WO2000068973A2 - Anlage zur bearbeitung von wafern - Google Patents

Anlage zur bearbeitung von wafern Download PDF

Info

Publication number
WO2000068973A2
WO2000068973A2 PCT/DE2000/001451 DE0001451W WO0068973A2 WO 2000068973 A2 WO2000068973 A2 WO 2000068973A2 DE 0001451 W DE0001451 W DE 0001451W WO 0068973 A2 WO0068973 A2 WO 0068973A2
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
wafers
units
measuring units
plant according
Prior art date
Application number
PCT/DE2000/001451
Other languages
English (en)
French (fr)
Other versions
WO2000068973A3 (de
Inventor
Michael Goetzke
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to EP00940170A priority Critical patent/EP1177573A2/de
Publication of WO2000068973A2 publication Critical patent/WO2000068973A2/de
Publication of WO2000068973A3 publication Critical patent/WO2000068973A3/de
Priority to US10/015,150 priority patent/US6809510B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67727Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using a general scheme of a conveying path within a factory

Definitions

  • the invention relates to a system for processing wafers according to the preamble of claim 1.
  • Such systems comprise a large number of manufacturing units with which different manufacturing steps for processing the wafers are carried out. These manufacturing steps involve various processing steps in etching processes, wet chemical processes, diffusion processes and various cleaning processes such as CMP processes (Chemical Mechanical Polishing).
  • One or more manufacturing units are provided for each of the corresponding manufacturing steps.
  • measuring units are provided in which the quality of the processing of the wafers can be checked.
  • the entire manufacturing process is subject to strict cleanliness requirements, so that the manufacturing units and measuring units are arranged in a clean room or in a system of clean rooms.
  • the wafers are fed into the individual production units and measuring units in cassettes in predetermined lot sizes via a transport system.
  • the removal after processing the wafers in the production and measuring units is also carried out via the transport system, the wafers in turn being stored in the cassettes.
  • the transport system has a conveyor system which is designed, for example, in the form of roller conveyors.
  • a predetermined number of cassettes are fed via the transport system to a manufacturing unit or a measuring unit for processing.
  • the manufacturing unit or measuring unit each has a loading and unloading station, via which a cassette with wafers can be inserted in each case. After all the wafers of a cassette have been processed in the production unit or measuring unit, the cassette with the wafers is re-dispensed via the loading and unloading station and transported away via the conveyor system.
  • Measuring units are provided in the area of manufacturing and measuring units, storage systems such as stockers, which are part of the transport system. Cassettes with wafers can be temporarily stored in a stocker under clean room conditions and, if necessary, fed to the individual production and measuring units.
  • the conveyor system consists of line-guided systems such as roller conveyors, which can only be branched to a certain extent.
  • the manufacturing units and measuring units are usually not arranged according to their functionality. This leads to a certain inefficiency in the transport of the individual wafers.
  • a further disadvantage is that in a manufacturing or measuring unit until the processing of all wafers a cartridge must be awaited before the entire lot will be passed in the cassette on the loading and unloading of the transport system ⁇ for transport. If, for example, the wafers of a cassette are loaded in a production unit works and then checks the processing quality in a measuring unit, the processing of all wafers of a cassette must first be awaited before the checking can then take place in the measuring unit. Only then can further measures be taken depending on the measurement results. The throughput times of the cassettes with the wafers through the system is therefore undesirably high.
  • a processing system for processing wafers is known from US Pat. No. 5,803,932.
  • This processing system includes a loading / unloading section, a processing section and an interface section.
  • a transport device and at least two waiting sections are provided.
  • the transport device is located between the loading / unloading section and the interface section.
  • a plurality of process units forming the processing section are arranged on both sides of the transport device.
  • the wafers are transported on the transport device either in the direction of the loading / unloading section or in the direction of the interface section.
  • the wafers are first transported in the first cassettes via an Interbay conveyor system and then reach an interface equipment.
  • the wafers are removed from the first cassettes and transferred to second cassettes in a predetermined arrangement.
  • the second cassettes are successively fed to different processing units via an intrabay conveyor system leads in which different processing of the wafer takes place.
  • DE 195 14 037 AI relates to a transport device for the transport of substrates.
  • the transport device is designed as a turntable which is driven at a constant clock frequency.
  • the substrate can be fed to a process station provided outside the turntable by means of a rotatably mounted substrate gripper.
  • JP 08268512 A relates to a storage unit for storing substrates.
  • the storage unit comprises a sorting unit, by means of which the substrates are sorted automatically and stored or removed in cassettes in the storage unit.
  • the invention has for its object to keep the throughput time of the wafer during processing as short as possible for a system of the type mentioned.
  • the system for processing wafers has one or more production cells in which a number of production and / or measurement units are combined.
  • Each production cell has a loading and unloading station for the delivery and delivery of cassettes with wafers.
  • the wafers can be individually fed in parallel to the manufacturing units and / or measuring units within the manufacturing cell.
  • the main advantage of such a manufacturing cell is that the wafers of a cassette no longer have to be processed serially in the individual manufacturing units and measuring units. Rather, the wafers can be fed individually to the manufacturing and measuring units as required, so that parallel processing of the wafers is made possible within a manufacturing cell. It is particularly advantageous that after processing a wafer, it can be fed immediately to the assigned measuring unit for checking the processing quality.
  • the manufacturing cell advantageously also has a suitable manufacturing unit, in which the wafer can optionally be reworked in the measuring unit immediately after checking.
  • the individual wafers can be fed to the manufacturing and measuring units within a manufacturing cell without intermediate storage. On the one hand, this leads to a further reduction in the throughput times of the wafers through the system. On the other hand, the saving of storage systems leads to considerable cost savings.
  • Figure 1 Schematic representation of a system for processing wafers with several manufacturing cells.
