヒ ト T F抗体パージ ヨ ン 「 i— b 2」 与群では、 投与の 1 日後から血小板数の回復が 観られ 3 日後には腫瘍非移植群以上に達し 7 日後にも効果が残存し た。 これに対し、 低分子量へパリ ンは 6487.3 IU/kg投与群で持続投 与開始 1 日後および 2 日後に血小板数の軽度の回復が観られたが 3 日後には効果が消失した (図 1 4 ) 。
参考例 1. 可溶型ヒ ト T Fの作製法
可溶型ヒ ト T F ( s h T F ) は以下のように作製した。
ヒ ト T Fの貫通領域 ( 2 2 0番目のアミ ノ酸) 以下を F L A Gぺ プチ ド M 2 に置換したものをコー ドする遺伝子を、 哺乳動物細胞用 の発現べクタ一 (ネオマイ シン耐性遺伝子、 D H F R遺伝子を含む ) に挿入し、 C H O細胞に導入した。 ヒ ト T Fの c D N A配列は Ja mes H. Morrisseyらの報告 (Cell(1987) 50, 129-135) を参考にし た。 この可溶型ヒ ト T Fの遺伝子配列とァ ミ ノ酸配列を配列番号 1 0 1及び 1 0 2 に示した。 G 4 1 8 により薬剤セレク シ ョ ンし、 発 現細胞を選抜し、 さ らにメ ト ト レキサー 卜で発現増幅をかけ、 s h T F発現細胞を樹立した。
この細胞を無血清培地 C H O— S— S F MII (G I B C O) で培 養し、 s h T Fを含む培養上清を得た。 同容量の 4 0 mM ト リ ス塩 酸緩衝液 ( P H 8. 5 ) で 2倍に希釈し、 2 0 mM 卜 リス塩酸緩衝 液 ( p H 8. 5 ) で平衡化した Q- Sepharose Fast Flowカラム ( 1 0 0 m L, Pharmacia Biotech)に添加し、 0. 1 M N a C l を含 む同緩衝液で洗浄後、 N a C l の濃度を 0. 3 Mと し、 s h T Fを カラムから溶出した。 得られた s h T F画分に終濃度 2. 5 Mとな るように硫酸アンモニゥムを加え、 遠心操作 ( 1 0, 0 0 0 r p m 、 2 0分) により夾雑蛋白質を沈殿させた。 上清を Butyl T0Y0PEAR L ( 3 0 m L , T O S O H) に添加し、 2. 5 Mの硫酸ァンモニゥ ムを含む 5 O mM ト リス塩酸緩衝液 ( p H 6. 8 ) で洗浄した。
5 O mM ト リ ス塩酸緩衝液 ( p H 6. 8 ) 中、 硫酸アンモニゥム 濃度を 2. 5 Mから 0 Mまで直線的に下げ、 s h T Fを溶出させた 。 s h T Fを含むピーク画分を Centri- Prep 1 0 (アミ コ ン) で濃 縮した。 1 5 O mM N a C 1 を含む 2 0 mM ト リス塩酸緩衝液 ( p H 7. 0 ) で平衡化した T S K g e 1 G 3 0 0 0 SWGカラム ( 2 1. 5 X 6 0 O mm, T O S O H) に濃縮液を添加し、 s h T Fのピーク画分を回収した。 これを 0. 2 2 z mのメ ンブランフィ ルターで濾過滅菌し、 可溶型ヒ ト T F ( s h T F) と した。 試料の 吸光度 2 8 0 n mのモル吸光係数を ε = 4 0, 1 3 0、 分子量を 4 3, 2 1 0 と して、 試料の濃度を算出した。
参考例 2. 抗 T Fモノ ク ローナル抗体の作製
1. ヒ ト T Fの精製
ヒ ト胎盤からの T Fの精製は、 I t o らの方法 (Ito,T. ら J. Bio chem. 114, 691-696, 1993) に準じて行った。 すなわち、 ヒ ト胎盤 を 1 O mM塩化べンザミ ジン、 I mMフ ツイヒフ ヱ二ルメ チルスルフ ォニル、 1 m Mジイ ソプロ ピルフルオロフ ォスフ エ一 トおよび 0. 0 2 %アジ化ナ ト リ ウムを含む ト リス緩衝生理食塩液 (T B S, pH 7. 5 ) 中でホモジナイズ後、 沈殿を冷アセ ト ンで脱脂し、 得られ た脱脂粉末を 2 % T r i t o n X— 1 0 0 を含む上記緩衝液に 懸濁して T Fを可溶化した。
この上清カヽら Concanaval i n A - Sepharose 4Bカラム (Pharmacia) および抗 T F抗体を結合させた S e p h a r o s e 4 Bカラム(P harmacia) を用いてァフィ二ティ 一クロマ トグラフィ ーを行い、 精 製 T Fを得た。 これを限外濾過膜(PM- 10, Amicon) で濃縮し、 精製 標品と して 4 °Cで保存した。 精製標品中の T F含量は、 市販の抗 T Fモノ ク ローナル抗体 (Am erican Diagnostica) とポリ クローナノレ抗体 (American Diagnosti ca) を組合せた S a n d w i c h E L I S Aで、 組換え型 T Fを 標準にして定量した。
また精製標品の純度は、 4 一 2 0 %濃度勾配ポリアク リルア ミ ド ゲルを用いて S D S— P A G E したものを銀染色することで確認し
2. 免疫とハイプリ ドーマの作製
精製ヒ 卜 T F (約 7 0 u g /ml) を等容量の F r e u n dの完全 アジュバン ト (D i f c 0 ) と混合し、 乳化した後、 5週齢の B a 1 b Z c系雄性マウス (日本チ ヤ一ルス リ バ一) の腹部皮下に、 T Fと して 1 0 〃 g/マウスとなるように免疫した。 初回免疫の 1 2 , 1 8及び 2 5 日後には F r e u n dの不完全ァジュバン トと混合 した T Fを 5 z g/マウスとなるように皮下に追加免疫し、 最終免 疫と して 3 2 日目に P B Sで希釈した T F溶液を 5 ju g Zマウスで 腹腔内投与した。
最終免疫の 3 日後に 4匹のマウスから脾細胞を調製し、 細胞数で 約 1 / 5のマウスミエ口一マ細胞株 P 3 U 1 とポリエチレングリ コ 一ル法を用いて融合させた。 融合細胞を 1 0 %ゥシ胎仔血清を含む R P M I — 1 6 4 0培地 (以下 R P M I —培地とする) (Lifetech oriental) に懸濁し、 9 6穴プレー トに 1 匹のマウスにつき 4 0 0 穴播種した。 融合後、 1, 2, 3, 5 日目に培地の半量を H A T ( 大日本製薬) および condimed HI (Boehr i nger Mannheim GmbH) を含 む R P M I —培地 (以下 H A T—培地とする) に交換することで、 ハイプリ ドーマの H A T選択を行った。
下記のスク リ一二ング法で選択したハイブリ ドーマは 2回の限界 希釈を行う こ とでクロー ン化した。 限界希釈は、 9 6穴プレー ト 2枚に一穴あたり 0. 8個の細胞を 播種した。 検鏡により単一コロニ一であることが確認できた穴につ いて、 下記に示した T F結合活性と T F中和活性の測定を行いク口 一ンを選択した。 得られたクローンは HAT—培地から R P M I ― 培地に馴化し、 馴化による抗体産生能の低下が無いことを確認した うえで、 再度限界希釈を行い、 完全なクローン化を行った。 以上の 操作により、 T FZファクタ一 V I I a複合体とファクター Xとの 結合を強く阻害する抗体 6種 ( A T R— 2, 3 , 4, 5 , 7及び 8 ) を産生するハイプリ ドーマが樹立できた。
3. 腹水の作製および抗体の精製
樹立したハイプリ ドーマの腹水の作製は常法に従って行った。 す なわち、 in vitroで継代したハイブリ ドーマ 1 06 個を、 あらかじ め鉱物油を 2回腹腔内に投与しておいた B a 1 b/c系雄性マウス の腹腔内に移植した。 移植後 1〜 2週目で腹部が肥大したマウスか ら腹水を回収した。
腹水からの抗体の精製は、 Protein Aカラム (日本ガイ シ) を装 着した ConSepLClOOシステム(Millipore) を用いて行った。
4. C e l l - E L I S A
T Fを高発現することで知られているヒ ト膀胱癌由来細胞株 J 8 2 (Fair D.S.ら、 J, B i o 1. Chem., 262, 11692-11698, 1987) を AT C Cより導入し、 R PM I —培地中、 3 7 °C、 5 %C 02 、 1 0 0 %湿度の条件で継代 · 維持した。
C e 1 1 一 E L I S A用プレー トは、 9 6穴プレー トに J 8 2細 胞を 1 05 個 Z穴の濃度で播種し、 上記条件で 1 日培養後、 培地を 除いてリ ン酸緩衝生理食塩液 ( P B S ) で 2回洗浄し、 4 %パラホ ルムアルデヒ ド溶液 (P F A) を加えて氷冷下で 1 0分静置するこ とで固定化することによって作製した。 P F Aを除去し、 P B Sで 洗浄後、 1 % B S Aおよび 0 . 0 2 %アジ化ナ ト リ ウムを含む T r i s緩衝液 (Blocking緩衝液) を加えて、 使用時まで 4 °Cで保存し た。
C e 1 1 — E L I S Aは以下のように行った。 すなわち、 上記の ように作製したプレー トから Blocking緩衝液を除去し、 抗 T F抗体 溶液も しく はハイプリ ドーマ培養上清を加えて室温で 1 . 5時間反 応させた。 0 . 0 5 % T w e e n 2 0を含む P B Sで洗浄後、 ァ ルカ リ フ ォスフ ァタ一ゼを結合したャギ抗マウス I g G (H + L ) (Zymed) を 1 時間反応させ、 洗浄後、 1 mgZmlの p —ニ トロフエ二 ルホスフヱ一 トニナ ト リ ウム(Si gma) を添加して 1 時間後に 4 0 5 / 6 5 5 nmにおける吸光度を測定することで、 J 8 2細胞に結合し た抗 T F抗体量を定量した。
5. ファクター X a活性を指標と した T F中和活性測定系
5 0 1 の 5 mM C a C l 2 および 0 . 1 %ゥ シ血清アルブミ ン を含む ト リス緩衝生理食塩液 (T B S : pH 7 . 6 ) に 1 0 ^ 1 のヒ ト胎盤由来ト ロ ンボプラスチン溶液 ( S mgZml) (Thromborel S)( Boehring) と 1 0 〃 1 のフ ァ クター V I l a溶液 ( 8 2 . 5 ng/ml ) (American Diagnostica) を添加し、 室温で 1 時間反応させるこ とで TFZFactor Vi la 複合体を形成させた後、 1 0 1 の所定濃度 に希釈した抗 T F抗体溶液も しく はハイプリ ドーマ培養上清および I 0 β \ の Factor X溶液 ( 3 . 2 4 5 z g /ml) (Celsus Laborato rise) を添加して 4 5分間反応させ、 0 . 5 M E D T Aを 1 0 〃 1 添加することで反応を止めた。 こ こに 2 mM S — 2 2 2 2溶液
(第一化学薬品) を 5 0 1 添加し、 3 0分間の 4 0 5 nmにおける 吸光度変化をもって T Fの Factor Xa産生活性と した。 この方法で は、 TFZFactor Vi la 複合体と Factor Xとの結合を阻害する抗体の 活性が測定できる。 6. 血漿凝固阻害活性測定系
市販の正常ヒ ト血漿 (コージ ンバイオ) を用い、 この 1 0 0 1 に適当に希釈した抗 T F抗体溶液 5 0 n 1 を混和して 3 7 °Cで 3分 間反応させた後、 5 0 / 1 のヒ ト胎盤由来 ト ロ ンボプラスチン溶液 ( 1 . 2 5 mg/ml) を添加し、 血漿が凝固するまでの時間を血漿凝 固時間測定装置 (CR- A: Amelung)で測定した。
7. 抗体のアイ ソタイプの決定
ハイプリ ドーマの培養上清も しく は精製抗体について、 マウスモ ノ ク ロナ一ル抗体アイ ソタイ ピングキッ ト (Amersham社製) を用い て抗体のアイ ソタイプを確認し、 結果を表 8 に示した。
¾ 8_
抗 TFモノ ク ロ一ナル抗体のィムノ グロブリ ンアイ ソタイプ
ATR-2 IgGl, k
ATR-3 IgGl, k
ATR-4 IgGl, k
ATR-5 IgGl, k
ATR-7 IgG2a, k
ATR-8 IgG2a, k
参考例 3 ヒ ト T Fに対するマウスモノ ク ローナル抗体の V領 域をコ一 ドする D N Aのク ローニング
( 1 ) m R N Aの調製
参考例 2で得たハイプリ ドーマ A T R— 5 ( I g G 1 κ ) から m R N Aを Quick Prep mRNA Purification Ki "Pharmacia Biotech) を用いて調製した。 キッ ト添付の処方に従い、 それぞれのハイプリ ドーマ細胞を抽出緩衝液で完全にホモジナイズし、 オリ ゴ ( d T) —セルローススパンカラムにて mR N Aを精製し、 エタノ ール沈殿 を行った。 mR N A沈殿物を溶出緩衝液に溶解した。 ( 2 ) マウス抗体 V領域をコ一 ドする遺伝子の c D N Aの作製及び 増幅
( i ) H鎖 V領域 c D N Aのクローニング
ヒ ト T Fに対するマウスモノ ク ローナル抗体の H鎖 V領域をコ一 ドする遺伝子のクローニングは、 5 ' - RACE 法(Frohman, M. A. et a l., Pro Natl. Acad. Sci. USA, 85, 8998-9002, 1988; Belyavsky, A. et al. , Nucleic Acid Res. 17, 2919-2932, 1989) により行つ た。 5 ' — R A C E法には Marathon cDNA Amplification Kit(CL0N TECH) を用い、 操作はキッ ト添付の処方に従って行った。
前記のようにして調製した mR N A約 1 〃 gを铸型と して、 キッ 卜添付の cDNA synthesis primerを加え、 逆転写酵素と 4 2 °C、 6 0分間反応させることにより c D N Aへの逆転写を行った。 これを D N Aポリメ ラ一ゼ I、 D N Aリガ一ゼ、 R N a s e Hで 1 6 °C、 1. 5時間、 T 4 D Ν Αポリメ ラ一ゼで 1 6 °C、 4 5分間反応さ せることにより、 2本鎖 c D N Aを合成した。 2本鎖 c D N Aをフ ヱノール及びク口口ホルムで抽出し、 ェタノ一ル沈殿により回収し た。
T 4 D N Aリガ一ゼで 1 6 °Cで一夜反応することにより、 2本 鎖 c D N Aの両端に c D N A アダプタ一を連結した。 反応混合液 は 1 0 mM T r i c i n e - K O H ( p H 8. 5 ) 、 0. 1 m M
E D T A溶液で 5 0倍に希釈した。 これを铸型と して P C Rによ り H鎖 V領域をコー ドする遺伝子を増幅させた。 5 ' —側プライマ —にはキッ ト添付のアダプタ一プライマー 1 を、 3 ' —側プライマ 一には MH C— G 1 プライマ一 (配列番号 1 S.T. Jones, et al. , Biotechnology, 9, 88-89, 1991) を使用した。
A T R— 5抗体 H鎖 V領域に対する P C R溶液は、 1 0 0 z 1 中 に 1 2 0 mM T r i s — H C 1 ( p H 8. 0 ) 、 1 0 mM K C l、 6 mM (N H 4 ) 2 S O 4 、 0. 1 % T r i t o n X— 1 0 0、 0. 0 0 1 % B S A、 0. 2 mM d N T P s ( d A T P, d G T P , d C T P, d T T P) 、 1 mM M g C l 2 、 2. 5ユニッ トの K O D D N Aポリ メ ラ一ゼ (東洋紡績) 、 3 0〜 5 0 p m 0 1 eのアダプタープライマー 1 並びに MH C— G 1 プライ マ一、 及び c D N Aァダブターを連結した c D N Aの反応混合物 1 〜 5 Z 1 を含有する。
P C Rはいずれも DNA Thermal Cycler 480 (Perkin-Elmer) を用 い、 9 4 °Cにて 3 0秒間、 5 5 °Cにて 3 0秒間、 7 4 °Cにて 1分間 の温度サイ クルで 3 0回行った。
( i i ) L鎖 V領域 c D N Aのク ロ一ニング
ヒ ト T Fに対するマウスモノ ク ロ一ナル抗体の L鎖 V領域をコー ドする遺伝子のク ローニングは、 5 ' -RACE 法 (Frohman, M. A. et al. , Proc. Natl. Acad. Sci. USA, 85, 8998-9002, 1988; Belyavsky , A. et al. , Nucleic Acid Res. 17, 2919-2932, 1989) により行 つた。 5 ' — R A C E法には Marathon cDNA Ampl if ication Ki t(CL 0NTECH) を用い、 操作はキッ ト添付の処方に従って行った。 前記の ようにして調製した mR N A約 1 gを铸型と して c D N A合成プ ライマーを加え、 逆転写酵素と 4 2 °C、 6 0分間反応させるこ とに より c D N Aへの逆転写を行つた。
これを D N Aポリ メ ラ一ゼ I、 D N Aリガーゼ、 R N a s e Hで 1 6 °C、 1. 5時間、 T 4 D N Aポ リ メ ラーゼで 1 6 °C、 4 5分 間反応させるこ とにより、 2本鎖 c D N Aを合成した。 2本鎖 c D N Aをフ ヱノ 一ル及びク 口口ホルムで抽出し、 ェタノ ール沈殿によ り回収した。 T 4 D N Aリガーゼで 1 6 °Cで一夜反応するこ とに より、 2本鎖 c D N Aの両端に c D N A アダプターを連結した。 反応混合液は 1 0 mM Tricine- K0H ( p H 8. 5 ) 、 0. 1 m M E D T A溶液で 5 0倍に希釈した。 これを铸型と して P C Rにより L鎖 V領域をコー ドする遺伝子を増幅させた。 5 ' —側プライマ一 にはアダプタ一プライマー 1 を、 3 ' —側プライマーには MK Cプ ライマ一 (配列番号 2 )(S. T. Jones, et al., Biotechnology, 9, 8 8-89, 1991) を使用した。
P C R溶液は、 1 0 0 / 1 中に 1 2 0 mM T r i s — H C 1 ( p H 8. 0 ) 、 l O mM K C 1、 6 mM (NH 4 ) 2 S 04 、 0. 1 % T r i t o n X— 1 0 0、 0. 0 0 1 % B S A、 0 . 2 mM d N T P s ( d A T P , d G T P , d C T P, d T T P ) . 1 mM M g C 1 2 . 2. 5ユニッ トの K O D D N Aポリ メ ラーゼ (東洋紡績) 、 3 0〜 5 0 p m 0 1 eのアダプタ一プライマ — 1並びに MK Cプライマー、 及び c D N A アダプタ一を連結し た c D N Aの反応混合物 1 1 を含有する。
?。 1 は1^ Thermal Cycler 480 (Perk i n-E lmer) を用い、 9 4 °Cにて 3 0秒間、 5 5 °Cにて 3 0秒間、 7 4 °Cにて 1分間の温度サ ィ クルで 3 0 回行った。
( 3 ) P C R生成物の精製及び断片化
前記の P C R反応混合液をフヱノール及びクロ口ホルムで抽出し 、 増幅した D N A断片をエタノール沈殿により回収した。 D N A断 片を制限酵素 X m a I (New England Biolabs) により 3 7 °Cで 1 時 間消化した。 X m a I消化混合物を 2 %から 3 %の NuSieve GTG ァ ガロース(FMC BioProducts) を用いたァガロースゲル電気泳動によ り分離し、 H鎖 V領域と して約 5 0 0 b p長、 L鎖 V領域と して約 5 0 0 b p長の D NA断片を含有するァガ口一ス片を切り出した。 ァガロース片をフヱノール及びクロ口ホルムで抽出し、 D N A断片 をエタノールで沈殿させた後、 1 0 mM T r i s — H C 1 ( p H 8. 0 ) 、 1 mM E D T A溶液 (以下、 T Eと称す) 1 0 1 に 溶解した。
