WO2001010243A1 - Procede de production d'aliments transformes au soja et dispositif de chauffage-desaeration destine a la production de soupe de soja broye - Google Patents

Procede de production d'aliments transformes au soja et dispositif de chauffage-desaeration destine a la production de soupe de soja broye Download PDF

Info

Publication number
WO2001010243A1
WO2001010243A1 PCT/JP2000/005140 JP0005140W WO0110243A1 WO 2001010243 A1 WO2001010243 A1 WO 2001010243A1 JP 0005140 W JP0005140 W JP 0005140W WO 0110243 A1 WO0110243 A1 WO 0110243A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
juice
degassing
soup
soybean
Prior art date
Application number
PCT/JP2000/005140
Other languages
English (en)
French (fr)
Inventor
Motokazu Kikuchi
Hideo Shidara
Masato Endo
Shoji Wakao
Original Assignee
Morinaga Milk Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co., Ltd. filed Critical Morinaga Milk Industry Co., Ltd.
Priority to CA002346100A priority Critical patent/CA2346100C/en
Priority to JP2001514782A priority patent/JP4313530B2/ja
Priority to DE60027996T priority patent/DE60027996T2/de
Priority to EP00948341A priority patent/EP1118275B1/en
Priority to US09/806,804 priority patent/US6688214B1/en
Publication of WO2001010243A1 publication Critical patent/WO2001010243A1/ja
Priority to US10/682,224 priority patent/US7147886B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/10Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins
    • A23C11/103Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing or not lactose but no other milk components as source of fats, carbohydrates or proteins containing only proteins from pulses, oilseeds or nuts, e.g. nut milk
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/05Mashed or comminuted pulses or legumes; Products made therefrom
    • A23L11/07Soya beans, e.g. oil-extracted soya bean flakes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/30Removing undesirable substances, e.g. bitter substances
    • A23L11/31Removing undesirable substances, e.g. bitter substances by heating without chemical treatment, e.g. steam treatment, cooking
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
    • A23L11/60Drinks from legumes, e.g. lupine drinks
    • A23L11/65Soy drinks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0068General arrangements, e.g. flowsheets

