WO2000058473A2 - Acides nucleiques comprenant des phases de lecture ouverte codant des polypeptides; «orfx» - Google Patents

Acides nucleiques comprenant des phases de lecture ouverte codant des polypeptides; «orfx» Download PDF

Info

Publication number
WO2000058473A2
WO2000058473A2 PCT/US2000/008621 US0008621W WO0058473A2 WO 2000058473 A2 WO2000058473 A2 WO 2000058473A2 US 0008621 W US0008621 W US 0008621W WO 0058473 A2 WO0058473 A2 WO 0058473A2
Authority
WO
WIPO (PCT)
Prior art keywords
orfx
protein
nucleic acid
polypeptide
subject
Prior art date
Application number
PCT/US2000/008621
Other languages
English (en)
Other versions
WO2000058473A3 (fr
Inventor
Richard A. Shimkets
Martin Leach
Original Assignee
Curagen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curagen Corporation filed Critical Curagen Corporation
Priority to JP2000608754A priority Critical patent/JP2004507202A/ja
Priority to EP00916677A priority patent/EP1165784A2/fr
Priority to CA002383592A priority patent/CA2383592A1/fr
Priority to AU37745/00A priority patent/AU3774500A/en
Publication of WO2000058473A2 publication Critical patent/WO2000058473A2/fr
Publication of WO2000058473A3 publication Critical patent/WO2000058473A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/14Decongestants or antiallergics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates generally to nucleic acids and polypeptides encoded thereby, and methods of using these nucleic acids and polypeptides.
  • the invention is based in part on the discovery of nucleic acids that include open reading frames encoding novel polypeptides, and on the polypeptides encoded thereby.
  • the nucleic acids and polypeptides are collectively referred to herein as "ORFX".
  • the invention provides an isolated nucleic acid molecule 15 (SEQ ID NO:2 «-l, wherein n is an integer between 1-3161), that encodes novel polypeptide, or a fragment, homolog, analog or derivative thereof.
  • the nucleic acid can include, e.g., a nucleic acid sequence encoding a polypeptide at least 85% identical to a polypeptide comprising the amino acid sequences of SEQ ID NO:2 «, wherein n is an integer between 1-3161.
  • the nucleic acid can be, e.g., a genomic DNA fragment, or a cDNA molecule.
  • Also included in the invention is a vector containing one or more of the nucleic acids described herein, and a cell containing the vectors or nucleic acids described herein.
  • the invention is also directed to host cells transformed with a recombinant expression vector comprising any of the nucleic acid molecules described above.
  • the invention includes a pharmaceutical composition that includes an 5 ORFX nucleic acid and a pharmaceutically acceptable carrier or diluent.
  • the invention includes a substantially purified ORF polypeptide, e.g., any of the ORFX polypeptides encoded by an ORFX nucleic acid, and fragments, homologs, analogs, and derivatives thereof.
  • the invention also includes a pharmaceutical composition that includes a ORFX polypeptide and a pharmaceutically acceptable carrier or diluent.
  • the invention provides an antibody that binds specifically to an ORFX nucleic acid and a pharmaceutically acceptable carrier or diluent.
  • ORFX polypeptide The antibody can be, e.g., a monoclonal or polyclonal antibody, and fragments, homologs, analogs, and derivatives thereof.
  • the invention also includes a pharmaceutical composition including ORFX antibody and a pharmaceutically acceptable carrier or diluent.
  • the invention is also directed to isolated antibodies that bind to an epitope on a polypeptide encoded by any of the nucleic acid molecules described above.
  • the invention also includes kits comprising any of the pharmaceutical compositions described above.
  • the invention further provides a method for producing an ORFX polypeptide by providing a cell containing a ORFX nucleic acid, e.g., a vector that includes a ORFX nucleic acid, and culturing the cell under conditions sufficient to express the ORFX polypeptide encoded by the nucleic acid.
  • the expressed ORFX polypeptide is then recovered from the cell.
  • the cell produces little or no endogenous ORFX polypeptide.
  • the cell can be, e.g., a prokaryotic cell or eukaryotic cell.
  • the invention is also directed to methods of identifying an ORFX polypeptide or nucleic acids in a sample by contacting the sample with a compound that specifically binds to the polypeptide or nucleic acid, and detecting complex formation, if present.
  • the invention further provides methods of identifying a compound that modulates the activity of a ORFX polypeptide by contacting ORFX polypeptide with a compound and determining whether the ORFX polypeptide activity is modified.
  • the invention is also directed to compounds that modulate ORFX polypeptide activity identified by contacting a ORFX polypeptide with the compound and determining whether the compound modifies activity of the ORFX polypeptide, binds to the ORFX polypeptide, or binds to a nucleic acid molecule encoding a ORFX polypeptide.
  • the invention provides a method of determining the presence of or predisposition of an ORFX-associated disorder in a subject.
  • the method includes providing a sample from the subject and measuring the amount of ORFX polypeptide in the subject sample.
  • the amount of ORFX polypeptide in the subject sample is then compared to the amount of ORFX polypeptide in a control sample.
  • An alteration in the amount of ORFX polypeptide in the subject protein sample relative to the amount of ORFX polypeptide in the control protein sample indicates the subject has a tissue proliferation-associated condition.
  • a control sample is preferably taken from a matched individual, i.e., an individual of similar age, sex, or other general condition but who is not suspected of having a tissue proliferation-associated condition.
  • the control sample may be taken from the subject at a time when the subject is not suspected of having a tissue proliferation-associated disorder.
  • the ORFX is detected using a ORFX antibody.
  • the invention provides a method of determining the presence of or predisposition of an ORFX-associated disorder in a subject. The method includes providing a nucleic acid sample, e.g., RNA or DNA, or both, from the subject and measuring the amount of the ORFX nucleic acid in the subject nucleic acid sample. The amount of ORFX nucleic acid sample in the subject nucleic acid is then compared to the amount of an ORFX nucleic acid in a control sample. An alteration in the amount of ORFX nucleic acid in the sample relative to the amount of ORFX in the control sample indicates the subject has a tissue proliferation-associated disorder.
  • the invention provides method of treating or preventing or delaying a ORFX-associated disorder.
  • the method includes administering to a subject in which such treatment or prevention or delay is desired a ORFX nucleic acid, a ORFX polypeptide, or an ORFX antibody in an amount sufficient to treat, prevent, or delay a tissue proliferation- associated disorder in the subject.
  • the invention provides novel polypeptides and nucleotides encoded thereby.
  • the polynucleotides and their encoded polypeptides can be grouped according to the functions played by their gene products. Such functions include, structural proteins, proteins from which associated with metabolic pathways fatty acid metabolism, glycolysis, intermediary metabolism, calcium metabolism, proteases, and amino acid metabolism, etc.
  • an ORFX nucleic acid according to the invention is a nucleic acid including an ORFl nucleic acid
  • an ORF polypeptide according to the invention is a polypeptide that includes the amino acid sequence of an ORFl polypeptide.
  • ORFX is meant to refer to any of the ORFl-3161 sequences disclosed herein.
  • Table 1 provides a summary of the ORFX nucleic acids and their encoded polypeptides are summarized in Table 1.
  • Nucleic acid sequences and polypeptide sequences for ORFX nucleic acids according to the invention is provided in the section of the specification entitled “Disclosed Sequences of ORFX Nucleic Acid and Polypeptide Sequences.”
  • nucleic acid sequence corresponding to an ORF4 nucleic acid is SEQ ID NO:7
  • a polypeptide sequence corresponding to an ORF4 polypeptide is SEQ ID NO:8
  • a nucleic acid sequence corresponding to an ORF 198 nucleic acid sequence is SEQ ID NO:395, and a polypeptide sequence corresponding to an ORF198 polypeptide is SEQ ID NO:396.
  • Nucleic acid sequences and polypeptide sequences for ORFX nucleic acids according to the invention are provided in the section of the specification entitled "Disclosed Sequences of ORFX Nucleic Acid and Polypeptide Sequences.”
  • polypeptides encoded by ORFX DNA sequences were tested using the Framesearch Algorithm against a nonredundant version of the GenPept Database from NCBI/Genbank. DNA sequences that had a score of '90' or above (Framesearch algorithm score, Edelman et. al. GCG Genetics) to a known protein were selected. Open reading frames were extended beyond the region of the protein matched using standard DNA translation and codon tables. Novel proteins that lacked a protein match were translated against the standard genetic codons and proteins with an ORF at least 80 amino acids and containing a Methionine start are included in the Table.
  • Proteins in which these domains are present are proteins in which these domains are present.
  • the pfam entries can be retrieved from http://pfam.wustl.edu .
  • DNA sequences were translated in all six frames and tested using the Hmmer Algorithm against the Pfam Database (References to the algorithm and Pfam database can be found at http://pfam.wustl.edu).
  • Translated DNA sequences that matched a protein domain entry in the Pfam database AND had a score of 7.5' were selected.
  • Column 4 of Table 3, entitled "Protein Classification" lists the type of classification assigned for the protein, based on its homology. Examples of proteins in the classification include the following proteins: Amylases
  • Amylase is responsible for endohydrolysis of 1 ,4-alpha-glucosidic linkages in oligosaccharides and polysaccharides. Variations in amylase gene may be indicative of delayed maturation and of various amylase producing neoplasms and carcinomas.
  • the serum amyloid A (SAA) proteins comprise a family of vertebrate proteins that associate predominantly with high density lipoproteins (HDL). The synthesis of certain members of the family is greatly increased in inflammation. Prolonged elevation of plasma SAA levels, as in chronic inflammation, 15 results in a pathological condition, called amyloidosis, which affects the liver, kidney and spleen and which is characterized by the highly insoluble accumulation of SAA in these tissues. Amyloid selectively inhibits insulin-stimulated glucose utilization and glycogen deposition in muscle, while not affecting adipocyte glucose metabolism.
  • SAA serum amyloid A
  • Deposition of fibrillar amyloid proteins intraneuronally, as neurofibrillary tangles, extracellularly, as plaques and in blood vessels, is characteristic of both Alzheimer's disease and aged Down's syndrome. Amyloid deposition is also associated with type II diabetes mellitus.
  • angiogenesis is also an essential step in tumor growth in order for the tumor to get the blood supply it needs to expand. Variation in these genes may be predictive of any form of heart disease, numerous blood clotting disorders, stroke, hypertension and predisposition to tumor formation and metastasis. In particular, these variants may be predictive of the response to various antihypertensive drugs and chemotherapeutic and anti-tumor agents.
  • apoptosis Active cell suicide
  • apoptosis is induced by events such as growth factor withdrawal and toxins. It is controlled by regulators, which have either an inhibitory effect on programmed cell death (anti-apoptotic) or block the protective effect of inhibitors (pro-apoptotic).
  • regulators which have either an inhibitory effect on programmed cell death (anti-apoptotic) or block the protective effect of inhibitors (pro-apoptotic).
  • anti-apoptotic an inhibitory effect on programmed cell death
  • pro-apoptotic block the protective effect of inhibitors
  • Many viruses have found a way of countering defensive apoptosis by encoding their own anti-apoptosis genes preventing their target-cells from dying too soon. Variants of apoptosis related genes may be useful in formulation of anti-aging drugs.
  • cyclins Members of the cell division/cell cycle pathways such as cyclins, many transcription factors and kinases, DNA polymerases, histones, helicases and other oncogenes play a critical role in carcinogenesis where the uncontrolled proliferation of cells leads to tumor formation and eventually metastasis.
  • Variation in these genes may be predictive of predisposition to any form of cancer, from increased risk of tumor formation to increased rate of metastasis. In particular, these variants may be predictive of the response to various chemotherapeutic and anti-tumor agents.
  • Granulocyte/macrophage colony-stimulating factors are cytokines that act in hematopoiesis by controlling the production, differentiation, and function of 2 related white cell populations of the blood, the granulocytes and the monocytes-macrophages.
  • Complement proteins are immune associated cytotoxic agents, acting in a chain reaction to exterminate target cells to that were opsonized (primed) with antibodies, by forming a membrane attack complex (MAC). The mechanism of killing is by opening pores in the target cell membrane.
  • Variations in 20 complement genes or their inhibitors are associated with many autoimmune disorders. Modified serum levels of complement products cause edemas of various tissues, lupus (SLE), vasculitis, glomerulonephritis, renal failure, hemolytic anemia, thrombocytopenia, and arthritis. They interfere with mechanisms of ADCC (antibody dependent cell cytotoxicity), severely impair immune competence and reduce phagocytic ability.
  • Variants of complement genes may also be indicative of type I diabetes mellitus, meningitis neurological disorders such as nemaline myopathy, neonatal hypotonia, muscular disorders such as congenital myopathy and other diseases. Cytochrome
  • the respiratory chain is a key biochemical pathway which is essential to all aerobic cells.
  • cytochromes involved in the chain. These are heme bound proteins which serve as electron carriers. Modifications in these genes may be predictive of ataxia areflexia, dementia and myopathic and neuropathic changes in muscles. Also, association with various types of solid tumors.
  • Kinesins are tubulin molecular motors that function to transport organelles within cells and to move chromosomes along microtubules during cell division. Modifications of these genes may be indicative of neurological disorders such as Pick disease of the brain, tuberous sclerosis.
  • Cytokines such as erythropoietin are cell-specific in their growth stimulation; erythropoietin is useful for the stimulation of the proliferation of erythroblasts.
  • Variants in cytokines may be predictive for a wide variety of diseases, including cancer predisposition.
  • G-protein coupled receptors also called R7G are an extensive group of hormones, neurotransmitters, odorants and light receptors which transduce extracellular signals by interaction with guanine nucleotide-binding (G) proteins. Alterations in genes coding for G-coupled proteins may be involved in and indicative of a vast number of physiological conditions. These include blood pressure regulation, renal dysfunctions, male infertility, dopamine associated cognitive, emotional, and endocrine functions, hypercalcemia, chondrodysplasia and osteoporosis, pseudohypoparathyroidism, growth retardation and dwarfism. Thioesterases
  • Eukaryotic thiol proteases are a family of proteolytic enzymes which contain an active site cysteine. Catalysis proceeds through a thioester intermediate and is facilitated by a nearby histidine side chain; an asparagine completes the essential catalytic triad. Variants of thioester associated genes may be predictive of neuronal disorders and mental illnesses such as Ceroid Lipoffiscinosis, Neuronal 1 , Infantile, Santavuori disease and more.
  • SWPN SWISS-PROT Update release 1 l-NOV-98 synthase synthase tgf transforming growth factor tgfreceptor transforming growth factor receptor thioesterase thioesterase thiolase thiolase tm7 seven transmembrane domain G-protein coupled receptor tnf necrosis factor receptor traffic tumor necrosis factor tnfreceptor tumor trafficking associated protein TRN EMBL DATABASE translated entries update (20- JUL- 1998) transcriptfactor transcription factor transferase transferase transport transport protein tubulin tubulin ubiquitin ubiquitin unclassified Protein not categorized into one of the aforementioned protein families water channel water channel protein Column 5 of Table 1, entitled, "Cells or Tissues in Which Gene is Expressed”, denotes tissues, represented by five digit numbers, in which RNA homologous to the ORF nucleic acid sequences is present. Tissues or cells corresponding to the numbers are provided in Table 2.
  • ORFX nucleic acids, and their encoded polypeptides, according to the invention are useful in a variety of applications and contexts.
  • various ORFX nucleic acids and polypeptides according to the invention are useful, inter alia, as novel members of the protein families indicated in Table 1, and/or according to the presence of domains and sequence relatedness to previously described proteins as summarized in Table 1.
  • ORFX nucleic acids and polypeptides according to the invention can also be used to identify cell types listed in Table 1 for an indicated ORFX according to the invention.
  • ORFX nucleic acids and polypeptides according to the invention are disclosed herein.
  • novel nucleic acids of the invention include those that encode an ORFX or ORFX- like protein, or biologically active portions thereof.
  • the encoded polypeptides can thus include, e.g., the amino acid sequences of SEQ ID NO: 2, 4, 6, 8, 10, . . ., 6310, 6312, 6314, 6316, 6318, 6320, and/or 6322.
  • the invention additionally includes nucleic acids or nucleic acid fragments, or complements thereto, whose structures include chemical modifications.
  • nucleic acid fragments sufficient for use as hybridization probes to identify ORFX-encoding nucleic acids (e.g., ORFX mRNA) and fragments for use as polymerase chain reaction (PCR) primers for the amplification or mutation of ORFX nucleic acid molecules.
  • nucleic acid molecule is intended to include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof.
  • the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
  • Probes refer to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), 100 nt, or as many as about, e.g., 6,000 nt, depending on use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are usually obtained from a natural or recombinant source, are highly specific and much slower to hybridize than oligomers. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.
  • an "isolated" nucleic acid molecule is one that is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid.
  • isolated nucleic acid molecules include, but are not limited to, recombinant DNA molecules contained in a vector, recombinant DNA molecules maintained in a heterologous host cell, partially or substantially purified nucleic acid molecules, and synthetic DNA or RNA molecules.
  • an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
  • the isolated nucleic acid i.e., sequences located at the 5' and 3' ends of the nucleic acid
  • ORFX nucleic acid molecule can contain less than about 50 kb, 25 kb, 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
  • an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.
  • a nucleic acid molecule of the present invention e.g., a.
  • ORFX nucleic acid sequences can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et ⁇ l., eds., MOLECULAR CLONING: A LABORATORY MANUAL 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et ⁇ l., eds., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.)
  • a nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
  • nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
  • oligonucleotides corresponding to ORFX nucleotide sequences can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
  • oligonucleotide refers to a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction.
  • a short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue.
  • Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length.
  • binding means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, Von der Waals, hydrophobic interactions, etc.
  • a physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.
  • Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, respectively, and are at most some portion less than a full length sequence.
  • Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.
  • Derivatives are nucleic acid sequences or amino acid sequences formed from the native compounds either directly or by modification or partial substitution.
  • Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differs from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type.
  • Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below.
  • Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, 85%, 90%, 95%, 98%, or even 99% identity (with a preferred identity of 80-99%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the aforementioned proteins under stringent, moderately stringent, or low stringent conditions.
  • a “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences encode those sequences coding for isoforms of ORFX polypeptide. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes.
  • homologous nucleotide sequences include nucleotide sequences encoding for a ORFX polypeptide of species other than humans, including, but not limited to, mammals, and thus can include, e.g., mouse, rat, rabbit, dog, cat cow, horse, and other organisms.
  • homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein.
  • a homologous nucleotide sequence does not, however, include the nucleotide sequence encoding human ORFX protein.
  • a homologous amino acid sequence does not encode the amino acid sequence of a human ORFX polypeptide.
  • the nucleotide sequence determined from the cloning of the human ORFX gene allows for the generation of probes and primers designed for use in identifying the cell types disclosed and/or cloning ORFX homologues in other cell types, e.g., from other tissues, as well as ORFX homologues from other mammals.
  • the probe/primer typically comprises a substantially purified oligonucleotide.
  • Probes based on the human ORFX nucleotide sequence can be used to detect transcripts or genomic sequences encoding the same or homologous proteins.
  • the probe further comprises a label group attached thereto, e.g., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
  • Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which misexpress a ORFX protein, such as by measuring a level of a ORFX-encoding nucleic acid in a sample of cells from a subject e.g., detecting ORFX mRNA levels or determining whether a genomic ORFX gene has been mutated or deleted.
  • a polypeptide having a biologically active portion of ORFX refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency.
  • a nucleic acid fragment encoding a biologically active portion of ORFX can optionally include a domain as shown in Table 1, column 4.
  • gene and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding a ORFX protein, preferably a mammalian ORFX protein.
  • Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the ORFX gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in ORFX that are the result of natural allelic variation and that do not alter the functional activity of ORFX are intended to be within the scope of the invention.
  • Nucleic acid molecules corresponding to natural allelic variants and homologues of the ORFX cDNAs of the invention can be isolated based on their homology to the human ORFX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
  • the nucleic acid is at least 10, 25, 50, 100, 250, 500 or 750 nucleotides in length.
  • an isolated nucleic acid molecule of the invention hybridizes to the coding region.
  • the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other.
  • Homologs i.e., nucleic acids encoding ORFX proteins derived from species other than human
  • other related sequences e.g., paralogs
  • stringent hybridization conditions refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences.
  • stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH.
  • Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess, at Tm, 50% of the probes are occupied at equilibrium.
  • stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes, primers or oligonucleotides (e.g., 10 nt to 50 nt) and at least about 60°C for longer probes, primers and oligonucleotides.
  • Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.
  • Stringent conditions are known to those skilled in the art and can be found in CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.
  • the conditions are such that sequences at least about 65%, 70%, 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain hybridized to each other.
  • a non-limiting example of stringent hybridization conditions is hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65°C. This hybridization is followed by one or more washes in 0.2X SSC, 0.01% BSA at 50°C.
  • a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).
  • moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55°C, followed by one or more washes in IX SSC, 0.1% SDS at 37°C.
  • Other conditions of moderate stringency that may be used are well known in the art. See, e.g., Ausubel et al.
  • low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40°C, followed by one or more washes in 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50°C.
  • Other conditions of low stringency that may be used are well known in the art (e.g., as employed for cross-species hybridizations).
  • a "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of ORFX without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity.
  • amino acid residues that are conserved among the ORFX proteins of the present invention are predicted to be particularly unamenable to alteration.
  • Amino acid residues that are conserved among members of an ORFX family members are predicted to be less amenable to alteration.
  • an ORFX protein according to the present invention can contain at least one domain (e.g., as shown in Table 1) that is a typically conserved region in an ORFX family member. As such, these conserved domains are not likely to be amenable to mutation.
  • Other amino acid residues, however, may not be as essential for activity and thus are more likely to be amenable to alteration.
  • nucleic acid molecules encoding ORFX proteins that contain changes in amino acid residues that are not essential for activity.
  • conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g.
  • ORFX threonine
  • valine isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine.
  • a predicted nonessential amino acid residue in ORFX is replaced with another amino acid residue from the same side chain family.
  • mutations can be introduced randomly along all or part of a ORFX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for ORFX biological activity to identify mutants that retain activity.
  • a mutant ORFX protein can be assayed for (1) the ability to form protei protein interactions with other ORFX proteins, other cell-surface proteins, or biologically active portions thereof, (2) complex formation between a mutant ORFX protein and a ORFX receptor; (3) the ability of a mutant ORFX protein to bind to an intracellular target protein or biologically active portion thereof; (e.g., avidin proteins); (4) the ability to bind BRA protein; or (5) the ability to specifically bind an anti-ORFX protein antibody.
  • An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence.
  • antisense nucleic acid molecules comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire ORFX coding strand, or to only a portion thereof.
  • an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding ORFX.
  • the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding ORFX.
  • the term “noncoding region” refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).
  • antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing.
  • the antisense nucleic acid molecule can be complementary to the entire coding region of ORFX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of ORFX mRNA.
  • the antisense oligonucleotide can be complementary to the region surrounding the translation start site of ORFX mRNA.
  • An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length.
  • An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art.
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl- 2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxy
  • the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
  • the antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a ORFX protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation.
  • the hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix.
  • An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site.
  • antisense nucleic acid molecules can be modified to target selected cells and then administered systemically.
  • antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens.
  • the antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
  • the antisense nucleic acid molecule of the invention is an ⁇ -anomeric nucleic acid molecule.
  • An ⁇ -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual ⁇ -units, the strands run parallel to each other (Gaultier et al. ( 1987) Nucleic Acids Res 15 : 6625-6641 ).
  • the antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).
  • Ribozymes and PNA moieties include, by way of nonlimiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.
  • an antisense nucleic acid of the invention is a ribozyme.
  • Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
  • ribozymes e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988)
  • Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a ORFX-encoding mRNA.
  • ORFX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science
  • ORFX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the ORFX (e.g., the ORFX promoter and/or enhancers) to form triple helical structures that prevent transcription of the ORFX gene in target cells.
  • nucleotide sequences complementary to the regulatory region of the ORFX e.g., the ORFX promoter and/or enhancers
  • the nucleic acids of ORFX can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
  • the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorg Med Chem 4: 5-23).
  • peptide nucleic acids or “PNAs” refer to nucleic acid mimics, e.g., N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-amin
  • DNA mimics in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
  • the neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
  • the synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.
  • PNAs of ORFX can be used in therapeutic and diagnostic applications.
  • PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication.
  • PNAs of ORFX can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., SI nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).
  • PNAs of ORFX can be modified, e.g. , to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
  • PNA-DNA chimeras of ORFX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g. , RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity.
  • PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above).
  • the synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63.
  • a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g., 5 , -(4-methoxytrityl)amino-5 l -deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively, chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.
  • the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556;
  • oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549).
  • the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, etc.
  • the invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residue shown in FIG. 1 while still encoding a protein that maintains its ORFX-like activities and physiological functions, or a functional fragment thereof.
  • the invention includes the polypeptides encoded by the variant ORFX nucleic acids described above. In the mutant or variant protein, up to 20% or more of the residues may be so changed.
  • an ORFX -like variant that preserves ORFX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence.
  • Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.
  • the invention also includes isolated ORFX proteins, and biologically active portions thereof, or derivatives, fragments, analogs or homologs thereof. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-ORFX antibodies.
  • native ORFX proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques.
  • ORFX proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a ORFX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
  • an “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the ORFX protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
  • the language “substantially free of cellular material” includes preparations of ORFX protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced.
  • the language "substantially free of cellular material” includes preparations of ORFX protein having less than about 30% (by dry weight) of non-ORFX protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-ORFX protein, still more preferably less than about 10% of non-ORFX protein, and most preferably less than about 5% non-ORFX protein.
  • non-ORFX protein also referred to herein as a "contaminating protein”
  • the ORFX protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.
  • the language “substantially free of chemical precursors or other chemicals” includes preparations of ORFX protein in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein.
  • the language “substantially free of chemical precursors or other chemicals” includes preparations of ORFX protein having less than about 30% (by dry weight) of chemical precursors or non-ORFX chemicals, more preferably less than about 20% chemical precursors or non-ORFX chemicals, still more preferably less than about 10% chemical precursors or non-ORFX chemicals, and most preferably less than about 5% chemical precursors or non-ORFX chemicals.
  • Biologically active portions of a ORFX protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence of the ORFX protein, e.g., the amino acid sequence shown in SEQ ID NO:2 that include fewer amino acids than the full length ORFX proteins, and exhibit at least one activity of a ORFX protein.
  • biologically active portions comprise a domain or motif with at least one activity of the ORFX protein.
  • a biologically active portion of a ORFX protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length.
  • a biologically active portion of a ORFX protein of the present invention may contain at least one of the above-identified domains conserved between the FGF family of proteins.
  • other biologically active portions, in which other regions of the protein are deleted can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native ORFX protein.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in either of the sequences being compared for optimal alignment between the sequences).
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
  • a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology” is equivalent to amino acid or nucleic acid "identity").
  • the nucleic acid sequence homology may be determined as the degree of identity between two sequences.
  • sequence identity refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of comparison.
  • percentage of sequence identity is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
  • substantially identical denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.
  • percentage of positive residues is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical and conservative amino acid substitutions, as defined above, occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of positive residues.
  • ORFX chimeric or fusion proteins As used herein, a ORFX "chimeric protein” or “fusion protein” includes a ORFX polypeptide operatively linked to a non-ORFX polypeptide.
  • a "ORFX polypeptide” refers to a polypeptide having an amino acid sequence corresponding to ORFX
  • a non-ORFX polypeptide refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the ORFX protein, e.g., a protein that is different from the ORFX protein and that is derived from the same or a different organism.
  • ORFX polypeptide can correspond to all or a portion of a ORFX protein.
  • a ORFX fusion protein comprises at least one biologically active portion of a ORFX protein.
  • a ORFX fusion protein comprises at least two biologically active portions of a ORFX protein.
  • the term "operatively linked" is intended to indicate that the ORFX polypeptide and the non-ORFX polypeptide are fused in-frame to each other.
  • the non-ORFX polypeptide can be fused to the N-terminus or C-terminus of the ORFX polypeptide.
  • a ORFX fusion protein comprises a ORFX polypeptide operably linked to the extracellular domain of a second protein.
  • Such fusion proteins can be further utilized in screening assays for compounds that modulate ORFX activity (such assays are described in detail below).
  • the fusion protein is a GST-ORFX fusion protein in which the ORFX sequences are fused to the C-terminus of the GST (i.e., glutathione S -transferase) sequences.
  • GST i.e., glutathione S -transferase
  • the fusion protein is a ORFX protein containing a heterologous signal sequence at its N-terminus.
  • the native ORFX signal sequence can be removed and replaced with a signal sequence from another protein.
  • expression and/or secretion of ORFX can be increased through use of a heterologous signal sequence.
  • the fusion protein is a ORFX-immunoglobulin fusion protein in which the ORFX sequences comprising one or more domains are fused to sequences derived from a member of the immunoglobulin protein family.
  • the ORFX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between a ORFX ligand and a ORFX protein on the surface of a cell, to thereby suppress ORFX-mediated signal transduction in vivo.
  • a contemplated ORFX ligand of the invention is an ORFX receptor.