上記のようにして調製したマウス H鎖 V領域及び L鎖 V領域をコ ー ドする遺伝子を含む Xm a I消化 D N A断片と、 X m a I で消化 することにより調製した p U C l 9プラスミ ドベクターとを D N A ライゲ一シヨ ンキッ ト v e r . 2 (宝酒造) を用い、 添付の処方に 従い 1 6 °Cで 1 時間反応させ連結した。
この連結混合物を大腸菌 J M 1 0 9 コ ンビテン ト細胞 (二ツボン ジーン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静 &:した。
次いで 3 0 0 〃 1 の Hi- Competence Broth (二ツボンジーン) を加 え 3 7 °Cにて 1 時間イ ンキュベー ト した後、 1 0 0 〃 gZm l ァ ンピシリ ンを含む L B寒天培地 (Molecular Cloning: A Laborator y Manual, Sambrook, e t al. , Cold Spring Harbor Laboratory Pr ess, 1989) (以下、 L B A寒天培地と称す) 上にこの大腸菌をまき 、 3 7 °Cにて一夜イ ンキュベー ト して大腸菌形質転換体を得た。
この形質転換体を 5 0 g /m 1 アンピシリ ンを含有する L B 培地 (以下、 L B A培地と称す) 3 m l あるいは 4 m l で 3 7 °Cに て一夜培養し、 菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラス ミ ド D N Aを調製し、 塩基配列の決定を行った。 ( 4 ) マウス抗体 V領域をコー ドする遺伝子の塩基配列決定
前記のブラスミ ド中の c D N Aコー ド領域の塩基配列を Dye Term inator Cycle Sequencing FS Ready Reaction Ki t (Perki n - Elmer) を用い、 DNA Sequencer 373A (Perki n - Elmer) により決定した。 配 列決定用プライマーと して M13 Primer M4(宝酒造) (配列番号 3 ) 及び M13 Primer RV (宝酒造) (配列番号 4 ) を用い、 両方向の塩基 配列を確認することにより配列を決定した。
こう して得られたハイプリ ドーマ A T R— 5 に由来するマウス H 鎖 V領域をコー ドする遺伝子を含有するプラス ミ ドを A T R— 5 H vZ p U C 1 9 と命名し、 そして L鎖 V領域をコー ドする遺伝子を 含有するプラスミ ドを A T R— 5 L VZP U C 1 9 と命名した。 プ ラ スミ ド A T R— 5 H VZP U C 1 9 に含まれる各マウス抗体の H 鎖 V領域をコー ドする遺伝子の塩基配列 (対応するア ミ ノ酸配列を 含む) をそれぞれ配列番号 5及び 9 9 に、 プラスミ ド A T R— 5 L V / p U C 1 9 に含まれる各マウス抗体の L鎖 V領域をコ一 ドする 遺伝子の塩基配列 (対応するア ミ ノ酸配列を含む) をそれぞれ配列 番号 6及び 1 0 0 に示す。
参考例 4. キメ ラ抗体の構築
マウス A T R— 5抗体 V領域をヒ ト抗体 C領域に連結したキメ ラ A T R— 5抗体を作製した。 A T R— 5抗体 V領域をコ― ドする遺 伝子をヒ ト抗体 C領域をコ一ドする発現べクターに連結することに より、 キメラ抗体発現ベクターを構築した。
( 1 ) キメラ抗体 H鎖 V領域の構築
ヒ ト抗体 H鎖 C領域をコー ドする発現ベクターに連結するために 、 A T R— 5抗体 H鎖 V領域を P C R法により修飾した。 5 ' —側 プライマー c h 5 H S (配列番号 7 ) は V領域をコー ドする D N A の 5 ' —末端にハイブリ ダィズし、 且つ K o z a k コ ンセ ンサス配 列 (Kozak, . et al. , J. Mol. Biol. , 196, 947-950, 1987) 及び制 限酵素 S a 1 I の認識配列を有するように設計した。 3 ' —側ブラ イマ一 c h 5 H A (配列番号 8 ) は J領域をコー ドする D N Aの 3 ' —末端にハイブリダイズし、 且つ制限酵素 N h e I の認識配列を 有するように設計した。
P C R溶液は、 1 0 0 1 中に 1 2 0 mM T r i s — H C 1 ( p H 8. 0 ) 、 1 0 mM K C 1 、 6 mM (N H 4 ) 2 S 04 、 0. 1 % T r i t o n X— 1 0 0、 0. 0 0 1 % B S A、 0 . 2 mM d NT P s (d AT P d GT P d C T P d TT P ) 、 1 mM M g C l 2 2. 5ユニッ トの KOD DNAポリ メ ラ一ゼ (東洋紡績) 、 5 O p mo 1 eの c h 5 H Sプライマ一並び に c h 5 HAプライマ一、 及び铸型 D NAと して 1 n 1のプラスミ ド ATR 5 H vZp U C 1 9を含有する。 P C Rは DNA Thermal Cy cler 480 (Perk i n-E lmer) を用い、 9 4 °Cにて 3 0秒間、 5 5 °Cに て 3 0秒間、 7 4 °Cにて 1分間の温度サイクルで 3 0回行った。
P C R反応混合液をフヱノ ール及びクロ口ホルムで抽出し、 増幅 した DNA断片をエタノール沈殿により回収した。 DNA断片を制 限酵素 N h e I (宝酒造) により 3 7 °Cで 1時間消化し、 次いで制 限酵素 S a 1 I (宝酒造) により 3 7 °Cで 1時間消化した。 この消 化混合物を 3 % N u S i e v e GTGァガロース (FMC B i o P r o d u c t s ) を用いたァガロースゲル電気泳動により分 離し、 約 4 5 0 b p長の DNA断片を含有するァガロース片を切り 出した。 ァガロース片をフヱノール及びクロ口ホルムで抽出し、 D NA断片をエタノールで沈殿させた後、 T E 2 0 1 に溶解した。
クローニングベクタ一には制限酵素 N h e I S a 1 I及び S p 1 I B g 1 11の認識配列を導入した改変 P U C 1 9ベクタ一 (以 下、 C V I D E Cと称す) を用いた。 上記のようにして調製したマ ウス H鎖 V領域をコ一ドする遺伝子断片と N h e I及び S a 1 Iで 消化することにより調製した C V I D E Cベクタ一を DNAライゲ —シ ヨ ンキッ ト v e r . 2 (宝酒造) を用い、 添付の処方に従い 1 6 °Cで 1時間反応させ連結した。
この連結混合物を大腸菌 J M 1 0 9 コ ンビテン ト細胞 (二ツボン ジーン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静 置した。 次いで 3 0 0 〃 1の Hi- Competence Broth (二ツボンジーン ) を加え 3 7 °Cにて 1時間イ ンキュベー ト した後、 L BA寒天培地 上にこの大腸菌をまき、 3 7 °Cにて一夜イ ンキュベー ト して大腸菌 形質転換体を得た。 この形質転換体を L B A培地 3 m 1 で 3 7 °Cに て一夜培養し、 菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラス ミ ド D NAを調製した。
プラスミ ド中の c D N Aコー ド領域の塩基配列を Dye Terminator
Cycle Sequencing FS Ready Reaction Ki t(Perkin-Elmer) を用い 、 DNA Sequencer 373A (Perk i n - Elmer) により決定した。 配列決定 用プライマーと して M13 Primer M4(宝酒造) 及び M13 Primer RV (宝 酒造) を用い、 両方向の塩基配列を確認することにより配列を決定 した。 この A T R— 5抗体 H鎖 V領域をコー ドする遺伝子を含有し 、 5 ' 一側に S a 1 I認識配列及び K o z a kコ ンセンサス配列、 3 ' 一側に N h e I認識配列を持つプラスミ ドを c h A T R 5 H V / C V I D E Cと命名した。
( 2 ) キメ ラ抗体 L鎖 V領域の構築
ヒ ト抗体 L鎖 C領域をコ一 ドする発現ベクターに連結するために 、 A T R— 5抗体 L鎖 V領域を P C R法により修飾した。 5 ' —側 プライマー c h 5 L S (配列番号 9 ) は V領域をコー ドする D N A の 5 ' —末端にハイブリダィズし、 且つ K o z a kコ ンセンサス配 列 (Kozak, M. et al. , J. Mol. Biol. , 196, 947-950, 1987) 及び制 限酵素 B g 1 IIの認識配列を有するように設計した。 3 ' —側ブラ イマ一 c h 5 L A (配列番号 1 0 ) は J領域をコ一 ドする D N Aの 3 ' 一末端にハイブリダイズし、 且つ制限酵素 S p 1 I の認識配列 を有するように設計した。
P C R溶液は、 1 0 0 〃 1 中に 1 2 0 mM T r i s — H C 1 ( p H 8. 0 ) 、 1 0 mM K C l 、 6 mM (NH 4 ) 2 S 04 、 0. 1 % T r i t o n X— 1 0 0、 0. 0 0 1 % B S A、 0 . 2 mM d N T P s ( d A T P , d G T P , d C T P, d T T P ) . 1 mM M g C l 2 、 2. 5ユニッ トの K O D D N Aポリメ ラ一ゼ (東洋紡績) 、 5 0 p m o 1 eの c h 5 L Sプライマー並び に じ h 5 L Aプライマ一、 及び铸型 D N Aと して 1 1 のプラスミ ド A T R 5 L vZ p U C 1 9 を含有する。 P C Rは DNA Thermal Cy cler 480 (Perkin-Elmer) を用い、 9 4 °Cにて 3 0秒間、 5 5 °Cに て 3 0秒間、 7 4 °Cにて 1分間の温度サイクルで 3 0回行った。
P C R反応混合液をフヱノ ール及びクロ口ホルムで抽出し、 増幅 した D NA断片をエタノール沈殿により回収した。 D N A断片を制 限酵素 S p 1 I (宝酒造) により 3 7てで 1 時間消化し、 次いで制 限酵素 B g 1 II (宝酒造) により 3 7 °Cで 1 時間消化した。 この消 化混合物を 3 % NuSieve GTGァガロース(FMC BioProducts) を用い たァガロースゲル電気泳動により分離し、 約 4 0 0 b p長の D NA 断片を含有するァガロース片を切り出した。 ァガロース片をフエノ ール及びク口口ホルムで抽出し、 D N A断片をエタノールで沈殿さ せた後、 2 0 / 1 の T Eに溶解した。
上記のようにして調製したマウス L鎖 V領域をコー ドする遺伝子 断片と S p 1 I及び B g 1 IIで消化することにより調製した C V I D E Cベクタ一を D N Aライゲ一シヨ ンキッ ト v e r . 2 (宝酒造 ) を用い、 添付の処方に従い 1 6 °Cで 1 時間反応させ連結した。
この連結混合物を大腸菌 J M 1 0 9 コ ンビテン ト細胞 (二ツボン ジーン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静 置した。 次いで 3 0 0 〃 1 の Hi- Competence Broth (二ツボンジーン ) を加え 3 7 °Cにて 1 時間イ ンキュベー ト した後、 1 0 0 〃 gZm 1 L B A寒天培地上にこの大腸菌をまき、 3 7 °Cにて一夜イ ンキ ュペー ト して大腸菌形質転換体を得た。 この形質転換体を L B A培 地 3 m l で 3 7 °Cにて一夜培養し、 菌体画分から QIAprep Spin Pla smid Kit (QIAGEN) を用いてプラスミ ド D N Aを調製した。 プラスミ ド中の c D N Aコー ド領域の塩基配列を Dye Terminator Cycle Sequencing FS Ready Reaction Ki KPerkin- Elmer) を用い 、 DNA Sequencer 373A (Perkin-Elmer) により決定した。 配列決定 用プライマーと して Ml 3 Primer M4(宝酒造) 及び Ml 3 Primer RV (宝 酒造) を用い、 両方向の塩基配列を確認することにより配列を決定 した。 この ATR— 5抗体 L鎖 V領域をコー ドする遺伝子を含有し 、 5 ' —側に B g 1 11認識配列及び K o z a kコ ンセンサス配列、 3 ' —側に S p 1 I認識配列を持つプラス ミ ドを c h A T R 5 L V / C V I D E Cと命名した。
( 3 ) キメ ラ抗体発現ベクターの構築
I D E C社より導入した抗体発現べクタ一を用いてキメ ラ抗体発 現べクタ一を構築した。 ベクタ一には I g G l型抗体発現ベクター N 5 KG 1 ( V ) 及び I g G 4型抗体発現ベクター N 5 K G 4 Pを 用いた。 発現ベクター N 5 KG 1 (V) あるいは N 5 KG 4 Pのヒ ト抗体 H鎖 C領域の直前にある S a i l — N h e l部位に ATR— 5の H鎖 V領域をコー ドする遺伝子を、 ヒ ト抗体 L鎖 C領域の直前 にある B g 1 II一 S p 1 I部位に ATR— 5の L鎖 V領域をコー ド する遺伝子を連結することによって、 キメ ラ ATR— 5抗体発現べ クターを作製した。
( i ) H鎖 V領域の導入
プラスミ ド c h ATR 5 H vZC V I D E Cを制限酵素 N h e I (宝酒造) により 3 7 °Cで 3時間消化し、 次いで制限酵素 S a i l (宝酒造) により 3 7 °Cで 3時間消化した。 この消化混合物を 1. 5 % NuSieve GTGァガロース(FMC B i oProducts) を用いたァガロー スゲル電気泳動により分離し、 約 4 5 0 b p長の DNA断片を含有 するァガロース片を切り出した。 ァガロース片をフヱノール及びク ロロホルムで抽出し、 DNA断片をエタノールで沈殿させた後、 T E 2 0 1 に溶解した。
発現ベクター N 5 KG 1 (V) 及び N 5 KG 4 Pを制限酵素 N h e I (宝酒造) により 3 7でで 3時間消化し、 次いで制限酵素 S a 1 I (宝酒造) により 3 7 °Cで 3時間消化した。 この消化混合物を 1 , 5 % NuSieve GTGァガロース(FMC BioProducts) を用いたァガ ロースゲル電気泳動により分離し、 約 9 0 0 O b p長の DNA断片 を含有するァガ口一ス片を切り出した。 ァガロース片をフ エノール 及びクロ口ホルムで抽出し、 D NA断片をエタノールで沈殿させた 後、 T E 6 0 1 に溶解した。
上記のようにして調製した H鎖 V領域をコ一ドする遺伝子を含む S a 1 I - N h e I DNA断片と S a 1 I及び N h e Iで消ィ匕し た N 5 KG 1 (V) あるいは N 5 KG 4 Pを DNAライゲ一シヨ ン キッ ト v e r . 2 (宝酒造) を用い、 添付の処方に従い 1 6 °Cで 1 時間反応させ連結した。
この連結混合物を大腸菌 J M 1 0 9 コ ンビテン ト細胞 (二ツボン ジーン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静 置した。 次いで 3 0 0 〃 1の Hi-Competence Broth (二ツボンジーン ) を加え 3 7 °Cにて 1時間イ ンキュベー ト した後、 1 0 0 z gZm 1 L B A寒天培地上にこの大腸菌をまき、 3 7 °Cにて一夜イ ンキ ュペー ト して大腸菌形質転換体を得た。 この形質転換体を L B A培 地 3 m lで 3 7 °Cにて一夜培養し、 菌体画分から QIAprep Spin Pla smid Kit (QIAGEN) を用いてプラスミ ド D NAを調製した。 これら キメ ラ ATR— 5抗体 H鎖をコー ドする遺伝子を含有するプラスミ ドをそれぞれ c h ATR 5 H v/N 5 KG l (V) 、 及び c h AT R 5 H vZN 5 KG 4 Pと命名した。
( i i ) L鎖 V領域の導入
プラスミ ド c h ATR 5 L vZC V I D E Cを制限酵素 B g 1 II (宝酒造) 及び S p 1 I (宝酒造) により 3 7。にで 1 . 5時間消化 した。 この消化混合物を 1 . 5 % N u S i e v e G T Gァガロ ース(FMC BioProducts) を用いたァガロースゲル電気泳動により分 離し、 約 4 0 0 b p長の D N A断片を含有するァガロース片を切り 出した。 ァガロース片をフヱノール及びクロ口ホルムで抽出し、 D N A断片をエタノールで沈殿させた後、 2 0 1 の T Eに溶解した プラスミ ド c h A T R 5 H v /N 5 K G l (V) 及び c h A T R 5 H v ZN 5 K G 4 Pを制限酵素 B g 1 II (宝酒造) 及び S p 1 I (宝酒造) により 3 7 °Cで 1 . 5時間消化した。 この消化混合物を 1 . 5 % NuSieve GTGァガロース(FMC BioProducts) を用いたァガ ロースゲル電気泳動により分離し、 約 9 4 0 O b p長の D N A断片 を含有するァガロース片を切り出した。 ァガロース片をフヱノール 及びクロ口ホルムで抽出し、 D N A断片をエタノールで沈殿させた 後、 T E 2 0 ;« 1 に溶解した。
上記のようにして調製した L鎖 V領域をコ一ドする遺伝子を含む S p 1 I — B g l ll D N A断片と S p 1 I及び B g l llで消化し た c h A T R 5 H v ZN 5 K G l (V) あるいは c h A T R 5 H v /N 5 K G 4 Pを D N Aライゲーシヨ ンキッ ト v e r . 2 (宝酒造 ) を用い、 添付の処方に従い 1 6 °Cで 1 時間反応させ連結した。
この連結混合物を大腸菌 J M 1 0 9 コ ンビテン ト細胞 (二ツボン ジーン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1 分間静 置した。 次いで 3 0 0 1 の Hi- Competence Broth (二ツボンジーン ) を加え 3 7 °Cにて 1 時間イ ンキュベー ト した後、 1 0 0 〃 g Zm 1 L B A寒天培地上にこの大腸菌をまき、 3 7 °Cにて一夜イ ンキ ュべ一 卜 して大腸菌形質転換体を得た。 この形質転換体を 5 0 /z g / 1 アンピシ リ ンを含有する 2 X Y T培地 1 1 で 3 7。Cにて一 夜培養し、 菌体画分から P I a s m i d M a x i K i t (Q I A G E N) を用いてプラスミ ド DNAを調製した。 これらキメ ラ A TR— 5抗体をコー ドする遺伝子を含有するプラスミ ドをそれぞれ c h ATR 5 /N 5 KG l (V) , c h A T R 5 / N 5 K G 4 Pと 命名した。
( 4 ) C O S— 7細胞への トラ ンスフ ヱク シ ヨ ン
キメ ラ抗体の抗原結合活性及び中和活性を評価するため、 前記発 現プラスミ ドを C O S— 7細胞に トラ ンスフヱク シヨ ンし、 キメ ラ 抗体を一過性に発現させた。