Definitions

  • the present invention relates to a method for producing processed soybean foods such as tofu, soymilk, yuba and the like, and a device for heating and degassing a soybean soup obtained by grinding soybeans, in which a blueish unpleasant odor unique to soybeans can be effectively removed. Things. Background art
  • soybean processed foods such as tofu, soymilk, and yuba
  • an operation of adding raw soybeans to a liquid state is performed.
  • This operation involves immersing well-washed raw soybeans in water for about 1 ⁇ and swelling it to about twice the volume. Adding a suitable amount of water to the swollen raw soybeans to grind the soybeans. Is heated until it reaches a predetermined temperature to thermally denature. Before or after the heating step, a separation step for separating okara is performed as necessary. In the case of manufacturing soymilk for drinking, etc., the immersion step may be omitted.
  • the soybean processed food is manufactured by further processing the soybean juice obtained through the above steps. For example, tofu can be obtained by adding a coagulant to kusui and coagulating it.
  • the heating step is a step in which harmful substances contained in soybeans are rendered harmless by heating, and the soybean proteins are loosened so that they are easily digested and absorbed. Yes (Ganni Tsuchiya, "Soy Milk", p. 121, Food Research Institute, 1980).
  • This heating step can be divided into a heating step of heating and increasing the temperature of the soybean juice, and a heat denaturation step of thermally denaturing the soybean protein by holding the heated soybean juice for a predetermined time.
  • a heating step of heating and increasing the temperature of the soybean juice and a heat denaturation step of thermally denaturing the soybean protein by holding the heated soybean juice for a predetermined time.
  • heat denaturation is performed while raising the temperature of the soup, and in many cases the heating step and the heat denaturation step cannot be separated.
  • soy protein has the property of being very susceptible to air. As a result, if the kusui entrained a large amount of air in the grinding process and many bubbles were mixed in the kusui, the final product could be adversely affected.
  • a technique for removing air bubbles from the soup using a deaerator is known.
  • a technology disclosed in Japanese Patent Application Laid-Open No. 52-54069 to remove air bubbles from kure juice using a deaerator before performing a heating process There is a technique disclosed in Japanese Patent Application Publication No. 1-195660, in which a deaeration step is performed after a heating step.
  • An object of the present invention effectively removes the grassy smell of soybean peculiar to remove air bubbles mixed in the Gojiru, c of the present invention is to provide a soybean processed food of high quality than ever
  • the method for producing soybeans is a method for producing processed soybean food comprising a grinding step (A) in which raw soybeans are ground to obtain a soybean juice, and a heating step (B) in which the obtained soybean juice is heated and denatured by heating.
  • a deaeration step (C) for removing air bubbles mixed in the kure juice is performed.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of the apparatus for heating and deaeration of a soup of the present invention.
  • FIG. 2 is a view showing the appearance of another embodiment of the apparatus for heating and deaeration of a soup juice of the present invention.
  • FIG. 3 is a view showing the appearance of another embodiment of the apparatus for heating and deaeration of a soup juice of the present invention.
  • the heating step (B) and the degassing step (C) are performed continuously.
  • the heating step (B) is composed of a first heating step of raising the temperature of the kure soup to a predetermined intermediate temperature and a second heating step of further heating the kure soup.
  • the deaeration step (C) is performed in the first heating step. It is preferable to perform it between the heating step and the second heating step.
  • the deaeration step (C) is preferably performed at the stage when the temperature of the soup reaches a temperature range of 75 to 125 ° C. It is preferable to perform the deaeration step (C) when the temperature reaches the temperature range of C.
  • the degassing step (C) is a method of removing air bubbles by reducing the pressure of the soup so as to lower the temperature of the soup by at least 3 ° C or more.
  • the heating step (B) it is preferable to alternately flow the kusui into the large-diameter pipe and the small-diameter pipe.
  • the kure juice is linearly arranged in a large-diameter pipe. Flow alternately into a small pipe and a small diameter pipe that is bent into a turn shape. Is preferred. Further, it is preferable that steam is blown into the kure juice in a small-diameter pipe bent into a turning shape to heat the kure juice.
  • the heat deaerator for kusu soup comprises: a first heating device for raising the temperature of a kusu soup to a predetermined intermediate temperature; and a deaerator for degassing the kusu juice that has reached the intermediate temperature with the first heating device. It further comprises a second heating device for further heating the juice degassed by the degassing device to complete the thermal denaturation.
  • the first heating device and the second heating device each include: a liquid sending pipe through which the goji juice continuously flows; a steam mixing device that mixes and heats the goji juice flowing through the liquid sending pipe; It is preferable that the liquid pipe is provided with a liquid sending pump for sending the soup.
  • the large-diameter pipe and the small-diameter pipe are alternately connected to each other, and the liquid-feeding pipe is bent into a shape that turns between a plurality of large-diameter pipes that are linearly arranged. It is preferable that a small-diameter pipe is provided. Furthermore, it is preferable that a steam mixing device that blows steam into the kure juice is connected to a part of the small-diameter pipe that is bent into a turning shape.
  • the degassing device includes a degassing chamber for temporarily storing the soybean soup, and a suction device for sucking air from the degassing chamber.
  • the production method of the present invention is a production method comprising a grinding step (A) for grinding raw soybeans to obtain a soup, and a heating step (B) for heating and denaturing the obtained soybean juice.
  • the special teaching is to perform a degassing step (C) to remove air bubbles mixed in the kure juice in the middle of the step (B).
  • the wusu juice has a low viscosity because it is heated, and it is easy to remove air bubbles mixed in the wusu juice.
  • thermal denaturation did not proceed sufficiently, and at this point, the odor of the soybean juice was not adsorbed to the soybean protein. Therefore, if the degassing step (C) is performed during the heating step ( ⁇ ), the odor can be efficiently removed from the juice. Therefore, a high deodorizing effect which cannot be obtained by the conventional method of performing the deaeration step before or after the heating step can be obtained.
  • the degassing step (C) may be performed once the heating operation is stopped, or may be performed while heating. In the production method of the present invention, if necessary, before the grinding step (A), the raw soybean is immersed in water to swell, and before the heating or after the heating, the soup is squeezed. And the like can be carried out as appropriate.
  • the middle of the heating step (B) is a period during which the kusui is heated to a temperature higher than room temperature, and is not particularly limited.
  • the deaeration step (C) can be performed during a temperature raising step of heating and increasing the temperature of the soybean juice, or during a heat denaturing step of thermally maintaining the heated soybean soup at a predetermined temperature.
  • a degassing step (C) may be performed between the temperature raising step and the heat denaturation step.
  • the deaeration step (C) is completed before the thermal denaturation of the kure juice starts. That is, in the case of this example, it is preferable that the degassing step (C) is performed during the heating step or between the heating step and the thermal denaturation step.
  • the heating step (B) is performed by heating the kusu soup to a predetermined intermediate temperature and heating it, and a second heating step of further heating the kusui soup. It is preferable that the deaeration step (C) is performed between the first heating step and the second heating step.
  • the kure juice in the first heating step, the kure juice is heated to an intermediate temperature, and then the deaeration step (C) for degassing the kure juice is performed, and thereafter, the kure juice is maintained at the temperature after the deaeration step in the second heating step. Or raise the temperature of the kusui to a predetermined final temperature, or hold the temperature after raising the temperature of the kusui to the predetermined final temperature.
  • the intermediate temperature is preferably set to a temperature range of 75 to 125 ° C., more preferably 75 to 100 ° C., and still more preferably 80 to 100 ° C.
  • the temperature of the kusu juice is lower than 75 ° C, the viscosity of the kusu juice is so high that it is difficult to remove fine bubbles in the kusu juice, and it may not be possible to deaerate effectively.
  • the viscosity of the kusu juice decreases around 75 ° C. Therefore, the viscosity of the soup is low, deaeration can be performed efficiently, thermal denaturation of soy protein has not progressed much, and there is little waste in energy. It is preferable to set the intermediate temperature in the above temperature range.
  • the kusu can be degassed effectively, and a high deodorizing effect can be exhibited.
  • the processed soybean food produced here is a coagulated food such as tofu
  • raising the temperature of the soybean juice to a temperature exceeding 100 ° C decreases the coagulating power of the soybean juice, so the intermediate temperature is set at 75 to 10%. It is particularly preferable to set the temperature in the range of 0 ° C.
  • the degassing step (C) it is preferable to depressurize the juice so as to lower the temperature of the soup at least 3 ° C. or more, and to deaerate bubbles. Further, it is preferable to lower the temperature of the soup juice by 3 to 15 ° C.
  • the decrease in the temperature of the kusu juice occurs when the pressure in the degassing chamber is reduced, so that the boiling point of the kusu juice falls and it becomes easy to boil, and the latent heat of evaporation is lost according to the amount of evaporation of the kusui at the time of boiling.
  • the pressure in the deaeration chamber is set so that the temperature of the soup after deaeration is at least 3 ° C lower than before deaeration. Then, the internal pressure of the degassing chamber can be set to a pressure at which the kure juice is slightly boiled, which is preferable because degassing can be performed efficiently.
  • the pressure in the deaeration chamber can be adjusted, and as a result, the degree of deaeration of the soup can be adjusted.
  • the temperature difference between the kusui before and after the deaeration step (C) is less than 3 ° C, the boiling of the kusui is weak and the deaeration effect may not be sufficiently obtained.
  • the effect of deaeration increases as the temperature difference between the soups before and after the degassing step (C) increases, but even when the temperature difference increases to about 15 ° C, it is compared with the case of 15 ° C or less.
  • the effect of degassing remains unchanged. Therefore, from the viewpoint of the degassing effect and energy saving, it is preferable to set the temperature difference of the soybean soup before and after the degassing step (C) to 3 to 15 ° C.
  • the soup is kept at the temperature after the degassing step (C) according to the set intermediate temperature and the temperature of the soup after the degassing step (C).
  • Either the method may be performed by appropriately selecting either of the following methods: elevating the temperature of the kure soup to a predetermined final temperature, or maintaining the temperature of the kure soup after elevating the temperature to the predetermined final temperature. It is preferable that the kusu juice is finally heated to a temperature in the range of 95 to 125 ° C., since heat denaturation can be completed.
  • the intermediate temperature is set to a relatively low temperature of less than 95 ° C, and if the heat denaturation of the soup is not sufficiently advanced in the first heating step, a higher temperature may be used in the second heating step. It is preferable to raise the temperature of the soybean juice to a final temperature of 95 to 125 ° C. to promote thermal denaturation. If the intermediate temperature is set to a relatively high temperature of about 125 ° C, and the heat denaturation of the kusui is progressing in the first heating step, the kusui is not heated in the second heating step, but is removed. What is necessary is just to hold at the temperature after an air process (C).
  • the degree of heating and heating is appropriately adjusted in accordance with the intermediate temperature set in the first heating step and the degree of temperature decrease in the subsequent deaeration step (C). You can choose. It can also be determined according to the type of processed soybean food. For example, in the case of beverages such as soy milk, after heating to 105 ° C. in the first heating step, the temperature is reduced to about 100 ° C. in the deaeration step, and then, in the second heating step, 1 2 A method of heating to 0 ° C. and holding for about 3 to 15 minutes is preferred.
  • the heating step (B) and the degassing step (C) can be performed using a known heating device and a known degassing device.
  • Heating devices include surface heat exchangers, plate heat exchangers, double tube heat exchangers, multi-tube heat exchangers, coil heat exchangers, flat plate heat exchangers, scraped heat exchangers, etc.
  • Indirect heating type heating devices and direct heating type heating devices such as injection type and infusion type heating devices, which mix and heat steamed wort, can be used. Good heating is preferable.
  • an indirect heating type heating device if an indirect heating type heating device is used, soybean protein tends to scorch on the heat transfer surface of the device, so care must be taken in operating conditions and operating time.
  • a desirable heating device is an induction-type continuous orifice device that heats the kure juice by continuously blowing steam into the continuously flowing kure juice.
  • the following are most desirable as such devices.
  • a steam pipe is merged with a pipe through which the kure juice flows at a portion where steam is blown into the kure juice.
  • a steam outlet may be provided.
  • this steam outlet It is desirable to make the openings open in the direction in which the juice flows (the direction from the upstream to the downstream of the flow of the juice).
  • the diameter (inner diameter) of the pipe through which the kure juice flows is designed to be small in the portion where the steam is blown into the juice.
  • the pipe through which the soup flows is appropriately turned, for example, in a U-shape (this is to reduce the installation area of the apparatus).
  • a desirable heating apparatus of the present invention is as follows. Even at the point where the pipe where the kure juice flows turns, the diameter of the pipe through which the kure juice flows is designed to be small.
  • the diameter of the turning portion is in the range of 34 to 1/5 as compared with the diameter of the pipe through which the kure juice flows.
  • the present invention can obtain a more remarkable effect by bringing the soup into a stirring state in which it is danced while flowing in the state of a piston flow, and by heating and deaeration.
  • Any degassing device can be used as long as it can remove air bubbles from the kure juice.
  • a degassing chamber and a device equipped with a suction device that sucks air in the degassing chamber are used to degas.
  • the centrifugal force is generated by swirling the liquid, and the buoyancy opposing the centrifugal force collects the bubbles at the center of the swirl, and the liquid cyclone that removes the bubbles from the center and the liquid by mechanical power.
  • a centrifugal separator that removes air bubbles by turning.
  • the heating step (B) and the degassing step (C) may be performed either batchwise or continuously.
  • the heating step (B) and the degassing step (C) can be performed efficiently by such a batch method. However, in order to perform these steps more efficiently, the heating step (B) And the degassing step (C) is preferably performed continuously.
  • a continuous heating device is connected in series, and a continuous deaerator is installed between each heating device.
  • the heating step (B) and the degassing step (C) can be performed continuously.
  • the number of continuous deaerators is not limited to one but may be two or more as long as they are provided between heating devices.
  • it is preferable that other steps such as a grinding step and a separation step are also continuously performed.
  • FIG. 1 is a schematic configuration diagram showing one embodiment of the heating and deaerator 1 of the present invention.
  • the use of this apparatus 1 is preferable because the heating step (B) and the degassing step (C) can be continuously and efficiently performed.
  • the heating and degassing device 1 includes a first heating device 10 for raising the temperature of the soup to a predetermined intermediate temperature, and a degassing device 2 for degassing the juice that has reached the intermediate temperature in the first heating device 10. 0, and a second heating device 30 that further heats the soybean soup degassed by the degassing device 20 to complete the thermal denaturation.
  • this heating deaerator 1 has a kure juice storage tank 2 for storing the kure juice before heating. Provided.
  • the juice in the soybean juice storage tank 2 is sent through a liquid sending pipe 12 of a first heating device 10 by a constant-quantity liquid sending pump 11, and after being heated, a deaerator 20.
  • the second heating device 30 is sequentially circulated.
  • the first heating device 10 and the second heating device 30 are provided with a hot water supply pipe 12, 32, through which the juice is continuously circulated, and a hot water flowing through the liquid sending pipes 12, 32, at a high temperature.