  • the ORFX-immunoglobulin fusion proteins can be used to modulate the bioavailability of a ORFX cognate ligand. Inhibition of the ORFX ligand/ORFX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating (e.g., promoting or inhibiting) cell survival. Moreover, the ORFX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-ORFX antibodies in a subject, to purify ORFX ligands, and in screening assays to identify molecules that inhibit the interaction of ORFX with a ORFX ligand.
  • a ORFX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
  • the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
  • PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992).
  • anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence
  • expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide).
  • a ORFX-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the ORFX protein.
  • the present invention also pertains to variants of the ORFX proteins that function as either ORFX agonists (mimetics) or as ORFX antagonists.
  • Variants of the ORFX protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the ORFX protein.
  • An agonist of the ORFX protein can retain substantially the same, or a subset of, the biological activities of the naturally occurring form of the ORFX protein.
  • An antagonist of the ORFX protein can inhibit one or more of the activities of the naturally occurring form of the ORFX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the ORFX protein.
  • treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the ORFX proteins.
  • Variants of the ORFX protein that function as either ORFX agonists (mimetics) or as ORFX antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the ORFX protein for ORFX protein agonist or antagonist activity.
  • a variegated library of ORFX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
  • a variegated library of ORFX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential ORFX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of ORFX sequences therein.
  • a degenerate set of potential ORFX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of ORFX sequences therein.
  • methods which can be used to produce libraries of potential ORFX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector.
  • libraries of fragments of the ORFX protein coding sequence can be used to generate a variegated population of ORFX fragments for screening and subsequent selection of variants of a ORFX protein.
  • a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a ORFX coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S 1 nuclease, and ligating the resulting fragment library into an expression vector.
  • an expression library can be derived which encodes N-terminal and internal fragments of various sizes of the ORFX protein.
  • Recrusive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify ORFX variants (Arkin and Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6:327-331).
  • the invention further encompasses antibodies and antibody fragments, such as F ab or (F ab )2,that bind immunospecifically to any of the proteins of the invention.
  • An isolated ORFX protein, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that bind ORFX using standard techniques for polyclonal and monoclonal antibody preparation.
  • Full-length ORFX protein can be used.
  • the invention provides antigenic peptide fragments of ORFX for use as immunogens.
  • the antigenic peptide encompasses an epitope of ORFX such that an antibody raised against the peptide forms a specific immune complex with ORFX.
  • the antigenic peptide may comprise at least 6 aa residues, at least 8 aa residues, at least 10 aa residues, at least 15 aa residues, at least 20 aa residues, or at least 30 aa residues.
  • epitopes encompassed by the antigenic peptide are regions of ORFX that are located on the surface of the protein, e.g., hydrophilic regions.
  • hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen, such as ORFX.
  • Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F ab and F( ab' ) 2 fragments, and an F ab expression library.
  • antibodies to human ORFX proteins are disclosed.
  • an appropriate immunogenic preparation can contain, for example, recombinantly expressed ORFX protein or a chemically synthesized ORFX polypeptide.
  • the preparation can further include an adjuvant.
  • adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), human adjuvants such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents.
  • the antibody molecules directed against ORFX can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as protein A chromatography to obtain the IgG fraction.
  • monoclonal antibody or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of ORFX.
  • a monoclonal antibody composition thus typically displays a single binding affinity for a particular ORFX protein with which it immunoreacts.
  • any technique that provides for the production of antibody molecules by continuous cell line culture may be utilized.
  • Such techniques include, but are not limited to, the hybridoma technique (see Kohler & Milstein, 1975 Nature 256: 495-497); the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al, 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al, 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).
  • Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al, 1983.
  • techniques can be adapted for the production of single-chain antibodies specific to a ORFX protein (see e.g., U.S. Patent No. 4,946,778).
  • methods can be adapted for the construction of F ab expression libraries (see e.g., Huse, et al, 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F ab fragments with the desired specificity for a ORFX protein or derivatives, fragments, analogs or homologs thereof.
  • Non-human antibodies can be "humanized" by techniques well known in the art. See e.g., U.S. Patent No. 5,225,539. Each of the above citations are incorporated herein by reference.
  • Antibody fragments that contain the idiotypes to a ORFX protein may be produced by techniques known in the art including, but not limited to: ( ) an F( ab -) 2 fragment produced by pepsin digestion of an antibody molecule; (ii) an F ab fragment generated by reducing the disulfide bridges of an F( ab -) 2 fragment; (iii) an F ab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F v fragments.
  • recombinant anti-ORFX antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
  • Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT International Application No. PCT/US86/02269; European Patent Application No. 184,187; European Patent Application No. 171 ,496; European Patent Application No. 173,494; PCT International Publication No. WO 86/01533; U.S. Pat. No. 4,816,567; European Patent Application No.
  • methods for the screening of antibodies that possess the desired specificity include, but are not limited to, enzyme-linked immunosorbent assay (ELISA) and other immunologically-mediated techniques known within the art.
  • ELISA enzyme-linked immunosorbent assay
  • selection of antibodies that are specific to a particular domain of a ORFX protein is facilitated by generation of hybridomas that bind to the fragment of a ORFX protein possessing such a domain.
  • Antibodies that are specific for one or more domains within a ORFX protein e.g., the domain spanning the first fifty amino-terminal residues specific to ORFX when compared to FGF-9, or derivatives, fragments, analogs or homologs thereof, are also provided herein.
  • Anti-ORFX antibodies may be used in methods known within the art relating to the localization and/or quantisation of a ORFX protein (e.g., for use in measuring levels of the ORFX protein within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like).
  • antibodies for ORFX proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antibody derived binding domain are utilized as pharmacologically-active compounds [hereinafter "Therapeutics"].
  • An anti-ORFX antibody (e.g., monoclonal antibody) can be used to isolate ORFX by standard techniques, such as affinity chromatography or immunoprecipitation.
  • An anti-ORFX antibody can facilitate the purification of natural ORFX from cells and of recombinantly produced ORFX expressed in host cells.
  • an anti-ORFX antibody can be used to detect ORFX protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the ORFX protein.
  • Anti-ORFX antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen.
  • Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance.
  • detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase;
  • suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin;
  • suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin;
  • an example of a luminescent material includes luminol;
  • bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125 1, 13
  • ORFX Recombinant Vectors and Host Cells Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding ORFX protein, or derivatives, fragments, analogs or homologs thereof.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector wherein additional DNA segments can be ligated into the viral genome.
  • vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors
  • the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively linked to the nucleic acid sequence to be expressed.
  • "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g. , ORFX proteins, mutant forms of ORFX, fusion proteins, etc.).
  • the recombinant expression vectors of the invention can be designed for expression of ORFX in prokaryotic or eukaryotic cells.
  • ORFX can be expressed in bacterial cells such as E. coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990).
  • the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein.
  • Such fusion vectors typically serve three purposes: (1) to increase expression of recombinant protein; (2) to increase the solubility of the recombinant protein; and (3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
  • a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
  • enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
  • Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E.
  • coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 1 Id (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
  • One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128.
  • nucleic acid sequence of the nucleic acid is altered by standard DNA synthesis techniques.
  • the ORFX expression vector is a yeast expression vector.
  • yeast expression vectors for expression in yeast S. cerivisae include pYepSecl (Baldari, et al., (1987) EMBOJ 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif), and picZ (InVitrogen Corp, San Diego, Calif).
  • ORFX can be expressed in insect cells using baculovirus expression vectors.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al. (1983) Mol Cell Biol 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).
  • a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector.
  • mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J 6: 187-195).
  • the expression vector's control functions are often provided by viral regulatory elements.
  • commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.
  • suitable expression systems for both prokaryotic and eukaryotic cells are examples of mammalian expression vector.
  • the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev
  • lymphoid-specific promoters Calame and Eaton (1988) Adv Immunol 43:235-275
  • promoters of T cell receptors Winoto and Baltimore (1989) EMBO J 8:729-733
  • immunoglobulins Bonerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748
  • neuron-specific promoters e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477
  • pancreas-specific promoters Edlund et al. (1985) Science
  • mammary gland-specific promoters e.g., milk whey promoter; U.S. Pat. No. 4,873 ,316 and European Application Publication No. 264, 166.
  • Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the ⁇ -fetoprotein promoter (Campes and Tilghman (1989) Genes Dev 3:537-546).
  • the invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to ORFX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA.
  • the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
  • a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
  • a host cell can be any prokaryotic or eukaryotic cell.
  • ORFX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
  • transformation and transfection are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, D ⁇ A ⁇ -dextran-mediated transfection, lipofection, or electroporation.
  • Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), and other laboratory manuals.
  • a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
  • selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate.
  • Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding ORFX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
  • a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) ORFX protein. Accordingly, the invention further provides methods for producing ORFX protein using the host cells of the invention. In one embodiment, 8621
  • the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding ORFX has been introduced) in a suitable medium such that ORFX protein is produced.
  • the method further comprises isolating ORFX from the medium or the host cell.
  • the host cells of the invention can also be used to produce nonhuman transgenic animals.
  • a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which ORFX-coding sequences have been introduced.
  • Such host cells can then be used to create non-human transgenic animals in which exogenous ORFX sequences have been introduced into their genome or homologous recombinant animals in which endogenous ORFX sequences have been altered.
  • Such animals are useful for studying the function and/or activity of ORFX and for identifying and/or evaluating modulators of ORFX activity.
  • a "transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
  • Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
  • a transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
  • a "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous ORFX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
  • a transgenic animal of the invention can be created by introducing ORFX-encoding nucleic acid into the male pronuclei of a fertilized oocyte, e.g. , by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
  • a nonhuman homologue of the human ORFX gene such as a mouse ORFX gene, can be isolated based on hybridization to the human ORFX cDNA (described further above) and used as a transgene.
  • Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
  • a tissue-specific regulatory sequence(s) can be operably linked to the ORFX transgene to direct expression of ORFX protein to particular cells.
  • a transgenic founder animal can be identified based upon the presence of the ORFX transgene in its genome and/or expression of ORFX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding ORFX can further be bred to other transgenic animals carrying other transgenes.
  • a vector which contains at least a portion of a ORFX gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the ORFX gene.
  • the vector is designed such that, upon homologous recombination, the endogenous ORFX gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
  • the vector can be designed such that, upon homologous recombination, the endogenous ORFX gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous ORFX protein).
  • the altered portion of the ORFX gene is flanked at its 5 * and 3' ends by additional nucleic acid of the ORFX gene to allow for homologous recombination to occur between the exogenous ORFX gene carried by the vector and an endogenous ORFX gene in an embryonic stem cell.
  • the additional flanking ORFX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene.
  • flanking DNA both at the 5' and 3' ends
  • flanking DNA both at the 5' and 3' ends
  • the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced ORFX gene has homologously recombined with the endogenous ORFX gene are selected (see e.g., Li et al. (1992) Cell 69:915).
  • the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras.
  • chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
  • Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene.
  • transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene.
  • a system is the cre/loxP recombinase system of bacteriophage PI .
  • cre/loxP recombinase system of bacteriophage PI .
  • a recombinase system is the FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. ( 1991 ) Science 251 :1351-1355.
  • mice containing transgenes encoding both the Cre recombinase and a selected protein are required.
  • Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
  • Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 385:810-813.
  • a cell e.g., a somatic cell
  • the quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated.
  • the reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal.
  • the offspring borne of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.
  • ORFX nucleic acid molecules, ORFX proteins, and anti-ORFX antibodies can be incorporated into pharmaceutical compositions suitable for administration.
  • Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference.
  • Such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
  • routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, gly
  • the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a ORFX protein or anti-ORFX antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • the active compound e.g., a ORFX protein or anti-ORFX antibody
  • dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
  • Systemic administration can also be by transmucosal or transdermal means.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
  • the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved.
  • the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
  • Gene therapy vectors can be delivered to a subject by any of a number of routes, e.g., as described in U.S. Patent Nos. 5,703,055. Delivery can thus also include, e.g., intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or stereotactic injection (see e.g., Chen et al. (1994) PNAS 91 :3054-3057).
  • the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.
  • compositions can be included in a container, pack, or dispenser together with instructions for administration. Additional Uses and Methods of the Invention
  • nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: (a) screening assays; (b) detection assays (e.g., chromosomal mapping, cell and tissue typing, forensic biology), (c) predictive medicine (e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics); and (d) methods of treatment (e.g., therapeutic and prophylactic).
  • detection assays e.g., chromosomal mapping, cell and tissue typing, forensic biology
  • predictive medicine e.g., diagnostic assays, prognostic assays, monitoring clinical trials, and pharmacogenomics
  • methods of treatment e.g., therapeutic and prophylactic.
  • the isolated nucleic acid molecules of the invention can be used to express ORFX protein (e.g. , via a recombinant expression vector in a host cell in gene therapy applications), to detect ORFX mRNA (e.g., in a biological sample) or a genetic lesion in a ORFX gene, and to modulate ORFX activity, as described further below.
  • ORFX proteins can be used to screen drugs or compounds that modulate the ORFX activity or expression as well as to treat disorders characterized by insufficient or excessive production of ORFX protein, for example proliferative or differentiative disorders, or production of ORFX protein forms that have decreased or aberrant activity compared to ORFX wild type protein.
  • the anti-ORFX antibodies of the invention can be used to detect and isolate ORFX proteins and modulate ORFX activity. This invention further pertains to novel agents identified by the above described screening assays and uses thereof for treatments as described herein.
  • the invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to ORFX proteins or have a stimulatory or inhibitory effect on, for example, ORFX expression or ORFX activity.
  • modulators i.e., candidate or test compounds or agents (e.g., peptides, peptidomimetics, small molecules or other drugs) that bind to ORFX proteins or have a stimulatory or inhibitory effect on, for example, ORFX expression or ORFX activity.
  • the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of a ORFX protein or polypeptide or biologically active portion thereof.
  • the test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound” library method; and synthetic library methods using affinity chromatography selection.
  • the biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) Anticancer Drug Des 12:145).
  • an assay is a cell-based assay in which a cell which expresses a membrane-bound form of ORFX protein, or a biologically active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a ORFX protein determined.
  • the cell for example, can of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the ORFX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the ORFX protein or biologically active portion thereof can be determined by detecting the labeled compound in a complex.
  • test compounds can be labeled with 125 1, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting.
  • test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
  • the assay comprises contacting a cell which expresses a membrane-bound form of ORFX protein, or a biologically active portion thereof, on the cell surface with a known compound which binds ORFX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a ORFX protein, wherein determining the ability of the test compound to interact with a ORFX protein comprises determining the ability of the test compound to preferentially bind to ORFX or a biologically active portion thereof as compared to the known compound.
  • an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of ORFX protein, or a biologically active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (e.g. , stimulate or inhibit) the activity of the ORFX protein or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of ORFX or a biologically active portion thereof can be accomplished, for example, by determining the ability of the ORFX protein to bind to or interact with a ORFX target molecule.
  • a "target molecule” is a molecule with which a ORFX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a ORFX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule.
  • a ORFX target molecule can be a non-ORFX molecule or a ORFX protein or polypeptide of the present invention.
  • a ORFX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal (e.g., a signal generated by binding of a compound to a membrane-bound ORFX molecule) through the cell membrane and into the cell.
  • the target for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with ORFX.
  • Determining the ability of the ORFX protein to bind to or interact with a ORFX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the ORFX protein to bind to or interact with a ORFX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (i.e.
  • a reporter gene comprising a ORFX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., luciferase
  • a cellular response for example, cell survival, cellular differentiation, or cell proliferation.
  • an assay of the present invention is a cell-free assay comprising contacting a ORFX protein or biologically active portion thereof with a test compound and determining the ability of the test compound to bind to the ORFX protein or biologically active portion thereof. Binding of the test compound to the ORFX protein can be determined either directly or indirectly as described above.
  • the assay comprises contacting the ORFX protein or biologically active portion thereof with a known compound which binds ORFX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a ORFX protein, wherein determining the ability of the test compound to interact with a ORFX protein comprises determining the ability of the test compound to preferentially bind to ORFX or biologically active portion thereof as compared to the known compound.
  • an assay is a cell-free assay comprising contacting ORFX protein or biologically active portion thereof with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the activity of the ORFX protein or biologically active portion thereof. Determining the ability of the test compound to modulate the activity of ORFX can be accomplished, for example, by determining the ability of the ORFX protein to bind to a ORFX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of ORFX can be accomplished by determining the ability of the ORFX protein further modulate a ORFX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as previously described.
  • the cell-free assay comprises contacting the ORFX protein or biologically active portion thereof with a known compound which binds ORFX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a ORFX protein, wherein determining the ability of the test compound to interact with a ORFX protein comprises determining the ability of the ORFX protein to preferentially bind to or modulate the activity of a ORFX target molecule.
  • the cell-free assays of the present invention are amenable to use of both the soluble form or the membrane-bound form of ORFX.
  • solubilizing agent such that the membrane-bound form of ORFX is maintained in solution.
  • solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton ® X-100, Triton ® X-l 14,
  • Thesit ® Isotridecypoly(ethylene glycol ether)-,, N-dodecyl ⁇ N,N-dimethyl-3-ammonio-l -propane sulfonate, 3-(3-cholamidopropyl)dimethylamminiol-l -propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy- 1 -propane sulfonate (CHAPSO).
  • CHAPS 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy- 1 -propane sulfonate
  • a test compound to ORFX or interaction of ORFX with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes.
  • a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix.
  • GST-ORFX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or ORFX protein, and the mixture is incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above.
  • glutathione sepharose beads Sigma Chemical, St. Louis, MO
  • glutathione derivatized microtiter plates glutathione derivatized microtiter plates
  • the complexes can be dissociated from the matrix, and the level of ORFX binding or activity determined using standard techniques.
  • Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention.
  • ORFX or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
  • Biotinylated ORFX or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, 111.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
  • antibodies reactive with ORFX or target molecules can be derivatized to the wells of the plate, and unbound target or ORFX trapped in the wells by antibody conjugation.
  • Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the ORFX or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the ORFX or target molecule.
  • modulators of ORFX expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of ORFX mRNA or protein in the cell is determined.
  • the level of expression of ORFX mRNA or protein in the presence of the candidate compound is compared to the level of expression of ORFX mRNA or protein in the absence of the candidate compound.
  • the candidate compound can then be identified as a modulator of ORFX expression based on this comparison. For example, when expression of ORFX mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of ORFX mRNA or protein expression.
  • ORFX mRNA or protein when expression of ORFX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of ORFX mRNA or protein expression.
  • the level of ORFX mRNA or protein expression in the cells can be determined by methods described herein for detecting ORFX mRNA or protein.
  • the ORFX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al.
  • ORFX-binding proteins or "ORFX-bp"
  • ORFX-binding proteins are also likely to be involved in the propagation of signals by the ORFX proteins as, for example, upstream or downstream elements of the ORFX pathway.
  • the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
  • the assay utilizes two different DNA constructs.
  • the gene that codes for ORFX is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g. , GAL-4).
  • a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein (“prey" or "sample”) is fused to a gene that codes for the activation domain of the known transcription factor.
  • the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g. , LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with ORFX.
  • a reporter gene e.g. , LacZ
  • Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with ORFX.
  • cDNA sequences identified herein can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample.
  • the ORFX sequences of the present invention can also be used to identify individuals from minute biological samples.
  • an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification.
  • the sequences of the present invention are useful as additional DNA markers for RFLP ("restriction fragment length polymorphisms," described in U.S. Pat. No. 5,272,057).
  • sequences of the present invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome.
  • the ORFX sequences described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
  • Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.
  • the sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue.
  • the ORFX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).
  • SNPs single nucleotide polymorphisms
  • RFLPs restriction fragment length polymorphisms
  • each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals.
  • the noncoding sequences of SEQ ID NO:2 «-l (wherein n 1 to 3161), as described above, can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences are used, a more appropriate number of primers for positive individual identification would be 500-2,000.
  • the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining ORFX protein and/or nucleic acid expression as well as ORFX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant ORFX expression or activity.
  • a biological sample e.g., blood, serum, cells, tissue
  • the invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with ORFX protein, nucleic acid expression or activity. For example, mutations in a ORFX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with ORFX protein, nucleic acid expression or activity.
  • Another aspect of the invention provides methods for determining ORFX protein, nucleic acid expression or ORFX activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics").
  • Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)
  • agents e.g., drugs
  • Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of ORFX in clinical trials.
  • DNA-based identification techniques can also be used in forensic biology.
  • Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means for positively identifying, for example, a perpetrator of a crime.
  • PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene.
  • the amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
  • sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, that can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular individual).
  • an "identification marker” i.e. another DNA sequence that is unique to a particular individual.
  • actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.
  • Sequences targeted to noncoding regions of SEQ ID NOs: are particularly appropriate for this use as greater numbers of polymorphisms occur in the noncoding regions, making it easier to differentiate individuals using this technique.
  • the ORFX sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or label-able probes that can be used, for example, in an in situ hybridization technique, to identify a specific tissue, e.g., brain tissue, etc. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such ORFX probes can be used to identify tissue by species and/or by organ type.
  • these reagents e.g., ORFX primers or probes can be used to screen tissue culture for contamination (i.e. screen for the presence of a mixture of different types of cells in a culture).
  • the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining ORFX protein and/or nucleic acid expression as well as ORFX activity, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant ORFX expression or activity.
  • a biological sample e.g., blood, serum, cells, tissue
  • the invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with ORFX protein, nucleic acid expression or activity. For example, mutations in a ORFX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with ORFX protein, nucleic acid expression or activity.
  • Another aspect of the invention provides methods for determining ORFX protein, nucleic acid expression or ORFX activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics").
  • Pharmacogenomics allows for the selection of agents (e.g., drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual (e.g., the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.)
  • agents e.g., drugs
  • Yet another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of ORFX in clinical trials.
  • agents e.g., drugs, compounds
  • An ORFX polypeptide may be used to identify an interacting polypeptide a sample or tissue.
  • the method comprises contacting the sample or tissue with ORFX, allowing formation of a complex between the ORFX polypeptide and the interacting polypeptide, and detecting the complex, if present.
  • the proteins of the invention may be used to stimulate production of antibodies specifically binding the proteins. Such antibodies may be used in immunodiagnostic procedures to detect the occurrence of the protein in a sample.
  • the proteins of the invention may be used to stimulate cell growth and cell proliferation in conditions in which such growth would be favorable. An example would be to counteract toxic side effects of chemotherapeutic agents on, for example, hematopoiesis and platelet formation, linings of the gastrointestinal tract, and hair follicles. They may also be used to stimulate new cell growth in neurological disorders including, for example, Alzheimer's disease.
  • antagonistic treatments may be administered in which an antibody specifically binding the ORFX -like proteins of the invention would abrogate the specific growth-inducing effects of the proteins.
  • Such antibodies may be useful, for example, in the treatment of proliferative disorders including various tumors and benign hyperplasias.
  • Polynucleotides or oligonucleotides corresponding to any one portion of the ORFX nucleic acids of SEQ ID NO:2 «-l may be used to detect DNA containing a corresponding ORF gene, or detect the expression of a corresponding ORFX gene, or ORFX-like gene.
  • an ORFX nucleic acid expressed in a particular cell or tissue, as noted in Table 2 can be used to identify the presence of that particular cell type.
  • An exemplary method for detecting the presence or absence of ORFX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting ORFX protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes ORFX protein such that the presence of ORFX is detected in the biological sample.
  • a compound or an agent capable of detecting ORFX protein or nucleic acid e.g., mRNA, genomic DNA
  • An agent for detecting ORFX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to ORFX mRNA or genomic DNA.
  • Other suitable probes for use in the diagnostic assays of the invention are described herein.
  • An agent for detecting ORFX protein is an antibody capable of binding to ORFX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal.
  • an intact antibody, or a fragment thereof can be used.
  • labeled with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
  • indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
  • biological sample is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect ORFX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
  • in vitro techniques for detection of ORFX mRNA include Northern hybridizations and in situ hybridizations.
  • in vitro techniques for detection of ORFX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
  • In vitro techniques for detection of ORFX genomic DNA include Southern hybridizations.
  • in vivo techniques for detection of ORFX protein include introducing into a subject a labeled anti-ORFX antibody.
  • the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
  • the biological sample contains protein molecules from the test subject.
  • the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
  • a preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
  • the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting ORFX protein, mRNA, or genomic DNA, such that the presence of ORFX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of ORFX protein, mRNA or genomic DNA in the control sample with the presence of ORFX protein, mRNA or genomic DNA in the test sample.
  • kits for detecting the presence of ORFX in a biological sample can comprise: a labeled compound or agent capable of detecting ORFX protein or mRNA in a biological sample; means for determining the amount of ORFX in the sample; and means for comparing the amount of ORFX in the sample with a standard.
  • the compound or agent can be packaged in a suitable container.
  • the kit can further comprise instructions for using the kit to detect ORFX protein or nucleic acid.
  • the diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant ORFX expression or activity.
  • the assays described herein such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with ORFX protein, nucleic acid expression or activity in, e.g., proliferative or differentiative disorders such as hyperplasias, tumors, restenosis, psoriasis, Dupuytren's T U 00/08621
  • the prognostic assays can be utilized to identify a subject having or at risk for developing a disease or disorder.
  • the present invention provides a method for identifying a disease or disorder associated with aberrant ORFX expression or activity in which a test sample is obtained from a subject and ORFX protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of ORFX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant ORFX expression or activity.
  • a test sample refers to a biological sample obtained from a subject of interest.
  • a test sample can be a biological fluid (e.g., serum), cell sample, or tissue.
  • the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant ORFX expression or activity.