  • Figure 2 Schematic representation of a manufacturing cell according to Figure 1
  • Figure 3 Schematic representation of two linked manufacturing cells.
  • Figure 1 shows an embodiment of a system for processing wafers.
  • the system comprises a large number of production units 1, 1 'for carrying out the production steps required for processing the wafers. These manufacturing steps include machining processes in etching processes, wet chemical processes, diffusion processes and cleaning processes. One or more production units 1, 1 'can be provided for each of these processing operations.
  • the system comprises a large number of measuring units 2, 2 ', in which the results of the individual production steps are checked.
  • the manufacturing units 1, 1 'and measuring units 2, 2' are arranged in a clean room 3. Alternatively, the system can be distributed over a system of clean rooms 3.
  • a small number of production units 1 'and measuring units 2' are arranged in an isolated manner in the clean room 3.
  • the majority of manufacturing 1 and measuring units 2 are arranged in manufacturing cells 4.
  • all manufacturing 1 and measuring units 2 are integrated in manufacturing cells 4, so that no isolated manufacturing 1 'and measuring units 2' remain in the clean room 3.
  • the isolated manufacturing units 1 'and measuring units 2' and the individual manufacturing cells 4 are connected to one another via a transport system.
  • the transport system has a conveyor system 5 and a storage system.
  • the conveyor system 5 can be formed, for example, by a system of roller conveyors.
  • Stocker 6 are preferably used as storage systems.
  • Wafers arranged in cassettes are transported via the conveyor system 5 in predetermined batch sizes.
  • the insulated manufacturing units 1 'and measuring units 2' and the manufacturing cells 4 each have a loading and unloading station 7 for the supply and removal of the cassettes.
  • the storage systems are provided at suitable locations, in which the cassettes are temporarily stored.
  • the storage systems also have a loading and unloading station 7 for loading and unloading with cassettes.
  • a cassette with wafers is fed to the isolated production units 1 'and measuring units 2' via the loading and unloading station 7. After the same manufacturing step has been carried out for all wafers in manufacturing unit 1 'or after the same measuring process has been carried out for all wafers of this cassette in measuring unit 2', the corresponding cassette with the wafers is fed back to the transport system via loading and unloading station 7 .
  • cassettes with wafers in predetermined lot sizes are fed to the manufacturing cells 4.
  • An exemplary embodiment of the manufacturing cell 4 according to the invention is shown in detail in FIG.
  • the manufacturing cell 4 comprises a predetermined number of manufacturing and measuring units 2 that are functionally assigned to one another.
  • the manufacturing cell 4 can be spatially separated from the other units of the system by wall elements 8.
  • the loading and unloading station 7 is arranged on one of these wall elements 8, via which cassettes with wafers are received by the transport system or cassettes with wafers are delivered to the transport system.
  • the loading and unloading station 7 has a plurality of ports 9 for the supply and a plurality of ports 10 for the removal of the cassettes.
  • the supply and removal of cassettes can be done manually or by means of handling devices, not shown.
  • the individual manufacturing and measuring units 2 are not supplied with complete cassettes with wafers but with individual wafers within a manufacturing cell 4.
  • the individual wafers can be identified on the basis of markings so that tracking of the wafers is ensured within the production cell 4 during the processing operations.
  • marks are applied to the wafers that can be identified with detection systems. These marks are preferably affixed to the outer edge regions of the wafers, which after processing are separated as a waste from the usable area inside the wafers.
  • the brands can be barcodes which are identified by means of barcode readers.
  • the loading and unloading station 7 and the manufacturing 1 and measuring units 2 of a manufacturing cell 4 are connected to one another via a sub-transport system.
  • the wafers stored in a cassette and fed via the loading and unloading station 7 are separated on the sub-transport system.
  • the separated wafers are preferably fed to different manufacturing and measuring units 2 of the manufacturing cell 4 in parallel. According to the order of processing the individual wafers successively supplied to different manufacturing and measuring units 2. After the wafers have gone through all the processing processes in the production cell 4, they are stored again in cassettes and output to the transport system via the loading and unloading station 7.
  • the sub-transport system shown in Figure 2 consists essentially of a conveyor system 11 which has branches to the individual manufacturing 1 and measuring units 2.
  • Handling devices 12 which feed the individual wafers to the production units 1, are provided on these branches. In principle, such handling devices 12 can also be provided for the supply to the measuring units 2.
  • the wafers are separated immediately after receipt of a cassette at the loading and unloading station 7.
  • the separation can be carried out by the operating personnel or automatically by means of handling devices (not shown).
  • the wafers are fed individually into specific branches of the conveyor system 11, as a result of which the wafers are fed to the corresponding manufacturing unit 1 or measuring unit 2.
  • manufacturing 1 and measuring units 2 are combined for a lithography process.
  • three different manufacturing units 1 are preferably provided.
  • a manufacturing unit 1 is used to apply photoresist to the wafers.
  • Another manufacturing unit 1 is used to expose photoresist on the wafers.
  • the third manufacturing unit 1 is used to develop photoresist on the wafers.
  • the three different manufacturing units 1 are each operated by a handling device 12. According to the capacity requirement for the manufacturing unit 1, three such arrangements are provided in the manufacturing cell 4.
  • the measuring units 2 for checking the manufacturing steps carried out in the aforementioned manufacturing units 1 can be formed, for example, by control systems which check whether the multilayer structures which have wafers inside are correctly arranged one above the other.
  • Optical control devices for detecting faults on the wafers can be provided as further measuring units 2.
  • the second manufacturing cell 4' has a Arranged unloading station with ports 10 for the removal of the wafers.
  • the transfer station 13 can be formed by a gripper or the like, which converts wafers from the roller conveyor 11 of one manufacturing cell 4 to the roller conveyor 11 of the other manufacturing cell 4.
  • the production capacity of the manufacturing process in question can be increased in a simple manner.
  • the entire system can thus be flexibly adapted to the respectively required production capacities by means of a suitable linking of production cells 4, 4 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • General Factory Administration (AREA)