  • the apparatus comprises steam mixing devices 13 and 33 for mixing the steam, and liquid pumps 11 and 31 for transmitting the soybean soup into the liquid supply pipes 12 and 32, respectively. Therefore, an arbitrary flow rate of the soup is sent to the liquid sending pipes 12 and 32 in the first heating device 10 and the second heating device 20 and the liquid sending pipes 1 2 and 3 2 Steam can be directly mixed with the kusu that circulates and heated. Steam is supplied from the steam supply unit 100 to the steam mixing devices 13 and 33 through the branch pipes 110 and 120.
  • the steam mixing devices 13 and 33 are not limited as long as steam can be directly mixed into the liquid supply pipes 12 and 32, and a check valve or the like is provided. It is also possible not to flow into the 33 side.
  • the steam supply rate can be controlled by the pressure regulating valves 1 1 1 and 1 2 1.
  • the degassing device 20 includes a degassing chamber 21 for temporarily storing juice, and a suction device for sucking air in the degassing chamber 21.
  • As the suction device an ejector 13 that suctions air by the dynamic pressure of a water flow, a known vacuum pump, or the like is used.
  • reference numeral 24 denotes a water pipe, and an end 25 of the water pipe is connected to a water source (not shown).
  • the dashed line indicates the flow of water for driving the ezeter 23.
  • the kusui has a large contact area with the air, so that the kusui heated by the first heating device 10 can be formed when entering the degassing chamber 21. It is preferably introduced so as to come into wide contact with the air. For example, if the end of the liquid feed pipe 3 connected from the first heating device 10 to the degassing chamber 21 is connected along the inner wall surface of the degassing chamber 21, the degassing chamber Since the soup flowing into 21 rotates inside the degassing chamber 21 along the inner wall surface, the contact area can be increased.
  • Examples of the method include a method of dropping a plurality of lines of kure juice from above in the air chamber 21 and a method of dropping the kure juice.
  • the viscosity of the juice is high, the area where the juice and the air come in It is not necessary to spread it, and it is also possible to simply flow the soup into the degassing chamber 21.
  • a method of heating and degassing the soup using the heating and degassing apparatus 1 will be described.
  • the kure juice stored in the kure juice storage tank 2 is circulated through the liquid supply pipe 12 in the first heating device 10 by the constant-quantity liquid supply pump 11.
  • the steam for heating is blown from the steam supply device 13 into the kusu in the liquid sending pipe 12, and the kusu is heated to the intermediate temperature.
  • the temperature and pressure of the soup can be checked with thermometer 5 and manometer 4, respectively.
  • the temperature of the soup can be adjusted by adjusting the opening of the control valve 111 of the steam supply unit 100 to increase or decrease the amount of steam.
  • the kure juice that has reached the intermediate temperature is sent to the degassing device 20 through the liquid sending pipe 3 and flows into the degassing chamber 21 of the degassing device 20.
  • the air in the degassing chamber 21 is sucked in by the ejector 13, and the inside of the degassing chamber 21 is depressurized to deaerate the soup.
  • the internal pressure of the deaeration chamber 21 can be monitored by a pressure gauge 26, and the pressure of the deaeration chamber 21 is reduced by a vacuum breaker 27 to prevent the internal pressure of the deaeration chamber 21 from becoming too low. Can also be controlled.
  • thermometer 5 and thermometer 7 Aspirate so that the temperature difference between the inlet and outlet sides of the degassing chamber 21, that is, the temperature difference before and after degassing, becomes a predetermined value. Adjust the degree of adjustment.
  • the juice that has passed through the degassing chamber 21 passes through the liquid sending pipe 6 and reaches the second heating device 30.
  • the liquid feed pump 3 In the second heating device 30, as in the case of the first heating device 10, the liquid feed pump 3
  • the kure juice is sent to the liquid sending pipe 3 2 by 1, and the steam for heating is blown into the kusu in the liquid sending pipe 3 2 from the steam supply device 33, so that the kure juice is further heated.
  • the temperature of the soup can be checked with a thermometer 8.
  • the pressure gauge 9 and the back pressure regulating valve 9a can control the soup so that the soup does not boil.
  • the heat-denatured soybean juice in the second heating device 30 can be used as secondary processed tofu products such as silken tofu, cotton tofu, fried food and Takano tofu, other various processed tofu, soy milk drinks, yuba, frozen tofu, etc. Can be applied to various processed soybean foods.
  • these soybean karoe foods are not limited to foods eaten by humans, but are also applicable to animal feed.
  • FIG. 2 and FIG. 3 are views showing the appearance of another embodiment of the hot deaeration device for kusui of the present invention. 2 or 3, elements common to FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description is omitted. Note that not all of the elements shown in FIG. 1 are shown in FIG. 2 or FIG. 3, and some of the elements are not shown.
  • a first heating device 10 a degassing device 20, and a second heating device 30 are each fixed to a common frame 200.
  • the liquid sending pipe 12 is constituted by a 2-inch stainless steel secondary pipe. Such a liquid sending pipe 12 is disposed on the frame 200 in a shape that repeats an appropriate turn for the purpose of reducing the installation area, and finally reaches the deaerator 20.
  • the downstream side of the deaerator 20 is connected to the second heating unit 30.
  • the structure of the second heating unit 30 has a great feature.
  • the liquid sending pipe 32 includes a straight pipe 34 (2 inch pipe).
  • the piping (for example, 34) is arranged in the frame 200 in a shape that repeats the power turns.
  • a steam mixing device 33 is connected to a pipe 35 that turns below the liquid sending pipe 32, and the diameter of this turning pipe 35 is designed to be smaller than that of the straight pipe 34. It is being done. In the case of the apparatus shown in FIG. 2, the diameter of the pipe 35 to be turned is 10 mm.
  • the diameter of the pipe (for example, 36) that turns above the liquid sending pipe 32 is designed to be smaller than the diameter of the straight pipe 34 (10 mm).
  • the kure juice is supplied with a large-diameter linear pipe (2 inches, for example, 36) and a small-diameter turning pipe (1 O mm. 35, 3 6), so that the washi juice flows while being stirred like a dance, and as a result, the protein contained in the whey juice is heated evenly and finally obtained.
  • This has a positive effect on the products produced.
  • the kusui is flowing through the piston flow.
  • the device shown in FIG. 3 is also the same as FIG. 2, but in the case of FIG. 3, the first heating device 10 is also similar to the second heating device 30 and has a large-diameter linear piping. (2.5 inches) and a small diameter turning pipe (1 inch) are designed in combination.
  • the deaeration step (C) for removing air bubbles mixed in the kure juice is performed in the middle of the heating step (B).
  • thermal denaturation did not proceed sufficiently, and the odor of the soup was not adsorbed to soy protein.
  • the deaeration step (C) is performed in the middle of the heating step (B), the odor can be efficiently removed from the soup. Therefore, a high deodorizing effect which cannot be obtained by the conventional method of performing the deaeration step (C) before or after the heating step (B) can be obtained.
  • the deaeration step (C) is performed at a stage where the soup has reached a temperature range of 75 to 125 ° C, preferably 75 to 100 ° C.
  • the juice can be degassed with less waste in energy.
  • a high degassing effect can be obtained with a small amount of energy by reducing the pressure of the kusu so that the temperature of the kusu drops by at least 3 ° C or more and removing bubbles.
  • such a heating and degassing device 1 comprises a first heating device 10 for raising the temperature of the kure soup to a predetermined intermediate temperature, and a deaeration of the kure soup having reached the intermediate temperature by the first heating device 10. Since it has a deaerator 20 and a second heating device 30 for further heating the degassed soup to complete the heat denaturation, the kusu is appropriately heated, In addition, it is possible to deaerate the soup at a suitable timing before heat denaturation, and to obtain a soup with reduced odor.
  • a deaeration chamber 21 for temporarily storing the kure soup and a deaeration apparatus 20 including a suction device for sucking the air in the deaeration chamber 21 a simple device can be obtained. A high deaeration effect can be obtained.
  • the soybean milk was produced by heating and deaeration of the soup using the apparatus for deaeration of hot soup 1 shown in Figs. The manufacturing method will be described below.
  • the swollen soybean obtained in the immersion step and 170 kg of water were supplied to a grinder (manufactured by Nagasawa Kikai Seisakusho Co., Ltd.), and the soybean was ground to obtain about 220 kg of kure soup (raw go).
  • Kure soup (raw gou) obtained in the grinding process was passed through the heating and deaerator 1 in Fig. 1, and the heating and deaeration processes were performed under the following operating conditions.
  • Kure soup (raw go) at a temperature of 11 ° C is stored in the kure juice storage tank 2 in Fig. 1 and is passed through the first heating device 10, and the intermediate temperature is 70 ° C (the temperature in the first heating device, Heating was performed for 4 minutes and 30 seconds until the reading indicated by the thermometer 5).
  • the heated kusui was sent to the deaerator 20 and the ejector 23 of the deaerator was operated, and the air in the deaeration chamber 21 was sucked to deaerate the kusui.
  • the indicated value of the thermometer 7, that is, the temperature after degassing was 65 ° C, and the temperature difference before and after degassing was 5 ° C.
  • the kusui is passed through the second heating temperature and reaches a final temperature of 100 ° C (temperature in the second heating device, indicated by thermometer 8) for 5 minutes and 30 seconds The mixture was heated and maintained, degassed, and heat-denatured. (4) Separation process
  • the kure soup (boiled gou) obtained in the heating and degassing process was immediately separated into soymilk and okara using a squeezing machine (manufactured by Arai Iron Works) and cooled to obtain about 190 kg of soymilk.
  • the solid content of the obtained soymilk was about 13.0% (weight).
  • the flavor of the obtained soup was sensorially tested by a panel of 20 men and women between the ages of 20 and 40 using the following evaluation method.
  • Each panel evaluated the samples on the following four scales, averaged the evaluations of all panelists, and calculated the evaluation points of each sample.
  • Table 1 shows the evaluation results.
  • thermometer 5 The intermediate temperature (indicated value of thermometer 5) is changed, and the temperature difference before and after deaeration, the decompression chamber pressure (indicated value of pressure gauge 26), and the final temperature (indicated value of thermometer 8) are shown in Table 1. Except for the values shown, soymilk was produced in the same manner as in Example 1 and evaluated in the same manner.
  • the heating and deaerator are connected in the order of the deaerator 20, the first heater 10, and the second heater 30, and the same heating as that used in Example 1 except that the connection order is different.
  • Soy milk was produced using a deaerator.
  • the obtained soymilk was evaluated in the same manner as in Example 1. Table 2 shows the results.
  • Table 2 also shows the temperature of the soup, the internal pressure of the degassing chamber, the intermediate temperature, and the final temperature before and after degassing.
  • the first heater 10, the second heater 30, and the deaerator 20 are connected in this order, and the same heating as that used in Example 1 except that the connection order is different.
  • Soy milk was produced using a deaerator.
  • the obtained soymilk was evaluated in the same manner as in Example 1. Table 3 shows the evaluation results.
  • Table 3 also shows the intermediate temperature, final temperature, temperature of the deaerated soup, and the internal pressure of the degassing chamber.
  • Example 1 7 0 6 5 5-0. 076 1 0 0 ⁇
  • Example 2 7 5 7 0 5 -0.0. 071 1 0 0 ⁇
  • Example 3 8 0 7 5 5-0. 064 1 0 0 ⁇
  • Example 4 8 5 8 0 5-0. 055 1 0 0 ⁇
  • Example 5 9 0 8 5 5 -0. 045 1 0 0 ⁇
  • Example 6 9 4 8 9 5-0. 035 1 0 0 ⁇
  • Example 8 1 0 0 9 2 8 -0. 028 1 0 0 ⁇
  • each of the samples manufactured in this example had a better flavor than each of the samples of Comparative Examples 1 and 2, and among them, the intermediate temperature was 75 ° C or more.
  • the sample set at a temperature of was particularly good in flavor.
  • the evaluation was particularly high when the intermediate temperature was set to a range of 80 ° C or higher.
  • Example 4 In the same manner as in Example 1 except that the intermediate temperature (indicated value of thermometer 5) was set to 94 ° C and the temperature of degassed soup (indicated value of thermometer 7) was set to the temperature shown in Table 4, Soymilk with different degrees of deaeration was produced. The obtained soymilk was evaluated in the same manner as in Example 1. Table 4 shows the evaluation results. Table 4 also shows the internal pressure of the degassing chamber 21 (indicated value of the pressure gauge 26) and the final temperature (indicated value of the thermometer 8) in this case. Table 4
  • the deaeration chamber is sucked at a pressure at which the temperature of the soup after deaeration is at least 3 ° C, preferably 4 ° C or more lower than before the deaeration. It turned out that a good result was obtained.
  • Cotton tofu was produced from the soup obtained using the hot deaerator 1 for the soup as shown in Figs. The manufacturing method will be described below.
  • Kure juice (raw gou) obtained in the grinding process was passed through the heating and deaerator 1 in Fig. 1, and the heating and deaeration processes were performed under the following operating conditions.
  • thermometer 5 A wusu (raw) at a temperature of 11 ° C is stored in the kusui storage tank 2 in Fig. 1 and passed through the first heating device 10, and the intermediate temperature is 94 ° C over 4 minutes and 30 seconds (the thermometer 5). (Indicated value of).
  • the ejector 23 of the deaerator 20 was operated, and the air in the deaeration chamber 21 was sucked to deaerate the juice.
  • the indicated value of the thermometer 7 was 89 ° C, and the temperature difference before and after degassing was 5 ° C.
  • the internal pressure of the deaeration chamber 21 (indicated by the pressure gauge 26) was -0.035 MPa.
  • the soup was passed through the second heating unit 30 and heated from 89 ° C to a final temperature of 100 ° C (indicated by thermometer 9) in 5 minutes and 30 seconds. I held it.
  • the soup (boiled soup) was immediately passed through a squeezing machine (manufactured by Arai Ironworks Co., Ltd.) to separate soymilk and okara, yielding about 600 kg of soymilk.
  • the solid content of the obtained soymilk was about 4.5% (weight).
  • the obtained cotton tofu was excellent in hardness, free of the unpleasant odor peculiar to soybean, and extremely good in flavor.
  • the deaeration step (C) for removing air bubbles mixed in the kure juice is performed in the middle of the heating step (B).
  • the degassing step (C) is performed in the middle of the heating step (B)
  • the odor can be efficiently removed from the soup. Therefore, a high deodorizing effect which cannot be obtained by the conventional method in which the deaeration step (C) is performed before or after the heating step (B) can be obtained.
  • processed soybean foods can be manufactured more efficiently.
  • the deaeration step (C) is performed at a stage where the soup has reached a temperature range of 75 to 125 ° C, preferably 75 to 100 ° C. As a result, it is possible to deaerate the soup with little waste in energy.
  • a high degassing effect can be obtained with a small amount of energy by reducing the pressure of the kusu so that the temperature of the kusu drops by at least 3 ° C or more and removing bubbles.
  • the kure juice can be strongly mixed and stirred by flowing the kure juice alternately through a large-diameter pipe and a small-diameter pipe. Also, in general, if the agitation is too vigorous, air bubbles may be entrapped.However, in this way, the agar can always flow in the state of the piston flow inside the pipe through which the agar flows. An appropriate stirring effect can be obtained.
  • the soybean soup is alternately flowed through a large-diameter pipe that is linearly arranged and a small-diameter pipe that is bent into a turn. Since the flow rate of the soup is changed to an ideal stirring state in which the soup is dancing, the protein component contained in the soup has a unique effect of being uniformly mixed.
  • the steam is blown into the kure juice in a small-diameter pipe bent into a turning shape to heat the kure juice, thereby increasing the flow rate of the kure juice, increasing the dynamic pressure of the kure juice, and sucking steam at the steam outlet. It increases the efficiency of blowing steam and improves the effect of stirring the juice.
  • a first heating device for raising the temperature of the kusui to a predetermined intermediate temperature
  • a degassing device for degassing the kusui that has reached the intermediate temperature with the first heating device.
  • the second heating device for further heating the degassed soybean soup to complete the heat denaturation, so that the soup is appropriately heated and before heat denaturation. It is possible to deaerate the soup at an appropriate timing, and to obtain a soup with reduced odor.
  • the liquid sending pipe is configured such that the large-diameter pipe and the small-diameter pipe are connected alternately, it is possible to strongly mix and stir the kure juice. Also, in general, if the kusui is agitated too much, bubbles may be entrapped.However, this allows the kusui to always flow in the state of biston flow inside the pipe through which the kusui flows, A stirring effect can be obtained.
  • a small number of pipes that are bent in a turning shape are interposed between a plurality of large-diameter pipes that are arranged in a straight line. Because of the ideal agitation state, the protein component contained in the kure juice has a unique effect of being uniformly mixed.
  • a degassing chamber for temporarily storing the kure juice; and a suction device for sucking air in the degassing chamber.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Beans For Foods Or Fodder (AREA)

