WO2001012963A1 - Kühlkreislauf für einen verbrennungsmotor - Google Patents

Kühlkreislauf für einen verbrennungsmotor Download PDF

Info

Publication number
WO2001012963A1
WO2001012963A1 PCT/DE2000/002616 DE0002616W WO0112963A1 WO 2001012963 A1 WO2001012963 A1 WO 2001012963A1 DE 0002616 W DE0002616 W DE 0002616W WO 0112963 A1 WO0112963 A1 WO 0112963A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling circuit
cooling
circuit according
combustion engine
distributor
Prior art date
Application number
PCT/DE2000/002616
Other languages
English (en)
French (fr)
Inventor
Thomas Weigold
Johannes Pfetzer
Guenther Riehl
Matthias Schmitz
Gerta Rocklage
Torsten Heidrich
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to BR0006998-1A priority Critical patent/BR0006998A/pt
Priority to JP2001517036A priority patent/JP2003507617A/ja
Priority to KR1020017004589A priority patent/KR20010085912A/ko
Priority to EP00963871A priority patent/EP1121515A1/de
Publication of WO2001012963A1 publication Critical patent/WO2001012963A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/021Cooling cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the invention relates to a cooling circuit for an internal combustion engine.
  • the cooling of an internal combustion engine in a motor vehicle takes place via a cooling medium which circulates in a cooling circuit which in a conventional manner runs through the internal combustion engine, a heating heat exchanger for heating a passenger compartment of the vehicle, a pump and a cooler for delivering the waste heat of the internal combustion engine to the Surrounding area.
  • the cooling medium first enters channels in the engine block, flows through it in a longitudinal direction, then passes through a cylinder head of the internal combustion engine and then reaches the radiator. A part of the coolant flow flowing through the engine can be tapped via a branch line and fed to the heating heat exchanger.
  • the total volume flow of the coolant is determined by the delivery rate of the pump and the Pressure drops in the cooling circuit.
  • the distribution of the coolant flow at the location of the branch leading to the heating heat exchanger is also determined by the pressure losses.
  • the present invention provides a cooling circuit for an internal combustion engine which allows the cooling power to be varied in different range of the engine to optimally adapt to the actual cooling requirement. This means that sufficient cooling under all operating conditions can be guaranteed even with a pump with a reduced delivery rate. In addition, since less heat needs to be removed as a result of the selective cooling, the cooler can be dimensioned smaller. This saves space and costs, and the energy consumption of a vehicle equipped with the cooling circuit is reduced.
  • the advantage is achieved with the aid of a distributor for dividing the coolant flow over a plurality of parallel channels of the internal combustion engine.
  • the individual channels preferably supply areas of the engine with different cooling requirements.
  • the coolant supply can be "vertically" differentiated by arranging one channel in the engine block of the internal combustion engine and a second channel in the cylinder head. It is particularly expedient for tribological reasons to open the engine block a higher temperature level than the cylinder head area, in the latter a lower temperature is required for combustion reasons and because of the narrow material webs.
  • a "horizontal" differentiation can also be achieved by assigning different parallel coolant channels to the inner and outer cylinders of the engine, the internal the more heat-loaded cylinder are supplied with more coolant than the outer ones.
  • the ratio of the distribution of coolant to the various channels through the distributor can be predetermined by its design, the distribution ratios being expediently determined by the designer of the internal combustion engine in accordance with a cooling requirement predicted for the various areas of the engine.
  • the distributor be adjustable during operation of the internal combustion engine, in particular that a control device adjusts the distributor in each case in accordance with a desired temperature distribution in the internal combustion engine.