Abstract

Die Erfindung betrifft eine Anlage zur Bearbeitung von Wafern in wenigstens einem Reinraum (3) mit einer Anordnung von Fertigungseinheiten (1) und Meßeinheiten (2), welche über ein Transportsystem zum Transport von Kassetten mit Wafern verbunden sind. Mehrere funktionell zugeordnete Fertigungs (1) und/oder Meßeinheiten (2) sind zu einer Fertigungszelle (4) zusammengefaßt, welche eine Be- und Entladestation (7) zur An- und Ablieferung von Kassetten mit Wafern aufweist. Innerhalb der Fertigungszelle (4) sind den Fertigungs- (1) und/oder Meßeinheiten (2) einzelne Wafer zur Bearbeitung zuführbar.

Description

Beschreibung
Anlage zur Bearbeitung von Wafern
Die Erfindung betrifft eine Anlage zur Bearbeitung von Wafern gemäß dem Oberbegriff des Anspruchs 1.
Derartige Anlagen umfassen eine Vielzahl von Fertigungsein- heiten, mit welchen unterschiedliche Fertigungsschritte zur Bearbeitung der Wafer durchgeführt werden. Bei diesen Fertigungsschritten handelt es sich um verschiedene Bearbeitungs- schritte bei Ätzprozessen, Naßchemieverfahren, Diffusionsprozessen, sowie diversen Reinigungsverfahren wie zum Beispiel CMP-Verfahren (Chemical Mechanical Polishing) . Für jeden der entsprechenden Fertigungsschritte sind eine oder mehrere Fertigungseinheiten vorgesehen. Zudem sind Meßeinheiten vorgesehen, in welchen die Güte der Bearbeitung der Wafer kontrolliert werden kann.
Der gesamte Fertigungsprozeß unterliegt strengen Reinheitsanforderungen, so daß die Fertigungseinheiten und Meßeinheiten in einem Reinraum oder in einem System von Reinräumen angeordnet sind.
Die Wafer werden in Kassetten in vorbestimmten Losgrößen über ein Transportsystem den einzelnen Fertigungseinheiten und Meßeinheiten zugeführt . Auch der Abtransport nach Bearbeitung der Wafer in den Fertigungs- und Meßeinheiten erfolgt über das Transportsystem, wobei die Wafer wiederum in den Kassetten gelagert sind.
Das TransportSystem weist ein Fördersystem auf, welches beispielsweise in Form von Rollenförderern ausgebildet ist. Eine vorbestimmte Anzahl von Kassetten wird über das Transportsystem einer Fertigungseinheit oder einer Meßeinheit zur Bearbeitung zugeführt . Die Fertigungseinheit oder Meßeinheit weist jeweils eine Be- und Entladestation auf, über welche jeweils eine Kassette mit Wafern einführbar ist. Nachdem sämtliche Wafer einer Kassette in der Fertigungseinheit oder Messeinheit bearbeitet worden sind, wird die Kassette mit den Wafern über die Be- und Entladestation wieder ausgegeben und über das Fördersystem abtransportiert.
Aufgrund der relativ langen Transportwege zwischen den einzelnen Fertigungs- und Messeinheiten sowie aufgrund unter- schiedlicher Bearbeitungskapazitäten der Fertigungs- und
Messeinheiten sind im Bereich der Fertigungs- und Messeinheiten Speichersysteme wie zum Beispiel Stocker vorgesehen, welche Bestandteil des Transportsystems sind. In einem Stocker können Kassetten mit Wafern unter Reinraumbedingungen zwi- schengelagert werden und bei Bedarf den einzelnen Fertigungsund Messeinheiten zugeführt werden.
Nachteilig hierbei ist zum einen der große Installationsaufwand für das TransportSystem. Insbesondere die Zwischenlage- rung der Kassetten in den Stockern erfordert einen hohen
Zeit- und Kostenaufwand. Zudem ist nachteilig, dass das Fördersystem aus liniengeführten Systemen wie zum Beispiel Rollenförderern besteht, welche nur bis zu einem gewissen Grad verzweigt werden können. Dies führt im allgemeinen dazu, dass die Konstruktion des Transportsystems die Anordnung der Fertigungseinheiten und Messeinheiten wesentlich mitbestimmt. Somit sind die Fertigungseinheiten und Messeinheiten üblicherweise nicht entsprechend ihrer Funktionalität angeordnet. Dies führt zu einer gewissen Ineffizienz beim Transport der einzelnen Wafer.
Nachteilig ist weiterhin, dass in einer Fertigungs- oder Messeinheit erst die Abarbeitung sämtlicher Wafer einer Kassette abgewartet werden muss, bevor das gesamte Los in der Kassette über die Be- und Entladestation auf das Transport¬ system zum Abtransport weitergegeben wird. Werden beispielsweise in einer Fertigungseinheit die Wafer einer Kassette be- arbeitet und danach in einer Messeinheit die Bearbeitungsqualität überprüft, so muss zuerst die Bearbeitung sämtlicher Wafer einer Kassette abgewartet werden, bevor dann die Überprüfung in der Messeinheit erfolgen kann. Erst im Anschluss daran können in Abhängigkeit der Messergebnisse weitere Maßnahmen ergriffen werden. Die Durchlaufzeiten der Kassetten mit den Wafern durch die Anlage ist demzufolge unerwünscht hoch.
