WO2000079231A1 - Détecteur rotatif et circuit de mesure de celui-ci - Google Patents

Détecteur rotatif et circuit de mesure de celui-ci Download PDF

Info

Publication number
WO2000079231A1
WO2000079231A1 PCT/JP2000/004061 JP0004061W WO0079231A1 WO 2000079231 A1 WO2000079231 A1 WO 2000079231A1 JP 0004061 W JP0004061 W JP 0004061W WO 0079231 A1 WO0079231 A1 WO 0079231A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
rotation angle
rotation
rotor
sensor
Prior art date
Application number
PCT/JP2000/004061
Other languages
English (en)
French (fr)
Inventor
Dongzhi Jin
Fumihiko Abe
Kengo Tanaka
Kazuhiko Matsuzaki
Masahiro Hasegawa
Kosuke Yamawaki
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP17379299A external-priority patent/JP4252676B2/ja
Priority claimed from JP28170699A external-priority patent/JP4382927B2/ja
Priority claimed from JP28963399A external-priority patent/JP4382929B2/ja
Priority claimed from JP2000172066A external-priority patent/JP4429483B2/ja
Priority claimed from JP2000182166A external-priority patent/JP4429484B2/ja
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to EP00940783A priority Critical patent/EP1113253A4/en
Publication of WO2000079231A1 publication Critical patent/WO2000079231A1/ja
Priority to US09/790,304 priority patent/US6481296B2/en
Priority to US10/225,400 priority patent/US6672175B2/en
Priority to US10/225,401 priority patent/US20030051563A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/24Measuring arrangements characterised by the use of mechanical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Definitions