  • the distributor can be designed as a mixer, that is to say its total passage cross section is essentially constant regardless of the distribution ratio set, and only the proportion of the connected parallel channels in the passage cross section varies with the distribution ratio; however, it can also comprise a throttle valve in one of two parallel channels, the passage cross section of which can be adjusted in order to set a desired distribution between the two channels.
  • the attached figure shows schematically a cooling circuit according to the invention.
  • the figure shows in the form of a block diagram an embodiment of a cooling circuit according to the invention.
  • the cooling circuit comprises two cooling channels 4, 5, which run parallel to each other through an engine block 2 or a cylinder head 3 of an internal combustion engine 1.
  • the parallelism of the cooling channels 4, 5 is of course not to be seen in the narrow geometric sense, the channels are understood to be parallel here if they start from a common starting point and meet again at a common point and each carry part of the total coolant flow.
  • the cooling duct 5 runs through a heating heat exchanger
  • the heating heat exchanger is arranged in the cooling duct 5 because of it
  • Run-on temperature is generally higher and its throughput is greater than that of the cooling channel 4 of the cylinder head.
  • the two cooling channels 4, 5 combine to form a “hot line”
  • the mixer 9 divides the hot cooling water flow into a first partial flow, which is led to the cooler 11, and a second partial flow, which is led via a bypass line 10 parallel to the cooler 11 and is reunited with the first partial flow after the latter has passed the cooler 11 has gone through.
  • a thermostat 8 monitors the temperature of the cooling water in the hot line 7 and regulates the distribution ratio of the mixer 9 and thus the cooling capacity of the cooler 11 so that a predetermined target temperature is not exceeded.
  • a “cold line” 12 leads from the cooler 11 or the bypass 10 to an electrically operated coolant pump 13.
  • the cooling water passes through a distributor 14, which divides it into the two cooling channels 4, 5.
  • the distribution ratio in the distributor 14 is controllable, a control signal for this purpose is supplied by a control unit 15 which monitors the temperature of the motor 1 and which also regulates the delivery rate of the pump 13.
  • This control unit 15 can be a circuit specially provided for this purpose, which is connected to temperature sensors (not shown in the figure) for detecting temperatures of the engine block and the cylinder head or the cooling water emerging therefrom and which Distribution ratio of the distributor 14 sets so that none of these temperatures exceeds a predetermined maximum, the maximum for the cylinder head 3 being specified lower than for the engine block 2.
  • the temperature can also be determined in other ways, for example by measuring an average cooling water temperature , as recorded in a conventional manner in motor vehicles and displayed on the dashboard, and measuring the temperature of the cylinder head 3. diglich that there are several temperature measurements corresponding to the number of cooling channels, which allow a conclusion to the flow rate of the cooling water, which is required for each cooling channel to ensure adequate cooling.
  • the measurement of the oil temperature of the internal combustion engine can also be considered.
  • the control unit 15 can also be integrated in a conventional engine control unit, which takes on various control tasks, such as the setting of the air / fuel mixture, for the internal combustion engine and is connected to temperature sensors for this purpose.
  • a control device In order to implement the control unit in such a control device, it may be sufficient to equip it with an additional port for the control of the distributor and to extend a program executed by the control device by the steps required to calculate a distribution ratio of the distributor 14 on the basis of the Temperature measurements are required.
  • the invention is not limited to the case of two cooling channels. Depending on how differentiated the control of the engine cooling should be, the number of channels can be increased as required.