  • an agent e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate
  • agents for a disorder such as a proliferative disorder, differentiative disorder, glia-associated disorders, etc.
  • the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant ORFX expression or activity in which a test sample is obtained and ORFX protein or nucleic acid is detected (e.g. , wherein the presence of ORFX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant ORFX expression or activity.)
  • the methods of the invention can also be used to detect genetic lesions in a ORFX gene, thereby determining if a subject with the lesioned gene is at risk for, or suffers from, a proliferative disorder, differentiative disorder, glia-associated disorder, etc.
  • the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding a ORFX-protein, or the mis-expression of the ORFX gene.
  • such genetic lesions can be detected by ascertaining the existence of at least one of (1) a deletion of one or more nucleotides from a ORFX gene; (2) an addition of one or more nucleotides to a ORFX gene; (3) a substitution of one or more nucleotides of a ORFX gene, (4) a chromosomal 473
  • ORFX gene rearrangement of a ORFX gene; (5) an alteration in the level of a messenger RNA transcript of a ORFX gene, (6) aberrant modification of a ORFX gene, such as of the methylation pattern of the genomic DNA, (7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of a ORFX gene, (8) a non-wild type level of a ORFX-protein, (9) allelic loss of a ORFX gene, and (10) inappropriate post-translational modification of a ORFX-protein.
  • assay techniques known in the art which can be used for detecting lesions in a ORFX gene.
  • a preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
  • any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.
  • detection of the lesion involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241 -.1077-1080; and Nakazawa et al.
  • PCR polymerase chain reaction
  • LCR ligation chain reaction
  • This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to a ORFX gene under conditions such that hybridization and amplification of the ORFX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
  • nucleic acid e.g., genomic, mRNA or both
  • Alternative amplification methods include: self sustained sequence replication (Guatelli et al., 1990, Proc Natl Acad Sci USA 87:1874-1878), transcriptional amplification system
  • sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA.
  • sequence specific ribozymes see, for example, U.S. Pat. No. 5,493,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
  • genetic mutations in ORFX can be identified by hybridizing a sample and control nucleic acids, e.g. , DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotides probes (Cronin et al. (1996) Human Mutation 1: 244-255; Kozal et al. (1996) Nature Medicine 2: 753-759).
  • genetic mutations in ORFX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin et al. above. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes.
  • This step allows the identification of point mutations.
  • This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected.
  • Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
  • any of a variety of sequencing reactions known in the art can be used to directly sequence the ORFX gene and detect mutations by comparing the sequence of the sample ORFX with the corresponding wild-type (control) sequence.
  • Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert (1977) PNAS 74:560 or Sanger (1977) PNAS 74:5463.
  • any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve et al., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publ. No. WO 94/16101; Cohen et al.
  • RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S 1 nuclease to enzymatically digesting the mismatched regions.
  • either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation.
  • control DNA or RNA can be labeled for detection.
  • the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in ORFX cDNAs obtained from samples of cells.
  • DNA mismatch repair enzymes
  • coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).
  • a probe based on a ORFX sequence e.g., a wild-type ORFX sequence, is hybridized to a cDNA or other DNA product from a test cell(s).
  • the duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Pat. No. 5,459,039.
  • alterations in electrophoretic mobility will be used to identify mutations in ORFX genes.
  • single strand conformation polymorphism SSCP
  • SSCP single strand conformation polymorphism
  • Single-stranded DNA fragments of sample and control ORFX nucleic acids will be denatured and allowed to renature.
  • the secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
  • the DNA fragments may be labeled or detected with labeled probes.
  • the sensitivity of the assay may be enhanced by using RNA, rather than DNA, in which the secondary structure is more sensitive to a change in sequence.
  • the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, e.g., Keen et al. (1991) Trends Genet 7:5.
  • the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE).
  • DGGE denaturing gradient gel electrophoresis
  • DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR.
  • a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA. See, e.g., Rosenbaum and Reissner (1987) Biophys Chem 265:12753.
  • oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit hybridization only if a perfect match is found. See, e.g., Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc Natl Acad. Sci USA 86:6230.
  • Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
  • Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11 :238).
  • amplification may also be performed using Taq ligase for amplification. See, e.g., Barany (1991) Proc Natl Acad Sci USA 88:189. In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
  • the methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a ORFX gene.
  • any cell type or tissue preferably peripheral blood leukocytes, in which ORFX is expressed may be utilized in the prognostic assays described herein.
  • any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.
  • Agents, or modulators that have a stimulatory or inhibitory effect on ORFX activity can be administered to individuals to treat (prophylactically or therapeutically) disorders (e.g., neurological, cancer- related or gestational disorders) associated with aberrant ORFX activity.
  • disorders e.g., neurological, cancer- related or gestational disorders
  • the pharmacogenomics i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug
  • Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug.
  • the pharmacogenomics of the individual permits the selection of effective agents (e.g., drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of ORFX protein, expression of ORFX nucleic acid, or mutation content of ORFX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
  • G6PD glucose-6-phosphate dehydrogenase
  • the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action.
  • drug metabolizing enzymes e.g., N-acetyltransferase 2 (NAT 2) and cytochrome P450 enzymes CYP2D6 and CYP2C19
  • NAT 2 N-acetyltransferase 2
  • CYP2D6 and CYP2C19 cytochrome P450 enzymes
  • CYP2D6 and CYP2C19 cytochrome P450 enzymes
  • These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations.
  • the gene coding for CYP2D6 is highly polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. The other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
  • ORFX protein activity of ORFX protein, expression of ORFX nucleic acid, or mutation content of ORFX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
  • pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a ORFX modulator, such as a modulator identified by one of the exemplary screening assays described herein.
  • a ORFX modulator such as a modulator identified by one of the exemplary screening assays described herein.
  • ORFX e.g., the ability to modulate aberrant cell proliferation and/or differentiation
  • agents e.g., drugs, compounds
  • the effectiveness of an agent determined by a screening assay as described herein to increase ORFX gene expression, protein levels, or upregulate ORFX activity can be monitored in clinical trials of subjects exhibiting decreased ORFX gene expression, protein levels, or downregulated ORFX activity.
  • the effectiveness of an agent determined by a screening assay to decrease ORFX gene expression, protein levels, or downregulate ORFX activity can be monitored in clinical trials of subjects exhibiting increased ORFX gene expression, protein levels, or upregulated
  • ORFX activity In such clinical trials, the expression or activity of ORFX and, preferably, other genes that have been implicated in, for example, a proliferative or neurological disorder, can be used as a "read out" or marker of the responsiveness of a particular cell.
  • genes including ORFX, that are modulated in cells by treatment with an agent (e.g., compound, drug or small molecule) that modulates ORFX activity (e.g., identified in a screening assay as described herein) can be identified.
  • an agent e.g., compound, drug or small molecule
  • ORFX activity e.g., identified in a screening assay as described herein
  • cells can be isolated and RNA prepared and analyzed for the levels of expression of ORFX and other genes implicated in the disorder.
  • the levels of gene expression i.e., a gene expression pattern
  • the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
  • the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, protein, peptide, nucleic acid, peptidomimetic, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (/ ' ) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a ORFX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the ORFX protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the ORFX protein, mRNA, or genomic DNA in the pre-administration sample with the ORFX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly.
  • an agent
  • increased administration of the agent may be desirable to increase the expression or activity of ORFX to higher levels than detected, i.e., to increase the effectiveness of the agent.
  • decreased administration of the agent may be desirable to decrease expression or activity of ORFX to lower levels than detected, i.e., to decrease the effectiveness of the agent.
  • the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant ORFX expression or activity.
  • Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize (i.e., reduce or inhibit) activity.
  • Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner.
  • Therapeutics that may be utilized include, but are not limited to, ( ) a ORFX polypeptide, or analogs, derivatives, fragments or homologs thereof; (ii) antibodies to a ORFX peptide; (iii) nucleic acids encoding a ORFX peptide; (iv) administration of antisense nucleic acid and nucleic acids that are "dysfunctional" (i.e., due to a heterologous insertion within the coding sequences of coding sequences to a ORFX peptide) that are utilized to "knockout" endogenous function of a ORFX peptide by homologous recombination (see, e.g., Capecchi, 1989, Science 244: 1288-1292); or (v) modulators (i.e., inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between a ORFX peptide and
  • Therapeutics that increase (i.e., are agonists to) activity may be administered in a therapeutic or prophylactic manner.
  • Therapeutics that may be utilized include, but are not limited to, a ORFX peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.
  • Increased or decreased levels can be readily detected by quantifying peptide and/or RNA, by obtaining a patient tissue sample (e.g., from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of a ORFX peptide).
  • tissue sample e.g., from biopsy tissue
  • assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of a ORFX peptide).
  • Methods that are well-known within the art include, but are not limited to, immunoassays (e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, etc.).
  • immunoassays e.g., by Western blot analysis, immunoprecipitation followed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.
  • hybridization assays to detect expression of mRNAs (e.g., Northern assays, dot blots, in situ hybridization, etc.).
  • the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant ORFX expression or activity, by administering to the subject an agent that modulates ORFX expression or at least one ORFX activity.
  • Subjects at risk for a disease that is caused or contributed to by aberrant ORFX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein.
  • Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the ORFX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
  • a ORFX agonist or ORFX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.
  • the modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of ORFX protein activity associated with the cell.
  • An agent that modulates ORFX protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ligand of a ORFX protein, a peptide, a ORFX peptidomimetic, or other small molecule.
  • the agent stimulates one or more ORFX protein activity. Examples of such stimulatory agents include active ORFX protein and a nucleic acid molecule encoding ORFX that has been introduced into the cell.
  • the agent inhibits one or more ORFX protein activity.
  • inhibitory agents include antisense ORFX nucleic acid molecules and anti-ORFX antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject).
  • the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a ORFX protein or nucleic acid molecule.
  • the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) ORFX expression or activity.
  • an agent e.g., an agent identified by a screening assay described herein
  • the method involves administering a ORFX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant ORFX expression or activity.
  • suitable in vitro or in vivo assays are utilized to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.
  • in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s).
  • Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects.
  • suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects.
  • any of the animal model system known in the art may be used prior to administration to human subjects.
  • ORFX polypeptides are expressed in cancerous cells (see, e.g., Tables 1 and 2). Accordingly, the corresponding ORF protein is involved in the regulation of cell proliferation. Accordingly, Therapeutics of the present invention may be useful in the therapeutic or prophylactic treatment of diseases or disorders that are associated with cell hyperproliferation and/or loss of control of cell proliferation (e.g., cancers, malignancies and tumors). For a review of such hyperproliferation disorders, see e.g., Fishman, et al, 1985. MEDICINE, 2nd ed., J.B. Lippincott Co., Philadelphia, PA.
  • Therapeutics of the present invention may be assayed by any method known within the art for efficacy in treating or preventing malignancies and related disorders.
  • Such assays include, but are not limited to, in vitro assays utilizing transformed cells or cells derived from the patient's tumor, as well as in vivo assays using animal models of cancer or malignancies.
  • Potentially effective Therapeutics are those that, for example, inhibit the proliferation of tumor-derived or transformed cells in culture or cause a regression of tumors in animal models, in comparison to the controls.
  • cancer or malignancy may subsequently be treated or prevented by the administration of a Therapeutic that serves to modulate protein function.
  • the Therapeutics of the present invention that are effective in the therapeutic or prophylactic treatment of cancer or malignancies may also be administered for the treatment of pre-malignant conditions and/or to prevent the progression of a pre-malignancy to a neoplastic or malignant state.
  • Such prophylactic or therapeutic use is indicated in conditions known or suspected of preceding progression to neoplasia or cancer, in particular, where non-neoplastic cell growth consisting of hyperplasia, metaplasia or, most particularly, dysplasia has occurred.
  • non-neoplastic cell growth consisting of hyperplasia, metaplasia or, most particularly, dysplasia has occurred.
  • Hyperplasia is a form of controlled cell proliferation involving an increase in cell number in a tissue or organ, without significant alteration in its structure or function. For example, it has been demonstrated that endometrial hyperplasia often precedes endometrial cancer. Metaplasia is a form of controlled cell growth in which one type of mature or fully differentiated cell substitutes for another type of mature cell. Metaplasia may occur in epithelial or connective tissue cells. Dysplasia is generally considered a precursor of cancer, and is found mainly in the epithelia. Dysplasia is the most disorderly form of non-neoplastic cell growth, and involves a loss in individual cell uniformity and in the architectural orientation of cells.
  • Dysplasia characteristically occurs where there exists chronic irritation or inflammation, and is often found in the cervix, respiratory passages, oral cavity, and gall bladder.
  • abnormal cell growth characterized as hyperplasia, metaplasia, or dysplasia
  • Characteristics of a transformed phenotype include, but are not limited to: (/) morphological changes; (ii) looser substratum attachment; (iii) loss of cell-to-cell contact inhibition; (iv) loss of anchorage dependence; (v) protease release; (vi) increased sugar transport; (vii) decreased serum requirement; (viii) expression of fetal antigens, (ix) disappearance of the 250 kDal cell-surface protein, and the like. See e.g., Richards, et al, 1986. MOLECULAR PATHOLOGY, W.B. Saunders Co., Philadelphia, PA.
  • a patient that exhibits one or more of the following predisposing factors for malignancy is treated by administration of an effective amount of a Therapeutic: (i) a chromosomal translocation associated with a malignancy (e.g., the Philadelphia chromosome (bcrlabt) for chronic myelogenous leukemia and t( 14; 18) for follicular lymphoma, etc.); (ii) familial polyposis or Gardner's syndrome (possible forerunners of colon cancer); (iii) monoclonal gammopathy of undetermined significance (a possible precursor of multiple myeloma) and (iv) a first degree kinship with persons having a cancer or pre-cancerous disease showing a Mendelian (genetic) inheritance pattern (e.g., familial polyposis of the colon, Gardner's syndrome, hereditary exostosis, polyendocrine adenomatosis, Peutz-Jeghers syndrome
  • a Therapeutic of the present invention is administered to a human patient to prevent the progression to breast, colon, lung, pancreatic, or uterine cancer, or melanoma or sarcoma. Hyperproliferative and dysproliferative disorders
  • a Therapeutic is administered in the therapeutic or prophylactic treatment of hyperproliferative or benign dysproliferative disorders.
  • the efficacy in treating or preventing hyperproliferative diseases or disorders of a Therapeutic of the present invention may be assayed by any method known within the art.
  • Such assays include in vitro cell proliferation assays, in vitro or in vivo assays using animal models of hyperproliferative diseases or disorders, or the like.
  • Potentially effective Therapeutics may, for example, promote cell proliferation in culture or cause growth or cell proliferation in animal models in comparison to controls.
  • Specific embodiments of the present invention are directed to the treatment or prevention of cirrhosis of the liver (a condition in which scarring has overtaken normal liver regeneration processes); treatment of keloid (hypertrophic scar) formation causing disfiguring of the skin in which the scarring process interferes with normal renewal; psoriasis (a common skin condition characterized by excessive proliferation of the skin and delay in proper cell fate determination); benign tumors; fibrocystic conditions and tissue hypertrophy (e.g., benign prostatic hypertrophy).
  • Therapeutics of the invention may be effective in treating or preventing neurodegenerative disease.
  • Therapeutics of the present invention that modulate the activity of an aforementioned protein involved in neurodegenerative disorders can be assayed by any method known in the art for efficacy in treating or preventing such neurodegenerative diseases and disorders.
  • Such assays include in vitro assays for regulated cell maturation or inhibition of apoptosis or in vivo assays using animal models of neurodegenerative diseases or disorders, or any of the assays described below.
  • Potentially effective Therapeutics for example but not by way of limitation, promote regulated cell maturation and prevent cell apoptosis in culture, or reduce neurodegeneration in animal models in comparison to controls.
  • a neurodegenerative disease or disorder Once a neurodegenerative disease or disorder has been shown to be amenable to treatment by modulation activity, that neurodegenerative disease or disorder can be treated or prevented by administration of a Therapeutic that modulates activity.
  • Such diseases include all degenerative disorders involved with aging, especially osteoarthritis and neurodegenerative disorders.
  • Some ORFX can be associated with disorders related to organ transplantation, in particular but not limited to organ rejection.
  • Therapeutics of the invention particularly those that modulate (or supply) activity, may be effective in treating or preventing diseases or disorders related to organ transplantation.
  • Therapeutics of the invention (particularly Therapeutics that modulate the levels or activity of an aforementioned protein) can be assayed by any method known in the art for efficacy in treating or preventing such diseases and disorders related to organ transplantation.
  • Such assays include in vitro assays for using cell culture models as described below, or in vivo assays using animal models of diseases and disorders related to organ transplantation, see e.g., below.
  • Potentially effective Therapeutics for example but not by way of limitation, reduce immune rejection responses in animal models in comparison to controls.
  • diseases and disorders related to organ transplantation are shown to be amenable to treatment by modulation of activity, such diseases or disorders can be treated or prevented by administration of a Therapeutic that modulates activity.
  • GENX has been implicated in cardiovascular disorders, including in atherosclerotic plaque formation.
  • Diseases such as cardiovascular disease, including cerebral thrombosis or hemorrhage, ischemic heart or renal disease, peripheral vascular disease, or thrombosis of other major vessel, and other diseases, including diabetes mellitus, hypertension, hypothyroidism, cholesterol ester storage disease, systemic lupus erythematosus, homocysteinemia, and familial protein or lipid processing diseases, and the like, are either directly or indirectly associated with atherosclerosis. Accordingly, Therapeutics of the invention, particularly those that modulate (or supply) activity or formation may be effective in treating or preventing atherosclerosis-associated diseases or disorders. Therapeutics of the invention (particularly Therapeutics that modulate the levels or activity) can be assayed by any method known in the art, including those described below, for efficacy in treating or preventing such diseases and disorders.
  • a limited and non-exclusive list of animal models includes knockout mice for premature atherosclerosis (Kurabayashi and Yazaki, 1996, Int. Angiol. 15: 187-194), transgenic mouse models of atherosclerosis (Kappel et al, 1994, FASEB J. 8: 583-592), antisense oligonucleotide treatment of animal models (Callow, 1995, Curr. Opin. Cardiol. 10: 569-576), transgenic rabbit models for atherosclerosis (Taylor, 1997, Ann. N.Y. Acad. Sci 811: 146-152), hypercholesterolemic animal models (Rosenfeld, 1996, Diabetes Res. Clin.
  • an atherosclerosis-associated disease or disorder has been shown to be amenable to treatment by modulation of activity or formation, that disease or disorder can be treated or prevented by administration of a Therapeutic that modulates activity.
  • a GENX protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations.
  • cytokine cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations.
  • Many protein factors discovered to date, including all known cytokines have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity.
  • the activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+ ), 2E8, RB5, DAI, 123, Tl 165, HT2, CTLL2, TF-1, Mo7e and CMK.
  • Assays for T-cell or thymocyte proliferation include without limitation those described in: CURRENT PROTOCOLS IN IMMUNOLOGY, Ed by Coligan et al., Greene Publishing Associates and Wiley-Interscience (Chapter 3 and Chapter 7); Takai et al., J Immunol
  • Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described by Kruisbeek and Shevach, In: CURRENT PROTOCOLS IN IMMUNOLOGY. Coligan et al, eds. Vol 1, pp. 3.12.1-14, John Wiley and Sons, Toronto 1994; and by Schreiber, In: CURRENT PROTOCOLS IN IMMUNOLOGY. Coligan eds. Vol 1 pp. 6.8.1-8, John Wiley and Sons, Toronto 1994.
  • Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described by Bottomly et al., In: CURRENT PROTOCOLS IN
  • Assays for T-cell clone responses to antigens include, without limitation, those described In: CURRENT PROTOCOLS IN IMMUNOLOGY. Coligan et al, eds., Greene Publishing Associates and Wiley-Interscience (Chapter 3Chapter 6, Chapter 7); Weinberger et al, Proc Natl Acad Sci USA 77:6091-6095, 1980; Weinberger et al, Eur J Immun 11 :405-41 1, 1981; Takai et al, J Immunol 137:3494-3500, 1986; Takai et al. , J Immunol 140:508-512, 1988.
  • a GENX protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein.
  • a protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations.
  • SCID severe combined immunodeficiency
  • These immune deficiencies may be genetic or be caused by vital (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders.
  • infectious diseases causes by vital, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania species., malaria species, and various fungal infections such as candidiasis.
  • a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.
  • Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitus, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease.
  • a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma
  • Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response.
  • the functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both.
  • Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent.
  • Tolerance which involves inducing non-responsiveness or energy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon re-exposure to specific antigen in the absence of the tolerizing agent.
  • Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD).
  • B lymphocyte antigen functions such as, for example, B7
  • GVHD graft-versus-host disease
  • blockage of T cell function should result in reduced tissue destruction in tissue transplantation.
  • rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant.
  • a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural ligand(s) on immune cells such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody
  • B7 lymphocyte antigen e.g., B7-1, B7-3 or blocking antibody
  • Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant.
  • the lack of costimulation may also be sufficient to energize the T cells, thereby inducing tolerance in a subject.
  • Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents.
  • the efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans.
  • appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al, Science 257:789-792 (1992) and Turka et al, Proc Natl Acad Sci USA, 89:11102-11105 (1992).
  • murine models of GVHD can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.
  • Blocking antigen function may also be therapeutically useful for treating autoimmune diseases.
  • Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and auto-antibodies involved in the pathology of the diseases.
  • Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms.
  • Administration of reagents which block costimulation of T cells by disrupting recepto ⁇ ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of auto-antibodies or T cell-derived cytokines which may be involved in the disease process.
  • blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease.
  • the efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythematosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., FUNDAMENTAL IMMUNOLOGY, Raven Press, New York, 1989, pp. 840-856).
  • Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic vital diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.
  • anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient.
  • Another method of enhancing anti-vital immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient.
  • the infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.
  • up regulation or enhancement of antigen function may be useful in the induction of tumor immunity.
  • Tumor cells e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma
  • a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides.
  • tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-l-like activity and/or B7-3-like activity.
  • the transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell.
  • gene therapy techniques can be used to target a tumor cell for transfection in vivo.
  • tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I ⁇ chain protein and ⁇ 2 microglobulin protein or an MHC class II a chain protein and an MHC class II ⁇ chain protein to thereby express MHC class I or MHC class II proteins on the cell surface.
  • nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I ⁇ chain protein and ⁇ 2 microglobulin protein or an MHC class II a chain protein and an MHC class II ⁇ chain protein to thereby express MHC class I or MHC class II proteins on the cell surface.
  • a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity.
  • a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.
  • Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described In: CURRENT PROTOCOLS IN IMMUNOLOGY. Coligan et al., eds.
  • T-cell-dependent immunoglobulin responses and isotype switching include, without limitation, those described in: Maliszewski, JImmunol 144:3028-3033, 1990; and Mond and Brunswick In: CURRENT PROTOCOLS IN IMMUNOLOGY. Coligan et al, (eds.) Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto 1994.
  • MLR Mixed lymphocyte reaction
  • Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al, JImmunol 134:536-544, 1995; Inaba et al, J Exp Med 173:549-559, 1991; Macatonia et al, JImmunol 154:5071-5079, 1995; Porgador et al, J Exp Med 182:255-260, 1995; Nair et al, J Virol 67:4062-4069, 1993; Huang et al, Science 264:961-965, 1994; Macatonia et al, J Exp Med 169:1255-1264, 1989; Bhardwaj et al, JClin Investig 94:797-807, 1994; and Inaba et al, J Exp Med 172:631-640, 1990.
  • lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al, Cytometry 13:795-808, 1992; Gorczyca et al, Leukemia 7:659-670, 1993; Gorczyca et al, Cancer Res 53:1945-1951, 1993; Itoh t ⁇ /., Cell 66:233-243, 1991; Zacharchuk, JImmunol 145:4037-4045, 1990; Zamai et al, Cytometry 14:891-897, 1993; Gorczyca et al, lnternat J Oncol 1 :639-648, 1992.
  • Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al, Blood 84:111-117, 1994; Fine et al, Cell Immunol 155: 111-122, 1994; Galy et al, Blood 85:2770-2778, 1995; Toki et al, Proc Nat Acad Sci USA 88:7548-7551, 1991.
  • a GENX protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g.
  • erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with
  • the activity of a protein of the invention may, among other means, be measured by the following methods: Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.
  • Assays for embryonic stem cell differentiation include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al, Mol Cell. Biol. 13:473-486, 1993; McClanahan et al, Blood 81 :2903-2915, 1993.
  • Assays for stem cell survival and differentiation include, without limitation, those described in:
  • Methylcellulose colony forming assays Freshney, In: CULTURE OF HEMATOPOIETIC CELLS.
  • a GENX protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.
  • a protein of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals.
  • Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints.
  • De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.
  • a protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes.
  • Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells.
  • a protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.
  • Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation.
  • a protein of the present invention which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals.
  • Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament.to bone or other tissues, and in repairing defects to tendon or ligament tissue.
  • De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments.
  • compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair.
  • the compositions of the invention may also be useful in the treatment of tendonitis, carpal tunnel syndrome and other tendon or ligament defects.
  • the compositions may also include an appropriate matrix and/or sequestering agent as a career as is well known in the art.
  • the protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.
  • Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.
  • a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues.
  • organs including, for example, pancreas, liver, intestine, kidney, skin, endothelium
  • muscle smooth, skeletal or cardiac
  • vascular including vascular endothelium
  • a protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.
  • a protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.
  • the activity of a protein of the invention may, among other means, be measured by the following methods:
  • Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).
  • Assays for wound healing activity include, without limitation, those described in: Winter,
  • EPIDERMAL WOUND HEALING pp. 71-112 (Maibach and Rovee, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Menz, J. Invest. Dermatol 71 :382-84 (1978).
  • a GENX protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH).
  • FSH follicle stimulating hormone
  • a protein of the present invention alone or in heterodimers with a member of the inhibin a family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals.
  • the protein of the invention may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885.
  • a protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.
  • the activity of a protein of the invention may, among other means, be measured by the following methods: Assays for activin inhibin activity include, without limitation, those described in: Vale et al, Endocrinology 91 :562-572, 1972; Ling et al, Nature 321 :779-782, 1986; Vale et al, Nature 321 :116-119, 1986; Mason et al, Nature 318:659-663, 1985; Forage et al, Proc Natl Acad Sci USA 83:3091-3095, 1986.
  • a protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells.
  • Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action.
  • Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.
  • a protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population.
  • the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.
  • the activity of a protein of the invention may, among other means, be measured by following methods: Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: CURRENT PROTOCOLS IN IMMUNOLOGY, Coligan et al, eds. (Chapter 6.12, MEASUREMENT OF ALPHA AND BETA CHEMOKINES 6.12.1-6.12.28); Taub et al.
  • a protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes.
  • a protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).
  • the activity of a protein of the invention may, among other means, be measured by the following methods:
  • Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al, J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al, Thrombosis Res. 45:413-419, 1987; Humphrey et al, Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.
  • a protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions.
  • receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell — cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses).
  • Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction.
  • a protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.
  • the activity of a protein of the invention may, among other means, be measured by the following methods:
  • Suitable assays for receptor-ligand activity include without limitation those described in: CURRENT PROTOCOLS IN IMMUNOLOGY, Ed by Coligan, et al, Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1 -7.28.22), Takai et al. , Proc Natl Acad Sci USA 84:6864-6868, 1987; Bierer et al. , J. Exp. Med. 168:1145-1156, 1988; Rosenstein t ⁇ /., J. Exp. Med. 169:149-160 1989; Stoltenborg et ⁇ /., J Immunol Methods 175:59-68, 1994; Stitt et ⁇ /., Cell 80:661-670, 1995.
  • Proteins of the present invention may also exhibit anti-inflammatory activity.
  • the anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell — cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response.
  • Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.
  • infection such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)
  • ischemia-reperfusion injury such as endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting
  • a protein of the invention may exhibit other anti-tumor activities.
  • a protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC).
  • a protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.
  • a protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth
  • Neural disorders in general include Parkinson's disease, Alzheimer's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), peripheral neuropathy, tumors of the nervous system, exposure to neurotoxins, acute brain injury, peripheral nerve trauma or injury, and other neuropathies, epilepsy, and/or tremors.
  • Parkinson's disease Alzheimer's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), peripheral neuropathy, tumors of the nervous system, exposure to neurotoxins, acute brain injury, peripheral nerve trauma or injury, and other neuropathies, epilepsy, and/or tremors.
  • ALS amyotrophic lateral sclerosis
  • Novel Protein sim GBank Contains protein domain (PF00333) ribosomalprot 264488, 60424170, 18108396, 222789g5, g ⁇