  • the present invention relates to a rotation sensor, which is attached to a mounting target such as a shaft that causes a relative rotation angle shift at a position different in the axial direction, and detects a relative rotation angle difference of the mounting target in a non-contact manner;
  • the present invention relates to a rotation sensor that detects a rotation angle (position) of the assembly target in a non-contact manner in addition to a relative rotation angle.
  • a relative rotation angle detection device that detects a relative rotation angle of a steering shaft to detect a rotation torque acting on a steering shaft of an automobile connected through a joint joint.
  • a rotation sensor may be used.
  • Japanese Patent Publication No. Sho 63-4555528 discloses that a notch is formed at a predetermined position in a longitudinal direction of two conductive members having a cylindrical shape.
  • the relative rotation of the shaft to which the member is attached changes the area of the conductive member that crosses the magnetic field, causing eddy currents in the conductive member, thereby changing the inductance of the coil.
  • the area of the conductive member that crosses the magnetic field is changed by the relative position change of the two conductive members. It is necessary to make the amount of rotation angle deviation proportional to the magnitude of the eddy current generated in the conductive member. Due to the structure, the area where the conductor crosses the magnetic field is proportional to the amount of the deviation, but the magnetic field that crosses both conductors is required. Is to keep the strength of the object constant.
  • the magnetic field generated by the coil is distributed almost uniformly in the circumferential direction, but the magnetic field distribution in the rotation axis direction or the radial direction of the coil is not uniform. Therefore, in order to secure sensing with rich linear characteristics, it is necessary to assemble the two conductive members so that they overlap each other without any gap.To improve the detection accuracy of the rotation angle of the shaft, the assembly accuracy is still high. There are issues that are strictly required.
  • a conventional rotation sensor measurement circuit an alternating current is applied to an excitation coil provided in a fixed core (not shown) and electrically connected to an oscillation circuit.
  • the impedance of the coil changes depending on the rotation angle.
  • the oscillation frequency of the oscillation circuit fluctuates according to a change in impedance of the exciting coil. Therefore, the measurement circuit counts a pulse signal oscillated from the oscillation circuit by a pulse counter, and detects the oscillation frequency to measure a relative rotation angle between the first row and the second mouth.
  • the oscillation frequency of the oscillation circuit fluctuates in a range of 98 kHz to 108 kHz with respect to a change in the impedance of the coil, and usually within a time of 5 ms.
  • the number of pulses was measured with the resolution to count the oscillation pulse signal. For this reason, when the measurement circuit is used to detect, for example, torque acting on a steering shaft of a vehicle, there is a problem that it takes a long time to count pulses in a pulse count and a response is deteriorated.
  • the oscillation frequency of the oscillation circuit changes from 100 kHz to 105 kHz at the above resolution
  • the number of pulses changes from 500 pulses to 52.5 pulses, that is, 25 pulses. Will be measured.
  • a metal rotor 3 having a plurality of metal teeth 3 a has a predetermined gap between a fixed magnetic member 1 having a coil and a magnetic material rotor 2 having irregularities on the outer periphery. It is arranged in.
  • this rotation sensor a plurality of metal teeth 3a are arranged at equal intervals in the circumferential direction, and when the metal teeth 3a cross the AC magnetic field having a non-uniform distribution due to the relative rotation of the two mouths 2 and 3, An eddy current is generated in the metal teeth 3a. This eddy current fluctuates depending on the relative rotation angle between the two mouths. Therefore, this rotation sensor measures the change in the impedance of the coil caused by the fluctuation of the eddy current induced in these members, and determines the relative rotation angle of the two mouths 2 and 3, that is, the relative rotation angle. Detects the relative rotation angle between two rotating members.
  • the rotation sensor using the alternating magnetic field having a non-uniform distribution as described above has a magnetic flux density fluctuation ⁇ and a generated magnetic field.
  • the characteristics depend on two parameters, the strong and weak boundary region ⁇ ⁇ ⁇ ⁇ ⁇ in the distribution. That is, the rotation sensor has higher detection sensitivity of the rotation angle as the variation ⁇ of the magnetic flux density is larger, and the linearity of the detection output is better as the boundary region ⁇ 0 of the magnetic field distribution is smaller.
  • the rotation sensor has the following problems in order to increase the degree of uneven distribution of the AC magnetic field depending on the size of the gap.
  • the thickness of the magnetic material layer 2 is periodically changed along the circumferential direction so as to correspond to the plurality of metal teeth 3a.
  • the magnetic flux is lower than that of the core material having a high magnetic permeability.
  • the rotation sensor has a problem that the boundary area ⁇ 0 of the magnetic field distribution is increased due to the magnetic flux concentrated at the corners, which adversely affects the linear characteristics of the detection output.
  • a rotation sensor for example, a rotation sensor disclosed in Japanese Patent Application Laid-Open No. 7-139905 can measure a rotation angle within 180 degrees in the left and right direction (within one rotation). Rotation angles exceeding 0 degrees could not be measured. In addition, it was not possible to measure whether the measured rotation angle was the left or right position, and it was necessary to measure the rotation position separately.
  • the rotation sensor may be required to measure the rotation torque instead of the rotation angle depending on the application.
  • the present invention has been made in view of the above points, and a first object of the present invention is to provide a rotation sensor having excellent detection accuracy with respect to a relative rotation angle of an assembly target.
  • a second object of the present invention is to provide a rotation sensor capable of measuring a rotation angle (position) with high accuracy in addition to a relative rotation angle of an assembly target.
  • a third object of the present invention is to provide a measurement circuit for a rotation sensor that has high resolution for measuring a relative rotation angle of an assembly target and can improve responsiveness.
  • a fourth object of the present invention is to provide a rotation sensor which can be easily assembled without requiring the accuracy of assembling the object to be assembled, and which has excellent detection accuracy with respect to the relative rotation angle.
  • a fifth object of the present invention is to provide a small-sized rotation sensor having a linear detection output characteristic and high detection sensitivity.
  • a sixth object of the present invention is to make it possible to identify the left or right rotation position, to measure even a rotation angle exceeding 180 degrees, and to be able to measure the rotation angle and Z or the rotation torque. It is intended to provide a sensor. Disclosure of the invention
  • a rotation sensor includes: a first mouth fixed at a predetermined position in an axial direction of a shaft; A second rotor fixed to the shaft adjacent to the first rotor, and a magnet having a resonant coil disposed around the first rotor and forming a magnetic circuit in cooperation with the first rotor.
  • a first core is formed of a magnetic material made of an insulator, and a non-uniform magnetic field is formed between the first core and the magnetic material core;
  • the invention is characterized in that a first shaft formed of an insulating magnetic material and attached to a predetermined position in the axial direction of a rotating first shaft is provided.
  • a fixed core fixed to a fixed member, having a core body, and an exciting coil through which an alternating current is passed and forming a magnetic circuit in cooperation with the insulating magnetic material, and adjacent to the fixed core and the first rotor.
  • the first rotor is provided with conductor layers at predetermined intervals along a circumferential direction, and the second rotor corresponds to the conductor layer.
  • Metal teeth are formed at intervals.
  • the insulating magnetic material and the core body are formed of an insulating material in which a thermoplastic resin and a soft magnetic material are mixed, and the content of the soft magnetic material is 10% by volume or more and 70% by volume or less.
  • a measurement circuit for a rotation sensor includes: a first rotor and a core body formed of an insulating magnetic material; A fixed core having an exciting coil through which an alternating current flows and forming a magnetic circuit in cooperation with the insulating magnetic material; a second rotor disposed between the first rotor and the fixed core; A rotation sensor that measures a relative rotation angle between the first port and the second port; an oscillation unit that oscillates an oscillation signal of a specific frequency; and an eddy current generated in the second port.
  • Phase shift means for shifting the phase of the oscillation signal according to the magnitude; shift amount detection means for detecting the phase shift amount of the shifted oscillation signal; and Measuring means for measuring the relative rotation angle by It is of the the.
  • phase shift of the oscillation pulse signal applied to the excitation coil forming the magnetic circuit is detected in accordance with the magnitude of the eddy current generated in the second rotor, and the detected phase shift amount and the relative rotation angle are detected. From the relationship, measure the relative rotation angle of the first row and the second mouth.
  • the invention according to a fourth aspect is directed to a first aspect having a plurality of first conductor layers arranged at predetermined intervals in a circumferential direction.
  • a second rotor having an insulating magnetic material layer and a second conductor layer, the rotor rotating integrally with the first rotor and a relative rotation within a predetermined angle with respect to the first rotor;
  • a relative rotation angle coil for detecting a relative rotation angle accompanying the relative rotation of the first and second rows or a rotation angle of the first or second rows with respect to the fixed body is used. It is configured to include at least one of the rotation angle coils to be detected.
  • a first signal processing means for processing an output signal from the relative rotation angle coil and a second signal processing means for processing the output signal from the relative rotation angle measuring means or the rotation angle coil and displacement sensor is configured to include signal processing means and rotation angle measuring means.
  • the invention according to a fourth aspect has a plurality of first conductor layers arranged at predetermined intervals in a circumferential direction.
  • a first rotor having an insulating magnetic material layer and a second conductor layer, rotating together with the first rotor, and relative to the first port within a predetermined angle;
  • a fixed body formed of an insulating magnetic material and having a core for holding the relative rotation angle coil and the rotation angle coil, and connected to the relative rotation angle coil and the rotation angle coil to oscillate an oscillation signal of a specific frequency.
  • a rotating sensor provided with an oscillating means for rotating the second row And a coil connected to the oscillating means and cooperating with the movable magnetic core.
  • the coil inductance based on the movement of the movable magnetic core in the rotational axis direction.
  • the configuration was such that a displacement sensor for detecting changes was provided.
  • a first signal processing means for processing an output signal from the relative rotation angle coil, a means for measuring the relative rotation angle, and a second signal for processing an output signal from the rotation angle coil and displacement sensor Structure comprising processing means and rotation angle measuring means
  • a conductor piece and an insulating layer and a coil connected to the oscillating means and cooperating with the conductor piece, one provided on the fixed body, and the other provided on the second row.
  • a pitch sensor for detecting a change in coil inductance based on the rotation of the second mouth is provided.
  • the second signal processing means performs signal processing so as to output the same signal as the output signal at the upper limit point and the lower limit point near the upper limit point and the lower limit point of the output signal from the rotation angle coil. Configuration.
  • another invention according to a fourth aspect comprises a plurality of first conductor layers arranged at predetermined intervals along a circumferential direction.
  • a first rotor having an insulating magnetic material layer and a second conductor layer, and integrally rotating with the first rotor, and relative to the first rotor within a predetermined angle.
  • a coil member provided on the fixed body and having a coil connected to the oscillating means, wherein the third conductor layer and the coil are formed based on rotation of the first and second rotors.
  • the configuration was such that a displacement sensor was provided to detect the change in coil inductance between them.
  • a relative rotation angle coil for detecting a relative rotation angle accompanying the relative rotation of the first and second rotors or a rotation angle of the first and second ports with respect to the fixed body is set. At least one of the rotation angle coils to be detected A configuration is provided.
  • a first signal processing means for processing an output signal from the relative rotation angle coil and a second signal processing means for processing the output signal from the relative rotation angle measuring means or the rotation angle coil and displacement sensor is configured to include signal processing means and rotation angle measuring means.
  • another invention according to a fourth aspect includes a plurality of first conductor layers arranged at predetermined intervals along a circumferential direction.
  • a first rotor having an insulating magnetic material layer and a second conductor layer, rotating integrally with the first rotor and relative to the first rotor within a predetermined angle.
  • a first gear member having first and second gear portions each having a different number of teeth, wherein the first gear portion is formed on the second rotor and the first gear member.
  • a second gear member coupled with the gear unit formed from an insulating magnetic material, having a fourth gear unit coupled with the second gear unit, and a third conductor layer;
  • the first and second rows are provided with a slider made of a magnetic material that is transmitted in a reduced rotation speed and that moves in the rotating direction of the rotor and a coil provided on the fixed body and connected to the oscillating means;
  • the configuration is such that a displacement sensor is provided for detecting a change in coil inductance between the third conductor layer and the coil based on evening rotation.
  • a first signal processing means for processing an output signal from the relative rotation angle coil, a measurement means for the relative rotation angle, and a second signal for processing output signals from the rotation angle coil and the displacement sensor Structure comprising processing means and rotation angle measuring means
  • a conductor piece and a coil connected to the oscillating means and cooperating with the conductor piece, one of which is provided in the fixed body and the other is provided in the second port.
  • a pitch sensor for detecting a change in coil inductance based on the rotation of the second row is provided.
  • the second signal processing means performs signal processing so as to output the same signal as the output signal at the upper limit point and the lower limit point near the upper limit point and the lower limit point of the output signal from the rotation angle coil.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a rotation sensor according to a first aspect (aspect) of the present invention.
  • FIG. 2 shows the rotation sensor of FIG. 1 except for a magnetic material core.
  • FIG. 3 is a schematic exploded perspective view
  • FIG. 3 is a plan view showing the magnitude relationship of magnetic flux density in the rotation sensor of FIG. 1
  • FIG. 4 is a partial cross-sectional view showing a magnetic circuit formed in the rotation sensor of FIG.
  • FIGS. 5A to 5C are developed views showing the outer peripheral portions of the first rotor and the second rotor in the rotation sensor of FIG. 1
  • FIGS. 6A to 6C are first rotors of FIG.
  • FIG. 7 is a plan view showing the magnitude relationship of the magnetic flux density when the second mouth and the second mouth are relatively rotated.
  • FIG. 7 is a circuit block diagram showing the connection relationship between the coil of FIG. 1 and the signal processing circuit.
  • FIG. 9 is a partial cross-sectional view showing a modification of the rotation sensor of FIG. 1, and FIG. 9 is a magnetic sensor according to a second embodiment of the present invention.
  • FIG. 10 is a plan view showing the rotation sensor shown in FIG. 9, and FIGS. 11A and 11B are first and second views of FIG.
  • FIGS. 12A and 12B are top views showing the magnitude relationship of the magnetic flux densities in a state where the two rotors are relatively rotated.
  • FIG. 13 is a plan view showing a magnitude relationship of magnetic flux densities in a rotating state.
  • FIG. 13 is a perspective view showing a first embodiment of a rotation sensor according to a second aspect (aspect) of the present invention. Shows the rotation sensor shown in Fig. 13 as the first and second shafts.
  • FIG. 15 is a plan view of the assembled rotation sensor
  • FIG. 16 is a cross-sectional view showing an enlarged schematic view of the right half of the rotation sensor of FIG. 14
  • FIG. 7 is a plan view showing a second embodiment of the rotation sensor according to the second aspect (aspect)
  • FIG. 18 is a perspective view of a second mouth used in the rotation sensor of FIG.
  • FIG. 19 is a sectional view corresponding to FIG. 14 showing a third embodiment of the rotation sensor according to the second aspect (aspec t)
  • FIG. 20 is a rotation sensor according to the second aspect (aspec t).
  • Fig. 21 is a cross-sectional view of a first application example of a sensor unit cut along a diameter
  • Fig. 21 is a cross-sectional view of a second application example of a rotary sensor, in which a sensor unit is cut along a diameter.
  • FIG. 22 is a circuit diagram showing an embodiment of a measurement circuit of a rotation sensor according to a third aspect (aspect) of the present invention.
  • FIGS. 23A to 23D are: Waveform diagram showing pulse waveforms at each part shown in Fig. 22, Fig.
  • FIG. 24 shows relationship diagram showing relationship between phase shift angle and relative rotation angle
  • Fig. 25 uses measurement circuit shown in Fig. 22
  • FIG. 26 is a perspective view showing an embodiment of a rotation sensor to be mounted on a shaft without a fixed core
  • FIG. 26 is a cross-sectional view showing the rotation sensor of FIG. 25
  • FIG. 27 is an assembled rotation sensor.
  • FIG. 28 is a cross-sectional view showing a schematic configuration in which the right half of the rotation sensor of FIG. 26 is enlarged.
  • FIG. 29 is a rotation view according to a fourth aspect (aspect) of the present invention.
  • FIG. 30 is a cross-sectional front view in which the right half of the rotation sensor of FIG. 29 is enlarged
  • FIG. 31 is a cross-sectional front view of the rotation sensor of FIG.
  • Fig. 32 is a cross-sectional plan view taken along the line 1.
  • Fig. 32 shows the positional relationship of the main components of the rotation sensor shown in Fig. 29, and some components are omitted.
  • Fig. 33 is a cross-sectional front view showing the arrangement of the pitch sensor and the copper foil with other components omitted, and
  • Fig. 34 is an example of the configuration of a rotation angle measuring device in a rotation sensor.
  • 35A to 35D are the waveform diagrams showing the output waveforms of the sensors and the rotation angle measurement unit shown in FIG. 34
  • FIG. 36 is the movement of the slider core in the displacement sensor.
  • Fig. 37 is a partial waveform diagram for explaining the relationship between the output of the rotation angle sensor and the pitch sensor, and Fig.
  • FIG. 38 is a rotation angle measurement device for the rotation sensor.
  • FIG. 39 is a block diagram showing another example of the configuration of FIG. 3, FIG. 39 is an output characteristic diagram simply showing the output of the displacement sensor and the rotation angle, and
  • FIG. 40 is a fourth aspect (aspect) of the present invention.
  • FIG. 41 is a cross-sectional front view showing the left half of the rotation sensor shown in FIG. 40
  • FIG. 42A is a sectional view taken along line C 2 —C 2 of FIG.
  • Fig. 42B is a cross-sectional plan view taken along line C3-C3 in Fig. 40.
  • Fig. 43 is a cross-sectional plan view of the main components constituting the rotation sensor in Fig. 40.
  • FIG. 41 is a cross-sectional front view showing the left half of the rotation sensor shown in FIG. 40
  • FIG. 42A is a sectional view taken along line C 2 —C 2 of FIG.
  • Fig. 42B is a cross-sectional plan view
  • FIG. 44 is a cross-sectional plan view in which some components are omitted, FIG. 44 is a plan view showing the slider restricting wall and coil members in an unfolded state, and FIGS. 45A to 45D are FIG. 46 is a waveform diagram showing output waveforms at each sensor and the rotation angle measuring unit, FIG. 46 is a relationship diagram showing a relationship between a slider movement amount and a coil inductance in a displacement sensor, and FIG. Fig. 48 is a cross-sectional front view of the rotation sensor shown in Fig. 40, showing the essential parts of the rotation sensor shown in Fig. 40, and Fig. 49 is a rotation sensor shown in Fig. 48.
  • Fig. 50 is a cross-sectional view of the rotation sensor of Fig.
  • FIG. 52A to Fig. 52E are schematic diagrams showing the change of the overlapping state of the copper plates of both the fixed core and the intermittent gear when the intermittent gear rotates, for each number of rotations.
  • FIG. 54 is a magnetic flux density showing a variation ⁇ ⁇ of a magnetic flux density in a circumferential direction of a gap formed in the rotation sensor and a strong and weak boundary region ⁇ ⁇ ⁇ ⁇ ⁇ in a generated magnetic field distribution.
  • FIG. 6 is a fluctuation characteristic diagram of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the rotation sensor 10 has a first mouth 11, a second rotor 12, and a magnetic material core 13 (shown only in FIG. 1), It is attached to a shaft 5 comprising a drive shaft 5a, a driven shaft 5c, and a torsion joint 5b which connects them and increases torsion according to torque.
  • the first rotor 11 has a bottomed cylindrical shape, and is fixed to the driven shaft 5c with a fastener such as an adhesive and a screw.
  • the second mouth 1 and 2 also have a bottomed cylindrical shape with an inner diameter larger than the outer diameter of the first row 11 and are fixed to the driving shaft 5a with fasteners such as adhesives and screws. Have been.
  • a magnetic material core 13 is fixed to a non-rotating structure via a non-magnetic material bracket (not shown). Accordingly, the periphery of the second mouth 12 is located in the ring-shaped gap formed between the first row 11 and the magnetic material core 13.
  • the first raw material 11 is used for insulating molding materials such as nylon, polypropylene (PP), polyphenylene sulfide (PPS), and ABS resin, for example, Ni-Zn and Mn-Zn soft materials. It is made of a soft magnetic material in which magnetic powder is mixed at a certain ratio, has thermoplasticity, is inexpensive, and has excellent vibration resistance. As is clear from FIGS. 2 and 5, six notches 11 a are formed at equal intervals in the circumferential direction on the outer peripheral portion of the first mouth 11 as well as between the notches. Six teeth 1 1b are formed at equal intervals. By adopting such a configuration, as shown in FIG.
  • an area FA having a high magnetic flux density is formed between the magnetic material core 13 and the teeth 11 b of the first rotor, and the magnetic material core 13
  • An area FB having a small magnetic flux density is formed between the notch 11a and the first opening 1a. That is, a non-uniform magnetic field is formed between the first row 11 and the magnetic material core 13.
  • the magnetic material core 13 is provided on the inner peripheral surface side of a cylindrical body made of the same soft magnetic material as the first rotor 11 described above, in cooperation with the first rotor 11 and a magnetic circuit CMG (see FIG. 4).
  • the second opening 12 is made of a conductive material such as aluminum, for example, and the whole forms a conductor.
  • a conductive material such as aluminum, for example
  • six notches 12a similar to the first row 11 are formed at equal intervals on the outer peripheral portion, and 6 notches are formed between the notches.
  • One tooth 1 2b is formed at equal intervals. Accordingly, as shown in FIGS. 5A and 6A, when the teeth 11 b of the first rotor and the teeth 12 b of the second rotor completely face each other, the magnetic material core 13 and the first core 13 b The magnetic flux density in the magnetic field region where the second row 12 crosses the magnetic circuit formed between the first row 11b and the second row 12b is thus generated in the second row 12 Eddy current also becomes the largest.
  • the second The magnetic flux density in the magnetic field region in which the evening 12 crosses the magnetic circuit is medium, and therefore, the eddy current generated in the second row 12 is also medium.
  • the relative rotation between the driving shaft 5a and the driven shaft 5c causes the first row teeth 1 1b and the second mouth teeth 1 2b to be aligned with each other as shown in FIG. 5A (FIG. 6A). 5C (FIG. 6C).
  • the magnitude of the eddy current generated in the second rotor 12 which is the conductor, changes periodically as described above.
  • the relative rotational angle difference between the first rotor 11 and the second rotor 12 and, consequently, the difference between the driven shaft 5c and the driven shaft 5a The relative rotation angle difference can be easily detected.
  • the magnitude of the eddy current generated in the second row 12 changes due to the rotation, and as a result, the coil impedance of the coil 13c changes, and the resonance Road resonance frequency f. Changes.
  • This f by the signal processing circuit. Is detected, the relative rotation angle difference between the first row 11 (the driven shaft 5 c) and the second row 12 (the driven shaft 5 a) can be measured.
  • the first rotor 11 is formed of a magnetic material made of an insulator.
  • the rotation sensor 10 can significantly improve the non-uniformity of the magnetic flux density distribution between the gaps by concentrating the magnetic flux between the gaps on the magnetic material. Even if the relative mounting position accuracy of the rotors 12 is not strictly required, the relative rotation angle difference between the first rotor 11 and the second rotor 12 and the second port The amount of change in the area where the 12 conductors intersect the regions with different non-uniform magnetic field strengths is always in a proportional relationship, and the linear characteristics of the detection output are excellent.
  • the rotation sensor 10 since the soft magnetic members are only the first rotor 11 and the magnetic material core 13, they are attached without strictly maintaining the concentricity of both, Even if the gap between the outer peripheral surface of the first mouth 11 and the inner peripheral surface of the magnetic material core 13 becomes uneven, the difference in magnetic resistance is offset over the entire circumferential direction. As a result, the rotation sensor 10 substantially matches the sum of the magnetic resistances when the first mouth 11 and the magnetic material core 13 are mounted with the concentricity strictly maintained. That is, since the rotation sensor 10 has a ring-shaped gap, the total reluctance becomes constant without being affected by fluctuations in the concentricity between the shaft and the coil, and fluctuations of the rotation center axis. In addition, the detection error is suppressed to be small, and the detection accuracy is excellent.
  • the rotation sensor 10 is proportional to the relative rotation angle difference of the shaft 5 and the magnitude of the eddy current generated when the conductor of the second rotor 12 crosses the region where the strength of the non-uniform magnetic field is different. Excellent linear output characteristics. That is, the rotation sensor 10 has the impedance of the coil 13 c Since the eddy current that affects the temperature is generated only in the second row 12, the sensitivity and the linearity of the detection output can be improved.
  • the rotation sensor 10 can relax the allowable range of the gap between the low and high speeds. Therefore, for example, when assembling the rotation sensor of the present invention to a steering device of an automobile that requires mass production, as described above, the gap between low and evening is allowed to be on the order of several thighs, thereby reducing the assembly cost. Greatly contribute to.
  • the rotation sensor can be assembled even in an automobile assembly line, and the assembly process is not restricted.
  • the rotation sensor 10 can reduce the manufacturing cost.
  • the rotation sensor 10 has an overall length L A in the axial direction of the magnetic material core 13, an overall length L B in the axial direction of the first rotor 11, and a second mouth 12.
  • Preferably has a dimensional relationship of L B > L A and L c > L A with the total length L c in the axial direction. This allows the rotation sensor 10 to loosen the axial mounting position accuracy of the first rotor 11, the second rotor 12, and the magnetic material core 13, and to assemble the detection device. It can be easier to do.
  • the detection sensitivity of the rotation sensor 10 is almost proportional to the number of teeth on the circumference, as the number of teeth on the circumference increases, the range of the relative angle that can be detected becomes narrower, but the detection sensitivity increases. .
  • the six teeth and the six notches have a uniform size, and each have an angle range of 360 degrees of 1 1 2 (30 degrees). Occupy. Therefore, the maximum detectable relative rotation angle deviation is 15 degrees.
  • the rotation sensor 10 is used to detect the torque of the shaft 5 as an example when the deviation of the relative rotation angle of the shaft 5 is small, for example, 8 degrees on earth, but it is necessary to accurately detect the deviation of the relative rotation angle. It is suitably used for, for example,
  • the second rotor 1 is made of only a conductor such as aluminum.
  • the second port 15 is formed by attaching a conductor 15b such as aluminum to a part of the moldable resin material 15a as shown in FIG. good. If the conductor 15b of the second rotor gradually crosses the magnetic field formed by the first rotor 11 and the magnetic material core 13 in accordance with the relative rotation of the shaft 5, As in the case of the rotation sensor 10 described above, the shift amount of the rotation angle of the shaft 5 can be accurately detected.
  • the rotation sensor 20 is attached to a shaft 5 including a driving shaft 5a, a driven shaft 5c, and a torsion joint 5b, and the driven shaft 5c has an insulating soft magnetic member as described above.
  • a first rotor 21 is fixed, and the driving shaft 5a is entirely made of a conductor such as aluminum, and has a second inner diameter larger than the outer diameter of the first rotor 21. Rho 22 is fixed.
  • a magnetic core 23 (not shown in FIG. 9) is provided around the first row 21.
  • the magnetic material core 23 has the same configuration as the magnetic material core 13 of the first embodiment, except that the first rotor 21 and the second rotor 22 have the same shape as in the first embodiment. Instead of having six teeth and notches around each, it has a semi-circular continuous notch 21a, 22a and teeth 21b, 22b respectively. It is different.
  • the rotation sensor 20 is arranged between the magnetic material core 23 and the semicircular teeth 21 b of the first rotor 21 in an end view. Is a region FA having a large magnetic flux density, and a region FB having a small magnetic flux density is provided between the notch 21 a of the first rotor 21 having a semicircular shape in end view and the magnetic material core 23.
  • the rotation sensor 20 forms a non-uniform magnetic field in the circumferential direction.
  • the conductor portion of the second opening 22 which crosses the regions having different intensities of the non-uniform magnetic field also has the semi-circular teeth 22 b in end view as shown in FIG. 5 and the magnitude of the eddy current generated in the conductor of the second row 22 have a proportional relationship over a wide range.
  • the second embodiment since the relative rotation angles of the two rows 21 and 22 can be continuously measured, the second embodiment is suitably used, for example, for detecting the steering angle of the steering wheel of an automobile.
  • the teeth of the two mouths 21 and 22 are formed in a semicircular shape in end view as described above. .
  • a magnetic circuit formed by the first opening 21 and the magnetic material core 23 is formed according to the amount of deviation of the relative rotation angle of the shaft 5.
  • the second tooth 22b gradually crosses, and an eddy current is generated in proportion to the area change of the second row 22 crossing the magnetic circuit, and the coil impedance is proportional to this.
  • an absolute position sensor may be additionally provided in the detection device.
  • a commercially available photosensor is mounted at an appropriate position on the first row or the second port, and the output of the photosensor is turned on when the relative rotation angle is 0 to 180 degrees, and the relative rotation angle is set. If the output of the photosensor is turned off at 180 degrees to 360 degrees, the relative rotation angle direction of the shaft can be determined at the same time.
  • FIG. 13 a rotation sensor according to a second aspect (aspect) for achieving the first and fifth objects of the present invention will be described with reference to FIGS. 13 to 21.
  • FIG. 13 a rotation sensor according to a second aspect (aspect) for achieving the first and fifth objects of the present invention will be described with reference to FIGS. 13 to 21.
  • the rotation sensor 30 includes a first rotor 31, a fixed core 32, and a second rotor 33, and the first shaft S F1 and the second shaft S F2 (FIG. 14) Detect the relative rotation angle of.
  • the rotation sensor 30 is, for example, 1 Used to detect the rotational torque of the steering wheel shaft of an automobile by transmitting the rotational torque from the main shaft to the driven shaft by means of a joint joint.
  • the relative rotational angle of both shafts SF1 and SF2 is ⁇ 8 °. Vary within range.
  • the first rotor 31 is formed in a cylindrical shape, and is attached to a predetermined position in the axial direction of the rotating first shaft SF1, as shown in FIG. As shown in Fig.
  • the first opening 31 has a cylindrical shaft 3 1b integrally formed with a flange 31 b extending outward in the radial direction at the upper part of the cylindrical shaft 31a.
  • Insulating magnetic member 31c is attached to the outer periphery of a, and a plurality of copper foils 3 that become conductor layers at predetermined intervals, for example, at a central angle of 60 ° along the circumferential direction on the surface of insulating magnetic member 31c. 1 d is affixed.
  • the copper foil 31d may be provided inside the insulating magnetic member 31c instead of the surface.
  • the conductor layer may be made of a material such as aluminum, silver, iron, or the like in addition to the copper foil 3 Id as long as it is a conductor.
  • the number of conductive layers increases as the center angle is reduced and the arrangement interval is reduced, and the amount of change in the total eddy current induced in the components of the rotation sensor (to the number of conductive layers) (Proportional) increases, and the detection sensitivity of the relative rotation angle increases, but the measurable angle range decreases.
  • the maximum measurable angle range is about 30 °.
  • the following formula is widely used as a measure of the thickness t (mm) required for the conductor layer.
  • is the angular frequency of the signal
  • is the electric conductivity of the conductor layer
  • the fixed core 32 is fixed to a fixed member (not shown) located near the handle shaft with a gap G in the radial direction from the first rotor 31 and an insulating magnetic material. It has a core body 32 a made of a material and an exciting coil 32 b forming a magnetic circuit CMG in cooperation with the first opening 31.
  • the magnetic flux of the magnetic circuit CMG is formed concentrated as shown in FIG. For this reason, as shown in FIG. 16, if the axial height of the first rotor 31 is made higher than the axial height of the second rotor 33, the first rotor 31 and the second rotor Even if the position of 33 is shifted in the axial direction, it is preferable because the fluctuation of the sensor output can be suppressed.
  • the excitation coil 32b is connected to a signal processing circuit (not shown) by an electric wire 32c (see Fig. 13) extended to the outside, and an alternating current flows from the signal processing circuit.
  • the second row 33 has a plurality of metal teeth 33 b arranged in a ring-shaped main body 33 a evenly in a ring shape.
  • Copper foil has an interval corresponding to 3 1 d.
  • the second rotor 33 is made of, for example, copper, copper alloy, aluminum, aluminum alloy, iron, or iron alloy.
  • the plurality of metal teeth 33 b are made of copper foil 31 d. Similarly, they are arranged evenly in a ring shape and provided corresponding to each copper foil 31d.
  • the second part of the evening may be configured as follows.
  • a conductor layer of a certain thickness (for example, a 0.2 mm copper foil or a material of aluminum, silver, iron, etc.) is formed on a cylindrical surface or inside made of insulating material by a copper foil 31 d. And the same number as that of the copper foil 3 1 d are evenly arranged in a ring shape.
  • the second opening 33 is attached to a second shaft S F2 (see FIG. 14) which is adjacent to the first rotor 31 and rotates relative to the first shaft S F1, and has a plurality of metal teeth 3.
  • 3b is disposed between the first rotor 31 and the fixed core 32, as shown in FIG. You.
  • the rotation sensor 30 configured as described above is configured such that the first rotor 31 is attached to the first shaft S F1, the second rotor 33 is attached to the second shaft S F2, and the fixed core 3 2 Is fixed to the fixing member.
  • the magnetic flux due to the alternating current flowing through the exciting coil 32b flows along the magnetic circuit CMG shown in FIG.
  • the alternating magnetic field crosses the plurality of copper foils 31 d of the first opening 31, so that an eddy current is induced in the copper foil 31 d.
  • the direction of the AC magnetic field induced by the eddy current is opposite to the direction of the AC magnetic field due to the AC current flowing through the exciting coil 32b.
  • the direction of the magnetic flux due to the AC exciting current of the coil and the direction of the magnetic flux due to the eddy current in the space of the gap where the conductor layer exists are opposite, so that the total magnetic flux density decreases, and conversely, the conductor layer does not exist. Since the direction of the magnetic flux due to the AC exciting current of the coil is the same in the space of the gap, the total magnetic flux density increases.
  • the copper foil 3 Id exists in the gap G formed between the first row 31 and the fixed core 32, as shown in FIG. A region FB having a low magnetic flux density and a region FA having no copper foil 3 Id and having a high magnetic flux density are alternately formed in the circumferential direction.
  • a non-uniform magnetic field having a central angle of 60 ° is formed in the circumferential direction in the gap G between the first row 31 and the fixed core 32.
  • the cylindrical shaft 31a of the first rotor 31 is omitted from illustration.
  • the non-uniform magnetic field is also rotated along the circumferential direction together with the first rotor 31.
  • the metal teeth 33 b formed in the circumferential direction at a central angle of 60 ° cross the non-uniform magnetic field.
  • the metal teeth 3 3 b are placed in the region FB where the magnetic flux density is small due to the relative rotation with 33.
  • the ratio of the area located and the area located in the area FA where the magnetic flux density is large changes, and the amount of total magnetic flux traversing changes, so that the magnitude of the eddy current generated in the metal teeth 33b changes.
  • the rotation sensor 30 the magnitude of the eddy current generated in the metal teeth 33b differs, and the impedance of the exciting coil 32b is determined by the relative rotation angle between the first rotor 31 and the second rotor 33. Will vary. Therefore, if the rotation sensor 30 measures the impedance by a known method in a signal processing circuit connected to the excitation coil 32 b, the relative rotation between the first row 31 and the second row 33 is determined. The angle can be easily detected.
  • the rotation sensor 30 of the present invention since the rotation sensor 30 of the present invention has a structure in which the first opening 31 is rotated with the gap G placed with respect to the fixed core 32, the size of the gap between the components is reduced by the manufacturing cost. Affects directly. In other words, it is very difficult for the rotation sensor 30 to set the gap G to about several / xm. In order to make such a gap, the production accuracy of the components and the assembly accuracy between the components are strictly required. Is done. In particular, when the rotation sensor 30 of the present invention is used for detecting a rotation torque on a steering wheel shaft of an automobile, it is ideal that the gap G is set to the order of mm in consideration of vibration and the like accompanying the traveling of the automobile. .
  • the effective magnetic permeability of the magnetic circuit CMG is determined by the relative magnetic permeability of the insulating magnetic member 31c and the core main body 32a and the size of the gap G.
  • the ratio of the length of the magnetic circuit CMG to the size of the gap G is of the same order as the relative magnetic permeability of the magnetic material
  • the effective magnetic permeability of the magnetic circuit CMG is almost equal to the size of the gap G. Therefore, the influence of the relative permeability of the magnetic material is very small.
  • the ratio of the length of the magnetic circuit CMG to the gap G is the relative permeability of the soft magnetic material.
  • the effective magnetic permeability is almost determined by the size of the gap G. That is, in the rotation sensor 30, the effective magnetic permeability of the magnetic circuit CMG is substantially determined by the size of the gap G, no matter how large the relative magnetic permeability of the insulating magnetic member 31c or the core body 32a.
  • the insulating magnetic member 31c and the core body 32a are made of an electrically insulating thermoplastic synthetic resin such as nylon, polypropylene (PP), polyphenylene sulfide (PPS), and ABS resin, and Ni A soft magnetic material powder composed of Zn or Mn-Zn ferrite is mixed with a soft magnetic material content of 10 to 70% by volume.
  • an electrically insulating thermoplastic synthetic resin such as nylon, polypropylene (PP), polyphenylene sulfide (PPS), and ABS resin
  • Ni A soft magnetic material powder composed of Zn or Mn-Zn ferrite is mixed with a soft magnetic material content of 10 to 70% by volume.
  • the rotation sensor 30 of the present invention has an effective magnetic permeability of the magnetic circuit CMG slightly smaller than that of a conventional soft magnetic material using ferrite, but has improved vibration resistance and is easy to manufacture.
  • the benefits are large, such as cost reductions and mass production.
  • the eddy current affecting the impedance of the exciting coil 32b is not generated from the core material, which is also an insulating material, and is generated only from the conductor layer, that is, the copper foil 3Id.
  • a value of 0 gives more linear characteristics of detection sensitivity and detection output.
  • the rotation sensor 35 includes a first mouth 36, a fixed core 37, and a second row 38, which are made of the same material as in the first embodiment. It is attached to the first shaft S F1 and the like in the same manner as in the first embodiment.
  • a copper foil 36b is attached to a circumferential half of the surface of a cylindrical body 36a made of an insulating magnetic material.
  • the fixed core 37 has a core body 37a made of an insulating magnetic material and an excitation coil (not shown), similarly to the fixed core 32 of the first embodiment.
  • the second row 38 is cut in half the cylinder in the circumferential direction, At the center of the flange 38b, which is formed by projecting radially inward at the lower portion, a mounting opening 38c for mounting to a second shaft (not shown) is formed. Is formed.
  • the rotation sensor 35 By configuring the rotation sensor 35 as described above, when an alternating current is applied to the exciting coil, the rotation sensor 35 is disposed in a gap formed between the first opening 36 and the fixed core 37. As shown in Fig. 17, the area FB where the copper foil 36 b exists and the magnetic flux density is low, and the area FA where the copper foil 36 b does not exist and the magnetic flux density is high are formed equally in the circumferential direction. . As a result, in the rotation sensor 35, a non-uniform magnetic field having a central angle of 180 ° is formed in the circumferential direction in the gap between the first rotor 36 and the fixed core 37. A rotation angle of 0 ° can be detected.For example, if an absolute position of 0 ° in the mouth is detected by using an absolute position sensor, the rotation angle up to 360 °, ie, one rotation, can be obtained. Can be detected.
  • the rotation sensor 40 includes a first rotor 41, a fixed core 42, and a second rotor 43, and detects a relative rotation angle between the first shaft SF1 and the second shaft SF2 that rotate relative to each other.
  • the first rotor 41 is made of an insulating magnetic material, and a plurality of fan-shaped copper foils having a plurality of predetermined central angles are adhered on the disk 41a at predetermined intervals.
  • the first row 41 is attached to the first shaft S F1 as shown.
  • the fixed core 42 is fixed to a fixed member (not shown) located near the handle shaft with a gap G in the axial direction between the first rotor 41 and the first shaft S F1, and is insulated as shown in the figure. It has a core body 42 a made of a magnetic material and an exciting coil 42 b forming a magnetic circuit CMG in cooperation with the first rotor 41.
  • the second port 43 is formed by cutting out a plurality of sectors with a predetermined central angle from a metal disk such as copper, copper alloy, aluminum, aluminum alloy, iron, iron alloy, and silver.
  • a plurality of conductor teeth 43a corresponding to the plurality of main bodies 41a of the night 41 are formed radially.
  • the following configuration may be adopted. That is, on a disk made of plastic or the like having insulating properties, fan-shaped metal foils having the same number of predetermined center angles as the fan-shaped copper foil corresponding to the fan-shaped copper foil at predetermined intervals. Affixed.
  • the second opening 43 is attached to a second shaft S F2 which is adjacent to the first rotor 41 and rotates relative to the first shaft S F1, and a plurality of conductor teeth 43 a are provided as shown in the figure. Then, it is arranged between the first row 4 and the fixed core 42.
  • a non-uniform magnetic field is formed in the circumferential direction in the gap G between the first rotor 41 and the fixed core 42, and this non-uniform magnetic field is An eddy current is generated when the plurality of conductor teeth 43 of the mouth 43 cross.
  • the rotation sensor 40 measures the impedance of the exciting coil 42 b due to the change of the eddy current in the same manner as in the first embodiment, and thereby the first rotor 41 and the second rotor 43 are measured. Can be easily detected.
  • the rotation sensor of the present invention has a configuration in which the first rotor 41, the fixed core 42, and the second rotor 43 are stacked in the axial direction of the first shaft SF1, so that the rotation sensor is large in the radial direction. This is effective in reducing the size.
  • the first row 31, 36, 41 is assigned to the first shaft S F1
  • the second port 33, 38, 43 is assigned to the second shaft S F2.
  • the rotation sensor according to the present invention if the second port is located between the first row and the fixed core, the first port 31, 36, 41 is connected to the second port. Needless to say, the shaft S F2 and the second opening 33, 38, 43 may be attached to the first shaft S F1.
  • the above-described rotation sensor of the present invention can be applied, for example, as a sensor unit having a torque sensor for detecting a rotation torque of a steering wheel shaft of an automobile and a steering angle sensor for detecting a rotation angle by configuring as follows.
  • the sensor unit 45 shown in FIG. 20 includes a torque detection core 46 and a steering angle detection. It has a core 47, a magnetic material block 48 and a metal port block 49, and a torque detecting core 46 and a steering angle detecting core 47 are vertically stacked (axial direction of the handle shaft).
  • the torque detecting core 46 and the steering angle detecting core 47 are respectively composed of a core body 46 a, 47 a made of an insulating magnetic material, and an exciting coil 46 forming a magnetic circuit in cooperation with the magnetic material rotor 48. b, 47 b.
  • the torque detecting core 46 is fixed to the fixing bracket 51
  • the steering angle detecting core 47 is fixed to the fixing bracket 52
  • a metal gap 53 is provided between the cores 46 and 47. Is arranged.
  • the fixing brackets 51 and 52 are arranged near the handle shaft in the automobile.
  • the magnetic material rotor 48 is formed in a cylindrical shape, and a slit 48a is formed in the circumferential direction at the center in the center axis direction.
  • the metal rotor 49 has a flange 49 b extending radially outward from the upper part of the main body 49 a having a smaller diameter than the magnetic material ro 48, and both ends of the flange 49 b extend vertically.
  • a plurality of conductor teeth 49c are formed between the magnetic material rotor 48 and the torque detection core 46 or the steering angle detection core 47.