Abstract

Ein Kühlkreislauf für einen Verbrennungsmotor umfasst zwei parallele Kühlmittelkanäle (4, 5), und einen Verteiler (14) zum Aufteilen eines Kühlmittelstroms auf die parallelen Kanäle (4, 5).

Description

Kühlkreislauf für einen Verbrennungsmotor
Stand der Technik
Die Erfindung betrifft einen Kuhlkreislauf für einen Verbrennungsmotor .
Die Kühlung eines Verbrennungsmotors in einem Kraftfahrzeug erfolgt über ein Kühlmedium, das in einem Kühlkreislauf zirkuliert, der in herkömmlicher Weise durch den Verbrennungsmotor verlaufende Kanäle, einen Heizungswärmetauscher zum Beheizen einer Fahrgastzelle des Fahrzeugs, eine Pumpe und einen Kühler zum Abgeben der Abwärme des Verbrennungsmotors an die Umgebung umfaßt.
Das Kühlmedium tritt dabei zunächst in Kanäle des Motorblocks ein, durchströmt diesen in Längsric - tung, durchläuft anschließend einen Zylinderkopf des Verbrennungsmotors und gelangt anschließend zum Kühler. Über eine Zweigleitung kann ein Teil des durch den Motor fließenden Kühlmittelstroms abgegriffen und dem Heizungswärmetauscher zugeführt werden .
Der gesamte Volumenstrom des Kühlmittels ist bestimmt durch die Förderleistung der Pumpe und die Druckverluste in dem Kuhlkreislauf . Die Aufteilung des Kühlmittelstroms am Ort der zum Heizungswärmetauscher führenden Verzweigung ist ebenfalls durch die Druckverluste festgelegt.
Die Leistung der einzelnen Komponenten des Kühl- kreislaufs muß hier so bemessen werden, daß auch bei kritischen Bedingungen der Motor an der heißesten Stelle noch genügend Kühlung erfährt. Dies macht es bei den herkömmlichen über einen Keilriemen vom Verbrennungsmotor angetriebenen Kühlmittel- pumpen erforderlich, den Kühlmitteldurchsatz großzügig zu bemessen. Dies erfordert starke Pumpen mit großem Energieverbrauch. Um diesem Problem zu be- gegnen, ist in DE 37 02 028 Cl vorgeschlagen worden, die vom Verbrennungsmotor direkt angetriebene Pumpe durch eine elektrisch angetriebene Pumpe zu ersetzen, deren Förderleistung in Abhängigkeit von einem zeitlich veränderlichen Kühlleistungsbedarf regelbar ist. Auch bei einem solchen System ist es aber unerläßlich, einen starken Kühlmittelstrom durch den ganzen Motor zu pumpen, selbst wenn nur lokal die Gefahr einer Überhitzung besteht. Weniger heiße oder kühlungsbedürftige Teile des Motors wer- den so stärker gekühlt, als erforderlich, nur uw zu verhindern, daß die am stärksten gefährdeten Teile des Motors überhitzen. Hier besteht offensichtlich noch Optimierungsbedarf.
Vorteile der Erfindung
Durch die vorliegende Erfindung wird ein Kühlkreislauf für einen Verbrennungsmotor geschaffen, der es erlaubt, die Kühlleistung in unterschiedlichen Be- reichen des Motors an den tatsächlich bestehenden Kühlungsbedarf optimal anzupassen. Dadurch kann eine unter allen Betriebsbedingungen ausreichende Kühlung auch mit einer Pumpe mit verringerter För- derleistung garantiert werden. Da außerdem infolge der selektiven Kühlung insgesamt weniger Wärme abgeführt werden muß, kann der Kühler kleiner dimensioniert werden. So werden Platz und Kosten gespart, und der Energieverbrauch eines mit dem Kühl- kreislauf ausgestatteten Fahrzeugs wird vermindert.