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Obesity (AREA)
  • Virology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Pain & Pain Management (AREA)
  • Psychiatry (AREA)
  • Dermatology (AREA)
  • Endocrinology (AREA)
  • Urology & Nephrology (AREA)
  • Psychology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)

Abstract

La présente invention concerne des phases de lecture ouverte ORFX, des polypeptides isolés, ainsi que des polynucléotides codant les ORFX et les anticorps qui lient les ORFX ou tout autre dérivé de manière immunospécifique, des variants, des mutants, ou des fragments de polypeptide, polynucléotide ou anticorps ORFX utilisés dans la détection et le traitement de plusieurs états pathologiques, comme dans d'autres domaines.
PCT/US2000/008621 1999-03-31 2000-03-31 Acides nucleiques comprenant des phases de lecture ouverte codant des polypeptides; «orfx» WO2000058473A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000608754A JP2004507202A (ja) 1999-03-31 2000-03-31 ポリペプチドをコードするオープンリーディングフレームを含む核酸;「orfx」
EP00916677A EP1165784A2 (fr) 1999-03-31 2000-03-31 Acides nucleiques comprenant des phases de lecture ouverte codant des polypeptides; orfx
CA002383592A CA2383592A1 (fr) 1999-03-31 2000-03-31 Acides nucleiques comprenant des phases de lecture ouverte codant des polypeptides; orfx
AU37745/00A AU3774500A (en) 1999-03-31 2000-03-31 Nucleic acids including open reading frames encoding polypeptides; "orfx"

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US12760799P 1999-03-31 1999-03-31
US60/127,607 1999-03-31
US12763699P 1999-04-02 1999-04-02
US60/127,636 1999-04-02
US12772899P 1999-04-05 1999-04-05
US60/127,728 1999-04-05
US54076300A 2000-03-30 2000-03-30
US09/540,763 2000-03-30

Publications (2)

Publication Number Publication Date
WO2000058473A2 true WO2000058473A2 (fr) 2000-10-05
WO2000058473A3 WO2000058473A3 (fr) 2001-01-25

Family

ID=27494693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/008621 WO2000058473A2 (fr) 1999-03-31 2000-03-31 Acides nucleiques comprenant des phases de lecture ouverte codant des polypeptides; «orfx»

Country Status (5)

Country Link
EP (1) EP1165784A2 (fr)
JP (1) JP2004507202A (fr)
AU (1) AU3774500A (fr)
CA (1) CA2383592A1 (fr)
WO (1) WO2000058473A2 (fr)