  • the sensor unit 55 shown in Fig. 21 includes a torque detection core 56, a steering angle detection core 57, a magnetic material rotor 58 and a metal rotor 59, and the torque detection core 56 and the steering angle detection.
  • the core 57 and the core 57 are arranged concentrically in the radial direction.
  • the torque detecting core 56 and the rudder angle detecting core 57 are respectively composed of core bodies 56 a and 57 a made of an insulating magnetic material, and a magnetic circuit formed in cooperation with the magnetic material B 58. 56 b and 57 b.
  • a predetermined gap is formed between the torque detection core 56 and the magnetic material B 58, and the steering angle detection core 57 is formed on the core body 57 a by a metal tooth 59, which is a conductive tooth 5 described later.
  • a groove 57c for arranging 9c is formed in the circumferential direction.
  • the torque detection core 56 and the steering angle detection core 57 are housed in a metal shielding case Cs.
  • the magnetic material is formed into a cylindrical shape.
  • the metal wire 59 has a flange 59b extending radially outward from the main body 59a, extends downward from the flange 59b, and has magnetic material 58 and a torque detecting core 56.
  • FIG. 22 is a circuit diagram showing one embodiment of the measuring circuit of the present invention.
  • the measuring circuit constitutes the oscillating means of the present invention, and includes an oscillator 71 for oscillating a pulse signal as an oscillating signal of a specific frequency, a level adjusting unit 72 for adjusting a shift level of the pulse signal, A phase shift unit 73 that shifts the phase of the pulse signal according to the magnitude of an eddy current generated in a second rotor, which will be described later, and a shift amount detection unit according to the present invention.
  • a shift amount detecting unit 74 configured to detect a phase shift amount of the shifted pulse signal; and a relative unit configured as a measuring unit of the present invention and configured to measure a relative rotation angle based on the detected phase shift amount.
  • a rotation angle measuring unit 75 is provided.
  • the oscillator 71 outputs a pulse signal of a specific frequency having a waveform as shown in FIG. 23A to the level adjustment unit 72 and the shift amount detection unit 74 via the inverter 72a.
  • the level adjuster 72 includes two inverters 72a and 72d, a variable resistor 72b and a resistor 72c connected in series between them, and a resistor 72c at one end. And a capacitor 72 e connected between 72 d and the other end grounded.
  • the variable resistor 72 b, resistor 72 c and capacitor 72 e are A phase shift circuit provided in the stage preceding step 73 is formed.
  • the phase shift circuit previously adjusts the phase shift amount of the pulse signal by adjusting the variable resistor 72b.
  • the rotor is provided so that the relative rotation of the two rotors can be measured in a range of -8 ° to 18 °. Need to adjust.
  • the level adjuster 72 is provided for that purpose.
  • the phase shift unit 73 is connected between the resistor 73 a connected in series, the exciting coil 73 b and the inverter 73 c of the present invention, and one end is connected between the exciting coil 73 b and the inverter 73 c. And a capacitor 73d whose other end is grounded.
  • the exciting coil 73b is wound around a fixed core described later, and an alternating current is passed therethrough, and forms a magnetic circuit in cooperation with the first rotor.
  • the phase shift unit 73 shifts the phase of the pulse signal input from the level adjustment unit 72 according to the magnitude of the eddy current generated in the second row. That is, resistance 7
  • the electrical resistance of a is R
  • the inductance of exciting coil 73 b is L
  • the capacitance of capacitor 73 d is C
  • the eddy current is ie
  • the mutual impedance determined by the structure of the measurement circuit is M
  • the phase shifter 73 Assuming that the input current to is i, the input voltage Vin from the level adjuster 72 is
  • V in iR + iJ ⁇ L-i eJ ⁇ ⁇ + i (1 / j ⁇ C)
  • phase shift angle between the input voltage Vin and the input current i changes according to the change in the eddy current ie. That is, since the phase shift between the output voltage Vout from the phase shift unit 73 and the input current i is fixed at 90 degrees, the phase shift angle between the input voltage Vin and the output voltage Vout changes according to the change of the eddy current ie. It will be.
  • the shift amount detector 74 outputs the exclusive OR (Exclusive OR) 74a with the input terminals connected to the inverters 72a and 73c, respectively, and the output of the exclusive OR 74a. It has a resistor 74 b connected to the terminal, and a capacitor 74 c having one end connected between the resistor 74 b and the relative rotation angle measuring unit 75 and the other end grounded.
  • the exclusive ⁇ R 74 a performs an exclusive ⁇ R operation on the pulse signal from the oscillator 71, that is, the input voltage Vin, and the pulse signal shifted by the phase shift unit 73, that is, the output voltage V out. To determine the phase shift angle.
  • the obtained phase shift angle is detected as a pulse signal width at point C, as shown in FIG. 23C. That is, the pulse signal at the point C indicates the amount of phase shift between the pulse signals at the points A and B.
  • the resistor 74b and the capacitor 74c form a mouth-to-pass filter.
  • the pulse signal at point C is converted into a DC signal proportional to the relative rotation between the mouth and the mouth (see Fig. 23D). It is input to the rotation angle measurement unit 75.
  • the relative rotation angle measurement unit 75 for example, as shown in FIG. 24, the relationship between the phase shift angle and the relative rotation angle between the two mouths is preset, and the phase shift input from the shift amount detection unit 74 is set.
  • the relative rotation angle can be obtained from the angle.
  • the rotation sensor 60 includes a first rotor 61, a second rotor 62, and a fixed core 63, and the driving shaft 5a that rotates relatively and the second shaft 5 Detect the relative rotation angle of c.
  • the rotation sensor 60 is used, for example, to detect the rotation torque of the handle shaft of an automobile by transmitting the rotation torque from the driving shaft 5a to the driven shaft 5c by the torsion joint 5b.
  • the relative rotation angle between 5a and the driven shaft 5c varies within a range of 8 ° on soil.
  • the first rotor 61 is formed into a bottomed cylindrical shape except for a portion through which the driving shaft 5a penetrates, and is attached to a predetermined position in the axial direction of the rotating driving shaft 5a.
  • the first opening 61 is made of an insulated magnetic material, and six notches 61 a are formed in the outer peripheral part at equal intervals in the cylindrical direction as is clear from FIG. And six teeth 6 1b are formed at equal intervals.
  • the second row 62 is formed into a bottomed cylindrical shape except for a portion through which the driven shaft 5c penetrates, and is attached to a predetermined position in the axial direction of the driven shaft 5c.
  • the second mouth, 62 is made of conductive material and forms the entire conductor, and the outer periphery has six notches, similar to the first row 61, as is clear from Fig. 25. 62 a are formed at equal intervals, and six teeth 62 b are formed at equal intervals between the notches.
  • the second mouth 62 is attached to the second shaft 5c, which is adjacent to the first mouth 61, and rotates relative to the first shaft 5a. 26, it is arranged between the first row 61 and the fixed core 63.
  • the fixed core 63 is fixed to a fixing member (not shown) located near the handle shaft with a gap G in the radial direction from the first opening 61 as shown in FIG. It has a core body 63 a made of a magnetic material and an exciting coil 73 b (see FIG. 22) that forms a magnetic circuit CMG in cooperation with the first row 61.
  • the excitation coil 73b is supplied with alternating current from an external current supply means by an electric wire 63b (see Fig. 27) extending to the outside.
  • the first rotor 61 is attached to the driving shaft 5a
  • the second rotor 62 is attached to the driven shaft 5c
  • the fixed core 63 is fixed to the above. It is fixed to the member and assembled.
  • the magnetic flux due to the alternating current flowing through the exciting coil 73b flows along the magnetic circuit CMG shown in FIG. Since the gap between the teeth 61b of the first row 61 and the fixed core 63 is small, the magnetic resistance during this period is small, and the region FA has a high magnetic flux density. Conversely, there is a large gap between the notch 6 1 a of the first row As a result, the magnetic resistance increases and the area FB has a low magnetic flux density (see Fig. 27).
  • the rotation sensor 60 in the gap G formed between the first opening 61 and the fixed core 63, the area FA having a high magnetic flux density and the area FB having a low magnetic flux density are provided. Are alternately formed in the circumferential direction. As a result, in the rotation sensor 60, an uneven magnetic field having a center angle of 60 ° is formed in the circumferential direction in the gap G between the first opening 61 and the fixed core 63. You.
  • the non-uniform magnetic field also rotates in the circumferential direction together with the first rotor.
  • the second row teeth 62 b formed in the circumferential direction at a central angle of 60 ° cross the non-uniform magnetic field.
  • the tooth 62b has an area between the area FB where the magnetic flux density is low and the area where the area FA where the magnetic flux density is high FA.
  • the pulse signal from the oscillator 71 is applied to the excitation coil 73 b forming the magnetic circuit, and the magnitude of the eddy current generated in the second row 62 by the phase shift unit 73 is Shifts the phase of the pulse signal in accordance with. Then, the phase shift amount is detected by the shift amount detection unit 74, and the relative rotation speed measurement unit 75 calculates the relationship between the detected phase shift amount and the relative rotation angle (see FIG. 24). It is possible to measure the relative rotation angle between the first row 61 and the second mouth 62. Note that the relationship between the phase shift angle and the relative rotation angle in FIG.
  • the resistance 73 a in the phase shift unit 73 is 51 ⁇
  • the capacitor 73 d is 470 PF
  • the shift amount detection unit 7 4 The resistance was obtained by setting the resistor 74b in the circuit to 5 10 ⁇ and the capacitor 74c to 0.1F.
  • the power is adjusted according to the magnitude of the eddy current generated in the second rotor.
  • the rotation sensor 80 includes a first rotor 81, a second rotor 82, a fixed case 83, a displacement sensor 85, and an oscillator according to the present invention.
  • An oscillation circuit 87 constituting a stage, a signal processing amplifier circuit 91 constituting a first signal processing means according to the present invention, a relative rotation angle measuring section 98 constituting a relative rotation angle measuring means according to the present invention, It comprises signal processing amplification circuits 92 to 94 constituting second signal processing means according to the present invention and a rotation angle measuring section 99 constituting rotation angle measuring means according to the present invention.
  • the rotation sensor 80 detects a rotation angle and a rotation torque in a steering shaft of an automobile in which a rotation shaft, for example, a driving shaft and a driven shaft are connected via a joint joint.
  • the first port 81 and the second rotor 82 rotate integrally with the rotation axis A rt shown in FIG. 29, and the main driving shaft rotates relative to the driven shaft. Relative rotation within a predetermined angle. For example, when the driven shaft relatively rotates within a range of ⁇ 8 ° with respect to the driven shaft, the two ports 81, 82 also rotate within a range of ⁇ 8 °.
  • FIG. 32 illustrates some of the constituent members omitted to show the positional relationship of the main members constituting the rotation sensor 80.
  • the first rotor 81 has an inner cylinder 8 la molded from an electrically insulating synthetic resin having excellent moldability, and a plurality of cylinders extending from the inner cylinder 81 a as shown in FIGS. 29 and 30.
  • the plurality of copper pieces 81b are the first conductor layers and extend in the rotation axis Art direction at a center angle of 30 ° along the circumferential direction of the inner cylinder 81a.
  • the copper piece 8 lb is a conductor
  • materials such as aluminum, silver, and iron can be used, and in order to shield a high-frequency magnetic field, the first port 81 and the fixed case 83 must be connected.
  • a thickness of about 0.1 to 0.5 mm is desirable.
  • the smaller the central angle and the smaller the spacing the larger the number of the copper layers becomes, and the change in the total induced eddy current (the number of the conductive layers) Is larger, the detection sensitivity of the relative rotation angle is higher, but the measurable relative rotation angle range is smaller.
  • the second row 82 is made of an electrically insulating synthetic resin having excellent moldability.
  • the inner cylinder 82a, the flange 82d, the support portion 82e, and the locking piece are provided.
  • the inner cylinder 82a has a copper foil 82c provided on the outer periphery of the first insulating magnetic material layer 82b at a pitch corresponding to the plurality of copper pieces 81b.
  • the copper foil 82c becomes a second conductor layer together with a copper foil 82g described later.
  • the flange 82d extends in the horizontal direction from the inner cylinder 82a, and a support portion 82e rising from the middle in the radial direction is formed in a cylindrical shape.
  • the copper foil 86a of the pitch sensor 86 is provided. Further, a screw member 85a of a displacement sensor 85 described later is connected to a lower part of the outer periphery of the flange 82d.
  • the support portion 82e is a portion for supporting the second insulating magnetic material layer 82f, and a copper foil 82g is provided on the outer periphery of the second insulating magnetic material layer 82 ⁇ in a circumferential direction at a central angle of 180 °. .
  • the locking piece 82h is a lower part of the driven shaft and is attached to a lower part of the inner cylinder 82a at a lower part.
  • the material of the first insulating magnetic material layer 82b and the second insulating magnetic material layer 82f has electrical insulation properties such as nylon, polypropylene (PP), polyphenylene sulfide (PPS), and ABS resin.
  • PP polypropylene
  • PPS polyphenylene sulfide
  • ABS resin polypropylene
  • Ni-Zn or Mn-Z for thermoplastic synthetic resin Use a soft magnetic material powder consisting of n-type ferrite mixed with 10 to 70% by volume.
  • the fixed case 83 is a fixed body formed of a non-ferrous metal such as aluminum or copper having a shielding property against an alternating magnetic field. As shown in FIGS. 29 and 30, the inner cylindrical portion 83 a and the upper flange are formed. 83 b, a first support portion 83 c and a second support portion 83 d.
  • the inner cylinder portion 83a is a portion where the inner cylinder 81a is positioned and the first rotor 81 is rotatably arranged.
  • the upper flange 83b has a circuit board 84 mounted on an upper part, a first support part 83c and a second support part 83d formed at concentric circles with different radii on the lower surface, and an opening near the outer periphery.
  • the first support portion 83c is located radially inward of the support portion 82e of the second rotor 82, and has an inner periphery for detecting rotational torque.
  • a core 83 g holding a relative rotation angle coil 83 f which is an exciting coil of the present invention is provided.
  • the second support portion 83d is located radially outward of the support portion 82e of the second row 82.
  • the second support portion 83d is provided with a core 83j holding an angular coil 83h serving as an exciting coil for detecting a rotational torque on an inner periphery, and includes a rotational angle coil 83h and a core 83j.
  • a copper foil 83 k is provided in the circumferential direction at a central angle of 180 °.
  • the relative rotation angle coil 83 f and the rotation angle coil 83 h are transferred from the fixed case 83 to the outside together with the coil 85 f of the displacement sensor 85 and the coil 86 c of the pitch sensor 86 described later.
  • It is connected to the oscillation circuit 87 by an extended electric wire (not shown), and an alternating current flows from the oscillation circuit 87.
  • an extended electric wire not shown
  • the fixed case 83 is provided with a cover CV having an upper cover CVU and a lower cover CVL at the upper part and the lower part, respectively.
  • the displacement sensor 85 is based on the movement of the slider core 85 e described later in the rotation axis direction. This sensor detects changes in coil inductance and has a screw member 85a, a slider 85c, a slider core 85e and a coil 85f as shown in Figs. are doing.
  • the screw member 85a is a ring-shaped member whose lower part is connected to the lower part of the outer periphery of the second opening 82, and a screw part 85b is formed on the outer periphery.
  • the slider 85 c is a member extending in the circumferential direction, and is disposed in a housing portion 83 m formed in the circumferential direction on the outer circumferential side of the fixed case 83, and has a radius of A screw portion 85d that is screwed with the screw portion 85b is formed on the inner side in the direction.
  • the slider 85c is moved up and down in the accommodating portion 83m by the screw member 85a rotating together with the second rotor 82, and the positions shown in FIGS. 29 and 30 are intermediate positions.
  • the slider core 85e is a pin-shaped member formed of an insulating magnetic material, and is vertically attached to the slider 85c.
  • the coil 85f forms a magnetic circuit in cooperation with the slider core 85e, and is held in the core 85g.
  • the core 85 g is made of the same material as the first and second insulating magnetic material layers 82 b and 82 f and the slider core 85 e and is attached to the opening 83 e provided in the fixed case 83. Have been. Therefore, in the displacement sensor 85, the coil 85f forms a magnetic circuit CMG indicated by a dotted line in FIG. 30 in the core 85g, and the slider 85c associated with the rotation of the second rotor 82.
  • the inductance of the coil 85f changes.
  • the circuit board 84 includes an oscillating means, a first signal processing means for processing an output signal from the relative rotation angle coil 83 f, and a relative rotation angle. Measuring means, a second signal processing means for processing output signals from the rotation angle coil 83 h and the displacement sensor 85 and a rotation angle measuring means are arranged, and an electric circuit for these is formed. .
  • the pitch sensor 86 has a structure in which the first and second rotors 81 and 82 are moved from the reference position. Detects the rotation position within 180 degrees leftward or 180 degrees rightward.
  • the pitch sensor 86 is provided on the second rotor 82, and is disposed on one side of the copper foil 86a and radially outside the second support portion 83d as shown in FIG. It has a core 86 b, a coil 86 c, and a copper foil 86 d shown in FIG. 33 which is the other of FIG.
  • a slit 86e is formed in the copper foil 86d as shown.
  • FIG. 34 is a block diagram illustrating an example of a rotation angle measurement device for a rotation sensor.
  • the measuring device includes an oscillation circuit 87 that oscillates an oscillation signal, a frequency divider circuit 88 that divides the oscillation signal and outputs a pulse signal of a specific frequency, and a plurality of copper pieces 8 1b described above.
  • a torque sensor 89 having a first insulating magnetic material layer 82b, a copper foil 82c, a relative rotation angle coil 83, and a core 83g, and the above-described second insulating magnetic material layer 82f, copper Of a rotation angle sensor 90 having a foil 82 g, a rotation angle coil 83 h, a core 83 j and a copper foil 83 k, a displacement sensor 85, a pitch sensor 86, and a torque sensor 89.
  • a relative rotation angle measurement unit 98 that measures the relative rotation angle based on the digital signal, and a digital signal from the signal processing amplifier circuit 94 and the AZD converters 96 and 97.
  • the rotation sensor 80 configured as described above detects, for example, a rotation angle, a rotation number, and a rotation torque in a steering shaft of an automobile in which a driving shaft and a driven shaft are connected via a torsion joint. Sometimes it is used as follows.
  • the oscillation circuit 87 outputs a pulse signal of a specific frequency to each of the sensors 85, 86, 89, 90 via the frequency dividing circuit 88.
  • the torque sensor 89 detects the amount of phase shift of the pulse signal input from the frequency dividing circuit 88 connected to the relative rotation angle coil 83 f according to the magnitude of the eddy current generated in the low and high frequencies. That is, the torque sensor 89 detects the phase shift amount of the pulse signal at both ends of the relative rotation angle coil 83 f.
  • the signal processing amplifier circuit 91 processes the detected phase shift amount into a signal having a corresponding voltage value, and outputs the signal to the relative rotation angle measurement unit 98 via the AZD converter 95.
  • the relative rotation angle measuring unit 98 sets the relative rotation angle between the two ports to ⁇ 8 ° based on the voltage value of the converted signal from 0.5 V to 4.5 V. It can be measured in the range of up to + 8 °.
  • the rotation angle sensor 90 detects the amount of phase shift of the pulse signal input from the frequency dividing circuit 88 connected to the rotation angle coil 83 h in accordance with the magnitude of the eddy current generated at low speed.
  • the rotation angle sensor 90 detects the phase shift amount of the pulse signal at both ends of the rotation angle coil 83 h, and when rotating, the copper foil 82 g of the second insulating magnetic material layer 82 f and the core 80
  • the circumferential overlap of the 3j copper foil 83k changes in the circumferential direction, and the resulting magnetic flux between the coil 83h and the core 83j Due to the change, the rotation angle within 180 ° left and right is detected as shown in Fig. 35A.
  • the signal processing amplifier circuit 92 processes the detected phase shift amount into a signal having a corresponding voltage value, and outputs the signal to the rotation angle measuring unit 99 via the AZD converter 96.
  • the displacement sensor 85 has an inductance of the coil 85f by moving the slider core 85e up and down based on the movement of the slider 85c in the rotation axis direction accompanying the rotation of the screw member 85a.
  • the change of evening sensation is detected. That is, as shown in FIG. 36, if the displacement of the slider core 85 e is H and the coil inductance is, the relationship between the displacement H and the coil inductance L with the rotation of the screw member 85 a is It has a nearly linear relationship within the coil 85 f and can be a component of rotation angle detection.
  • the output of the displacement sensor 85 shown in FIG. 35C is the rotation angle 900 ° of the finite rotation when the intermediate position of the slider 85 c shown in FIGS. 29 and 30 is set to 0 °.
  • Fig. 35C and Fig. 36 show the same output when used for detection of ⁇ -900 °.
  • the signal processing amplifier circuit 93 processes and converts the detected amount of change in the coil inductance into a signal having a corresponding voltage value, and converts the signal through the A / D converter 97 to the rotation angle measuring unit 93. Output to
  • the pitch sensor 86 detects a change in the inductance of the coil 86b based on the rotation of the second row 82. That is, the magnetic flux between the coil 86 c and the core 86 d due to the relative positional relationship (relation or not) between the copper foil 86 a of the second row 82 and the slit 86 e in the pitch sensor 86. As a result, a digital signal of “1” or “0” as shown in FIG. 35B is output every 180 °. As in Patent No. 2,599,438, the slit forms a sharp magnetic field.
  • the signal processing amplifier circuit 94 processes the detected change amount of the relative positional relationship into a digital signal of a corresponding voltage value, and outputs the signal to the rotation angle measuring unit 99.
  • the rotation angle measuring unit 99 is provided, for example, by a combination of signals input from the displacement sensor 85, the pitch sensor 86, and the rotation angle sensor 90, for example, a steering shaft of an automobile in which a driving shaft and a driven shaft are connected via a torsion joint. The rotation angle at is measured.
  • FIG. 35D is a waveform showing the relationship between the signals from the displacement sensor 85, the pitch sensor 86, and the rotation angle sensor 90 within the range of a finite rotation angle of 900 ° to 1900 °. Is measured.
  • the rotation torque acting on the driving shaft and the driven shaft can be obtained from the phase shift amount of the pulse signal detected by the torque sensor. From the relationship between the outputs of the angle sensors, the rotation angles of these shafts can be accurately measured.
  • the switching position of the signal of the pitch sensor 86 and the output (angle signal) of the rotation angle sensor 90 are, for example, 0 °, 180 °, 360 °,. The position is matched as much as possible, but in reality, a slight error occurs due to the difference in mounting accuracy. That is, as shown in the relationship between the output waveforms of the rotation angle sensor and the pitch sensor in FIG.
  • the actual rotation angle can be output accurately up to 180 °, but from 180 ° to 180 ° + ⁇ , it becomes 180 °-(S-180 °).
  • S is the rotation angle S obtained based on the angle signal.
  • the rotation angle S obtained based on the signal is, for example, 1
  • the switching position of the signal of the pitch sensor near the rotation angle of the upper limit point and the lower limit point of the triangular waveform coincides with the position of the signal of the rotation angle sensor, and the mounting accuracy is improved.
  • continuous rotation angle detection becomes possible.
  • the present invention is not limited to the above-described embodiment, and various modified embodiments are possible.
  • the rotation torque is detected based on the relative rotation angle of the mouth 81, 82,
  • the rotation angle and the rotation speed of the 82 with respect to the fixed case 83 were determined with high accuracy. However, if there is no problem in practical detection accuracy, the pitch sensor 86 may be omitted as shown in a circuit diagram showing an example of the rotation angle measuring device of the rotation sensor in FIG.
  • the output signal of the displacement sensor 85 corresponding to the rotation angle is set in advance at a detection accuracy that is not so high.
  • the rotation angle can be easily detected.
  • the rotation angle (rotation speed) can be detected by omitting the rotation angle sensor and combining the outputs of the displacement sensor and at least one pitch sensor. is there.
  • one of the rotation sensors 80 may be omitted as desired, and may be configured to detect either the rotation torque or the rotation angle.
  • the rotation sensor 100 described below includes a pitch sensor, an oscillation circuit, a signal processing amplifier circuit forming first signal processing means, a relative rotation angle measuring unit forming relative rotation angle measuring means, (2)
  • the same rotation processing sensor as the rotation sensor 80 is used for the signal processing amplifier circuit forming the signal processing means and the rotation angle measuring unit forming the rotation angle measuring means. Therefore, in the following description, in addition to using FIGS. 34, 37, and 38 used in the rotation sensor 80, the same components are denoted by the same reference numerals, and redundant description is omitted. .
  • the rotation sensor 100 includes a first rotor 102, a second rotor 103, a fixed case 104, a displacement sensor 106, an oscillation circuit 87 constituting the oscillation means, a signal processing amplifier circuit 91 constituting the first signal processing means according to the present invention 91, a relative rotation angle constituting the relative rotation angle measuring means according to the present invention It comprises a measuring section 98, a signal processing amplifier circuit 92 to 94 constituting the second signal processing means according to the present invention, and a rotation angle measuring section 99 forming the rotational angle measuring means according to the present invention. .
  • the rotation sensor 100 detects a rotation angle and a rotation torque in a steering shaft of an automobile in which a rotation shaft, for example, a driving shaft and a driven shaft are connected via a torsion bar.
  • first rotor 102 and the second rotor 103 rotate integrally with respect to the rotation axis A rt shown in FIG. 40, and the driving shaft is connected to the driven shaft.
  • the relative rotation within a predetermined angle is performed in response to the relative rotation. For example, when the main drive shaft rotates relative to the driven shaft within a range of ⁇ 8 degrees, the two mouths 102 and 103 rotate relative to each other within a range of ⁇ 8 degrees.
  • FIG. 43 some components are omitted to show the positional relationship of the main components constituting the rotation sensor 100.
  • the first row 102 is composed of an inner cylinder 102a molded from an electrically insulating synthetic resin having excellent moldability, and a plurality of inner cylinders 102a provided in the inner cylinder 102a as shown in FIGS. 40 and 41.
  • the plurality of copper pieces 102b are the first conductor layers and extend in the direction of the rotation axis Art at a central angle of 30 degrees along the circumferential direction of the inner cylinder 102a.
  • the copper piece 102 b is a conductor, for example, a material such as aluminum or silver can be used.
  • the radius between the first row 102 and the fixed case 104 can be used.
  • a thickness of about 0.1 to 0.5 mm is desirable.
  • the number of copper pieces 102b theoretically increases as the center angle is reduced and the arrangement interval is reduced, so that the amount of change in the total induced eddy current (in relation to the number of conductive layers) is increased. (Proportional) increases, the relative rotation angle detection sensitivity increases, but the measurable relative rotation angle range decreases.
  • the second row 103 is formed of an electrically insulating synthetic resin having excellent moldability. As shown in FIGS. 40 and 41, the inner cylinder 103a, the flange 103d, the support portion 103e, and the lock are formed. The piece has 103 h.
  • copper foils 103c are provided on the outer periphery of the first insulating magnetic material layer 103b at a pitch corresponding to the plurality of copper pieces 102b.
  • the copper foil 103c becomes a second conductor layer together with the later described copper foil 103g.
  • the flange 103d extends horizontally from the inner cylinder 103a, and has a cylindrical support portion 103e that rises from the middle in the radial direction, and has a central angle of 180 degrees in the circumferential direction on the upper surface near the outer periphery. Pitch in the range
  • a copper foil 86a of the sensor 86 is provided.
  • the flange 103d is combined with a first gear portion 162a formed on a planetary gear 162 of the displacement sensor 106 described later, and a gear portion 103j serving as a third gear portion is formed at a lower portion.
  • the supporting portion 103 e is a portion for supporting the second insulating magnetic material layer 103 f, and a copper foil 103 g is provided on the outer periphery of the second insulating magnetic material layer 103 f in a circumferential direction at a central angle of 180 degrees.
  • the locking piece 103h is a lower part of the driven shaft and is attached to a lower part of the inner cylinder 103a at a lower part.
  • the material of the first insulating magnetic material layer 103b and the second insulating magnetic material layer 103f is a heat-insulating material such as nylon, polypropylene (PP), polyphenylene sulfide (PPS), or ABS resin.
  • a soft synthetic resin mixed with 10 to 70% by volume of soft magnetic material powder composed of ferrite such as Ni—Zn Mn—Zn.
  • the fixed case 104 is a fixed body formed of a metal such as aluminum, copper, or iron having a shielding property against an AC magnetic field. As shown in FIGS. 40 and 41, the upper flange 104b and the first support 104c are fixed. And a second support portion 104d.
  • the circuit board 105 is disposed at the upper part, the first support part 104c and the second support part 104d are formed at concentric circles with different radii on the lower surface, and an opening 104e is formed near the outer periphery. Is provided. As shown in FIGS. 40 and 41, the first support portion 1.04c is located radially inward of the support portion 103e of the second opening 103, and the inner periphery has an excitation for detecting rotational torque.
  • a core 104 g holding a relative rotation angle coil 104 f as a coil is provided.
  • the second support portion 104d is located radially outside of the support portion 103e of the second rotor 103, and has a rotation angle coil 104h, which is an excitation coil for detecting rotation torque, on the inner periphery.
  • the retained core 104 j is provided, and the copper foil 104 k is provided on the surface of the rotating angle coil 104 h and the core 104 j facing the copper foil 103 g in the circumferential direction at a central angle of 180 degrees.
  • the relative rotation angle coil 104 f and the rotation angle coil 104 h are fixed case 1 together with a plurality of coils 16 4 a of the displacement sensor 6 and a coil 86 c of the pitch sensor 86 described later.
  • the oscillator circuit 87 and the frequency divider circuit 88 are connected to each other by an electric wire (not shown) extending from the circuit 04 to the outside, and an alternating current flows from the oscillator circuit 87 and the frequency divider circuit 88.
  • each coil is connected to the same oscillating circuit 87 and frequency dividing circuit 88 and uses the same signal frequency, but it is also possible to use different signal frequencies. That is, each coil may be connected to an oscillation circuit 87 and a frequency dividing circuit 88 having different signal frequencies.
  • the core 104g and the first insulating magnetic material layer 103b and the core 104j and the second insulating magnetic material layer 103f are arranged between the core 104g and the first insulating magnetic material layer 103f. 41, a magnetic circuit CMG indicated by a dotted line is formed.
  • the fixed case 104 is provided with a cover 109 having an upper cover 109 a and a lower cover 109 b at the upper and lower parts, respectively.
  • the displacement sensor 106 is provided with a coil inductance between the copper foil layer 16 3 d and a plurality of coils 16 4 a, which will be described later, based on the rotation of the first and second rows 10 2, 10 3.
  • the first gear member 16 1 is a ring-shaped member molded from a synthetic resin fixed to the fixed case 104 by the lower cover 109 b, and has an internal gear that serves as a third gear portion on the inner periphery. 16 1 a is provided.
  • the planetary gear 16 2 is a second gear member that reduces the rotation of the second rotor 10 3 and transmits the same to the slider 16 3. a and a second gear portion 16 2 b are formed.
  • the first gear portion 16 2 a is formed on the second opening 103 and the first gear member 16 1, respectively, and serves as a third gear portion. Mating part 103 j and internal gear 161 a.
  • the slider 163 has a ring-shaped main body 163a formed of the same magnetic material as the insulating magnetic material layers 103b and 103f, and a regulating wall 163b having a circumferential center within a desired central angle range, for example, a central angle of 300 mm. It stands up over a range of degrees, and moves in the direction of rotation of the second mouth 103.
  • the slider 163 has a gear portion 163c which is a fourth gear portion which is combined with the second gear portion 162b on the main body 163a.
  • a copper foil layer 163d which is a third conductor layer is provided on the regulating wall 163b. Have been.
  • the copper foil layer 163d is disposed facing the plurality of coils 164a to be described later in a range corresponding to the coil member 164 along the circumferential direction of the regulating wall 163b. It is set up.
  • the third conductor layer may be made of aluminum as long as the material is made of a non-ferrous metal.
  • the rotation of the second rotor 103 is reduced and transmitted by the planetary gear 162 to the slider 163, and the regulating wall 163b abuts on the locking walls 104n, 104p shown in FIG. 43 formed on the fixed case 4. Therefore, rotation in the left-right direction is restricted within a predetermined angle.
  • the speed reduction ratio between the second row 103 and the slider 163 by the planetary gear 162 is set to 1:30, and when the second row 103 rotates once, The slider was designed to rotate 163 forces 12 degrees.
  • the coil member 164 is provided along the circumferential direction inside the outer periphery of the fixed case 104, and includes four coils 164a connected to the oscillation circuit 87. It is provided to be connected in series in a holding member 164b made of a synthetic resin.
  • the slider 163 unfolds the regulating wall 163b and the coil member 164, and as shown in FIG. 44 viewed from above, when viewed in the circumferential direction, one end E of the copper foil layer 163d.
  • the position at the center of the coil member 164 is attached to the rotation sensor 100 as an initial position in the left-right direction (the rotation angle in the left-right direction is 0 degree).
  • the positions of the copper foil layer 163 d and the coil member 164 shown in FIG. 44 correspond to the positions shown in FIG.
  • the slider 163 moves with the rotation of the second row 103, and the end E moves to the position of the holding member 1664 between the coils 1664a.
  • the total inductance of the four coils 164a changes because the four coils 164a are connected in series.
  • circuit board 105 is not shown in FIGS. 40 and 41, but is not shown in FIG. 40, but is not limited to the oscillating means described below, and the first signal for processing the output signal from the relative rotation angle coil 104 f.
  • the rotation sensor 100 configured as described above detects, for example, a rotation angle, a rotation speed, and a rotation torque of a steering shaft of an automobile in which a driving shaft and a driven shaft are connected via a single bar. Is used as follows.
  • the rotation sensor 100 outputs the second port 110 3 by the planetary gear 162. Is decelerated and transmitted to the slider 16 3. As a result, the slider 163 moves in the direction of rotation of the second mouth 103 while rotating 12 times each time the second mouth 103 rotates once.
  • the oscillation circuit 87 sends a pulse signal of a specific frequency through the frequency dividing circuit 88 to each sensor 106, 86, 89, 9 Output to 0.
  • the first signal processing means detects the phase shift amount of the pulse signal input from the frequency dividing circuit 88 connected to the relative rotation angle coil 104 #.
  • the signal processing amplifier circuit 91 detects the amount of change in the inductance of the coil 104 f, processes it into a signal having a corresponding voltage value, and converts the signal into a relative rotation angle measurement unit 9 via an AZD converter 95. Output to 8.
  • the relative rotation angle measuring unit 98 sets the relative rotation angle of the two rows to 18 ° to 18 ° based on the voltage value of the converted signal from 0.5 V to 4.5 V. It can be measured in the range of + 8 °.
  • An alternating current is passed through the rotating angle coil 104 h, and a magnetic circuit is formed in cooperation with the second insulating magnetic material layer 103 of the second rotor 103.
  • the rotation angle sensor 90 together with the signal processing amplification circuit 92, receives a pulse input from a frequency division circuit 88 connected to the rotation angle coil 104h in accordance with the magnitude of the eddy current generated in the low-speed circuit. Detects the amount of signal phase shift.
  • the rotation angle sensor 90 detects the phase shift amount of the pulse signal at both ends of the rotation angle coil 104 h, and during rotation, the copper foil 103 g of the second insulating magnetic material layer 103 f The circumferential overlap of the copper foil 103g of the core 104j and the core 104j changes, and the resulting change in magnetic flux between the coil 104h and the core 104j causes As shown, the rotation angle within 180 ° left and right is detected.
  • the signal processing amplifier circuit 92 processes the detected phase shift amount into a signal having a corresponding voltage value, and outputs the signal to the rotation angle measuring unit 99 via the AZD converter 96.
  • the displacement sensor 10 6 moves four coils when the end E passes through each coil 16 4 a.
  • the change in the total inductance of 1 64 a is detected.
  • the relationship between the moving amount H and the coil inductance with the rotation of the second rotor 103 is as follows.
  • the relationship becomes almost linear, and it is one component of rotation angle detection.
  • the end E passes through the portion of the holding member 1664b between the coils 1664a, the coil inductance L is constant without change.
  • FIG. 47 shows the change in the output voltage (V) from the coil member 16 4 due to the change in the number of revolutions (n) and the total inductance of the four coils 16 4 a.
  • the output of the displacement sensor 106 shown in Fig. 45C is the finite rotation when the intermediate position of the copper foil layer 163d of the slider 163 shown in Fig. 44 is 0 °.
  • FIG. 2 shows an example of a case where the present invention is used for detection of an image.
  • the signal processing amplification circuit 93 processes and converts the detected change in the coil inductance into a signal having a corresponding voltage value, and converts the signal through the AZD converter 97 to a rotation angle measurement unit 9 9 Output to
  • the pitch sensor 86 detects a change in the inductance of the coil 86b based on the rotation of the second row 103. That is, the coil 86 c and the core 86 are determined by the relative positional relationship (relationship or non-overlap) between the copper foil 1 86 a of the second opening 103 and the slit 1 86 e in the pitch sensor 86. Due to the change in the magnetic flux d, a digital signal of “1” or “0” as shown in FIG. 45B is output every 180 °.
  • the signal processing amplifier circuit 94 processes the detected change amount of the relative positional relationship into a digital signal of a corresponding voltage value, and outputs the signal to the rotation angle measuring unit 99.
  • the rotation angle measuring unit 99 is configured, for example, by using a combination of signals input from the displacement sensor 106, the pitch sensor 86, and the rotation angle sensor 90, for example, for an automobile in which a driving shaft and a driven shaft are connected via a torsion bar. Measure the angle of rotation on the steering shaft. That is, in the present embodiment, due to the relationship between the output of the rotation angle sensor 90 and the output of the pitch sensor 86 that changes from the above-described intermediate position 0 ° of the slider 16 3, ⁇ 180 ° to 0 ° and 0 ° to Within any range of 180 ° The actual rotation angle is measured based on the relationship with the output of the displacement sensor 106 at that time.
  • FIG. 45D is a waveform showing a relationship between signals from the displacement sensor 106, the pitch sensor 86, and the rotation angle sensor 90 within a range of a finite rotation angle of 900 ° to 1900 °. Is measured.
  • the rotation torque acting on the driving shaft and the driven shaft can be obtained from the phase shift amount of the pulse signal detected by the torque sensor. From the relationship between the outputs of the angle sensors, the rotation angles of these shafts can be accurately measured.
  • is set between the switching position of the pitch sensor from “0” to “1” and the position of 180 ° of the rotation angle sensor. If there is a deviation, the actual rotation angle can be output accurately up to 180 °. However, from 180 ° to 180 ° + ⁇ , it is 180 ° — (S—180 °).
  • S is the rotation angle S obtained based on the angle signal.
  • the rotation angle S obtained based on the signal is, for example, in the range of 179.5 ° ⁇ S ⁇ 180.5 °. Judge whether or not it is within the above range. Assuming that the rotation angle is 180 °, a signal of the corresponding voltage value is output. If the signal is out of the range, the signal from the pitch sensor 86 is taken in, and it is determined whether or not the signal is “1”. The signal of the voltage value corresponding to the rotation angle of (360-S) is output, and if it is not "1", the signal of the voltage value corresponding to the rotation angle S is output.
  • the above signal processing is performed at the rotation angles indicated as the upper limit point and the lower limit point of the angle signal composed of the mi-angle waveform output by the rotation angle sensor, ie, 720 °, 540 °, —360 °, —180 °. , 0 °, 180 °, 360 °, 540 °, and 720 °.
  • the switching position of the signal of the pitch sensor near the rotation angle of the upper limit point and the lower limit point of the triangular waveform coincides with the position of the signal of the rotation angle sensor, and the mounting accuracy is improved.
  • continuous rotation angle detection becomes possible.
  • the rotation sensor according to the above embodiment has been described based on the case where the amount of phase shift is detected in order to detect the change in impedance of the coil due to rotation.
  • the rotation sensor of the present invention may detect a change in coil impedance due to rotation by detecting a change in signal frequency or signal amplitude.
  • the present invention is not limited to the above-described embodiment, and various modified embodiments are possible.
  • the rotation torque is detected based on the relative rotation angles of the rotors 102 and 103, and the rotation angle and the rotation speed of the mouths 102 and 103 with respect to the fixed case 104 are determined.
  • the pitch sensor 86 may be omitted as shown in a circuit diagram of an example of a rotation angle measuring device of the rotation sensor in FIG. 47. .
  • the output signal of the displacement sensor 6 corresponding to the rotation angle (the number of rotations) is set in advance at a detection accuracy that is not so high, and the number of rotations is simply determined by this relationship. It becomes possible to detect.
  • One of the sensors 100 may be omitted if desired, and may be configured to detect either the rotation torque or the rotation angle.
  • the rotation angle (rotation speed) can be detected by omitting the rotation angle sensor and combining the outputs of the displacement sensor and at least one pitch sensor. is there.
  • one of the rotation sensors 100 may be omitted as desired, and may be configured to detect either the rotation torque or the rotation angle.
  • the rotation sensor 100 is provided with a fixed core 107 at the upper part of the outer periphery of the case 104 and an intermittent gear 108 at the lower part of the outer periphery facing the same, as shown in FIGS. Then, the rotation speed of the second row 103 may be obtained.
  • the fixed core 107 has a semicircular copper plate 107a and a signal coil 107b, and the copper plate 107a covers the lower side of the signal coil 107b.
  • the intermittent gear 108 has a disk-shaped core 108a on the upper surface.
  • the core 108a has a semicircular copper plate 108b facing the copper plate 107a attached to the upper surface on the signal coil 107b side.
  • the intermittent gear 108 has a gear portion 108c formed on its outer periphery with teeth protruding radially with respect to the axis at a central angle of 45 degrees.
  • the gear portion 108c is configured to engage with a projection 103k provided on an outer peripheral portion of the flange 103d of the second row 103.
  • the signal coil 107 b is connected to the oscillating means and the second signal processing means shown in FIG. 34, and the fixed core 107 and the core 108 a
  • An AC magnetic field is formed in the magnetic circuit constituted by Therefore, in the rotation sensor 100, an eddy current is generated when the semicircular copper plate 107a and the copper plate 108 provided opposite to the fixed core 107 and the intermittent gear 108 cross the AC magnetic field.
  • the amount of the generated eddy current increases as the overlapping area between the copper plate 107a and the copper plate 108b decreases.
  • the impedance of the signal coil 107b fluctuates due to the fluctuation of the eddy current amount. Therefore, when the rotation sensor 100 rotates while the gear portion 108c of the intermittent gear 108 and the projection 103k of the second opening 103 are engaged with each other, the impedance of the coil 107b fluctuates greatly. When the gear 108c and the projection 103k do not engage with each other and the intermittent gear 108 does not rotate, the impedance of the coil 107b does not change.
  • FIG. 51 shows the output signal level (V) at that time with respect to the rotation angle in the left-right direction.
  • the rotation sensor 100 can accurately detect the rotation speed of the second row 103 by monitoring the output signal level (V). Industrial applicability
  • the rotation sensor according to the first aspect of the present invention includes a magnetic circuit formed by the first rotor and the magnetic material core disposed around the first rotor.
  • the area traversed by the conductor section of the row 2 changes according to the relative rotation angle difference between the fixed shaft position of the first row and the fixed shaft position of the second port.
  • the relative rotation angle difference is detected based on.
  • the rotation sensor can detect the relative rotation angle of the shaft in a non-contact manner without strictly requiring the mounting position accuracy of the first rotor and the second rotor in the axial direction of the shaft.
  • the rotation sensor is proportional to the relative rotation angle difference between the shaft and the magnitude of the eddy current generated when the conductor of the second rotor crosses the region where the strength of the non-uniform magnetic field is different, and the detection output is Excellent linear characteristics. Therefore, the rotation sensor does not need to strictly control the radial gap between the first rotatable and the second roaster, and the assemblability of the rotation sensor to the shaft is improved.
  • the phase of the oscillation signal from the oscillating means is shifted according to the magnitude of the eddy current generated in the second rotor, and the phase shift amount is detected. Since the relative rotation angle is measured based on the detected phase shift amount, it is possible to provide a rotation sensor measurement circuit with a small resolution of the relative rotation angle measurement and improved responsiveness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