Description

明 細 書 大豆加工食品の製造方法および呉汁の加熱脱気装置 技術分野
本発明は、 豆腐、 豆乳、 ゆば等の大豆加工食品の製造方法および大豆を摩砕し て得られた呉汁の加熱脱気装置に関し、 大豆特有の青臭い不快臭を効果的に除去 できるようにしたものである。 背景技術
一般に、 豆腐、 豆乳、 ゆば等の大豆加工食品を製造する場合には、 生大豆を加 ェして液状にする操作が行なわれる。
この操作は、 良く洗浄した生大豆を水に 1晚程度浸漬し、 2倍程度になるまで 膨潤させる浸漬工程、 膨潤した生大豆に適量の水を加えてすり潰し呉汁を得る摩 砕工程、 この呉汁を所定の温度に達するまで加熱して熱変性させる加熱工程から なる。 加熱工程の前または後には必要に応じて、 おからを分離する分離工程を行 う。 また、 飲用豆乳を製造する場合等では浸漬工程を省略することもある。 以上のような各工程を経て得られた呉汁をさらに加工することによって、 大豆 加工食品を製造する。 例えば、 呉汁に凝固剤を添加して凝固させれば豆腐が得ら れる。
このような大豆加工食品の製造方法において、 加熱工程は、 加熱によって大豆 に含まれている有害物質を無害化し、 また、 大豆たんぱく質をほぐして消化吸収 されやすい状態にする工程であり、 特に重要である (槌屋莞ニ著、 「豆乳」 、 第 1 2 1ページ、 食品研究社、 1 9 8 0年) 。
この加熱工程は、 呉汁を加熱して昇温する昇温工程と、 昇温した呉汁を所定時 間保持して大豆タンパク質を熱変性させる熱変性工程に分けることができる。 し かしながら、 通常は使用する加熱装置の機種または運転条件によって、 呉汁を昇 温しながら熱変性させることが多く、 昇温工程と熱変性工程とを分けられない場 合が多い。 ところで、 大豆タンパク質は非常に空気を抱き込みやすい性質がある。 そのた め、 摩砕工程において呉汁が大量の空気を抱き込み、 呉汁の中に数多くの気泡が 混入すると、 最終的な製品に悪影響を及ぼすことがあった。
例えば、 気泡が混入した呉汁を使用して豆腐を製造した場合には、 完成した豆 腐の硬さが不足するとともに、 気泡中の酸素によって大豆の成分が酸化するため、 青臭い不快臭を発してしまう問題があった。
そこで、 このような問題を解決する方法として、 脱気装置を使用して呉汁から 気泡を除去する技術が知られている。 例えば、 特開昭 5 2— 5 4 0 6 9号公報に 開示されている、 加熱工程を行う前に脱気装置を使用して呉汁から気泡を脱気除 去する技術や、 特開昭 6 1— 1 9 5 6 6 0号公報に開示されている、 加熱工程を 行った後に脱気工程を行う技術がある。
しかしながら、 呉汁はスラリー状の液体であるため、 特に温度が低い場合には 粘度が高くなり気泡の除去が非常に困難になる。 したがって、 特開昭 5 2— 5 4
0 6 9号公報に開示されているように、 加熱工程を行う前の低温の呉汁に対して 脱気工程を施す場合には、 気泡の除去が極めて困難となり、 複雑な構造の装置を 用いて強い吸引力で脱気する必要があった。 また、 脱気が困難であるため、 細か い気泡は除去することができず、 この結果、 完成した製品には、 気泡に起因する 青臭い臭気が残ってしまうという問題があった。
また、 加熱工程が終了した後の呉汁は、 熱変性が進行した大豆タンパク質に、 既に発生した臭気が吸着され、 定着してしまっている。 そのため、 特開昭 6 1—
1 9 5 6 6 0号公報に開示されているように、 加熱工程が終了した後の呉汁から 気泡を除去しようとしても、 すでに呉汁に臭気が発生してしまっているという問 題がある。 すなわち、 一旦臭気が発生した後は、 その後に脱気してもさほど意味 がなく、 脱臭という点では満足な効果が得られなかった。
このように、 呉汁を加熱工程の前または後に脱気工程をする従来の技術では、 いずれも十分な脱臭効果を得ることができず、 品質の良い大豆食品を得ることが 不可能であった。
また、 呉汁を加熱する機能と呉汁を脱気する機能とを兼ね備えた加熱脱気装置 も従来存在しておらず、 効率的に品質の良い大豆食品を得る装置の開発が望まれ ていた 発明の開示
本発明の目的は、 呉汁に混入している気泡を除去して大豆特有の青臭い臭気を 効果的に除去し、 従来にも増して品質の高い大豆加工食品を提供することである c 本発明の大豆の製造方法は、 生大豆を摩砕して呉汁を得る摩砕工程 (A) と、 得られた呉汁を加熱して熱変性させる加熱工程 (B ) を含む大豆加工食品の製造 方法において、 加熱工程 (B ) の途中で、 呉汁に混入している気泡を除去する脱 気工程 (C) を行うことを特徴とする。 図面の簡単な説明
図 1は、 本発明の呉汁の加熱脱気装置の一実施例を示す概略構成図である。 図 2は、 本発明の呉汁の加熱脱気装置の他の実施例の外観を示す図である。 図 3は、 本発明の呉汁の加熱脱気装置の他の実施例の外観を示す図である。 発明を実施するための最良の形態
上記の製造方法においては、 加熱工程 (B ) と脱気工程 (C ) を、 連続的に行 うことが好ましい。
上記加熱工程 (B ) 力 呉汁を所定の中間温度まで昇温する第 1の加熱工程と、 呉汁をさらに加熱する第 2の加熱工程とからなり、 脱気工程 (C) を、 第 1の加 熱工程と第 2の加熱工程との間に行うことが好ましい。
また、 加熱工程 (B ) において呉汁が 7 5〜1 2 5 °Cの温度範囲に達した段階 で、 脱気工程 (C ) を行うことが好ましく、 さらに、 呉汁が 7 5〜1 0 0 °Cの温 度範囲に達した段階で、 脱気工程 (C ) を行うことが好ましい。
上記脱気工程 ( C ) は、 呉汁の温度が少なくとも 3 °C以上低下するように呉汁 を減圧して、 気泡を除去する方法であることが好ましい。
加熱工程 (B ) においては、 呉汁を、 大径の配管と小径の配管とに交互に流す ことが好ましく、 この場合は、 加熱工程 (B ) において、 呉汁を、 直線的に配置 された大径の配管と、 ターンする形状に曲げられた小径の配管とに交互に流すこ とが好ましい。 さらに、 ターンする形状に曲げられた小径の配管において呉汁に 蒸気を吹き込んで呉汁を加熱することが好ましい。
本発明の呉汁の加熱脱気装置は、 呉汁を所定の中間温度まで昇温するこの第 1 の加熱装置と、 この第 1の加熱装置で中間温度に達した呉汁を脱気する脱気装置 と、 この脱気装置で脱気された吳汁をさらに加熱して熱変性を完了させる第 2の 加熱装置を有することを特徴とする。 上記第 1の加熱装置および第 2の加熱装置 は、 呉汁が連続的に流通する送液配管と、 この送液配管内を流通する呉汁に蒸気 を混入して加熱する蒸気混入装置と、 前記送液配管内に呉汁を送液する送液ボン プを具備してなることが好ましい。
送液配管は、 大径の配管と小径の配管とが交互に連結されてなることが好まし く、 また、 直線的に配置された複数の大径の配管の間に、 ターンする形状に曲げ られた小径の配管が介在して構成されることが好ましい。 さらに、 ターンする形 状に曲げられた小径の配管の一部に、 呉汁に蒸気を吹き込む蒸気混入装置が接続 されていることが好ましい。
上記脱気装置は、 呉汁を一時的に貯留する脱気室と、 前記脱気室の空気を吸引 する吸引装置を具備してなることが好ましい。
以下、 本発明について詳細に説明する。
本発明の製造方法は、 生大豆を摩碎して呉汁を得る摩碎工程 (A) と、 得られ た呉汁を加熱して熱変性させる加熱工程 (B ) を含む製造方法であり、 この加熱 工程 (B ) の途中で、 呉汁に混入している気泡を除去する脱気工程 (C ) を行う ことを特 ί教とする。
加熱工程 (Β ) の途中においては、 呉汁は加熱されているため粘度が低く、 呉 汁に混入している気泡を除去しやすい。 また、 加熱工程 (Β ) の途中では熱変性 が充分には進行しておらず、 この時点では呉汁の臭気が大豆タンパク質にさほど 吸着されていない。 そのため、 加熱工程 (Β ) の途中で脱気工程 (C ) を行うと、 吳汁から効率的に臭気を除去することができる。 したがって、 加熱工程の前また は後に脱気工程を行う従来の方法では得られなかった高い脱臭効果を得ることが できる。 また、 脱気工程 (C ) は、 加熱操作を一旦中止して行っても、 加熱しな がら行ってもよレ、。 なお、 本発明の製造方法においては、 必要に応じて、 摩砕工程 (A) 前に生大 豆を水に浸漬して膨潤させる浸漬工程、 加熱する前または加熱した後に呉汁を搾 つておからを分離する分離工程等を適宜実施することができる。
加熱工程 (B ) の途中とは、 呉汁が加熱されて常温よりも高温となっている間 のことであり、 特に制限はない。
例えば、 呉汁を加熱して昇温する昇温工程中や、 昇温した呉汁を所定の温度で 保持し熱変性させる熱変性工程中に、 脱気工程 (C ) を行うことができる。 ある いは、 昇温工程と熱変性工程の間等に、 脱気工程 (C ) を行ってもよい。 しかし ながら、 熱変性が進行するにしたがって、 呉汁の臭気が大豆タンパク質に吸着し てしまうので、 脱気工程 (C ) を呉汁の熱変性が進行する前に完了させることが 好ましい。 さらには、 脱気工程 (C) を、 呉汁の熱変性が始まる前に完了させる ことが好ましい。 すなわち、 この例の場合では、 脱気工程 (C) を昇温工程の途 中または昇温工程と熱変性工程との間で行うことが好まし 、。
より効果的に脱気工程 (C ) を行うには、 加熱工程 (B ) を、 呉汁を所定の中 間温度まで昇温して加熱する第 1の加熱工程と、 呉汁をさらに加熱する第 2の加 熱工程で構成し、 脱気工程 (C ) を、 前記第 1の加熱工程と第 2の加熱工程との 間に行うことが好ましい。
すなわち、 第 1の加熱工程で呉汁を中間温度まで加熱し、 ついでこの呉汁を脱 気する脱気工程 (C ) を行い、 その後、 第 2の加熱工程によって呉汁を脱気工程 後の温度で保持するか、 呉汁をさらに所定の最終温度まで昇温するか、 または、 呉汁を所定の最終温度まで昇温後さらに保持する。
ここで中間温度は、 好ましくは 7 5〜1 2 5 °C、 より好ましくは 7 5〜 1 0 O :、 さらに好ましくは 8 0〜1 0 0 °Cの温度範囲に設定する。 呉汁の温度が 7 5 °C未満の場合には、 呉汁の粘度が高く、 呉汁の中の微細な気泡を除去すること が困難となり、 効果的に脱気できない場合がある。 一方、 呉汁の酵素を失活させ るためには呉汁を 1 2 5 °Cまで昇温すれば充分であり、 中間温度を 1 2 5 °Cを超 える温度とするとエネルギーコストが増加する。 また、 呉汁は 7 5 °C付近になる と粘度が低下する。 よって、 呉汁の粘度が低く、 効率良く脱気が行なえ、 大豆タ ンパク質の熱変性があまり進行しておらず、 エネルギー的にも無駄が少ない上記 の温度範囲に中間温度を設定することが好ましい。
中間温度をこのように設定し、 引き続いて脱気工程 (C) を行うことによって、 効果的に呉汁を脱気できるため、 高い脱臭効果を発現できる。
ここで製造する大豆加工食品が豆腐等の凝固食品である場合には、 呉汁を 1 0 0 °Cを超える温度まで昇温すると呉汁の凝固力が低下するので、 中間温度を 7 5 〜1 0 0 °Cの範囲に設定することが特に好ましい。
脱気工程 (C) は、 呉汁の温度が少なくとも 3 °C以上低下するように吳汁を減 圧し、 気泡を脱気する方法が好ましい。 さらには、 呉汁の温度が 3〜1 5 °C低下 するようにすることが好ましい。 ここで、 呉汁の温度の低下は、 脱気室の圧力が 低下すると呉汁の沸点が下がって沸騰しやすくなり、 沸騰時の呉汁の蒸発量に応 じて蒸発潜熱が奪われるために起こる。
脱気工程 (C) を、 ある一定の容積を有する脱気室内で行う場合、 脱気後の呉 汁の温度が脱気前よりも 3 °C以上低くなるように脱気室の圧力を設定すると、 脱 気室の内圧を、 呉汁が若干沸騰する程度の圧力とすることでき、 効率良く脱気で きるため好ましい。
このように脱気前後の呉汁の温度差を調節することによって、 脱気室の圧力を 調節でき、 その結果、 呉汁を脱気する程度を調節することができる。
脱気工程 (C) 前後の呉汁の温度差が 3 °C未満では、 呉汁の沸騰が弱く、 脱気 の効果が十分に得られない場合がある。 また、 この脱気工程 (C) 前後の呉汁の 温度差が大きいほど脱気の効果は高くなるが、 温度差が 1 5 °C程度まで大きくな つても、 1 5 °C以下の場合と比較して脱気の効果は変わらなくなる。 そのため、 脱気効果および省エネルギーの観点から、 脱気工程 (C) 前後の呉汁の温度差は 3〜 1 5 °Cに設定することが好ましい。
脱気工程 (C ) 後に行う第 2の加熱工程は、 設定した中間温度や脱気工程 ( C ) 後の呉汁の温度に応じて、 吳汁を脱気工程 (C) 後の温度で保持するか、 呉汁をさらに所定の最終温度まで昇温するか、 または、 呉汁を所定の最終温度ま で昇温後さらに保持するか、 いずれかの方法を適宜選択して行えばよい。 呉汁が 最終的に 9 5〜 1 2 5 °Cの範囲まで加熱されると、 熱変性を完了させることがで き好ましい。 例えば、 中間温度が 9 5 °C未満の比較的低い温度に設定されており、 第 1の加 熱工程では呉汁の熱変性が充分進行していない場合には、 第 2加熱工程でさらに 高温の 9 5〜1 2 5 °Cの最終温度まで呉汁を昇温して、 熱変性を進行させること が好ましい。 中間温度が 1 2 5 °C程度に比較的高く設定されており、 第 1の加熱 工程で呉汁の熱変性が進行している場合には、 第 2加熱工程では呉汁を昇温せず、 脱気工程 (C) 後の温度で保持すればよい。
このように第 2の加熱工程では、 第 1の加熱工程で設定された中間温度や、 そ の後の脱気工程 (C) での温度低下の程度に応じて加熱、 昇温の程度を適宜選択 できる。 また、 目的とする大豆加工食品の種類に応じて決定することもできる。 例えば、 豆乳等の飲料では、 第 1の加熱工程で 1 0 5 °Cまで加熱後、 脱気工程で 1 0 0 °C程度まで温度が低下するようにし、 その後第 2の加熱工程では 1 2 0 °C に加熱して 3〜1 5分間程度保持する方法が好ましい。
本発明の製造方法において、 加熱工程 (B ) と脱気工程 (C) は、 公知の加熱 装置および公知の脱気装置を使用して行うことができる。