Cited By (258)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000056866A2 (fr) * 1999-03-19 2000-09-28 Aventis Pharmaceuticals Products Inc. Acides nucleiques akt, polypeptides, et leurs utilisations
WO2000073469A2 (fr) * 1999-05-28 2000-12-07 Sugen, Inc. Proteines kinases
WO2000075320A2 (fr) * 1999-06-07 2000-12-14 Lexicon Genetics Incorporated Genes humains et proteines codees par ces genes
WO2000078933A2 (fr) * 1999-06-18 2000-12-28 Basf Aktiengesellschaft Nouvelles calpaines et leur utilisation
WO2000078953A2 (fr) * 1999-06-17 2000-12-28 Incyte Genomics, Inc. Proteines de transport humaines
WO2001002586A1 (fr) * 1999-06-29 2001-01-11 Mcgill University Alpha 1,2-mannosidase humaine
WO2001007614A1 (fr) * 1999-07-26 2001-02-01 Chiron Corporation Polynucleotides exprimes differentiellement dans des adenocarcinomes, polypeptides codes par lesdits polynucleotides, et leurs techniques d'utilisation
WO2001011040A1 (fr) * 1999-08-04 2001-02-15 Boehringer Ingelheim International Gmbh Antigene (r11) specifique de tumeur
WO2001016313A1 (fr) * 1999-09-02 2001-03-08 Smithkline Beecham P.L.C. Gene de regulation de la proteine gs humaine
WO2001016336A1 (fr) * 1999-09-02 2001-03-08 Lexicon Genetics Incorporated Proteases humaines dependantes du calcium et polynucleotides les codant
WO2001016170A2 (fr) * 1999-09-01 2001-03-08 The Burnham Institute Nouvelles proteines card participant a la regulation de l'apoptose
WO2001018037A2 (fr) * 1999-09-07 2001-03-15 University Health Network Proteine induite par p53 avec un domaine de mort pouvant favoriser l'apoptose
WO2001019850A2 (fr) * 1999-09-16 2001-03-22 Mcgill University Acides nucleiques et polypeptides nrage, et leurs utilisations
WO2001019860A2 (fr) * 1999-09-15 2001-03-22 Incyte Genomics, Inc. Proteines associees a la differenciation cellulaire
WO2001023584A1 (fr) * 1999-09-27 2001-04-05 Millennium Pharmaceuticals, Inc. Protease de l'ubiquitine humaine
WO2001023585A1 (fr) * 1999-09-30 2001-04-05 Millennium Pharmaceuticals, Inc. Ubiquitine-protease humaine: 23484
WO2001027269A2 (fr) * 1999-10-11 2001-04-19 Chiron Spa Proteine vip54 et substances liees a celle-ci
WO2001027278A2 (fr) * 1999-10-14 2001-04-19 Hyseq, Inc. Membre de la superfamille des immunoglobines et utilisations correspondantes
WO2001027290A2 (fr) * 1999-10-14 2001-04-19 Curagen Corporation Proteine aortique du type carboxypeptidase et acides nucleiques codant cette proteine
WO2001029213A1 (fr) * 1999-10-19 2001-04-26 The Wellcome Trust Limited As Trustee To The Wellcome Trust Proteines analogues aux proteines humaines associees au sit4 (sapl), genes codant pour ces proteines, et leurs utilisations
WO2001031034A1 (fr) * 1999-10-25 2001-05-03 Millennium Pharmaceuticals, Inc. Homologue d'adam-ts 27875 humaine
WO2001034778A2 (fr) * 1999-11-10 2001-05-17 Lexicon Genetics Incorporated NOUVELLES PROTEINES HUMAINES A ACTIVITE ADENOSINE TRIPHOSPHATE (ATPase) ET POLYNUCLEOTIDES LES CODANT
WO2001036645A2 (fr) * 1999-11-17 2001-05-25 Curagen Corporation Nouveaux polypeptides et acides nucleiques codant les memes
WO2001036602A2 (fr) * 1999-11-15 2001-05-25 Pharmacia Italia S.P.A. Nouveau membre de la famille des proteines pak, des acides nucleiques et procedes correspondants
WO2001040468A2 (fr) * 1999-12-01 2001-06-07 Millennium Pharmaceuticals, Inc. Nouvelles molecules de la famille de proteines de type card et utilisations de ces dernieres
WO2001042291A2 (fr) * 1999-12-10 2001-06-14 Curagen Corporation Nouveaux polypeptides et polynucleotides codant pour ces polypeptides
WO2001046227A2 (fr) * 1999-12-21 2001-06-28 University Of Zurich Polypeptides 'dispatched'
WO2001046397A2 (fr) * 1999-12-23 2001-06-28 Incyte Genomics, Inc. Kinases humaines
WO2001057203A1 (fr) * 2000-02-01 2001-08-09 Taisho Pharmaceutical Co.,Ltd. NOUVEAU GENE TIG104α ET PROTEINE TIG104α CODEE PAR CE GENE
WO2001059114A2 (fr) * 2000-02-09 2001-08-16 The Government Of The United States Of America, As Represented By The Secretary Of Health And Human Services Nouveau gene suppresseur de tumeurs p47ing3
WO2001061003A1 (fr) * 2000-02-19 2001-08-23 Smithkline Beecham P.L.C. Homologue humain du flamingo
WO2001061001A2 (fr) * 2000-02-18 2001-08-23 Basf-Lynx Bioscience Ag Nouvelle proteine du systeme nerveux central, qui module les flux de k?+¿
WO2001062926A2 (fr) * 2000-02-25 2001-08-30 Millennium Pharmaceuticals, Inc. Molecules 44576, nouveau recepteur couple a la proteine g et utilisation de celui-ci
WO2001064740A1 (fr) * 2000-03-02 2001-09-07 Chugai Seiyaku Kabushiki Kaisha Promoteur de squalene epoxydase codant l'adn
WO2001064703A1 (fr) * 2000-03-02 2001-09-07 Human Genome Sciences, Inc. Polynucleotides de serine/threonine-phosphatases, polypeptides et anticorps
WO2001064873A2 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. Nouvelles proteines activatrices de gtpase humaines
WO2001064905A2 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. 2504, 15977 et 14760, nouveaux membres de la famille proteine kinase et leurs utilisations
WO2001064908A2 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. La 14790, nouvelle molecule de proteine kinase et ses utilisations
WO2001064906A1 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. Transferase 32253 et utilisation associee
WO2001066756A2 (fr) * 2000-03-07 2001-09-13 Millenium Pharmaceuticals, Inc. 22105, un nouvel element de la famille de thioredoxine humaine et utilisations correspondantes
WO2001068848A2 (fr) * 2000-03-01 2001-09-20 Genentech, Inc. Polypeptides secretes et transmembranaires et acides nucleiques codant pour ces polypeptides
WO2001068851A2 (fr) * 2000-03-10 2001-09-20 Curagen Corporation Nouveaux polypeptides et acides nucleiques les codant
WO2001070808A2 (fr) * 2000-03-22 2001-09-27 Curagen Corporation Proteines associees a l'angiogenese et acides nucleiques codant ces proteines
WO2001072822A2 (fr) * 2000-03-27 2001-10-04 Fondation Jean Dausset-Ceph Genes impliques dans les maladies inflammatoires de l"intestin et leur utilisation
WO2001073043A2 (fr) * 2000-03-24 2001-10-04 Millennium Pharmaceuticals, Inc. 32451, nouvelle ubiquitine humaine se conjuguant a une molecule de type enzymatique et ses utilisations
WO2001073022A1 (fr) * 2000-03-29 2001-10-04 Kyowa Hakko Kogyo Co., Ltd. Gene associe a la glomerulonephrite proliferative
WO2001073028A2 (fr) * 2000-03-24 2001-10-04 Genetics Institute, Llc Nouvelle proteine de liaison aux ligands de glycoproteine p-selectine (psgl-1) et ses utilisations
WO2001072975A2 (fr) * 2000-03-24 2001-10-04 Millennium Pharmaceuticals, Inc. 25552, nouveau membre de la famille des methyltransferases humaines et son utilisation
WO2001073014A1 (fr) * 2000-03-24 2001-10-04 Merck Patent Gmbh Proteine 1 interagissant avec la survivine humaine (sip-1)
WO2001072824A2 (fr) * 2000-03-27 2001-10-04 Leadd B.V. Proteine s'associant a l'apoptine
EP1138768A2 (fr) * 2000-03-27 2001-10-04 Leadd B.V. Protéine AAP-5 liant l' apoptine
WO2001072957A2 (fr) * 2000-03-31 2001-10-04 Nobuyuki Itoh Molecules de type facteur de croissance des fibroblastes et leurs utilisations
US6300096B1 (en) 1998-01-15 2001-10-09 Whitehead Institute For Biomedical Research Polynucleotides encoding fatty acid transport proteins
WO2001075121A2 (fr) * 2000-03-31 2001-10-11 Millennium Pharmaceuticals, Inc. 16836, un nouvel element de la famille de la phospholipase c humaine et ses utilisations
WO2001077339A1 (fr) * 2000-04-07 2001-10-18 Merck Patent Gmbh Phosphatase deshydrogenese pyruvate humaine
WO2001079272A2 (fr) * 2000-04-18 2001-10-25 Tularik Inc. Gene de susceptibilite a la sitosterolemie (ssg): compositions et methodes d'utilisation
GB2361702A (en) * 2000-02-18 2001-10-31 Hoffmann La Roche Novel metalloproteases having thrombospondin domains
WO2001081412A2 (fr) * 2000-04-26 2001-11-01 Pe Corporation (Ny) Proteines de transport humaines isolees, molecules d'acides nucleiques codant pour ces proteines de transport humaines et utilisations de ces proteines
WO2001083744A2 (fr) * 2000-05-02 2001-11-08 Merck Patent Gmbh Nouvelle proteine echangeuse sodium-calcium
WO2001083754A2 (fr) * 2000-05-02 2001-11-08 Immusol, Incorporated Regulateurs cellulaires d'agents infectieux et methodes d'utilisations
WO2001083524A2 (fr) * 2000-04-28 2001-11-08 Incyte Genomics, Inc. Proteines du metabolisme de l'arn
WO2001083753A2 (fr) * 2000-05-03 2001-11-08 Millennium Pharmaceuticals, Inc. Nouvelles molecules appartenant a la famille de proteines nbs/lrr et utilisations de ces dernieres
WO2001085921A2 (fr) * 2000-05-12 2001-11-15 Merck Patent Gmbh Nouvelle serine-threonine kinase-4
WO2001088135A2 (fr) * 2000-05-15 2001-11-22 Curagen Corporation Proteines et acides nucleiques codant pour de telles proteines
EP1158049A1 (fr) * 2000-05-26 2001-11-28 Aeomica, INC. Gène resemblant à la myosine exprimé dans le coeur et le muscle
WO2001090179A2 (fr) * 2000-05-23 2001-11-29 Lexicon Genetics Incorporated Proteines ressemblant a la thrombospondine humaine et polynucleotides les codant
WO2001090322A2 (fr) * 2000-05-19 2001-11-29 Millennium Pharmaceuticals, Inc. 32244, enzyme se liant a l'amp et utilisations correspondantes
WO2001090155A2 (fr) * 2000-05-24 2001-11-29 Curagen Corporation Nouvelles proteines et acides nucleiques codant pour ces proteines
WO2001092524A2 (fr) * 2000-05-26 2001-12-06 Aeomica, Inc. Gene du type myosine exprime dans le coeur et les muscles humains
WO2001096561A1 (fr) * 2000-06-16 2001-12-20 Merck Patent Gmbh Hunc-2, element humain de la famille des proteines unc
WO2001096542A2 (fr) * 2000-06-15 2001-12-20 Millennium Pharmaceuticals, Inc. 23680, nouvelle aminotransferase humaine et utilisations de celle-ci
WO2001096575A1 (fr) * 2000-06-14 2001-12-20 Sankyo Company, Limited Ceramide kinase et adn la codant
WO2002000691A2 (fr) * 2000-06-27 2002-01-03 Curagen Corporation Nouveaux polynucleotides et polypeptides codes par ceux-ci
WO2002000874A1 (fr) * 2000-06-26 2002-01-03 Ajinomoto Co., Inc. Polypeptides, leur utilisation ainsi que leur procede de production
EP1174502A1 (fr) * 2000-07-18 2002-01-23 Schering Corporation Acides nucléiques codantes derivés des précurseurs de cellules dendritiques de type 2 et compositions et méthodes associées
WO2002006318A2 (fr) * 2000-07-18 2002-01-24 Board Of Regents, The University Of Texas System Procedes et compositions permettant de stabiliser des microtubules et des filaments intermediaires dans des cellules de muscle strie
WO2002006485A2 (fr) * 2000-07-13 2002-01-24 Millennium Pharmaceuticals Inc. 47885, une nouvelle enzyme activant l'ubiquitine humaine et ses applications
WO2002016595A2 (fr) * 2000-08-24 2002-02-28 Incyte Genomics, Inc. Proteine specifique au rein
WO2002016561A2 (fr) * 2000-08-18 2002-02-28 Merck Patent Gmbh Mfq-111, nouvelle proteine de type gtpase humaine
WO2002018582A2 (fr) * 2000-08-31 2002-03-07 Millennium Pharmaceuticals, Inc. 62112, nouvelle deshydrogenase humaine et ses utilisations
WO2002018420A2 (fr) * 2000-08-28 2002-03-07 Lion Bioscience Ag Nouveaux cofacteurs du recepteur du pregnane x et leurs methodes d'utilisation
WO2002024744A2 (fr) * 2000-09-25 2002-03-28 Millennium Pharmaceuticals, Inc. Nouveau transporteur phospholipidique humain 49938 et utilisations
WO2002024738A1 (fr) * 2000-09-22 2002-03-28 Kyowa Hakko Kogyo Co., Ltd. Proteine localisee nucleaire de beta-catenine
WO2002024739A2 (fr) * 2000-09-21 2002-03-28 The Regents Of The University Of California Antigene du cancer spas-1
WO2002026955A2 (fr) * 2000-09-29 2002-04-04 Lexicon Genetics Incorporated Nouvelles proteases humaines et polynucleotides codant pour ces proteases
WO2002029039A2 (fr) * 2000-10-05 2002-04-11 Millennium Pharmaceuticals, Inc. 47316, une nouvelle proteine g humaine et ses utilisations
US6372473B1 (en) 1997-05-28 2002-04-16 Human Genome Sciences, Inc. Tissue plasminogen activator-like protease
WO2001051520A3 (fr) * 2000-01-12 2002-04-18 Univ Yale Blocage de la croissance axonale a mediation assuree par le recepteur de nogo
WO2002031134A2 (fr) * 2000-10-12 2002-04-18 Ferring Bv Nouveaux genes de serine protease apparentes a la dppiv
WO2002033086A2 (fr) * 2000-10-17 2002-04-25 Pe Corporation (Ny) Proteines transporteuses isolees humaines, molecules d'acide nucleique codant pour ces proteines transporteuses humaines, et leurs utilisations
WO2002033062A1 (fr) * 2000-10-16 2002-04-25 Bayer Aktiengesellschaft Regulation de l'acyl-coa deshydrogenase humaine
WO2002033058A2 (fr) * 2000-10-20 2002-04-25 Inpharmatica Limited Proteases a cysteine
WO2002034903A2 (fr) * 2000-10-24 2002-05-02 Aventis Pharma S.A. Acide nucleique regulateur du gene abca7, molecules modulant son activite et applications therapeutiques
WO2002036741A2 (fr) * 2000-10-30 2002-05-10 Bristol-Myers Squibb Company Polynucleotide codant pour une proteine derivee d'un lymphocyte t humain active liee a une enzyme se conjuguant a l'ubiquitine
WO2002036781A2 (fr) * 2000-10-31 2002-05-10 Bayer Aktiengesellschaft Regulation de la glutathione-s-transferase humaine
WO2002040538A2 (fr) * 2000-11-17 2002-05-23 Bayer Aktiengesellschaft Regulation du recepteur nmda humain
WO2002040674A2 (fr) * 2000-11-14 2002-05-23 Millenium Pharmaceuticals, Inc. 67118, 67067 et 62092, proteines humaines et leurs procedes d'utilisation
WO2002046402A2 (fr) * 2000-12-05 2002-06-13 Bayer Aktiengesellschaft Regulation de la proteine humaine de type 'patched'
WO2002046221A2 (fr) * 2000-12-08 2002-06-13 Oxford Glycosciences (Uk) Limited Proteines
WO2002048369A2 (fr) * 2000-11-02 2002-06-20 Bristol-Myers Squibb Company Polynucleotide codant une nouvelle sous-unite beta du canal potassium chez l'homme, k+mbeta1
WO2002051991A2 (fr) * 2000-12-22 2002-07-04 Millennium Pharmaceuticals, Inc. 17903, nouvelle aminopeptidase humaine et utilisations correspondantes
EP1225182A2 (fr) * 2001-01-17 2002-07-24 Millennium Pharmaceuticals, Inc. Transporteur phospholipidique humain
WO2002057305A2 (fr) * 2001-01-11 2002-07-25 Michigan State University Gene dont l'expression favorise la differenciation des cellules souches myeloides en neutrophiles et/ou en monocytes/macrophages
WO2002059306A2 (fr) * 2001-01-22 2002-08-01 Applera Corporation Proteines transporteuses humaines isolees, molecules d'acide nucleique codant des proteines transporteuses humaines et leurs utilisations
EP1228082A1 (fr) * 1999-07-23 2002-08-07 Human Genome Sciences, Inc. Proteines humaines secretees 29
WO2002062839A2 (fr) * 2001-02-07 2002-08-15 Universiteit Maastricht Marqueurs de plaques d'atherosclerose instables
WO2002064783A2 (fr) * 2001-02-09 2002-08-22 Lion Bioscience Ag Nouveaux cofacteurs du recepteur beta d'oestrogenes et procedes d'utilisation
WO2002064762A2 (fr) * 2001-02-12 2002-08-22 Bayer Aktiengesellschaft Regulation de tyrosine kinase humaine
WO2002068466A2 (fr) * 2001-02-22 2002-09-06 Oxford Biomedica (Uk) Limited Genes regules par l'hypoxie
EP1237901A1 (fr) * 1999-11-05 2002-09-11 Human Genome Sciences, Inc. 28 proteines secretees humaines
WO2002044358A3 (fr) * 2000-11-28 2002-09-12 Millennium Pharm Inc Procédés et compositions se rapportant au diagnostic et au traitement du cancer par utilisation de 27420
FR2822165A1 (fr) * 2000-10-24 2002-09-20 Aventis Pharma Sa Acide nucleique regulateur du gene abca7, molecules modulant son activite et applications therapeutiques
EP1245574A1 (fr) * 2001-03-27 2002-10-02 Millennium Pharmaceuticals, Inc. 14691, un membre de la famille des récepteurs humains du glutamate et son utilisation
WO2002081667A2 (fr) * 2000-12-05 2002-10-17 Incyte Genomics, Inc. Ligases
WO2002083706A1 (fr) * 2001-04-16 2002-10-24 Lexicon Genetics Incorporated Acide nucleique codant pour une adenylosuccinate synthetase humaine
WO2002085922A2 (fr) * 2001-04-23 2002-10-31 Curagen Corporation Proteines et acides nucleiques codant pour celles-ci
WO2002088184A1 (fr) * 2001-05-02 2002-11-07 Murdoch Childrens Research Institute Marqueur moleculaire
WO2002048323A3 (fr) * 2000-12-14 2002-11-14 Bayer Ag Regulation de l'uridine kinase humaine
US6482932B1 (en) * 1997-11-05 2002-11-19 Ribozyme Pharmaceuticals, Incorporated Nucleoside triphosphates and their incorporation into oligonucleotides
WO2002097088A1 (fr) * 2001-05-29 2002-12-05 Human Cell Systems, Inc. Transporteur de carnitine testiculaire et son gene
WO2002099066A2 (fr) * 2001-06-06 2002-12-12 Human Genome Sciences, Inc. 20 proteines humaines secretees
WO2003000727A2 (fr) * 2001-06-21 2003-01-03 Isis Innovation Limited Atopie
WO2003004623A2 (fr) * 2001-03-27 2003-01-16 Human Genome Sciences, Inc. Proteines humaines secretees
WO2003004607A2 (fr) * 2001-07-05 2003-01-16 Wyeth Molecules d'aggrecanase
EP1277833A2 (fr) * 1999-02-12 2003-01-22 Genentech, Inc. Homologue de Costal-2
EP1277843A2 (fr) * 2001-07-17 2003-01-22 Bayer Corporation Nouveaux gènes humains et leurs produits d'expression liés au cancer du colon
WO2003012099A1 (fr) * 2001-08-01 2003-02-13 The New Industry Research Organization Synthase de chondroitine
US6528640B1 (en) * 1997-11-05 2003-03-04 Ribozyme Pharmaceuticals, Incorporated Synthetic ribonucleic acids with RNAse activity
EP1141269A4 (fr) * 1998-12-30 2003-03-26 Millennium Pharm Inc Proteines secretees et leurs utilisations
GB2380197A (en) * 2000-05-26 2003-04-02 Aeomica Inc Myosin-like gene expressed in human heart and muscle
EP1298206A1 (fr) * 2001-09-28 2003-04-02 Aventis Behring GmbH Utilisation de la protéase activant le Facteutr VII pour la prévention et la thérapie de maladies vaso-prolifératives
WO2003027279A1 (fr) * 2001-09-25 2003-04-03 Sony Corporation Inhibiteur de l'histone acetylase de p300
WO2003031627A1 (fr) * 2001-09-28 2003-04-17 Hokkaido Technology Licensing Office Co., Ltd. Polypeptides a origine plaquettaire a activite sphingosine kinase et genes de sphingosine kinase codant pour ces polypeptides
WO2002055707A3 (fr) * 2001-01-10 2003-04-24 Rigel Pharmaceuticals, Inc. Clonage d'un nouvel inhibiteur de signal recepteur d'antigene au moyen d'un ecran fonctionnel a base retrovirale
GB2381526A (en) * 2001-11-03 2003-05-07 Sequenom Inc Detection of predisposition to osteoporosis
EP1307557A2 (fr) * 2000-08-02 2003-05-07 The Johns Hopkins University Profils d'expression de cellules endotheliales
WO2003037930A1 (fr) * 2001-10-29 2003-05-08 Kazusa Dna Research Institute Foundation Nouveau polypeptide recepteur n-methyl-d-aspartate (nmda) du glutamate et gene codant pour celui-ci
WO2003048317A2 (fr) * 2001-11-30 2003-06-12 Children's Hospital Medical Center Anticorps vis-a-vis de la proteine magmas, et leurs utilisations
WO2003051917A2 (fr) * 2001-12-18 2003-06-26 Endocube Sas Nouvelles proteines associees a la mort, et mecanismes d'action de thap1 et para4 dans la maitrise de l'apoptose
US6586185B2 (en) 2000-06-20 2003-07-01 Switch Biotech Ag Use of polypeptides or nucleic acids for the diagnosis or treatment of skin disorders and wound healing and for the identification of pharmacologically active substances
WO2003063769A2 (fr) * 2001-10-26 2003-08-07 Incyte Genomics, Inc. Proteines associees aux vesicules
WO2003064654A1 (fr) * 2002-02-01 2003-08-07 Bayer Healthcare Ag Proteine kinase serine/threonine d'origine humaine
AT410945B (de) * 2001-06-27 2003-08-25 Burkhard Dr Jansen Verfahren zur diagnose von multipler sklerose (ms)
EP1337629A1 (fr) * 2000-10-27 2003-08-27 University Of Sydney Dipeptidyl peptidases
WO2003072779A1 (fr) * 2002-02-27 2003-09-04 Japan Science And Technology Agency Methode d'utilisation de genes specifiques a l'hypophyse
US6617438B1 (en) * 1997-11-05 2003-09-09 Sirna Therapeutics, Inc. Oligoribonucleotides with enzymatic activity
WO2002026982A3 (fr) * 2000-09-29 2003-09-25 Incyte Genomics Inc Proteines secretees
EP1257560A4 (fr) * 2000-02-01 2003-10-01 Human Genome Sciences Inc Polynucleotides semblables a bcl-2, polypeptides et anticorps
WO2002055704A3 (fr) * 2001-01-09 2003-10-30 Curagen Corporation Proteines, polynucleotides codant pour elles et procedes d'utilisation correspondants
WO2002070538A3 (fr) * 2001-02-01 2003-11-13 Millennium Pharm Inc Molecules narc8 associees a la mort cellulaire programmee, et leurs utilisations
WO2002088380A3 (fr) * 2001-05-02 2003-11-20 Dana Farber Cancer Inst Inc Antigenes tumoraux immunogenes, acides nucleiques et polypeptides codant pour lesdits antigenes et methodes d'utilisation associees
WO2002064777A3 (fr) * 2001-02-14 2003-12-04 Axaron Bioscience Ag Proteines 7b6 et 11b4 et sequences d'adn codant pour celles-ci
WO2003102029A1 (fr) * 2001-08-15 2003-12-11 Endocube Sas Genes sut-2 et sut-3, proteines et dosages biologiques pour inhibiteurs d'adherence lymphocytaire
WO2003102164A2 (fr) * 2002-05-30 2003-12-11 Avalon Pharmaceuticals, Inc. Genes lies au cancer utilises comme cibles de chimiotherapie
WO2004000313A2 (fr) * 2002-06-24 2003-12-31 Exonhit Therapeutics Sa Traitement de la sclerose laterale amyotrophique avec des composes modulateurs de l’activite de pgc-1
EP1373526A2 (fr) * 2001-03-08 2004-01-02 Curagen Corporation Polypeptides therapeutiques, les acides nucleiques les codant et leurs procedes d'utilisation
WO2004005346A2 (fr) * 2002-07-03 2004-01-15 Inpharmatica Limited Recepteur de l'hormone nucleaire
WO2004012817A2 (fr) * 2002-07-31 2004-02-12 Kylix B.V. Utilisation des genes identifies comme etant impliques dans la croissance tumorale, destinee au developpement de medicaments anticancereux
WO2004015108A1 (fr) * 2002-08-09 2004-02-19 Melbourne Health Facteurs de transcription mammifères grainyhead
EP1390057A2 (fr) * 2001-04-03 2004-02-25 Curagen Corporation Anticorps se liant aux polypeptides antigeniques, acides nucleiques codant les antigenes, et method d'utilisation
EP1399460A2 (fr) * 2001-04-27 2004-03-24 Sunnybrook & Women's College Health Sciences Centre Genes associes au cancer du sein et utilisations correspondantes
WO2002063006A3 (fr) * 2001-02-06 2004-03-25 Incyte Genomics Inc Recepteurs et proteines associees aux membranes
EP1407049A2 (fr) * 2001-06-19 2004-04-14 The Regents Of The University Of California Histone-deacetylase et procedes d'utilisation correspondants
WO2004031388A1 (fr) * 2002-07-25 2004-04-15 Sony Corporation Facteur participant a la regulation de la transcription
JPWO2002057444A1 (ja) * 2001-01-22 2004-05-20 近藤 科江 ヒトアポトーシス関連遺伝子と、この遺伝子産物であるヒトアポトーシス関連蛋白質
US6743602B1 (en) 1999-07-26 2004-06-01 Chiron Corporation Polynucleotides differentially expressed in adenocarcinomas, polypeptides encoded thereby, and methods of use thereof
WO2004053077A2 (fr) * 2002-12-05 2004-06-24 Diadexus, Inc. Compositions, variants d'epissure et techniques liees aux genes et aux proteines specifiques du sein
WO2004063223A2 (fr) * 2002-12-27 2004-07-29 Applied Research Systems Ars Holding N.V. Nouveaux polypeptides similaires a notch
EP1444252A2 (fr) * 2001-03-27 2004-08-11 PE Corporation (NY) Proteines de type ras humaines isolees, molecules d'acides nucleiques codantes pour ces proteines de types ras humaines et utilisations de celles-ci
WO2004070025A2 (fr) * 2003-02-05 2004-08-19 Juan Saus Nouvelles isoformes de la proteine liant l'antigene de goodpasture et troubles induits par une proteine incorrectement repliee
GB2399087A (en) * 2001-08-02 2004-09-08 Aeomica Inc Human zinc finger containing gene MDZ7
WO2004037858A3 (fr) * 2002-10-25 2004-09-23 Univ Muenchen Tech Polypeptides nipa et leur utilisation
EP1461071A1 (fr) * 2001-11-27 2004-09-29 Children's Medical Research Institute Facteurs de transcription musculaire
EP1365801A4 (fr) * 2001-03-08 2004-10-13 Nuvelo Inc Methodes et materiels se rapportant a des polypeptides et a des polynucleotides apparentes a la fibuline
WO2004051269A3 (fr) * 2002-12-05 2004-10-28 Yorkshire Cancer Res Proteine de replication
WO2005014818A1 (fr) 2003-08-08 2005-02-17 Perseus Proteomics Inc. Gene surexprime dans le cancer
EP1512007A2 (fr) * 2001-10-29 2005-03-09 Millennium Pharmaceuticals, Inc. 32235, membre de la famille de l'aminotransferase humaine et ses utilisations
WO2005023833A2 (fr) * 2003-09-05 2005-03-17 Cellzome Ag Traitement de maladies neurodegeneratives
US6881555B2 (en) 1999-03-19 2005-04-19 Aventis Pharmaceuticals Inc. AKT nucleic acids, polypeptides, and uses thereof
US6897054B1 (en) * 1998-10-30 2005-05-24 Japan Science And Technology Agency Human H37 proteins and cDNA encoding the same
US6933142B1 (en) 1998-03-20 2005-08-23 The Regents Of The University Of California Hec-g1cnac6st
EP1575497A2 (fr) * 2002-09-11 2005-09-21 Genentech, Inc. Nouvelle composition et nouveaux procedes pour le traitement du psoriasis
EP1585972A2 (fr) * 2002-04-24 2005-10-19 Expression Diagnostics, Inc. Methodes et compositions permettant de diagnostiquer et de surveiller le rejet d'un greffon
EP1593687A2 (fr) * 1998-06-10 2005-11-09 Bayer Corporation Gènes humains étant exprimés de façon différentielle dans le cancer du colon
US6967093B2 (en) 1998-03-20 2005-11-22 The Regents Of The University Of California Glycosyl sulfotransferase-3
EP1350847A4 (fr) * 2001-01-09 2005-12-28 Inst Of Gene And Brain Science Antigene de gliomes humains et procede de preparation de cet antigene
EP1623989A1 (fr) * 1999-03-08 2006-02-08 Genentech, Inc. Compositions et méthodes de diagnostique de tumeurs
EP1634892A2 (fr) * 1999-03-08 2006-03-15 Genentech, Inc. Composition et procédés de diagnostic de tumeurs
WO2006032148A1 (fr) * 2004-09-24 2006-03-30 Mount Sinai Hospital Polynucleotides et polypeptides associes a la mort cellulaire des trophoblastes, a la differentiation, a l'invasion et/ou a la fusion ou au renouvellement des cellules
US7034132B2 (en) 2001-06-04 2006-04-25 Anderson David W Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US7034135B2 (en) 2000-05-03 2006-04-25 Millennium Pharmaceuticals, Inc. Molecules of the NBS/LRR protein family and uses thereof
US7033772B1 (en) 1998-01-15 2006-04-25 Millennium Pharmaceuticals, Inc. Methods of identifying inhibitors of fatty acid transport proteins (FATP)
US7033790B2 (en) 2001-04-03 2006-04-25 Curagen Corporation Proteins and nucleic acids encoding same
EP1434783A4 (fr) * 2001-03-16 2006-06-07 Lilly Co Eli Proteines de mammiferes lp et reactifs associes
EP1666491A1 (fr) * 2000-06-02 2006-06-07 Genentech, Inc. Polypeptides sécrétés et transmembranaires ainsi que les acides nucléiques codant pour ceux-ci
WO2006061628A1 (fr) 2004-12-08 2006-06-15 Ares Trading S.A. Recepteur de proteines de type tgr3
US7078205B2 (en) 2000-02-17 2006-07-18 Millennium Pharmaceuticals, Inc. Nucleic acid sequences encoding melanoma associated antigen molecules, aminotransferase molecules, atpase molecules, acyltransferase molecules, pyridoxal-phosphate dependent enzyme molecules and uses therefor
EP1690873A3 (fr) * 1999-12-01 2006-08-23 Genentech, Inc. Composition et procédés de diagnostic de tumeurs
GB2409680B (en) * 2002-10-02 2006-09-20 Us Gov Health & Human Serv Methods and medicaments for controlling proliferation of cells
US7115558B2 (en) * 1999-12-16 2006-10-03 Cytochroma Inc. P450RAI-2(P450 Cytochrome 26B), encoding nucleic acid molecules and methods and uses thereof
US7115402B2 (en) 2002-07-09 2006-10-03 Bristol-Myers Squibb Company Polynucleotides encoding a novel testis-specific tubulin tyrosine-ligase-like protein, BGS42
US7119165B2 (en) 2000-01-12 2006-10-10 Yale University Nogo receptor-mediated blockade of axonal growth
US7122358B2 (en) 2002-07-09 2006-10-17 Bristol-Myers Squibb Company Testis-specific tubulin tyrosine-ligase-like protein, BGS42
EP1688430A3 (fr) * 1999-03-23 2006-11-02 Genentech, Inc. Polypeptides sécrétés et transmembranaires ainsi que les acides nucléiques codant pour ceux-ci
US7135549B1 (en) 2001-04-10 2006-11-14 Agensys, Inc. Nucleic acid and corresponding protein entitled 184P1E2 useful in treatment and detection of cancer
US7173118B2 (en) 2000-10-06 2007-02-06 Biogen Idec Ma Inc. Nogo receptor homologs
WO2006094813A3 (fr) * 2005-03-10 2007-03-08 Nascacell Ip Gmbh Microproteines dimeriques ou multimeriques
US7241862B2 (en) 1998-05-15 2007-07-10 Genentech, Inc. Polypeptides that induce cell proliferation or induce fetal hemoglobin
US7282558B2 (en) 2000-03-03 2007-10-16 Genentech, Inc. PRO4329 polypeptide
US7329529B2 (en) 1999-09-03 2008-02-12 Millennium Pharmaceuticals, Inc. Ubiqutin proteases
US7368538B2 (en) * 2002-03-22 2008-05-06 Munin Corporation G+C-rich binding protein
US7408035B2 (en) 2001-06-01 2008-08-05 Genentech, Inc. PRO9864 polypeptides
US7452967B2 (en) 1999-12-01 2008-11-18 Millenium Pharmaceuticals, Inc. Molecules of the card-related protein family and uses thereof
US7473526B2 (en) * 2002-03-29 2009-01-06 Veridex, Llc Breast cancer prognostic portfolio
EP2014674A1 (fr) * 2001-11-26 2009-01-14 Cellvir Interactions de protéines/protéines dans un virus d'immunodépression humaine
US7482147B2 (en) 1999-09-27 2009-01-27 Millennium Pharmaceuticals, Inc. Ubiquitin protease
US7507801B2 (en) * 2000-11-27 2009-03-24 The Hospital For Sick Children Adapter gene
US7517957B2 (en) 2000-11-22 2009-04-14 Bristol-Myers Squibb Company Human SLAP-2: a novel SH2/ SH3 domain-containing human SLAP homologue having immune cell-specific expression
US7547507B2 (en) 1998-08-18 2009-06-16 Genentech, Inc. Methods for the diagnosis of tumors
AU2003231661B2 (en) * 2002-08-06 2010-05-27 Csl Behring Gmbh Pharmaceutical preparation with RNA as hemostasis cofactor
US7736654B2 (en) 2001-04-10 2010-06-15 Agensys, Inc. Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers
US7785829B2 (en) 2003-03-19 2010-08-31 Biogen Idec Ma, Inc. Nogo receptor binding protein
US7799898B2 (en) 2000-03-07 2010-09-21 Millennium Pharmaceuticals, Inc. Human transferase family members and uses thereof
US7811787B2 (en) 2006-04-25 2010-10-12 Bristol-Myers Squibb Company Polynucleotides encoding human SLAP-2 variant, hSLAP-2v3
US7824676B2 (en) 2001-11-16 2010-11-02 Eisai R&D Management Co., Ltd. Exocrine gland tight junction-constituting protein jeap family
US7858764B1 (en) * 2001-06-11 2010-12-28 Monsanto Technology Llc Cotton event MON15985 and compositions and methods for detection thereof
US7858297B2 (en) 2001-12-18 2010-12-28 Centre National De La Recherche Scientifique Cnrs Chemokine-binding protein and methods of use
US7867731B2 (en) 1998-11-04 2011-01-11 Novartis Vaccines And Diagnostics, Inc. HX2004-6 polypeptide expressed in cancerous cells
US7879989B2 (en) 2000-02-29 2011-02-01 Millennium Pharmaceuticals, Inc. 16836, A human phospholipase C family member, nucleic acids and uses thereof
US7893032B2 (en) 2005-07-07 2011-02-22 Yale University NgR variants and compositions thereof for suppressing axonal growth inhibition
EP2311849A1 (fr) * 2001-10-11 2011-04-20 Amgen, Inc Agent de liaison spécifique d'angiopoiétine 2
EP2333112A2 (fr) 2004-02-20 2011-06-15 Veridex, LLC Pronostics de cancer du sein
US7993863B2 (en) 2002-03-19 2011-08-09 Children's Medical Center Corporation Methods for diagnosis and prognosis of cancer
US8058406B2 (en) 2008-07-09 2011-11-15 Biogen Idec Ma Inc. Composition comprising antibodies to LINGO or fragments thereof
US8057996B2 (en) 2002-08-16 2011-11-15 Agensys, Inc. Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US8084216B2 (en) 2008-09-04 2011-12-27 Ernst-Moritz-Arndt-Universität Greifswald Screening methods for transfusion related acute lung injury (TRALI)
US8110364B2 (en) 2001-06-08 2012-02-07 Xdx, Inc. Methods and compositions for diagnosing or monitoring autoimmune and chronic inflammatory diseases
US8124728B2 (en) * 2001-04-17 2012-02-28 The Board Of Trustees Of The University Of Arkansas CA125 gene and its use for diagnostic and therapeutic interventions
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US8404811B2 (en) 2009-05-08 2013-03-26 Genentech, Inc. Humanized anti-EGFL7 antibodies and methods using same
US8444983B2 (en) 2009-03-23 2013-05-21 Quark Pharmaceuticals, Inc. Composition of anti-ENDO180 antibodies and methods of use for the treatment of cancer and fibrotic diseases
US8551476B2 (en) 2005-07-08 2013-10-08 Biogen Idec Ma Inc. SP35 antibodies and uses thereof
US8586047B2 (en) 2002-11-22 2013-11-19 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
US8790646B2 (en) 2004-04-14 2014-07-29 Genentech Inc. Compositions and methods for modulating vascular development
US8895703B2 (en) * 2001-04-17 2014-11-25 The Board Of Trustees For The University Of Arkansas CA125 gene and its use for diagnostic and therapeutic interventions
US9044382B2 (en) 2004-05-18 2015-06-02 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
WO2015082525A1 (fr) * 2013-12-03 2015-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Mutants de mafb et leurs utilisations
US20150246955A1 (en) * 2008-12-09 2015-09-03 Dana-Farber Cancer Institute, Inc. Methods and compositions for specific modulation of mcl-1
US9433675B2 (en) 2012-05-23 2016-09-06 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
US9556245B2 (en) * 2001-04-17 2017-01-31 The Board Of Trustees Of The University Of Arkansas CA125 gene and its use for diagnostic and therapeutic interventions
US9751934B2 (en) 2005-11-24 2017-09-05 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US9770487B2 (en) 2013-02-20 2017-09-26 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic adenocarcinoma
US9796780B2 (en) 2012-05-14 2017-10-24 Biogen Ma Inc. LINGO-2 antagonists for treatment of conditions involving motor neurons
US10053512B2 (en) 2012-05-09 2018-08-21 Ganymed Pharmaceuticals Ag Antibodies against claudin 18.2 useful in cancer diagnosis
US10137195B2 (en) 2013-03-18 2018-11-27 Ganymed Pharmaceuticals Gmbh Therapy involving antibodies against Claudin 18.2 for treatment of cancer
US10435467B2 (en) 2015-01-08 2019-10-08 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
CN112190710A (zh) * 2020-10-28 2021-01-08 江苏省人民医院(南京医科大学第一附属医院) 脂源性多肽在制备转移性乳腺癌靶向药物中的应用
WO2022212928A1 (fr) * 2021-04-02 2022-10-06 The Regents Of The University Of California Virus modifiés et particules virales, leurs méthodes de fabrication et leurs utilisations