Aus der US 5,803,932 ist ein Bearbeitungssystem zur Bearbeitung von Wafern bekannt . Dieses Bearbeitungssystem umfasst eine Belade-/Entladesektion, eine Bearbeitungssektion und eine Schnittstellensektion. Zudem sind eine Transportvorrichtung und wenigstens zwei Wartesektionen vorgesehen.
Die Transportvorrichtung befindet sich zwischen der Belade- /Entladesektion und der Schnittstellensektion. Beidseits der Transportvorrichtung sind mehrere die Bearbeitungssektion bildende Prozesseinheiten angeordnet.
Die Wafer werden auf der Transportvorrichtung entweder in Richtung der Belade-/Entladesektion oder in Richtung der Schnittstellensektion transportiert .
Aus der US 5,443,346 ist ein Transportsystem zum Transport von Wafern in einem Reinraum angeführt .
Die Wafer werden zunächst in ersten Kassetten über ein Inter- bay-Fördersystem transportiert und gelangen dann zu einem Schnittstellen-Equipment. Im Schnittstellen-Equipment werden die Wafer aus den ersten Kassetten entnommen und in einer vorgegebenen Anordnung in zweite Kassetten umgefüllt. Dann werden die zweiten Kassetten über ein Intrabay-Fördersystem nacheinander unterschiedlichen Bearbeitungseinheiten zuge- führt, in welchen unterschiedliche Bearbeitungen der Wafer erfolgen.
Die DE 195 14 037 AI betrifft eine Transportvorrichtung zur Beförderung von Substraten. Die Transportvorrichtung ist als Drehtisch ausgebildet, der in einer gleichbleibenden Taktfrequenz angetrieben wird. Das Substrat kann mittels eines drehbar gelagerten Substratgreifers einer außerhalb des Drehtisches vorgesehenen Prozessstation zugeführt werden.
Die JP 08268512 A betrifft eine Speichereinheit zur Speicherung von Substraten. Die Speichereinheit umfasst eine Sortiereinheit, mittels derer die Substrate selbsttätig sortiert und in Kassetten in der Speichereinheit eingelagert oder aus- gelagert werden.
Der Erfindung liegt die Aufgabe zugrunde, für eine Anlage der eingangs genannten Art die Durchlaufzeit der Wafer bei der Bearbeitung möglichst gering zu halten.
Zur Lösung dieser Aufgabe sind die Merkmale des Anspruchs 1 vorgesehen. Vorteilhafte Ausführungsformen und zweckmäßige Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
Erfindungsgemäß weist die Anlage zur Bearbeitung von Wafern eine oder mehrere Fertigungszellen auf, in welchen mehrere Fertigungs- und / oder Messeinheiten zusammengefasst sind. Jede Fertigungszelle weist eine Be- und Entladestation zur An- und Ablieferung von Kassetten mit Wafern auf. Dabei sind innerhalb der Fertigungszelle die Wafer einzeln den Fertigungseinheiten und / oder Messeinheiten parallel zuführbar.
Dabei besteht eine funktioneile Zuordnung der Fertigungsein- heiten und Messeinheiten, wobei sich die Funktionen der ein- zelnen Fertigungs- und Messeinheiten zweckmäßig zu einem Fer- tigungsprozess ergänzen.
Der wesentliche Vorteil einer derartigen Fertigungszelle be- steht darin, dass die Wafer einer Kassette in den einzelnen Fertigungseinheiten und Messeinheiten nicht mehr seriell abgearbeitet werden müssen. Vielmehr können die Wafer je nach Bedarf den Fertigungs- und Messeinheiten einzeln zugeführt werden, so dass innerhalb einer Fertigungszelle eine paralle- le Bearbeitung der Wafer ermöglicht wird. Besonders vorteilhaft dabei ist, dass nach der Bearbeitung eines Wafers dieser sofort der zugeordneten Meßeinheit zur Überprüfung der Bearbeitungsqualität zugeführt werden kann. Vorteilhaft weist die Fertigungszelle zusätzlich eine geeignete Fertigungseinheit auf, in welcher gegebenenfalls der Wafer unmittelbar nach der Überprüfung in der Meßeinheit nachgearbeitet werden kann.
Durch die Parallelisierung der Bearbeitungsschritte der Wafer in der Fertigungszelle werden unnötige Wartezeiten an den einzelnen Fertigungs- und Meßeinheiten vermieden, wodurch eine geringe Durchlaufzeit der Wafer durch die Fertigungszelle erhalten wird.
Ferner ist vorteilhaft, daß die einzelnen Wafer innerhalb ei- ner Fertigungszelle ohne Zwischenlagerung den Fertigungs- und Meßeinheiten zuführbar sind. Dies führt zum einen zu einer weiteren Senkung der Durchlaufzeiten der Wafer durch die Anlage. Zum anderen werden durch die Einsparung von Speichersystemen erhebliche Kosteneinsparungen erzielt.
Schließlich läßt sich durch die Zusammenfassung von Fertigungs- und / oder Meßeinheiten in Fertigungszellen eine erhebliche Vereinfachung des Aufbaus der gesamten Anlage erreichen. Insbesondere kann das Transportsystem für den Transport von Kassetten mit Wafern zwischen den einzelnen Fertigungszellen einfach aufgebaut sein. Die Erfindung wird im nachstehenden anhand der Zeichnungen erläutert. Es zeigen:
Figur 1: Schematische Darstellung einer Anlage zur Bearbei- tung von Wafern mit mehreren Fertigungszellen.
Figur 2 : Schematische Darstellung einer Fertigungszelle gemäß Figur 1