プラスミ ド c h ATR 5 ZN 5 KG l (V) あるいは c h A TR 5 /N 5 KG 4 Pを G e n e P u l s e r装置 (B i o R a d ) を用いてェレク トロポレーシヨ ンにより C O S— 7細胞に形質導 入した。 ダルベッ コ P B S (—) (以下、 P B Sと称す) 中に l x 1 07 細胞 Zm lの細胞濃度で懸濁されている C O S— 7細胞 0. 7 8 m l に、 プラスミ ド 5 0 /z gを加え、 1, 5 0 0 V, 2 5 〃 F の静電容量にてパルスを与えた。
室温にて 1 0分間の回復期間の後、 エレク トロポレーシヨ ン処理 された細胞を 5 %の Ultra Low I gGゥシ胎児血清(G I BC0) を含有す る D M E M培地(GIBC0) に懸濁し、 1 0 c m培養皿を用いて C 02 イ ンキュベータ一にて培養した。 2 4時間の培養の後、 培養上清を 吸引除去し、 新たに無血清培地 H B C H 0 (ァ一バイ ンサイェンテ ィ フ ィ ッ ク) を加えた。 さ らに 7 2時間の培養の後、 培養上清を集 め、 遠心分離により細胞破片を除去した。
( 5 ) 抗体の精製
C 0 S - 7細胞の培養上清からキメ ラ抗体を、 rProtein A Sepha rose Fast Flow(Pharmacia Biotech) を用いて以下のように精製し た。 1 m 1の rProtein A Sepharose Fast Flowをカラムに充塡し、 1 0倍量の T B Sを流すことによってカラムを平衡化した。 平衡化し たカラムに C O S— 7細胞の培養上清をアプライ した後、 1 0倍量 の TB Sによってカラムを洗浄した。
次に、 1 3. 5 m lの 2. 5 m M H C 1 ( p H 3. 0 ) を流す ことによって吸着した抗体画分をカラムより溶出し、 直ちに 1. 5 m lの 1 M T r i s—H C l ( p H 8. 0 ) を加えることによつ て溶出液を中和した。
精製された抗体画分について、 セ ン ト リブレップ 1 0 0 (Am i c o n) を用いた限外濾過を 2回行う ことにより、 1 5 0 mM N a C lを含む 5 0 mM T r i s—H C l ( H 7. 6 ) (以下、 T B Sと称す) に溶媒を置換し、 最終的に約 1. 5 m 1 まで濃縮し た。
( 6 ) C H 0安定産生細胞株の樹立
キメラ抗体の安定産生細胞株を樹立するため、 C HO— S— S F M II無血清培地(GIBC0) に馴化した C H 0細胞 (D G 4 4 ) に前記 発現プラスミ ドを導入した。
プラスミ ド c h ATR 5 /N 5 KG l (V) あるいは c h ATR 5 ZN 5 KG 4 Pを制限酵素 S s p I (宝酒造) で切断して直鎖状 DNAにし、 フヱノール及びクロ口ホルムで抽出の後、 エタノール 沈殿で DN Aを回収した。 直鎖状にしたプラスミ ドを G e n e P u 1 s e r装置(Bio Rad) を用いてエレク トロポレーシヨ ンにより D G 4 4細胞に形質導入した。 P B S中に 1 x 1 0 7 細胞/ m lの 細胞濃度で懸濁されている D G 4 4細胞 0. 7 8 m l に、 プラス ミ ド 1 0 〃 gを加え、 1, 5 0 0 V, 2 5 〃 Fの静電容量にてパルス を与えた。
室温にて 1 0分間の回復期間の後、 エレク トロポレーショ ン処理 された細胞をヒポキサンチ ン · チ ミ ジ ン (G I B C O) を含有する C HO- S - S FM 11培地(GIBC0) に懸濁し、 2枚の 9 6穴プレー ト (F a I c o n) を用いて C 02 ィ ンキュベータ一にて培養した o 培養開始翌日に、 ヒポキサンチン ' チ ミ ジン(GIBC0) 及び 5 0 0 g /m 1 GENETICIN (G418Sul f ate、 G I BCO)を含有する C H 0— S _ S FMII培地(GIBCO) の選択培地に交換し、 抗体遺伝子の導入 された細胞を選択した。 選択培地交換後、 2週間前後に顕微鏡下で 細胞を観察し、 順調な細胞増殖が認められた後に、 後述の抗体濃度 測定 E L I S Aにて抗体産生量を測定し、 抗体産生量の多い細胞を 選別した。
参考例 5. ヒ ト型化抗体の構築
( 1 ) ヒ ト型化抗体 H鎖の構築
( i ) ヒ ト型化 H鎖パージ ヨ ン " a " の構築
ヒ ト型化 ATR— 5抗体 H鎖を、 P C R法による C D R—グラフ ティ ングにより作製した。 ヒ ト抗体 L 3 9 1 3 0 (DDBJ, Gao L.ら 、 未発表、 1995) 由来の F Rを有する ヒ ト型化 ATR— 5抗体 H鎖 バージョ ン "a" の作製のために 7個の P C Rプライマーを使用 し た。 C D R—グラフティ ングプライマ一 h R 5 H v 1 S (配列番号 1 1 ) 、 h R 5 H V 2 S (配列番号 1 2 ) 及び h R 5 H v 4 S (配 列番号 1 3 ) はセ ンス DNA配列を有し、 そ して C D Rグラフティ ングプライマー h R 5 H v 3 A (配列番号 1 4 ) 及び h R 5 H v 5 A (配列番号 1 5 ) はアンチセ ンス D N A配列を有し、 そしてそれ ぞれプライマ一の両端に 1 8— 3 5 b pの相補的配列を有する。
h R 5 H v l Sは K o z a kコ ンセンサス配列 (K o z a k, M , ら、 J. Mo l . B i o l . 1 9 6 , 9 4 7 — 9 5 0, 1 9 8 7 ) 及び S a l I認識部位を有するように、 また h R 5 H v 5 Aは N h e l認識部位を有するように設計した。 また外部プライマ一 h R 5 H v P r S (配列番号 1 6 ) は C D Rグラフティ ングプライマー h R 5 H v l Sと、 h R 5 H v P r A (配列番号 1 7 ) は C D Rグ ラフティ ングプライマ一 h R 5 H V 5 Aとホモロジ一を有する。
C D R—グラフティ ングプライマー h R 5 H v 1 S、 h R 5 H v 2 S、 h R 5 H v 3 A h R 5 H v 4 S及び h R 5 H v 5 A、 なら びに外部プライマー h R 5 H v P r S及び h R 5 H v P r Aは P h a r m a c i a B i o t e c hにより合成及び精製された。
P C Rは、 K O D D N Aポリ メ ラーゼ (東洋紡績) を用い、 9 中に 1 2 0 mM T r i s — H C 1 ( p H 8. 0 ) 、 1 0 m M K C l 、 6 mM (NH 4 ) 2 S O 4 . 0. 1 % T r i t o n X— 1 0 0、 0. 0 0 1 % B S A、 0. 2 m M d N T P s ( d A T P , d G T P , d C T P, d T T P) 、 1 m M M g C 1 2 、 2. 5ユニッ トの K O D D N Aポリ メ ラーゼ (東洋紡績) 、 C D R—グラフティ ングプライマ一 h R 5 H v 1 S、 h R 5 H v 2 S、 h R 5 H v 3 A、 h R 5 H v 4 S及び h R 5 H v 5 Aをそれぞ れ 5 p m o 1 eを含む条件で添付緩衝液を使用して 9 4 °Cにて 3 0 秒間、 5 0でにて 1分間、 7 2 °Cにて 1分間の温度サイクルで 5 回 行い、 さ らに 1 0 O p m o 1 eの外部プライマ一 h R 5 H v P r S 及び h R 5 H v P r Aを加え、 1 0 0 n 1 の系で同じ温度サイ クル を 2 5回行った。 P C R法により増幅した D N A断片を 2 %の Nu S ieve GTGァガロース (FMC Bio. Products) を用いたァガロースゲル 電気泳動により分離した。
約 4 3 0 b p長の D N A断片を含有するァガロース片を切取り、 3倍量 (m l Zg) の T Eを添加し、 フ ヱノール抽出、 フ エ ノ ール • クロ口ホルム抽出、 クロ口ホルム抽出により D N A断片を精製し た。 精製した D N Aをエタノールで沈殿させた後、 その 3分の 1 量 を水 1 7 / 1 に溶解した。 得られた P C R反応混合物を N h e I 及 び S a 1 I で消化し、 N h e I及び S a 1 I で消化することにより 調製したプラスミ ドベクタ一 C V I D E Cに、 D NAライゲーショ ンキッ ト v e r . 2 (宝酒造) を用い添付の処方に従って反応させ 連結した。
この連結混合物を大腸菌 J M 1 0 9 コンビテン ト細胞 (二ツボン ジーン) 1 0 0 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静 置した。 次いで 3 0 0 〃 1 の Hi- Competence Broth (二ツボンジーン ) を加え 3 7 °Cにて 1 時間イ ンキュベー ト した後、 L B A寒天培地 上にこの大腸菌をまき、 3 7 °Cにて一夜イ ンキュベー ト して大腸菌 形質転換体を得た。 この形質転換体を L B A培地 3 m 1 で 3 7 °Cに て一夜培養し、 菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミ ド D N Aを調製した。
プラス ミ ド中の c D NAコー ド領域の塩基配列を Dye Terminator Cycle Sequencing FS Ready Reaction Ki t (Perkin-Elmer; を用い 、 DNA Sequencer 373A (Perkin-Elmer) により決定した。 配列決定 用プライマ一と して Ml 3 Primer M4(宝酒造) 及び Ml 3 Primer RV (宝 酒造) を用い、 両方向の塩基配列を確認することにより配列を決定 した。
E c o T 2 2 I認識部位の前もしく は後に変異、 欠失が認められ たため、 それぞれ正しい配列を有する断片を連結して再度 C V I D E Cにサブクローニングし、 塩基配列を決定した。 正しい配列を有 するプラス ミ ドを h A T R 5 H v a ZC V I D E Cと命名した。 プ ラス ミ ド h A T R 5 H v a / C V I D E Cに含まれるヒ ト型化 H鎖 バージ ョ ン " a " の塩基配列及び対応するアミ ノ酸配列を配列番号 1 8 に示す。 また、 バージョ ン " a " のアミ ノ酸配列を配列番号 1 9 に示す。
( i i ) ヒ ト型化 H鎖バ一ジ ョ ン " b " 及び " c " の構築 ノく一ジョ ン " b " 及び " c " を F R—シャ ッフ リ ング法によって バ一 ジ ョ ン " a " の F R 3を別のヒ ト抗体由来の F R 3に置換し作 製した。 バージ ョ ン " b " では F R 3をヒ ト抗体 Z34963 (DDBJ、 Bo rretzen Μ·ら, Proc. Nat 1· Acad. Sci. U.S.A., 91, 12917-12921, 1 994)由来のものに置換するため、 F R 3をコー ドする DNAプライ マーを 4個作製した。 F R—シャ ッフ リ ングプライマー F 3 R F F S (配列番号 2 0 ) 及び F 3 R F B S (配列番号 2 1 ) はセンス D N A配列を有し、 F 3 R F F A (配列番号 2 2 ) 及び F 3 R F B A (配列番号 2 3 ) はア ンチセ ンス D N A配列を有する。
F 3 R F F Sと F 3 R F F Aは互いに相補的な配列を有し、 両端 に B a l I及び X h o lの認識配列を有する。 F 3 R F B Sと F 3 R F B Aは互いに相補的な配列を有し、 両端に X h o I及び N c o Iの認識配列を有する。 バージ ョ ン" c " では F R 3をヒ ト抗体 P 0 1 8 2 5 (SWISS - PR0T、 Poljak RJ.ら, Biochemistry, 16, 3412 -3420, 1977)由来のものに置換するため、 F R 3をコー ドする DN Aプライマーを 4個作製した。 F R— シ ャ ツフ リ ングベクタ一 F 3 NMF S (配列番号 2 4 ) 及び F 3 NMB S (配列番号 2 5 ) はセ ンス D N A配列を有し、 F 3 N M F A (配列番号 2 6 ) 及び F 3 N MB A (配列番号 2 7 ) はア ンチセ ンス D N A配列を有する。
F 3 NMF Sと F 3 NMF Aは互いに相補的な配列を有し、 両端 に B a l I及び X h o lの認識配列を有する。 F 3 NMB Sと F 3 NMB Aは互いに相補的な配列を有し、 両端に X h o I及び N c o Iの認識配列を有する。
F 3 R F F S、 F 3 R F B S、 F 3 R F F A、 F 3 R F B A、 F 3 NMF S、 F 3 NMB S、 F 3 NMF A及び F 3 NMB Aは P h a r m a c i a B i o t e c hにより合成された。 F 3 R F F S と F 3 R F F A、 F 3 R F B Sと F 3 R F B Aをァニールさせ、 そ れぞれ B a 1 I及び X h o I、 N c o I及び X h o Iで消ィヒした。 これらを B a l l及び N c o Iで消化するこ とにより調製したブラ ス ミ ド h ATR 5 H v aZC V I D E C ( B a 1 I /N c o I ) に 導入し、 塩基配列を決定した。 正しい配列を有するプラス ミ ドを h ATR 5 H v bZC V I D E Cと命名した。 プラス ミ ド h ATR 5 H v bZC V I D E Cに含まれる ヒ ト型化 H鎖バージ ョ ン "b" の 塩基配列及び対応するァ ミ ノ酸配列を配列番号 2 8に示す。 また、 バー ジ ョ ン " b " のァ ミ ノ酸配列を配列番号 2 9に示す。
F 3 NMF Sと F 3 NMF A、 F 3 NMB Sと F 3 NMB Aをァ ニールさせ、 それぞれ B a l I及び X h o I、 N c o I及び X h o Iで消化した。 これらを B a 1 I及び N c o Iで消化するこ とによ り調製したプラス ミ ド hATR 5 H v a C V I D E C (B a l I / c o I ) に導入し、 塩基配列を決定した。 正しい配列を有する プラス ミ ドを h ATR 5 H v cZC V I D E Cと命名した。 プラス ミ ド h ATR 5 H v cZC V I D E Cに含まれる ヒ ト型化 H鎖バー ジ ョ ン " c " の塩基配列及び対応するア ミ ノ酸配列を配列番号 3 0 に示す。 また、 バージ ョ ン "c " のア ミ ノ酸配列を配列番号 3 1 に 示す。
( i i i ) ヒ ト型化 H鎖バ一ジ ョ ン " d " 及び " e " の構築 ノく 一ジ ョ ン " d " 及び " e " を F R—シャ ッ フ リ ング法によって バージョ ン " a " の F R 3を別のヒ ト抗体由来の F R 3に置換し作 製した。 ノく 一ジ ョ ン" d " では F R 3をヒ ト抗体 M62723 (DDBJ、 Pa scual V.ら, J. CI in. Invest,, 86, 1320-1328, 1990)由来のものに 置換するため、 F R 3をコ一 ドする DNAプライマーを 4個作製し た。 F R— シ ャ ッ フ リ ングプライマ一 F 3 E P S (配列番号 3 2 ) はセンス D N A配列を有し、 F 3 E P A (配列番号 3 3 ) はア ンチ セ ンス D N A配列を有し、 プライマーの 3 ' —末端は 1 8 b pの相 補的配列を有する。
また外部ブライマ一 F 3 P r S (配列番号 3 4 ) 及び F 3 P r A (配列番号 3 5 ) は F R—シャ ッフ リ ングプライマ一 F 3 E P S及 び F 3 E P Aとホモロジ一を有し、 他の F R 3のシャ ッフ リ ングに も用いることができる。 バージ ョ ン " e " では F R 3をヒ ト抗体 Z 8 0 8 4 4 (DDBJ、 Thomsett AR. ら, unpubl i shed)由来のものに置 換するため、 F R 3をコ一 ドする D N Aプライマ一を 2個作製した 。 F R—シャ ッフ リ ングプライマー F 3 V H S (配列番号 3 6 ) は センス D N A配列を有し、 F 3 V H A (配列番号 3 7 ) はアンチセ ンス D N A配列を有し、 プライマーの 3 ' —末端は 1 8 b pの相補 的配列を有する。 F 3 E P S、 F 3 E P A、 F 3 P r S、 F 3 P r A、 F 3 V H S及び F 3 V H Aは Pharmacia Biotechにより合成さ れた。
P C Rは、 KOD DNA Polymerase (東洋紡績) を用い、 1 0 0 〃 1 の反応混合液に 1 a Mの F R—シャ ッフ リ ングプライマー F 3 E P Sと F 3 E P A、 又は F 3 V H Sと F 3 V H Aをそれぞれ 5 β 1 、 0. 2 mMの d N T P s、 1. O mMの M g C l 2 、 2. 5 Uの K 0 D D Ν Αポリ メ ラ一ゼを含む条件で添付緩衝液を使用して 9 4 °Cにて 3 0秒間、 5 0 にて 1分間、 7 4 °Cにて 1分間の温度サイ クルで 5回行い、 さ らに 1 0 O p m o 1 eの外部プライマ一 F 3 P r S及び F 3 P r Aを加え、 同じ温度サイクルを 2 5回行った。
P C R法により増幅した D N A断片を 2 %の Nu Sieve GTGァガロ ース(FMC Bio. Products) を用いたァガロースゲル電気泳動により 分離した。 4 2 4 b p長の D N A断片を含有するァガロース片を切 取り、 3倍量 (m l / g) の T Eを添加し、 フ ヱノール抽出、 フ エ ノール . クロ口ホルム抽出、 クロ口ホルム抽出により D N A断片を 精製した。 精製した D N Aをエタノールで沈殿させた後、 その 3分 の 1量を水 1 4 ^ 1 に溶解した。 得られた P C R反応混合物を B a 1 I 及び N c o l で消化し、 これらを B a l I及び N c o l で消化 することにより調製したプラスミ ド h A T R 5 H v a /C V I D E C ( B a 1 I /N c o I ) に導入し、 塩基配列を決定した。
正しい配列を有するプラス ミ ドを h A T R 5 H v d /C V I D E C及び h A T R 5 H v e ZC V I D E Cと命名した。 プラスミ ド h A T R 5 H v d/C V I D E Cに含まれるヒ ト型化 H鎖バージ ョ ン " d " の塩基配列及び対応するアミ ノ酸配列を配列番号 3 8 に、 バ —ジョ ン " d " のアミ ノ酸配列を配列番号 3 9 に示す。 また、 ブラ スミ ド h A T R 5 H v e / C V I D E Cに含まれるヒ ト型化 H鎖バ —ジ ョ ン " e " の塩基配列及び対応するア ミ ノ酸配列を配列番号 4 0 に、 バージ ョ ン " e " のァ ミ ノ酸配列を配列番号 4 1 に示す。
( i V ) ヒ ト型化 H鎖バージ ョ ン " f " 及び " g " の構築
ジ ョ ン " f " 及び " g " は F R—シャ ッ フ リ ング法によって バージョ ン " a " の F R 3を別のヒ ト抗体由来の F R 3 に置換し作 製した。 バ一ジョ ン " f " はヒ ト抗体 L04345 (DDBJ Hillson JL. ら, J. Exp. Med. 178 331-336, 1993) 由来の F R 3 に、 ジョ ン " g " は S78322 (DDBJ Bejcek BE. ら, Cancer Res. , 55, 2346- 2351, 1995) 由来の F R 3 に置換するため F R 3をコー ドするプラ イマ一を 2個ずつ合成した。 バージ ョ ン " f " の F R—シャ ツ フ リ ングプライマ一 F 3 S S S (配列番号 4 2 ) はセンス D N A配列を 有し、 F 3 S S A (配列番号 4 3 ) はアンチセンス D N A配列を有 し、 プライマーの 3 ' —末端は 1 8 b pの相補的配列を有する。