明 細 書 回転センサ及びその測定回路 技術分野
本発明は、 軸線方向の異なる位置で相対回転角度のずれを生じるシャフト等 の組み付け対象に取り付けられ、 組み付け対象の相対回転角度差を非接触で検 出する回転センサ、 回転センサの測定回路及び前記相対回転角度に加えて前記 組み付け対象の回転角度 (位置) を非接触で検出する回転センサに関する。 背景技術
例えば、 主動シャフトと従動シャフトとが! ^一シヨンジョイントを介して連 結された自動車のステアリングシャフトに作用する回転トルクを検出するため、 ステアリングシャフトの相対回転角度を検出する相対回転角度検出装置として 回転センサが使用される場合がある。
このような回転センサの一例として、 特公昭 6 3 - 4 5 5 2 8号公報には、 円筒形状からなる 2つの導電性部材の長手方向所定位置に切欠き部を形成せし め、 導電性部材の取り付けられたシャフトが相対的に回転することで磁界を横 切る導電性部材の面積を変化させて導電性部材に渦電流を発生させ、 これによ つてコイルのィンダク夕ンスを変化させてシャフトにおける相対回転角度のず れ量を非接触で検出する構成が開示されている。
かかる構成によると、 2つの導電性部材の相対的な位置変化によって磁界を 横切る導電性部材の面積を変化させているので、 シャフト回転角度のずれ量を 正確に検出するためには、 両シャフトの回転角度のずれ量と導電性部材に生じ る渦電流の大きさを比例させる必要がある。 構造上、 導電体部材が磁界を横切 る面積はそのずれ量に比例しているが、 必要なのは両導電体部材の横切る磁界 の強さを一定にすることである。
しかし、 コイルから生じる磁界は円周方向上ほぼ均一に分布しているが、 回 転軸方向上あるいはコイルの半径方向上の磁界分布は非均一である。 従って、 リニア特性に富んだセンシングを確保するためには、 2つの導電性部材が互い に隙間なく重なり合うように組み付けられる必要があり、 シャフトの回転角度 の検出精度を向上させるために依然として組み付け精度を厳密に要求される問 題がある。
また、 従来の回転センサの測定回路では、 図示しない固定コアに設けられ、 発振回路と電気的に接続された励磁コイルに交流電流が流されており、 第 1及 び第 2のロー夕の相対回転角度によってコイルのインピーダンスが変化してい る。 また、 前記発振回路の発振周波数は、 励磁コイルのインピーダンスの変化 に応じて変動している。 そこで、 前記測定回路では、 発振回路から発振される パルス信号をパルスカウン夕でカウントし、 前記発振周波数を検出することで、 第 1のロー夕と第 2の口一夕の相対回転角度を測定していた。
ところが、 前記測定回路では、 例えばコイルのインピーダンス変化に対して、 発振回路の発振周波数は、 9 8 k H z〜 1 0 8 k H zの範囲で変動しており、 通常 5 m sの時間内で発振パルス信号をパルスカウン卜する分解能でパルス数 を測定していた。 このため、 前記測定回路を例えば車両のステアリングシャフ トに作用するトルクを検出するために使用すると、 パルスカウン夕でのパルス カウントに時間がかかって応答性が悪くなるという問題点があつた。 例えば前 記分解能で発振回路の発振周波数が 1 0 0 k H zから 1 0 5 k H zに変動する 場合、 パルス数は、 5 0 0パルスから 5 2 5パルスの変動、 すなわち 2 5パル スの変動分で測定されることとなる。
また、 前記測定回路では、 応答性を良くするためにパルスカウン夕でのパル スカウント時間を短くすると、 パルス数の変動分が少なくなつて分解能がおち、 発振周波数変動の検出が難しくなるという問題点があった。 一方、 図 5 3に示す回転センサは、 コイルを有する固定磁性部材 1と、 外周 に凹凸を有する磁性材ロータ 2との間に複数の金属歯 3 aを有する金属ロー夕 3が所定のギャップをおいて配置されている。 この回転センサは、 複数の金属 歯 3 aが周方向に等間隔に配置され、 両口一夕 2, 3の相対回転によって金属 歯 3 aが、 分布が不均一な前記交流磁界を横切ると、 金属歯 3 a内には渦電流 が生ずる。 この渦電流は、 両口一夕 2, 3間の相対回転角度によって変動する。 従って、 この回転センサは、 これらの部材内に誘導される渦電流の変動によつ て生ずる前記コイルのインピーダンス変化を測定することで、 両口一夕 2 , 3 の相対回転角度、 即ち、 相対回転する 2つの部材間における相対回転角度を検 出する。
ところで、 前記した分布が不均一な交流磁界を利用した回転センサは、 前記 ギャップ内の周方向における磁束密度の変動を示す図 5 4に示すように、 磁束 密度の変動 Δ Βと、 生じた磁界分布における強弱の境界領域 Δ Θという 2つの パラメ一夕によって特性が左右される。 即ち、 回転センサは、 磁束密度の変動 Δ Βが大きい程、 回転角度の検出感度が高く、 磁界分布の境界領域 Δ 0が小さ い程、 検出出力のリニア性が良い。
しかし、 回転センサは、 前記ギャップの大きさによって前記交流磁界の不均 一な分布の程度を大きくするには、 以下のような問題がある。
周知のように、 磁気回路において、 前記ギャップの大きさによる実効比透磁 率の変動はリニアな特性から外れている。 即ち、 磁気回路においては、 ギヤッ プが小さい程、 実効比透磁率の変動が大きい。 上記のようにギャップ間に金属 ロータ 3を配置するので、 口一夕の製造精度及び回転精度を考慮すると、 通常、 回転センサは、 図 5 3に示すように、 ギャップ G 1を l mm以上に設定するこ とが望ましい。 但し、 回転センサは、 適正な検出感度を得るためには数 mm程 度のギャップ変動量が必要である。 即ち、 回転センサは、 磁性材ロ一夕 2の凹 凸に伴うギャップ変動量 A G ( = G 2 - G 1 ) が、 数 mmとなるような大きさ にする必要がある。
一方、 図 5 3に示す回転センサは、 磁性材ロ一夕 2の厚さを周方向に沿って 複数の金属歯 3 aに対応させて周期的に変化させている。 このため、 前記回転 センサは、 固定磁性部材 1と磁性材ロ一夕 2との間に周方向に形成されるギヤ ップが階段状であることから、 磁束が高透磁率のコア材から低透磁率の空気中 に流れ込む場合、 コア材の角部に集中する特性がある。 このため、 角部に集中 する磁束のために、 前記回転センサでは、 磁界分布の境界領域 Δ 0が大きくな り、 検出出力のリニァな特性に悪影響を与えるという問題があった。
更に、 回転センサ、 例えば、 特開平 7— 1 3 9 9 0 5号公報に開示された回 転センサは、 左右方向 1 8 0度以内 (1回転以内) の回転角度を測定できるが、 1 8 0度を越える回転角度は測定できなかった。 また、 測定した回転角度が左 右いずれの位置の角度であるかについては測定できず、 別途回転位置を測定す る必要があった。
この場合、 回転センサは、 用途によっては回転角度ではなく回転トルクの測 定が求められることもある。
本発明は上記の点に鑑みてなされたもので、 本発明の第 1の目的は、 組み付 け対象の相対回転角度に関する検出精度に優れた回転センサを提供することに ある。
また、 本発明の第 2の目的は、 組み付け対象の相対回転角度に加えて回転角 度 (位置) を高精度に測定できる回転センサを提供することにある。
更に、 本発明の第 3の目的は、 組み付け対象の相対回転角度測定に関する分 解能が高く、 かつ応答性が向上できる回転センサの測定回路を提供することを 目的とする。
本発明の第 4の目的は、 組み付け対象への組み付け精度を要求されることな く容易に組み付けることができ、 且つ相対回転角度に関する検出精度に優れた 回転センサを提供することにある。 本発明の第 5の目的は、 小型で、 検出出力がリニアな特性を有し、 検出感度 の高い回転センサを提供することを目的とする。
本発明の第 6の目的は、 左右いずれの回転位置であるかを識別可能で、 1 8 0度を超える回転角度であっても測定でき、 回転角度及び Z又は回転トルクの 測定が可能な回転センサを提供することを目的とする。 発明の開示
上記第 1及び第 4の目的を達成するために、 第 1の見地(aspec t)に係る発明 の回転センサは、 シャフトの軸線方向所定位置に固定される第 1の口一夕と、 第 1のロー夕に隣接してシャフトに固定される第 2のロータと、 第 1のロー夕 の周囲に配設され、 第 1のロー夕と協働して磁気回路を形成する共振コイルを 有する磁性材コアとを備え、 第 1のロー夕は、 絶縁体からなる磁性材で形成さ れると共に、 第 1のロー夕と磁性材コア間で非均一磁界を形成し、 第 2のロー 夕は、 第 1の口一夕の固定されるシャフト位置と第 2のロー夕の固定されるシ ャフト位置との間で相対的な回転角度差が生じたときにこの回転角度差に応じ て非均一磁界の強さの異なる領域を横切る導体部を備えた構成としたのである。 上記第 1及び第 5の目的を達成するために、 第 2の見地(aspec t)に係る発明 は、 絶縁磁性材から成形され、 回転する第 1のシャフトの軸線方向所定位置に 取り付けられる第 1のロータ、 固定部材に固定され、 コア本体と、 交流電流が 流され、 前記絶縁磁性材と協働して磁気回路を形成する励磁コイルとを有する 固定コア及び前記第 1のロー夕に隣接し、 前記第 1のシャフトに対して相対回 転する第 2のシャフトに取り付けられ、 前記第 1のロータと前記固定コアとの 間に配置される第 2のロー夕を備え、 前記第 1及び第 2のシャフトの相対回転 角度を検出する回転センサにおいて、 前記第 1のロータは、 周方向に沿って所 定間隔で導体層が設けられ、 前記第 2のロー夕は、 前記導体層に対応する間隔 で金属歯が形成されている構成としたのである。 好ましくは、 前記絶縁磁性材及び前記コア本体を、 熱可塑性樹脂と軟磁性材 とを混合した絶縁性素材で形成し、 前記軟磁性材の含有量を 1 0体積%以上、 7 0体積%以下とする。
上記第 1及び第 3の目的を達成するために、 本発明の第 3の見地(aspec t)に 係る回転センサの測定回路は、 絶縁磁性材から形成される第 1のロータ、 コア 本体と、 交流電流が流され、 前記絶縁磁性材と協働して磁気回路を形成する励 磁コイルとを有する固定コア、 前記第 1のロータと前記固定コアとの間に配置 される第 2のロー夕を有し、 前記第 1及び第 2の口一夕の相対回転角度を測定 する回転センサにおいて、 特定周波数の発振信号を発振する発振手段と、 前記 第 2の口一夕に発生する渦電流の大きさに応じて、 前記発振信号の位相をシフ トする位相シフト手段と、 前記シフトされた発振信号の位相シフト量を検出す るシフト量検出手段と、 前記検出された位相シフ卜量に基づいて相対回転角度 を測定する測定手段とを備えた構成としたのである。
すなわち、 第 2ロータに発生する渦電流の大きさに応じて、 磁気回路を形成 する励磁コイルに印加される発振パルス信号の位相シフトを検出し、 前記検出 された位相シフト量と相対回転角度の関係から、 第 1ロー夕と第 2口一夕の相 対回転角度を測定する。
上記第 2及び第 6の目的を達成するために、 第 4の見地(aspec t)に係る発明 は、 周方向に沿って所定間隔で配列される複数の第 1の導体層を有する第 1の ロータ、 絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロー夕と一体に回 転すると共に、 前記第 1のロー夕に対して所定の角度内を相対回転する第 2の ロータ、 励磁コイルと、 絶縁磁性材から成形され、 前記励磁コイルを保持する コアとを有する固定体及び前記励磁コィルと接続され、 特定周波数の発振信号 を発振する発振手段を備えた回転センサにおいて、 前記第 2の口一夕の回転に 伴って該ロ一夕の回転軸方向に移動する可動磁心と、 前記発振手段と接続され、 前記可動磁心と協働するコイルとを有し、 前記可動磁心の回転軸方向の移動に 基づくコイルインダクタンスの変化を検出する変位センサを設けた構成とした のである。
好ましくは、 前記励磁コイルとして、 前記第 1及び第 2のロー夕の相対回転 に伴う相対回転角を検出する相対回転角コイルまたは前記第 1あるいは第 2の ロー夕の前記固定体に対する回転角を検出する回転角コイルの少なくとも一方 を備える構成とする。
また好ましくは、 前記相対回転角コィルからの出力信号を処理する第 1の信 号処理手段と前記相対回転角の測定手段あるいは前記回転角コィル及び変位セ ンサからの出力信号を処理する第 2の信号処理手段と回転角の測定手段とを備 える構成とする。
また、 上記第 2及び第 6の目的を達成するために、 第 4の見地(aspec t)に係 る発明は、 周方向に沿って所定間隔で配列される複数の第 1の導体層を有する 第 1のロータ、 絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロー夕と一 体に回転すると共に、 前記第 1の口一夕に対して所定の角度内を相対回転する 第 2のロータ、 前記第 1及び第 2のロー夕の相対回転に伴う相対回転角を検出 する相対回転角コイル及び前記第 1あるいは第 2のロータの回転角を検出する 回転角コイルと、 絶縁磁性材から成形され、 前記相対回転角コイルと回転角コ ィルとを保持するコァとを有する固定体及び前記相対回転角コィル及び回転角 コイルと接続され、 特定周波数の発振信号を発振する発振手段を備えた回転セ ンサにおいて、 前記第 2のロー夕の回転に伴って該ロータの回転軸方向に移動 する可動磁心と、 前記発振手段と接続され、 前記可動磁心と協働するコイルと を有し、 前記可動磁心の回転軸方向の移動に基づくコイルインダクタンスの変 化を検出する変位センサを設けた構成としたのである。
好ましくは、 前記相対回転角コィルからの出力信号を処理する第 1の信号処 理手段と前記相対回転角の測定手段並びに前記回転角コィル及び変位センサか らの出力信号を処理する第 2の信号処理手段と回転角の測定手段とを備える構 成とする。
また好ましくは、 導体片及び絶縁層と、 前記発振手段と接続され、 前記導体 片と協働するコイルとを有し、 一方が前記固定体に、 他方が前記第 2のロー夕 に、 それぞれ設けられ、 前記第 2の口一夕の回転に基づくコイルインダクタン スの変化を検出するピッチセンサが設けられている構成とする。
更に好ましくは、 前記第 2の信号処理手段は、 前記回転角コイルからの出力 信号の上限点及び下限点付近では、 前記上限点及び下限点時の出力信号と同じ 信号を出力するように信号処理する構成とする。
更に、 上記第 2及び第 6の目的を達成するために、 第 4の見地(aspec t)に係 る他の発明は、 周方向に沿って所定間隔で配列される複数の第 1の導体層を有 する第 1のロータ、 絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロータ と一体に回転すると共に、 前記第 1のロー夕に対して所定の角度内を相対回転 する第 2のロータ、 励磁コイルと、 絶縁磁性材から成形され、 前記励磁コイル を保持するコァとを有する固定体及び前記励磁コィルと接続され、 特定周波数 の発振信号を発振する発振手段を備えた回転センサにおいて、 前記固定体に固 定される第 1のギア部材、 それぞれ歯数の異なる第 1及び第 2のギア部を有し、 前記第 1のギア部が前記第 2のロー夕と第 1のギア部材とに形成された第 3の ギア部と嚙合する第 2のギア部材、 前記第 2のギア部と嚙合する第 4のギア部 と第 3の導体層とを有し、 前記第 2のロー夕の回転が減速されて伝達され、 該 ロータの回転方向に移動する磁性体からなるスライダ及び前記固定体に設けら れ、 前記発振手段と接続されるコイルを有するコイル部材を備え、 前記第 1及 び第 2のロータの回転に基づく前記第 3の導体層とコイルとの間のコイルイン ダク夕ンスの変化を検出する変位センサを設けた構成としたのである。
好ましくは、 前記励磁コイルとして、 前記第 1及び第 2のロータの相対回転 に伴う相対回転角を検出する相対回転角コイルあるいは前記第 1及び第 2の口 一夕の前記固定体に対する回転角を検出する回転角コィルの少なくとも一方を 備える構成とする。
また好ましくは、 前記相対回転角コィルからの出力信号を処理する第 1の信 号処理手段と前記相対回転角の測定手段あるいは前記回転角コィル及び変位セ ンサからの出力信号を処理する第 2の信号処理手段と回転角の測定手段とを備 える構成とする。
また、 上記第 2及び第 6の目的を達成するために、 第 4の見地(aspec t)に係 る他の発明は、 周方向に沿って所定間隔で配列される複数の第 1の導体層を有 する第 1のロー夕、 絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロータ と一体に回転すると共に、 前記第 1のロータに対して所定の角度内を相対回転 する第 2の口一夕、 前記第 1及び第 2の口一夕の相対回転に伴う相対回転角を 検出する相対回転角コイル及び前記第 1及び第 2のロー夕の回転角を検出する 回転角コイルと、 絶縁磁性材から成形され、 前記相対回転角コイルと回転角コ ィルとを保持するコァとを有する固定体及び前記相対回転角コィル及び回転角 コイルと接続され、 特定周波数の発振信号を発振する発振手段を備えた回転セ ンサにおいて、 前記固定体に取り付けられる第 1のギア部材、 それぞれ歯数の 異なる第 1及び第 2のギア部を有し、 前記第 1のギア部が前記第 2のロータと 第 1のギア部材とに形成された第 3のギア部と嚙合する第 2のギア部材、 絶縁 磁性材から成形され、 前記第 2のギア部と嚙合する第 4のギア部と第 3の導体 層とを有し、 前記第 2のロー夕の回転が減速されて伝達され、 該ロ一夕の回転 方向に移動する磁性体からなるスライダ及び前記固定体に設けられ、 前記発振 手段と接続されるコイルを備え、 前記第 1及び第 2のロー夕の回転に基づく前 記第 3の導体層とコイルとの間のコイルインダク夕ンスの変化を検出する変位 センサを設けた構成としたのである。
好ましくは、 前記相対回転角コイルからの出力信号を処理する第 1の信号処 理手段と前記相対回転角の測定手段並びに前記回転角コイル及び変位センサか らの出力信号を処理する第 2の信号処理手段と回転角の測定手段とを備える構 成とする。
また好ましくは、 導体片と、 前記発振手段と接続され、 前記導体片と協働す るコイルとを有し、 一方が前記固定体に、 他方が前記第 2の口一夕に、 それぞ れ設けられ、 前記第 2のロー夕の回転に基づくコイルインダクタンスの変化を 検出するピッチセンサが設けられている構成とする。
更に好ましくは、 前記第 2の信号処理手段は、 前記回転角コイルからの出力 信号の上限点及び下限点付近では、 前記上限点及び下限点時の出力信号と同じ 信号を出力するように信号処理する構成とする。 図面の簡単な説明
図 1は、 本発明の第 1の見地(aspec t)に係る回転センサの第 1の実施形態を 概略的に示す断面図、 図 2は、 図 1の回転センサを、 磁性材コアを除いて概略 的に示す分解斜視図、 図 3は、 図 1の回転センサにおける磁束密度の大小関係 を示す平面図、 図 4は、 図 1の回転センサにおいて形成される磁気回路を示す 部分的断面図、 図 5 A〜図 5 Cは、 図 1の回転センサにおける第 1のロー夕と 第 2のロータの外周部を示す展開図、 図 6 A〜図 6 Cは、 図 3の第 1のロー夕 と第 2の口一夕が相対的に回転した状態における磁束密度の大小関係を示す平 面図、 図 7は、 図 1のコイルと信号処理回路との接続関係を示す回路ブロック 図、 図 8は、 図 1の回転センサの変形例を示す部分的断面図、 図 9は、 本発明 の第 2の実施形態に係る回転センサを、 磁性材コアを除いて概略的に示す分解 斜視図、 図 1 0は、 図 9の回転センサを示す平面図、 図 1 1 A, 図 1 1 Bは、 図 1 0の第 1のロー夕と第 2のロータが相対的に回転した状態における磁束密 度の大小関係を示す平面図、 図 1 2 A, 図 1 2 Bは、 図 1 0の第 1のロータと 第 2のロータが更に相対的に回転した状態における磁束密度の大小関係を示す 平面図、 図 1 3は、 本発明の第 2の見地(aspec t)に係る回転センサの第 1の実 施形態を示す斜視図、 図 1 4は、 図 1 3の回転センサを第 1及び第 2のシャフ 卜に取り付けた状態を示す断面図、 図 1 5は組み立てた回転センサの平面図、 図 1 6は、 図 1 4の回転センサの右半側を拡大して概略構成を示す断面図、 図 1 7は、 第 2の見地(aspec t)に係る回転センサの第 2の実施形態を示す平面図、 図 1 8は、 図 1 7の回転センサで用いる第 2の口一夕の斜視図、 図 1 9は、 第 2の見地(aspec t)に係る回転センサの第 3の実施形態を示す図 1 4に対応する 断面図、 図 2 0は、 第 2の見地(aspec t)に係る回転センサの第 1の応用例を示 すもので、 センサユニットを直径に沿って切断した断面図、 図 2 1は、 回転セ ンサの第 2の応用例を示すもので、 センサュニッ卜を直径に沿って切断した断 面図、 図 2 2は、 本発明の第 3の見地(aspec t)に係る回転センサの測定回路 の一実施形態を示す回路図、 図 2 3 A〜図 2 3 Dは、 図 2 2に示した各部での パルス波形を示す波形図、 図 2 4は、 位相シフト角度と相対回転角度の関係を 示す関係図、 図 2 5は、 図 2 2に示した測定回路を使用する回転センサの一実 施形態を、 固定コアを除いてシャフトに取り付けた状態で示す斜視図、 図 2 6 は、 図 2 5の回転センサを示す断面図、 図 2 7は、 組み立てた回転センサの平 面図、 図 2 8は、 図 2 6の回転センサの右半側を拡大して概略構成を示す断面 図、 図 2 9は、 本発明の第 4の見地(aspec t)に係る回転センサの一実施形態 を示す断面正面図、 図 3 0は、 図 2 9の回転センサの右半側を拡大した断面正 面図、 図 3 1は、 図 2 9の回転センサの C 1— C 1線に沿った断面平面図、 図 3 2は、 図 2 9の回転センサを構成する主要な部材の位置関係を示すもので、 一部の構成部材を省略して描いた断面平面図、 図 3 3は、 ピッチセンサと銅箔 との配置を、 他の構成部材を省略して示す断面正面図、 図 3 4は、 回転センサ における回転角度測定装置の構成の一例を示すブロック図、 図 3 5 A〜図 3 5 Dは、 図 3 4に示した各センサと回転角度測定部での出力波形を示す波形図、 図 3 6は、 変位センサにおけるスライダコアの移動量とコイルインダクタンス の関係を示す特性図、 図 3 7は、 回転角センサとピッチセンサの出力の関係を 説明するための部分波形図、 図 3 8は、 回転センサにおける回転角度測定装置 の構成の他の例を示すブロック図、 図 3 9は、 変位センサの出力と回転角度を 簡易的に表した出力特性図、 図 4 0は、 本発明の第 4の見地(aspec t)に係る 他の回転センサを示す断面正面図、 図 4 1は、 図 4 0の回転センサの左半側を 拡大した断面正面図、 図 4 2 Aは、 図 4 0の C 2— C 2線に沿った断面平面図、 図 4 2 Bは、 図 4 0の C 3— C 3線に沿った断面平面図、 図 4 3は、 図 4 0の 回転センサを構成する主要な部材の位置関係を示すもので、 一部の構成部材を 省略して描いた断面平面図、 図 4 4は、 スライダの規制壁及びコイル部材を展 開して示す平面図、 図 4 5 A〜図 4 5 Dは、 各センサと回転角度測定部での出 力波形を示す波形図、 図 4 6は、 変位センサにおけるスライダの移動量とコィ ルインダク夕ンスの関係を示す関係図、 図 4 7は、 変位センサの出力と回転数 を簡易的に表した関係図、 図 4 8は、 図 4 0の回転センサの要部を破断して示 す断面正面図、 図 4 9は図 4 8の回転センサの C 4一 C 4線に沿った断面図、 図 5 0は、 図 4 8の回転センサの C 5— C 5線に沿った断面図、 図 5 1は、 間 欠ギアと組み合わせたコイルの出力波形図、 図 5 2 A〜図 5 2 Eは、 間欠ギア が回転した際における固定コアと間欠ギアの双方の銅板の重なり状態の変化を 回転数毎に示した摸式図、 図 5 3は、 従来の回転センサの平面図、 図 5 4は、 回転センサに形成されるギャップの周方向における磁束密度の変動 Δ Βと、 生 じた磁界分布における強弱の境界領域 Δ Θを示す磁束密度の変動特性図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の第 1及び第 4の目的を達成する第 1の見地 (aspec t)に係る回転センサについて説明する。
回転センサ 1 0は、 図 1及び図 2に示すように、 第 1の口一夕 1 1、 第 2の ロー夕 1 2、 及び磁性材コア 1 3 (図 1にのみ図示) を有し、 主動シャフト 5 aと従動シャフト 5 cとこれらを連結しトルクに応じてねじれが増大するトー シヨンジョイント 5 bからなるシャフト 5に取り付けられる。 第 1のロータ 1 1は有底円筒形状を有し、 接着剤ゃネジ等の締結具で従動シ ャフト 5 cに固定される。 第 2の口一夕 1 2も第 1のロー夕 1 1の外径よりも 大きい内径を備えた有底円筒形状を有し、 接着剤ゃネジ等の締結具で主動シャ フト 5 aに固定されている。 又、 第 2の口一夕 1 2の周囲には磁性材コア 1 3 が図示しない非磁性材ブラケットを介して回転しない構造物に固定されている。 従って、 第 2の口一夕 1 2の周縁部は第 1のロー夕 1 1と磁性材コア 1 3と の間に形成されたリング状ギャップの中に位置している。
第 1のロー夕 1 1は、 例えば、 ナイロン、 ポリプロピレン (P P ) 、 ポリフ ェニレンサルファイド (P P S ) 、 A B S樹脂等の絶縁成型材に、 例えば、 N i- Z n、 Mn- Z n系の軟磁性粉末を一定の比率で混合した軟磁性部材からなり、 熱可塑性を有し、 コストが安く且つ耐振性に優れている。 又、 第 1の口一夕 1 1の外周部には、 図 2及び図 5から明らかなように、 円周方向に 6つの切欠き 1 1 aが等間隔で形成されると共に各切欠き間に 6つの歯 1 1 bが等間隔で形 成されている。 このような構成を採ることで、 図 3に示すように、 磁性材コア 1 3と第 1のロータの歯 1 1 bとの間で磁束密度の大きい領域 FAが形成され、 磁性材コア 1 3と第 1の口一夕の切欠き 1 1 aとの間で磁束密度の小さい領域 FBが形成される。 即ち、 第 1のロー夕 1 1と磁性材コア 1 3との間では非均 一磁界が形成されることになる。 尚、 第 1のロータ 1 1が固定された従動シャ フト 5 cが回転すると、 この非均一磁界もこれに応じて回転する。
磁性材コア 1 3は、 上述した第 1のロー夕 1 1と同様の軟磁性部材からなる 円筒体の内周面側に、 第 1のロー夕 1 1と協働して磁気回路 CMG (図 4参照) を形成する共振コイル 1 3 cが巻回された構成を有している。
第 2の口一夕 1 2は、 例えばアルミニウム等の導電性部材でできており、 全 体が導体部を形成している。 又、 その外周部には、 図 2及び図 5から明らかな ように、 第 1のロー夕 1 1と同様の 6つの切欠き 1 2 aが等間隔で形成される と共に各切欠き間に 6つの歯 1 2 bが等間隔で形成されている。 従って、 図 5 A及び図 6 Aに示すように、 第 1のロータの歯 1 1 bと第 2の ロータの歯 1 2 bが完全に対向し合う状態では、 磁性材コア 1 3と第 1のロー 夕の歯 1 1 bとの間で形成された磁気回路を第 2のロー夕 1 2が横切る磁界領 域の磁束密度は最も強くなり、 従って、 第 2のロー夕 1 2に発生する渦電流も 最も大きくなる。
又、 図 5 B及び図 6 Bに示すように、 第 1のロー夕の歯 1 1 bと第 2の口一 夕の歯 1 2 bがー部対向し合う状態では、 第 2の口一夕 1 2が前記磁気回路を 横切る磁界領域の磁束密度は中程度となり、 従って、 第 2のロー夕 1 2に発生 する渦電流も中程度となる。
更に、 図 5 C及び図 6 Cに示すように、 第 1の口一夕の歯 1 1 bと第 2の口 一夕の歯 1 2 bが全く対向し合わない状態では、 第 2の口一夕 1 2が前記磁気 回路を横切る磁界領域の磁束密度は最も弱くなり、 従って、 第 2のロータ 1 2 に発生する渦電流も最も小さくなる。
主動シャフト 5 aと従動シャフト 5 cとが相対的に回転することで、 第 1の ロー夕の歯 1 1 bと第 2の口一夕の歯 1 2 bが図 5 A (図 6 A) 乃至図 5 C (図 6 C) の順に互い違いにずれていく。 これに応じて上述のように導体部で ある第 2のロータ 1 2に発生する渦電流の大きさが周期的に変化する。 この渦 電流の変化に伴うコイルインピーダンスの変化を利用して第 1のロー夕 1 1と 第 2のロータ 1 2の相対的な回転角度差、 ひいては従動シャフト 5 cと主動シ ャフト 5 aとの相対的な回転角度差を容易に検出することができる。