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335598A (ja) * 2000-03-24 2001-12-04 Takeda Chem Ind Ltd 新規タンパク質、その製造法および用途
MX369276B (es) 2012-11-13 2019-11-04 Biontech Ag Agentes para tratamiento de enfermedades cancerosas que expresan claudina.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COLE S.T.: "Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence." NATURE, vol. 393, 11 June 1998 (1998-06-11), XP002144873 *
LAMERDIN J.E.: "Sequence analysis of a 3.5 Mb contig in human 19p13.3 containing a serine protease gene cluster." EMEST DATABASE ENTRY, 8 February 1999 (1999-02-08), XP002144874 *
M.D. ADAMS ET AL.: "The genome sequence of Drosophila melanogaster." SCIENCE, vol. 287, 24 March 2000 (2000-03-24), pages 2185-2195, XP002144875 *

Cited By (511)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7357926B2 (en) 1997-03-31 2008-04-15 Genentech, Inc. Antibodies against PRO1879 and the use thereof
US6815534B2 (en) 1997-05-28 2004-11-09 Human Genome Sciences, Inc. Tissue plasminogen activator-like protease
US6372473B1 (en) 1997-05-28 2002-04-16 Human Genome Sciences, Inc. Tissue plasminogen activator-like protease
US7205139B2 (en) 1997-05-28 2007-04-17 Human Genome Sciences, Inc. Tissue plasminogen activator-like protease
US6482932B1 (en) * 1997-11-05 2002-11-19 Ribozyme Pharmaceuticals, Incorporated Nucleoside triphosphates and their incorporation into oligonucleotides
US6528640B1 (en) * 1997-11-05 2003-03-04 Ribozyme Pharmaceuticals, Incorporated Synthetic ribonucleic acids with RNAse activity
US6617438B1 (en) * 1997-11-05 2003-09-09 Sirna Therapeutics, Inc. Oligoribonucleotides with enzymatic activity
US7033772B1 (en) 1998-01-15 2006-04-25 Millennium Pharmaceuticals, Inc. Methods of identifying inhibitors of fatty acid transport proteins (FATP)
US6300096B1 (en) 1998-01-15 2001-10-09 Whitehead Institute For Biomedical Research Polynucleotides encoding fatty acid transport proteins
US6933142B1 (en) 1998-03-20 2005-08-23 The Regents Of The University Of California Hec-g1cnac6st
US6967093B2 (en) 1998-03-20 2005-11-22 The Regents Of The University Of California Glycosyl sulfotransferase-3
US7241862B2 (en) 1998-05-15 2007-07-10 Genentech, Inc. Polypeptides that induce cell proliferation or induce fetal hemoglobin
EP1593687A2 (fr) * 1998-06-10 2005-11-09 Bayer Corporation Gènes humains étant exprimés de façon différentielle dans le cancer du colon
EP1593687A3 (fr) * 1998-06-10 2006-10-18 Bayer Corporation Gènes humains étant exprimés de façon différentielle dans le cancer du colon
US7547507B2 (en) 1998-08-18 2009-06-16 Genentech, Inc. Methods for the diagnosis of tumors
US8097700B2 (en) 1998-08-18 2012-01-17 Genentech, Inc. TAT294 polypeptides
US7691978B2 (en) 1998-08-18 2010-04-06 Genentech, Inc. Antibodies that bind TAT294
US7258973B2 (en) 1998-08-31 2007-08-21 Mayo Foundation For Medical Education & Research Method for detecting a differentially expressed sequence
US7211398B2 (en) 1998-08-31 2007-05-01 Bayer Corporation Human genes and gene expression products: II
US6897054B1 (en) * 1998-10-30 2005-05-24 Japan Science And Technology Agency Human H37 proteins and cDNA encoding the same
US7867731B2 (en) 1998-11-04 2011-01-11 Novartis Vaccines And Diagnostics, Inc. HX2004-6 polypeptide expressed in cancerous cells
EP1141269A4 (fr) * 1998-12-30 2003-03-26 Millennium Pharm Inc Proteines secretees et leurs utilisations
EP1277833A3 (fr) * 1999-02-12 2003-04-23 Genentech, Inc. Homologue de Costal-2
EP1277833A2 (fr) * 1999-02-12 2003-01-22 Genentech, Inc. Homologue de Costal-2
EP1623989A1 (fr) * 1999-03-08 2006-02-08 Genentech, Inc. Compositions et méthodes de diagnostique de tumeurs
EP1634892A3 (fr) * 1999-03-08 2006-06-21 Genentech, Inc. Composition et procédés de diagnostic de tumeurs
EP1634892A2 (fr) * 1999-03-08 2006-03-15 Genentech, Inc. Composition et procédés de diagnostic de tumeurs
US7989584B2 (en) 1999-03-19 2011-08-02 Aventis Pharmaceuticals Inc. AKT nucleic acids, polypeptides, and uses thereof
WO2000056866A3 (fr) * 1999-03-19 2001-02-15 Aventis Pharm Prod Inc Acides nucleiques akt, polypeptides, et leurs utilisations
US6881555B2 (en) 1999-03-19 2005-04-19 Aventis Pharmaceuticals Inc. AKT nucleic acids, polypeptides, and uses thereof
WO2000056866A2 (fr) * 1999-03-19 2000-09-28 Aventis Pharmaceuticals Products Inc. Acides nucleiques akt, polypeptides, et leurs utilisations
US7662628B2 (en) 1999-03-19 2010-02-16 Aventis Pharmaceuticals Inc. Human Akt3 nucleic acid and uses thereof
EP1688430A3 (fr) * 1999-03-23 2006-11-02 Genentech, Inc. Polypeptides sécrétés et transmembranaires ainsi que les acides nucléiques codant pour ceux-ci
WO2000073469A2 (fr) * 1999-05-28 2000-12-07 Sugen, Inc. Proteines kinases
WO2000073469A3 (fr) * 1999-05-28 2001-11-29 Sugen Inc Proteines kinases
WO2000075320A3 (fr) * 1999-06-07 2001-05-03 Lexicon Genetics Inc Genes humains et proteines codees par ces genes
WO2000075320A2 (fr) * 1999-06-07 2000-12-14 Lexicon Genetics Incorporated Genes humains et proteines codees par ces genes
WO2000078953A2 (fr) * 1999-06-17 2000-12-28 Incyte Genomics, Inc. Proteines de transport humaines
WO2000078953A3 (fr) * 1999-06-17 2002-01-17 Incyte Genomics Inc Proteines de transport humaines
WO2000078933A2 (fr) * 1999-06-18 2000-12-28 Basf Aktiengesellschaft Nouvelles calpaines et leur utilisation
WO2000078933A3 (fr) * 1999-06-18 2001-07-26 Basf Ag Nouvelles calpaines et leur utilisation
WO2001002586A1 (fr) * 1999-06-29 2001-01-11 Mcgill University Alpha 1,2-mannosidase humaine
EP1228082A4 (fr) * 1999-07-23 2005-11-16 Human Genome Sciences Inc Proteines humaines secretees 29
EP1228082A1 (fr) * 1999-07-23 2002-08-07 Human Genome Sciences, Inc. Proteines humaines secretees 29
WO2001007614A1 (fr) * 1999-07-26 2001-02-01 Chiron Corporation Polynucleotides exprimes differentiellement dans des adenocarcinomes, polypeptides codes par lesdits polynucleotides, et leurs techniques d'utilisation
US6743602B1 (en) 1999-07-26 2004-06-01 Chiron Corporation Polynucleotides differentially expressed in adenocarcinomas, polypeptides encoded thereby, and methods of use thereof
WO2001011040A1 (fr) * 1999-08-04 2001-02-15 Boehringer Ingelheim International Gmbh Antigene (r11) specifique de tumeur
WO2001016170A2 (fr) * 1999-09-01 2001-03-08 The Burnham Institute Nouvelles proteines card participant a la regulation de l'apoptose
WO2001016170A3 (fr) * 1999-09-01 2001-09-27 Burnham Inst Nouvelles proteines card participant a la regulation de l'apoptose
WO2001016336A1 (fr) * 1999-09-02 2001-03-08 Lexicon Genetics Incorporated Proteases humaines dependantes du calcium et polynucleotides les codant
WO2001016313A1 (fr) * 1999-09-02 2001-03-08 Smithkline Beecham P.L.C. Gene de regulation de la proteine gs humaine
US6433153B1 (en) 1999-09-02 2002-08-13 Lexicon Genetics Incorporated Human calcium dependent proteases and polynucleotides encoding the same
US7329529B2 (en) 1999-09-03 2008-02-12 Millennium Pharmaceuticals, Inc. Ubiqutin proteases
WO2001018037A2 (fr) * 1999-09-07 2001-03-15 University Health Network Proteine induite par p53 avec un domaine de mort pouvant favoriser l'apoptose
WO2001018037A3 (fr) * 1999-09-07 2001-11-08 Univ Health Network Proteine induite par p53 avec un domaine de mort pouvant favoriser l'apoptose
WO2001019860A3 (fr) * 1999-09-15 2002-01-24 Incyte Genomics Inc Proteines associees a la differenciation cellulaire
WO2001019860A2 (fr) * 1999-09-15 2001-03-22 Incyte Genomics, Inc. Proteines associees a la differenciation cellulaire
US6558912B1 (en) 1999-09-16 2003-05-06 Mcgill University NRAGE nucleic acids and polypeptides and uses thereof
GB2370840A (en) * 1999-09-16 2002-07-10 Univ Mcgill Nrage nucleic acids and polypeptides and uses thereof
WO2001019850A2 (fr) * 1999-09-16 2001-03-22 Mcgill University Acides nucleiques et polypeptides nrage, et leurs utilisations
WO2001019850A3 (fr) * 1999-09-16 2001-09-20 Univ Mcgill Acides nucleiques et polypeptides nrage, et leurs utilisations
US6451994B1 (en) 1999-09-27 2002-09-17 Millennium Pharmaceuticals, Inc. 23413, a novel human ubiquitin protease
US7776577B2 (en) 1999-09-27 2010-08-17 Millennium Pharmaceuticals, Inc. Ubiquitin protease
WO2001023584A1 (fr) * 1999-09-27 2001-04-05 Millennium Pharmaceuticals, Inc. Protease de l'ubiquitine humaine
US7482147B2 (en) 1999-09-27 2009-01-27 Millennium Pharmaceuticals, Inc. Ubiquitin protease
US6329171B1 (en) 1999-09-30 2001-12-11 Millennium Pharmaceuticals, Inc. 23484, A novel human ubiquitin protease
WO2001023585A1 (fr) * 1999-09-30 2001-04-05 Millennium Pharmaceuticals, Inc. Ubiquitine-protease humaine: 23484
EP1224200A4 (fr) * 1999-10-04 2003-01-08 Human Genome Sciences Inc Protease semblable a un activateur de plasminogene tissulaire
WO2001027269A2 (fr) * 1999-10-11 2001-04-19 Chiron Spa Proteine vip54 et substances liees a celle-ci
WO2001027269A3 (fr) * 1999-10-11 2001-11-22 Chiron Spa Proteine vip54 et substances liees a celle-ci
WO2001027290A2 (fr) * 1999-10-14 2001-04-19 Curagen Corporation Proteine aortique du type carboxypeptidase et acides nucleiques codant cette proteine
WO2001027278A2 (fr) * 1999-10-14 2001-04-19 Hyseq, Inc. Membre de la superfamille des immunoglobines et utilisations correspondantes
WO2001027278A3 (fr) * 1999-10-14 2002-02-21 Hyseq Inc Membre de la superfamille des immunoglobines et utilisations correspondantes
WO2001027290A3 (fr) * 1999-10-14 2002-01-17 Curagen Corp Proteine aortique du type carboxypeptidase et acides nucleiques codant cette proteine
WO2001029213A1 (fr) * 1999-10-19 2001-04-26 The Wellcome Trust Limited As Trustee To The Wellcome Trust Proteines analogues aux proteines humaines associees au sit4 (sapl), genes codant pour ces proteines, et leurs utilisations
WO2001031034A1 (fr) * 1999-10-25 2001-05-03 Millennium Pharmaceuticals, Inc. Homologue d'adam-ts 27875 humaine
EP1237901A4 (fr) * 1999-11-05 2005-01-12 Human Genome Sciences Inc 28 proteines secretees humaines
EP1237901A1 (fr) * 1999-11-05 2002-09-11 Human Genome Sciences, Inc. 28 proteines secretees humaines
US6900046B2 (en) 1999-11-10 2005-05-31 Lexicon Genetics Incorporated Human ATPase proteins and polynucleotides encoding the same
WO2001034778A2 (fr) * 1999-11-10 2001-05-17 Lexicon Genetics Incorporated NOUVELLES PROTEINES HUMAINES A ACTIVITE ADENOSINE TRIPHOSPHATE (ATPase) ET POLYNUCLEOTIDES LES CODANT
WO2001034778A3 (fr) * 1999-11-10 2002-01-10 Lexicon Genetics Inc NOUVELLES PROTEINES HUMAINES A ACTIVITE ADENOSINE TRIPHOSPHATE (ATPase) ET POLYNUCLEOTIDES LES CODANT
US6462186B1 (en) 1999-11-10 2002-10-08 Lexicon Genetics Incorporated Human ATPase proteins and polynucleotides encoding the same
US7005285B1 (en) 1999-11-15 2006-02-28 Pharmacia & Italia S.P.A. Human p21-activated kinase 5 polypeptide
WO2001036602A2 (fr) * 1999-11-15 2001-05-25 Pharmacia Italia S.P.A. Nouveau membre de la famille des proteines pak, des acides nucleiques et procedes correspondants
WO2001036602A3 (fr) * 1999-11-15 2001-10-04 Pharmacia & Upjohn Spa Nouveau membre de la famille des proteines pak, des acides nucleiques et procedes correspondants
WO2001036645A2 (fr) * 1999-11-17 2001-05-25 Curagen Corporation Nouveaux polypeptides et acides nucleiques codant les memes
WO2001036645A3 (fr) * 1999-11-17 2002-06-06 Curagen Corp Nouveaux polypeptides et acides nucleiques codant les memes
US9828590B2 (en) 1999-12-01 2017-11-28 Millennium Pharmaceuticals, Inc. Molecules of the card-related protein family and uses thereof
WO2001040468A3 (fr) * 1999-12-01 2002-01-17 Millennium Pharm Inc Nouvelles molecules de la famille de proteines de type card et utilisations de ces dernieres
US7452967B2 (en) 1999-12-01 2008-11-18 Millenium Pharmaceuticals, Inc. Molecules of the card-related protein family and uses thereof
US8178661B2 (en) 1999-12-01 2012-05-15 Millennium Pharmaceuticals, Inc. Molecules of the card-related protein family and uses thereof
EP1672070A3 (fr) * 1999-12-01 2006-10-04 Genentech, Inc. Polypeptides secrétés et transmembranaires et acides nucléiques codant pour ceux-ci
US9085639B2 (en) 1999-12-01 2015-07-21 Millennium Pharmaceuticals, Inc. Molecules of the card-related protein family and uses thereof
WO2001040468A2 (fr) * 1999-12-01 2001-06-07 Millennium Pharmaceuticals, Inc. Nouvelles molecules de la famille de proteines de type card et utilisations de ces dernieres
EP1690872A3 (fr) * 1999-12-01 2006-08-23 Genentech, Inc. Composition et procédés de diagnostic de tumeurs
EP1690873A3 (fr) * 1999-12-01 2006-08-23 Genentech, Inc. Composition et procédés de diagnostic de tumeurs
US7342096B2 (en) 1999-12-09 2008-03-11 Genentech, Inc. PRO1879 polypeptide
WO2001042291A2 (fr) * 1999-12-10 2001-06-14 Curagen Corporation Nouveaux polypeptides et polynucleotides codant pour ces polypeptides
WO2001042291A3 (fr) * 1999-12-10 2002-06-13 Curagen Corp Nouveaux polypeptides et polynucleotides codant pour ces polypeptides
US7115558B2 (en) * 1999-12-16 2006-10-03 Cytochroma Inc. P450RAI-2(P450 Cytochrome 26B), encoding nucleic acid molecules and methods and uses thereof
WO2001046227A3 (fr) * 1999-12-21 2002-03-28 Univ Zuerich Polypeptides 'dispatched'
WO2001046227A2 (fr) * 1999-12-21 2001-06-28 University Of Zurich Polypeptides 'dispatched'
WO2001046397A2 (fr) * 1999-12-23 2001-06-28 Incyte Genomics, Inc. Kinases humaines
WO2001046397A3 (fr) * 1999-12-23 2002-02-21 Incyte Genomics Inc Kinases humaines
WO2001051520A3 (fr) * 2000-01-12 2002-04-18 Univ Yale Blocage de la croissance axonale a mediation assuree par le recepteur de nogo
US7119165B2 (en) 2000-01-12 2006-10-10 Yale University Nogo receptor-mediated blockade of axonal growth
US8394929B2 (en) 2000-01-12 2013-03-12 Yale University Nogo receptor-mediated blockade of axonal growth
EA008480B1 (ru) * 2000-01-12 2007-06-29 Йейл Юниверсити Выделенный полинуклеотид (варианты), содержащий его вектор и клетка-хозяин, кодируемый им полипептид рецептора nogo, уменьшающий опосредованное этим рецептором ингибирование роста аксонов (варианты), выделенное антитело и фармацевтическая композиция на их основе
EP1257560A4 (fr) * 2000-02-01 2003-10-01 Human Genome Sciences Inc Polynucleotides semblables a bcl-2, polypeptides et anticorps
WO2001057203A1 (fr) * 2000-02-01 2001-08-09 Taisho Pharmaceutical Co.,Ltd. NOUVEAU GENE TIG104α ET PROTEINE TIG104α CODEE PAR CE GENE
WO2001059114A3 (fr) * 2000-02-09 2002-03-07 Us Health Nouveau gene suppresseur de tumeurs p47ing3
US8957015B2 (en) 2000-02-09 2015-02-17 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Tumor suppressor gene p47ING3
US8415097B2 (en) 2000-02-09 2013-04-09 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Tumor suppressor gene, p47ING3
US8067563B2 (en) 2000-02-09 2011-11-29 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Tumor suppressor gene, p471NG3
WO2001059114A2 (fr) * 2000-02-09 2001-08-16 The Government Of The United States Of America, As Represented By The Secretary Of Health And Human Services Nouveau gene suppresseur de tumeurs p47ing3
US7335749B2 (en) 2000-02-09 2008-02-26 The United States Of America As Represented By The Department Of Health And Human Services Tumor suppressor gene, p47Ing3
US7709609B2 (en) 2000-02-09 2010-05-04 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Tumor suppressor gene, p47ING3
US7256010B2 (en) 2000-02-17 2007-08-14 Millennium Pharmaceuticals, Inc. Nucleic acid sequences encoding melanoma associated antigen molecules, aminotransferase molecules, ATPase molecules, acyltransferase molecules, pyridoxal-phosphate dependant enzyme molecules and uses therefor
US7078205B2 (en) 2000-02-17 2006-07-18 Millennium Pharmaceuticals, Inc. Nucleic acid sequences encoding melanoma associated antigen molecules, aminotransferase molecules, atpase molecules, acyltransferase molecules, pyridoxal-phosphate dependent enzyme molecules and uses therefor
WO2001061001A3 (fr) * 2000-02-18 2002-03-14 Basf Lynx Bioscience Ag Nouvelle proteine du systeme nerveux central, qui module les flux de k?+¿
WO2001061001A2 (fr) * 2000-02-18 2001-08-23 Basf-Lynx Bioscience Ag Nouvelle proteine du systeme nerveux central, qui module les flux de k?+¿
GB2361702A (en) * 2000-02-18 2001-10-31 Hoffmann La Roche Novel metalloproteases having thrombospondin domains
WO2001061003A1 (fr) * 2000-02-19 2001-08-23 Smithkline Beecham P.L.C. Homologue humain du flamingo
WO2001062926A2 (fr) * 2000-02-25 2001-08-30 Millennium Pharmaceuticals, Inc. Molecules 44576, nouveau recepteur couple a la proteine g et utilisation de celui-ci
WO2001062926A3 (fr) * 2000-02-25 2002-02-14 Millennium Pharm Inc Molecules 44576, nouveau recepteur couple a la proteine g et utilisation de celui-ci
WO2001064905A2 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. 2504, 15977 et 14760, nouveaux membres de la famille proteine kinase et leurs utilisations
WO2001064873A2 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. Nouvelles proteines activatrices de gtpase humaines
US7879989B2 (en) 2000-02-29 2011-02-01 Millennium Pharmaceuticals, Inc. 16836, A human phospholipase C family member, nucleic acids and uses thereof
WO2001064908A3 (fr) * 2000-02-29 2002-05-10 Millennium Pharm Inc La 14790, nouvelle molecule de proteine kinase et ses utilisations
US7198929B2 (en) 2000-02-29 2007-04-03 Millennium Pharmaceuticals 14790, a novel protein kinase molecule and uses therefor
WO2001064905A3 (fr) * 2000-02-29 2002-08-08 Millennium Pharm Inc 2504, 15977 et 14760, nouveaux membres de la famille proteine kinase et leurs utilisations
WO2001064906A1 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. Transferase 32253 et utilisation associee
WO2001064908A2 (fr) * 2000-02-29 2001-09-07 Millennium Pharmaceuticals, Inc. La 14790, nouvelle molecule de proteine kinase et ses utilisations
US6864078B2 (en) 2000-02-29 2005-03-08 Millennium Pharmaceuticals, Inc. 14790, novel protein kinase molecule and uses therefor
US6730491B2 (en) 2000-02-29 2004-05-04 Millennium Pharmaceuticals, Inc. 2504, 15977, and 14760, novel protein kinase family members and uses therefor
WO2001064873A3 (fr) * 2000-02-29 2002-05-02 Millennium Pharm Inc Nouvelles proteines activatrices de gtpase humaines
WO2001068848A2 (fr) * 2000-03-01 2001-09-20 Genentech, Inc. Polypeptides secretes et transmembranaires et acides nucleiques codant pour ces polypeptides
WO2001068848A3 (fr) * 2000-03-01 2002-08-29 Genentech Inc Polypeptides secretes et transmembranaires et acides nucleiques codant pour ces polypeptides
WO2001064703A1 (fr) * 2000-03-02 2001-09-07 Human Genome Sciences, Inc. Polynucleotides de serine/threonine-phosphatases, polypeptides et anticorps
WO2001064740A1 (fr) * 2000-03-02 2001-09-07 Chugai Seiyaku Kabushiki Kaisha Promoteur de squalene epoxydase codant l'adn
US7291715B2 (en) 2000-03-03 2007-11-06 Genentech, Inc. Antibodies to the PRO4329 polypeptide
US7282558B2 (en) 2000-03-03 2007-10-16 Genentech, Inc. PRO4329 polypeptide
US8252915B2 (en) 2000-03-07 2012-08-28 Millennium Pharmaceuticals, Inc. Human transferase family members and uses thereof
WO2001066756A3 (fr) * 2000-03-07 2002-03-28 Millenium Pharmaceuticals Inc 22105, un nouvel element de la famille de thioredoxine humaine et utilisations correspondantes
WO2001066756A2 (fr) * 2000-03-07 2001-09-13 Millenium Pharmaceuticals, Inc. 22105, un nouvel element de la famille de thioredoxine humaine et utilisations correspondantes
US7799898B2 (en) 2000-03-07 2010-09-21 Millennium Pharmaceuticals, Inc. Human transferase family members and uses thereof
WO2001068851A2 (fr) * 2000-03-10 2001-09-20 Curagen Corporation Nouveaux polypeptides et acides nucleiques les codant
WO2001068851A3 (fr) * 2000-03-10 2002-06-20 Curagen Corp Nouveaux polypeptides et acides nucleiques les codant
WO2001070808A2 (fr) * 2000-03-22 2001-09-27 Curagen Corporation Proteines associees a l'angiogenese et acides nucleiques codant ces proteines
WO2001070808A3 (fr) * 2000-03-22 2002-05-10 Curagen Corp Proteines associees a l'angiogenese et acides nucleiques codant ces proteines