Figur 3: Schematische Darstellung zweier verketteter Fertigungszellen.
Figur 1 zeigt ein Ausführungsbeispiel einer Anlage zur Bearbeitung von Wafern. Die Anlage umfaßt eine Vielzahl von Fer- tigungseinheiten 1, 1' zur Durchführung von für die Bearbeitung der Wafer notwendigen Fertigungsschritten. Diese Fertigungsschritte umfassen Bearbeitungsvorgänge bei Ätzprozessen, Naßchemieverfahren, Diffusionsprozessen sowie Reinigungsverfahren. Für diese Bearbeitungsvorgänge können jeweils eine oder mehrere Fertigungseinheiten 1, 1' vorgesehen sein. Zudem umfaßt die Anlage eine Vielzahl von Meßeinheiten 2, 2', in welchen die Resultate der einzelnen Fertigungsschritte überprüft werden. Die Fertigungseinheiten 1, 1' und Meßeinheiten 2, 2' sind in einem Reinraum 3 angeordnet. Alternativ kann die Anlage über ein System von Reinräumen 3 verteilt sein.
Bei dem in Figur 1 dargestellten Ausführungsbeispiel der Anlage sind eine geringe Zahl von Fertigungs- 1' und Meßeinheiten 2' isoliert im Reinraum 3 angeordnet. Die Mehrzahl der Fertigungs- 1 und Meßeinheiten 2 ist in Fertigungszellen 4 angeordnet. In einer besonders vorteilhaften, nicht dargestellten Ausführungsform sind sämtliche Fertigungs- 1 und Meßeinheiten 2 in Fertigungszellen 4 integriert, so daß im Reinraum 3 keine isolierten Fertigungs- 1' und Meßeinheiten 2' mehr verbleiben. Die isolierten Fertigungs- 1' und Meßeinheiten 2' sowie die einzelnen Fertigungszellen 4 sind über ein Transportsystem miteinander verbunden.
Das TransportSystem weist ein Fördersystem 5 und ein Speichersystem auf. Das Fördersystem 5 kann beispielsweise von einem System von Rollenförderern gebildet sein. Als Speichersysteme werden vorzugsweise Stocker 6 verwendet .
Über das Fördersystem 5 werden in nicht dargestellten Kassetten angeordnete Wafer in vorgegebenen Losgrößen transportiert. Für die Zufuhr und Abfuhr der Kassetten weisen die i- soliert angeordneten Fertigungs- 1' und Meßeinheiten 2' sowie die Fertigungszellen 4 jeweils eine Be- und Entladestation 7 auf . Um eine ausreichende Versorgung dieser Einheiten mit Wafern sicherzustellen, sind an geeigneten Orten die Speichersysteme vorgesehen, in welchen eine Zwischenspeicherung der Kassetten erfolgt. Zur Be- und Entladung mit Kassetten weisen die Speichersysteme ebenfalls eine Be- und Entladestation 7 auf.
Den isoliert angeordneten Fertigungs- 1' und Meßeinheiten 2' wird jeweils über die Be- und Entladestation 7 eine Kassette mit Wafern zugeführt. Nachdem in der Fertigungseinheit 1' für sämtliche Wafer derselbe Fertigungsschritt abgearbeitet wurde oder nachdem in der Meßeinheit 2' für sämtliche Wafer dieser Kassette derselbe Meßvorgang durchgeführt wurde, wird die entsprechende Kassette mit den Wafern über die Be- und Entla- destaion 7 wieder dem Transportsystem zugeführt .
Ebenso werden Kassetten mit Wafern in vorgegebenen Losgrößen den Fertigungszellen 4 zugeführt. Ein Ausführungsbeispiel der erfindungsgemäßen Fertigungszelle 4 ist in Figur 2 detailliert dargestellt. Die Fertigungszelle 4 umfaßt eine vorgege- bene Anzahl von einander funktioneil zugeordneten Fertigungs- 1 und Meßeinheiten 2. Die Fertigungszelle 4 kann durch Wandelemente 8 räumlich von den übrigen Einheiten der Anlage abgetrennt werden. An einem dieser Wandelemente 8 ist die Be- und Entladestation 7 angeordnet, über welche vom Transportsystem Kassetten mit Wafern aufgenommen bzw. Kassetten mit Wafern an das Transportsystem abgegeben werden. Im vorliegenden Ausführungsbeispiel weist die Be- und Entladestation 7 mehrere Ports 9 für die Zufuhr und mehrere Ports 10 für den Abtransport der Kassetten auf. Die Zu- und Abfuhr von Kassetten kann manuell oder mittels nicht dargestellter Handhabungsgeräte erfolgen.
Erfindungsgemäß werden innerhalb einer Fertigungszelle 4 den einzelnen Fertigungs- 1 und Meßeinheiten 2 nicht komplette Kassetten mit Wafern sondern einzelne Wafer zugeführt .
Damit während der Bearbeitungsvorgänge innerhalb des Fertigungszelle 4 eine Verfolgung der Wafer gewährleistet ist, sind die einzelne Wafer anhand von Markierungen identifizierbar.
Beispielsweise werden hierzu auf den Wafern Marken aufgebracht, welche mit Erfassungssystemen identifizierbar sind. Diese Marken werden vorzugsweise an den äußeren Randbereichen der Wafer angebracht, welche nach der Bearbeitung als Auss- chuß von der Nutzfläche im Innern der Wafer abgetrennt werden. Insbesondere kann es sich bei den Marken um Barcodes handeln, welche mittels Barcodelesegeräten identifiziert werden.