Der Vorteil wird erreicht mit Hilfe eines Verteilers zum Aufteilen des Kühlmittelstroms auf eine Mehrzahl von parallelen Kanälen des Verbrennungsmo- tors . Dabei versorgen die einzelnen Kanäle vorzugsweise jeweils Bereiche des Motors mit unterschiedlichem Kühlungsbedarf . So kann einer bevorzugten Ausgestaltung der Erfindung zufolge zum Beispiel die Kühlmittelversorgung „vertikal" dadurch diffe- renziert werden, daß jeweils ein Kanal im Motorblock des Verbrennungsmotors und ein zweiter Kanal in dessen Zylinderkopf angeordnet sind. Insbesondere aus tribologischen Gründen ist es zweckmäßig, den Motorblock auf einem höheren Temperaturniveau als den Zylinderkopfbereich zu halten. In letzterem ist aus verbrennungstechnischen Gründen und wegen der schmalen Materialstege eine niedrigere Temperatur erforderlich.
Mit Hilfe des erfindungsgemäßen Verteilers kann aber auch eine „horizontale" Differenzierung erreicht werden, indem den inneren und äußeren Zylindern des Motors verschiedene parallele Kühlmittelkanäle zugeordnet werden, wobei die innenliegen- den, stärker wärmebelasteten Zylinder mit mehr Kühlmittel versorgt werden als die äußeren.
Das Verhältnis der Verteilung von Kühlmittel auf die verschiedenen Kanäle durch den Verteiler kann durch dessen Konstruktion fest vorgegeben sein, wobei die Verteilungsverhältnisse vom Konstrukteur des Verbrennungsmotors zweckmäßigerweise entsprechend einem für die verschiedenen Bereiche des Mo- tors prognostizierten Kühlungsbedarf festgelegt werden.
Bevorzugt ist, daß der Verteiler im Betrieb des Verbrennungsmotors einstellbar ist, insbesondere daß eine Steuereinrichtung den Verteiler jeweils entsprechend einer gewünschten Temperaturverteilung im Verbrennungsmotor einstellt. Der Verteiler kann als Mischer ausgebildet sein, das heißt sein Gesamtdurchlaßquerschnitt ist unabhängig vom einge- stellten Verteilungsverhältnis im wesentlichen konstant, und lediglich der Anteil der angeschlossenen parallelen Kanäle an dem Durchlaßquerschnitt variiert mit dem Verteilungsverhältnis; er kann aber auch in einem von zwei parallelen Kanälen ein Dros- selventil umfassen, dessen Durchlaßquerschnitt einstellbar ist, um eine gewünschte Verteilung zwischen den zwei Kanälen einzustellen.
Figur
Die beigefügte Figur zeigt schematisch einen erfindungsgemäßen Kühlkreislauf .
Beschreibung des Ausführungsbeispiels Die Figur zeigt in Form eines Blockdiagramms ein Ausführungsbeispiel für einen erfindungsgemäßen Kühlkreislauf. Der Kuhlkreislauf umfaßt zwei Kühlkanäle 4,5, die parallel zueinander jeweils durch einen Motorblock 2 beziehungsweise einen Zylinderkopf 3 eines Verbrennungsmotors 1 verlaufen. Die Parallelität der Kühlkanäle 4,5 ist dabei selbstverständlich nicht im engen geometrischen Sinne zu sehen, als parallel verstanden werden die Kanäle hier, wenn sie von einem gemeinsamen Ausgangspunkt ausgehen und sich an einem gemeinsamen Punkt wieder treffen und jeweils einen Teil des Gesamtkühlmittelstroms führen.
Nach seinem Austritt aus dem Motorblock 2 verläuft der Kühlkanal 5 durch einen Heizungswärmetauscher
6, wo ihm Wärme zur Beheizung der Fahrgastzelle eines Fahrzeugs entzogen werden kann, in das der Kühlkreislauf eingebaut ist. Der Heizungswärmetau- scher ist im Kühlkanal 5 angeordnet, da dessen
Nachlauftemperatur in der Regel höher und sein Durchsatz größer ist als der des Kühlkanals 4 des Zylinderköpfs .