具体的には、 共振コイル 1 3 cは、 図 7に示すように、 発振回路を経て f Z V変換されるように電気的に接続され、 コイルのインダク夕ンス Lとコンデン サ (図 1には図示せず) のキャパシ夕 Cとから求まる共振周波数 f„= 1 Z ( 2 π ( L C ) 1/2) を求める。 第 1のロー夕 1 1と第 2のロータ 1 2との相対 的な回転によって上述のように第 2のロー夕 1 2に発生する渦電流の大きさが 変化し、 これによつてコイル 1 3 cのコイルインピーダンスが変化し、 共振回 路の共振周波数 f。が変わる。 信号処理回路によってこの f。を検出することで、 第 1のロー夕 1 1 (従動シャフト 5 c ) と第 2のロー夕 1 2 (主動シャフト 5 a ) の相対的な回転角度差を測定することができる。
以上説明したように、 本発明に係る回転センサ 1 0の構造によると、 従来の 回転センサのように、 第 1のロータ 1 1は絶縁体からなる磁性材で形成されて いる。 このため、 回転センサ 1 0は、 ギャップ間の磁束が磁性材に集中するこ とによって、 ギャップ間の磁束密度分布の非均一度が大幅に改善され、 第 1の 口一夕 1 1と第 2のロータ 1 2の相対的な取付位置精度を厳密に要求しなくて も、 第 1のロー夕 1 1と第 2のロー夕 1 2との相対的な回転角度差と第 2の口 一夕 1 2の導体部が非均一磁界の強さの異なる領域を横切る面積の変化量とが 常に比例関係になり、 検出出力のリニア特性が優れる。
より詳細には、 本発明に係る回転センサ 1 0において、 軟磁性部材は第 1の ロー夕 1 1と磁性材コア 1 3のみなので、 両者の同心度を厳密に維持すること なく両者を取り付け、 第 1の口一夕 1 1の外周面と磁性材コア 1 3の内周面と のギャップが不均一になっても、 円周方向全体に亘つては磁気抵抗の差が相殺 される。 この結果、 回転センサ 1 0は、 第 1の口一夕 1 1と磁性材コア 1 3の 同心度を厳密に維持して取り付けた場合の磁気抵抗の総和とほぼ一致する。 即 ち、 回転センサ 1 0は、 ギャップがリング状に形成されているので、 シャフト とコイル間の同心度の変動、 回転中心軸線の振れなどの影響を受けることなく 磁気抵抗の総和が一定になり、 検出誤差も小さく抑えられ、 検出精度が優れた ものとなる。
又、 第 1の口一夕 1 1は絶縁体からなる磁性材で形成されているので、 第 1 のロー夕 1 1には渦電流が発生することがない。 このため、 回転センサ 1 0は、 シャフト 5の相対回転角度差と第 2のロータ 1 2の導体部が非均一磁界の強さ の異なる領域を横切ることで発生する渦電流の大きさが比例し、 検出出力のリ ニァ特性が優れる。 即ち、 回転センサ 1 0は、 コイル 1 3 cのインピーダンス に影響を与える渦電流を第 2のロー夕 1 2のみに発生させているので、 感度や 検出出力のリニア性を向上させることができる。
従って、 リニア特性に優れた相対回転角度検出を行うに当たって、 回転セン サ 1 0は、 ロー夕間のギャップの許容範囲を緩和することができる。 その為、 例えば、 大量生産を要求される自動車のステアリング装置に本発明の回転セン サを組み付ける場合、 上述のようにロー夕間のギヤップを数腿オーダ一まで許 容することにより組み付けコストの低減に大きく貢献する。 又、 自動車のァセ ンブリラインにおいても回転センサを組み付けることが可能になり、 組み付け 工程の制約を受けなくてすむ。
又、 絶縁性を有する磁性材で第 1のロー夕 1 1と磁性材コア 1 3とを製造し ているので、 回転センサ 1 0は、 製造コストを低減させることができる。
ここで、 回転センサ 1 0は、 図 4に示すように、 磁性材コア 1 3の軸線方向 全長 L A、 第 1のロー夕 1 1の軸線方向全長 L B、 第 2の口一夕 1 2の軸線方向 全長 Lcとの間に、 LB> LA、 Lc > LAの寸法関係を有するのが好ましい。 これによつて、 回転センサ 1 0は、 第 1のロータ 1 1、 第 2のロー夕 1 2、 及 び磁性材コア 1 3の軸線方向の取り付け位置精度をより緩やかにし、 検出装置 の組み付けをより行い易くすることができる。
回転センサ 1 0は、 検出感度が円周上の歯の数にほぼ比例するので、 円周上 の歯の数が多い程、 検出可能な相対角度の範囲が狭くなるが検出感度が高くな る。 具体的には、 第 1の実施形態の場合、 6つの歯と 6つの切欠きは均一な大 きさを有し、 夫々、 3 6 0度の1 1 2 ( 3 0度) の角度範囲を占める。 従つ て、 検出可能な相対回転角度の最大ずれ量は士 1 5度である。
従って、 回転センサ 1 0は、 シャフト 5の相対回転角度のずれ量が例えば土 8度と小さいが相対回転角度のずれ量を精度良く検出する必要がある場合、 一 例として、 シャフト 5のトルク検出等に好適に利用される。
尚、 上述の実施形態と異なり、 アルミニウム等の導体のみで第 2のロータ 1 2を形成する代わりに、 図 8に示すように、 成型可能な樹脂材 1 5 aの一部に アルミニウム等の導体 1 5 bを付着させて第 2の口一夕 1 5を形成しても良い。 第 2のロータの導体部 1 5 bがシャフ卜 5の相対的な回転に応じて第 1のロー 夕 1 1と磁性材コア 1 3とで形成された磁界を徐々に横切るようにすれば、 上 述の回転センサ 1 0と同様にシャフト 5の回転角度のずれ量を精度良く検出す ることができる。
続いて、 本発明の第 2の実施形態に係る回転センサを説明する。 ここで、 以 下に説明する回転センサにおいては、 回転センサ 1 0と構成が同一の部分には 対応する符号を用いることで詳細な説明を省略する。
回転センサ 2 0は、 図 9に示すように、 主動シャフト 5 aと従動シャフト 5 cとトーションジョイント 5 bからなるシャフト 5に取り付けられ、 従動シャ フト 5 cには上述した絶縁性の軟磁性部材からなる第 1のロー夕 2 1が固定さ れ、 主動シャフト 5 aには、 全体がアルミニウム等の導電体でできており、 第 1のロータ 2 1の外径よりも大きい内径を有する第 2のロー夕 2 2が固定され ている。 又、 第 1のロー夕 2 1の周囲には磁性材コア 2 3 (図 9には図示せ ず) が配設されている。
磁性材コア 2 3は第 1の実施形態の磁性材コア 1 3と同様の構成を有するが、 第 1のロー夕 2 1と第 2のロータ 2 2が、 第 1の実施形態における形状のよう に周囲に夫々 6つの歯と切欠きを有する代わりに、 半円弧状の連続した切欠き 2 1 a , 2 2 aと歯 2 1 b, 2 2 bとを夫々有している点で構成が異なってい る。
このような構成とすることで、 回転センサ 2 0は、 図 1 0に示すように、 第 1のロー夕 2 1の端面視半円弧状の歯 2 1 bと磁性材コア 2 3との間が磁束密 度の大きい領域 F Aとなり、 第 1のロータ 2 1の端面視半円弧状の切欠き 2 1 aと磁性材コア 2 3との間が磁束密度の小さい領域 F Bとなる。 その結果、 回 転センサ 2 0は、 円周方向に亘つて非均一磁界が形成されることになる。 又、 この非均一磁界の強さの異なる領域を横切る第 2の口一夕 2 2の導体部 も図 9に示した通り端面視半円弧状の歯 2 2 bを有しているので、 シャフト 5 の相対的な回転角度のずれ量と第 2のロー夕 2 2の導体部に発生する渦電流の 大きさとの間には広範囲に亘つて比例関係を有するようになる。
第 2の実施形態の場合、 2つのロー夕 2 1 , 2 2の相対回転角度を連続的に 測定することができるので、 例えば、 自動車のハンドルの操舵角度検出に好適 に利用される。
具体的には、 3 6 0度の範囲に亘つて相対回転角度のずれを検出するために、 2つの口一夕 2 1 , 2 2の歯を上述のように端面視半円弧状に形成する。 する と、 図 1 1及び図 1 2に示すように、 シャフト 5の相対回転回転角度のずれ量 に応じて第 1の口一夕 2 1と磁性材コア 2 3とで形成された磁気回路を第 2の 口一夕の歯 2 2 bが徐々に横切って、 磁気回路を横切る第 2のロー夕 2 2の面 積変化量に比例して渦電流を発生させ、 これに比例してコイルインピーダンス を変化させ、 リニァ特性に優れた広範囲に亘る回転角度のずれ量を検出でき、 シャフト 5の操舵角度を正確に検出するのを可能にする。
尚、 シャフト相対回転の回転角度方向を判別する必要がある場合、 絶対位置 センサを検出装置に付加的に設ければ良い。 例えば、 市販されているフォトセ ンサを第 1のロー夕又は第 2の口一夕の適当な位置に取り付け、 相対回転角度 が 0度乃至 1 8 0度でフォトセンサの出力がオン、 相対回転角度が 1 8 0度乃 至 3 6 0度でフォトセンサの出力がオフにするようにすれば、 シャフトの相対 的な回転角度方向も同時に判別することができる。
次に、 本発明の第 1及び第 5の目的を達成する第 2の見地(aspec t)に係る回 転センサを図 1 3乃至図 2 1を用いて説明する。
回転センサ 3 0は、 図 1 3に示すように、 第 1ロータ 3 1、 固定コア 3 2及 び第 2ロータ 3 3を備え、 相対回転する第 1シャフト S F1と第 2シャフト S F2 (図 1 4参照) の相対回転角度を検出する。 回転センサ 3 0は、 例えば、 1 ションジョイントによって回転トルクを主動シャフ卜から従動シャフ卜へ 伝達することで自動車のハンドルシャフトの回転トルクを検出する場合等に用 いられ、 両シャフト SF1, SF2の相対回転角度は ± 8 ° の範囲内で変化する。 第 1ロータ 3 1は、 円筒状に成形され、 図 1 4に示すように、 回転する第 1 シャフト SF1の軸線方向所定位置に取り付けられる。 第 1口一夕 3 1は、 図 1 3に示すように、 円筒軸 3 1 aの上部に半径方向外方へ延出するフランジ 3 1 bが合成樹脂によって一体に形成され、 円筒軸 3 1 aの外周に絶縁磁性部材 3 1 cが取り付けられると共に、 絶縁磁性部材 3 1 cの表面に周方向に沿って 所定間隔、 例えば、 中心角 6 0 ° 間隔で導体層となる複数の銅箔 3 1 dが貼付 されている。
伹し、 銅箔 3 1 dは、 絶縁磁性部材 3 1 cの表面ではなく、 内部に設けても 良い。 また、 導体層は、 導電体であれば銅箔 3 I dの他、 例えば、 アルミニゥ ム, 銀, 鉄等の素材を使用することができる。 更に、 導体層は、 理論上、 中心 角を小さくして配置間隔を小さくする程、 その数が多くなり、 回転センサの部 材内に誘導されるトータル渦電流の変化量 (導体層の数に比例する) が大きく なって、 相対回転角度の検出感度が高くなるが、 測定できる角度範囲が小さく なる。 本実施形態の回転センサ 3 0は、 前記のように複数の銅箔 3 1 dを中心 角 60° 間隔で配置したので、 測定可能な最大角度範囲は約 3 0 ° である。 ここで、 電磁工学では、 導体層に必要な厚さ t (mm)の目安として次式が 広く使われている。
t≥ 1 / (ω κ ) 1/2
但し、 ωは信号の角周波数、 Κは導体層の電気伝導率、 は真空の透磁率、 である。
従って、 上記式によれば、 例えば、 銅箔 3 1 dで導体層を製作する場合、 1 0 0 KH zの磁界をほぼ遮蔽するのに必要な厚さは、 約 0. 1 5 8 mm以上で ある。 実用上、 銅箔 3 1 dの厚さを t =0. 2mmにした場合、 Ι Ο Ο ΚΗ ζ の交流磁界に対し、 銅箔 3 1 dが生ずる磁気抵抗は、 後述する第 1ロー夕 3 1 と固定コア 3 2との半径方向のギャップ Gによる磁気抵抗より十分に大きくな る。 即ち、 銅箔 3 1 dの遮蔽効果により、 回転センサ 3 0は、 小型であっても、 不均一な分布の程度が大きい交流磁界を形成することができる。
固定コア 3 2は、 図 1 6に示すように、 第 1ロー夕 3 1と半径方向にギヤッ プ Gをおいてハンドルシャフト近傍に位置する固定部材 (図示せず) に固定さ れ、 絶縁磁性材からなるコア本体 3 2 aと、 第 1口一夕 3 1と協働して磁気回 路 CMGを形成する励磁コイル 3 2 bとを有している。 磁気回路 CMGの磁束は、 図 1 6に示すように集中して形成される。 このため、 図 1 6に示すように、 第 1ロータ 3 1の軸方向の高さを第 2ロー夕 3 3の軸方向の高さよりも高くする と、 第 1ロー夕 3 1と第 2ロータ 3 3とが軸方向に位置ずれするようなことが あっても、 センサの出力の変動を抑えることができて好ましい。 励磁コイル 3 2 bは、 外部へ延出させた電線 3 2 c (図 1 3参照) によって図示しない信号 処理回路と接続され、 この信号処理回路から交流電流が流されている。
第 2ロー夕 3 3は、 図 1 3に示すように、 リング状の本体 3 3 aに複数の金 属歯 3 3 b力 リング状に均等に配置され、 各金属歯 3 3 bはそれぞれ各銅箔 3 1 dに対応する間隔を持つ。 第 2ロータ 3 3は、 例えば、 銅, 銅合金, アルミ 二ゥム, アルミニウム合金, 鉄, 鉄合金よりなり、 図 1 3に示すように、 複数 の金属歯 3 3 bは銅箔 3 1 d同様リング状に均等に配置され、 各銅箔 3 1 dに 対応して設けられている。 第 2口一夕 3 3は、 次のように構成することもでき る。 即ち、 絶縁材で製作された筒状の表面あるいは内部に一定の厚さの導体層 (例えば 0. 2 mmの銅箔, 或いはアルミニウム, 銀, 鉄等の素材のもの) を 銅箔 3 1 dと同数を銅箔 3 1 dに対応させてリング状に均等に配置する。 第 2 口一夕 3 3は、 第 1ロータ 3 1に隣接し、 第 1シャフト S F1に対して相対回 転する第 2シャフト S F2 (図 1 4参照) に取り付けられ、 複数の金属歯 3 3 bは、 図 1 4に示すように、 第 1ロータ 3 1と固定コア 3 2との間に配置され る。
以上のように構成される回転センサ 3 0は、 第 1ロー夕 3 1を第 1シャフト S F1に、 第 2ロータ 3 3を第 2シャフト S F2に、 それぞれ取り付けるととも に、 固定コア 3 2を前記固定部材に固定して組み立てられる。
そして、 組み立てられた回転センサ 3 0においては、 励磁コイル 3 2 bを流 れる交流電流による磁束が、 図 1 6に示す磁気回路 CMGに沿って流れる。 こ れにより、 第 1口一夕 3 1の複数の銅箔 3 1 dを交流磁界が横切るため、 銅箔 3 1 d内に渦電流が誘起される。 このとき、 渦電流によって誘起される交流磁 界の方向は、 励磁コイル 3 2 bを流れる交流電流による交流磁界の方向と逆に なる。 結果として、 導体層が存在する上記ギャップ部分の空間にコイルの交流 励磁電流による磁束と上記渦電流による磁束の方向は逆となるため、 トータル 磁束密度が小さくなり、 反対に導体層が存在しない上記ギヤップ部分の空間に コイルの交流励磁電流による磁束の方向は同じとなるため、 トータル磁束密度 が大きくなる。
このため、 回転センサ 3 0においては、 第 1ロー夕 3 1と固定コア 3 2との 間に形成されるギャップ G内に、 図 1 5に示すように、 銅箔 3 I dが存在し、 磁束密度が小さい領域 F Bと、 銅箔 3 I dが存在せず、 磁束密度が大きい領域 F Aが周方向に交互に形成される。 この結果、 回転センサ 3 0は、 第 1ロー夕 3 1と固定コア 3 2との間のギャップ G内に、 間隔が中心角を 6 0 ° とする不 均一な磁界が周方向に形成される。 ここで、 図 1 5は、 第 1ロータ 3 1の円筒 軸 3 1 aを図示せずに省略している。
従って、 第 1口一夕 3 1が第 1シャフト S F1と共に第 2口一夕 3 3に対し て相対回転すると、 前記不均一な磁界も第 1ロータ 3 1と共に周方向に沿って 回転する。 このため、 ギャップ G内では、 中心角 6 0 ° 間隔で周方向に形成さ れた金属歯 3 3 bがこの不均一な磁界を横切り、 その際第 1口一夕 3 1と第 2 ロー夕 3 3との相対回転によって金属歯 3 3 bが磁束密度が小さい領域 F Bに 位置する面積と、 磁束密度が大きい領域 F Aに位置する面積の割合が変化し、 横切るトータル磁束の量は変化するので、 金属歯 3 3 bに生ずる渦電流の大き さが変化する。
従って、 回転センサ 3 0においては、 金属歯 3 3 bに生ずる渦電流の大きさ が異なり、 励磁コイル 3 2 bのインピーダンスは、 第 1ロータ 3 1と第 2ロー 夕 3 3との相対回転角度によって変動する。 そこで、 回転センサ 3 0は、 励磁 コイル 3 2 bと接続された信号処理回路において公知の方法で前記インピーダ ンスを測定すれば、 第 1ロー夕 3 1と第 2ロー夕 3 3との相対回転角度を簡単 に検出することができる。
ここで、 本発明の回転センサ 3 0は、 固定コア 3 2に対して第 1口一夕 3 1 がギヤップ Gを置いて回転する構造のため、 構成部材間のギヤップの大きさが、 製造コストに直接影響する。 即ち、 回転センサ 3 0は、 ギャップ Gを数/ x m程 度に設定することは非常に困難で、 このようなギャップとするには、 構成部品 の製作精度、 構成部品間の組立精度が厳しく要求される。 特に、 本発明の回転 センサ 3 0は、 自動車のハンドルシャフトにおける回転トルクの検出に用いる 場合、 自動車の走行に伴う振動等を考慮して、 ギャップ Gを mmオーダーに設 定することが理想である。
このとき、 前記した磁気回路 C MGの実効透磁率は、 絶縁磁性部材 3 1 cや コア本体 3 2 aの比透磁率とギャップ Gの大きさによって決まる。 特に、 磁気 回路 C MGの長さとギャップ Gの大きさとの比が、 磁性材の比透磁率と同じォ ーダ一である場合、 磁気回路 C MGの実効透磁率は殆どギャップ Gの大きさに よって左右されるので、 磁性材の比透磁率の影響は非常に小さくなる。 例えば、 磁気回路 C MGの長さが 1 0 0 mmに対して、 ギャップ Gが約数 mmの場合の ように、 磁気回路 C MGの長さとギャップ Gとの比が、 軟磁性材の比透磁率に 比べて非常に小さい場合、 実効透磁率は殆どギャップ Gの大きさによって決ま る。 即ち、 回転センサ 3 0は、 絶縁磁性部材 3 1 cやコア本体 3 2 aの比透磁率 がいくら大きくても、 磁気回路 CMGの実効透磁率は、 ほぼギャップ Gの大き さによって決まってしまう。
従って、 絶縁磁性部材 3 1 cやコア本体 3 2 aは、 ナイロン, ポリプロピレ ン (P P ) , ポリフエ二レンスルフイ ド (P P S ) , A B S樹脂等の電気絶縁 性を有する熱可塑性合成樹脂に、 N i 一 Z nや M n— Z n系のフェライ卜から なる軟磁性材粉を、 軟磁性材の含有量が 1 0〜7 0体積%で混合したものから 成形する。
これにより、 本発明の回転センサ 3 0は、 磁気回路 C MGの実効透磁率がフ エライトを用いた従来の軟磁性材に比べてやや小さくなるが、 耐振動性が向上 し、 製造が容易でコストダウンが図られ、 大量生産に向いている等、 得られる メリッ卜が大きい。
また、 励磁コイル 3 2 bのインピーダンスに影響を与える渦電流は、 絶縁材 でもある前記コア材内からは発生せず、 導体層、 即ち、 銅箔 3 I dのみから生 ずるため、 回転センサ 3 0は、 検出感度や検出出力のより一層リニアな特性が 得られる。
次に、 本発明の回転センサに係る第 2の実施形態を図 1 7及び図 1 8に基づ いて説明する。
回転センサ 3 5は、 図 1 7に示すように、 第 1口一夕 3 6、 固定コア 3 7及 び第 2ロー夕 3 8を備え、 これらは第 1の実施形態と同じ素材で構成され、 第 1の実施形態と同様にして第 1シャフト S F1等に取り付けられる。
第 1口一夕 3 6は、 絶縁磁性材からなる円筒体 3 6 aの表面の周方向半分に 銅箔 3 6 bが貼付されている。
固定コア 3 7は、 第 1の実施形態の固定コア 3 2と同様に、 絶縁磁性材から なるコア本体 3 7 aと励磁コイル (図示せず) とを有している。
第 2ロー夕 3 8は、 図 1 8に示すように、 円筒を周方向に半分切り欠いて半 周分の導体歯 3 8 aが周方向に形成され、 下部に半径方向内方へ突出させて形 成したフランジ 3 8 bの中央には、 図示しない第 2シャフトに取り付ける取付 開口 3 8 cが形成されている。
回転センサ 3 5は、 上記のように構成することによって、 前記励磁コイルに 交流電流を流すと、 第 1口一夕 3 6と固定コア 3 7との間に形成されるギヤッ プ内に、 図 1 7に示すように、 銅箔 3 6 bが存在し、 磁束密度が小さい領域 F Bと、 銅箔 3 6 bが存在せず、 磁束密度が大きい領域 FAが周方向に半々に形 成される。 この結果、 回転センサ 3 5は、 第 1ロータ 3 6と固定コア 3 7との 間の前記ギャップ内に、 中心角を 1 8 0 ° とする不均一な磁界が周方向に形成 され、 1 8 0 ° の回転角度が検出できるが、 例えば、 絶対位置センサーを利用 する等して、 口一夕の 0 ° の絶対位置検出をすれば、 3 6 0 ° 、 即ち、 1回転 までの回転角度を検出することができる。
次いで、 本発明の回転センサに係る第 3の実施形態を図 1 9に基づいて説明 する。
回転センサ 4 0は、 第 1ロー夕 4 1、 固定コア 4 2及び第 2ロータ 4 3を備 え、 相対回転する第 1シャフト S F1と第 2シャフト S F2の相対回転角度を検 出する。
第 1ロータ 4 1は、 絶縁磁性材からなり、 円板 4 1 a上に複数の所定の中心 角をを持つ扇形状の銅箔が所定の間隔で貼付されている。 第 1ロー夕 4 1は、 図示のように、 第 1シャフト S F1に取り付けられる。
固定コア 4 2は、 第 1ロー夕 4 1と第 1シャフト S F1の軸方向にギャップ Gをおいてハンドルシャフト近傍に位置する固定部材 (図示せず) に固定され、 図示のように、 絶縁磁性材からなるコア本体 4 2 aと、 第 1ロータ 4 1と協働 して磁気回路 CMGを形成する励磁コイル 4 2 bとを有している。
第 2口一夕 4 3は、 例えば、 銅, 銅合金, アルミニウム, アルミニウム合金, 鉄, 鉄合金, 銀等の金属円板から所定の中心角の扇形を複数切り欠いて第 1口 一夕 4 1の複数の本体 4 1 aに対応する複数の導体歯 4 3 aが放射状に形成さ れている。 また、 次のように構成してもよい。 即ち、 絶縁性を持つプラスチッ ク等からなる円板上に、 前記扇形状の銅箔に対応して該扇形状の銅箔と同数の 所定の中心角を持つ扇形の金属箔が所定の間隔で貼付されている。 第 2口一夕 4 3は、 第 1ロータ 4 1に隣接し、 第 1シャフト S F1に対して相対回転する 第 2シャフト S F2に取り付けられ、 複数の導体歯 4 3 aは、 図示のように、 第 1ロー夕 4 1と固定コア 4 2との間に配置される。
従って、 本実施形態の回転センサ 4 0は、 第 1ロータ 4 1と固定コア 4 2と の間のギャップ G内に、 周方向に不均一な磁界が形成され、 この不均一な磁界 を第 2口一夕 4 3の複数の導体歯 4 3 aが横切ることによって渦電流が生ずる。 回転センサ 4 0は、 この渦電流の変化に伴う、 励磁コイル 4 2 bのインピーダ ンスを、 第 1の実施形態と同様にして測定することで、 第 1ロータ 4 1と第 2 ロー夕 4 3との相対回転角度を簡単に検出することができる。
また、 本発明の回転センサは、 第 1ロー夕 4 1、 固定コア 4 2及び第 2ロー 夕 4 3を第 1シャフト S F1の軸方向に重ねた構成であるので、 半径方向にお ける大きさを低減する場合に有効である。
ここで、 上記各実施形態においては、 第 1ロー夕 3 1, 3 6, 4 1を第1シ ャフト S F1に、 第 2口一夕 3 3, 3 8 , 4 3を第 2シャフト S F2に、 それぞ れ取り付けた。 しかし、 本発明の回転センサは、 第 1のロー夕と固定コアとの 間に第 2の口一夕が配置されていれば、 第 1口一夕 3 1, 3 6, 4 1を第 2シ ャフト S F2に、 第 2口一夕 3 3, 3 8, 4 3を第 1シャフト S F1に、 それぞ れ取り付けてもよいことは言うまでもない。
以上説明した本発明の回転センサは、 例えば、 次のように構成することで、 自動車のハンドルシャフトの回転トルクを検出するトルクセンサと回転角度を 検出する舵角センサを備えたセンサュニットとして応用することができる。 即ち、 図 2 0に示すセンサユニット 4 5は、 トルク検出コア 4 6、 舵角検出 コア 4 7、 磁性材ロ一夕 4 8及び金属口一夕 4 9を備え、 トルク検出コア 4 6 と舵角検出コア 4 7とが上下方向 (ハンドルシャフトの軸方向) に重ねられて いる。
トルク検出コア 4 6及び舵角検出コア 4 7は、 それぞれ絶縁磁性材からなる コア本体 4 6 a, 4 7 aと、 磁性材ロータ 4 8と協働して磁気回路を形成する 励磁コイル 4 6 b, 4 7 bとを有している。 そして、 トルク検出コア 4 6は固 定金具 5 1に、 舵角検出コア 4 7は固定金具 5 2に、 それぞれ固定され、 両コ ァ 4 6, 4 7間には金属スぺ一サ 5 3が配置されている。 ここで、 固定金具 5 1 , 5 2は、 自動車内のハンドルシャフト近傍に配置されている。
磁性材ロータ 4 8は、 円筒状に成形され、 中心軸方向中央には周方向にスリ ット 4 8 aが形成されている。
金属ロータ 4 9は、 磁性材ロ一夕 4 8よりも直径の小さい本体 4 9 aの上部 から半径方向外方へフランジ 4 9 bが延出し、 フランジ 4 9 b先端に上下両方 向へ延出し、 磁性材ロータ 4 8とトルク検出コア 4 6あるいは舵角検出コア 4 7との間に配置される導体歯 4 9 cが複数形成されている。
一方、 図 2 1に示すセンサユニット 5 5は、 トルク検出コア 5 6、 舵角検出 コア 5 7、 磁性材ロ一夕 5 8及び金属ロータ 5 9を備え、 トルク検出コア 5 6 と舵角検出コア 5 7とが半径方向に同心円状に配置されている。
トルク検出コア 5 6及び舵角検出コア 5 7は、 それぞれ絶縁磁性材からなる コア本体 5 6 a, 5 7 aと、 磁性材ロ一夕 5 8と協働して磁気回路を形成する 励磁コイル 5 6 b , 5 7 bとを有している。 トルク検出コア 5 6は、 磁性材ロ —夕 5 8との間に所定のギャップが形成され、 舵角検出コア 5 7は、 コア本体 5 7 aに金属ロー夕 5 9の後述する導体歯 5 9 cを配置する溝 5 7 cが周方向 に形成されている。 そして、 トルク検出コア 5 6及び舵角検出コア 5 7は、 金 属製の遮蔽ケース C sに収容される。
磁性材ロ一夕 5 8は、 円筒状に成形されている。 金属ロー夕 5 9は、 本体 5 9 aから半径方向外方へフランジ 5 9 bが延出し、 フランジ 5 9 bから下方へ延出し、 磁性材ロ一夕 5 8とトルク検出コア 5 6あ るいは舵角検出コア 5 7との間に配置される導体歯 5 9 cが複数周方向に形成 されている。
従って、 センサユニット 4 5あるいはセンサユニット 5 5を、 設置スペース に応じて適宜選択することにより、 自動車のハンドルシャフ卜の回転トルクと 回転角度とを同時に検出することができる。
次に、 本発明の第 1及び第 3の目的を達成する第 3の見地(aspec t)に係る回 転センサの測定回路に関する一実施形態を図 2 2乃至図 2 8に基づいて説明す る。
図 2 2は、 本発明の測定回路の一実施形態を示す回路図である。 この測定回 路は、 本発明の発振手段を構成し、 特定周波数の発振信号であるパルス信号を 発振する発振器 7 1と、 前記パルス信号のシフトレベルを調整するレベル調整 部 7 2と、 本発明の位相シフト手段を構成し、 後述する第 2のロータに発生す る渦電流の大きさに応じて、 前記パルス信号の位相をシフトする位相シフト部 7 3と、 本発明のシフト量検出手段を構成し、 前記シフトされたパルス信号の 位相シフト量を検出するシフト量検出部 7 4と、 本発明の測定手段を構成し、 前記検出された位相シフト量に基づいて相対回転角度を測定する相対回転角度 測定部 7 5とを有している。
発振器 7 1は、 インバー夕 7 2 aを介して、 図 2 3 Aに示すような波形の特 定周波数のパルス信号をレベル調整部 7 2及びシフ卜量検出部 7 4に出力して いる。