Die Be- und Entladestation 7 sowie die Fertigungs- 1 und Meßeinheiten 2 einer Fertigungszelle 4 sind über ein Sub- Transportsystem miteinander verbunden. Auf dem Sub- Transportsystem werden die in einer Kassette gelagerten, über die Be- und Entladestation 7 zugeführten Wafer vereinzelt. Die vereinzelten Wafer werden vorzugsweise parallel verschiedenen Fertigungs- 1 und Meßeinheiten 2 der Fertigungszelle 4 zugeführt . Entsprechend der Reihenfolge der Bearbeitung wer- den dabei die einzelnen Wafer nacheinander verschiedenen Fertigungs- 1 und Meßeinheiten 2 zugeführt. Nachdem die Wafer sämtliche Bearbeitungsprozesse in der Fertigungszelle 4 durchlaufen haben, werden diese wieder in Kassetten eingela- gert und über die Be- und Entladestation 7 an das Transportsystem ausgegeben.
Das in Figur 2 dargestellte Sub-Transportsystem besteht im wesentlichen aus einem Fördersystem 11, welches Verzweigungen zu den einzelnen Fertigungs- 1 und Meßeinheiten 2 aufweist.
An diesen Verzweigungen sind Handhabungsgeräte 12 vorgesehen, welche die einzelnen Wafer den Fertigungseinheiten 1 zuführen. Für die Zufuhr zu den Meßeinheiten 2 können prinzipiell ebenfalls derartige Handhabungsgeräte 12 vorgesehen sein.
Die Vereinzelung der Wafer erfolgt im einfachsten Fall unmittelbar nach dem Eingang einer Kassette an der Be- und Entladestation 7. Dabei kann die Vereinzelung durch das Bedienpersonal oder automatisch mittels nicht dargestellter Handha- bungsgeräte erfolgen. Die Wafer werden hierzu einzeln in bestimmte Verzweigungen des Fördersystems 11 eingespeist, wodurch die Wafer der entsprechenden Fertigungs- 1 oder Meßeinheit 2 zugeführt werden.
Zweckmäßigerweise besteht zwischen den Fertigungs- 1 und Meßeinheiten 2 einer Fertigungszelle 4 eine funktioneile Zuordnung derart, daß sich die einzelnen Fertigungsschritte in der Fertigungszelle 4 zu einem Fertigungsprozeß ergänzen.
Dabei können entsprechend der Kapazität einzelner Fertigungseinheiten 1 und Meßeinheiten 2 und entsprechend der unterschiedlichen Bearbeitungszeiten für die einzelnen Fertigungsschritte in der Fertigungszelle 4 mehrere identische Fertigungs- 1 oder Meßeinheiten 2 vorgesehen sein. Auf diese Weise werden Engpässe und damit verbundene Wartezeiten bei der Bearbeitung der Wafer in der Fertigungszelle 4 vermieden. Bei der in Figur 2 dargestellten Fertigungszelle 4 sind Fertigungs- 1 und Meßeinheiten 2 für einen Lithographie-Prozeß zusammengefaßt .
In diesem Fall sind vorzugsweise drei unterschiedliche Fertigungseinheiten 1 vorgesehen. Eine Fertigungseinheit 1 dient zum Aufbringen von Photolack auf die Wafer. Eine weitere Fertigungseinheit 1 dient zur Belichtung von Photolack auf den Wafern. Schließlich dient die dritte Fertigungseinheit 1 zum Entwickeln von Photolack auf den Wafern.
Bei dem in der Figur 2 dargestellten Ausführungsbeispiel werden die drei unterschiedlichen Fertigungseinheiten 1 jeweils von einem Handhabungsgerät 12 bedient. Entsprechend der Kapa- zitätsanforderung an die Fertigungseinheit 1 sind drei derartige Anordnungen in der Fertigungszelle 4 vorgesehen.
Die Meßeinheiten 2 zur Kontrolle der in den vorgenannten Fertigungseinheiten 1 durchgeführten Fertigungsschritte können beispielsweise von Kontrollsystemen gebildet sein, welche prüfen, ob die Merhfachschichtstrukturen, welche Wafer im Innern aufweisen, korrekt übereinanderliegend angeordnet sind. Als weitere Meßeinheiten 2 können optische Kontrollvorrichtungen zum Erkennen von Verwerfungen auf den Wafern vorgese- hen sein.
Bei dem in Figur 3 dargestellten Ausführungsbeispiel sind zwei Fertigungszellen 4, 4' miteinander verkettet. Der Aufbau der einzelnen Fertigungszellen 4, 4' entspricht dabei im we- sentlichen dem Aufbau der Fertigungszellen 4 gemäß Figur 2. Im Unterschied zu dem Ausführungsbeispiel gemäß Figur 2 ist bei den verketteten Fertigungszellen 4, 4' die Be- und Entladestation 7 auf verschiedene Fertigungszellen 4, 4' verteilt.
Während die erste Fertigungszelle 4 nur eine Beladestation mit Ports 9 für die Beladung der Fertigungszelle 4, 4' mit Kassetten aufweist, ist an der zweiten Fertigungszelle 4' ei- ne Entladestation mit Ports 10 für den Abtransport der Wafer angeordnet .
Zur Verkettung der Fertigungszellen 4, 4' sind deren Sub- Transportsysteme mittels einer Übergabestation 13 verbunden. Die Übergabestation 13 kann von einem Greifer oder dergleichen gebildet sein, welcher Wafer vom Rollenförderer 11 einer Fertigungszelle 4 auf den Rollenförderer 11 der anderen Fertigungszelle 4 umschichtet.
Durch die Verkettung mehrerer Fertigungszellen 4, 4' kann die Produktionskapazität des betreffenden Fertigungsprozesses auf einfache Weise vergrößert werden. Somit kann die gesamte Anlage durch eine geeignete Verkettung von Fertigungszellen 4, 4' flexibel an die jeweils geforderten Produktionskapazitäten angepaßt werden .