《一ジ ョ ン " g " の F R—シャ ッ フ リ ングプライマ一 F 3 C D S (配列番号 4 4 ) はセンス D N A配列を有し、 F 3 C D A (配列番 号 4 5 ) はアンチセンス D N A配列を有し、 プライマ一の 3 ' —末 端は 1 8 b pの相補的配列を有する。 F 3 S S S F 3 S S A F 3 C D S及び F 3 C DAは Pharmacia B i o techにより合成及び精製 された。 P C Rは、 KOD DNAポリ メ ラーゼ (東洋紡績) を用 い、 1 0 0 1の反応混合液に 1 Mの F R—シャ ツフ リ ンダプラ イマ一 F 3 S S S及び F 3 S S Aも しく は F 3 C D S及び F 3 C D Aをそれぞれ 5 〃 1ずつ、 0. 2 mMの d NT P s、 1. O mMの M g C 1 2、 2. 5 Uの KOD DNAポリメ ラ一ゼを含む条件で 添付緩衝液を使用して 9 4 °Cにて 3 0秒間、 5 0 ^にて 1分間、 7
4。Cにて 1分間の温度サイクルで 5回行い、 さ らに 1 0 0 p m 0 1 eの外部プライマー F 3 P r S及び F 3 P r Aを加え、 同じ温度サ イ クルを 2 5回行った。
P C R法により増幅した DNA断片を 2 %の Nu Sieve GTGァガ口 —ス(FMC Bio. Products) を用いたァガロースゲル電気泳動により 分離した。 4 2 4 b p長の DNA断片を含有するァガロース片を切 取り、 3倍量 (m l Z g) の T Eを添加し、 フ ヱノール抽出、 フ ヱ ノール . クロ口ホルム抽出、 クロ口ホルム抽出により D N A断片を 精製した。 精製した D N Aをエタノールで沈殿させた後、 その 3分 の 1量を水 1 4 1 に溶解した。 得られた P C R反応混合物を B a 1 I及び N c o lで消化し、 これらを B a l I及び N c o lで消化 することにより調製したプラスミ ド h ATR 5 H v a / C V I D E C (B a 1 I ZN C O I ) に導入し、 塩基配列を決定した。
正しい配列を有するプラスミ ドを h ATR 5 H v f /C V I D E C及び h ATR 5 H v g/C V I D E Cと命名した。 プラスミ ド h A T R 5 Η ν f /C V I D E Cに含まれるヒ ト型化 H鎖バージ ョ ン " f " の塩基配列及び対応するアミ ノ酸配列ならびにバージ ョ ン " f " ア ミ ノ酸配列を配列番号 4 6及び 4 7に示す。 また、 プラスミ ド h ATR 5 H v g/C V I D E Cに含まれるヒ ト型化 H鎖バ一ジ ヨ ン "g" の塩基配列及び対応するアミ ノ酸配列ならびにバージョ ン " g " のア ミ ノ酸配列を配列番号 4 8及び 4 9 に示す。
( V ) ヒ ト型化 H鎖バージ ョ ン " h " の構築
バージ ョ ン " h " は F R—シャ ツフ リ ング法によってバ一ジ ョ ン " a " の F R 3を別のヒ ト抗体由来の F R 3 に置換し作製した。 バ 一ジ ョ ン " h " はヒ ト抗体 Z26827 (DDBJ、 Van Der Stoep ら, J. Ex P.Med., 177, 99-107, 1993)由来の F R 3 に置換するため F R 3を コー ドするプライマ一を 2個ずつ合成した。 バージ ョ ン " h " の F R—シャ ッフ リ ングプライマ一 F 3 A D S (配列番号 5 0 ) はセン ス D N A配列を有し、 F 3 A D A (配列番号 5 1 ) はアンチセンス D N A配列を有し、 プライマ一の 3 ' —末端は 1 8 b pの相補的配 列を有する。
F 3 A D S及び F 3 A D Aは Pharmacia Biotechにより合成及び 精製された。 P C Rは、 K O D D N Aポリ メ ラ一ゼ (東洋紡績) を用い、 1 0 0 1 の反応混合液に 1 〃 Μの F R _シャ ツフ リ ング プライマ一 F 3 A D S及び F 3 A D Aをそれぞれ 5 /z lずつ、 0. 2 mMの d N T P s、 1. O mMの M g C l 2 、 2. 5 Uの K O D
D N Aポリ メ ラ一ゼを含む条件で添付緩衝液を使用して 9 4 に て 3 0秒間、 5 0 °Cにて 1分間、 7 4 °Cにて 1分間の温度サイクル で 5回行い、 さ らに 1 0 O p m o 1 eの外部プライマ一 F 3 P r S 及び F 3 P r Aを加え、 同じ温度サイクルを 2 5 回行った。 P C R 法により増幅した D N A断片を 2 %の N u S i e v e G T Gァ ガロース (F M C B i o . P r o d u c t s ) を用いたァガロー スゲル電気泳動により分離した。
4 2 4 b p長の D N A断片を含有するァガロース片を切取り、 3 倍量 (m l Z g ) の T Eを添加し、 フ ヱノール抽出、 フ ヱノール ' クロ口ホルム抽出、 クロ口ホルム抽出により D N A断片を精製した 。 精製した D N Aをエタノールで沈殿させた後、 その 3分の 1量を 水 1 4 /z l に溶解した。 得られた P C R反応混合物を B a 1 I及び N c o lで消ィ匕し、 これらを B a l I及び N c o lで消化するこ と により調製したプラス ミ ド h ATR 5 H v aZC V I D E C (B a 1 I /N c o I ) に導入し、 塩基配列を決定した。 正しい配列を有 するプラス ミ ドを h ATR S H v hZC V I D E Cと命名 した。 プ ラ ス ミ ド h ATR 5 H v h/C V I D E Cに含まれる ヒ ト型化 H鎖 バージ ョ ン "h" の塩基配列及び対応するア ミ ノ酸配列を配列番号 5 2に示す。 また、 バー ジ ョ ン "h" のア ミ ノ酸配列を配列番号 5 3に示す。
( V i ) ヒ ト型化 H鎖パージ ヨ ン " i " 及び " j " の構築
ノく 一ジ ョ ン " i " 及び " j " は F R—シャ ッ フ リ ング法によって バージ ョ ン "a" の F R 3を別のヒ ト抗体由来の F R 3に置換し作 製した。 ノ 一 ジ ョ ン " i " はヒ 卜抗体 U 9 5 2 3 9 (DDBJ、 Manhei mer-Lory AJ. , unpub 1 i shed)由来の F R 3に、 ノ ージ ョ ン " j,, は L 0 3 1 4 7 (DDBJ、 Col let TA.ら, Pro Natl. Acad. Sci. U.S.A. , 89, 10026-10030, 1992)由来の F R 3に置換するため F R 3をコ ― ドするプライマーを 2個ずつ合成した。 バージ ョ ン " i " の F R — シ ャ ッ フ リ ングプライマ一 F 3 M M S (配列番号 5 4 ) はセ ンス D N A配列を有し、 F 3 MM A (配列番号 5 5 ) はアンチセンス D N A配列を有し、 プライマーの 3 ' —末端は 1 8 b pの相補的配列 を有する。
ノ '一ジ ョ ン " j " の F R—シ ャ ッ フ リ ングプライ マー F 3 B M S (配列番号 5 6 ) はセ ンス D N A配列を有し、 F 3 BMA (配列番 号 5 7 ) はアンチセ ンス DNA配列を有し、 プライマ一の 3 ' —末 端は 1 8 b pの相捕的配列を有する。 F 3 MMS、 F 3 MMA、 F 3 BMS及び F 3 BMAは Pharmacia Biotechにより合成及び精製 された。 P C Rは、 Ampli Taq Gold (Perk i n-E lmer) を用い、 1 0 0 n 1の反応混合液に 1 〃Mの F R— シ ャ ッ フ リ ングプライ マー F 3 M M Sと F 3 MM A、 又は F 3 BMSと F 3 BMAをそれぞれ 5 1ずつ、 0. 2 mMの d NT P s、 1. 5 mMの Mg C l 2 、 2 . 5 Uの Ampli Taq Goldを含む条件で添付緩衝液を使用して 9 4 °C にて 3 0秒間、 5 0 °Cにて 1分間、 7 4 °Cにて 1分間の温度サイク ルで 5回行い、 さ らに 1 0 0 p m o 1 eの外部ブライマ一 F 3 P r S及び F 3 P r Aを加え、 同じ温度サイクルを 2 5回行った。
P C R法により増幅した D N A断片を 2 %の Nu Sieve GTGァガロ —ス (FMC Bio. Products) を用いたァガロースゲル電気泳動により 分離した。 4 2 4 b p長の DNA断片を含有するァガ口一ス片を切 取り、 3倍量 (m l Zg) の T Eを添加し、 フヱノール抽出、 フヱ ノール . クロ口ホルム抽出、 クロ口ホルム抽出により DNA断片を 精製した。 精製した D N Aをエタノールで沈殿させた後、 その 3分 の 1量を水 1 4 1 に溶解した。 得られた P C R反応混合物を B a
1 I及び N c 0 Iで消化し、 これらを B a 1 I及び N c o Iで消化 することにより調製したプラスミ ド h ATR 5 H v a / C V I D E C (B a 1 I ZN C O I ) に導入し、 塩基配列を決定した。
正しい配列を有するプラスミ ドを h ATR 5 H v i /C V I D E C及び h ATR 5 H v j /C V I D E Cと命名した。 プラスミ ド h A T R 5 H V i ZCV I D E Cに含まれるヒ ト型化 H鎖バージ ョ ン
" i " の塩基配列及び対応するア ミ ノ酸配列ならびにバー ジ ョ ン "
1 " ア ミ ノ酸配列を配列番号 5 8及び 5 9に示す。 また、 プラス ミ ド h ATR 5 H v j / C V I D E Cに含まれるヒ ト型化 H鎖バ一 ジ ヨ ン " j " の塩基配列及び対応するアミ ノ酸配列ならびにバ一ジョ ン " j " のァミ ノ酸配列を配列番号 6 0及び 6 1 に示す。
( V i i ) ヒ ト型化 H鎖バージ ョ ン " b 1 " 及び " d 1 " の構築 バー ジ ョ ン " b 1 " 及び " d 1 " は F R— シ ャ ツ フ リ ング法によ つてバージ ョ ン " b " 及び " d " の F R 2を別のヒ ト抗体由来の F R 2に置換し作製した。 ヒ ト抗体 P01742 (SWISS-PROT. Cunningham BA.ら, Biochemistry, 9, 3161-3170, 1970) 由来のものに置換す るため、 F R 2をコー ドする DNAプライマ一を 2個作製した。 F R—シャ ッ フ リ ングベクター F 2 M P S (配列番号 6 2 ) はセンス D N A配列を有し、 F 2 M P A (配列番号 6 3 ) はアンチセンス D NA配列を有する。 また、 互いに相補的な配列を有し、 両端には E c o T 2 2 I及び B a 1 Iの認識配列を有する。
F 2 MP S、 F 2 MP Aは Pharmacia Biotechにより合成及び精 製された。 F 2 MP Sと F 2 MP Aをァ二一ルさせ、 E c o T 2 2 I及び B a 1 Iで消ィ匕した。 これを E c o T 2 2 I及び B a 1 Iで 消化することにより調製したプラスミ ド h ATR 5 H v bZC V I D E C ( E c o T 2 2 I / B a 1 I ) 及び h ATR 5 H v dZC V I D E C ( E c o T 2 2 I / B a 1 I ) に導入し、 塩基配列を決定 した。 正しい配列を有するプラスミ ドを h ATR 5 H v b l /C V I D E C及び h ATR 5 H v d 1 / C V I D E Cと命名した。 ブラ ス ミ ド h ATR 5 H v b 1 / C V I D E Cに含まれるヒ ト型化 H鎖 バージョ ン "b 1 " の塩基配列及び対応するア ミ ノ酸配列ならびに バージョ ン " b 1 " アミ ノ酸配列を配列番号 6 4及び 6 5に示す。 また、 プラスミ ド h ATR 5 H v d l /C V I D E Cに含まれるヒ ト型化 H鎖バージ ョ ン " d 1 " の塩基配列及び対応するア ミ ノ酸配 列ならびにバージ ョ ン " d 1 " のアミ ノ酸配列を配列番号 6 6及び 6 7に示す。
( V i i i ) ヒ ト型化 H鎖バージ ョ ン " b 3 " 及び " d 3 " の構 築
ノく一ジョ ン " b 3 " 及び " d 3 " は F R—シャ ツフ リ ング法によ つてバ一ジ ョ ン " b " 及び " d " の F R 2を別のヒ ト抗体由来の F R 2に置換し作製した。 ヒ ト抗体 Z80844 (DDBJ、 Thomsett AR.ら, unpublished)由来の F R 2に置換するため、 F R 2をコー ドする D NAプライマ一を 2個作製した。 F R— シ ャ ツ フ リ ングベク タ一 F 2 V H S (配列番号 6 8 ) はセ ンス D N A配列を有し、 F 2 V H A
(配列番号 6 9 ) はア ンチセ ンス D N A配列を有する。 また、 互い に相補的な配列を有し、 両端には E c 0 T 2 2 I及び B a l lの認 識配列を有する。 F 2 VH S、 F 2 V H Aは Pharmacia Biotechに 合成、 精製を委託した。
F 2 VH Sと F 2 VHAをァニールさせ、 E c o T 2 2 I及び B a 1 Iで消化した。 これを E c 0 T 2 2 I及び B a 1 Iで消化する こ とにより調製したブラス ミ ド h ATR 5 H v bZC V I D E C ( E c 0 T 2 2 I / B a 1 I ) 及び h ATR 5 H v d/C V I D E C
(E c o T 2 2 I /B a l I ) に導入し、 塩基配列を決定した。 正 しい配列を有するプラス ミ ドを h ATR 5 H v b 3 / C V I D E C 及び h ATR 5 H v d 3 /C V I D E Cと命名 した。 プラス ミ ド h A T R 5 H V b 3 ZC V I D E Cに含まれる ヒ ト型化 H鎖バージ ョ ン "b 3 " の塩基配列及び対応するア ミ ノ酸配列ならびにバージョ ン " b 3 " ア ミ ノ酸配列を配列番号 7 0及び 7 1 に示す。 また、 プ ラス ミ ド h ATR 5 H v d 3 / C V I D E Cに含まれる ヒ ト型化 H 鎖バージ ョ ン "d 3 " の塩基配列及び対応するア ミ ノ酸配列ならび にバージ ョ ン " d 3 " のア ミ ノ酸配列を配列番号 7 2及び 7 3に示 す。
( 2 ) ヒ ト型化抗体 L鎖 V領域の構築
( i ) ノく一 ジ ョ ン" a "
ヒ ト型化 A T R 5抗体 L鎖を、 P C R法による C DR—グラフテ ィ ングにより作製した。 ヒ ト抗体 Z37332 (DDBJ、 Welschof Mら, J. Immunol. Methods, 179, 203-214, 1995)由来のフ レームワーク領域 を有する ヒ ト型化抗体 L鎖 (バージ ョ ン" a " ) の作製のために 7 本の P C Rプライマ一を使用 した。
C D R—グラフティ ングプライマ一 h 5 L V 1 S (配列番号 7 4 ) 及び h 5 L V 4 S (配列番号 7' 5 ) はセンス D N A配列を、 C D Rグラフティ ングプライマ一 h 5 L v 2 A (配列番号 7 6 ) 、 h 5 L V 3 A (配列番号 7 7 ) 及び h 5 L V 5 A (配列番号 7 8 ) はァ ンチセンス D N A配列を有し、 各プライマ一の両端に 2 0 b pの相 補的配列を有する。 外部プライマ一 h 5 L v S (配列番号 7 9 ) 及 び h 5 L V A (配列番号 8 0 ) は C D Rグラフティ ングプライマー h 5 L V 1 S及び h 5 L v 5 Aとホモロジ一を有する。 C D R—グ ラフティ ングプライマ一 h 5 L v l S、 h 5 L v 4 S、 h 5 L v 2 A、 h 5 L v 3 A、 h 5 L v 5 A、 h 5 L v S及び h 5 L v Aは P harmacia Biotechに合成、 精製を委託した。
P C R溶液は、 1 0 0 〃 1 中に 1 2 00 ?^ T r i s — H C 1 ( p H 8. 0 ) 、 1 0 mM K C 1、 6 mM (N H 4 ) 2 S 04 、 0. 1 % T r i t o n X— 1 0 0、 0. 0 0 1 % B S A、 0 . 2 mM d N T P s ( d A T P , d G T P , d C T P, d T T P ) 、 1 mM M g C 1 2 . 2. 5ユニッ トの K O D D N Aポリ メ ラ一ゼ (東洋紡績) 、 5 p m o l eの C D Rグラフティ ングプライ マー h 5 L v l S、 h 5 L V 2 A , h 5 L v 3 A、 h 5 L v 4 S、 及び h 5 L v 5 Aを含有する。
P C Rは D NA Thermal Cycler 480 (Perkin- Elmer) を用い、
9 4 °Cにて 3 0秒間、 5 0でにて 1分間、 7 2 °Cにて 1分間の温度 サイ クルを 5回行う ことにより、 5本の C D Rグラフティ ングブラ イマ一をアセンブルした。 この反応混合液に 1 0 0 p m o 1 eの外 部プライマー h 5 L v S及び h 5 L v Aを加え、 9 4 °Cにて 3 0秒 間、 5 2 °Cにて 1分間、 7 2 °Cにて 1分間の温度サイ クルを 3 0 回 行う ことにより、 アセンブルした D N A断片を増幅した。
P C R反応混合液を 3 % NuSieve GTGァガロース(FMC BioProduc ts) を用いたァガロースゲル電気泳動により分離し、 約 4 0 0 b p 長の D N A断片を含有するァガ口一ス片を切り出した。 ァガロース 片をフヱノ一ル及びク口口ホルムで抽出し、 D N A断片をエタノ一 ル沈殿により回収した。 回収した D N A断片を制限酵素 S p 1 I ( 宝酒造) 及び B g 1 II (宝酒造) により 3 7 °Cで 4時間消化した。 この消化混合物をフヱノ一ル及びク口口ホルムで抽出し、 D N A断 片をェタノールで沈殿させた後、 T E 1 0 〃 1 に溶解した。 上記の ようにして調製したヒ ト型化抗体 L鎖 V領域をコ一 ドする遺伝子を 含む S p 1 I — B g 1 II D N A断片と S p 1 I及び B g 1 IIで消 化することにより調製した C V I D E Cベクターを D NAライゲー シヨ ンキッ ト v e r . 2 (宝酒造) を用い、 添付の処方に従い 1 6 でで 1 時間反応させ連結した。
この連結混合物を大腸菌 J M l 0 9 コンビテン ト細胞 (二ツボン ジーン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 ¾にて 1分間静 置した。 次いで 3 0 0 〃 1 の Hi- Competence Broth (二ツボンジーン
) を加え 3 7 °Cにて 1 時間イ ンキュベー ト した後、 L B A寒天培地 上にこの大腸菌をまき、 3 7 °Cにて一夜ィ ンキュベ一 ト して大腸菌 形質転換体を得た。 この形質転換体を L B A培地 3 m 1 で 3 7。Cに て一夜培養し、 菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミ ド D N Aを調製した。