レベル調整部 7 2は、 2つのインバ一夕 7 2 a , 7 2 dと、 これらの間に直 列接続された可変抵抗 7 2 bと抵抗 7 2 cと、 一端が抵抗 7 2 cとインバー夕 7 2 d間に接続されるとともに他端が接地されるコンデンサ 7 2 eとから構成 される。 可変抵抗 7 2 b、 抵抗 7 2 c及びコンデンサ 7 2 eは、 位相シフト部 7 3の前段に設けられた位相シフト回路を形成する。 前記位相シフト回路では、 可変抵抗 7 2 bの調整により、 予めパルス信号の位相シフト量を調整する。 例 えば、 本実施形態においては、 2つのロータの相対回転の— 8 ° 〜十 8 ° が測 定できるように設けられており、 相対回転は 0 ° の場合の出力信号を一定のレ ベルまで調整する必要がある。 レベル調整部 7 2はそのために設けられたもの である。
位相シフト部 7 3は、 直列接続された抵抗 7 3 aと本発明の励磁コイル 7 3 bとインバー夕 7 3 cと、 一端が励磁コイル 7 3 bとインバー夕 7 3 c間に接 続されるとともに他端が接地されるコンデンサ 7 3 dを有している。 励磁コィ ル 7 3 bは、 後述する固定コアに巻回されて交流電流が流され、 第 1ロータと 協働して磁気回路を形成している。
位相シフト部 7 3は、 第 2ロー夕に発生する渦電流の大きさに応じて、 レべ ル調整部 7 2から入力するパルス信号の位相をシフトする。 すなわち、 抵抗 7
3 aの電気抵抗を R、 励磁コイル 7 3 bのインダクタンスを L、 コンデンサ 7 3 dのキャパシ夕を C、 渦電流を i e、 測定回路の構造で決まる相互インピー ダンスを M、 位相シフト部 7 3への入力電流を iとすると、 レベル調整部 7 2 からの入力電圧 V inは、
V in= i · R + i · j ω L - i e · j ω Μ+ i ( 1 / j ω C )
となり、 渦電流 i eの変化によって入力電圧 V inと入力電流 iの位相シフト角 度が変化する。 すなわち、 位相シフト部 7 3からの出力電圧 Vou tと入力電流 iの位相ずれは、 9 0度で固定なので、 渦電流 i eの変化によって入力電圧 V i nと出力電圧 Voutの位相シフト角度が変化することとなる。
従って、 レベル調整部 7 2におけるィンバ一夕 7 2 aの出力である A地点に おけるパルス信号の波形と、 インバー夕 7 3 cの出力である B地点におけるパ ルス信号の波形 (図 2 3 B参照) とを比較することによって、 パルス信号の位 相シフト量 (本実施形態では位相シフト角度で表す) を検出することができる。 シフト量検出部 7 4は、 入力端子がインバー夕 7 2 a、 7 3 cとそれぞれ接 続された排他的 O R (Exc l us i ve OR) 7 4 aと、 排他的 O R 7 4 aの出力端 子に接続された抵抗 7 4 bと、 一端が抵抗 7 4 bと相対回転角度測定部 7 5間 に接続されるとともに他端が接地されるコンデンサ 7 4 cとを有している。 排 他的〇R 7 4 aは、 発振器 7 1からのパルス信号、 すなわち入力電圧 V inと、 位相シフト部 7 3でシフトされたパルス信号、 すなわち出力電圧 V ou tを排他 的〇R演算を行って位相シフト角度を求める。 前記求めた位相シフ卜角度は、 図 2 3 Cに示すように、 C地点におけるパルス信号の幅として検出される。 す なわち、 この C地点におけるパルス信号は、 A地点と B地点とのパルス信号の 位相ずれ量を表している。 抵抗 7 4 bとコンデンサ 7 4 cは口一パスフィル夕 を構成し、 C地点におけるパルス信号は、 前記両口一夕の相対回転に比例する 直流信号に変換され (図 2 3 D参照) 、 相対回転角度測定部 7 5に入力される。 相対回転角度測定部 7 5では、 例えば図 2 4に示すように、 位相シフト角度 と両口一夕の相対回転角度の関係が予め設定されており、 シフト量検出部 7 4 から入力する位相シフト角度から相対回転角度を求めることができる。
次に、 図 2 2に示した測定回路を使用する回転センサの一実施形態を説明す る。
回転センサ 6 0は、 図 2 5及び図 2 6に示すように、 第 1ロータ 6 1、 第 2 ロー夕 6 2及び固定コア 6 3を備え、 相対回転する主動シャフト 5 aと第 2シ ャフト 5 cの相対回転角度を検出する。 回転センサ 6 0は、 トーシヨンジョイ ント 5 bによって回転トルクを主動シャフト 5 aから従動シャフト 5 cへ伝達 することで自動車のハンドルシャフトの回転トルクを検出する場合等に用いら れ、 主動シャフ卜 5 aと従動シャフト 5 cの相対回転角度は土 8 ° の範囲で変 化する。
第 1ロー夕 6 1は、 主動シャフト 5 aが貫通する部分を除いて有底の円筒状 に成形され、 回転する主動シャフト 5 aの軸線方向所定位置に取り付けられる。 第 1口一夕 6 1は、 絶縁磁性部材からなり、 外周部には図 2 5から明らかなよ うに円筒方向に 6つの切欠き 6 1 aが等間隔で形成されるとともに、 各切欠き 間に 6つの歯 6 1 bが等間隔で形成されている。
第 2ロー夕 6 2は、 従動シャフト 5 cが貫通する部分を除いて有底の円筒状 に成形され、 従動シャフト 5 cの軸線方向所定位置に取り付けられる。 第 2口 一夕 6 2は、 導電性部材からなり全体が導体部を形成しており、 外周部には図 2 5から明らかなように第 1ロー夕 6 1と同様に、 6つの切欠き 6 2 aが等間 隔で形成されるとともに、 各切欠き間に 6つの歯 6 2 bが等間隔で形成されて いる。
第 2口一夕 6 2は、 第 1口一夕 6 1に隣接し、 第 1シャフト 5 aに対して相 対回転する第 2シャフト 5 cに取り付けられ、 複数の歯 6 2 bは、 図 2 6に示 すように第 1ロー夕 6 1と固定コア 6 3との間に配置される。
固定コア 6 3は、 図 2 8に示すように、 第 1口一夕 6 1と半径方向にギヤッ プ Gをおいてハンドルシャフト近傍に位置する固定部材 (図示せず) に固定さ れ、 絶縁磁性材からなるコア本体 6 3 aと、 第 1ロー夕 6 1と協働して磁気回 路 CMGを形成する励磁コイル 7 3 b (図 2 2参照) とを有している。 励磁コ ィル 7 3 bは、 外部へ延出させた電線 6 3 b (図 2 7参照) によって外部の電 流供給手段から交流電流が供給されている。
以上のように構成される回転センサ 6 0は、 第 1ロー夕 6 1を主動シャフト 5 aに、 第 2ロー夕 6 2を従動シャフト 5 cに、 それぞれ取り付けるとともに、 固定コア 6 3を前記固定部材に固定して組み立てられる。
そして、 組み立てられた回転センサ 6 0においては、 励磁コイル 7 3 bを流 れる交流電流による磁束が、 図 2 8に示す磁気回路 CMGに沿って流れる。 そ して、 第 1ロー夕 6 1の歯 6 1 bと固定コア 6 3間のギャップは小さくなるた め、 この間における磁気抵抗が小さくなり、 磁束密度の大きい領域 FAとなる。 逆に、 第 1ロー夕 6 1の切欠き 6 1 aと固定コア 6 3との間は、 ギャップが大 きくなるため、 磁気抵抗が大きくなり、 磁束密度が小さい領域 F Bとなる (図 2 7参照) 。
このため、 回転センサ 6 0においては、 第 1口一夕 6 1と固定コア 6 3との 間に形成されるギャップ G内に、 磁束密度が大きい領域 FAと、 磁束密度が小 さい領域 F Bとが周方向に交互に形成される。 この結果、 回転センサ 6 0は、 第 1口一夕 6 1と固定コア 6 3との間のギヤップ G内に、 間隔が中心角を 6 0 ° とする不均一な磁界が周方向に形成される。
従って、 第 1口一夕 6 1が主動シャフト 5 aと共に固定コア 6 3に対して相 対回転すると、 前記不均一な磁界も第 1ロー夕と共に周方向に沿って回転する。 このため、 ギャップ Gでは、 中心角 6 0 ° 間隔で周方向に形成された第 2ロー 夕の歯 6 2 bがこの不均一な磁界を横切る。 その際、 第 1ロータ 6 1と第 2口 一夕 6 2との相対回転によって歯 6 2 bが、 磁束密度が小さい領域 F Bに位置 する面積と、 磁束密度が大きい領域 F Aに位置する面積の割合が変化し、 横切 るローたる磁束の量が変化するので、 第 2口一夕 6 2に生ずる渦電流の大きさ が変化する。
従って、 測定回路においては、 磁気回路を形成する励磁コイル 7 3 bに発振 器 7 1からのパルス信号を印加し、 位相シフト部 7 3で第 2ロー夕 6 2に発生 する渦電流の大きさに応じてパルス信号の位相をシフトさせる。 そして、 その 位相シフト量をシフト量検出部 7 4で検出し、 相対回転速度測定部 7 5によつ て、 前記検出された位相シフト量と相対回転角度の関係から (図 2 4参照) 、 第 1ロー夕 6 1と第 2口一夕 6 2の相対回転角度を測定することができる。 なお、 図 2 4における位相シフト角度と相対回転角度の関係は、 位相シフト 部 7 3内の抵抗 7 3 aが 5 1 Ω、 コンデンサ 7 3 dが 4 7 0 P Fで、 シフト量 検出部 7 4内の抵抗 7 4 bが 5 1 0 Ω、 コンデンサ 7 4 cが 0 . 1 Fに設定 することで得られたものである。
従って、 本実施形態では、 第 2ロータに発生する渦電流の大きさに応じてパ ルス信号の位相をシフトさせ、 位相シフト量と相対回転角度の関係から相対回 転角度を正確に測定し、 またシフト量検出部内の抵抗とコンデンサの時定数、 すなわち 5 1 0 X 0 . 1 = 5 1 sによって位相シフト量の検出時間が決まる ので、 測定時間が短くなつて、 従来例に比べて相対回転角度測定の分解能が高 く、 かつ応答性が格段に向上できる。
次に、 本発明の第 2及び第 6の目的を達成する第 4の見地(aspec t)に係る回 転センサを図 2 9乃至図 3 9を用いて説明する。
回転センサ 8 0は、 図 2 9乃至図 3 2, 図 3 4に示すように、 第 1ロータ 8 1、 第 2ロータ 8 2、 固定ケース 8 3、 変位センサ 8 5、 本発明に係る発振手 段を構成する発振回路 8 7、 本発明に係る第 1の信号処理手段を構成する信号 処理増幅回路 9 1、 本発明に係る相対回転角度の測定手段を構成する相対回転 角度測定部 9 8、 本発明に係る第 2の信号処理手段を構成する信号処理増幅回 路 9 2〜 9 4及び本発明に係る回転角度の測定手段を構成する回転角度測定部 9 9を備えている。 回転センサ 8 0は、 回転軸、 例えば、 主動シャフトと従動 シャフトが] シヨンジョイントを介して連結された自動車のステアりングシ ャフトにおける回転角と回転トルクを検出する。
ここで、 第 1口一夕 8 1と第 2ロータ 8 2は、 図 2 9に示す回転軸 A r tに 対して一体に回転すると共に、 前記主動シャフトが前記従動シャフトに対して 相対回転するのに対応して所定角度内を相対回転する。 両口一夕 8 1, 8 2は、 例えば、 前記主動シャフトが前記従動シャフトに対して ± 8 ° の範囲内で相対 回転するとき、 同じく ± 8 ° の範囲内で相対回転する。
また、 図 3 2は、 回転センサ 8 0を構成する主要な部材の位置関係を示すた め、 一部の構成部材を省略して描いてある。
第 1ロータ 8 1は、 成型性に優れた電気絶縁性の合成樹脂から成形された内 筒 8 l aと、 図 2 9及び図 3 0に示すように、 内筒 8 1 aから延出する複数、 本実施形態では 6枚の銅片 8 1 bとを有し、 内筒 8 1 aには前記主動シャフト との回り止めとなる係止片 81 cの上部が固定されている。 複数の銅片 81 b は、 第 1の導体層で、 内筒 8 1 aの周方向に沿って中心角 30° の間隔で回転 軸 Art方向に延出している。 但し、 銅片 8 l bは、 導体であれば、 例えば、 アルミニウム, 銀, 鉄等の素材を使用することができ、 高周波磁界を遮蔽する うえで、 第 1口一夕 81と固定ケース 83との半径方向のギャップに基づく磁 気抵抗を考慮すると、 0. 1〜0.5mm程度の厚さが望ましい。 更に、 銅片 8 l bは、 理論上、 中心角を小さくして配置間隔を小さくする程、 前記導体層と しての数が多くなり、 誘導されるトータル渦電流の変化量 (導体層の数に比例 する) が大きくなつて、 相対回転角の検出感度が高くなるが、 測定できる相対 回転角範囲が小さくなる。
第 2ロー夕 82は、 成型性に優れた電気絶縁性の合成樹脂から成形され、 図 29及び図 30に示すように、 内筒 82 a、 フランジ 82 d、 支持部 82 e及 び係止片 82 hを有している。 内筒 82 aは、 第 1絶縁磁性材層 82 bの外周 に銅箔 82 cが複数の銅片 81 bと対応するピッチで設けられている。 銅箔 8 2 cは、 後述する銅箔 82 gと共に第 2の導体層となる。 フランジ 82 dは、 内筒 82 aから水平方向へ延出し、 半径方向中間から立ち上がる支持部 82 e が筒状に形成されると共に、 外周近傍の上面に周方向へ中心角 180° の範囲 で後述するピッチセンサ 86の銅箔 86 aが設けられている。 また、 フランジ 82 dは、 外周下部に後述する変位センサ 85のスクリュー部材 85 aが連結 されている。 支持部 82 eは、 第 2絶縁磁性材層 82 f を支持する部分で、 第 2絶縁磁性材層 82 ίの外周に周方向へ中心角 180° の範囲で銅箔 82 gが 設けられている。 係止片 82 hは、 前記従動シャフトの回り止めで、 下部で内 筒 82 aの下部に取り付けられている。
ここで、 第 1絶縁磁性材層 82 b及び第 2絶縁磁性材層 82 f の素材は、 ナ ィロン, ポリプロピレン (PP) , ポリフエ二レンスルフイ ド (PPS) , A BS樹脂等の電気絶縁性を有する熱可塑性合成樹脂に、 N i一 Znや Mn— Z n系のフェライトからなる軟磁性材粉を 1 0〜7 0体積%混合したものを使用 する。
固定ケース 8 3は、 交流磁界の遮蔽性を有するアルミニウム, 銅等の非鉄金 属によって形成される固定体で、 図 2 9及び図 3 0に示すように、 内筒部 8 3 a、 上フランジ 8 3 b、 第 1支持部 8 3 c及び第 2支持部 8 3 dを有している。 内筒部 8 3 aは、 内筒 8 1 aを位置決めして第 1ロー夕 8 1を回転自在に配置 する部分である。 上フランジ 8 3 bは、 上部に回路基板 8 4が取り付けられ、 下面の半径の異なる同心円上の位置に第 1支持部 8 3 c及び第 2支持部 8 3 d が形成され、 外周近傍に開口 8 3 eが設けられている。 第 1支持部 8 3 cは、 図 2 9及び図 3 0に示すように、 第 2ロータ 8 2の支持部 8 2 eよりも半径方 向内側に位置し、 内周には回転トルク検出用の励磁コイルである相対回転角コ ィル 8 3 f を保持したコア 8 3 gが設けられている。 第 2支持部 8 3 dは、 図 示のように、 第 2ロー夕 8 2の支持部 8 2 eよりも半径方向外側に位置してい る。 第 2支持部 8 3 dは、 回転トルク検出用の励磁コイルである回転角コイル 8 3 hを保持したコア 8 3 jが内周に設けられ、 回転角コイル 8 3 h及びコア 8 3 jの銅箔 8 2 gと対向する表面には、 周方向へ中心角 1 8 0 ° の範囲で銅 箔 8 3 kが設けられている。 ここで、 相対回転角コイル 8 3 f及び回転角コィ ル 8 3 hは、 後述する変位センサ 8 5のコイル 8 5 f及びピッチセンサ 8 6の コイル 8 6 cと共に、 固定ケース 8 3から外部へ延出させた電線 (図示せず) によって発振回路 8 7と接続され、 発振回路 8 7から交流電流が流されている。 これにより、 回転センサ 8 0においては、 コア 8 3 gと第 1絶縁磁性材層 8 2 b並びにコア 8 3 jと第 2絶縁磁性材層 8 2 f との間に、 図 3 0に点線で示す . 磁気回路 C MGが形成される。
また、 固定ケース 8 3は、 図 2 9及び図 3 0に示すように、 上部と下部にそ れぞれ上カバー CVUと下カバー CVLを有するカバー CVが取り付けられる。
変位センサ 8 5は、 後述するスライダコア 8 5 eの回転軸方向の移動に基づ くコイルインダク夕ンスの変化を検出するセンサで、 図 2 9乃至図 3 1に示す ように、 スクリュー部材 8 5 a、 スライダ 8 5 c、 スライダコア 8 5 e及びコ ィル 8 5 f を有している。
スクリュー部材 8 5 aは、 下部が第 2口一夕 8 2の外周下部と連結されたリ ング状の部材で、 外周にねじ部 8 5 bが形成されている。 スライダ 8 5 cは、 図 2 9乃至図 3 2に示すように、 周方向に延びる部材で、 固定ケース 8 3の外 周側に周方向に形成された収容部 8 3 mに配置され、 半径方向内側にねじ部 8 5 bと螺合するねじ部 8 5 dが形成されている。 スライダ 8 5 cは、 第 2ロー 夕 8 2と共に回転するスクリュー部材 8 5 aによって収容部 8 3 m内を上下動 し、 図 2 9, 図 3 0に示す位置がその中間位置である。 スライダコア 8 5 eは、 絶縁磁性材から形成されたピン状の部材で、 スライダ 8 5 cに上下方向に取り 付けられている。
コイル 8 5 f は、 スライダコア 8 5 eと協働して磁気回路を形成するもので、 コア 8 5 g内に保持されている。 コア 8 5 gは、 第 1及び第 2絶縁磁性材層 8 2 b , 8 2 f並びにスライダコア 8 5 eと同一の素材から形成され、 固定ケー ス 8 3に設けた開口 8 3 eに取り付けられている。 従って、 変位センサ 8 5に おいては、 コイル 8 5 f によってコア 8 5 gに図 3 0に点線で示す磁気回路 C MGが形成され、 第 2ロータ 8 2の回転に伴うスライダ 8 5 cの上下動によつ てスライダコア 8 5 eがコイル 8 5 f 内に出入りすると、 コイル 8 5 f のイン ダク夕ンスが変化する。
ここで、 回路基板 8 4は、 図 2 9, 図 3 0には示していないが、 発振手段、 相対回転角コイル 8 3 fからの出力信号を処理する第 1信号処理手段、 相対回 転角の測定手段、 回転角コイル 8 3 h及び変位センサ 8 5からの出力信号を処 理する第 2信号処理手段及び回転角の測定手段が配置されると共に、 これらに 関する電気回路が形成されている。
また、 ピッチセンサ 8 6は、 第 1及び第 2ロータ 8 1, 8 2が基準位置から 左方向 1 8 0度内あるいは右方向 1 8 0度内のどちらの回転位置にあるかを検 出する。 ピッチセンサ 8 6は、 第 2ロータ 8 2に設けられ、 一方となる銅箔 8 6 aと、 図 3 0に示すように第 2支持部 8 3 dの半径方向外側に配置され、 ピ ツチセンサ 8 6の他方となる図 3 3に示すコア 8 6 b、 コイル 8 6 c及び銅箔 8 6 dを有している。 銅箔 8 6 dには、 図示のようにスリット 8 6 eが形成さ れている。
ここで、 ピッチセンサ 8 6は、 実用上所定の精度を確保するうえで、 コイル 8 6 cの直径を D、 スリット 8 6 eの幅を Wsとしたとき、 幅 Wsの対直径比 (=Ws/D) を以下の範囲に設定する。
1 Z 5 0≤WsZD≤ 1 / 3
好ましくは、 対直径比 (=WsZD) は 1 Z 1 0以上とする。
次に、 図 3 4及び図 3 5を用いて第 1実施形態に係る回転センサによる相対 回転角度及び回転角度測定を説明する。
図 3 4は、 回転センサの回転角度測定装置の一例を示すブロック図である。 図において、 測定装置は、 発振信号を発振する発振回路 8 7と、 発振信号を分 周して特定周波数のパルス信号を出力する分周回路 8 8と、 上述した複数の銅 片 8 1 b、 第 1絶縁磁性材層 8 2 b、 銅箔 8 2 c、 相対回転角コイル 8 3 ί及 びコア 8 3 gを有するトルクセンサ 8 9と、 上述した第 2絶縁磁性材層 8 2 f 、 銅箔 8 2 g、 回転角コイル 8 3 h、 コア 8 3 j及び銅箔 8 3 kを有する回転角 センサ 9 0と、 変位センサ 8 5と、 ピッチセンサ 8 6と、 トルクセンサ 8 9力 らの信号を処理する信号処理増幅回路 9 1と、 回転角センサ 9 0、 変位センサ 8 5及びピッチセンサ 8 6からの信号をそれぞれ処理する信号処理増幅回路 9 2〜9 4と、 信号処理増幅回路 9 1〜9 3からの信号をそれぞれアナログ Zデ ジタル変換する AZDコンバータ 9 5〜9 7と、 AZDコンバータ 9 5からの デジタル信号に基づいて相対回転角度を測定する相対回転角度測定部 9 8と、 信号処理増幅回路 9 4及び AZDコンバータ 9 6, 9 7からのデジタル信号に 基づいて回転角度を測定する回転角度測定部 9 9とを有して構成される。
以上のように構成される回転センサ 8 0は、 例えば、 主動シャフトと従動シ ャフ卜がトーシヨンジョイントを介して連結された自動車のステアリングシャ フトにおける回転角、 回転数及び回転トルクを検出するときに、 以下のように して使用される。
まず、 前記測定装置において、 発振回路 8 7は、 分周回路 8 8を介して特定 周波数のパルス信号を各センサ 8 5, 8 6 , 8 9, 9 0に出力している。
相対回転角コイル 8 3 f には、 交流電流が流され、 第 2ロー夕の第 1絶縁磁 性材層 8 2 bと協働して磁気回路を形成している。 トルクセンサ 8 9は、 ロー 夕に発生する渦電流の大きさに応じて、 相対回転角コイル 8 3 f に接続された 分周回路 8 8から入力するパルス信号の位相シフト量を検出する。 つまり、 ト ルクセンサ 8 9は、 相対回転角コイル 8 3 f両端のパルス信号の位相ずれ量を 検出している。
信号処理増幅回路 9 1は、 検出された位相シフト量を対応する電圧値の信号 に処理し、 前記信号を AZDコンバータ 9 5を介して相対回転角度測定部 9 8 に出力する。
相対回転角度測定部 9 8は、 例えば図 3 4に示すように、 変換された信号の 電圧値 0 . 5 V〜4 . 5 Vに基づき、 2つの口一夕の相対回転角度を— 8 ° 〜 + 8 ° の範囲で測定できる。
回転角コイル 8 3 hには、 交流電流が流され、 第 2ロータの第 2絶縁磁性材 層 8 2 f と協働して磁気回路を形成している。 回転角センサ 9 0は、 ロー夕に 発生する渦電流の大きさに応じて、 回転角コイル 8 3 hに接続された分周回路 8 8から入力するパルス信号の位相シフト量を検出する。 つまり、 回転角セン サ 9 0は、 回転角コイル 8 3 h両端のパルス信号の位相ずれ量を検出しており、 回転時に第 2絶縁磁性材層 8 2 f の銅箔 8 2 gとコア 8 3 jの銅箔 8 3 kの円 周方向の重なり代が変化し、 これに伴うコイル 8 3 hとコア 8 3 j間の磁束の 変化により、 図 3 5 Aに示すように左右 1 8 0 ° 内の回転角度を検出している。 信号処理増幅回路 9 2は、 検出された位相シフト量を対応する電圧値の信号 に処理し、 前記信号を AZDコンバータ 9 6を介して回転角度測定部 9 9に出 力する。
変位センサ 8 5は、 スクリユー部材 8 5 aの回転に伴うスライダ 8 5 cの回 転軸方向の移動に基づいて、 スライダコア 8 5 eが上下動することにより、 コ ィル 8 5 f のインダク夕ンスの変化を検出している。 すなわち、 図 3 6に示す ように、 スライダコア 8 5 eの移動量を H、 コイルインダクタンスを とする と、 スクリュー部材 8 5 aの回転に伴って、 移動量 Hとコイルインダクタンス Lの関係は、 コイル 8 5 f 内ではほぼ線形な関係になり、 回転角度検出の一構 成部分になり得る。
なお、 図 3 5 Cに示した変位センサ 8 5の出力は、 図 2 9, 図 3 0に示した スライダ 8 5 cの中間位置を 0 ° とした場合の有限回転の回転角度 9 0 0 ° 〜 — 9 0 0 ° の検出に利用する場合の一例を示したものであり、 図 3 5 Cと図 3 6の出力は、 同一のものである。
信号処理増幅回路 9 3は、 検出されたコイルインダク夕ンスの変化量を対応 する電圧値の信号に処理して変換し、 前記信号を Aノ Dコンバータ 9 7を介し て回転角度測定部 9 9に出力する。
ピッチセンサ 8 6は、 第 2ロー夕 8 2の回転に基づくコイル 8 6 bのインダ クタンスの変化を検出する。 すなわち、 ピッチセンサ 8 6における第 2ロー夕 8 2の銅箔 8 6 aとスリット 8 6 eの相対位置関係 (重なっているかいないか の関係) によるコイル 8 6 cとコア 8 6 d間の磁束の変化により、 図 3 5 Bに 示すような " 1 " 又は " 0 " のデジタル信号を 1 8 0 ° 毎に出力している。 特 許 2 5 9 9 4 3 8号と同様に、 スリッ卜によりシャープな磁界が形成される。 信号処理増幅回路 9 4は、 検出された相対位置関係の変化量を対応する電圧 値のデジタル信号に処理し、 前記信号を回転角度測定部 9 9に出力する。 回転角度測定部 99は、 変位センサ 85、 ピッチセンサ 86及び回転角セン サ 90から入力する信号の組み合わせによって、 例えば主動シャフトと従動シ ャフトがトーシヨンジョイントを介して連結された自動車のステアリングシャ フトにおける回転角度を測定する。 すなわち、 本実施形態では、 上述したスラ イダ 85 cの中間位置 0° から変化する回転角センサ 90とピッチセンサ 86 の出力の関係によって、 — 180° 〜0° と 0° 〜 1 80° のいずれの範囲内 の変化か認識でき、 さらにその時の変位センサ 85の出力との関係によって実 際の回転角度が測定される。 図 35Dは、 変位センサ 85、 ピッチセンサ 86 及び回転角センサ 90からの信号の関係を、 有限の回転角度 900° 〜一 90 0° の範囲内で表した波形であり、 これによつて回転角度を測定する。
このように、 本実施形態の回転センサでは、 トルクセンサで検出されるパル ス信号の位相シフト量から主動シャフトと従動シャフトに作用する回転トルク を求めることができ、 また変位センサ、 ピッチセンサ及び回転角センサの出力 の関係から、 これらシャフトにおける回転角度を正確に測定することができる。 ところで、 実際に回転センサに各センサを取り付ける際に、 ピッチセンサ 8 6の信号の切り替え位置と、 回転角センサ 90の出力 (角度信号) が例えば 0° 、 1 80° 、 360 ° 、 …になる位置とをできるだけ一致させるが、 現実 には取り付け精度の差によって若干誤差が生じてしまう。 すなわち、 図 37の 回転角センサとピッチセンサの出力波形の関係に示すように、 例えばピッチセ ンサの "0" から "1" の切り替え位置と、 回転角センサの 1 80° の位置間 に、 εというずれがある場合、 1 80° までは、 正確に実際の回転角度を出力 できるが、 180° から 1 80° + εまでは、 1 80° ― (S— 180° ) と なる。 ここで、 Sは、 角度信号に基づいて求める回転角度 Sである。
つまり、 実際の角度信号は 1 80 ° を超えているのに 180° より小さい角 度信号が逆に出力され、 1 80° + εを過ぎると、 実際の角度信号が出力され て回転角度が 180° 近辺で検出できない角度が存在してしまって連続性が損 なわれるという問題点があつた。
この εが小さいほど取り付け精度が上がるが、 そのためにこのセンサの取り 付けを高精度にすると、 センサの製作コストが高くなつてしまう。
そこで、 本実施形態における信号処理増幅回路 92では、 回転角センサ 90 からの信号を取り込むと、 前記信号に基づいて求める回転角度 Sが、 例えば 1
79. 5° ≤S≤ 1 80. 5° の範囲かどうか判断し、 前記範囲内ならば求め る回転角度を 1 80° として、 対応する電圧値の信号を出力し、 また前記範囲 外ならばピッチセンサ 86からの信号を取り込み前記信号が "1" かどうか判 断し、 "1" ならば (360— S) の回転角度に対応する電圧値の信号を出力 し、 "1 " でなければ回転角度 Sに対応する電圧値の信号を出力するようにす る。 なお、 上記信号処理は、 回転角センサが出力する三角波形からなる角度信 号の上限点及び下限点として示される回転角度である一 720 ° 、 — 540° 、 — 360° 、 — 180° 、 0° 、 1 80° 、 360° 、 540° 、 720° 付 近において同様に行う。
これにより、 本実施形態では、 前記三角波形の上限点及び下限点の回転角度 近辺でのピッチセンサの信号の切り替え位置と、 回転角センサの信号の位置が 一致するようになり、 取り付け精度が向上し、 連続性のある回転角度検出が可 能となる。