Claims

Patentansprüche
1. Anlage zur Bearbeitung von Wafern in wenigstens einem Reinraum mit einer Anordnung von Fertigungseinheiten zur Durchführung einzelner Fertigungsschritte und Meßeinheiten zur Kontrolle von Fertigungsschritten, welche über ein Transportsystem verbunden sind, wobei über das Transportsystem die Wafer jeweils in vorbestimmten Losgrößen in Kassetten gefördert werden, dadurch gekennzeichnet, daß mehrere funktioneil zugeordnete Fertigungs- (1) und / oder Meßeinheiten (2) zu einer Fertigungszelle (4) zusammengefaßt sind, welche eine Be- und Entladestation (7) zur An- und Ablieferung von Kassetten mit Wafern aufweist, daß innerhalb der Fertigungszelle (4) den Fertigungs- (1) und / oder Meßeinhei- ten (2) einzelne Wafer zur Bearbeitung parallel zuführbar sind.
2. Anlage nach Anspruch 1, dadurch gekennzeichnet, daß anhand von Markierungen die einzelnen Wafer einer Kasset- te identifizierbar sind.
3. Anlage nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Fertigungseinheiten (1) und / oder Meßeinheiten (2) einer Fertigungszelle (4) zur Zufuhr und zum Abtransport einzelner Wafer über ein Sub- Transportsystem miteinander verbunden sind.
4. Anlage nach Anspruch 3, dadurch gekennzeichnet, daß Kassetten mit Wafern über das Sub-Transportsystem in die Fertigungszelle (4) einführbar und aus der Fertigungszelle (4) ausführbar sind.
5. Anlage nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, daß die Vereinzelung der Wafer auf dem Sub-Transportsystem erfolgt.
6. Anlage nach einem der Ansprüche 3 - 5, dadurch gekennzeichnet, daß das Sub-Transportsystem aus einem Fördersystem (11) besteht.
7. Anlage nach Anspruch 6, dadurch gekennzeichnet, daß das Fördersystem (11) Verzweigungen zu den einzelnen Fertigungs- (1) und Meßeinheiten (2) aufweist.
8. Anlage nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, am FörderSystem (11) Handhabungsgeräte (12) für die Zufuhr und Entnahme einzelner Wafer zu und von den Fertigungseinheiten (1) und / oder Meßeinheiten (2) vorgesehen sind.
9. Anlage nach einem der Ansprüche 1 - 8, dadurch gekennzeichnet, daß die in einer Fertigungszelle (4) durchgeführten Fertigungsschritte einen Fertigungsprozeß bilden.
10. Anlage nach Anspruch 9, dadurch gekennzeichnet, daß entsprechend der benötigten Fertigungskapazität für einen Fertigungsprozeß mehrere gleichartige Fertigungseinheiten (1) und / oder Meßeinheiten (2) in einer Fertigungszelle (4) angeordnet sind.
11. Anlage nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß der Fertigungsprozeß von einem Lithographie-Prozeß gebildet ist.
12. Anlage nach Anspruch 11, dadurch gekennzeichnet, daß die Fertigungseinheiten (1) für den Lithographie-Prozeß aus Vorrichtungen zum Aufbringen von Photolack auf die Wafer, zur Belichtung von Photolack auf den Wafern und zum Entwickeln von Photolack auf den Wafern bestehen.
13 . Anlage nach einem der Ansprüche 11 oder 12 , d a d u r c h g e k e n n z e i c h n e t , daß die Meßeinheiten (2 ) für den Litho- graphie-Prozeß aus einem KontrollSystem zur Überprüfung von übereinander in den Wafern angeordneten Schichtstrukturen und einer optischen Kontrollvorrichtung zur Erkennung von Verwerfungen auf den Wafern bestehen.
14. Anlage nach einem der Ansprüche 1 - 13, dadurch gekennzeichnet, daß mehrere Fertigungszellen (4, 4') miteinander verkettet sind.
15. Anlage nach Anspruch 14, dadurch gekennzeichnet, daß zur Verkettung der Fertigungszellen (4, 4') deren Sub- Transportsysteme mittels einer Übergabestation (13) verbunden sind.
16. Anaige nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, daß bei einer Verkettung zweier Fertigungszellen (4, 4') eine Fertigungszelle (4, 4') eine Beladestation zur Anlieferung von Kassetten mit Wafern und die zweite Fertigungszelle eine Entladestation zur Ablieferung von Kassetten mit Wafern aufweist.
PCT/DE2000/001451 1999-05-07 2000-05-05 Anlage zur bearbeitung von wafern WO2000068973A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00940170A EP1177573A2 (de) 1999-05-07 2000-05-05 Anlage zur bearbeitung von wafern
US10/015,150 US6809510B2 (en) 1999-05-07 2001-11-07 Configuration in which wafers are individually supplied to fabrication units and measuring units located in a fabrication cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19921245A DE19921245C2 (de) 1999-05-07 1999-05-07 Anlage zur Bearbeitung von Wafern
DE19921245.7 1999-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/015,150 Continuation US6809510B2 (en) 1999-05-07 2001-11-07 Configuration in which wafers are individually supplied to fabrication units and measuring units located in a fabrication cell

Publications (2)

Publication Number Publication Date
WO2000068973A2 true WO2000068973A2 (de) 2000-11-16
WO2000068973A3 WO2000068973A3 (de) 2001-03-15

Family

ID=7907411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/001451 WO2000068973A2 (de) 1999-05-07 2000-05-05 Anlage zur bearbeitung von wafern

Country Status (5)