US7166701B2 (en) * 2000-03-24 2007-01-23 Merck Patent Gmbh Human survivin interacting protein 1 (SIP-1)
US7405272B2 (en) 2000-03-24 2008-07-29 Genetics Institute, L.L.C. Selectin ligand interactor cytoplasmic (SLIC-1), a P-selectin glycoprotein ligand (PSGL-1) binding protein
WO2001073014A1 (fr) * 2000-03-24 2001-10-04 Merck Patent Gmbh Proteine 1 interagissant avec la survivine humaine (sip-1)
US6852497B2 (en) 2000-03-24 2005-02-08 Genetics Institute, Llc Methods of identifying compounds which inhibit binding of SLIC-1 to PSGL-1
WO2001072975A2 (fr) * 2000-03-24 2001-10-04 Millennium Pharmaceuticals, Inc. 25552, nouveau membre de la famille des methyltransferases humaines et son utilisation
JP2004507215A (ja) * 2000-03-24 2004-03-11 ジェネティクス インスティテュート,エルエルシー 新規のp−セレクチン糖タンパク質リガンド(psgl−1)結合タンパク質およびその使用
WO2001073028A3 (fr) * 2000-03-24 2002-05-23 Genetics Inst Nouvelle proteine de liaison aux ligands de glycoproteine p-selectine (psgl-1) et ses utilisations
WO2001073043A2 (fr) * 2000-03-24 2001-10-04 Millennium Pharmaceuticals, Inc. 32451, nouvelle ubiquitine humaine se conjuguant a une molecule de type enzymatique et ses utilisations
WO2001073028A2 (fr) * 2000-03-24 2001-10-04 Genetics Institute, Llc Nouvelle proteine de liaison aux ligands de glycoproteine p-selectine (psgl-1) et ses utilisations
WO2001072975A3 (fr) * 2000-03-24 2002-06-27 Millennium Pharm Inc 25552, nouveau membre de la famille des methyltransferases humaines et son utilisation
WO2001073043A3 (fr) * 2000-03-24 2002-02-28 Millennium Pharm Inc 32451, nouvelle ubiquitine humaine se conjuguant a une molecule de type enzymatique et ses utilisations
WO2001072822A2 (fr) * 2000-03-27 2001-10-04 Fondation Jean Dausset-Ceph Genes impliques dans les maladies inflammatoires de l"intestin et leur utilisation
EP1138768A2 (fr) * 2000-03-27 2001-10-04 Leadd B.V. Protéine AAP-5 liant l' apoptine
WO2001072824A3 (fr) * 2000-03-27 2002-08-15 Leadd Bv Proteine s'associant a l'apoptine
US7592437B2 (en) 2000-03-27 2009-09-22 Fondation Jean Dausset-Ceph Genes involved in intestinal inflammatory diseases and use thereof
WO2001072824A2 (fr) * 2000-03-27 2001-10-04 Leadd B.V. Proteine s'associant a l'apoptine
EP1138768A3 (fr) * 2000-03-27 2002-08-07 Leadd B.V. Protéine AAP-5 liant l' apoptine
WO2001072822A3 (fr) * 2000-03-27 2002-07-18 Fond Jean Dausset Ceph Genes impliques dans les maladies inflammatoires de l"intestin et leur utilisation
US8137915B2 (en) 2000-03-27 2012-03-20 Fondation Jean Dausset-Ceph Genes involved in intestinal inflammatory diseases and use thereof
WO2001073022A1 (fr) * 2000-03-29 2001-10-04 Kyowa Hakko Kogyo Co., Ltd. Gene associe a la glomerulonephrite proliferative
WO2001075121A2 (fr) * 2000-03-31 2001-10-11 Millennium Pharmaceuticals, Inc. 16836, un nouvel element de la famille de la phospholipase c humaine et ses utilisations
WO2001075121A3 (fr) * 2000-03-31 2002-04-25 Millennium Pharm Inc 16836, un nouvel element de la famille de la phospholipase c humaine et ses utilisations
WO2001072957A3 (fr) * 2000-03-31 2002-04-25 Nobuyuki Itoh Molecules de type facteur de croissance des fibroblastes et leurs utilisations
WO2001072957A2 (fr) * 2000-03-31 2001-10-04 Nobuyuki Itoh Molecules de type facteur de croissance des fibroblastes et leurs utilisations
WO2001077339A1 (fr) * 2000-04-07 2001-10-18 Merck Patent Gmbh Phosphatase deshydrogenese pyruvate humaine
US7250279B2 (en) 2000-04-07 2007-07-31 Merck Patent Gmbh Human pyruvate dehydrogenese phosphatase
US7229816B2 (en) 2000-04-18 2007-06-12 Amgen Inc. Sitosterolemia susceptibility gene (SSG) polypeptides
WO2001079272A2 (fr) * 2000-04-18 2001-10-25 Tularik Inc. Gene de susceptibilite a la sitosterolemie (ssg): compositions et methodes d'utilisation
US7033810B2 (en) 2000-04-18 2006-04-25 Amgen Inc. Sitosterolemia susceptibility gene (SSG): compositions and methods of use
WO2001079272A3 (fr) * 2000-04-18 2002-08-29 Tularik Inc Gene de susceptibilite a la sitosterolemie (ssg): compositions et methodes d'utilisation
US7662376B2 (en) 2000-04-18 2010-02-16 Amgen Inc. Sitosterolemia susceptibility gene (SSG): compositions and methods of use
US8257934B2 (en) 2000-04-18 2012-09-04 Amgen Inc. Screening methods using sitosterolemia susceptibility gene (SSG) polypeptides
WO2001081412A2 (fr) * 2000-04-26 2001-11-01 Pe Corporation (Ny) Proteines de transport humaines isolees, molecules d'acides nucleiques codant pour ces proteines de transport humaines et utilisations de ces proteines
WO2001081412A3 (fr) * 2000-04-26 2002-07-11 Pe Corp Ny Proteines de transport humaines isolees, molecules d'acides nucleiques codant pour ces proteines de transport humaines et utilisations de ces proteines
WO2001083524A2 (fr) * 2000-04-28 2001-11-08 Incyte Genomics, Inc. Proteines du metabolisme de l'arn
WO2001083524A3 (fr) * 2000-04-28 2002-06-20 Incyte Genomics Inc Proteines du metabolisme de l'arn
US6808876B1 (en) 2000-05-02 2004-10-26 Immusol, Inc. Cellular regulators of infectious agents and methods of use
WO2001083744A3 (fr) * 2000-05-02 2002-04-18 Merck Patent Gmbh Nouvelle proteine echangeuse sodium-calcium
WO2001083744A2 (fr) * 2000-05-02 2001-11-08 Merck Patent Gmbh Nouvelle proteine echangeuse sodium-calcium
WO2001083754A2 (fr) * 2000-05-02 2001-11-08 Immusol, Incorporated Regulateurs cellulaires d'agents infectieux et methodes d'utilisations
WO2001083754A3 (fr) * 2000-05-02 2002-10-03 Immusol Inc Regulateurs cellulaires d'agents infectieux et methodes d'utilisations
WO2001083753A3 (fr) * 2000-05-03 2002-05-23 Millennium Pharm Inc Nouvelles molecules appartenant a la famille de proteines nbs/lrr et utilisations de ces dernieres
WO2001083753A2 (fr) * 2000-05-03 2001-11-08 Millennium Pharmaceuticals, Inc. Nouvelles molecules appartenant a la famille de proteines nbs/lrr et utilisations de ces dernieres
US7034135B2 (en) 2000-05-03 2006-04-25 Millennium Pharmaceuticals, Inc. Molecules of the NBS/LRR protein family and uses thereof
WO2001085921A2 (fr) * 2000-05-12 2001-11-15 Merck Patent Gmbh Nouvelle serine-threonine kinase-4
WO2001085921A3 (fr) * 2000-05-12 2002-04-04 Merck Patent Gmbh Nouvelle serine-threonine kinase-4
WO2001088135A3 (fr) * 2000-05-15 2002-08-29 Curagen Corp Proteines et acides nucleiques codant pour de telles proteines
WO2001088135A2 (fr) * 2000-05-15 2001-11-22 Curagen Corporation Proteines et acides nucleiques codant pour de telles proteines
WO2001090322A3 (fr) * 2000-05-19 2002-06-13 Millennium Pharm Inc 32244, enzyme se liant a l'amp et utilisations correspondantes
WO2001090322A2 (fr) * 2000-05-19 2001-11-29 Millennium Pharmaceuticals, Inc. 32244, enzyme se liant a l'amp et utilisations correspondantes
WO2001090179A2 (fr) * 2000-05-23 2001-11-29 Lexicon Genetics Incorporated Proteines ressemblant a la thrombospondine humaine et polynucleotides les codant
WO2001090179A3 (fr) * 2000-05-23 2002-06-13 Lexicon Genetics Inc Proteines ressemblant a la thrombospondine humaine et polynucleotides les codant
WO2001090155A2 (fr) * 2000-05-24 2001-11-29 Curagen Corporation Nouvelles proteines et acides nucleiques codant pour ces proteines
WO2001090155A3 (fr) * 2000-05-24 2003-10-02 Curagen Corp Nouvelles proteines et acides nucleiques codant pour ces proteines
WO2001092524A2 (fr) * 2000-05-26 2001-12-06 Aeomica, Inc. Gene du type myosine exprime dans le coeur et les muscles humains
GB2380197A (en) * 2000-05-26 2003-04-02 Aeomica Inc Myosin-like gene expressed in human heart and muscle
WO2001092524A3 (fr) * 2000-05-26 2002-06-06 Aeomica Inc Gene du type myosine exprime dans le coeur et les muscles humains
EP1158049A1 (fr) * 2000-05-26 2001-11-28 Aeomica, INC. Gène resemblant à la myosine exprimé dans le coeur et le muscle
EP1666491A1 (fr) * 2000-06-02 2006-06-07 Genentech, Inc. Polypeptides sécrétés et transmembranaires ainsi que les acides nucléiques codant pour ceux-ci
US7285627B2 (en) * 2000-06-05 2007-10-23 Genentech, Inc. PRO4989 polypeptides
WO2001096575A1 (fr) * 2000-06-14 2001-12-20 Sankyo Company, Limited Ceramide kinase et adn la codant
WO2001096542A2 (fr) * 2000-06-15 2001-12-20 Millennium Pharmaceuticals, Inc. 23680, nouvelle aminotransferase humaine et utilisations de celle-ci
WO2001096542A3 (fr) * 2000-06-15 2002-06-06 Millennium Pharm Inc 23680, nouvelle aminotransferase humaine et utilisations de celle-ci
WO2001096561A1 (fr) * 2000-06-16 2001-12-20 Merck Patent Gmbh Hunc-2, element humain de la famille des proteines unc
US6586185B2 (en) 2000-06-20 2003-07-01 Switch Biotech Ag Use of polypeptides or nucleic acids for the diagnosis or treatment of skin disorders and wound healing and for the identification of pharmacologically active substances
WO2002000874A1 (fr) * 2000-06-26 2002-01-03 Ajinomoto Co., Inc. Polypeptides, leur utilisation ainsi que leur procede de production
US7189810B2 (en) 2000-06-26 2007-03-13 Ajinomoto Co., Inc. Polypeptides, use thereof and process for producing the same
WO2002000691A2 (fr) * 2000-06-27 2002-01-03 Curagen Corporation Nouveaux polynucleotides et polypeptides codes par ceux-ci
WO2002000691A3 (fr) * 2000-06-27 2003-02-27 Curagen Corp Nouveaux polynucleotides et polypeptides codes par ceux-ci
WO2002006485A2 (fr) * 2000-07-13 2002-01-24 Millennium Pharmaceuticals Inc. 47885, une nouvelle enzyme activant l'ubiquitine humaine et ses applications
WO2002006485A3 (fr) * 2000-07-13 2003-03-13 Millennium Pharm Inc 47885, une nouvelle enzyme activant l'ubiquitine humaine et ses applications
US7071318B2 (en) 2000-07-18 2006-07-04 Board Of Regents, The University Of Texas System Methods and compositions for stabilizing microtubules and intermediate filaments in striated muscle cells
US7005512B2 (en) 2000-07-18 2006-02-28 Board Of Regents, The University Of Texas System Methods and compositions for stabilizing microtubules and intermediate filaments in striated muscle cells
WO2002006318A3 (fr) * 2000-07-18 2002-08-08 Univ Texas Procedes et compositions permettant de stabiliser des microtubules et des filaments intermediaires dans des cellules de muscle strie
US6740751B2 (en) 2000-07-18 2004-05-25 Board Of Regents, The University Of Texas System Methods and compositions for stabilizing microtubules and intermediate filaments in striated muscle cells
WO2002006328A3 (fr) * 2000-07-18 2003-05-30 Schering Corp Acides nucleiques issus des cellules dendritiques et compositions et methodes associees
WO2002006328A2 (fr) * 2000-07-18 2002-01-24 Schering Corporation Acides nucleiques issus des cellules dendritiques et compositions et methodes associees
WO2002006318A2 (fr) * 2000-07-18 2002-01-24 Board Of Regents, The University Of Texas System Procedes et compositions permettant de stabiliser des microtubules et des filaments intermediaires dans des cellules de muscle strie
EP1174502A1 (fr) * 2000-07-18 2002-01-23 Schering Corporation Acides nucléiques codantes derivés des précurseurs de cellules dendritiques de type 2 et compositions et méthodes associées
JP2013100284A (ja) * 2000-08-02 2013-05-23 Johns Hopkins Univ 内皮細胞発現パターンの評価法
EP1307557A2 (fr) * 2000-08-02 2003-05-07 The Johns Hopkins University Profils d'expression de cellules endotheliales
JP2015192672A (ja) * 2000-08-02 2015-11-05 ザ ジョンズ ホプキンス ユニバーシティー 内皮細胞発現パターンの評価法
US7402660B2 (en) 2000-08-02 2008-07-22 The Johns Hopkins University Endothelial cell expression patterns
AU2001295458B2 (en) * 2000-08-18 2007-01-25 Merck Patent Gmbh MFQ-111, a novel human gtpase like protein
WO2002016561A3 (fr) * 2000-08-18 2002-11-07 Merck Patent Gmbh Mfq-111, nouvelle proteine de type gtpase humaine
JP2004507239A (ja) * 2000-08-18 2004-03-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Mfq−111、新規ヒトgtp加水分解酵素様タンパク質
WO2002016561A2 (fr) * 2000-08-18 2002-02-28 Merck Patent Gmbh Mfq-111, nouvelle proteine de type gtpase humaine
WO2002016595A2 (fr) * 2000-08-24 2002-02-28 Incyte Genomics, Inc. Proteine specifique au rein
WO2002016595A3 (fr) * 2000-08-24 2003-01-16 Incyte Genomics Inc Proteine specifique au rein
WO2002018420A2 (fr) * 2000-08-28 2002-03-07 Lion Bioscience Ag Nouveaux cofacteurs du recepteur du pregnane x et leurs methodes d'utilisation
WO2002018420A3 (fr) * 2000-08-28 2002-06-06 Lion Bioscience Ag Nouveaux cofacteurs du recepteur du pregnane x et leurs methodes d'utilisation
WO2002018582A2 (fr) * 2000-08-31 2002-03-07 Millennium Pharmaceuticals, Inc. 62112, nouvelle deshydrogenase humaine et ses utilisations
WO2002018582A3 (fr) * 2000-08-31 2002-08-08 Millennium Pharm Inc 62112, nouvelle deshydrogenase humaine et ses utilisations
US7166428B2 (en) 2000-08-31 2007-01-23 Millennium Pharmaceuticals, Inc. 62112, a novel human dehydrogenase and uses thereof
WO2002024739A2 (fr) * 2000-09-21 2002-03-28 The Regents Of The University Of California Antigene du cancer spas-1
WO2002024739A3 (fr) * 2000-09-21 2003-01-23 Univ California Antigene du cancer spas-1
WO2002024738A1 (fr) * 2000-09-22 2002-03-28 Kyowa Hakko Kogyo Co., Ltd. Proteine localisee nucleaire de beta-catenine
US7358348B2 (en) 2000-09-22 2008-04-15 Kyowa Hakko Kogyo Co., Ltd. β-catenin nuclear localized protein
WO2002024744A3 (fr) * 2000-09-25 2003-07-03 Millennium Pharm Inc Nouveau transporteur phospholipidique humain 49938 et utilisations
WO2002024744A2 (fr) * 2000-09-25 2002-03-28 Millennium Pharmaceuticals, Inc. Nouveau transporteur phospholipidique humain 49938 et utilisations
WO2002026982A3 (fr) * 2000-09-29 2003-09-25 Incyte Genomics Inc Proteines secretees
WO2002026955A2 (fr) * 2000-09-29 2002-04-04 Lexicon Genetics Incorporated Nouvelles proteases humaines et polynucleotides codant pour ces proteases
WO2002026955A3 (fr) * 2000-09-29 2002-07-11 Lexicon Genetics Inc Nouvelles proteases humaines et polynucleotides codant pour ces proteases
WO2002029039A2 (fr) * 2000-10-05 2002-04-11 Millennium Pharmaceuticals, Inc. 47316, une nouvelle proteine g humaine et ses utilisations
WO2002029039A3 (fr) * 2000-10-05 2003-01-09 Millennium Pharm Inc 47316, une nouvelle proteine g humaine et ses utilisations
US7173118B2 (en) 2000-10-06 2007-02-06 Biogen Idec Ma Inc. Nogo receptor homologs
US7456255B2 (en) 2000-10-06 2008-11-25 Yale University Nogo receptor homologs that decrease inhibition of axonal elongation
US6844180B2 (en) 2000-10-12 2005-01-18 Ferring Bv Serine protease genes related to DPPIV
WO2002031134A2 (fr) * 2000-10-12 2002-04-18 Ferring Bv Nouveaux genes de serine protease apparentes a la dppiv
CN100354417C (zh) * 2000-10-12 2007-12-12 凡林有限公司 与dppiv相关的新丝氨酸蛋白酶基因
WO2002031134A3 (fr) * 2000-10-12 2003-07-17 Ferring Bv Nouveaux genes de serine protease apparentes a la dppiv
US7157241B2 (en) 2000-10-12 2007-01-02 Ferring Bv Serine protease genes related to DPPIV
WO2002033062A1 (fr) * 2000-10-16 2002-04-25 Bayer Aktiengesellschaft Regulation de l'acyl-coa deshydrogenase humaine
WO2002033086A2 (fr) * 2000-10-17 2002-04-25 Pe Corporation (Ny) Proteines transporteuses isolees humaines, molecules d'acide nucleique codant pour ces proteines transporteuses humaines, et leurs utilisations
WO2002033086A3 (fr) * 2000-10-17 2003-03-27 Pe Corp Ny Proteines transporteuses isolees humaines, molecules d'acide nucleique codant pour ces proteines transporteuses humaines, et leurs utilisations
WO2002033058A2 (fr) * 2000-10-20 2002-04-25 Inpharmatica Limited Proteases a cysteine
WO2002033058A3 (fr) * 2000-10-20 2003-04-10 Inpharmatica Ltd Proteases a cysteine
WO2002034903A2 (fr) * 2000-10-24 2002-05-02 Aventis Pharma S.A. Acide nucleique regulateur du gene abca7, molecules modulant son activite et applications therapeutiques
FR2822165A1 (fr) * 2000-10-24 2002-09-20 Aventis Pharma Sa Acide nucleique regulateur du gene abca7, molecules modulant son activite et applications therapeutiques
WO2002034903A3 (fr) * 2000-10-24 2002-08-08 Aventis Pharma Sa Acide nucleique regulateur du gene abca7, molecules modulant son activite et applications therapeutiques
EP1337629A4 (fr) * 2000-10-27 2005-02-16 Univ Sydney Dipeptidyl peptidases
EP1337629A1 (fr) * 2000-10-27 2003-08-27 University Of Sydney Dipeptidyl peptidases
EP1337544A2 (fr) * 2000-10-30 2003-08-27 Bristol-Myers Squibb Company Polynucleotide codant pour une proteine derivee d'un lymphocyte t humain active liee a une enzyme se conjuguant a l'ubiquitine
EP1337544A4 (fr) * 2000-10-30 2004-12-08 Bristol Myers Squibb Co Polynucleotide codant pour une proteine derivee d'un lymphocyte t humain active liee a une enzyme se conjuguant a l'ubiquitine
WO2002036741A3 (fr) * 2000-10-30 2003-01-23 Bristol Myers Squibb Co Polynucleotide codant pour une proteine derivee d'un lymphocyte t humain active liee a une enzyme se conjuguant a l'ubiquitine
WO2002036741A2 (fr) * 2000-10-30 2002-05-10 Bristol-Myers Squibb Company Polynucleotide codant pour une proteine derivee d'un lymphocyte t humain active liee a une enzyme se conjuguant a l'ubiquitine
WO2002036781A3 (fr) * 2000-10-31 2003-02-06 Bayer Ag Regulation de la glutathione-s-transferase humaine
WO2002036781A2 (fr) * 2000-10-31 2002-05-10 Bayer Aktiengesellschaft Regulation de la glutathione-s-transferase humaine
WO2002048369A3 (fr) * 2000-11-02 2004-02-26 Bristol Myers Squibb Co Polynucleotide codant une nouvelle sous-unite beta du canal potassium chez l'homme, k+mbeta1
WO2002048369A2 (fr) * 2000-11-02 2002-06-20 Bristol-Myers Squibb Company Polynucleotide codant une nouvelle sous-unite beta du canal potassium chez l'homme, k+mbeta1
WO2002040674A3 (fr) * 2000-11-14 2003-04-10 Millenium Pharmaceuticals Inc 67118, 67067 et 62092, proteines humaines et leurs procedes d'utilisation
WO2002040674A2 (fr) * 2000-11-14 2002-05-23 Millenium Pharmaceuticals, Inc. 67118, 67067 et 62092, proteines humaines et leurs procedes d'utilisation
WO2002040538A3 (fr) * 2000-11-17 2002-11-28 Bayer Ag Regulation du recepteur nmda humain
WO2002040538A2 (fr) * 2000-11-17 2002-05-23 Bayer Aktiengesellschaft Regulation du recepteur nmda humain
US7517957B2 (en) 2000-11-22 2009-04-14 Bristol-Myers Squibb Company Human SLAP-2: a novel SH2/ SH3 domain-containing human SLAP homologue having immune cell-specific expression
US7507801B2 (en) * 2000-11-27 2009-03-24 The Hospital For Sick Children Adapter gene
WO2002044358A3 (fr) * 2000-11-28 2002-09-12 Millennium Pharm Inc Procédés et compositions se rapportant au diagnostic et au traitement du cancer par utilisation de 27420
US7521539B2 (en) * 2000-12-01 2009-04-21 Genentech, Inc. Anti-PRO4989 antibodies
WO2002081667A3 (fr) * 2000-12-05 2003-07-31 Incyte Genomics Inc Ligases
WO2002046402A3 (fr) * 2000-12-05 2002-11-21 Bayer Ag Regulation de la proteine humaine de type 'patched'
WO2002046402A2 (fr) * 2000-12-05 2002-06-13 Bayer Aktiengesellschaft Regulation de la proteine humaine de type 'patched'
WO2002081667A2 (fr) * 2000-12-05 2002-10-17 Incyte Genomics, Inc. Ligases
WO2002046221A2 (fr) * 2000-12-08 2002-06-13 Oxford Glycosciences (Uk) Limited Proteines
WO2002046221A3 (fr) * 2000-12-08 2002-12-05 Oxford Glycosciences Uk Ltd Proteines
WO2002048323A3 (fr) * 2000-12-14 2002-11-14 Bayer Ag Regulation de l'uridine kinase humaine
WO2002051991A3 (fr) * 2000-12-22 2002-09-12 Millennium Pharm Inc 17903, nouvelle aminopeptidase humaine et utilisations correspondantes
WO2002051991A2 (fr) * 2000-12-22 2002-07-04 Millennium Pharmaceuticals, Inc. 17903, nouvelle aminopeptidase humaine et utilisations correspondantes
WO2002055704A3 (fr) * 2001-01-09 2003-10-30 Curagen Corporation Proteines, polynucleotides codant pour elles et procedes d'utilisation correspondants
EP1350847A4 (fr) * 2001-01-09 2005-12-28 Inst Of Gene And Brain Science Antigene de gliomes humains et procede de preparation de cet antigene
US7122345B2 (en) 2001-01-09 2006-10-17 Curagen Corporation Nucleic acid encoding a NOVX13 polypeptide
WO2002055707A3 (fr) * 2001-01-10 2003-04-24 Rigel Pharmaceuticals, Inc. Clonage d'un nouvel inhibiteur de signal recepteur d'antigene au moyen d'un ecran fonctionnel a base retrovirale
WO2002057305A3 (fr) * 2001-01-11 2003-07-03 Univ Michigan State Gene dont l'expression favorise la differenciation des cellules souches myeloides en neutrophiles et/ou en monocytes/macrophages