プラスミ ド中の c D N Aコー ド領域の塩基配列を Dye Terminator
Cycle Sequencing FS Ready Reaction Ki t(Perkin-Elmer; を用い
、 DNA Sequencer 373A (Perkin- Elmer) により決定した。 配列決定 用プライマーと して M 1 3 P r i m e r M 4 (宝酒造) 及び M
1 3 P r i m e r R V (ま酒造) を用い、 両方向の塩基配列を 確認することにより配列を決定した。 このヒ ト型化抗体 L鎖 V領-域 をコー ドする遺伝子を含有し、 5 ' —側に B g 1 II認識配列及び K 0 z a k配列、 3 ' —側に S 1 I認識配列を持つプラスミ ドを h A T R 5 L V a ZC V I D E Cと命名した。 ヒ ト型化 L鎖バー ジ ョ ン" a " の塩基配列 (対応するア ミ ノ酸を含む) を配列番号 8 1 に 示す。 また、 バー ジ ョ ン " a " のァ ミ ノ酸配列を配列番号 8 2 に示 す。
( i i ) ノく ージ ョ ン " b " 及び " c "
ノく 一ジ ョ ン " b,, 及び " c,, を、 ノ ージ ョ ン " a " の F R 3を置 換 ( F R _シ ャ ッ フ リ ング) することにより作製した。 バー ジ ョ ン " b " にはヒ ト抗体 S68699 (DDBJ、 Hougs L ら, Exp. Clin. Immunog en et. , 10, 141-151, 1993)由来の F R 3を、 ノ《一ジ ョ ン " c,, に はヒ ト抗体 P01607 (SWISS- PR0T、 Epp 0 ら, Biochemistry, 14, 49 43-4952, 1975)由来の F R 3をそれぞれ使用 した。
ノく 一ジ ョ ン " b " の F R 3をコー ドするプライマ一 F 3 S S (配 列番号 8 3 ) と F 3 S A (配列番号 8 4 ) 、 あるいはバージ ョ ン " c " の F R 3をコー ドするプライマー F 3 R S (配列番号 8 5 ) と F 3 R A (配列番号 8 6 ) は互いに相補的な配列を有し、 両端に制 限酵素 K p n I及び P s t I の認識配列を有する。 F 3 S S、 F 3 S A、 F 3 R S、 F 3 R Aは Pharmacia Bio techに合成、 精製を委 託した。 各 1 0 O p m o 1 eの F 3 S S と F 3 S A、 あるいは F 3 R Sと F 3 R Aを 9 6 °Cにて 2分間、 5 0 °Cにて 2分間処理するこ とによりアニーリ ングさせ、 2本鎖 D N A断片を作製した。
これら 2本鎖 D N A断片を制限酵素 K p n I (宝酒造) により 3 7でで 1 時間消化し、 次いで制限酵素 P s t I (宝酒造) により 3 7でで 1 時間消化した。 消化混合物をフヱノ一ル及びク口口ホルム で抽出し、 D N A断片をエタノールで沈殿させた後、 T Eに溶解し プラスミ ド h A T R 5 L v a ZC V I D E Cを制限酵素 K p n I (宝酒造) により 3 7 °Cで 1 時間消化し、 次いで制限酵素 P s t I (宝酒造) により 3 7 °Cで 1 時間消化した。 消化混合物を 1 . 5 % NuSieve GTGァガロース(FMC BioProducts) を用いたァガロースゲ ル電気泳動により分離し、 約 3 0 0 0 b p長の D N A断片を含有す るァガロース片を切り出した。 ァガロース片をフヱノール及びクロ 口ホルムで抽出し、 D N A断片をエタノールで沈殿させた後、 T E に溶解した。
上記のようにして調製したバージョ ン " b " あるいは " c " の F R 3をコー ドする K p n l — P s t l D N A断片と K p n I及び P s t I で消化することにより F R 3を除去した h A T R 5 L v a /C V I D E Cベクタ一を D NAライゲ一シヨ ンキッ ト v e r . 2 (宝酒造) を用い、 添付の処方に従い 1 6 °Cで 1 時間反応させ連結 した。
この連結混合物を大腸菌 J M 1 0 9 コンビテン ト細胞 (二ツボン ジーン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静 置した。 次いで 3 0 0 a 1 の Hi- Competence Br o th (二ツボンジーン ) を加え 3 7 °Cにて 1 時間イ ンキュベー ト した後、 L B A寒天培地 上にこの大腸菌をまき、 3 7 °Cにて一夜イ ンキュベー ト して大腸菌 形質転換体を得た。 この形質転換体を L B A培地 3 m 1 で 3 7 °Cに て一夜培養し、 菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミ ド D N Aを調製した。
プラスミ ド中の c D N Aコー ド領域の塩基配列を Dye Terminator Cycle Sequencing FS Ready Reaction Ki t(Perkin-Elmer) を用い 、 DNA Sequencer 373A (Perk i n-E lmer) により決定した。 配列決定 用プライマーと して M13 Primer M4(宝酒造) 及び Ml 3 Primer RV (宝 酒造) を用い、 両方向の塩基配列を確認することにより配列を決定 した o
これらヒ ト型化抗体 L鎖バー ジ ョ ン " a " の F R 3を置換したバ 一ジ ョ ン " b " あるいはバージ ョ ン " c " をコー ドする遺伝子を含 有するプラス ミ ドをそれぞれh A T R 5 L v b C V I D E C、 h A T R 5 L v c ZC V I D E Cと命名した。 プラスミ ド h A T R 5 し 1)ノ( 1 0 £〇に含まれるヒ ト型化1^鎖バ一ジョ ン " b " の 塩基配列及び対応するア ミ ノ酸配列ならびにバージ ョ ン "b " ア ミ ノ酸配列を配列番号 8 7および 8 8 に示す。 また、 プラスミ ド h A T R 5 L v c ZC V I D E Cに含まれるヒ ト型化 L鎖バー ジ ョ ン " c " の塩基配列及び対応するア ミ ノ酸配列およびバ一ジ ョ ン " c " のァ ミ ノ酸配列を配列番号 8 9および 9 0 に示す。
( i i i ) ノく ージ ョ ン " b 1,, 及び " b 2,,
ノく 一ジ ョ ン " b 1,, 及び " b 2,, を、 バージ ョ ン " b,, の F R 2 を置換することにより作製した。 バ一ジョ ン " b 1 " にはヒ ト抗体 S65921 (DDBJ、 Tonge DWら, Year Immunol. , 7, 56-62, 1993)由来 の F R 2を、 ノく ージ ョ ン " b 2 " にはヒ ト抗体 X93625 (DDBJ、 Cox JPら, Eur. J. Immunol., 24, 827-836, 1994)由来の F R 2をそれぞ れ使用した。
バージ ョ ン " b l " の F R 2をコー ドするプライ マ一 F 2 S S ( 配列番号 9 1 ) と F 2 S A (配列番号 9 2 ) 、 あるいはバー ジ ョ ン
" b 2 " の F R 2をコー ドするプライマー F 2 X S (配列番号 9 3
) と F 2 X A (配列番号 9 4 ) は互いに相補的な配列を有し、 両端 に制限酵素 A f 1 II及び S p e I の認識配列を有する。 F 2 S S、
F 2 S A、 F 2 X S及び F 2 X Aは Pharmacia Biotechにより合成 された。 各 1 0 O p m o 1 eの F 2 S Sと F 2 S A、 あるいは F 2
X Sと F 2 X Aを 9 6 °Cにて 2分間、 5 0 °Cにて 2分間処理するこ とによりアニーリ ングさせ、 2本鎖 DNA断片を作製した。
これら 2本鎖 D N A断片を制限酵素 A f i II (宝酒造) 及び S p e I (宝酒造) により 3 7 °Cで 1時間消化した。 消化混合物をフェ ノ一ル及びク口口ホルムで抽出し、 D N A断片をエタノ一ルで沈殿 させた後、 T Eに溶解した。
プラスミ ド h ATR S L v bZC V I D E Cを制限酵素 A ί ί \\ (宝酒造) 及び S p e I (宝酒造) により 3 7 °Cで 1時間消化した 。 消化混合物を 1. 5 % NuSieve GTGァガロース(FMC BioProducts ) を用いたァガロースゲル電気泳動により分離し、 約 3 0 0 0 b p 長の DNA断片を含有するァガ口一ス片を切り出した。 ァガロース 片をフヱノール及びクロロホルムで抽出し、 D N A断片をエタノ― ルで沈殿させた後、 T Eに溶解した。
上記のようにして調製したバージ ョ ン " b 1 " あるいは " b 2 " の F R 2をコー ドする A f ^ II— S p e l D N A断片と A f i 11 及び S p e Iで消化することにより F R 2を除去した h A T R 5 L v b/C V I D E Cベクターを DNAライゲーシヨ ンキッ ト v e r . 2 (宝酒造) を用い、 添付の処方に従い 1 6 °Cで 1時間反応させ しフ"《
この連結混合物を大腸菌 J M l 0 9 コンビテ ン ト細胞 (二ツボン ジー ン) 1 0 0 /Z 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静 置した。 次いで 3 0 0 1の Hi- Competence Broth (二ッポンジー ン ) を加え 3 7 °Cにて 1時間イ ンキュベー ト した後、 L B A寒天培地 上にこの大腸菌をまき、 3 7 °Cにて一夜イ ンキュベー ト して大腸菌 形質転換体を得た。 この形質転換体を L B A培地 4 m 1で 3 7 °Cに て一夜培養し、 菌体画分から QIAprep Spin Plasmid Kit (QIAGEN) を用いてプラスミ ド DNAを調製した。
プラスミ ド中の c D N Aコー ド領域の塩基配列を Dye Terminator Cycle Sequencing FS Ready Reaction Ki t(Perkin-Elmer) を用い 、 DNA Sequencer 373A (Perkin-Elmer) により決定した。 配列決定 用プライマーと して M13 Primer M4(宝酒造) 及び M13 Primer RV (宝 酒造) を用い、 両方向の塩基配列を確認するこ とにより配列を決定 し /<— o
これらヒ ト型化抗体 L鎖バージ ョ ン " b " の F R 2を置換したバ — ジ ョ ン " b 1 " あるいはバー ジ ョ ン " b 2 " をコー ドする遺伝子 を含有するプラス ミ ドをそれぞれ h ATR 5 L v b 1 / C V I D E C及び h ATR 5 L v b 2 /C V I D E Cと命名 した。 プラス ミ ド h A T R 5 L v b 1 / C V I D E Cに含まれる ヒ ト型化 L鎖バ一ジ ヨ ン "b l " の塩基配列及び対応するア ミ ノ酸配列及びバージ ョ ン
" b 1 " ァ ミ ノ酸配列を配列番号 9 5及び 9 6に示す。 また、 ブラ ス ミ ド h ATR 5 L v b 2 / C V I D E Cに含まれる ヒ ト型化 L鎖 バ一ジ ョ ン "b 2 " の塩基配列及び対応するア ミ ノ酸配列及びバー ジ ョ ン " b 2 " のァ ミ ノ酸配列を配列番号 9 7及び 9 8に示す。
( 3 ) ヒ ト型化抗体の発現ベク ターの構築
( i ) ヒ ト型化 H鎖とキメ ラ L鎖との組合せ
H鎖 V領域を含むプラ ス ミ ド h ATR 5 H v a / C V I D E Cを N h e I及び S a 1 Iで消化し、 ヒ ト型化 H鎖 V領域の c D N A断 片を回収し、 c h A T R— 5抗体発現プラス ミ ドベク ター、 c h A TR 5 ZN 5 KG 4 Pを N h e I及び S a 1 I にて消化することに より調製した c h ATR 5 /N 5 KG 4 P (S a l I /N h e l ) に導入した。 こ う して作製したプラス ミ ドを h H v a— c h L vZ N 5 KG 4 Pと命名した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v bZC V I D E Cを N h e I及び S a 1 Iで消化し、 ヒ ト型化 H鎖 V領域の c D N A断 片を回収し、 c h A T R— 5抗体発現プラス ミ ドベク タ一、 c h A TR 5 ZN 5 KG 4 Pを N h e I及び S a 1 I にて消化することに より調製した c h ATR 5 /N 5 KG 4 P (S a l I /N h e I ) に導入した。 こ う して作製したプラス ミ ドを h H v b— c h L vZ N 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v c / C V I D E C. h ATR 5 H v dZC V I D E C及び h ATR 5 H v eZC V I D E Cを N h e I及び S a l Iで消化し、 ヒ ト型化 H鎖 V領域の c D NA断片を回収し、 c h A T R— 5抗体発現プラス ミ ドベクター、 c h ATR 5 /N 5 KG 4 Pを N h e I及び S a 1 I にて消化する ことにより調製した c h ATR 5 /N 5 KG 4 P (S a l I /N h e I ) に導入した。 こ う して作製したプラス ミ ドを h H v c— c h L vZN 5 KG 4 P、 h H v d— c h L v/N 5 KG 4 P及び h H v e - c h L v/N 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v f / C V I D E C及 び h ATR 5 H v hZC V I D E Cを N h e I及び S a 1 Iで消化 し、 ヒ ト型化 H鎖 V領域の c D N A断片を回収し、 c h ATR— 5 抗体発現プラス ミ ドベクター、 c h A T R 5 ZN 5 K G 4 Pを N h e I及び S a 1 I にて消化することにより調製した c h ATR 5 Z N 5 KG 4 P (S a l I /N h e l ) に導入した。 こ う して作製し たプラス ミ ドを h H v f _ c h L v/N 5 KG 4 P及び h H v h— c h L v/N 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v i ZC V I D E C及 び h ATR 5 H v j ZC V I D E Cを N h e I及び S a 1 Iで消化 し、 ヒ ト型化 H鎖 V領域の c D N A断片を回収し、 c h ATR— 5 抗体発現プラス ミ ドベクター、 c h A T R 5 ZN 5 K G 4 Pを N h e I及び S a 1 I にて消化するこ とにより調製した c h AT R 5 Z N 5 K G 4 P (S a l I /N h e I ) に導入した。 こ う して作製し たプラス ミ ドを h H v i - c h L v/N 5 KG 4 P及び h H v j - c h L v/N 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v b 1 / C V I D E C 及び h ATR 5 H v d 1 ZC V I D E Cを N h e I及び S a 1 Iで 消化し、 ヒ ト型化 H鎖 V領域の c D N A断片を回収し、 c h ATR _ 5抗体発現プラス ミ ドベクター、 c h A T R 5 ZN 5 K G 4 Pを N h e I及び S a 1 I にて消化することにより調製した c h ATR 5 /N 5 KG 4 P (S a l I /N h e I ) に導入した。 こ う して作 製したプラス ミ ドを h H v b 1 — c h L v/N 5 KG 4 P及び h H v d l — c h L v/N 5 KG 4 Pと命名した。
( i i ) ヒ ト型化 L鎖とキメ ラ H鎖との組み合わせ
抗体発現ベク ター N 5 KG 4 Pを用いて、 キメ ラ H鎖との組み合 わせでヒ ト型化抗体を発現させることにより、 ヒ ト型化 L鎖の評価 を ί亍つた。
プラス ミ ド h ATR 5 L v a/C V I D E C、 h ATR 5 L v b /C V I D E C、 h ATR 5 L v c/C V I D E C、 h A T R 5 L v b 1 / C V I D E C. hATR 5 L v b 2 / C V I D E Cを制限 酵素 B g 1 II (宝酒造) 及び S p 1 I (宝酒造) により 3 7 °Cで 2 〜 3時間消化した。 消化混合物を 1. 5 %または 2 % NuSieve GTG ァガロース(FMC BioProducts) を用いたァガロースゲル電気泳動に より分離し、 約 4 0 0 b p長の DNA断片を含有するァガ口一ス片 を切り出した。 ァガロース片をフ ヱノ ール及びク ロ口ホルムで抽出 し、 D N A断片をエタノールで沈殿させた後、 T Eに溶解した。 これら各バ一ジ ョ ンのヒ ト型化 L鎖 V領域をコ一 ドする遺伝子を 含む S p i I - B 1 II DNA断片と S p 1 I及び B g 1 11で消 ィ匕した c h ATR 5 H vZN 5 KG 4 Pを DNAライゲーシヨ ンキ ッ ト v e r . 2 (宝酒造) を用い、 添付の処方に従い 1 6でで 1時 間反応させ連結した。
連結混合物を大腸菌 J M l 0 9 コ ンビテン ト細胞 (ニッボンジー ン) 1 0 0 〃 1 に加え、 氷上で 3 0分間、 4 2 °Cにて 1分間静置し た。 次いで 3 0 0 1の Hi- Competence Broth (二ツボンジーン) を 加え 3 7 °Cにて 1時間イ ンキュベー ト した後、 L B A寒天培地上に この大腸菌をまき、 3 7 °Cにて一夜イ ンキュベー ト して大腸菌形質 転換体を得た。
この形質転換体を L B A培地 2 5 O m l または 5 0 O m lで 3 7 °Cにて一夜培養し、 菌体画分から Plasmid Maxi Kit (QIAGEN) を用 いてプラスミ ド DNAを調製した。 これらキメ ラ H鎖とヒ ト型化 L 鎖をコー ドする遺伝子を導入したプラスミ ドをそれぞれ c h H v— h L v a/N 5 KG 4 P. c h H v— h L v b / N 5 K G 4 P、 c h H v - h L v c/N 5 KG 4 P. c h H v - h L v b 1 /N 5 K G 4 P及び c h H v - h L v b 2 /N 5 K G 4 Pと命名した。
( i i i ) ヒ ト型化 H鎖とヒ ト型化 L鎖の組合せ
H鎖 V領域を含むプラスミ ド h ATR 5 H v a / C V I D E Cを N h e I及び S a 1 Iで消化し、 ヒ ト型化 H鎖 V領域の c D NA断 片を回収し、 ヒ ト型化 ATR— 5抗体 L鎖バ一ジ ョ ン " a" c DN Aの配列を含むプラスミ ド c h H V - h L V a /N 5 KG 4 Pを N h e I及び S a 1 I にて消化することにより調製した h L v aZN 5 K G 4 P (S a l I /N h e I ) に導入した。 こう して作製した プラスミ ドを h H v a— h L v aZN 5 KG 4 Pと命名した。