加熱装置としては、 表面式熱交換器、 プレート式熱交換器、 二重管式熱交換器、 多管式熱交換器、 コイル式熱交換器、 平板式熱交換器、 かきとり式熱交 等の 間接加熱方式の加熱装置や、 インジェクション式、 インフュージョン式等の呉汁 と蒸気を混合して加熱する直接加熱方式の加熱装置が挙げられるが、 直接加熱方 式の加熱装置を使用すると、 呉汁を効率良く加熱でき好ましい。 一方、 間接加熱 式の加熱装置を使用すると、 装置の伝熱面に大豆たんぱく質が焦げ付き易いので、 運転条件、 運転時間には注意する必要がある。
本発明において、 望ましい加熱装置は、 連続的に流れる呉汁に対して蒸気を連 続的に吹き込むことによって呉汁を加熱するインジヱクション方式の連続 口熱 装置である。 このような装置としては、 特に、 次のようなものが最も望ましい。 このような加熱装置においては、 呉汁に蒸気を吹き込む部分では、 呉汁が流れ る配管に、 蒸気配管を合流させている。
尚、 補足すれば、 この場合、 呉汁が流れる配管に、 単純に蒸気配管を合流させ るだけでも良いが、 呉汁が流れる配管の內側に、 蒸気配管を突出させ、 突出させ た蒸気配管の先端に蒸気の出口を設けても良い。 この場合は、 この蒸気出口を、 呉汁が流れる方向 (呉汁の流れの上流から下流へ向かう方向) に向けて開口させ ることが望ましレ、。 蒸気出口をこのように呉汁が流れる方向に開口させることに よって、 蒸気出口に呉汁の動圧が作用し、 蒸気出口に対して蒸気を吸引する現象 が発生し、 蒸気が効率よく呉汁の中に吹き込まれるからである。
本発明の望ましい加熱装置では、 このように吳汁に蒸気を吹き込む部分におい ては、 呉汁が流れる配管の径 (内径) を小さく設計している。
このように呉汁が流れる配管の径を小さくすることによって、 呉汁の流速を上 昇させ、 これによつて呉汁の動圧を増加させることで静圧が減少するので、 蒸気 出口において蒸気を吸引する作用を強くし、 蒸気を吹き込む際の効率を向上させ るとともに、 呉汁を攪拌する効果を得るのである。
そして、 呉汁が流れる配管は、 適宜、 例えば U字状に、 ターンする構造となつ ているが (これは装置の設置面積を減少させるためである) 、 本発明の望ましい 加熱装置は、 このように呉汁が流れる配管がターンする個所においても、 呉汁が 流れる配管の径を小さく設計する。
このように、 呉汁が流れる配管がターンする場所において、 配管の径を小さく することにより、 流れる呉汁の流速が変化し、 呉汁が踊るような理想的な攪拌状 態となるため、 呉汁に含まれる蛋白質成分が、 均一に混合されるという特有の効 果を奏するのである。
この場合、 ターンする部分の径は、 呉汁が流れる配管の径に比して、 3 4〜 1 / 5の範囲であることが望ましい。
また、 一般に、 呉汁は、 強く攪拌しすぎると気泡を抱き込むことがあるため、 呉汁が流れる配管の内部においては、 呉汁を常にビストンフローの状態で流すこ とが好ましい。
このように、 呉汁を、 ピストンフローの状態で流しながら踊るような攪拌状態 にし、 加熱して脱気を行うことによって、 本発明は、 更に顕著な効果を得ること ができるのである。
脱気装置としては、 呉汁から気泡を除去できるものであればいかなるものでも 良いが、 脱気室とこの脱気室内の空気を吸引する吸引装置を備えているものを使 用して、 脱気室に呉汁を貯留し、 脱気室から空気を吸引して内圧を低下させると、 簡単な装置で高い脱気効果が得られるので好ましレ、。 その他、 液体を旋回させて 遠心力を発生させ、 この遠心力に対向する浮力によって気泡を旋回の中心部に集 め、 この中心部より気泡を除去する液体サイクロンや、 機械的動力によって同様 に液体を旋回させて気泡を除去する遠心分離器等を例示することができる。
また、 本発明の製造方法においては、 加熱工程 ( B ) と脱気工程 ( C ) を回分 的に行っても良いし、 連続的に行っても良い。
回分的に行う場合は、 例えば、 呉汁を密閉性のある容器に入れて密閉し、 この 密閉容器を加熱して第 1の加熱工程を行い、 呉汁が所定の中間段階の温度に達し た段階で、 容器の内部を吸引して脱気工程 (C ) を行い、 ついで呉汁をさらに加 熱する第 2の加熱工程を行う方法が挙げられる。
このような回分的な方法によっても、 効率的に加熱工程 (B ) と脱気工程 ( C ) を行うことができるが、 これらの工程をより効率的に行うためには、 加熱 工程 (B ) および脱気工程 (C ) を、 連続的に行うことが好ましレ、。
例えば、 複数の連続式加熱装置を直列に接続し、 各加熱装置の間に連続式脱気 装置を設けた呉汁の加熱脱気装置を使用して、 この装置に連続的に呉汁を通液す ることによって、 加熱工程 ( B ) と脱気工程 (C ) を連続的に行うことができる。 連続式脱気装置は、 加熱装置の間に設ける限りは、 1台に限らず 2台以上を設置 してもよい。 加熱工程 (B ) および脱気工程 ( C ) を連続的に行う場合は、 摩砕 工程、 分離工程等の他の工程も連続的に行うことが好ましい。
このように呉汁を連続的に処理することによって、 大規模な大量生産に対応す ることもできる。
図 1は本発明の加熱脱気装置 1の一形態を示す概略構成図である。 この装置 1 を使用すると、 加熱工程 (B ) および脱気工程 (C ) を連続的に効率良く行うこ とができ、 好ましい。
加熱脱気装置 1は、 呉汁を所定の中間温度まで昇温する第 1の加熱装置 1 0と、 この第 1の加熱装置 1 0で中間温度に達した吳汁を脱気する脱気装置 2 0と、 こ の脱気装置 2 0で脱気された呉汁をさらに加熱して熱変性を完了させる第 2の加 熱装置 3 0を有する。
また、 この加熱脱気装置 1には、 加熱前の呉汁を貯留する呉汁貯留タンク 2が 備えられている。 この呉汁貯留タンク 2内の吳汁は、 定量送液ポンプ 1 1によつ て第 1の加熱装置 1 0の送液配管 1 2内を送液され、 加熱された後、 脱気装置 2 0、 第 2の加熱装置 3 0を順次流通するようになっている。
第 1の加熱装置 1 0および第 2の加熱装置 3 0は、 呉汁が連続的に流通する送 液配管 1 2、 3 2と、 この送液配管 1 2、 3 2内を流通する呉汁に高温の蒸気を 混入する蒸気混入装置 1 3、 3 3と、 送液配管 1 2、 3 2内に呉汁を送液する送 液ポンプ 1 1、 3 1を具備してなる。 そのため、 第 1の加熱装置 1 0内および第 2の加熱装置 2 0内の送液配管 1 2、 3 2に、 任意の流量の呉汁を送液し、 この 送液配管 1 2、 3 2内を流通する呉汁に直接蒸気を混入させて加熱することがで きる。 蒸気混入装置 1 3、 3 3へは、 蒸気供給ュニット 1 0 0から分岐管 1 1 0、 1 2 0を通じて蒸気が供給される。 蒸気混入装置 1 3、 3 3は、 送液配管 1 2、 3 2に蒸気を直接混入させることができるものであれば制限はなく、 逆止弁等を 設けて、 呉汁が蒸気混入装置 1 3、 3 3側に流れ込まないようにすることもでき る。 蒸気の供給量は、 調圧弁 1 1 1、 1 2 1で制御できるようになつている。 脱気装置 2 0は、 吳汁を一時的に貯留する脱気室 2 1と、 前記脱気室 2 1の空 気を吸引する吸引装置を具備している。 吸引装置としては水流の動圧によって空 気を吸引するェジェクタ一 2 3や公知の真空ポンプ等が使用される。 なお図 1中、 符号 2 4は水配管であり、 水配管の末端 2 5は図示略の水源に接続される。 なお、 ここで一点破線はェジエタター 2 3駆動用の水の流れを示す。
脱気室 2 1内で呉汁は、 空気との接触面積が大きい状態にあることが好ましい ため、 第 1の加熱装置 1 0で加熱された呉汁は、 脱気室 2 1に入る際にできるだ け空気と広く接触するように導入されることが好ましい。 例えば、 第 1の加熱装 置 1 0から脱気室 2 1に接続されている送液配管 3の末端が、 脱気室 2 1の内壁 面に沿うように接続していると、 脱気室 2 1に流入した呉汁は脱気室 2 1内を内 壁面に沿って旋回するので、 接触面積を広くすることができる。 その他、 脱気室 2 1内の上方から呉汁を脱気室 2 1の内壁面に沿って薄膜状に流下させる方法、 脱気室 2 1内の上方から呉汁をカーテン状に落下させる方法、 脱気室 2 1内の上 方から呉汁を複数の線状に落下させる方法、 呉汁を滴下させる方法等を例示でき る。 ただし、 呉汁の粘度が高い場合には、 呉汁と空気とが接触する面積を無理に 広げる必要はなく、 単純に脱気室 2 1内に呉汁を流入させるだけであっても良い。 次に加熱脱気装置 1を用いて呉汁を加熱脱気する方法を説明する。
呉汁貯留タンク 2に貯留されている呉汁は、 定量送液ポンプ 1 1によって第 1 の加熱装置 1 0内の送液配管 1 2内を流通する。 この送液配管 1 2内の呉汁には、 蒸気供給装置 1 3から加熱用蒸気が吹き込まれ、 呉汁は中間温度まで加熱される。 呉汁の温度と圧力はそれぞれ温度計 5および圧力計 4で確認できるようになって いる。 また、 呉汁の温度は、 蒸気供給ュニット 1 0 0の調節弁 1 1 1の開度を調 節して、 蒸気量を増減させることによって調節できる。
中間温度に達した呉汁は送液配管 3を通って脱気装置 2 0へと送られ、 脱気装 置 2 0の脱気室 2 1内に流入する。 脱気室 2 1内の空気はェジェクタ一 2 3で吸 引されて、 脱気室 2 1の内部は減圧され呉汁が脱気される。 脱気室 2 1の内圧は 圧力計 2 6によって監視することができ、 また、 脱気室 2 1の内圧が低くなり過 ぎないように、 バキュームブレーカ一 2 7で脱気室 2 1の內圧を制御することも できる。 脱気中には、 温度計 5と温度計 7の指示値を注視し、 脱気室 2 1の入口 側と出口側の温度差、 すなわち脱気前後の温度差が所定の値になるよう吸引の程 度を調節する。
脱気室 2 1を通過した 汁は、 送液配管 6内を通って第 2の加熱装置 3 0に至 る。 第 2の加熱装置 3 0では第 1の加熱装置 1 0の場合と同様に、 送液ポンプ 3
1によって呉汁が送液配管 3 2に送液され、 送液配管 3 2内の呉汁には、 蒸気供 給装置 3 3から加熱用蒸気が吹き込まれ、 呉汁はさらに加熱される。 ここでの呉 汁の温度は温度計 8で確認できる。 また圧力計 9と背圧調整弁 9 aによって呉汁 が沸縢しなレ、程度に加熱されるように制御できる。
第 2の加熱装置 3 0で熱変性が完了した呉汁は、 絹ごし豆腐、 木綿豆腐、 揚物 や高野豆腐等の豆腐二次加工品、 その他の種々の加工豆腐、 豆乳等の飲料、 ゆば、 凍豆腐等の種々の大豆加工食品に適用することができる。 また、 これらの大豆カロ ェ食品は、 人間が食する食品に限られるものではなく、 動物の飼料等にも適用で さる。
次に、 前記の図 1の加熱脱気装置 1の、 具体的な態様を説明する。 図 2及び図 3は、 本発明の呉汁の加熱脱気装置の他の実施例の外観を示す図である。 図 2又は図 3においては、 図 1と共通する要素には、 図 1と同一の符号を付し て、 詳細な説明は省略する。 尚、 図 2又は図 3においては、 図 1に示した要素の 全てを図示しているわけではなく、 一部の要素については図示を省略している。 図 2において、 第 1の加熱装置 1 0、 脱気装置 2 0、 及び第 2の加熱装置 3 0 は、 各々、 共通フレーム 2 0 0に固定されている。
第 1の加熱装置 1 0においては、 送液配管 1 2は、 2インチのステンレス製サ 二タリーパイプによって構成されている。 このような送液配管 1 2は、 設置面積 を減少させる目的で、 適宜ターンを繰り返す形状でフレーム 2 0 0に配設されて おり、 最終的には脱気装置 2 0に至る。
脱気装置 2 0の下流側には、 第 2の加熱装置 3 0に接続されているが、 この第 2の加熱装置 3 0の構造には、 大きな特徴がある。
即ち、 この第 2の加熱装置 3 0においては、 前記第 1の加熱装置 1 0と同様、 送液配管 3 2は、 直線的な配管 3 4 ( 2インチ管) を備えており、 この直線的な 配管 (例えば 3 4 ) 力 ターンを繰り返す形状でフレーム 2 0 0に配設されてい る。 そして、 送液配管 3 2の下方においてターンする配管 3 5には蒸気混入装置 3 3が接続されており、 このターンする配管 3 5の径は直線的な配管 3 4の径ょ りも小さく設計されているのである。 図 2の装置の場合は、 このターンする配管 3 5の径は 1 0 mmである。
また、 送液配管 3 2の上方においてターンする配管 (例えば 3 6 ) の径は、 同 様に、 直線的な配管 3 4の径よりも小さく設計されている (1 0 mm) 。
このように図 2に示した第 2の加熱装置 3 0においては、 呉汁は、 大径の直線 的な配管 (2インチ。 例えば 3 6 ) と、 小径のターンする配管 (1 O mm。 例え ば 3 5、 3 6 ) とを交互に通過することになるため、 呉汁は踊ったように攪拌さ れた状態で流れ、 この結果、 呉汁に含まれる蛋白質は、 均一に加熱され、 最終的 に得られる製品に好影響を及ぼすのである。 なお、 この場合、 呉汁はピス トンフ ローで流れている。
図 3に示した装置も、 図 2と同様であるが、 図 3の場合は、 第 1の加熱装置 1 0についても、 第 2の加熱装置 3 0と同様に、 大径の直線的な配管 (2 . 5イン チ) と、 小径のターンする配管 (1インチ) とが組み合わされて設計されている。 このような大豆の製造方法によれば、 加熱工程 (B ) の途中で、 呉汁に混入し ている気泡を除去する脱気工程 (C ) を行うので、 呉汁は加熱されているため粘 度が低く、 呉汁に混入している気泡を除去しやすい。 また、 加熱工程 (B ) の途 中では熱変性が充分には進行しておらず、 呉汁の臭気が大豆タンパク質にはさほ ど吸着されていない。 そのため、 加熱工程 (B ) の途中で脱気工程 (C ) を行う と、 呉汁から効率的に臭気を除去することができる。 したがって、 加熱工程 ( B ) の前または後に脱気工程 (C ) を行う従来の方法では得られなかった高い 脱臭効果を得ることができる。
また、 加熱工程 (B ) と脱気工程 ( C ) を、 連続的に行うことによって、 より 効率的に大豆 ¾1ェ食品を製造できる。
さらに、 加熱工程 (B ) において呉汁が 7 5〜1 2 5 °Cの温度範囲、 好ましく は 7 5〜1 0 0 °Cの温度範囲に達した段階で、 脱気工程 ( C ) を行うことによつ て、 エネルギー的に無駄が少ない状態で吳汁を脱気することができる。
また、 脱気工程 (C ) を、 呉汁の温度が少なくとも 3 °C以上低下するように呉 汁を減圧して、 気泡を除去することによって、 少ないエネルギーで高い脱気効果 を得ることができる。