Am Ausgang des Heizungswarmetauschers 6 vereinigen die zwei Kühlkanäle 4,5 zu einer „heißen Leitung"
7, die zu einem durch einen Thermostaten 8 geregelten Mischer 9 führt. Der Mischer 9 teilt den heißen Kühlwasserstrom in einen ersten Teilstrom, der zum Kühler 11 geführt wird, und einen zweiten Teilstrom auf, der über eine zum Kühler 11 parallele Bypass- leitung 10 geführt wird und sich mit dem ersten Teilstrom wiedervereinigt, nachdem dieser den Kühler 11 durchlaufen hat. Ein Thermostat 8 überwacht die Temperatur des Kühlwassers in der heißen Leitung 7 und regelt das Aufteilungsverhältnis des Mischers 9 und damit die Kühlleistung des Kühlers 11 so, daß eine vorgegebene Solltemperatur nicht überschritten wird. Eine „kalte Leitung" 12 führt vom Kühler 11 beziehungsweise dem Bypass 10 zu einer elektrisch betriebenen Kühlmittelpumpe 13.
Ausgehend von der Pumpe 13 durchläuft das Kühlwasser einen Verteiler 14, der es auf die zwei Kühlkanäle 4,5 aufteilt. Das Aufteilungsverhältnis im Verteiler 14 ist steuerbar, ein Steuersignal zu diesem Zweck wird von einer Steuereinheit 15 geliefert, die die Temperatur des Motors 1 überwacht, und die auch die Förderleistung der Pumpe 13 regelt. Bei dieser Steuereinheit 15 kann es sich um eine speziell für diesen Zweck vorgesehene Schal- tung handeln, die mit (in der Figur nicht dargestellten) Temperatursensoren zum Erfassen von Temperaturen des Motorblocks und des Zylinderkop s oder des jeweils daraus austretenden Kühlwassers verbunden ist und die das Verteilungsverhältnis des Verteilers 14 so einstellt, daß keine dieser Temperaturen ein vorgegebenes Maximum überschreitet, wobei das Maximum für den Zylinderkopf 3 niedriger vorgegeben ist als für den Motorblock 2. Selbstverständlich kann die Temperatur auch auf anderem Wege erfaßt werden, zum Beispiel durch Messen einer mittleren Kühlwassertemperatur, so wie sie in herkömmlicher Weise bei Kraftfahrzeugen erfaßt und am Armaturenbrett angezeigt wird, und Messen der Temperatur des Zylinderkopfs 3. Entscheidend ist le- diglich, daß mehrere Temperaturmeßwerte entsprechend der Zahl der Kühlkanäle vorliegen, die einen Rückschluß auf die Durchflußrate des Kühlwassers erlauben, die für jeden Kühlkanal erforderlich ist, um eine ausreichende Kühlung zu gewährleisten. Auch die Messung der Öltemperatur des Verbrennungsmotors kommt in Betracht .
Die Steuereinheit 15 kann auch in ein herkömmliches Motorsteuergerät integriert sein, das diverse Regelungsaufgaben wie etwa die Einstellung des Luft- kraftstoffgemisches, für den Verbrennungsmotor übernimmt und zu diesem Zweck mit Temperatursenso- ren verbunden ist . Um die Steuereinheit in einem solchen Steuergerät zu implementieren, kann es ausreichen, dieses mit einem zusätzlichen Port für die Steuerung des Verteilers auszustatten und ein von dem Steuergerät ausgeführtes Programm um diejenigen Schritte zu erweitern, die zum Berechnen eines Ver- teilungsverhaltnisses des Verteilers 14 anhand der Temperaturmeßwerte erforderlich sind.
Selbstverständlich ist die Erfindung nicht auf den Fall von zwei Kühlkanälen beschränkt. Je nachdem, wie differenziert die Regelung der Motorkühlung sein soll, kann die Zahl der Kanäle nach Bedarf erhöht werden.