H鎖 V領域を含むプラスミ ド h ATR 5 H v bZC V I D E C及 び h ATR 5 H v c/C V I D E Cを N h e I及び S a 1 Iで消化 し、 ヒ ト型化 H鎖 V領域の c DN A断片を回収し、 ヒ ト型化 ATR 一 5抗体 L鎖バージ ョ ン " a " c D N Aの配列を含むプラスミ ド c h H v— h L v aZN 5 KG 4 Pを N h e I及び S a 1 I にて消化 することにより調製した h L v a/N 5 KG 4 P (S a l I / N h e I ) に導入した。 こう して作製したプラスミ ドを h H v b— h L v a /N 5 K G 4 P及び h H v c - h L v a/N 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラ スミ ド h ATR S H v bZC V I D E C. h ATR 5 H v dZCV I D E C及び h ATR 5 H v e ZC V I D E Cを N h e I及び S a 1 Iで消化し、 ヒ ト型化 H鎖 V領域の c D N A断片を回収し、 ヒ ト型化 A TR— 5抗体 L鎖バージ ョ ン "b" c DNAの配列を含むプラスミ ド c h H v _ h L v bZN 5 KG 4 Pを N h e I及び S a 1 I にて消化することにより調製した h L v b/N 5 KG 4 P (S a l I /N h e l ) に導入した。 こう して作 製したプラスミ ドを h H v b— h L v bZN 5 KG 4 P、 h H v d - h L v b/N 5 KG 4 P及び h H v e - h L v b/N 5 KG 4 P と命名した。
H鎖 V領域を含むプラスミ ド h ATR 5 H v f ZC V I D E C. h ATR 5 H v g/C V I D E C及び h ATR 5 H v h/C V I D E Cを N h e I及び S a l Iで消化し、 ヒ ト型化 H鎖 V領域の c D N A断片を回収し、 ヒ ト型化 A T R - 5抗体 L鎖バージ ョ ン " b " c DNAの配列を含むプラスミ ド c h H v— h L v b/N 5 KG 4 Pを N h e I及び S a 1 I にて消化することにより調製した h L v bZN 5 KG 4 P (S a l I /N h e l ) に導入した。 こう して作 製したプラスミ ドを h H v f — h L v bZN 5 KG 4 P、 h H v g - h L v b/N 5 KG 4 P及び h H v h— h L v bZN 5 KG 4 P と命名した。
H鎖 V領域を含むプラ スミ ド h ATR 5 H v i ZC V I D E C及 び h ATR 5 H v j ZC V I D E Cを N h e I及び S a 1 Iで消化 し、 ヒ ト型化 H鎖 V領域の c D N A断片を回収し、 ヒ ト型化 ATR — 5抗体 L鎖バージ ョ ン " b " c D N Aの配列を含むプラス ミ ド c h H v— h L v b/N 5 KG 4 Pを N h e I及び S a I I にて消化 することにより調製した h L v bZN 5 KG 4 P (S a l I /N h e l ) に導入した。 こ う して作製したプラス ミ ドを h H v i — h L v b/N 5 KG 4 P及び h H v j - h L v b/N 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v b 1 ZC V I D E C 及び h ATR 5 H v d l ZC V I D E Cを N h e I及び S a 1 Iで 消化し、 ヒ ト型化 H鎖 V領域の c DN A断片を回収し、 ヒ ト型化 A T R _ 5抗体 L鎖バージ ョ ン " b " c D N Aの配列を含むプラス ミ ド c h H v— h L v bZN S KG A Pを N h e I及び S a 1 I にて 消化するこ とにより調製した h L v b/N 5 KG 4 P (S a l I / N h e I ) に導入した。 こ う して作製したプラス ミ ドを h H v b l - h L v b /N 5 KG 4 P及び h H v d 1 - h L v b/N 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v b 3 C V I D E C 及び h ATR 5 H v d 3 /C V I D E Cを N h e I及び S a 1 Iで 消化し、 ヒ ト型化 H鎖 V領域の c DN A断片を回収し、 ヒ ト型化 A T R— 5抗体 L鎖バージ ョ ン " b " c D N Aの配列を含むプラス ミ ド c h H v— h L v b//N 5 KG 4 Pを N h e I及び S a 1 I にて 消化することにより調製した h L v bZN 5 KG 4 P (S a l I / N h e I ) に導入した。 こ う して作製したプラス ミ ドを h H v b 3 — h L v bZN 5 KG 4 P及び h H v d 3— h L v bZN 5 KG 4 Pと命名 した。
H鎖 V領域を含むプラス ミ ド h ATR 5 H v b/C V I D E Cを N h e I及び S a 1 Iで消化し、 ヒ ト型化 H鎖 V領域の c D N A断 片を回収し、 ヒ ト型化 A T R - 5抗体 L鎖バージ ョ ン " b 1 " 及び " b 2 " c DNAの配列を含むプラスミ ド c h H v— h L v b l / N 5 KG 4 P及び c h H v _ h L v b 2 ZN 5 KG 4 Pを N h e I 及び S a l I にて消化することにより調製した h L v b l ZN 5 K G 4 P (S a l i ZN h e l ) 及び h L v b 2 ZN 5 KG 4 P ( S a 1 i ZN h e I ) に導入した。 こう して作製したプラスミ ドを h H v b - h L v b 1 ZN 5 KG 4 P及び h H v b— h L v b 2 ZN 5 KG 4 Pと命名した。
H鎖 V領域を含むプラスミ ド h ATR 5 H v i ZC V I D E Cを N h e I及び S a 1 Iで消化し、 ヒ ト型化 H鎖 V領域の c D N A断 片を回収し、 ヒ ト型化 A T R - 5抗体 L鎖バー ジ ョ ン " b 1 " 及び
" b 2 " c DNAの配列を含むプラスミ ド c h H v— h L v b l N 5 KG 4 P及び c h H v— h L v b 2 ZN 5 KG 4 Pを N h e I 及び S a l I にて消化することにより調製した h L v b l ZN 5 K G 4 P (S a l I ZN h e I ) 及びh L v b 2 /N 5 KG 4 P ( S a 1 I ZN h e I ) に導入した。 こう して作製したプラスミ ドを h H v i — h L v b l /N 5 KG 4 P及び h H v i — h L v b 2 ZN 5 KG 4 Pと命名した。
( 4 ) C O S— 7細胞への ト ラ ンスフ ヱ ク シ ヨ ン
ヒ ト型化抗体の抗原結合活性及び中和活性を評価するため、 前記 発現プラスミ ドを C O S— 7細胞で一過性に発現させた。
構築した発現プラスミ ドベクタ一を G e n e P u 1 s e r装置
( B i o - R a d ) を用いてエレク トロポレーシヨ ンにより C O S
- 7細胞に形質導入した。 P B S中に 1 X 1 07 細胞/ m 1の細胞 濃度で懸濁されている C O S— 7細胞 0. 7 8 m l に、 プラスミ ド
5 0 〃 £ぁるぃは 2 0 〃 を加ぇ、 1, 5 0 0 V, 2 5 〃 Fの静電 容量にてパルスを与えた。
室温にて 1 0分間の回復期間の後、 エレク トロポレーショ ン処理 された細胞を 5 %の Ultra Low I gGゥ シ胎児血清(G I BC0) を含有す る D M E M培地(GIBCO) に懸濁し、 1 0 c m培養皿あるいは 1 5 c m培養皿を用いて C 02 イ ンキュベータ一にて培養した。 2 4時間 の培養の後、 培養上清を吸引除去し、 新たに無血清培地 H B C H 0 (ァーバイ ンサイエンティ フィ ッ ク) を加えた。 さ らに 7 2時間も しく は 9 6時間の培養の後、 培養上清を集め、 遠心分離により細胞 破片を除去した。
( 5 ) 抗体の精製
C O S— 7細胞の培養上清からの抗体の精製を Affi Gel Protein A MAPSIIキッ 卜(Bio— Rad) 、 あるいは rProtein A Sepharose Fast Flow(Pharmacia Biotech) を用いて行った。 Aff iGel Protein A MA PSIIキッ トを用いた精製はキッ ト添付の処方に従って行った。 rPro tein A Sepharose Fast Fl owを用いた精製は以下のように行った。
1 m 1 の rProtein A Sepharose Fas t Flowをカラムに充塡し、 1 0倍量の T B Sを流すことによってカラムを平衡化した。 平衡化し たカラムに C O S— 7細胞の培養上清をアプライ した後、 1 0倍量 の T B Sによってカラムを洗浄した。 次に 1 3. 5 m l の 2. 5 m M H C 1 ( p H 3. 0 ) を流すことによって吸着した抗体画分を カラムより溶出した。 1. 5 m l の 1 M T r i s — H C 1 ( p H 8. 0 ) を加えることによって溶出液を中和した。
精製された抗体画分について、 セン ト リブレップ 3 0 も しく は 1 0 0 ( a m i c o n ) を用いた限外濾過を 2〜 3回行うことにより 、 T B Sに溶媒を置換し、 最終的に約 1. 5 m l まで濃縮した。
参考例 6. 抗体の定量及び活性評価
( 1 ) E L I S Aによる抗体濃度の測定
抗体濃度測定のための E L I S Aプレー トを次のようにして調製 した。 E L I S A用 9 6穴プレー ト (Maxisorp, NUNC) の各穴を固 相化ノくッフ ァー ( 0. 1 M N a H C 03 0. 0 2 % N a N 3 、 p H 9. 6 ) (以下、 C Bと称す) で 1 z gZm l の濃度に調製 したャギ抗ヒ ト I g G ァ抗体 (B i o S o u r c e ) 1 0 0 〃 1 で 固相化し、 2 0 0 n 1 の希釈バッ フ ァー ( 5 O mM T r i s - H C l 、 l mM M g C l 2 、 0. 1 M N a C 0. 0 5 % T w e e n 2 0、 0. 0 2 % N a N 3 、 1 % ゥシ血清アルブミ ン
( B S A) 、 p H 8. 1 ) (以下 D Bと称す) でブロ ッキングの後 、 抗体を発現させた C 0 S— 7細胞の培養上清あるいは精製抗体を D Bにて段階希釈して各穴に加えた。
1 時間室温にてイ ンキュベー ト し 0. 0 5 % Tw e e n 2 0を含 むダルベッ コ P B S (以下 R Bと称す) で洗浄後、 D Bで 1 0 0 0 倍に希釈したアルカ リ フォスフ ァターゼ結合ャギ抗ヒ ト I g G ァ抗 体(BioSource) 1 0 0 〃 1 を加えた。 1 時間室温にてイ ンキュベー 卜 し R Bで洗浄の後、 l m gZm l となるように S i g m a 1 0 4
( p —ニ ト ロフ ヱニルリ ン酸、 S I G MA) を基質バッ フ ァー ( 5 O mM N a H C O 3 、 1 0 mM M g C l 2 、 p H 9. 8 ) に溶 解したもの (以下、 基質溶液と称す) を加え、 4 0 5 Z 6 5 5 n m での吸光度を mi crop late reader (Bio Rad) で測定した。 濃度測定 のスタ ンダ一 ドと して I g G 4 κ (The Binding Site) を用いた。
( ) 抗原結合能の測定
抗原結合測定のための C e l l E L I S Aプレー トは、 次のよ うにして調製した。 細胞はヒ ト膀胱癌細胞 J 8 2 (A T C C H T B— 1 ) を用いた。 細胞培養用 9 6穴プレー トの 6 0穴に 1 X 1 0 5 個の J 8 2細胞を播き込んだ。 これを C 02 イ ンキュベータ一で 1 日培養し ( 1 0 %の牛胎児血清(GIBC0) を含む R P M I 1 6 4 0 培地) 、 細胞を接着させた。 培養液を捨て、 3 0 0 1 の P B Sで 各穴を 2回洗浄した。 4 %のパラホルムアルデヒ ドを含む P B S ( 以下、 P F A/P B S と称す) を各穴に 1 0 0 1 加え、 氷上で 1 0分間静置し、 細胞を固相化した。
P F AZP B Sを捨て、 3 0 0 1 の P B Sで各穴を 2 回洗浄後 、 2 5 0 1 の D Bでブロ ッキングした。 培養上清あるいは精製抗 体を D Bにて段階希釈して 1 0 0 a 1 を各穴に加えた。 室温にて 2 時間イ ンキュベー ト し R Bで洗浄後、 D Bで 1 0 0 0倍に希釈した アルカ リ フ ォスファターゼ結合ャギ抗ヒ ト I g G ァ抗体(BioSource ) 1 0 0 n 1 を加えた。 室温にて 1 時間イ ンキュベー ト し R Bで洗 浄ののち、 基質溶液を加え、 次に 4 0 5 / 6 5 5 n mでの吸光度を Microplate Reader (Bio-Rad) で測定した。
( 3 ) 中和活性の測定
マウス抗体、 キメ ラ抗体及びヒ ト型化抗体の中和活性は、 ヒ ト胎 盤由来トロ ンボプラスチン、 Thromborel S(Behr ingwerke AG) によ る Factor Xa産生阻害活性を指標に測定した。 すなわち、 1. 2 5 m g /m 1 の Thromborel S 1 0 1 と適当な濃度に希釈した抗体 1 0 l に緩衝液 ( 5 mMの C a C l 2 、 0. 1 %の B S Aを含む T B S ) 6 0 〃 1 を加え、 9 6穴プレー ト中で室温で 1 時間反応さ せた。 これに 3. 2 4 5 〃 8/111 1 のヒ トフ ァク ター (セルサス • ラボラ ト リーズ) 及び 8 2. 5 n gZm l のヒ トフ アクター V I I a (ェンザィム · リサーチ) をそれぞれ 1 0 〃 1 加え、 さ らに室 温で 1 時間反応させた。
0. 5 Mの E D T Aを 1 0 〃 1 加え、 反応を停止させた。 これに 発色基質溶液を 5 0 tz 1加え、 Microplate Reader(Bio Rad)で 4 0 5 / 6 5 5 n mの吸光度を測定した。 室温で 1 時間反応させ、 再度 4 0 5 / 6 5 5 n mの吸光度を測定した。 抗体無添加の 1 時間の吸 光度変化を 1 0 0 %の活性と し、 それぞれの吸光度変化から残存活 性 (% ) を算出した。 発色基質溶液はテス トチーム発色基質 S _ 2 2 2 2 (C h r o m o g e n i x ) を添付文書に従い溶解し、 精製水で 2倍希釈した後 、 ポ リ プレン液 ( 0. 6 m g / m 1 へキサジメ チ リ ンブロマイ ド 、 S I GMA) と 1 : 1で混和し調製した。
( 4 ) 活性の評価
( i ) ヒ ト型化 H鎖バージ ョ ン " a " とキメ ラ L鎖との組合せ ヒ ト型化 H鎖バージ ョ ン " a" とキメ ラ L鎖を組み合わせた抗体 ( a— c h) を作製し、 c e l l E L I S Aにて抗原結合能を調 ベたところ、 高濃度側で抗原に対する結合量が低下していた。 F X a産生阻害による抗原中和能についても陽性対照のキメ ラ抗体 ( c h - c h ) に比べて弱い活性であった。 よってヒ ト型化 H鎖は F R 一シャ ツフ リ ングによるバ一ジ ョ ンアップを行う こ とにした。 なお 、 ここで用いたキメ ラ抗体は C O S— 7細胞で発現させ精製した抗 体を用い評価したものである。
( i i ) ヒ ト型化 L鎖バージョ ン " a " とキメ ラ H鎖との組合せ ヒ ト型化 L鎖バ一ジ ョ ン " a " とキメ ラ H鎖を組み合わせた抗体 ( c h— a) を作製し、 c e 1 1 E L I S Aにて抗原結合能を調 ベたところ、 キヌ ラ抗体と同等以上の抗原結合活性が認められた。 一方、 抗原中和能は陽性対照のキメ ラ抗体に比べて弱い活性であつ た。 よってヒ ト型化 L鎖も F R—シャ ッ フ リ ングによるバージョ ン ア ップを行う こ とにした。 なお、 ここで用いたキメ ラ抗体は C 0 S 一 7細胞で発現させ精製した抗体を用い評価したものである。
( i i i ) ヒ ト型化 H鎖バ一ジ ヨ ン "a" と ヒ ト型化 L鎖バ一ジ ヨ ン " a " との組合せ
ヒ ト型化 H鎖バージョ ン "a" と ヒ ト型化 L鎖バージョ ン "a" を組み合わせた抗体 ( a— a) を作製し、 c e 1 1 E L I S Aに て抗原結合能を調べたところ、 高濃度側で抗原に対する結合量が低 下していた。 F X a産生阻害による抗原中和能についても陽性対照 のキメ ラ抗体に比べてかなり弱い活性であった。 よってヒ ト型化 H 鎖及び L鎖の F R— シ ャ ツフ リ ングによるバージョ ンアップを行う ことにした。 なお、 ここで用いたキメ ラ抗体は C 0 S— 7細胞で発 現させ精製した抗体を用い評価したものである。
( i V ) ヒ ト型化 H鎖バージ ョ ン " b " 、 " c " 及び " d " とキ メ ラ L鎖との組合せ
F R— シ ャ ッ フ リ ングによってバージ ョ ンアップしたヒ ト型化 H 鎖とキメ ラ L鎖を組み合わせた抗体 (それぞれ "b— c h" 、 " c - c h " 、 及び "d— c h" ) を作製し、 c e 1 1 E L I S Aに て抗原結合能を調べたところ、 "d— c h" はキメ ラ抗体と同等の 抗原結合活性が認められ、 " b— c h" 及び " c— c h" はわずか に劣る抗原結合活性を示した。 一方、 抗原中和能は陽性対照のキメ ラ抗体に比べて、 "b— c h" はほぼ同等、 "d— c h" はわずか に弱い活性であった。 またバ一ジ ョ ン " c— c h " はキメ ラ抗体に 比べかなり弱い活性であった。 よってヒ ト型化 H鎖バージョ ン " b " 及び "d" がヒ ト型化 H鎖で高い活性を示すと考えられるパージ ョ ンであった。
( V ) ヒ ト型化 H鎖バージ ョ ン " b " とヒ ト型化 L鎖バ一ジ ョ ン
" a " との組合せ
F R— シ ャ ツ フ リ ングによ ってバ一ジ ョ ンア ッ プしたヒ ト型化 H 鎖バージ ョ ン " b " とヒ ト型化 L鎖バージ ョ ン " a " を組み合わせ た抗体 (b— a) を作製し、 c e 1 1 E L I S Aにて抗原結合能 を調べたところ、 高濃度で抗原に対する結合量が低下していた。 一 方、 抗原中和能は陽性対照のキメ ラ抗体に比べて、 かなり弱い活性 であった。 よって "b— a" が " a— a" より高い活性を示すバ一 ジョ ンであった。 なお、 ここで用いたキメ ラ抗体は C 0 S— 7細胞 で発現させ精製した抗体を用い評価したものである。
( V i ) ヒ ト型化 L鎖バージ ョ ン " b " 、 " c " とキメ ラ H鎖と の組合せ
ヒ ト型化 L鎖バ一ジ ョ ン " b " 及び " c " をキメ ラ H鎖と組み合 わせた抗体 (それぞれ、 " c h— b " 、 " c h— c " ) を作製した ところ、 いずれの抗体も抗原結合能、 抗原中和能ともにキメ ラ抗体 と同等の活性を示した。 よってバー ジ ョ ン " b " 及び " c " をヒ ト 型化抗体 L鎖の候補と した。 マウス抗体由来のァ ミ ノ酸残基数が 1 つ少ないバー ジ ョ ン " b " の方がバー ジ ョ ン " c " より抗原性の点 で優れていると考えられる。 なお、 ここで用いたキメラ抗体は C H 0細胞 D G 4 4で発現させ精製した抗体を用い評価したもので、 こ れ以降の評価でも この抗体を陽性対照に用いた。