また、 このような加熱脱気装置 1は、 呉汁を所定の中間温度まで昇温する第 1 の加熱装置 1 0と、 この第 1の加熱装置 1 0で中間温度に達した呉汁を脱気する 脱気装置 2 0と、 この脱気装置 2 0で脱気された呉汁をさらに加熱して熱変性を 完了させる第 2の加熱装置 3 0を有しているので、 呉汁が適度に加熱され、 かつ 熱変性する前の、 好適なタイミングで呉汁を脱気することができ、 臭気が抑制さ れた呉汁を得ることができる。 よって、 連続的かつ効果的に呉汁を加熱脱気でき、 第 1の加熱装置の上流に脱気装置が設けられた場合や、 第 2の加熱装置の下流に 脱気装置が設けられた場合よりも、 簡単な装置で効果的に微細な気泡までも除去 でき、 得られる脱臭効果も非常に高い。
また、 呉汁を一時的に貯留する脱気室 2 1と、 前記脱気室 2 1の空気を吸引す る吸引装置を具備してなる脱気装置 2 0を使用することによって、 簡単な装置で 高い脱気効果を得ることができる。 実施例
以下に本発明を実施例を示して具体的に説明する。 [実施例 1 ]
図 1及び図 2に示す呉汁の加熱脱気装置 1を使用して、 呉汁を加熱脱気して豆 乳を製造した。 以下にその製造方法を示す。
(1) 浸漬工程
米国産大豆 ( I OM :三井物産社輸入) 60k gを洗穀し、 流水に 12時間浸 漬して膨潤させた。
(2) 摩砕工程
浸漬工程で得られた膨潤大豆と 1 70 k gの水をグラインダー (長沢機械製作 所社製) に供給し、 大豆を摩碎し、 呉汁 (生呉) 約 220 k gを得た。
(3) 加熱脱気工程
摩砕工程で得られた呉汁 (生呉) を、 図 1の加熱脱気装置 1に通液し、 次の運 転条件によって加熱工程および脱気工程を実施した。
図 1の呉汁貯留タンク 2に温度 1 1°Cの呉汁 (生呉) を貯留し、 第 1の加熱装 置 1 0に通液し、 中間温度 70°C (第 1の加熱装置における温度、 温度計 5の指 示値) まで、 4分 30秒かけて加熱した。 ついで加熱した呉汁を脱気装置 20に 送り、 脱気装置のェジェクタ一 23を稼動し、 脱気室 21内の空気を吸引して呉 汁の脱気を行った。 この時の温度計 7の指示値、 すなわち脱気後の温度は 65 °C であり、 脱気前後の温度差は 5 °Cであった。 また、 この時の脱気室 21の内圧
(圧力計 26の指示値) は—0. 076MP aであった。 これらの値を表 1に示 す。
脱気装置 20で脱気を終えた呉汁を、 第 2の加熱温度に通液し、 最終温度 10 0°C (第 2の加熱装置における温度、 温度計 8の指示値) まで 5分 30秒かけて 加熱および保持し、 呉汁を脱気するとともに熱変性完了した。 (4) 分離工程
加熱脱気工程で得られた呉汁 (煮呉) を、 直ちに絞り機 (荒井鉄工所社製) に よって豆乳とおからに分離し、 冷却し、 約 190 k gの豆乳を得た。 得られた豆 乳の固形分は約 1 3. 0% (重量) であった。
得られた呉汁の風味を、 20歳から 40歳までの男女 20人からなるパネラー により、 次の評価方法によって官能的に試験した。
各パネラーが試料を以下の 4段階で評価し、 パネラー全員の評価を平均し、 各 試料の評価点を算出した。
0点 風味良好
1点 風味やや良 (やや大豆臭あり)
2点 風味やや不良 (やや大豆臭が強い)
3点 風味不良 (大豆臭が強く飲用に不適) 算出された評価点をさらに 4段階にして、 X、 △、 〇、 ◎で示した。
◎ 0. 5点未満
〇 0. 5点以上、 1. 5点未満
△ 1. 5点以上、 2. 5点未満
X 2. 5点以上、 3. 0点未満 評価結果を表 1に示す。
[実施例 2〜 9 ]
中間温度 (温度計 5の指示値) を変化させ、 脱気前後の温度差、 脱気室の內圧 (圧力計 26の指示値) 、 最終温度 (温度計 8の指示値) を表 1に示す値とした 以外は実施例 1と同様にして豆乳を製造し、 同様に評価した。
評価結果を表 1に示す。 [比較例 1 ]
加熱脱気装置として、 脱気装置 2 0、 第 1の加熱装置 1 0、 第 2の加熱装置 3 0の順序で接続され、 接続順序が異なる以外は実施例 1で使用したものと同じ加 熱脱気装置を使用して、 豆乳を製造した。 得られた豆乳を実施例 1と同様に評価 した。 結果を表 2に示す。
なおこの場合の、 脱気前後の呉汁の温度、 脱気室の内圧、 中間温度、 最終温度 も表 2に示す。
[比較例 2 ] .
加熱脱気装置として、 第 1の加熱装置 1 0、 第 2の加熱装置 3 0、 脱気装置 2 0の順序で接続され、 接続順序が異なる以外は実施例 1で使用したものと同じ加 熱脱気装置を使用して、 豆乳を製造した。 得られた豆乳を実施例 1と同様に評価 した。 評価結果を表 3に示す。
なおこの場合の、 中間温度、 最終温度、 脱気後の呉汁の温度、 脱気室の内圧も 表 3に示す。
中間温度 脱気後 脱気刖後 脱気室の 最終温度
実施例番号 の温度 の温度差 内圧 評 価
[°C] [°C] [。c] [MPa] [。C]
実施例 1 7 0 6 5 5 - 0. 076 1 0 0 Δ 実施例 2 7 5 7 0 5 -0. 071 1 0 0 〇 実施例 3 8 0 7 5 5 - 0. 064 1 0 0 ◎ 実施例 4 8 5 8 0 5 - 0. 055 1 0 0 ◎ 実施例 5 9 0 8 5 5 -0. 045 1 0 0 ◎ 実施例 6 9 4 8 9 5 - 0. 035 1 0 0 ◎ 実施例 7 9 5 9 0 5 -0. 033 1 0 0 ◎ 実施例 8 1 0 0 9 2 8 -0. 028 1 0 0 ◎ 実施例 9 1 0 5 9 5 1 0 -0. 020 1 0 0 ◎ 表 2
Figure imgf000019_0001
表 1〜3から明らかなとおり、 本実施例で製造した各試料は、 いずれも比較例 1および 2の各試料に比して風味が良好であり、 その中でも、 中間温度を 7 5 °C 以上の温度に設定した試料は、 特に風味が良好であった。 また、 中間温度を 8 0 °C以上の範囲に設定した場合は、 特に評価が高かつた。
この結果、 本実施例の方法においては、 比較例で示した従来の技術よりも遥か に品質が高い大豆カ卩ェ食品を得られることが判明し、 また、 特に加熱工程で呉汁 が 7 5 °C以上、 好ましくは 8 0 °C以上の温度範囲に達した段階で脱気工程を行え ば、 最も良好な結果が得られることが判明した。
なお、 ここでは省略したが、 大豆の種類、 摩砕条件、 呉汁の濃度、 加熱の前の 分離工程の有無、 脱気条件等を種々変更して同様に試験を行ったが、 ほぼ同様の 結果が得られた。
[実施例 1 0〜: 1 8 ]
中間温度 (温度計 5の指示値) を 9 4 °Cとし、 脱気後の呉汁の温度 (温度計 7 の指示値) を表 4に示す温度とした以外は実施例 1と同様にして、 脱気の程度が 異なる豆乳を製造した。 得られた豆乳を実施例 1と同様に評価した。 評価結果を 表 4に示す。 なおこの場合の、 脱気室 2 1の内圧 (圧力計 2 6の指示値) 、 最終 温度 (温度計 8の指示値) も表 4に示す。 表 4
Figure imgf000020_0001
表 4から明らかなとおり、 脱気前後の温度差が 3 °C以上である場合に、 風味が より良好となり、 温度差が 4 °C以上であれば特に良好であつた。
この結果、 本実施例の方法においては、 脱気後の呉汁の温度が脱気前より少な くとも 3°C、 好ましくは 4°C以上低くなる圧力で脱気室を吸引すれば、 最も良好 な結果が得られることが判明した。
なお、 ここでは省略したが、 大豆の種類、 摩砕条件、 呉汁の濃度、 加熱の前の 分離工程の有無、 脱気条件等を種々変更して同様に試験を行ったが、 ほぼ同様の 結果が得られた。
[実施例 1 9]
図 1及び図 3に示す呉汁の加熱脱気装置 1を使用して得られた呉汁で木綿豆腐 を製造した。 以下にその製造方法を示す。
(1) 浸漬工程
米国産大豆 ( I〇M :三井物産社輸入) 60 k gを洗浄し、 流水に 2時間浸 漬して膨潤させた。 (2) 摩砕工程 浸漬工程で得られた膨潤大豆と 570 k gの水とをグラインダー (長沢機械製 作所社製) に供給し、 摩砕し、 呉汁 (生呉) 約 620 k gを得た。
(3) 加熱脱気工程
摩砕工程で得られた呉汁 (生呉) を、 図 1の加熱脱気装置 1に通液し、 次の運 転条件によつて加熱工程および脱気工程を実施した。
図 1の呉汁貯留タンク 2に温度 1 1°Cの呉汁 (生吳) を貯留し、 第 1の加熱装 置 10に通液し、 4分 30秒かけて中間温度 94°C (温度計 5の指示値) まで加 熱した。
脱気装置 20のェジェクタ— 23を稼動し、 脱気室 21内の空気を吸引して呉 汁の脱気を行った。 この時、 温度計 7の指示値は 89 °Cであり、 脱気前後の温度 差は 5°Cであった。 また、 この時の脱気室 21の内圧 (圧力計 26の指示値) は —0. 035MP aであった。
脱気装置 20で脱気を終えた呉汁を、 第 2の加熱装置 30に通液し、 89°Cか ら最終温度 100°C (温度計 9の指示値) に 5分 30秒かけて加熱おょぴ保持し た。
(4) 分離工程
加熱工程を終了した呉汁 (煮呉) を、 直ちに絞り機 (荒井鉄工所社製) にかけ、 豆乳とおからに分離し、 約 600 k gの豆乳を得た。 得られた豆乳の固形分は約 4. 5% (重量) であった。
(5) 凝固工程
前記豆乳 100 k gを 70〜 75 °Cに冷却した後、 ぬるま湯に懸濁させた硫酸 カルシウム (富田製薬社製) を豆乳の固形分あたり 7. 8%の濃度で添加混合し、 1 0分間放置した。
得られた凝固物を軽く崩した後、 型箱に移し、 20分間圧搾し、 豆腐約 8 O k gを得た。 この豆腐を水に晒して冷却し、 カットして木綿豆腐を得た。 木綿豆腐 の水分は 87% (重量) であった。 ( 6 ) 木綿豆腐の評価
得られた木綿豆腐は硬さが良好であり、 また、 大豆特有の青臭い不快臭が皆無 であって、 極めて風味が良好な製品であった。 産業上の利用可能性
以上説明したように本発明の大豆の製造方法によれば、 加熱工程 ( B ) の途中 で、 呉汁に混入している気泡を除去する脱気工程 ( C) を行うので、 呉汁は加熱 されているため粘度が低く、 呉汁に混入している気泡を除去しやすい。 また、 力口 熱工程 (B ) の途中では熱変性が充分には進行しておらず、 呉汁の臭気が大豆タ ンパク質にさほど吸着されていない。 そのため、 加熱工程 ( B ) の途中で脱気ェ 程 (C) を行うと、 呉汁から効率的に臭気を除去することができる。 したがって、 加熱工程 (B ) の前または後に脱気工程 (C) を行う従来の方法では得られなか つた高い脱臭効果を得ることができる。
また、 加熱工程 (B ) と脱気工程 (C) を、 連続的に行うことによって、 より 効率的に大豆加工食品を製造できる。
さらに、 加熱工程 (B ) において呉汁が 7 5〜1 2 5 °Cの温度範囲、 好ましく は 7 5〜1 0 0 °Cの温度範囲に達した段階で、 脱気工程 (C) を行うことによつ て、 エネルギー的に無駄が少ない状態で呉汁を脱気することができる。
また、 脱気工程 (C ) を、 呉汁の温度が少なくとも 3 °C以上低下するように呉 汁を減圧して、 気泡を除去することによって、 少ないエネルギーで高い脱気効果 を得ることができる。
加熱工程 (B ) においては、 呉汁を、 大径の配管と小径の配管とに交互に流す ことによって、 呉汁を強く混合し、 攪拌することができる。 また、 一般に、 呉汁 は、 強く攪拌しすぎると気泡を抱き込むことがあるが、 このようにすれば、 呉汁 が流れる配管の内部において呉汁を常にピストンフロ一の状態で流すことができ るため、 適度な攪拌効果を得ることができる。
また、 特に、 加熱工程 (B ) において、 呉汁を、 直線的に配置された大径の配 管と、 ターンする形状に曲げられた小径の配管とに交互に流すことによって、 流 れる呉汁の流速が変ィ匕し、 呉汁が踊るような理想的な攪拌状態となるため、 呉汁 に含まれる蛋白質成分が、 均一に混合されるという特有の効果を奏する。
更に、 ターンする形状に曲げられた小径の配管において呉汁に蒸気を吹き込ん で呉汁を加熱することによって、 呉汁の流速を上昇させ、 呉汁の動圧を増加させ、 蒸気出口において蒸気を吸引する作用を強くし、 蒸気を吹き込む際の効率を向上 させるとともに、 呉汁を攪拌する効果を得るのである。
また、 本発明の加熱脱気装置によれば、 呉汁を所定の中間温度まで昇温する第 1の加熱装置と、 この第 1の加熱装置で中間温度に達した呉汁を脱気する脱気装 置と、 この脱気装置で脱気された呉汁をさらに加熱して熱変性を完了させる第 2 の加熱装置を有しているので、 呉汁が適度に加熱され、 かつ熱変性する前の、 好 適なタイミングで呉汁を脱気することができ、 臭気が抑制された呉汁を得ること ができる。 よって連続的かつ効果的に呉汁を加熱脱気でき、 第 1の加熱装置の上 流に脱気装置が設けられた場合や、 第 2の加熱装置の下流に脱気装置が設けられ た場合よりも、 簡単な装置で効果的に微細な気泡までも除去でき、 得られる脱臭 効果も非常に高い。
送液配管が、 大径の配管と小径の配管とが交互に連結されてなることにより、 呉汁を強く混合し、 攪拌することができる。 また、 一般に、 呉汁は、 強く攪拌し すぎると気泡を抱き込むことがあるが、 このようにすれば、 呉汁が流れる配管の 内部において呉汁を常にビストンフローの状態で流すことができるため、 適度な 攪拌効果を得ることができる。
直線的に配置された複数の大径の配管の間に、 ターンする形状に曲げられた少 数の配管が介在して構成されることによって、 流れる呉汁の流速が変化し、 呉汁 が踊るような理想的な攪拌状態となるため、 呉汁に含まれる蛋白質成分が、 均一 に混合されるという特有の効果を奏する。
更に、 ターンする形状に曲げられた小径の配管の一部に、 呉汁に蒸気を吹き込 む蒸気混入装置が接続されることによって、 呉汁の流速を上昇させ、 吳汁の動圧 を増加させ、 蒸気出口において蒸気を吸引する作用を強くし、 蒸気を吹き込む際 の効率を向上させるとともに、 呉汁を攪拌する効果を得ることができる。
また、 呉汁を一時的に貯留する脱気室と、 前記脱気室の空気を吸引する吸引装 置を具備してなる脱気装置を使用することによって、 簡単な装置で高い脱気効果 を得ることができる。