Claims

Patentansprüche
1. Kuhlkreislauf für einen Verbrennungsmotor (1) mit einem ersten Kühlmittelkanal (4) , dadurch gekennzeichnet, daß wenigstens ein zweiter Kühlmittelkanal (5) parallel mit dem ersten Kanal (4) ver- bunden angeordnet ist, und daß ein Verteiler (14) zum Aufteilen eines KühlmittelStroms auf die parallelen Kanäle (4,5) im Kühlkreislauf angeordnet ist.
2. Kühlkreislauf nach Anspruch 1, dadurch gekenn- zeichnet, daß der erste Kanal (4) im Zylinderkopf
(3) des Verbrennungsmotors (1) der zweite Kanal (5) im Motorblock (2) angeordnet ist.
3. Kuhlkreislauf nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß inneren und äußeren Zylindern des Verbrennungsmotors verschiedene parallele Kühl- kanäle zugeordnet sind.
4. Kuhlkreislauf nach einem der vorhergehenden An- sprüche, dadurch gekennzeichnet, daß ein Wärmetauscher (6) zum Beheizen einer Fahrgastzelle in einem (5) der parallelen Kanäle in Reihe angeordnet ist.
5. Kühlkreislauf nach einem der vorhergehenden An- sprüche, dadurch gekennzeichnet, daß der Verteiler
(14) einstellbar ist.
6. Kühlkreislauf nach Anspruch 5, gekennzeichnet durch eine Steuereinheit (15) , die den Verteiler (14) so einstellt, daß eine höhere Temperatur im Motorblock (2) als im Zylinderkopf (3) erhalten wird.
7. Kühlkreislauf nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er eine elektrisch betriebene Kühlmittelpumpe (13) umfaßt.
8. Kuhlkreislauf nach Anspruch 5 und Anspruch 7, dadurch gekennzeichnet, daß der Durchsatz der Kühlmittelpumpe (13) von der Steuereinheit (15) gesteuert ist.
9. Kühlkreislauf nach einem der vorhergehenden An- sprüche, dadurch gekennzeichnet, daß der Verteiler
(14) als Mischer ausgebildet ist.
10. Kühlkreislauf nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Verteiler (14) we- nigstens ein in einem der parallelen Kanäle (4,5) angeordnetes Drosselventil umfaßt.
PCT/DE2000/002616 1999-08-14 2000-08-05 Kühlkreislauf für einen verbrennungsmotor WO2001012963A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR0006998-1A BR0006998A (pt) 1999-08-14 2000-08-05 Circuito de refrigeração
JP2001517036A JP2003507617A (ja) 1999-08-14 2000-08-05 内燃機関のための冷却回路
KR1020017004589A KR20010085912A (ko) 1999-08-14 2000-08-05 내연기관용 냉각회로
EP00963871A EP1121515A1 (de) 1999-08-14 2000-08-05 Kühlkreislauf für einen verbrennungsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19938614A DE19938614A1 (de) 1999-08-14 1999-08-14 Kühlkreislauf für einen Verbrennungsmotor
DE19938614.5 1999-08-14

Publications (1)

Publication Number Publication Date
WO2001012963A1 true WO2001012963A1 (de) 2001-02-22

Family

ID=7918427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002616 WO2001012963A1 (de) 1999-08-14 2000-08-05 Kühlkreislauf für einen verbrennungsmotor

Country Status (6)

Country Link
EP (1) EP1121515A1 (de)
JP (1) JP2003507617A (de)
KR (1) KR20010085912A (de)
BR (1) BR0006998A (de)
DE (1) DE19938614A1 (de)
WO (1) WO2001012963A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051870B2 (en) 2012-01-19 2015-06-09 Ford Global Technologies, Llc Coolant circuit for internal combustion engine with inlet-side flow control