なお、 本発明は前記実施形態に限定されるものではなく、 種々の変形実施形 態が可能である。 例えば、 前記実施形態の回転センサ 80においては、 口一夕 8 1, 82の相対回転角に基づいて回転トルクを検出すると共に、 口一夕 8 1,
82の固定ケース 83に対する回転角及び回転数を高精度に求めた。 しかし、 実用上の検出精度に問題がなければ、 図 38の回転センサの回転角度測定装置 の一例を示す回路図に示すように、 ピッチセンサ 86を省略してもよい。
この場合には、 図 39に示すように、 それほど高くない検出精度において、 予め回転角度に対応する変位センサ 85の出力信号を設定しておき、 この関係 によって簡易的に回転角度を検出することが可能となる。
また、 上記実用上の検出精度を問題にしないのであれば、 回転角センサを省 いて、 変位センサと少なくとも 1つピッチセンサの出力の組み合わせによって も回転角 (回転数) を検出することが可能である。
一方、 回転センサ 8 0は、 所望に応じて一方を所略し、 回転トルクあるいは 回転角のいずれか一方を検出する構成としてもよい。
次に、 ギアを用いてロー夕の回転数を求める回転センサに関する他の実施形 態を図 4 0乃至図 4 7を用いて以下に説明する。
ここで、 以下に説明する回転センサ 1 0 0は、 ピッチセンサ、 発振回路、 第 1信号処理手段を構成する信号処理増幅回路、 相対回転角の測定手段を構成す る相対回転角度測定部、 第 2信号処理手段を構成する信号処理増幅回路及び回 転角の測定手段を構成する回転角度測定部については、 回転センサ 8 0と同じ ものを用いている。 このため、 以下の説明では、 回転センサ 8 0で使用した図 3 4 , 3 7, 3 8を使用すると共に、 同一の構成要素には同一の符号を使用す ることで重複した説明を省略する。
回転センサ 1 0 0は、 図 4 0乃至図 4 2 A, 4 2 B並びに図 3 4に示すよう に、 第 1ロータ 1 0 2、 第 2ロータ 1 0 3、 固定ケース 1 0 4、 変位センサ 1 0 6、 発振手段を構成する発振回路 8 7、 本発明に係る第 1信号処理手段を構 成する信号処理増幅回路 9 1、 本発明に係る相対回転角の測定手段を構成する 相対回転角度測定部 9 8、 本発明に係る第 2信号処理手段を構成する信号処理 増幅回路 9 2〜9 4及び本発明に係る回転角の測定手段を構成する回転角度測 定部 9 9を備えている。 回転センサ 1 0 0は、 回転軸、 例えば、 主動シャフト と従動シャフトがトーションバーを介して連結された自動車のステアリングシ ャフトにおける回転角と回転トルクを検出する。
ここで、 第 1ロータ 1 0 2と第 2ロー夕 1 0 3は、 図 4 0に示す回転軸 A r tに対して一体に回転すると共に、 前記主動シャフトが前記従動シャフトに 対して相対回転するのに対応して所定角度内を相対回転する。 両口一夕 1 02, 1 03は、 例えば、 前記主動シャフトが前記従動シャフトに対して ±8度の範 囲内で相対回転するとき、 同じく ± 8度の範囲内で相対回転する。
また、 図 43は、 回転センサ 1 00を構成する主要な部材の位置関係を示す ため、 一部の構成部材を省略して描いてある。
第 1ロー夕 102は、 成型性に優れた電気絶縁性の合成樹脂から成形された 内筒 102 aと、 図 40及び図 41に示すように、 内筒 1 02 aに設けられた 複数、 本実施形態では 6枚の銅片 1 02 bとを有し、 内筒 1 02 aには前記主 動シャフトとの回り止めとなる係止片 1 02 cの上部が固定されている。
複数の銅片 1 02 bは、 第 1の導体層で、 内筒 1 02 aの周方向に沿って中 心角 30度の間隔で回転軸 Art方向に延出している。 銅片 1 0 2 bは、 導体 であれば、 例えば、 アルミニウム, 銀等の素材を使用することができ、 高周波 磁界を遮蔽するうえで、 第 1ロー夕 1 02と固定ケース 1 04との半径方向の ギャップに基づく磁気抵抗を考慮すると、 0. 1〜0. 5mm程度の厚さが望ま しい。 更に、 銅片 1 02 bは、 理論上、 中心角を小さくして配置間隔を小さく する程、 前記導体層としての数が多くなり、 誘導されるトータル渦電流の変化 量 (導体層の数に比例する) が大きくなつて、 相対回転角の検出感度が高くな るが、 測定できる相対回転角範囲が小さくなる。
第 2ロー夕 103は、 成型性に優れた電気絶縁性の合成樹脂から成形され、 図 40及び図 41に示すように、 内筒 103 a、 フランジ 1 03 d、 支持部 1 03 e及び係止片 1 03 hを有している。
内筒 1 03 aは、 第 1絶縁磁性材層 1 03 bの外周に銅箔 1 03 cが複数の 銅片 1 02 bと対応するピッチで設けられている。 銅箔 103 cは、 後述する 銅箔 103 gと共に第 2の導体層となる。 フランジ 1 03 dは、 内筒 1 03 a から水平方向へ延出し、 半径方向中間から立ち上がる支持部 1 03 eが筒状に 形成されると共に、 外周近傍の上面に周方向へ中心角 1 80度の範囲でピッチ センサ 86の銅箔 86 aが設けられている。 また、 フランジ 103 dは、 後述 する変位センサ 106の遊星歯車 162に形成した第 1ギア部 162 aと嚙合 し、 第 3のギア部となるギア部 103 jが下部に形成されている。 支持部 10 3 eは、 第 2絶縁磁性材層 103 f を支持する部分で、 第 2絶縁磁性材層 10 3 f の外周に周方向へ中心角 180度の範囲で銅箔 103 gが設けられている。 係止片 103 hは、 前記従動シャフトの回り止めで、 下部で内筒 103 aの下 部に取り付けられている。
ここで、 第 1絶縁磁性材層 103 b及び第 2絶縁磁性材層 103 f の素材は、 ナイロン, ポリプロピレン (PP) , ポリフエ二レンスルフイ ド (PPS) , A BS樹脂等の電気絶縁性を有する熱可塑性合成樹脂に、 N i—Zn Mn— Z n系等のフェライトからなる軟磁性材粉を 10〜70体積%混合したものを 使用する。
固定ケース 104は、 交流磁界の遮蔽性を有するアルミニウム, 銅, 鉄等の 金属によって形成される固定体で、 図 40及び図 41に示すように、 上フラン ジ 104 b、 第 1支持部 104 c及び第 2支持部 104 dを有している。
上フランジ 104 bは、 上部に回路基板 105が配置され、 下面の半径の異 なる同心円上の位置に第 1支持部 104 c及び第 2支持部 104 dが形成され、 外周近傍に開口 104 eが設けられている。 第 1支持部 1.04 cは、 図 40及 び図 41に示すように、 第 2口一夕 103の支持部 103 eよりも半径方向内 側に位置し、 内周には回転トルク検出用の励磁コイルである相対回転角コイル 104 f を保持したコア 104 gが設けられている。 第 2支持部 104 dは、 図示のように、 第 2ロータ 103の支持部 103 eよりも半径方向外側に位置 し、 内周には回転トルク検出用の励磁コイルである回転角コイル 104 hを保 持したコア 104 jが設けられ、 回転角コイル 104 h及びコア 104 jの銅 箔 103 gと対向する表面には、 周方向へ中心角 180度の範囲で銅箔 104 kが設けられている。 ここで、 相対回転角コイル 1 0 4 f及び回転角コイル 1 0 4 hは、 後述する 変位センサ 6の複数のコイル 1 6 4 a及びピッチセンサ 8 6のコイル 8 6 cと 共に、 固定ケース 1 0 4から外部へ延出させた電線 (図示せず) によって発振 回路 8 7及び分周回路 8 8と接続され、 発振回路 8 7及び分周回路 8 8から交 流電流が流されている。 本実施形態では、 各コイルが同じ発振回路 8 7及び分 周回路 8 8と接続され、 同じ信号周波数を使用しているが、 異なる信号周波数 を使用することも可能である。 即ち、 各コイルは、 それぞれ信号周波数の異な る発振回路 8 7及び分周回路 8 8と接続してもよい。 これにより、 回転センサ 1 0 0においては、 コア 1 0 4 gと第 1絶縁磁性材層 1 0 3 b並びにコア 1 0 4 j と第 2絶縁磁性材層 1 0 3 f との間に、 図 4 1に点線で示す磁気回路 C MGが形成される。
また、 固定ケース 1 0 4は、 図 4 0及び図 4 1に示すように、 上部と下部に それぞれ上カバ一 1 0 9 aと下カバー 1 0 9 bを有するカバー 1 0 9が取り付 けられる。
変位センサ 1 0 6は、 第 1及び第 2ロー夕 1 0 2, 1 0 3の回転に基づく後 述する銅箔層 1 6 3 dと複数のコイル 1 6 4 aとの間のコイルィンダク夕ンス の変化を検出するセンサで、 図 4 0, 図 4 1, 図 4 2 A及び図 4 2 Bに示すよ うに、 第 1ギア部材 1 6 1、 遊星歯車 1 6 2、 スライダ 1 6 3及びコイル部材 1 6 4を備えている。
第 1ギア部材 1 6 1は、 下カバー 1 0 9 bによって固定ケース 1 0 4に固定 される合成樹脂から成形されたリング状の部材で、 内周に第 3のギア部となる 内歯歯車 1 6 1 aが設けられている。
遊星歯車 1 6 2は、 第 2ロー夕 1 0 3の回転を減速してスライダ 1 6 3へ伝 達する第 2のギア部材で、 上下 2段にそれぞれ歯数の異なる第 1ギア部 1 6 2 aと第 2ギア部 1 6 2 bとが形成されている。 第 1ギア部 1 6 2 aは、 第 2口 一夕 1 0 3と第 1ギア部材 1 6 1にそれぞれ形成され、 第 3のギア部となるギ ァ部 103 j及び内歯歯車 161 aと嚙合する。
スライダ 163は、 絶縁磁性材層 103 b, 103 f と同一の磁性材から成 形されたリング状の本体 163 aに規制壁 163 bが周方向に所望の中心角の 範囲、 例えば、 中心角 300度の範囲に亘つて立設され、 第 2口一夕 103の 回転方向に移動する。 スライダ 163は、 本体 163 aに第 2ギア部 162 b と嚙合する第 4のギア部であるギア部 163 c力 規制壁 163 bに第 3の導 体層となる銅箔層 163 d力 それぞれ設けられている。 銅箔層 163 dは、 図 42 A及び図 43に示すように、 規制壁 163 bの周方向に沿ってコイル部 材 164と対応する範囲に、 後述する複数のコイル 164 aと対向配置して設 けられている。 第 3の導体層は、 非鉄金属からなる素材であれば、 アルミニゥ ムを用いてもよい。
スライダ 163は、 第 2ロー夕 103の回転が遊星歯車 162によって減速 して伝達され、 固定ケース 4に形成された図 43に示す係止壁 104 n, 10 4 pに規制壁 163 bが当接することよって左右方向への回転が所定角度内に 規制されている。 例えば、 本実施形態の回転センサ 100においては、 遊星歯 車 162による第 2ロー夕 103とスライダ 163との間の減速比を 1 : 30 に設定し、 第 2ロー夕 103が 1回転したとき、 スライダ 163力 12度回転 するように設計した。
コイル部材 164は、 図 40, 図 41, 図 42 A及び図 43に示すように、 固定ケース 104の外周内側に周方向に沿って設けられ、 発振回路 87と接続 される 4つのコイル 164 aが合成樹脂からなる保持部材 164 b内に直列に 接続されて設けられている。
ここで、 スライダ 163は、 規制壁 163 b及びコイル部材 164を展開し、 これを上方から見た図 44に示すように、 周方向に見たとき、 銅箔層 163 d の一方の端部 Eがコイル部材 164の中央に位置するときを左右方向の初期位 置 (左右方向への回転角が 0度) として回転センサ 100に組み付けられる。 このとき、 図 4 4に示す銅箔層 1 6 3 dとコイル部材 1 6 4の位置は、 図 4 3 に示す位置に対応している。
従って、 変位センサ 1 0 6においては、 第 2ロー夕 1 0 3の回転に伴ってス ライダ 1 6 3が移動し、 端部 Eが各コイル 1 6 4 aの間の保持部材 1 6 4 の 部分を通過するときには、 4つのコイル 1 6 4 aが直列に接続されているので、 4つのコイル 1 6 4 aを合わせた総インダク夕ンスが変化する。
ここで、 回路基板 1 0 5は、 図 4 0, 図 4 1には示していないが、 以下に詳 述する発振手段、 相対回転角コイル 1 0 4 fからの出力信号を処理する第 1信 号処理手段、 相対回転角の測定手段、 回転角コイル 1 0 4 h及び変位センサ 1 0 6からの出力信号を処理する第 2信号処理手段及び回転角の測定手段が配置 されると共に、 これらに関する電気回路が形成されている。
以上のように構成される回転センサ 1 0 0は、 例えば、 主動シャフトと従動 シャフトが] ^一シヨンバーを介して連結された自動車のステアリングシャフト における回転角、 回転数及び回転トルクを検出するときに、 以下のようにして 使用される。
即ち、 回転センサ 1 0 0は、 ステアリングシャフトの回転に伴って第 1ロー 夕 1 0 2が第 2口一夕 1 0 3と共に回転すると、 遊星歯車 1 6 2によって第 2 口一夕 1 0 3の回転が減速されてスライダ 1 6 3へ伝達される。 これにより、 スライダ 1 6 3は、 第 2口一夕 1 0 3が 1回転する毎に 1 2度回転しながら、 第 2口一夕 1 0 3の回転方向に移動してゆく。
このとき、 回転センサの図 3 4に示す回転角度測定装置において、 発振回路 8 7は、 分周回路 8 8を介して特定周波数のパルス信号を各センサ 1 0 6, 8 6, 8 9, 9 0に出力している。
相対回転角コイル 1 0 4 f には、 交流電流が流され、 第 2ロー夕の第 1絶縁 磁性材層 1 0 3 bと協働して磁気回路を形成している。 トルクセンサ 8 9は、 ロータに発生する渦電流の大きさに応じて、 コイルのインダク夕ンスが変化す る。 第 1信号処理手段は、 相対回転角コイル 1 0 4 ίに接続された分周回路 8 8から入力するパルス信号の位相シフト量を検出する。
信号処理増幅回路 9 1は、 コイル 1 0 4 f のインダクタンスの変化量を検出 し、 それを対応する電圧値の信号に処理し、 前記信号を AZDコンバータ 9 5 を介して相対回転角度測定部 9 8に出力する。
相対回転角度測定部 9 8は、 例えば図 3 4に示すように、 変換された信号の 電圧値 0 . 5 V〜4 . 5 Vに基づき、 2つのロー夕の相対回転角度を一 8 ° 〜 + 8 ° の範囲で測定できる。
回転角コイル 1 0 4 hには、 交流電流が流され、 第 2ロータ 1 0 3の第 2絶 縁磁性材層 1 0 3 ίと協働して磁気回路を形成している。 回転角センサ 9 0は、 信号処理増幅回路 9 2と共に、 ロー夕に発生する渦電流の大きさに応じて、 回 転角コイル 1 0 4 hに接続された分周回路 8 8から入力するパルス信号の位相 シフト量を検出する。 つまり、 回転角センサ 9 0は、 回転角コイル 1 0 4 h両 端のパルス信号の位相ずれ量を検出しており、 回転時に第 2絶縁磁性材層 1 0 3 f の銅箔 1 0 3 gとコア 1 0 4 jの銅箔 1 0 3 gの円周方向の重なり代が変 化し、 これに伴うコイル 1 0 4 hとコア 1 0 4 j間の磁束の変化により、 図 4 5 Aに示すように左右 1 8 0 ° 内の回転角度を検出している。
信号処理増幅回路 9 2は、 検出された位相シフト量を対応する電圧値の信号 に処理し、 前記信号を AZDコンバータ 9 6を介して回転角度測定部 9 9に出 力する。
変位センサ 1 0 6は、 第 2口一夕 1 0 3の回転に伴ってスライダ 1 6 3が移 動し、 端部 Eが各コイル 1 6 4 aの部分を通過するときに、 4つのコイル 1 6 4 aの総インダクタンスの変化を検出している。
すなわち、 スライダ 1 6 3の移動量を H、 コイルインダクタンスを Lとする と、 第 2ロータ 1 0 3の回転に伴って、 移動量 Hとコイルインダク夕ンスしの 関係は、 銅箔層 1 6 3 dの端部 Eがコイル 1 6 4 aの部分を通過するときには、 図 4 6に示すようにほぼ線形な関係になり、 回転角度検出の一構成部分になる。 そして、 端部 Eが各コイル 1 6 4 aの間の保持部材 1 6 4 bの部分を通過する ときには、 コイルインダク夕ンス Lが変化せずに一定となる。
このとき、 回転数 (n ) と 4つのコイル 1 6 4 aの総インダク夕ンスの変化 に伴うコイル部材 1 6 4からの出力電圧 (V) の変化は、 スライダ 1 6 3と銅 箔層 1 6 3 dとの位置関係から、 図 4 7に示すように変化する。 なお、 図 4 5 Cに示した変位センサ 1 0 6の出力は、 図 4 4に示したスライダ 1 6 3の銅箔 層 1 6 3 dの中間位置を 0 ° とした場合の有限回転の回転角度 9 0 0 ° 〜― 9 0 0。 の検出に利用する場合の一例を示したものである。
信号処理増幅回路 9 3は、 検出されたコイルインダク夕ンスの変化量を対応 する電圧値の信号に処理して変換し、 前記信号を AZDコンパ一夕 9 7を介し て回転角度測定部 9 9に出力する。
ピッチセンサ 8 6は、 第 2ロー夕 1 0 3の回転に基づくコイル 8 6 bのイン ダク夕ンスの変化を検出する。 すなわち、 ピッチセンサ 8 6における第 2口一 夕 1 0 3の銅箔 1 8 6 aとスリット 1 8 6 eの相対位置関係 (重なっているか いないかの関係) によるコイル 8 6 cとコア 8 6 d間の磁束の変化により、 図 4 5 Bに示すような " 1 " 又は " 0 " のデジタル信号を 1 8 0 ° 毎に出力して いる。
信号処理増幅回路 9 4は、 検出された相対位置関係の変化量を対応する電圧 値のデジタル信号に処理し、 前記信号を回転角度測定部 9 9に出力する。
回転角度測定部 9 9は、 変位センサ 1 0 6、 ピッチセンサ 8 6及び回転角セ ンサ 9 0から入力する信号の組み合わせによって、 例えば主動シャフトと従動 シャフトがトーションバーを介して連結された自動車のステアリングシャフト における回転角度を測定する。 すなわち、 本実施形態では、 上述したスライダ 1 6 3の中間位置 0 ° から変化する回転角センサ 9 0とピッチセンサ 8 6の出 力の関係によって、 — 1 8 0 ° 〜0 ° と 0 ° 〜1 8 0 ° のいずれの範囲内の変 化か認識でき、 さらにその時の変位センサ 106の出力との関係によって実際 の回転角度が測定される。 図 45Dは、 変位センサ 106、 ピッチセンサ 86 及び回転角センサ 90からの信号の関係を、 有限の回転角度 900 ° 〜一 90 0° の範囲内で表した波形であり、 これによつて回転角度を測定する。
このように、 本実施形態の回転センサでは、 トルクセンサで検出されるパル ス信号の位相シフト量から主動シャフトと従動シャフトに作用する回転トルク を求めることができ、 また変位センサ、 ピッチセンサ及び回転角センサの出力 の関係から、 これらシャフトにおける回転角度を正確に測定することができる。 ところで、 実際に回転センサに各センサを取り付ける際に、 ピッチセンサ 8 6の信号の切り替え位置と、 回転角センサ 90の出力 (角度信号) が例えば 0° 、 180° 、 360° 、 …になる位置とをできるだけ一致させるが、 現実 には取り付け精度の差によって若干誤差が生じてしまう。 すなわち、 図 37の 回転角センサとピッチセンサの出力波形の関係に示すように、 例えばピッチセ ンサの "0" から "1" の切り替え位置と、 回転角センサの 180° の位置間 に、 εというずれがある場合、 180 ° までは、 正確に実際の回転角度を出力 . できるが、 180° から 180° + εまでは、 180° — (S— 180° ) と なる。 ここで、 Sは、 角度信号に基づいて求める回転角度 Sである。
つまり、 実際の角度信号は 180° を超えているのに 180° より小さい角 度信号が逆に出力され、 180° + εを過ぎると、 実際の角度信号が出力され て回転角度が 180° 近辺で検出できない角度が存在してしまって連続性が損 なわれるという問題点があつた。
この εが小さいほど取り付け精度が上がるが、 そのためにこのセンサの取り 付けを高精度にすると、 センサの製作コス卜が高くなつてしまう。
そこで、 本実施形態における信号処理増幅回路 92では、 回転角センサ 90 からの信号を取り込むと、 前記信号に基づいて求める回転角度 Sが、 例えば 1 79. 5° ≤S≤180. 5° の範囲かどうか判断し、 前記範囲内ならば求め る回転角度を 1 80° として、 対応する電圧値の信号を出力し、 また前記範囲 外ならばピッチセンサ 86からの信号を取り込み前記信号が "1" かどうか判 断し、 "1" ならば (360— S) の回転角度に対応する電圧値の信号を出力 し、 "1" でなければ回転角度 Sに対応する電圧値の信号を出力するようにす る。 なお、 上記信号処理は、 回転角センサが出力するミ角波形からなる角度信 号の上限点及び下限点として示される回転角度である一 720 ° 、 一 540 ° 、 — 360° 、 — 1 80° 、 0° 、 1 80° 、 360° 、 540° 、 720° 付 近において同様に行う。
これにより、 本実施形態では、 前記三角波形の上限点及び下限点の回転角度 近辺でのピッチセンサの信号の切り替え位置と、 回転角センサの信号の位置が 一致するようになり、 取り付け精度が向上し、 連続性のある回転角度検出が可 能となる。
以上のように、 上記実施形態の回転センサにおいては、 回転によるコイルの インピーダンスの変動を検出するために、 位相シフト量を検出する場合に基づ いて説明した。 しかし、 本発明の回転センサは、 信号周波数や信号振幅の変動 を検出することで回転によるコイルのインピーダンスの変動を検出してもよい。 なお、 本発明は前記実施形態に限定されるものではなく、 種々の変形実施形 態が可能である。 例えば、 前記実施形態の回転センサ 1 00においては、 ロー 夕 102, 103の相対回転角に基づいて回転トルクを検出すると共に、 口一 夕 102, 103の固定ケース 1 04に対する回転角及び回転数を高精度に求 めたが、 実用上の検出精度に問題がなければ、 図 47の回転センサの回転角度 測定装置の一例を示す回路図に示すように、 ピッチセンサ 86を省略してもよ い。
この場合には、 図 38に示すように、 それほど高くない検出精度において、 予め回転角度 (回転数) に対応する変位センサ 6の出力信号を設定しておき、 この関係によって簡易的に回転数を検出することが可能となる。 また、 回転セ ンサ 100は、 所望に応じて一方を所略し、 回転トルクあるいは回転角のいず れか一方を検出する構成としてもよい。
また、 上記実用上の検出精度を問題にしないのであれば、 回転角センサを省 いて、 変位センサと少なくとも 1つピッチセンサの出力の組み合わせによって も回転角度 (回転数) を検出することが可能である。
一方、 回転センサ 100は、 所望に応じて一方を所略し、 回転トルクあるい は回転角のいずれか一方を検出する構成としてもよい。
ここで、 回転センサ 100は、 遊星歯車 162に代えて、 図 48乃至図 50 に示すように、 ケース 104の内部外周上部に固定コア 107を、 これと対向 する外周下部に間欠ギア 108を設けることで、 第 2ロー夕 103の回転数を 求めてもよい。
このとき、 固定コア 107は、 半円形の銅板 107 aと信号コイル 107 b を有し、 銅板 107 aは信号コイル 107 bの下側を覆っている。 また、 間欠 ギア 108は、 上面に円盤状のコア 108 aが設けられている。 コア 108 a は、 信号コイル 107 b側の上面に銅板 107 aと対向する半円形の銅板 10 8 bが取り付けられている。 間欠ギア 108は、 外周部に中心角が 45度間隔 で歯を軸に対して放射状に突出させて設けたギア部 108 cが形成されている。 ギア部 108 cは、 第 2ロー夕 103のフランジ 103 d外周部に設けられた 突起 103 kと嚙み合うように構成されている。
従って、 間欠ギア 108は、 第 2ロー夕 103が 1回転する毎に突起 103 kがギア部 108 cと嚙み合って 45度ずつ間欠的に回転する。 これに伴い、 第 2ロー夕 103が 1回転する毎に、 銅板 108 bが 45度ずつ回転し、 半円 形の銅板 107 a, 108 bの重なる部分が、 図 52 A〜図 52 Eに示すよう に、 45度ずつ変化する。 ここで、 図 52 A〜図 52 Eは、 第 2口一夕 103 の回転を基準として、 図 52Aが左方向へ 2回転 (N =— 2) 、 図 52Bが左 方向へ 1回転 (N=— 1) 、 図 52 Cが左右方向へ回転していない場合 (N = 0) 、 図 52Dが右方向へ 1回転 (N = + 1) 、 図 52 Eが右方向へ 2回転 (N = + 2) 、 をそれぞれ示している。
ここで、 信号コイル 107 bは、 図示していないが、 図 34に示す発振手段 および第 2信号処理手段と接続され、 前記発振手段から流れる一定周波数の交 流電流により固定コア 107とコア 108 aとによって構成される磁気回路に 交流磁界が形成される。 このため、 回転センサ 100は、 固定コア 107と間 欠ギア 108とに対向して設けられた半円形の銅板 107 aと銅板 108 と が交流磁界を横切ることによって、 渦電流が生ずる。
このため、 発生する渦電流の量は、 銅板 107 aと銅板 108 bとの重なる 面積が少ない程大きくなる。 この渦電流量の変動により、 回転センサ 100に おいては、 信号コイル 107 bのインピーダンスが変動する。 従って、 回転セ ンサ 100は、 間欠ギア 1 08のギア部 108 cと第 2口一夕 103の突起 1 03 kとが嚙み合って回転するときは、 コイル 107 bのインピーダンスは大 きく変動し、 ギア部 108 cと突起 103 kが嚙み合わず、 間欠ギア 108が 回転しないときは、 コイル 107 bのインピーダンスは変化しない。
このように、 回転センサ 100においては、 コイル 107 bのインピーダン スが第 2ロータ 103が 1回点する毎に間欠的に変動する。 これにより、 上記 第 2信号処理手段の出力レベルは、 コイル 107 bのインピーダンスの間欠変 動量によって変動する。 図 51は、 そのときの出力信号レベル (V) を左右方 向の回転角度に対して示したものである。
従って、 回転センサ 100は、 この出力信号レベル (V) をモニタすること で、 第 2ロー夕 103の回転数を正確に検出することができる。 産業上の利用可能性
以上説明したように、 本発明の第 1の見地(aspect)に係る回転センサは、 第 1のロータとこの周囲に配設された磁性材コアとで形成される磁気回路を、 第 2のロー夕の導体部が横切る面積が第 1のロー夕の固定されるシャフト位置と 第 2の口一夕の固定されるシャフト位置とで生じる相対的な回転角度差に応じ て変化することに基づき相対回転角度差の検出を行う。 このため、 回転センサ は、 第 1のロータと第 2のロー夕とのシャフト軸線方向の取り付け位置精度を 厳密に要求されることなく、 シャフトの相対回転角度検出を非接触で行うこと ができる。
又、 第 1のロー夕は、 絶縁体からなる磁性材で形成されているので、 第 1の ロー夕には渦電流が発生することがない。 その為、 回転センサは、 シャフトの 相対回転角度差と第 2のロー夕の導体部が非均一磁界の強さの異なる領域を横 切ることで発生する渦電流の大きさとが比例し、 検出出力のリニア特性が優れ る。 従って、 回転センサは、 第 1のロー夕と第 2のロー夕との半径方向のギヤ ップについても厳密に管理する必要がなく、 シャフトへの回転センサの組み付 け性が向上する。
第 2の見地(aspec t)に係る発明によれば、 小型で、 検出出力がリニアな特性 を有し、 検出感度の高い回転センサを提供することができる。
第 3の見地(aspec t)に係る発明によれば、 第 2のロータに発生する渦電流 の大きさに応じて、 発振手段からの発振信号の位相をシフトさせ、 位相シフト 量を検出して前記検出された位相シフ卜量に基づいて相対回転角度を測定する ので、 相対回転角度測定の分解能が小さく、 かつ応答性を向上させた回転セン ザの測定回路とすることができる。
第 4の見地(aspec t)に係る発明によれば、 左右いずれの回転方向であるかを 識別可能で、 1 8 0 ° を超える回転角であっても測定でき、 回転角及び Z又は 回転トルクの測定が可能な回転センサを提供することができる。