Claims

請 求 の 範 囲
1. 生大豆を摩砕して呉汁を得る摩砕工程 (A) と、 得られた呉汁を加熱して 熱変性させる加熱工程 (B) を含む大豆加工食品の製造方法において、
加熱工程 (B) の途中で、 呉汁に混入している気泡を除去する脱気工程 (C) を行うことを特徴とする大豆加工食品の製造方法。
2. 加熱工程 (B) と脱気工程 (C) を、 連続的に行うことを特徴とする請求 項 1に記載の大豆加工食品の製造方法。
3. 加熱工程 (B) 力 呉汁を所定の中間温度まで昇温して加熱する第 1の加 熱工程と、 呉汁をさらに加熱する第 2の加熱工程とからなり、
脱気工程 (C) を、 第 1の加熱工程と第 2の加熱工程との間に行うことを特徴 とする請求項 1または 2に記載の大豆加工食品の製造方法。
4. 加熱工程 (B) において呉汁が 75〜 1 25°Cの温度範囲に達した段階で、 脱気工程 (C) を行うことを特徴とする請求項 1ないし 3のいずれか一項に記載 の大豆加工食品の製造方法。
5. 加熱工程 (B) において呉汁が 75〜100°Cの温度範囲に達した段階で、 脱気工程 (C) を行うことを特徴とする請求項 4に記載の大豆加工食品の製造方 法。
6. 脱気工程 (C) 力 呉汁の温度が少なくとも 3 °C以上低下するように呉汁 を減圧して、 気泡を除去する方法であることを特徴とする請求項 1ないし 5のい ずれか一項に記載の大豆加工食品の製造方法。
7. 加熱工程 (B) において、 呉汁を、 大径の配管と小径の配管とに交互に流 す請求項 1ないし 6のいずれかに記載の大豆加工食品の製造方法。
8 . 加熱工程 (B ) において、 呉汁を、 直線的に配置された大径の配管と、 タ 一ンする形状に曲げられた小径の配管とに交互に流す請求項 7に記載の大 ΐ¾ロェ 食品の製造方法。
9 . ターンする形状に曲げられた小径の配管において呉汁に蒸気を吹き込んで 呉汁を加熱する請求項 8に記載の大豆加工食品の製造方法。
1 0 . 呉汁を所定の中間温度まで昇温する第 1の加熱装置と、 この第 1の加熱 装置で中間温度に達した呉汁を脱気する脱気装置と、 この脱気装置で脱気された 呉汁をさらに加熱して熱変性を完了させる第 2の加熱装置を有することを特徴と する呉汁の加熱脱気装置。
1 1 . 第 1の加熱装置および第 2の加熱装置が、 呉汁が連続的に流通する送液 配管と、 この送液配管内を流通する呉汁に蒸気を混入して加熱する蒸気混入装置 と、 前記送液配管内に呉汁を送液する送液ポンプを具備してなることを特徴とす る請求項 1 0に記載の呉汁の加熱脱気装置。
1 2 . 送液配管が、 大径の配管と小径の配管とが交互に連結されてなる請求項 1 1に記載の呉汁の加熱脱気装置。
1 3 . 直線的に配置された複数の大径の配管の間に、 ターンする形状に曲げら れた小径の配管が介在して構成される請求項 1 2に記載の吳汁の加熱脱気装置。
1 4 . ターンする形状に曲げられた小径の配管の一部に、 呉汁に蒸気を吹き込 む蒸気混入装置が接続される請求項 1 3に記載の呉汁の加熱脱気装置。
1 5 . 脱気装置が、 呉汁を貯留する脱気室と、 この脱気室の空気を吸引する吸 引装置を具備してなることを特徴とする請求項 1 0ないし 1 4のいずれか一項に 記載の呉汁の加熱脱気装置。
PCT/JP2000/005140 1999-08-03 2000-07-31 Procede de production d'aliments transformes au soja et dispositif de chauffage-desaeration destine a la production de soupe de soja broye WO2001010243A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002346100A CA2346100C (en) 1999-08-03 2000-07-31 Production method for soybean processed food and heating-deaerating device for mashed soybean soup
JP2001514782A JP4313530B2 (ja) 1999-08-03 2000-07-31 大豆加工食品の製造方法および呉汁の加熱脱気装置
DE60027996T DE60027996T2 (de) 1999-08-03 2000-07-31 Verfahren zur herstellung von auf soja basierenden nahrungsmitteln und vorrichtung zur erwaermung/entlueftung von angemaischter sojabohnensuppe
EP00948341A EP1118275B1 (en) 1999-08-03 2000-07-31 Production method for soybean processed food and heating-deaerating device for mashed soybean soup
US09/806,804 US6688214B1 (en) 1999-08-03 2000-07-31 Production method for processed soybean food products and apparatus for thermal deaeration of soybean slurry
US10/682,224 US7147886B2 (en) 1999-08-03 2003-10-08 Production method for processed soybean food products and apparatus for thermal deaeration of soybean slurry