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035770A1 (de) * 2000-07-22 2002-01-31 Bosch Gmbh Robert Verfahren zur optimalen Steuerung der Kühlleistung eines Motors eines Kraftfahrzeugs
DE10119969A1 (de) * 2001-04-24 2002-10-31 Bosch Gmbh Robert Durch Flüssigkeit gekühlte Hubkolbenbrennkraftmaschine
DE10153486A1 (de) 2001-10-22 2003-05-08 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE10210303B4 (de) * 2002-03-08 2007-05-03 Robert Bosch Gmbh Kühlkreislauf für einen Verbrennungsmotor
DE10222102A1 (de) 2002-05-17 2003-11-27 Basf Ag Verfahren und Vorrichtung zum Kühlen eines Verbrennungsmotors
FR2845420B1 (fr) * 2002-10-04 2006-01-27 Mark Iv Systemes Moteurs Sa Circuit de refroidissement comportant un organe de regulation du flux
US6955141B2 (en) * 2003-08-06 2005-10-18 General Motors Corporation Engine cooling system
DE10342935B4 (de) * 2003-09-17 2015-04-30 Robert Bosch Gmbh Verbrennungskraftmaschine mit einem Kühlkreislauf
DE10343775B4 (de) * 2003-09-18 2014-09-18 Volkswagen Ag Leistungsbedarfsgesteuertes Kühl- und Heizsystem für Kraftfahrzeuge mit unabhängig von der Brennkraftmaschine antreibbarer Fördervorrichtung
FR2856426B1 (fr) * 2004-08-19 2006-06-09 Mark Iv Systemes Moteurs Sa Circuit de refroidissement comportant un organe de regulation du flux
KR100836686B1 (ko) 2004-12-23 2008-06-10 현대자동차주식회사 엔진의 가변 분리냉각 구조
DE102005062294A1 (de) * 2005-12-24 2007-06-28 Dr.Ing.H.C. F. Porsche Ag Verfahren zur Kühlung einer Brennkraftmaschine
FR2932845B1 (fr) * 2008-06-24 2011-04-22 Peugeot Citroen Automobiles Sa Procede et dispositif de refroidissement d'un moteur thermique.
FR2954405B1 (fr) * 2009-12-22 2012-01-13 Renault Sa Dispositif de refroidissement pour vehicule automobile
DE102010015107B4 (de) * 2010-04-16 2014-01-02 Audi Ag Kühlmittelkreislauf für eine Brennkraftmaschine eines Kraftfahrzeugs
JP5526982B2 (ja) * 2010-04-27 2014-06-18 株式会社デンソー 内燃機関冷却装置
JP2011236831A (ja) * 2010-05-11 2011-11-24 Denso Corp 内燃機関の冷却構造および冷却システム
DE102015213879A1 (de) * 2015-07-23 2017-01-26 Bayerische Motoren Werke Aktiengesellschaft Brennkraftmaschine mit geteiltem Kühlsystem
SE540433C2 (en) * 2017-01-26 2018-09-18 Scania Cv Ab A cooling system for cooling a combustion engine and a vehicle comprising such a cooling system
DK3379040T3 (da) * 2017-03-20 2021-04-12 Lumenion Gmbh Kraftværk til generering af elektrisk energi og fremgangsmåde til drift af et kraftværk

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206721A (en) * 1981-06-13 1982-12-18 Mazda Motor Corp Cooler for engine with controlled number of cylinders
US4423705A (en) * 1981-03-26 1984-01-03 Toyo Kogyo Co., Ltd. Cooling system for liquid-cooled internal combustion engines
JPS6019912A (ja) * 1983-07-11 1985-02-01 Daihatsu Motor Co Ltd 内燃機関の冷却装置
EP0442489A1 (de) * 1990-02-16 1991-08-21 Nippondenso Co., Ltd. Verfahren zum Kühlen einer Brennkraftmaschine und eine Kühlungseinrichtung dafür
DE3702028C2 (de) 1987-01-24 1997-04-30 Wilo Gmbh Verbrennungsmotor mit Wasserkühlung
EP0894953A1 (de) * 1997-08-01 1999-02-03 C.R.F. Società Consortile per Azioni Kühlanlage für eine Brennkraftmaschine eines Kraftfahrzeugs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4423705A (en) * 1981-03-26 1984-01-03 Toyo Kogyo Co., Ltd. Cooling system for liquid-cooled internal combustion engines
JPS57206721A (en) * 1981-06-13 1982-12-18 Mazda Motor Corp Cooler for engine with controlled number of cylinders
JPS6019912A (ja) * 1983-07-11 1985-02-01 Daihatsu Motor Co Ltd 内燃機関の冷却装置
DE3702028C2 (de) 1987-01-24 1997-04-30 Wilo Gmbh Verbrennungsmotor mit Wasserkühlung
EP0442489A1 (de) * 1990-02-16 1991-08-21 Nippondenso Co., Ltd. Verfahren zum Kühlen einer Brennkraftmaschine und eine Kühlungseinrichtung dafür
EP0894953A1 (de) * 1997-08-01 1999-02-03 C.R.F. Società Consortile per Azioni Kühlanlage für eine Brennkraftmaschine eines Kraftfahrzeugs