( V i i ) ヒ ト型化 H鎖バー ジ ョ ン " b " とヒ ト型化 L鎖バージ ヨ ン " b " 及び " c " との組合せ
ヒ ト型化 H鎖バージ ョ ン " b " をヒ ト型化 L鎖バージ ョ ン " b " 及び " c " と組み合わせた抗体 (それぞれ " b— b " 及び " b— c " ) を作製し、 抗原結合能及び抗原中和能を測定した。 いずれの抗 体も抗原結合能、 抗原中和能ともにキメラ抗体よりわずかに劣る活 性を示した。
( V i i i ) ヒ ト型化 H鎖バージ ョ ン " b " 及び " d " とヒ ト型 ィ匕 L鎖バージ ョ ン " b " との組合せ
F R— シ ャ ツ フ リ ングによ ってバー ジ ョ ンア ッ プしたヒ ト型化 H 鎖とヒ ト型化 L鎖バー ジ ョ ン " b " を組み合わせた抗体 (それぞれ " b - b " 及び " d— b " ) を作製し、 c e 1 1 E L I S Aにて 抗原結合能を調べたと ころ、 " d— b " はキメ ラ抗体と同等の抗原 結合活性が認められ、 " b— b " は高濃度でわずかに劣る抗原結合 活性を示した。 一方、 抗原中和能は陽性対照のキメ ラ抗体に比べて 、 " b - b " はわずかに弱い活性で、 " d— b " はキメ ラ抗体に比 ベかなり弱い活性であった。 よって " b— b " は抗原活性中和能の 高いバー ジ ョ ン、 " d— b " は抗原結合能の高いバージ ョ ンである こ とが示された。
( i X ) ヒ ト型化 H鎖バージ ョ ン " e " とキメ ラ L鎖及びヒ ト型 ィ匕 L鎖バー ジ ョ ン "b " との組合せ
ヒ ト型化 L鎖バージ ョ ン " e " をキメ ラ L鎖及びヒ ト型化パージ ヨ ン " b " と組み合わせた抗体 (それぞれ " e— c h " 及び " e — b " ) を作製したところ、 " e _ c h " の抗原結合能はキメ ラ抗体 と同等の活性を示したが、 " e — b " は抗体の発現量が非常に低く 、 且つ抗原結合能も殆ど喪失していた。 また " e — c h" の抗原活 性中和能はキメ ラ抗体に比べかなり弱い活性であつた。 よつて H鎖 ノく一ジョ ン " e " は L鎖バージ ョ ン "b" との組合せが悪いと考え られた。
( X ) ヒ ト型化 H鎖バージ ョ ン " f " 、 " g " 及び " h " と ヒ ト 型化 L鎖バージ ョ ン " b " との組合せ
ヒ ト型化 H鎖バージ ョ ン " f " 、 " g " 及び " h " をヒ ト型化 L 鎖バ一ジ ョ ン " b " と組み合わせた抗体を (それぞれ " f 一 b " 、 " - b " 及び " h— b " ) 作製したところ、 " f 一 b " 及び " h - b " の抗体は抗体の発現量が非常に低く かった。 なお、 バージ ョ ン " f " 、 "h" についてはキメ ラ L鎖と組み合わせた抗体も作製 したが、 発現されなかった。 " g— b " は低い濃度から飽和状態に 達し、 キメ ラ抗体より弱い抗原結合能を示した。 " g— b " の抗原 中和能は、 キメ ラ抗体に比べかなり弱い活性であった。
( X i ) ヒ ト型化 H鎖パージ ヨ ン " b 1 " 及び " d 1 " と ヒ ト型 ィ匕 L鎖バージ ョ ン " b " との組合せ
ヒ ト型化 H鎖バージ ョ ン " b 1 " 及び " d 1 " をヒ ト型化 L鎖バ —ジ ョ ン " b " と組み合わせた抗体を (それぞれ " b 1 — b " 及び " d 1 — b " ) 作製したところ、 ともに抗体は殆ど発現されなかつ た。 なお、 これらについてはキメ ラ L鎖と組み合わせた抗体も作製 した力 、 発現されなかった。
( X i i ) ヒ ト型化 H鎖バージョ ン " b 3 " 及び " d 3 " と ヒ ト 型化 L鎖バージョ ン "b" との組合せ
ヒ ト型化 H鎖パージヨ ン "b 3 " 及び "d 3 " をヒ ト型化 L鎖バ 一ジ ョ ン " b " と組み合わせた抗体を (それぞれ " b 3— b " 及び "d 3— b" ) 作製したところ、 "d 3— b" の抗原結合能はキメ ラ抗体よりわずかに劣っており、 " b 3— b " の抗原結合能はさ ら に劣っていた。 " b 3— b " の抗原中和能は " b— b " より上回る 活性を示したものの、 キメ ラ抗体の活性には及ばず、 "d 3 — b" は "b— b" と同程度の活性にとどま った。
( X i i i ) ヒ ト型化 H鎖バージョ ン " i " 及び " j " とキメ ラ
L鎖及びヒ ト型化 L鎖バージ ョ ン " b " との組合せ ヒ ト型化 H鎖バージ ョ ン " i " 及び " j " をキメ ラ L鎖と組み合 わせた抗体 (それぞれ " i 一 c h " 及び " j — c h " ) とヒ ト型化 L鎖パージョ ン "b" と組み合わせた抗体 (それぞれ " i 一 b" 及 び " j 一 b" ) を作製し、 抗原結合能及び抗原中和能を測定した。 抗原結合能はいずれの抗体もキメ ラ抗体とほぼ同等の活性を示した 。 " i 一 c h " にはキメ ラ抗体の活性を上回る抗原中和能が認めら れ、 " j 一 c h" の抗原中和能はキメ ラ抗体に比べかなり弱い活性 であった。 " i — b" はキメ ラ抗体と同等の活性が認められ、 " j — b " はキメ ラ抗体に比べかなり弱い活性であった。
( X i V ) ヒ ト型化 L鎖バー ジ ョ ン "b 1 " 及び "b 2 " ヒ ト型化 L鎖バージ ョ ン " b 1 " 及び " b 2 " をキメラ H鎖と組 み合わせた抗体 (それぞれ、 " c h— b 1 " 及び " c h _ b 2 " ) を作製したところ、 いずれの抗体もキメ ラ抗体と同等の抗原結合能 を示した。 抗原中和能については、 " c h _ b 1 " ではキメ ラ抗体 と同等の活性を示し、 " c h— b 2 " では高濃度側でキメ ラ抗体を 若干上回る活性が認められた。 バージ ョ ン " b 1 " 及び " b 2 " と もにヒ ト型化抗体 L鎖の候補になり得るが、 より強い活性を有する という点でバ一ジョ ン " b 2 " の方が優れている。
( X V ) ヒ ト型化 H鎖バージ ョ ン " b " とヒ ト型化 L鎖バ一ジョ ン " b 2 " との組合せ
ヒ ト型化 H鎖バ一ジ ョ ン " b " をヒ ト型化 L鎖バージ ョ ン " b 2 " と組み合わせた抗体 ( " b— b 2 " ) を作製し、 抗原結合能及び 抗原中和能を測定した。 抗原結合能はキメ ラ抗体よりわずかに劣つ ていた。 抗原中和能は " b— b " の活性を上回つたものの、 " i — b " の活性には及ばなかった。
( X V i ) ヒ ト型化 H鎖パージヨ ン " i " とヒ ト型化 L鎖バ一ジ ヨ ン " b 1 " 又は " b 2 " との組合せ
ヒ ト型化 H鎖バー ジ ョ ン " i " をヒ ト型化 L鎖バー ジ ョ ン " b 1 " 又は " b 2 " と組み合わせた抗体 (それぞれ " i — b 1 " 及び " i - b 2 " ) を作製し、 抗原結合能及び抗原中和能を測定した。 " i 一 b 2 " の抗原結合能はキメ ラ抗体とほぼ同等で、 " i — b 1 " はわずかに劣る程度であった。 また、 " i 一 b 1 " 及び " i — b 2 " の抗原中和能はキメ ラ抗体や " i _ b" を上回る活性を示し、 " i 一 b 2 " > " i — b 1 " の順に強かった。
参考例 7. C HO細胞産生ヒ ト型化抗体の作製及び活性評価 ( 1 ) C H 0安定産生細胞株の樹立
ヒ ト型化抗体 (b— b、 i 一 b及び i 一 b 2 ) の安定産生細胞株 を樹立するため、 無血清培地に馴化した C H 0細胞 (DG 4 4 ) に 抗体発現遺伝子べクターを導入した。 プラスミ ド D N A、 h H v b - h L v b /N 5 K G 4 P. h H v i — h L v b ZN S K G A P及び h H v i - h L v b 2 /N 5 K G 4 Pを制限酵素 S s p I (宝酒造) で切断して直鎖状にし、 フエノ —ル及びクロロフオルム抽出した後、 エタノール沈殿により精製し た。 エレク ト口ポーレーシヨ ン装置 (G e n e P u l s e r ; B i o R a d ) により、 直鎖状にした発現遺伝子ベクターを D G 4 4細胞に導入した。 D G 4 4細胞を P B Sに 1 x 1 0 7 Zm lの細 胞密度で懸濁し、 この懸濁液約 0. 8 m l に前記の D N Aを 1 0 も しく は 5 0 〃 gを加え、 1, 5 0 0 V, 2 5 〃 Fの静電容量にてパ ルスを与えた。
室温にて 1 0分間の回復期間の後、 ヒポキサンチン一チミ ジン ( G I B C O) (以下、 H T) を含有する C H O— S— S F MII培地 に処理された細胞を懸濁し、 2枚の 9 6穴平底プレー ト (Falcon) に 1 0 0 〃 1 /穴となるように播種し、 C 02 イ ンキュベータ一に て培養した。 培養開始 8〜 9時間後に H T及び l m gZm lの GENE TIC IN (GIBCO) を含有する C H O— S— S F MII培地を 1 0 0 〃 1 Z穴加え、 5 0 0 z g/m l の G E N E T I C I N選択培地に変換 し、 抗体遺伝子の導入された細胞を選択した。 3〜 4 日に一度 1 2量の培地を新鮮な培地と交換し、 選択培地への変換から約 2週間 経過した時点で、 その 4〜 5 日後に細胞の順調な増殖が観察された 穴の培養上清の一部を回収した。 この培養上清中に発現された抗体 濃度を前述の抗体濃度測定 E L I S Aにより測定し、 抗体産生量の 高い細胞を選出した。
( 2 ) ヒ ト型化抗体の大量精製
前記のように選出したヒ ト型化抗体 ( "b— b " 、 " i 一 b " 及 び " i — b 2 " ) 発現 D G 4 4細胞株を 2 Lローラ一ボトル ( CON I NG) を用い、 5 0 0 m 1 Zボ トルの C H 0— S— S F M II培地中で 数日培養後、 培養液を回収して新鮮 ½ C HO— S— S FMII培地を 加え、 再び培養した。 培養液は遠心分離により細胞破片を除去し、 0. 2 2 〃 01も しく は 0. 4 5 〃 mのフイノレターで濾過した。 これ を繰り返し、 それぞれ全量約 2 Lの培養上清を得た。 得られた培養 上清を Protein Aァフィ二ティ 一カラム(Poros) を接続した ConSep
LC100システム (ミ リポア) にて抗体を精製した。
( 3 ) E L I S Aによる抗体濃度の測定
抗体濃度測定のための E L I S Aプレー トを次のようにして調製 した。 E L I S A用 9 6穴プレー ト (Maxisorp, NUNC) の各穴を C Bで 1 〃 gZm l の濃度に調製したャギ抗ヒ ト I g Gァ抗体(BioSo urce) 1 0 0 fi 1で固相ィ匕し、 2 0 0 fi 1の D Bでブロ ッキングの 後、 抗体を発現させた C H 0細胞の培養上清あるいは精製抗体を D Bにて段階希釈して各穴に加えた。
1時間室温にてイ ンキュベー ト し R Bで洗浄後、 D Bで 1 0 0 0 倍に希釈したアルカ リフォスファタ一ゼ結合ャギ抗ヒ ト I g Gァ抗 体(BioSource) 1 0 0 〃 1を加えた。 1時間室温にてイ ンキュベー 卜 し R Bで洗浄の後、 基質溶液を 1 0 0 1加え、 4 0 5 / 6 5 5 nmでの吸光度を microplate reader( B i o R a d ) で沏 J定した 。 濃度測定のスタンダー ドと して I g G 4 (The Binding Site) を用いた。
( 4 ) 抗原結合能の測定
抗原結合測定のための C e l l E L I S Aプレー トでは、 次の ようにして調製した。 細胞はヒ ト膀胱癌細胞 J 8 ( A T C C H
T B - 1 ) を用いた。 細胞培養用 9 6穴プレー トに 1 X I 0 5 個の
J 8 2細胞を播き込んだ。 これを C 02イ ンキュベータ一で 1 日培 養し ( 1 0 %の牛胎児血清 (G I B C O) を含む R PM I 1 6 4 0 培地) 、 細胞を接着させた。 培養液を捨て、 P B Sで各穴を 2回洗 浄した。 P F A/P B Sを各穴に 1 0 0 〃 1 加え、 氷上で 1 0分間 静置し、 細胞を固相化した。
P F AZP B Sを捨て、 3 0 0 Z 1 の P B Sで各穴を 2回洗浄後 、 2 5 0 1 の D Bでブロ ッキングした。 精製抗体を上測定結果を もとに、 D Bにて 1 0 z gZm l より公比 2で段階希釈して 1 0 0 1 を各穴に加えた。 室温にて 2時間ィ ンキュベー ト し R Bで洗浄 後、 D Bで 1 0 0 0倍に希釈したアルカ リ フ ォ スフ ァターゼ結合ャ ギ抗ヒ ト I g G y抗体(BioSource) 1 0 0 / 1 を加えた。 室温にて 1 時間イ ンキュベー ト し R Bで洗浄ののち、 基質溶液を 1 0 0 〃 1 加え、 次に 4 0 5 X 6 5 5 n mでの吸光度を Mi croplate Reader (B io-Rad) で測定した。
( 5 ) T F中和活性 (フ ァ ク タ一 X a産生阻害活性) の測定
ヒ ト型化抗体のフアクター X a産生阻害活性は、 ヒ ト胎盤由来 ト ロ ンボプラスチン、 Thromborel S (Behr i ngwerke AG) による Facto r Xa産生阻害活性を指標に測定した。 すなわち、 5 11 37111 1 の1111 romborel S 1 0 〃 1 と抗体 1 0 1 に緩衝液 ( 5 mMの C a C 1 2 、 0. 1 %の B S Aを含む T B S ) 6 0 〃 1 を加え、 9 6穴プレ ー ト中で室温で 1 時間反応させた。 抗体は緩衝液で 2 0 0 u g /m
1 より公比 5で段階希釈した。
これに 3. 2 4 5 〃 gZm l のヒ トフ ア クター X (セルサス ' ラ ボラ ト リ ーズ) 及び 8 2. 5 n gZm l のヒ トフ ァ クタ一 V I I a
(ェンザィム · リサーチ) をそれぞれ 1 0 〃 1加え、 さ らに室温で 4 5分間反応させた。 0. 5 Mの E D T Aを 1 0 〃 1 加え、 反応を 停止させた。 これに発色基質溶液を 5 0 1加え、 Mi crop late Rea der (Bio Rad) で 4 0 5 / 6 5 5 n mの吸光度を測定した。 室温で 3 0分間反応させ、 再度 4 0 5 / 6 5 5 n mの吸光度を測定した。 抗体無添加の 3 0分間の吸光度変化を 1 0 0 %の活性と し、 それぞ れの吸光度変化から残存活性 (%) を算出した。
発色基質溶液はテス トチーム発色基質 S— 2 2 2 2 (Chromogenix ) を添付文書に従い溶解し、 ポリプレ ン液 ( 0. 6 m g 1 へ キサジメ チリ ンブロマイ ド、 S I GMA) と 1 : 1 で混和し調製し た。
( 6 ) T F中和活性 (フ ァ ク タ一 X結合阻害活性) の測定
ヒ ト型化抗体のファクタ一 X結合阻害活性は、 ヒ ト胎盤由来 トロ ンボプラスチン、 Thromborel SCBehringwerke AG) を用い、 予め T Fと F a c t o r Vil aの複合体を形成させ、 その複合体の Facto r Xa産生阻害活性を指標にファクター X結合阻害活性を測定した。 すなわち、 5 m g/m l の Thromborel S 1 0 〃 1 と 8 2. 5 n g Zm l の ヒ ト F a c t o r V I I a (ェンザィ ム · リ サーチ) 1 0 ;α l に緩衝液 ( 5 mMの C a C 1 2、 0. 1 %の B S Aを含む T B S ) 6 0 1 を加え、 9 6穴プレー ト中で室温で予め 1 時間反応 させた。
これに抗体溶液を 1 0 1加え、 室温で 5分間反応させた後、 3 . 2 4 5 〃 g/m l のヒ ト F a c t o r X (セルサス ' ラ ボラ ト リーズ) を 1 0 1加え、 さ らに室温で 4 5分間反応させた。 なお 抗体は緩衝液で 2 0 0 ;(z gZm l より公比 2で段階希釈した。 0 -
5 Mの E D T Aを 1 0 1加え、 反応を停止させた。 これに発色基 質溶液を 5 0 // 1加え、 M i c r o p l a t e R e a d e r ( B i o R a d) で 4 0 5 / 6 5 5 n mの吸光度を測定した。 室温で
3 0分間反応させ、 再度 4 0 5 Z 6 5 5 n mの吸光度を測定した。 抗体無添加の 3 0分間の吸光度変化を 1 0 0 %の活性と し、 それぞ れの吸光度変化から残存活性 (%) を算出した。
発色基質溶液はテス トチーム発色基質 S— 2 2 2 2 (Chromogenix ) を添付文書に従い溶解し、 ポリプレ ン液 ( 0. 6 m gZm l へ キサジメチリ ンブロマイ ド、 S I GMA) と 1 : 1 で混和し調製し
( 7 ) T F中和活性 (血漿凝固阻害活性) の測定
ヒ ト型化抗体の T F中和活性 (血漿凝固阻害活性) はヒ ト胎盤由 来 トロ ンボプラスチン、 Thromborel S (Behr i ngwerke AG) を用いた プロ トロンビン時間を指標に測定した。 すなわち、 サンプルカ ップ にヒ ト血漿 (コスモ ' バイオ) 1 0 0 〃 1 を入れ、 これに様々な濃 度に希釈した抗体を 5 0 / 1加え、 3 7 で 3分間加温した。 予め 3 7 °Cに加温しておいた 1. 2 5 m g /m 1 の Thromborel Sを 5 0 〃 1加え、 血漿凝固を開始させた。 この凝固時間は Ame lung CR-Aを 接続した Amelung KC-10A (ともにェム ' シー · メディ カル) にて測 疋 レた o
抗体は 8 0 〃 g /m 1 より公比 2で 0. 1 %の B S Aを含有する T B S (以下、 B S A— T B S ) にて段階希釈した。 測定した抗体 無添加の凝固時間を 1 0 0 %の T F血漿凝固活性と し、 Thromborel
Sの濃度と凝固時間をプロッ ト した検量線により抗体を添加した際 のそれぞれの凝固時間から T F残存活性を算出した。
検量線は様々な Thromborel Sの濃度とその凝固時間を測定するこ とにより作成した。 適当に希釈した Thromborel S、 5 0 〃 1 に 5 0 fi 1 の B S A— T B Sを加え、 3 7 °Cで 3分間加温し、 予め 3 7 °C に加温しておいたヒ ト血漿を 1 0 0 1加えて凝固を開始させ凝固 時間を測定した。 Thromborel Sは 6. 2 5 m gZm l より公比 2で 2 5 mMの C a C 1 2を含むハンクス緩衝液 (G I B C O) にて段 階希釈した。 横軸に Thromborel S濃度、 縦軸に凝固時間を両対数グ ラフにプロッ ト し、 これを検量線と した。
( 8 ) 活性の評価
" b— b " 、 " i — b " 及び " i _ b 2 " のヒ ト型化抗体すベて はキメ ラ抗体と同等以上の活性を有していた (図 1 ) 。 F a c t o r X a産生阻害活性、 F a c t o r X結合阻害活性及び血漿凝 固阻害活性においても、 ヒ ト型化抗体 " b— b " 、 " i 一 b " 及び " i - b 2 " はキメ ラ抗体と同等以上の活性を有しており、 " i 一 b 2 " > " i — b " > " b - b " の順に活性が強かった (図 2、 3 及び 4 ) 。