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/220572 1999-08-03
JP22057299 1999-08-03
JP0002451 2000-04-14
JPPCT/JP00/02451 2000-04-14

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/806,804 A-371-Of-International US6688214B1 (en) 1999-08-03 2000-07-31 Production method for processed soybean food products and apparatus for thermal deaeration of soybean slurry
US09806804 A-371-Of-International 2000-07-31
US10/682,224 Continuation US7147886B2 (en) 1999-08-03 2003-10-08 Production method for processed soybean food products and apparatus for thermal deaeration of soybean slurry

Publications (1)

Publication Number Publication Date
WO2001010243A1 true WO2001010243A1 (fr) 2001-02-15

Family

ID=16753096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005140 WO2001010243A1 (fr) 1999-08-03 2000-07-31 Procede de production d'aliments transformes au soja et dispositif de chauffage-desaeration destine a la production de soupe de soja broye

Country Status (7)

Country Link
US (2) US6688214B1 (ja)
EP (1) EP1118275B1 (ja)
AT (1) ATE326147T1 (ja)
CA (1) CA2346100C (ja)
DK (1) DK1118275T3 (ja)
SG (1) SG111089A1 (ja)
WO (1) WO2001010243A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135228A (ja) * 2010-12-24 2012-07-19 Marui Kogyo Kk 連続煮釜
JP2016149962A (ja) * 2015-02-17 2016-08-22 相模屋食料株式会社 家畜用飼料及び家畜用飼料の製造方法
JP6410071B1 (ja) * 2018-04-12 2018-10-24 丸井工業株式会社 固液分離装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1118275B1 (en) * 1999-08-03 2006-05-17 Morinaga Milk Industry Co., Ltd. Production method for soybean processed food and heating-deaerating device for mashed soybean soup
US7017475B2 (en) * 2002-12-05 2006-03-28 School Juridical Person Of Fukuoka Kogyo Daigaku Soy milk coagulating device
AU2003900614A0 (en) * 2003-02-12 2003-02-27 Eric Hsu Continuous curding process
KR100499377B1 (ko) * 2003-05-27 2005-07-05 김홍배 가정용 두유두부제조기의 스팀 공급장치
US7637207B2 (en) * 2003-07-10 2009-12-29 Morinaga Milk Industry Co., Ltd. Continuous emulsification process for process cheese type and equipment therefor, and continuous production method for process cheese type and equipment therefor
KR200329861Y1 (ko) * 2003-07-24 2003-10-10 김홍배 가정용 두유 두부 제조기의 과열 방지장치
KR200331665Y1 (ko) * 2003-08-06 2003-10-30 김홍배 가정용 두유 두부 제조기의 가열 제어장치
KR200336989Y1 (ko) * 2003-09-17 2004-01-03 김홍배 가정용 두유두부 제조기의 모터 체결력 보강장치
KR200338467Y1 (ko) * 2003-10-08 2004-01-16 김홍배 가정용 두유 두부 제조기의 손잡이 겸용 록킹장치
US20080053316A1 (en) * 2003-10-08 2008-03-06 Hong-Bae Kim Household bean milk and bean curd maker closed by gravity
KR200338470Y1 (ko) * 2003-10-08 2004-01-16 김홍배 증기토출기능을 구비한 가정용 두유두부 제조기
US20090000494A1 (en) * 2003-10-08 2009-01-01 Hong-Bae Kim Household soybean milk and tofu maker
KR200338468Y1 (ko) * 2003-10-08 2004-01-16 김홍배 가정용 두유 두부 제조기의 에어 벤트장치
KR200338466Y1 (ko) * 2003-10-08 2004-01-16 김홍배 가정용 두유 두부 제조기의 대용량 스위치를 이용한일차측 전원 차단장치
KR200338469Y1 (ko) * 2003-10-08 2004-01-16 김홍배 자중결합 기능을 갖는 가정용 두유 두부 제조기
KR200338530Y1 (ko) * 2003-10-14 2004-01-16 김홍배 가정용 두유 두부 제조기의 실리콘 팩킹 결합 장치
KR100613248B1 (ko) * 2004-10-01 2006-08-21 주식회사 로닉 가정용 죽 제조기 및 이를 이용한 죽 제조방법
US8444898B2 (en) * 2006-03-30 2013-05-21 Honeywell International Inc High molecular weight poly(alpha-olefin) solutions and articles made therefrom
US7642413B2 (en) * 2008-03-05 2010-01-05 Stine Seed Farm, Inc. Soybean cultivar 7243182
US7642415B2 (en) * 2008-03-12 2010-01-05 Mertec Llc Soybean cultivar 7549450
US7642416B2 (en) * 2008-03-14 2010-01-05 Mertec Llc Soybean cultivar 7013345
DE102009013579A1 (de) * 2009-03-19 2010-09-23 Gea Brewery Systems Gmbh Brauereianlage zur Herstellung und Abfüllung von Bier
US8714079B2 (en) * 2009-08-18 2014-05-06 Rohde Brothers, Inc. Energy-efficient apparatus for making cheese
RU2580010C2 (ru) * 2010-09-07 2016-04-10 Конинклейке Филипс Электроникс Н.В. Управление подачей коагулянта при производстве тофу
RU2591727C2 (ru) * 2012-03-07 2016-07-20 Альфа Лаваль Корпорейт Аб Способ и установка для получения твердого продукта
US9320297B2 (en) 2012-03-22 2016-04-26 Lemniscate Innovations Llc Spherification/reverse spherification automated and integrated system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224462A (ja) * 1984-04-20 1985-11-08 Masuda Hideo 豆腐の製造方法およびその装置
JPS61195660A (ja) * 1985-02-27 1986-08-29 Takai Seisakusho:Kk デアレ−タ−を用いた豆腐の製造方法
JPS62262961A (ja) * 1986-05-09 1987-11-16 Asahi Kogyo Kk 豆腐の製造方法
JPS63119384U (ja) * 1987-01-29 1988-08-02
JPS6423870A (en) * 1987-07-17 1989-01-26 Takai Sofu & Soymilk Equip Boiling of 'go' juice
JPH0249556A (ja) * 1988-08-09 1990-02-19 Asahi Kogyo Kk 豆腐製造における呉汁の加熱方法及び装置
JPH04190044A (ja) * 1990-11-01 1992-07-08 Toshihiko Oba 液体加熱装置
JPH08242801A (ja) * 1995-03-07 1996-09-24 Yamaki Jozo Kk 手作り豆腐用豆乳の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824110B2 (ja) 1975-10-24 1983-05-19 オオサカクジユウシヨウコウ カブシキガイシヤ トウフヨウトウニユウ ノ シヨリホウホウ
US4514433A (en) * 1982-10-22 1985-04-30 Kikkoman Corporation Process for producing an aseptic packed tofu
JPS59179045A (ja) 1983-03-31 1984-10-11 Meiji Seika Kaisha Ltd 脱臭豆乳の製造法
JPH062205Y2 (ja) 1987-07-31 1994-01-19 松下電器産業株式会社 電池パック
KR910000141B1 (ko) * 1987-09-07 1991-01-21 하우스쇼꾸힌 고오교오 가부시끼가이샤 연속 증자장치
JPH01117755A (ja) 1987-10-31 1989-05-10 Nkk Corp 豆腐の製造方法及びその装置
JP2733781B2 (ja) 1989-02-14 1998-03-30 株式会社ノリタケカンパニーリミテド 炭酸ガス溶解方法及び装置
JPH05179045A (ja) 1991-11-18 1993-07-20 Daikin Ind Ltd フルオロブテンからなる発泡剤およびプラスチック発泡体の製造方法
US5972118A (en) * 1995-10-27 1999-10-26 Tennessee Valley Authority Concentrated sulfuric acid hydrolysis of lignocellulosics
EP1118275B1 (en) * 1999-08-03 2006-05-17 Morinaga Milk Industry Co., Ltd. Production method for soybean processed food and heating-deaerating device for mashed soybean soup

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224462A (ja) * 1984-04-20 1985-11-08 Masuda Hideo 豆腐の製造方法およびその装置
JPS61195660A (ja) * 1985-02-27 1986-08-29 Takai Seisakusho:Kk デアレ−タ−を用いた豆腐の製造方法
JPS62262961A (ja) * 1986-05-09 1987-11-16 Asahi Kogyo Kk 豆腐の製造方法
JPS63119384U (ja) * 1987-01-29 1988-08-02
JPS6423870A (en) * 1987-07-17 1989-01-26 Takai Sofu & Soymilk Equip Boiling of 'go' juice
JPH0249556A (ja) * 1988-08-09 1990-02-19 Asahi Kogyo Kk 豆腐製造における呉汁の加熱方法及び装置
JPH04190044A (ja) * 1990-11-01 1992-07-08 Toshihiko Oba 液体加熱装置
JPH08242801A (ja) * 1995-03-07 1996-09-24 Yamaki Jozo Kk 手作り豆腐用豆乳の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135228A (ja) * 2010-12-24 2012-07-19 Marui Kogyo Kk 連続煮釜
JP2016149962A (ja) * 2015-02-17 2016-08-22 相模屋食料株式会社 家畜用飼料及び家畜用飼料の製造方法
JP6410071B1 (ja) * 2018-04-12 2018-10-24 丸井工業株式会社 固液分離装置

Also Published As

Publication number Publication date
US6688214B1 (en) 2004-02-10
EP1118275B1 (en) 2006-05-17
DK1118275T3 (da) 2006-08-21
CA2346100C (en) 2004-08-24
EP1118275A4 (en) 2004-08-11
ATE326147T1 (de) 2006-06-15
EP1118275A1 (en) 2001-07-25
SG111089A1 (en) 2005-05-30
CA2346100A1 (en) 2001-02-15
US7147886B2 (en) 2006-12-12
US20040071849A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
WO2001010243A1 (fr) Procede de production d'aliments transformes au soja et dispositif de chauffage-desaeration destine a la production de soupe de soja broye
US20090317533A1 (en) Method for producing a soy milk
JP5253179B2 (ja) 豆乳製造方法及び豆乳製造装置
US5863590A (en) Method for producing an aseptic packaged tofu product
JP5805171B2 (ja) 高濃度豆乳を用いた硬度及び弾力性が増大した豆腐及びその製造方法
KR102626541B1 (ko) 염화마그네슘과 해양심층수 원수를 응고제로 사용하는 두부 제조방법
US6331324B1 (en) Soybean curd puree, and process and apparatus for preparing the same
KR100787490B1 (ko) 전두부의 제조방법 및 제조장치
JP2002095433A (ja) 豆乳、豆腐またはその二次加工品の製造方法
JP3781177B2 (ja) 豆乳及び豆腐の製造方法
JP4313530B2 (ja) 大豆加工食品の製造方法および呉汁の加熱脱気装置
CN107183192A (zh) 一种脱腥低嘌呤豆浆的制作方法
US20040156975A1 (en) Methods of manufacturing aseptic tofu using nano- or ultrafiltration
GB2598528A (en) A method of preparing a re-boiled soy milk
JP3328770B2 (ja) 豆乳の殺菌方法と無菌豆腐の製造方法
JP3436927B2 (ja) 豆乳のインライン凝固装置
JP3210867B2 (ja) 豆腐の製造方法
KR20220027658A (ko) 고농축 두유를 이용한 경도 및 탄력성이 증가된 두부 및 그 제조 방법
JP2003023993A (ja) 豆腐の連続的製造装置及び製造方法
JP2001327259A (ja) 豆乳の凝固熟成装置
WO2021115488A1 (zh) 一种制备豆乳的方法、制得的豆乳及其应用
JP2004267184A (ja) 大豆原料のオカラ及び豆乳の製造方法
KR20060107245A (ko) 전두부의 제조방법
JPH0423961A (ja) 高給分離蛋白の製造方法
JP2000232860A (ja) 高濃度豆乳の製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2346100

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2346100

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2001 514782

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000948341

Country of ref document: EP

Ref document number: 09806804

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000948341

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000948341

Country of ref document: EP