Claims

請 求 の 範 囲 . シャフトの軸線方向所定位置に固定される第 1のロー夕と、 前記第 1の ロータに隣接して前記シャフトに固定される第 2のロー夕と、 前記第 1の口 一夕の周囲に配設され、 前記第 1の口一夕と協働して磁気回路を形成する共 振コイルを有する磁性材コアとを備えた回転センサにおいて、
前記第 1のロー夕は、 絶縁体からなる磁性材で形成されると共に、 前記磁 性材コアとの間で非均一磁界を形成し、 前記第 2のロー夕は、 前記第 1の口 —夕の固定されるシャフト位置と前記第 2のロータの固定されるシャフト位 置との間で相対的な回転角度差が生じたときに、 この回転角度差に応じて前 記非均一磁界の強さの異なる領域を横切る導体部を備えたことを特徴とする 回転センサ。
2 . 絶縁磁性材から成形され、 回転する第 1のシャフトの軸線方向所定位置 に取り付けられる第 1の口一夕、
固定部材に固定され、 コア本体と、 交流電流が流され、 前記絶縁磁性材と 協働して磁気回路を形成する励磁コイルとを有する固定コア及び
前記第 1の口一夕に隣接し、 前記第 1のシャフトに対して相対回転する第
2のシャフトに取り付けられ、 前記第 1のロータと前記固定コアとの間に配 置される第 2のロー夕を備え、
前記第 1及び第 2のシャフトの相対回転角度を検出する回転センサにおい て、
前記第 1のロー夕は、 周方向に沿って所定間隔で導体層が設けられ、 前記 第 2の口一夕は、 前記導体層に対応する間隔で導体歯が形成されていること を特徴とする回転センサ。
3 . 前記絶縁磁性材及び前記コア本体が、 熱可塑性樹脂と軟磁性材とを混合 した絶縁性素材で形成されている、 請求項 2の回転センサ。
. 前記軟磁性材の含有量が 1 0体積%以上、 7 0体積%以下である、 請求 項 3の回転センサ。
. 絶縁磁性材から形成される第 1のロー夕、 コア本体と、 交流電流が流さ れ、 前記絶縁磁性材と協働して磁気回路を形成する励磁コイルとを有する固 定コア、 前記第 1のロー夕と前記固定コアとの間に配置される第 2のロータ を有し、 前記第 1及び第 2のロータの相対回転角度を測定する回転センサに おいて、
特定周波数の発振信号を発振する発振手段と、 前記第 2のロー夕に発生す る渦電流の大きさに応じて、 前記発振信号の位相をシフ卜する位相シフト手 段と、 前記シフトされた発振信号の位相シフト量を検出するシフト量検出手 段と、 前記検出された位相シフト量に基づいて相対回転角度を測定する測定 手段とを備えたことを特徴とする回転センサの測定回路。
. 周方向に沿って所定間隔で配列される複数の第 1の導体層を有する第 1 のロータ、
絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロータと一体に回転する と共に、 前記第 1のロータに対して所定の角度内を相対回転する第 2のロー 夕、
励磁コイルと、 絶縁磁性材から成形され、 前記励磁コイルを保持するコアと を有する固定体及び
前記励磁コイルと接続され、 特定周波数の発振信号を発振する発振手段を備 えた回転センサにおいて、
前記第 2のロータの回転に伴って該ロ一夕の回転軸方向に移動する可動磁心 と、 前記発振手段と接続され、 前記可動磁心と協働するコイルとを有し、 前 記可動磁心の回転軸方向の移動に基づくコイルィンダクタンスの変化を検出 する変位センサを設けたことを特徴とする回転センサ。
. 前記励磁コイルとして、 前記第 1及び第 2のロー夕の相対回転に伴う相 対回転角を検出する相対回転角コイルまたは前記第 1あるいは第 2のロー夕 の前記固定体に対する回転角を検出する回転角コイルの少なくとも一方を備 える、 請求項 6の回転センサ。
8 . 前記相対回転角コイルからの出力信号を処理する第 1の信号処理手段と 前記相対回転角の測定手段あるいは前記回転角コィル及び変位センサからの 出力信号を処理する第 2の信号処理手段と回転角の測定手段とを備える、 請 求項 7の回転センサ。
9 . 周方向に沿って所定間隔で配列される複数の第 1の導体層を有する第 1 のロータ、
絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロー夕と一体に回転す ると共に、 前記第 1の口一夕に対して所定の角度内を相対回転する第 2の口 一夕、
前記第 1及び第 2のロー夕の相対回転に伴う相対回転角を検出する相対回 転角コィル及び前記第 1あるいは第 2の口一夕の回転角を検出する回転角コ ィルと、 絶縁磁性材から成形され、 前記相対回転角コイルと回転角コイルと を保持するコアとを有する固定体及び
前記相対回転角コィル及び回転角コイルと接続され、 特定周波数の発振信 号を発振する発振手段を備えた回転センサにおいて、
前記第 2の口一夕の回転に伴って該ロータの回転軸方向に移動する可動磁 心と、 前記発振手段と接続され、 前記可動磁心と協働するコイルとを有し、 前記可動磁心の回転軸方向の移動に基づくコイルインダク夕ンスの変化を検 出する変位センサを設けたことを特徴とする回転センサ。
10. 前記相対回転角コィルからの出力信号を処理する第 1の信号処理手段 と前記相対回転角の測定手段並びに前記回転角コイル及び変位センサからの 出力信号を処理する第 2の信号処理手段と回転角の測定手段とを備える、 請 求項 9の回転センサ。
1 1 . 導体片及び絶縁層と、 前記発振手段と接続され、 前記導体片と協働す るコイルとを有し、 一方が前記固定体に、 他方が前記第 2のロータに、 それ ぞれ設けられ、 前記第 2の口一夕の回転に基づくコイルインダクタンスの変 化を検出するピッチセンサが設けられている、 請求項 6乃至 1 0いずれかの 回転センサ。
12. 前記第 2の信号処理手段は、 前記回転角コイルからの出力信号の上限 点及び下限点付近では、 前記上限点及び下限点時の出力信号と同じ信号を出 力するように信号処理する、 請求項 8又は 1 0に記載の回転センサ。
13. 周方向に沿って所定間隔で配列される複数の第 1の導体層を有する第 1 のロータ、
絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロー夕と一体に回転す ると共に、 前記第 1のロー夕に対して所定の角度内を相対回転する第 2の口 一夕、
励磁コイルと、 絶縁磁性材から成形され、 前記励磁コイルを保持するコア とを有する固定体及び
前記励磁コイルと接続され、 特定周波数の発振信号を発振する発振手段を 備えた回転センサにおいて、
前記固定体に固定される第 1のギア部材、 それぞれ歯数の異なる第 1及び 第 2のギア部を有し、 前記第 1のギア部が前記第 2のロータと第 1のギア部 材とに形成された第 3のギア部と嚙合する第 2のギア部材、 前記第 2のギア 部と嚙合する第 4のギア部と第 3の導体層とを有し、 前記第 2のロー夕の回 転が減速されて伝達され、 該ロータの回転方向に移動する磁性体からなるス ライダ及び前記固定体に設けられ、 前記発振手段と接続されるコイルを有す るコイル部材を備え、 前記第 1及び第 2のロー夕の回転に基づく前記第 3の 導体層とコイルとの間のコイルィンダクタンスの変化を検出する変位センサ を設けたことを特徴とする回転センサ。
14. 前記励磁コイルとして、 前記第 1及び第 2のロータの相対回転に伴う相 対回転角を検出する相対回転角コイルあるいは前記第 1及び第 2のロータの 前記固定体に対する回転角を検出する回転角コイルの少なくとも一方を備え る、 請求項 1 3の回転センサ。
15. 前記相対回転角コイルからの出力信号を処理する第 1の信号処理手段と 前記相対回転角の測定手段あるいは前記回転角コィル及び変位センサからの 出力信号を処理する第 2の信号処理手段と回転角の測定手段とを備える、 請 求項 1 4の回転センサ。
16. 周方向に沿って所定間隔で配列される複数の第 1の導体層を有する第 1 のロー夕、
絶縁磁性材層と第 2の導体層とを有し、 前記第 1のロー夕と一体に回転す ると共に、 前記第 1のロー夕に対して所定の角度内を相対回転する第 2の口 一夕、
前記第 1及び第 2のロータの相対回転に伴う相対回転角を検出する相対回 転角コィル及び前記第 1及び第 2のロータの回転角を検出する回転角コイル と、 絶縁磁性材から成形され、 前記相対回転角コイルと回転角コイルとを保 持するコアとを有する固定体及び
前記相対回転角コィル及び回転角コイルと接続され、 特定周波数の発振信 号を発振する発振手段を備えた回転センサにおいて、
前記固定体に取り付けられる第 1のギア部材、 それぞれ歯数の異なる第 1 及び第 2のギア部を有し、 前記第 1のギア部が前記第 2のロー夕と第 1のギ ァ部材とに形成された第 3のギア部と嚙合する第 2のギア部材、 絶縁磁性材 から成形され、 前記第 2のギア部と嚙合する第 4のギア部と第 3の導体層と を有し、 前記第 2のロー夕の回転が減速されて伝達され、 該ロ一夕の回転方 向に移動する磁性体からなるスライダ及び前記固定体に設けられ、 前記発振 手段と接続されるコイルを備え、 前記第 1及び第 2のロー夕の回転に基づく 前記第 3の導体層とコイルとの間のコイルインダク夕ンスの変化を検出する 変位センサを設けたことを特徴とする回転センサ。
17. 前記相対回転角コィルからの出力信号を処理する第 1の信号処理手段と 前記相対回転角の測定手段並びに前記回転角コィル及び変位センサからの出 力信号を処理する第 2の信号処理手段と回転角の測定手段とを備える、 請求 項 1 6の回転センサ。
18. 導体片と、 前記発振手段と接続され、 前記導体片と協働するコイルとを 有し、 一方が前記固定体に、 他方が前記第 2のロータに、 それぞれ設けられ、 前記第 2の口一夕の回転に基づくコイルインダク夕ンスの変化を検出するピ ツチセンサが設けられている、 請求項 1 3乃至 1 7いずれかの回転センサ。
19. 前記第 2の信号処理手段は、 前記回転角コイルからの出力信号の上限点 及び下限点付近では、 前記上限点及び下限点時の出力信号と同じ信号を出力 するように信号処理する、 請求項 1 5又は 1 7の回転センサ。
PCT/JP2000/004061 1999-06-21 2000-06-21 Détecteur rotatif et circuit de mesure de celui-ci WO2000079231A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP00940783A EP1113253A4 (en) 1999-06-21 2000-06-21 ROTARY SENSOR AND ASSOCIATED MEASUREMENT
US09/790,304 US6481296B2 (en) 1999-06-21 2001-02-21 Sensor for detecting relative rotation between shafts
US10/225,400 US6672175B2 (en) 1999-06-21 2002-08-20 Apparatus and method for sensing an angle of relative rotation of rotors
US10/225,401 US20030051563A1 (en) 1999-06-21 2002-08-20 Relative rotation sensor and related methods

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP11/173792 1999-06-21
JP17379299A JP4252676B2 (ja) 1999-06-21 1999-06-21 相対回転角度検出装置
JP11/281706 1999-10-01
JP28170699A JP4382927B2 (ja) 1999-10-01 1999-10-01 相対回転角度検出装置
JP11/289633 1999-10-12
JP28963399A JP4382929B2 (ja) 1999-10-12 1999-10-12 相対回転角度検出装置の測定回路
JP2000172066A JP4429483B2 (ja) 2000-06-08 2000-06-08 回転センサ
JP2000/172066 2000-06-08
JP2000182166A JP4429484B2 (ja) 2000-06-16 2000-06-16 回転センサ
JP2000/182166 2000-06-16

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US09/790,304 Continuation-In-Part US6481296B2 (en) 1999-06-21 2001-02-21 Sensor for detecting relative rotation between shafts
US09/790,304 Continuation US6481296B2 (en) 1999-06-21 2001-02-21 Sensor for detecting relative rotation between shafts
US10/225,400 Continuation US6672175B2 (en) 1999-06-21 2002-08-20 Apparatus and method for sensing an angle of relative rotation of rotors
US10/225,401 Continuation US20030051563A1 (en) 1999-06-21 2002-08-20 Relative rotation sensor and related methods

Publications (1)

Publication Number Publication Date
WO2000079231A1 true WO2000079231A1 (fr) 2000-12-28

Family

ID=27528589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004061 WO2000079231A1 (fr) 1999-06-21 2000-06-21 Détecteur rotatif et circuit de mesure de celui-ci

Country Status (4)

Country Link
US (3) US6481296B2 (ja)
EP (1) EP1113253A4 (ja)
KR (1) KR100702919B1 (ja)
WO (1) WO2000079231A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9924046D0 (en) 1999-10-11 1999-12-15 Fast Technology Gmbh Torque measurement apparatus
CA2373426C (en) * 2000-03-09 2010-09-21 The Furukawa Electric Co., Ltd Rotation sensor
EP1217334A3 (en) * 2000-12-21 2004-06-23 The Furukawa Electric Co., Ltd. Rotation sensor
KR100797337B1 (ko) * 2001-11-12 2008-01-22 주식회사 포스코 회전체 변형 간이 측정장치
DE10156782C1 (de) * 2001-11-19 2003-04-17 Siemens Ag Gebersystem für einen Ferraris-Bewegungsgeber
US7053602B2 (en) * 2002-03-25 2006-05-30 The Furukawa Electric Co., Limited Rotation sensor and method for detecting a rotation angle of a rotating member
DE10219091A1 (de) * 2002-04-29 2003-11-20 Siemens Ag Drehbewegungsdetektor
JP2004020370A (ja) * 2002-06-17 2004-01-22 Matsushita Electric Ind Co Ltd トルク検出装置
US6925893B2 (en) * 2002-09-17 2005-08-09 The Furukawa Electric Co., Ltd. Rotation sensor
US6851325B2 (en) * 2002-12-16 2005-02-08 Delphi Technologies, Inc. DSP based algorithm for non-contacting torque sensor
JP3826106B2 (ja) * 2003-03-31 2006-09-27 Tdk株式会社 計重センサ
US7210360B2 (en) * 2003-06-16 2007-05-01 Delphi Technologies, Inc. Apparatus for sensing position and/or torque
US7576509B2 (en) * 2003-09-10 2009-08-18 Ricoh Company, Limited Drive control method, drive control device, belt apparatus, image forming apparatus, image reading apparatus, computer product
US7028454B2 (en) * 2004-03-30 2006-04-18 Cnh America Llc Drum clutch slippage system
FR2872896B1 (fr) * 2004-07-09 2008-01-11 Moving Magnet Tech Capteur de position, notamment destine a la mesure de la torsion d'une colonne de direction
JP5039316B2 (ja) * 2006-03-29 2012-10-03 本田技研工業株式会社 磁歪式トルクセンサと、この磁歪式トルクセンサを用いた電動パワーステアリング装置
EP2105712B1 (en) * 2006-12-28 2016-04-27 Mitsubishi Electric Corporation Magnetic position sensor
DE102008008835B4 (de) * 2008-02-13 2010-04-22 Zf Friedrichshafen Ag Vorrichtung zum Ermitteln eines Drehmoments
DE102008059005A1 (de) * 2008-11-25 2010-05-27 Schaeffler Kg Verstellvorrichtung zur Verstellung einer relativen Drehwinkellage zweier Wellen und Verfahren zum Betrieb eines Aktuators, insbesondere einer solchen Verstellvorrichtung
KR200452870Y1 (ko) 2009-04-02 2011-03-29 한국서부발전 주식회사 토그 컨버터 가이드 벤용 위치 신호 처리 장치
TWI399517B (zh) * 2009-12-16 2013-06-21 全角轉動感測裝置及其方法
KR101633127B1 (ko) * 2010-03-30 2016-06-24 엘지이노텍 주식회사 토크 측정장치
JP2011207361A (ja) * 2010-03-30 2011-10-20 Honda Motor Co Ltd アシストユニットにおける磁極センサ構造
US20120234107A1 (en) * 2010-08-26 2012-09-20 Halliburton Energy Services, Inc. Non-contact torque measurement apparatus and methd
DE102012100682A1 (de) * 2011-05-24 2012-11-29 Rolf Strothmann Drehmomentsensor
CN102927898B (zh) * 2011-08-11 2015-03-11 镇江亿海软件有限公司 工程船水平角度测量传感器
DE102014220454A1 (de) * 2014-10-09 2016-04-14 Robert Bosch Gmbh Sensoranordnung zur berührungslosen Erfassung von Drehwinkeln an einem rotierenden Bauteil
JP6450611B2 (ja) * 2015-03-10 2019-01-09 株式会社ショーワ ストロークセンサシステム
CN105043618B (zh) * 2015-08-11 2017-08-08 电子科技大学 一种电容转矩传感器
CN105466332A (zh) * 2015-11-13 2016-04-06 珠海格力节能环保制冷技术研究中心有限公司 角度传感器及角度测量方法
CA3042386A1 (en) 2016-11-02 2018-05-11 Clark Equipment Company System and method for defining a zone of operation for a lift arm
CN106695452B (zh) * 2016-11-23 2018-11-13 重庆怡之驰机械有限公司 齿轮旋转定位工装
US10627208B2 (en) * 2017-05-05 2020-04-21 General Electric Company Low resistance surface contact topography mapping
WO2018222210A1 (en) 2017-06-02 2018-12-06 Halliburton Energy Services, Inc. Rotation monitoring with magnetic film
DE102018107416A1 (de) * 2018-03-28 2019-10-02 HELLA GmbH & Co. KGaA Vorrichtung zur Bestimmung eines Drehwinkels und/oder eines Drehmoments
JP2019207204A (ja) 2018-05-30 2019-12-05 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置
JP7080152B2 (ja) * 2018-10-11 2022-06-03 東京エレクトロン株式会社 回転角度検出装置及び回転角度検出方法、並びにこれらを用いた基板処理装置及び基板処理方法
US10996085B2 (en) * 2019-01-09 2021-05-04 Infineon Technologies Ag Sensor alignment using homogeneous test mode
USD949030S1 (en) * 2020-02-24 2022-04-19 Martin Engineering Company Sensor device that measures shaft rotation
US11619670B2 (en) 2020-04-01 2023-04-04 Caterpillar Inc. System and method for detecting winding faults in a generator
CN115313749B (zh) * 2022-10-11 2023-03-14 沈阳微控新能源技术有限公司 飞轮储能装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390549A (en) * 1990-02-15 1995-02-21 Robert Bosch Gmbh Measuring device for determination of rotation angle or torque of a stationary or rotating shaft
US5578767A (en) * 1995-03-06 1996-11-26 Nsk Ltd. Torque sensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951148C2 (de) * 1979-12-19 1984-04-19 Robert Bosch Gmbh, 7000 Stuttgart Meßeinrichtung für einen Drehwinkel und/oder ein Drehoment
GB8626270D0 (en) * 1986-11-04 1986-12-03 Renishaw Plc Displacement transducers
JPS6457136A (en) * 1987-05-12 1989-03-03 Nippon Denso Co Torque detecting apparatus
DE3729230A1 (de) * 1987-09-02 1989-03-16 Bosch Gmbh Robert Messeinrichtung fuer einen drehwinkel und/oder ein drehmoment
DE69004131T2 (de) * 1989-01-17 1994-03-24 Alsthom Gec Vorrichtung zur Ermittlung der Lage einer mit einem elektrisch diskontinuierlich leitenden Band umgebenen rotierenden Stahlwelle sowie Verfahren zur Herstellung des Bandes.
GB9123633D0 (en) * 1991-11-07 1992-01-02 Radiodetection Ltd Devices comprising angular displacement sensors
DE4206382A1 (de) * 1992-02-29 1993-09-02 Bosch Gmbh Robert Messeinrichtung zur beruehrungsfreien erfassung eines drehwinkels und/oder eines drehmoments
US5390546A (en) 1993-07-01 1995-02-21 Wlodarczyk; Marek T. Fiber optic diaphragm sensors for engine knock and misfire detection
GB9313943D0 (en) * 1993-07-06 1993-08-18 British Nuclear Fuels Plc Rotors
US5426986A (en) * 1993-07-15 1995-06-27 Northern Research & Engineering Corporation Absorption dynamometer torque measuring device and calibration method
JPH07139905A (ja) 1993-09-24 1995-06-02 Zexel Corp 回転角度センサ
US6102980A (en) * 1997-03-31 2000-08-15 Tdk Corporation Dust core, ferromagnetic powder composition therefor, and method of making
US5982073A (en) * 1997-12-16 1999-11-09 Materials Innovation, Inc. Low core loss, well-bonded soft magnetic parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390549A (en) * 1990-02-15 1995-02-21 Robert Bosch Gmbh Measuring device for determination of rotation angle or torque of a stationary or rotating shaft
US5578767A (en) * 1995-03-06 1996-11-26 Nsk Ltd. Torque sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1113253A4 *

Also Published As

Publication number Publication date
EP1113253A4 (en) 2006-11-02
US20030051563A1 (en) 2003-03-20
US20030051562A1 (en) 2003-03-20
US6672175B2 (en) 2004-01-06
KR20010085398A (ko) 2001-09-07
US6481296B2 (en) 2002-11-19
US20010004849A1 (en) 2001-06-28
KR100702919B1 (ko) 2007-04-03
EP1113253A1 (en) 2001-07-04

Similar Documents

Publication Publication Date Title
WO2000079231A1 (fr) Détecteur rotatif et circuit de mesure de celui-ci
JP4172911B2 (ja) 位置センサ
US8890514B2 (en) Magnetic multi-periodic absolute position sensor
JP2003114103A (ja) 回転角検出装置、トルク検出装置及び舵取装置
JP4629946B2 (ja) 回転センサ
EP3982089B1 (en) Magnetic sensor system for motor control
JP2018179644A (ja) 電動パワーステアリング装置用の回転角度検出器、トルクアングルセンサ、トルクセンサ及びモータ駆動制御装置、電動パワーステアリング装置並びに車両
WO2008056793A1 (fr) Appareil de détermination de l'angle de rotation
WO1992021003A1 (en) Magnetoresistance type revolution detector
JP4429484B2 (ja) 回転センサ
JP4252676B2 (ja) 相対回転角度検出装置
US7331247B2 (en) Relative rotational position detection apparatus having magnetic coupling boundary sections that form varying magnetic couplings
JP3869321B2 (ja) 回転センサ
JP3884274B2 (ja) 回転センサ
JP4382927B2 (ja) 相対回転角度検出装置
JP2004061386A (ja) 角度センサ,角度・トルクセンサ及び電動パワーステアリング
JP4219597B2 (ja) 回転センサ
JP3186656B2 (ja) 回転数センサ
JP4532417B2 (ja) 回転センサ
JP4211278B2 (ja) エンコーダ
JP4429483B2 (ja) 回転センサ
JP4382929B2 (ja) 相対回転角度検出装置の測定回路
JP2007187588A (ja) 回転センサ
WO2008050843A1 (fr) Dispositif de détection d'angle de rotation
JPS6390733A (ja) トルク検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1020017001982

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09790304

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000940783

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000940783

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017001982

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020017001982

Country of ref document: KR