Claims

請 求 の 範 囲
1 . ヒ ト組織因子 (T F ) 又はその一部分をコー ドする遺伝子が 挿入されていて該遺伝子を発現することができる動物細胞が移植さ れている実験動物であって、 血液凝固亢進状態が長期間持続する非 ヒ ト動物。
2 . 前記ヒ ト組織因子の一部分が、 細胞内領域を欠く ヒ ト組織因 子である、 請求項 1 に記載の動物。
3 . 前記動物細胞が哺乳動物細胞である、 請求項 1又は 2 に記載 の動物。
4 . 前記哺乳動物細胞がヒ ト骨髄腫細胞である、 請求項 3 に記載 の動物。
5 . 前記動物が、 マウスである、 請求項 1〜 4のいずれか 1 項に 記載の動物。
6 . 前記血液凝固亢進状態が、 ヒ ト組織因子血漿中濃度の上昇、 血小板の減少、 フイブリ ノ一ゲンの減少、 可溶性フイ ブリ ンモノマ 一複合体濃度の上昇及びト ロ ン ビン一ア ンチ ト ロ ン ビン I I I 複合体 濃度の上昇の少なく とも 1 つの現象により表わされる、 請求項 1〜 5のいずれか 1項に記載の動物。
7 . 請求項 1〜 6のいずれか 1 項に記載の動物の作製方法におい て、 ヒ ト組織因子 (T F ) 又はその一部分をコー ドする遺伝子が揷 入されており該遺伝子を発現することができる動物細胞を非ヒ ト実 験動物に移植し、 そして血液凝固亢進状態が持続する動物を選択す ることを特徴とする方法。
8 . 請求項 1〜 6のいずれか 1項に記載の動物を用いることを特 徴とする抗血栓薬のスク リ一二ング方法。
9 . ヒ ト組織因子 (ヒ ト T F ) に対する抗体を含んで成る、 血液 凝固亢進状態が持続している疾患の予防又は治療剤。
10. 前記抗体がポリ クローナル抗体である、 請求項 9 に記載の予 防又は治療剤。
11. 前記抗体がモノ ク ローナル抗体である、 請求項 9 に記載の予 防又は治療剤。
12. 前記抗体が組換え型抗体である、 請求項 9又は 11に記載の予 防又は治療剤。
13. 前記抗体が改変抗体である、 請求項 9又は 12に記載の予防又 は治療剤。
14. 前記改変抗体がキメ ラ抗体又はヒ ト型化抗体である、 請求項 9, 12又は 13に記載の予防又は治療剤。
15. 前記ヒ ト型化抗体が、 バー ジ ョ ン b— b, i — b、 又は i _ b 2 のヒ ト型化抗体である、 請求項 14に記載の予防又は治療剤。
16. 前記抗体が抗体修飾物である、 請求項 9又は 12〜15のいずれ か 1項に記載の予防又は治療剤。
17. 前記抗体修飾物が、 抗体断片 F a b , F ( a b ' ) 2 も しく は F V、 又はシングルチヱイ ン F V ( s c F V ) である、 請求項 16 に記載の予防又は治療剤。
18. ヒ ト組織因子 (ヒ ト T F ) に対する抗体を含んで成る、 感染 症に起因する血液凝固亢進状態の予防又は治療剤。
19. 前記抗体がポリ クロ一ナル抗体である、 請求項 18に記載の予 防又は治療剤。
20. 前記抗体がモノ ク ローナル抗体である、 請求項 18に記載の予 防又は治療剤。
21. 前記抗体が組換え型抗体である、 請求項 18又は 20に記載の予 防又は治療剤。
22. 前記抗体が改変抗体である、 請求項 18又は 21に記載の予防又 は治療剤。
23. 前記改変抗体がキメラ抗体又はヒ ト型化抗体である、 請求項 18, 21又は 22に記載の予防又は治療剤。
24. 前記ヒ ト型化抗体が、 バー ジ ョ ン b— b, i — b、 又は i — b 2のヒ ト型化抗体である、 請求項 23に記載の予防又は治療剤。
25. 前記抗体が抗体修飾物である、 請求項 18又は 21〜24のいずれ か 1項に記載の予防又は治療剤。
26. 前記抗体修飾物が、 抗体断片 F a b, F ( a b ' ) 2 も しく は F v、 又はシ ングルチヱイ ン F v ( s c F v) である、 請求項 25 に記載の予防又は治療剤。
27. ヒ ト組織因子 (ヒ ト T F) に対する抗体を含んで成る、 静脈 血栓症の予防又は治療剤。
28. 前記抗体がポリ クロ一ナル抗体である、 請求項 27に記載の予 防又は治療剤。
29. 前記抗体がモノ ク ローナル抗体である、 請求項 27に記載の予 防又は治療剤。
30. 前記抗体が組換え型抗体である、 請求項 27又は 29に記載の予 防又は治療剤。
31. 前記抗体が改変抗体である、 請求項 27又は 30に記載の予防又 は治療剤。
32. 前記改変抗体がキメ ラ抗体又はヒ ト型化抗体である、 請求項 27, 30又は 31に記載の予防又は治療剤。
33. 前記ヒ ト型化抗体が、 バー ジ ョ ン b— b, i — b、 又は i 一 b 2のヒ ト型化抗体である、 請求項 32に記載の予防又は治療剤。
34. 前記抗体が抗体修飾物である、 請求項 27又は 30〜33のいずれ か 1項に記載の予防又は治療剤。
35. 前記抗体修飾物が、 抗体断片 F a b , F ( a b ' ) 2 も しく は F v、 又はシ ングルチヱイ ン F v ( s c F v ) である、 請求項 34 に記載の予防又は治療剤。
36. ヒ ト組織因子 (ヒ ト T F ) に対する抗体を含んで成る、 動脈 血栓の予防又は治療剤。
37. 前記抗体がポリ クロ一ナル抗体である、 請求項 36に記載の予 防又は治療剤。
38. 前記抗体がモノ ク ローナル抗体である、 請求項 36に記載の予 防又は治療剤。
39. 前記抗体が組換え型抗体である、 請求項 36又は 38に記載の予 防又は治療剤。
40. 前記抗体が改変抗体である、 請求項 36又は 39に記載の予防又 は治療剤。
41. 前記改変抗体がキメ ラ抗体又はヒ ト型化抗体である、 請求項 36, 39又は 40に記載の予防又は治療剤。
42. 前記ヒ ト型化抗体が、 バージ ョ ン b _ b, i — b、 又は i — b 2のヒ ト型化抗体である、 請求項 41に記載の予防又は治療剤。
43. 前記抗体が抗体修飾物である、 請求項 36又は 39〜42のいずれ か 1 項に記載の予防又は治療剤。
44. 前記抗体修飾物が、 抗体断片 F a b, F ( a b ' ) 2 も しく は F V、 又はシ ングルチヱイ ン F v ( s c F v ) である、 請求項 43 に記載の予防又は治療剤。
45. ヒ ト組織因子 (ヒ ト T F) に対する抗体を含んで成る、 血管 中膜肥厚に起因する疾患の予防又は治療剤。
46. 前記抗体がポリ クローナル抗体である、 請求項 45に記載の予 防又は治療剤。
47. 前記抗体がモノ ク ローナル抗体である、 請求項 45に記載の予 防又は治療剤。
48. 前記抗体が組換え型抗体である、 請求項 45又は 47に記載の予 防又は治療剤。
49. 前記抗体が改変抗体である、 請求項 45又は 48に記載の予防又 は治療剤。
50. 前記改変抗体がキメ ラ抗体又はヒ ト型化抗体である、 請求項 45, 48又は 49に記載の予防又は治療剤。
51. 前記ヒ ト型化抗体が、 バージ ョ ン b— b, i — b、 又は i 一 b 2のヒ ト型化抗体である、 請求項 50に記載の予防又は治療剤。
52. 前記抗体が抗体修飾物である、 請求項 43又は 48〜51のいずれ か 1 項に記載の予防又は治療剤。
53. 前記抗体修飾物が、 抗体断片 F a b, F ( a b ' ) 2 も しく は F v、 又はシングルチヱイ ン F v ( s c F v ) である、 請求項 52 に記載の予防又は治療剤。
PCT/JP2000/006802 1999-10-01 2000-09-29 Prevention et traitement de maladies associees a la coagulation sanguine WO2001024626A1 (fr)

Priority Applications (16)

Application Number Priority Date Filing Date Title
CN00813720.XA CN1589098A (zh) 2000-09-29 2000-09-29 与血液凝固相关的疾病的预防和治疗
AT00963006T ATE498305T1 (de) 1999-10-01 2000-09-29 Vermeidung und behandlung von krankheiten, die mit der blutgerinnung in zusammenhang stehen
DE60045638T DE60045638D1 (de) 1999-10-01 2000-09-29 Vermeidung und behandlung von krankheiten, die mit der blutgerinnung in zusammenhang stehen
DK00963006.2T DK1222854T3 (da) 1999-10-01 2000-09-29 Forebyggelse og behandling af sygdomme forbundet med blodkoagulering
HU0203486A HUP0203486A2 (hu) 1999-10-01 2000-09-29 Véralvadással összefüggő betegségek megelőzése és kezelése
AU74506/00A AU7450600A (en) 1999-10-01 2000-09-29 Prevention and treatment of diseases associated with blood coagulation
BR0014667-6A BR0014667A (pt) 1999-10-01 2000-09-29 Prevenção e tratamento de doenças relacionadas à coagulação sanguìnea
CA002388408A CA2388408A1 (en) 1999-10-01 2000-09-29 Prevention and treatment of diseases associated with blood coagulation
JP2001527640A JP3859512B2 (ja) 1999-10-01 2000-09-29 血液凝固関連疾患の予防及び治療
US10/089,501 US8062638B1 (en) 1999-10-01 2000-09-29 Prevention and treatment of diseases associated with blood coagulation
SK444-2002A SK4442002A3 (en) 1999-10-01 2000-09-29 Prevention and treatment of diseases associated with blood coagulation
EP00963006A EP1222854B1 (en) 1999-10-01 2000-09-29 Prevention and treatment of diseases associated with blood coagulation
IL14898000A IL148980A0 (en) 1999-10-01 2000-09-29 An antibody to human tissue factor and experimental animals having inserted cells with the gene encoding human tissue factor
MXPA02003278A MXPA02003278A (es) 1999-10-01 2000-09-29 Prevencion y tratamiento de enfermedades relacionadas con la coagulacion sanguinea.
NO20021410A NO20021410L (no) 1999-10-01 2002-03-21 Forebygging og behandling av blodkoagulasjons-relaterte sykdommer
US13/252,455 US20120073002A1 (en) 1999-10-01 2011-10-04 Prevention and treatment of blood coagulation-related disases

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP28218899 1999-10-01
JP11/282188 1999-10-01
JP11/282134 1999-10-01
JP28184399 1999-10-01
JP28216799 1999-10-01
JP28219299 1999-10-01
JP11/282167 1999-10-01
JP28213499 1999-10-01
JP28212099 1999-10-01
JP11/282192 1999-10-01
JP11/282120 1999-10-01
JP11/281843 1999-10-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/089,501 A-371-Of-International US8062638B1 (en) 1999-10-01 2000-09-29 Prevention and treatment of diseases associated with blood coagulation
US13/252,455 Division US20120073002A1 (en) 1999-10-01 2011-10-04 Prevention and treatment of blood coagulation-related disases

Publications (1)

Publication Number Publication Date
WO2001024626A1 true WO2001024626A1 (fr) 2001-04-12

Family

ID=27554423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006802 WO2001024626A1 (fr) 1999-10-01 2000-09-29 Prevention et traitement de maladies associees a la coagulation sanguine

Country Status (18)

Country Link
US (2) US8062638B1 (ja)
EP (2) EP1222854B1 (ja)
JP (1) JP3859512B2 (ja)
KR (1) KR20030008205A (ja)
AT (1) ATE498305T1 (ja)
AU (1) AU7450600A (ja)
BR (1) BR0014667A (ja)
CA (1) CA2388408A1 (ja)
CZ (1) CZ20021035A3 (ja)
DE (1) DE60045638D1 (ja)
DK (1) DK1222854T3 (ja)
HU (1) HUP0203486A2 (ja)
IL (1) IL148980A0 (ja)
MX (1) MXPA02003278A (ja)
NO (1) NO20021410L (ja)
PL (1) PL354961A1 (ja)
SK (1) SK4442002A3 (ja)
WO (1) WO2001024626A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029295A1 (en) * 2001-10-02 2003-04-10 Novo Nordisk A/S Human tissue factor antibodies
WO2003099324A1 (fr) * 2002-05-23 2003-12-04 Chugai Seiyaku Kabushiki Kaisha Agent neutralisant l'inhibiteur du facteur tissulaire et agent neutralisant la preparation du facteur viii active de coagulation sanguine
WO2004075913A1 (ja) * 2003-02-28 2004-09-10 Chugai Seiyaku Kabushiki Kaisha タンパク質含有安定化製剤
US7605235B2 (en) 2003-05-30 2009-10-20 Centocor, Inc. Anti-tissue factor antibodies and compositions
JP4813603B2 (ja) * 2006-12-29 2011-11-09 スロムボターゲッツ、エウロペ、ソシエダッド、リミターダ 止血活性を有する組換え酵母由来の微小胞およびその使用
US8722044B2 (en) 2011-03-15 2014-05-13 Janssen Biotech, Inc. Human tissue factor antibody and uses thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703494B2 (en) 2000-03-16 2004-03-09 Genentech, Inc. Anti-tissue factor antibodies with enhanced anticoagulant potency
JPWO2002078738A1 (ja) * 2001-03-26 2004-10-07 鈴木 宏治 血液レオロジー改善剤
JP4683821B2 (ja) 2001-05-18 2011-05-18 中外製薬株式会社 ヒト組織因子を産生するノックイン非ヒト動物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278776A2 (en) * 1987-02-12 1988-08-17 Genentech, Inc. Methods and deoxyribonucleic acid for the preparation of tissue factor protein
WO1988007543A1 (en) * 1987-03-31 1988-10-06 Scripps Clinic And Research Foundation Human tissue factor related dna segments, polypeptides and antibodies
WO1988009817A1 (en) * 1987-06-12 1988-12-15 Mount Sinai School Of Medicine Of The City Univers Cloning and expression of human tissue factor
US5346991A (en) * 1991-06-13 1994-09-13 Genentech, Inc. Tissue factor mutants useful for the treatment of myocardial infarction and coagulopathic disorders

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201994A (ja) 1982-05-21 1983-11-25 Hideaki Hagiwara 抗原特異的ヒト免疫グロブリンの生産方法
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
ES2246502T3 (es) 1990-08-29 2006-02-16 Genpharm International, Inc. Animales no humanos transgenicos capaces de producir anticuerpos heterologos.
KR100249937B1 (ko) 1991-04-25 2000-04-01 나가야마 오사무 인간 인터루킨-6 수용체에 대한 재구성 인간 항체
JPH07503132A (ja) 1991-12-17 1995-04-06 ジェンファーム インターナショナル,インコーポレイティド 異種抗体を産生することができるトランスジェニック非ヒト動物
ATE381614T1 (de) 1992-07-24 2008-01-15 Amgen Fremont Inc Bildung von xenogenen antikörpern
US5648267A (en) 1992-11-13 1997-07-15 Idec Pharmaceuticals Corporation Impaired dominant selectable marker sequence and intronic insertion strategies for enhancement of expression of gene product and expression vector systems comprising same
US5879677A (en) * 1992-12-09 1999-03-09 The Scripps Research Institute Method for inhibition of cerebral tissue factor mediated reperfusion damage
AU6819494A (en) 1993-04-26 1994-11-21 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
ATE340590T1 (de) 1994-07-13 2006-10-15 Chugai Pharmaceutical Co Ltd Gegen menschliches interleukin-8 gerichteter, rekonstituierter menschlicher antikörper
JP3865418B2 (ja) 1994-07-13 2007-01-10 中外製薬株式会社 ヒトインターロイキン−8に対する再構成ヒト抗体
EP1709970A1 (en) 1995-04-27 2006-10-11 Abgenix, Inc. Human antibodies against EGFR, derived from immunized xenomice
CA2219486A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
CN100335501C (zh) 1996-09-26 2007-09-05 中外制药株式会社 抗人副甲状腺激素相关蛋白的抗体
US5986065A (en) 1997-03-10 1999-11-16 Sunol Molecular Corporation Antibodies for inhibiting blood coagulation and methods of use thereof
CA2325346A1 (en) * 1998-04-03 1999-10-14 Chugai Seiyaku Kabushiki Kaisha Humanized antibody against human tissue factor (tf) and process for constructing humanized antibody
EP0987274A1 (en) * 1998-09-15 2000-03-22 Hoechst Marion Roussel Deutschland GmbH Factor VIIa Inhibitors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278776A2 (en) * 1987-02-12 1988-08-17 Genentech, Inc. Methods and deoxyribonucleic acid for the preparation of tissue factor protein
WO1988007543A1 (en) * 1987-03-31 1988-10-06 Scripps Clinic And Research Foundation Human tissue factor related dna segments, polypeptides and antibodies
WO1988009817A1 (en) * 1987-06-12 1988-12-15 Mount Sinai School Of Medicine Of The City Univers Cloning and expression of human tissue factor
US5346991A (en) * 1991-06-13 1994-09-13 Genentech, Inc. Tissue factor mutants useful for the treatment of myocardial infarction and coagulopathic disorders

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BLOOD, vol. 92, no. 11, 1998, pages 4167 - 4177, XP002939774 *
CANCER CHEMOTHER. PHARMACOL., vol. 37, no. 4, 1996, pages 305 - 316, XP002939779 *
CANCER RESEARCH, vol. 58, no. 20, 1998, pages 4646 - 4653, XP002939778 *
CELL, vol. 50, no. 1, 1987, pages 129 - 135, XP002939781 *
KETSUEKI SHUYOUKA, vol. 39, no. 4, October 1999 (1999-10-01), pages 298 - 302, XP002939776 *
PROC. NATL. ACAD. SCI. USA, vol. 96, March 1999 (1999-03-01), pages 2311 - 2315, XP002939775 *
SCIENCE, vol. 275, 1997, pages 547 - 550, XP002939780 *
THE JOURNAL OF CELL BIOLOGY, vol. 109, 1989, pages 389 - 395, XP002939777 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029295A1 (en) * 2001-10-02 2003-04-10 Novo Nordisk A/S Human tissue factor antibodies
WO2003099324A1 (fr) * 2002-05-23 2003-12-04 Chugai Seiyaku Kabushiki Kaisha Agent neutralisant l'inhibiteur du facteur tissulaire et agent neutralisant la preparation du facteur viii active de coagulation sanguine
WO2004075913A1 (ja) * 2003-02-28 2004-09-10 Chugai Seiyaku Kabushiki Kaisha タンパク質含有安定化製剤
JPWO2004075913A1 (ja) * 2003-02-28 2006-06-01 中外製薬株式会社 タンパク質含有安定化製剤
US8765124B2 (en) 2003-02-28 2014-07-01 Chugai Seiyaku Kabushiki Kaisha Stabilized preparation containing protein
US7605235B2 (en) 2003-05-30 2009-10-20 Centocor, Inc. Anti-tissue factor antibodies and compositions
US8293882B2 (en) 2003-05-30 2012-10-23 Centocor, Inc. Anti-tissue factor antibodies and compositions
JP4813603B2 (ja) * 2006-12-29 2011-11-09 スロムボターゲッツ、エウロペ、ソシエダッド、リミターダ 止血活性を有する組換え酵母由来の微小胞およびその使用
US8722044B2 (en) 2011-03-15 2014-05-13 Janssen Biotech, Inc. Human tissue factor antibody and uses thereof
US8951525B2 (en) 2011-03-15 2015-02-10 Janssen Biotech, Inc. Human tissue factor antibody and uses thereof
US8999333B2 (en) 2011-03-15 2015-04-07 Janssen Biotech, Inc. Human tissue factor antibody and uses thereof

Also Published As

Publication number Publication date
US8062638B1 (en) 2011-11-22
SK4442002A3 (en) 2003-04-01
ATE498305T1 (de) 2011-03-15
IL148980A0 (en) 2002-11-10
EP1222854A4 (en) 2006-07-05
CZ20021035A3 (cs) 2002-08-14
MXPA02003278A (es) 2002-09-02
NO20021410D0 (no) 2002-03-21
CA2388408A1 (en) 2001-04-12
DK1222854T3 (da) 2011-03-14
BR0014667A (pt) 2002-07-02
HUP0203486A2 (hu) 2003-02-28
EP2351483A1 (en) 2011-08-03
DE60045638D1 (de) 2011-03-31
EP1222854A1 (en) 2002-07-17
PL354961A1 (en) 2004-03-22
US20120073002A1 (en) 2012-03-22
NO20021410L (no) 2002-05-24
AU7450600A (en) 2001-05-10
KR20030008205A (ko) 2003-01-24
EP1222854B1 (en) 2011-02-16
JP3859512B2 (ja) 2006-12-20

Similar Documents

Publication Publication Date Title
JP3998419B2 (ja) ヒト組織因子(tf)に対するヒト型化抗体およびヒト型化抗体の作製方法
US20120073002A1 (en) Prevention and treatment of blood coagulation-related disases
US8252905B2 (en) Anti-CD14 antibody fusion protein
TWI438208B (zh) 抑制慢性排斥反應之藥劑
EP1374896A1 (en) Blood rheology improving agents
JP4439488B2 (ja) 血液凝固関連疾患の予防及び治療
JP4404968B2 (ja) Il−8結合阻害物質を有効成分として含有する脳卒中及び脳浮腫の予防または治療剤
JP4014558B2 (ja) ヒト組織因子(tf)に対するヒト型化抗体およびヒト型化抗体の作製方法
JP2005330292A (ja) ヒト組織因子(tf)に対するヒト型化抗体およびヒト型化抗体の作製方法
JP2007186522A (ja) ヒト組織因子(tf)に対するヒト型化抗体およびヒト型化抗体の作製方法
MXPA00009667A (en) Humanized antibody against human tissue factor (tf) and process for constructing humanized antibody
CZ20003601A3 (cs) Chimerní řetězec protilátky, chimerní protilátka proti lidskému tkáňovému faktoru, v oblast, zušlechtěný řetězec protilátky, zušlechtěná protilátka, DNA, expresní vektor, hostitel, způsob přípravy a léčebné činidlo

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2001 527640

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2002-1035

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 4442002

Country of ref document: SK

Ref document number: 2388408

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027004130

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/003278

Country of ref document: MX

Ref document number: 00813720X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 74506/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 148980

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 10089501

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000963006

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2002 2002111683

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2000963006

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2002-1035

Country of ref document: CZ

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020027004130

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020027004130

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: PV2002-1035

Country of ref document: CZ