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 063 (M - 200) 16 March 1983 (1983-03-16) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 139 (M - 387) 14 June 1985 (1985-06-14) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051870B2 (en) 2012-01-19 2015-06-09 Ford Global Technologies, Llc Coolant circuit for internal combustion engine with inlet-side flow control

Also Published As

Publication number Publication date
DE19938614A1 (de) 2001-02-22
BR0006998A (pt) 2001-06-26
JP2003507617A (ja) 2003-02-25
EP1121515A1 (de) 2001-08-08
KR20010085912A (ko) 2001-09-07

Similar Documents

Publication Publication Date Title
EP1121515A1 (de) Kühlkreislauf für einen verbrennungsmotor
DE10134678A1 (de) Vorrichtung zum Kühlen und Heizen eines Kraftfahrzeuges
DE60005872T2 (de) Brennkraftmaschine mit getrennten Kühlkreisläufen für den Zylinderkopf und den Motorblock
DE60122263T2 (de) Kühlungseinheit für Kraftfahrzeuge
DE102005049052B4 (de) Verfahren zum Betrieb eines Fahrzeugkühlmittelsystems während eines Heizereignisses
DE102014201717A1 (de) Brennkraftmaschine mit flüssigkeitsgekühltem Zylinderkopf und Zylinderblock und Verfahren zur Steuerung der Kühlung einer derartigen Brennkraftmaschine
DE102013214838A1 (de) Brennkraftmaschine mit flüssigkeitsgekühltem Zylinderkopf und flüssigkeitsgekühltem Zylinderblock und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE69935732T2 (de) Gehäuse für die kühlflüssigkeitspumpe eines fahrzeuges
EP1454039B1 (de) Verfahren zur temperaturregelung eines motors
DE19959485C2 (de) Steuerungs- und Regelsystem für die Schmierölversorgung einer Rotorlagerung eines Abgasturboladers
DE102004021551A1 (de) Kühlsystem, insbesondere für ein Kraftfahrzeug
DE10154926A1 (de) Kühlmittelkreislauf für eine Brennkraftmaschine
EP2636959B1 (de) Heizkörperregelung
EP0032676A2 (de) Einrichtung zum Beheizen einer Bedienungskabine
DE112018002922T5 (de) Kühlvorrichtung und kühlverfahren für einen verbrennungsmotor
EP2562380A2 (de) Wärmetauschersystem und Verfahren zum Betreiben eines Wärmetauschersystems für ein Fahrzeug
DE102006048770B4 (de) Gerät zur Temperierung von Formwerkzeugen, beispielweise von Spritzgießmaschinen
DE4308002C1 (de) Verteilereinrichtung für das Kühl- bzw. Heizsystem von Fahrzeugen mit Verbrennungsmotoren
EP1253303B1 (de) Durch Flüssigkeit gekühlte Hubkolbenbrennkraftmaschine
DE4121379A1 (de) Verfahren zum betreiben einer kuehleinrichtung fuer eine brennkraftmaschine und kuehleinrichtung zur durchfuehrung des verfahrens
DE102004050436B4 (de) Kühleinrichtung für eine Brennkraftmaschine mit mindestens drei Kühlern
EP0693375B1 (de) Druckmaschinen-Temperierungsvorrichtung
DE4429520A1 (de) Verfahren und Vorrichtung zur Temperierung von Temperierflüssigkeit in Druckmaschinen
DE19641558A1 (de) Verfahren und Steuerung zur Regelung des Kühlkreislaufes eines Fahrzeuges mittels einer thermisch geregelten Wasserpumpe
DE10301797A1 (de) Brennkraftmaschine mit einem Kühlmittelkreislauf

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000963871

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 517036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017004589

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09807188

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000963871

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000963871

Country of ref document: EP