Country Link
US (1) US6809510B2 (de)
EP (1) EP1177573A2 (de)
DE (1) DE19921245C2 (de)
TW (1) TW497116B (de)
WO (1) WO2000068973A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163477B4 (de) * 2001-12-21 2004-01-08 Siemens Ag Transportmodul
JP4170864B2 (ja) * 2003-02-03 2008-10-22 大日本スクリーン製造株式会社 基板処理装置および基板処理装置における基板搬送方法および基板処理方法
DE10326338A1 (de) * 2003-06-05 2004-12-30 Infineon Technologies Ag Halbleiter-Bauelement-Test-Verfahren, sowie Test-System zum Testen von Halbleiter-Bauelementen
DE10328709A1 (de) * 2003-06-24 2005-01-27 Infineon Technologies Ag Halbleiter-Bauelement-Test-Verfahren, sowie Test-System zum Testen von Halbleiter-Bauelementen
JP4670808B2 (ja) * 2006-12-22 2011-04-13 ムラテックオートメーション株式会社 コンテナの搬送システム及び測定用コンテナ
US8108989B2 (en) 2007-06-28 2012-02-07 Crown Equipment Corporation Manufacturing cell and elements of the cell
CN110745530A (zh) * 2018-07-24 2020-02-04 深圳市矽电半导体设备有限公司 一种物料传输自动线及其自动进出料方法
US20210020635A1 (en) * 2019-07-17 2021-01-21 Nanya Technology Corporation Semiconductor structure and method of formation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0359525A2 (de) * 1988-09-14 1990-03-21 Fujitsu Limited System zum kontinuierlichen Behandeln von Halbleitersubstraten
US5164905A (en) * 1987-08-12 1992-11-17 Hitachi, Ltd. Production system with order of processing determination
US5202716A (en) * 1988-02-12 1993-04-13 Tokyo Electron Limited Resist process system
US5536128A (en) * 1988-10-21 1996-07-16 Hitachi, Ltd. Method and apparatus for carrying a variety of products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495417A (en) * 1990-08-14 1996-02-27 Kabushiki Kaisha Toshiba System for automatically producing different semiconductor products in different quantities through a plurality of processes along a production line
JPH0616206A (ja) * 1992-07-03 1994-01-25 Shinko Electric Co Ltd クリーンルーム内搬送システム
JPH07297258A (ja) * 1994-04-26 1995-11-10 Tokyo Electron Ltd 板状体の搬送装置
JP3185595B2 (ja) * 1995-04-03 2001-07-11 株式会社ダイフク 基板仕分け装置を備えた荷保管設備
DE19514037C2 (de) * 1995-04-13 1997-09-04 Leybold Ag Transportvorrichtung
US5777876A (en) * 1995-12-29 1998-07-07 Bull Hn Information Systems Inc. Database manufacturing process management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164905A (en) * 1987-08-12 1992-11-17 Hitachi, Ltd. Production system with order of processing determination
US5202716A (en) * 1988-02-12 1993-04-13 Tokyo Electron Limited Resist process system
EP0359525A2 (de) * 1988-09-14 1990-03-21 Fujitsu Limited System zum kontinuierlichen Behandeln von Halbleitersubstraten
US5536128A (en) * 1988-10-21 1996-07-16 Hitachi, Ltd. Method and apparatus for carrying a variety of products

Also Published As

Publication number Publication date
EP1177573A2 (de) 2002-02-06
WO2000068973A3 (de) 2001-03-15
DE19921245C2 (de) 2003-04-30
DE19921245A1 (de) 2000-11-16
TW497116B (en) 2002-08-01
US6809510B2 (en) 2004-10-26
US20020064954A1 (en) 2002-05-30

Similar Documents

Publication Publication Date Title
DE19922936B4 (de) Anlage zur Bearbeitung von Wafern
EP1177572B1 (de) Anlage zur bearbeitung von wafern
EP1224689B1 (de) Anlage zur bearbeitung von wafern
DE3028283C2 (de)
DE2262210C2 (de) Automatisches Transportsystem
DE60214763T2 (de) Waferhandhabungsvorrichtung und verfahren dafür
DE4422683C2 (de) Verfahren und Vorrichtung zum automatischen Ordnen von Losen für eine Fertigungsstraße
EP1224690B1 (de) Anlage zur bearbeitung von wafern
DE19906805A1 (de) Vorrichtung und Verfahren zum Transportieren von zu bearbeitenden Substraten
DE112005003767B4 (de) Ablage-Halteeinrichtung
DE2435622A1 (de) Fertigungsanlage
DE2708954A1 (de) Rechnergesteuertes system fuer die herstellung von integrierten schaltungen
DE10164192A1 (de) Vorrichtung und Verfahren zur Bearbeitung von Substraten
DE10041960A1 (de) Herstellungsvorrichtung einer Halbleitereinrichtung und Steuerverfahren davon
DE112007003030T5 (de) Fertigungseinrichtungen
WO2000068973A2 (de) Anlage zur bearbeitung von wafern
EP1166337B1 (de) Anlage zur fertigung von halbleiterprodukten
DE60037492T2 (de) Verbessertes Halbleiterherstellungssystem
DE3902063A1 (de) Automatische spulenwickel- und -endbearbeitungsmaschine
DE2364790C2 (de) Steuereinrichtung für eine Transporteinrichtung zur Herstellung und Bearbeitung von kleinen gleichartigen Werkstücken nach Art planarer Halbleiter-Bauelemente
WO2000068974A2 (de) Anlage zur bearbeitung von wafern
EP0365829B1 (de) Umsetzer-Anlage für Reiningungs-und Galvanoprozesse
DE10225419A1 (de) Substratträgerhandhabungssystem, Programm, computerlesbares Medium und Verfahren zum Herstellen einer Halbleitervorrichtung
DE10128665A1 (de) Verfahren und Vorrichtung zur Bearbeitung von Waferlosen in der Halbleiterfertigung
DE112021001632T5 (de) Verfahren zur Handhabung von Komponenten und Komponentenhandhabungsanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000940170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10015150

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000940170

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2000940170

Country of ref document: EP