WO2002057305A2 (fr) * 2001-01-11 2002-07-25 Michigan State University Gene dont l'expression favorise la differenciation des cellules souches myeloides en neutrophiles et/ou en monocytes/macrophages
EP1225182A3 (fr) * 2001-01-17 2003-06-25 Millennium Pharmaceuticals, Inc. Transporteur phospholipidique humain
EP1225182A2 (fr) * 2001-01-17 2002-07-24 Millennium Pharmaceuticals, Inc. Transporteur phospholipidique humain
WO2002059306A2 (fr) * 2001-01-22 2002-08-01 Applera Corporation Proteines transporteuses humaines isolees, molecules d'acide nucleique codant des proteines transporteuses humaines et leurs utilisations
JPWO2002057444A1 (ja) * 2001-01-22 2004-05-20 近藤 科江 ヒトアポトーシス関連遺伝子と、この遺伝子産物であるヒトアポトーシス関連蛋白質
WO2002059306A3 (fr) * 2001-01-22 2003-04-03 Applera Corp Proteines transporteuses humaines isolees, molecules d'acide nucleique codant des proteines transporteuses humaines et leurs utilisations
WO2002070538A3 (fr) * 2001-02-01 2003-11-13 Millennium Pharm Inc Molecules narc8 associees a la mort cellulaire programmee, et leurs utilisations
WO2002063006A3 (fr) * 2001-02-06 2004-03-25 Incyte Genomics Inc Recepteurs et proteines associees aux membranes
WO2002062839A3 (fr) * 2001-02-07 2003-12-04 Univ Maastricht Marqueurs de plaques d'atherosclerose instables
WO2002062839A2 (fr) * 2001-02-07 2002-08-15 Universiteit Maastricht Marqueurs de plaques d'atherosclerose instables
WO2002064783A3 (fr) * 2001-02-09 2003-05-01 Lion Bioscience Ag Nouveaux cofacteurs du recepteur beta d'oestrogenes et procedes d'utilisation
WO2002064783A2 (fr) * 2001-02-09 2002-08-22 Lion Bioscience Ag Nouveaux cofacteurs du recepteur beta d'oestrogenes et procedes d'utilisation
WO2002064762A2 (fr) * 2001-02-12 2002-08-22 Bayer Aktiengesellschaft Regulation de tyrosine kinase humaine
WO2002064762A3 (fr) * 2001-02-12 2003-10-30 Bayer Ag Regulation de tyrosine kinase humaine
WO2002064777A3 (fr) * 2001-02-14 2003-12-04 Axaron Bioscience Ag Proteines 7b6 et 11b4 et sequences d'adn codant pour celles-ci
WO2002068466A3 (fr) * 2001-02-22 2003-05-22 Oxford Biomedica Ltd Genes regules par l'hypoxie
WO2002068466A2 (fr) * 2001-02-22 2002-09-06 Oxford Biomedica (Uk) Limited Genes regules par l'hypoxie
EP1373526A2 (fr) * 2001-03-08 2004-01-02 Curagen Corporation Polypeptides therapeutiques, les acides nucleiques les codant et leurs procedes d'utilisation
EP1365801A4 (fr) * 2001-03-08 2004-10-13 Nuvelo Inc Methodes et materiels se rapportant a des polypeptides et a des polynucleotides apparentes a la fibuline
EP1373526A4 (fr) * 2001-03-08 2006-01-25 Curagen Corp Polypeptides therapeutiques, les acides nucleiques les codant et leurs procedes d'utilisation
EP1434783A4 (fr) * 2001-03-16 2006-06-07 Lilly Co Eli Proteines de mammiferes lp et reactifs associes
EP1444252A2 (fr) * 2001-03-27 2004-08-11 PE Corporation (NY) Proteines de type ras humaines isolees, molecules d'acides nucleiques codantes pour ces proteines de types ras humaines et utilisations de celles-ci
EP1385381A4 (fr) * 2001-03-27 2005-02-09 Human Genome Sciences Inc Proteines humaines secretees
EP1245574A1 (fr) * 2001-03-27 2002-10-02 Millennium Pharmaceuticals, Inc. 14691, un membre de la famille des récepteurs humains du glutamate et son utilisation
EP1444252A4 (fr) * 2001-03-27 2005-08-17 Applera Corp Proteines de type ras humaines isolees, molecules d'acides nucleiques codantes pour ces proteines de types ras humaines et utilisations de celles-ci
WO2003004623A2 (fr) * 2001-03-27 2003-01-16 Human Genome Sciences, Inc. Proteines humaines secretees
EP1385380A2 (fr) * 2001-03-27 2004-02-04 Human Genome Sciences, Inc. Proteines secretees par l'homme
EP1408759A2 (fr) * 2001-03-27 2004-04-21 Human Genome Sciences, Inc. Proteines secretees par les humains
WO2003004623A3 (fr) * 2001-03-27 2004-07-22 Human Genome Sciences Inc Proteines humaines secretees
EP1408759A4 (fr) * 2001-03-27 2005-04-06 Human Genome Sciences Inc Proteines secretees par les humains
EP1385380A4 (fr) * 2001-03-27 2005-02-02 Human Genome Sciences Inc Proteines secretees par l'homme
EP1390057A2 (fr) * 2001-04-03 2004-02-25 Curagen Corporation Anticorps se liant aux polypeptides antigeniques, acides nucleiques codant les antigenes, et method d'utilisation
EP1390057A4 (fr) * 2001-04-03 2005-10-12 Curagen Corp Anticorps se liant aux polypeptides antigeniques, acides nucleiques codant les antigenes, et methode d'utilisation
US7033790B2 (en) 2001-04-03 2006-04-25 Curagen Corporation Proteins and nucleic acids encoding same
US7879570B2 (en) 2001-04-10 2011-02-01 Agensys, Inc. Nucleic acid and corresponding protein entitled 184P1E2 useful in treatment and detection of cancer
US7592149B2 (en) 2001-04-10 2009-09-22 Agensys, Inc. Nucleic acid and corresponding protein entitled 184P1E2 useful in treatment and detection of cancer
US7736654B2 (en) 2001-04-10 2010-06-15 Agensys, Inc. Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers
US8168187B2 (en) 2001-04-10 2012-05-01 Agensys, Inc. Nucleic acid and corresponding protein entitled 184P1E2 useful in treatment and detection of cancer
US7135549B1 (en) 2001-04-10 2006-11-14 Agensys, Inc. Nucleic acid and corresponding protein entitled 184P1E2 useful in treatment and detection of cancer
WO2002083706A1 (fr) * 2001-04-16 2002-10-24 Lexicon Genetics Incorporated Acide nucleique codant pour une adenylosuccinate synthetase humaine
US6607895B2 (en) 2001-04-16 2003-08-19 Lexicon Genetics Incorporated Human adenylsuccinate synthetase and polynucleotides encoding the same
US9556245B2 (en) * 2001-04-17 2017-01-31 The Board Of Trustees Of The University Of Arkansas CA125 gene and its use for diagnostic and therapeutic interventions
US8895703B2 (en) * 2001-04-17 2014-11-25 The Board Of Trustees For The University Of Arkansas CA125 gene and its use for diagnostic and therapeutic interventions
US8124728B2 (en) * 2001-04-17 2012-02-28 The Board Of Trustees Of The University Of Arkansas CA125 gene and its use for diagnostic and therapeutic interventions
WO2002085922A3 (fr) * 2001-04-23 2003-05-30 Curagen Corp Proteines et acides nucleiques codant pour celles-ci
WO2002085922A2 (fr) * 2001-04-23 2002-10-31 Curagen Corporation Proteines et acides nucleiques codant pour celles-ci
EP1399460A2 (fr) * 2001-04-27 2004-03-24 Sunnybrook & Women's College Health Sciences Centre Genes associes au cancer du sein et utilisations correspondantes
EP1399460A4 (fr) * 2001-04-27 2005-04-13 Sunnybrook & Women S College H Genes associes au cancer du sein et utilisations correspondantes
WO2002088380A3 (fr) * 2001-05-02 2003-11-20 Dana Farber Cancer Inst Inc Antigenes tumoraux immunogenes, acides nucleiques et polypeptides codant pour lesdits antigenes et methodes d'utilisation associees
US7569665B2 (en) 2001-05-02 2009-08-04 Murdoch Childrens Research Institute Royal Children's Hospital Molecular marker
AU2002249016B2 (en) * 2001-05-02 2008-10-23 Murdoch Childrens Research Institute A molecular marker
WO2002088184A1 (fr) * 2001-05-02 2002-11-07 Murdoch Childrens Research Institute Marqueur moleculaire
US7244556B2 (en) 2001-05-29 2007-07-17 Human Cell Systems, Inc. Method of modulating a testicular carnitine transporter
CN100463967C (zh) * 2001-05-29 2009-02-25 人体细胞组织有限公司 睾丸肉碱转运蛋白及其基因
US7582447B2 (en) 2001-05-29 2009-09-01 Human Cell Systems, Inc. DNA encoding a testicular carnitine transporter
WO2002097088A1 (fr) * 2001-05-29 2002-12-05 Human Cell Systems, Inc. Transporteur de carnitine testiculaire et son gene
US7408035B2 (en) 2001-06-01 2008-08-05 Genentech, Inc. PRO9864 polypeptides
US7034132B2 (en) 2001-06-04 2006-04-25 Anderson David W Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2002099066A3 (fr) * 2001-06-06 2003-11-27 Human Genome Sciences Inc 20 proteines humaines secretees
WO2002099066A2 (fr) * 2001-06-06 2002-12-12 Human Genome Sciences, Inc. 20 proteines humaines secretees
US8110364B2 (en) 2001-06-08 2012-02-07 Xdx, Inc. Methods and compositions for diagnosing or monitoring autoimmune and chronic inflammatory diseases
US7858764B1 (en) * 2001-06-11 2010-12-28 Monsanto Technology Llc Cotton event MON15985 and compositions and methods for detection thereof
US9133473B2 (en) 2001-06-11 2015-09-15 Monsanto Technology Llc Cotton event MON15985 and compositions and methods for detection thereof
EP1407049A2 (fr) * 2001-06-19 2004-04-14 The Regents Of The University Of California Histone-deacetylase et procedes d'utilisation correspondants
EP1407049A4 (fr) * 2001-06-19 2005-03-23 David Gladstone Inst Histone-deacetylase et procedes d'utilisation correspondants
US7364864B2 (en) 2001-06-21 2008-04-29 Isis Innovation Limited ANGE gene in atopy
WO2003000727A3 (fr) * 2001-06-21 2003-12-11 Isis Innovations Ltd Atopie
WO2003000727A2 (fr) * 2001-06-21 2003-01-03 Isis Innovation Limited Atopie
AT410945B (de) * 2001-06-27 2003-08-25 Burkhard Dr Jansen Verfahren zur diagnose von multipler sklerose (ms)
WO2003004607A3 (fr) * 2001-07-05 2003-07-31 Wyeth Corp Molecules d'aggrecanase
WO2003004607A2 (fr) * 2001-07-05 2003-01-16 Wyeth Molecules d'aggrecanase
EP1277843A3 (fr) * 2001-07-17 2004-06-09 Bayer Corporation Nouveaux gènes humains et leurs produits d'expression liés au cancer du colon
EP1277843A2 (fr) * 2001-07-17 2003-01-22 Bayer Corporation Nouveaux gènes humains et leurs produits d'expression liés au cancer du colon
US7354741B2 (en) 2001-08-01 2008-04-08 Otsuka Chemical Co., Ltd. Method for producing saccharide chain-extended chondroitin
US8685674B2 (en) 2001-08-01 2014-04-01 Glytech, Inc. Chondroitin synthase, method for producing the same and method for producing saccharide chain-extended chondroitin
WO2003012099A1 (fr) * 2001-08-01 2003-02-13 The New Industry Research Organization Synthase de chondroitine
AU2002323753B2 (en) * 2001-08-01 2007-12-13 Glytech, Inc. Chondroitin synthase
JP2003047467A (ja) * 2001-08-01 2003-02-18 New Industry Research Organization コンドロイチン合成酵素
US7947481B2 (en) 2001-08-01 2011-05-24 Otsuka Chemical Co., Ltd. Chondroitin synthase, method for producing the same and method for producing saccharide chain-extended chondroitin
US8334115B2 (en) 2001-08-01 2012-12-18 Glytech, Inc. Chondroitin synthase, method for producing the same and method for producing saccharide chain-extended chondroitin
GB2399087A (en) * 2001-08-02 2004-09-08 Aeomica Inc Human zinc finger containing gene MDZ7
WO2003102029A1 (fr) * 2001-08-15 2003-12-11 Endocube Sas Genes sut-2 et sut-3, proteines et dosages biologiques pour inhibiteurs d'adherence lymphocytaire
US7834169B2 (en) 2001-09-25 2010-11-16 Sony Corporation P300 histone acetylase inhibitor
US8309700B2 (en) 2001-09-25 2012-11-13 Sony Corporation Inhibitor of histone acetyltransferase, especially p300
WO2003027279A1 (fr) * 2001-09-25 2003-04-03 Sony Corporation Inhibiteur de l'histone acetylase de p300
WO2003031627A1 (fr) * 2001-09-28 2003-04-17 Hokkaido Technology Licensing Office Co., Ltd. Polypeptides a origine plaquettaire a activite sphingosine kinase et genes de sphingosine kinase codant pour ces polypeptides
EP1298206A1 (fr) * 2001-09-28 2003-04-02 Aventis Behring GmbH Utilisation de la protéase activant le Facteutr VII pour la prévention et la thérapie de maladies vaso-prolifératives
US9200040B2 (en) 2001-10-11 2015-12-01 Amgen Inc. Specific binding agents of human angiopoietin-2
EP2311849A1 (fr) * 2001-10-11 2011-04-20 Amgen, Inc Agent de liaison spécifique d'angiopoiétine 2
WO2003063769A3 (fr) * 2001-10-26 2004-02-26 Incyte Genomics Inc Proteines associees aux vesicules
WO2003063769A2 (fr) * 2001-10-26 2003-08-07 Incyte Genomics, Inc. Proteines associees aux vesicules
WO2003037930A1 (fr) * 2001-10-29 2003-05-08 Kazusa Dna Research Institute Foundation Nouveau polypeptide recepteur n-methyl-d-aspartate (nmda) du glutamate et gene codant pour celui-ci
EP1512007A4 (fr) * 2001-10-29 2005-08-17 Millennium Pharm Inc 32235, membre de la famille de l'aminotransferase humaine et ses utilisations
EP1512007A2 (fr) * 2001-10-29 2005-03-09 Millennium Pharmaceuticals, Inc. 32235, membre de la famille de l'aminotransferase humaine et ses utilisations
GB2381526A (en) * 2001-11-03 2003-05-07 Sequenom Inc Detection of predisposition to osteoporosis
EP1312615B1 (fr) * 2001-11-16 2012-04-11 Eisai R&D Management Co., Ltd. Protéines de la famille jeap, constituants des jonctions serrées des glandes exocrines
US7824676B2 (en) 2001-11-16 2010-11-02 Eisai R&D Management Co., Ltd. Exocrine gland tight junction-constituting protein jeap family
EP2014674A1 (fr) * 2001-11-26 2009-01-14 Cellvir Interactions de protéines/protéines dans un virus d'immunodépression humaine
US8197821B2 (en) 2001-11-26 2012-06-12 Laboratoire Biodim Human immunodeficiency virus integrase—Transportin—SR protein—protein interactions
EP1461071A4 (fr) * 2001-11-27 2006-01-25 Children S Medical Res Inst Facteurs de transcription musculaire
EP1461071A1 (fr) * 2001-11-27 2004-09-29 Children's Medical Research Institute Facteurs de transcription musculaire
WO2003048317A3 (fr) * 2001-11-30 2003-10-23 Childrens Hosp Medical Center Anticorps vis-a-vis de la proteine magmas, et leurs utilisations
US7358041B2 (en) 2001-11-30 2008-04-15 Short Mary K Antibodies to magmas and uses thereof
WO2003048317A2 (fr) * 2001-11-30 2003-06-12 Children's Hospital Medical Center Anticorps vis-a-vis de la proteine magmas, et leurs utilisations
US7858297B2 (en) 2001-12-18 2010-12-28 Centre National De La Recherche Scientifique Cnrs Chemokine-binding protein and methods of use
AU2002361385B2 (en) * 2001-12-18 2009-11-19 Centre National De La Recherche Scientifique Cnrs Novel death associated proteins of the THAP family and related Par4 pathways involved in apoptosis control
WO2003051917A2 (fr) * 2001-12-18 2003-06-26 Endocube Sas Nouvelles proteines associees a la mort, et mecanismes d'action de thap1 et para4 dans la maitrise de l'apoptose
US7892727B2 (en) 2001-12-18 2011-02-22 Centre National De La Recherche Scientifique Cnrs Chemokine-binding protein and methods of use
US7572886B2 (en) 2001-12-18 2009-08-11 Centre National De La Recherche Scientifique Death associated proteins, and THAP1 and PAR4 pathways in apoptosis control
WO2003051917A3 (fr) * 2001-12-18 2003-12-18 Endocube Sas Nouvelles proteines associees a la mort, et mecanismes d'action de thap1 et para4 dans la maitrise de l'apoptose
WO2003064654A1 (fr) * 2002-02-01 2003-08-07 Bayer Healthcare Ag Proteine kinase serine/threonine d'origine humaine
WO2003072779A1 (fr) * 2002-02-27 2003-09-04 Japan Science And Technology Agency Methode d'utilisation de genes specifiques a l'hypophyse
US7993863B2 (en) 2002-03-19 2011-08-09 Children's Medical Center Corporation Methods for diagnosis and prognosis of cancer
US7674607B2 (en) 2002-03-22 2010-03-09 Munin Corporation DNA encoding G+C-rich promoter binding protein
US7368538B2 (en) * 2002-03-22 2008-05-06 Munin Corporation G+C-rich binding protein
US7473526B2 (en) * 2002-03-29 2009-01-06 Veridex, Llc Breast cancer prognostic portfolio
EP1585972A2 (fr) * 2002-04-24 2005-10-19 Expression Diagnostics, Inc. Methodes et compositions permettant de diagnostiquer et de surveiller le rejet d'un greffon
EP1585972A4 (fr) * 2002-04-24 2007-11-21 Expression Diagnostics Inc Methodes et compositions permettant de diagnostiquer et de surveiller le rejet d'un greffon
WO2003102164A2 (fr) * 2002-05-30 2003-12-11 Avalon Pharmaceuticals, Inc. Genes lies au cancer utilises comme cibles de chimiotherapie
WO2003102164A3 (fr) * 2002-05-30 2005-04-21 Avalon Pharmaceuticals Genes lies au cancer utilises comme cibles de chimiotherapie
WO2004000313A2 (fr) * 2002-06-24 2003-12-31 Exonhit Therapeutics Sa Traitement de la sclerose laterale amyotrophique avec des composes modulateurs de l’activite de pgc-1
WO2004000313A3 (fr) * 2002-06-24 2004-04-22 Exonhit Therapeutics Sa Traitement de la sclerose laterale amyotrophique avec des composes modulateurs de l’activite de pgc-1
WO2004005346A2 (fr) * 2002-07-03 2004-01-15 Inpharmatica Limited Recepteur de l'hormone nucleaire
WO2004005346A3 (fr) * 2002-07-03 2004-04-29 Inpharmatica Ltd Recepteur de l'hormone nucleaire
US7122358B2 (en) 2002-07-09 2006-10-17 Bristol-Myers Squibb Company Testis-specific tubulin tyrosine-ligase-like protein, BGS42
US7741025B2 (en) 2002-07-09 2010-06-22 Bristol-Myers Squibb Company Method of diagnosing lung cancer using BGS42
US7309779B2 (en) 2002-07-09 2007-12-18 Bristol-Myers Squibb Company Antibodies directed to the testis-specific tubulin tyrosine-ligase-like protein, BGS42
US7273706B2 (en) 2002-07-09 2007-09-25 Bristol-Myers Squibb Company Method of diagnosing testicular tumors using polynucleotides encoding a novel testis-specific tubulin tyrosine-ligase-like protein, BGS42
US7115402B2 (en) 2002-07-09 2006-10-03 Bristol-Myers Squibb Company Polynucleotides encoding a novel testis-specific tubulin tyrosine-ligase-like protein, BGS42
WO2004031388A1 (fr) * 2002-07-25 2004-04-15 Sony Corporation Facteur participant a la regulation de la transcription
US8889408B2 (en) 2002-07-25 2014-11-18 Sony Corporation Factor taking part in transcription control
WO2004012817A3 (fr) * 2002-07-31 2004-10-28 Kylix B V Utilisation des genes identifies comme etant impliques dans la croissance tumorale, destinee au developpement de medicaments anticancereux
WO2004012817A2 (fr) * 2002-07-31 2004-02-12 Kylix B.V. Utilisation des genes identifies comme etant impliques dans la croissance tumorale, destinee au developpement de medicaments anticancereux
AU2003231661B2 (en) * 2002-08-06 2010-05-27 Csl Behring Gmbh Pharmaceutical preparation with RNA as hemostasis cofactor
WO2004015108A1 (fr) * 2002-08-09 2004-02-19 Melbourne Health Facteurs de transcription mammifères grainyhead
US7408048B2 (en) 2002-08-09 2008-08-05 Melbourne Health Mammalian grainyhead transcription factors
US8057996B2 (en) 2002-08-16 2011-11-15 Agensys, Inc. Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
US8426571B2 (en) 2002-08-16 2013-04-23 Agensys, Inc. Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
EP1575497A4 (fr) * 2002-09-11 2010-11-03 Genentech Inc Nouvelle composition et nouveaux procedes pour le traitement du psoriasis
EP1575497A2 (fr) * 2002-09-11 2005-09-21 Genentech, Inc. Nouvelle composition et nouveaux procedes pour le traitement du psoriasis
GB2409680B (en) * 2002-10-02 2006-09-20 Us Gov Health & Human Serv Methods and medicaments for controlling proliferation of cells
WO2004037858A3 (fr) * 2002-10-25 2004-09-23 Univ Muenchen Tech Polypeptides nipa et leur utilisation
US8637012B2 (en) 2002-11-22 2014-01-28 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
US10414824B2 (en) 2002-11-22 2019-09-17 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
US8586047B2 (en) 2002-11-22 2013-11-19 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
EP2316966A1 (fr) * 2002-12-05 2011-05-04 Cizzle Biotechnology Limited Proteine de replication CIZ1
WO2004053077A2 (fr) * 2002-12-05 2004-06-24 Diadexus, Inc. Compositions, variants d'epissure et techniques liees aux genes et aux proteines specifiques du sein
WO2004051269A3 (fr) * 2002-12-05 2004-10-28 Yorkshire Cancer Res Proteine de replication
WO2004053077A3 (fr) * 2002-12-05 2004-11-04 Diadexus Inc Compositions, variants d'epissure et techniques liees aux genes et aux proteines specifiques du sein
US7833702B2 (en) 2002-12-05 2010-11-16 Cizzle Biotechnology Limited Replication protein
WO2004063223A2 (fr) * 2002-12-27 2004-07-29 Applied Research Systems Ars Holding N.V. Nouveaux polypeptides similaires a notch
WO2004063223A3 (fr) * 2002-12-27 2004-11-25 Applied Research Systems Nouveaux polypeptides similaires a notch
WO2004070025A2 (fr) * 2003-02-05 2004-08-19 Juan Saus Nouvelles isoformes de la proteine liant l'antigene de goodpasture et troubles induits par une proteine incorrectement repliee
US7326768B2 (en) 2003-02-05 2008-02-05 Juan Saus Goodpasture antigen-binding protein isoforms and protein misfolded-mediated disorders
WO2004070025A3 (fr) * 2003-02-05 2005-08-11 Juan Saus Nouvelles isoformes de la proteine liant l'antigene de goodpasture et troubles induits par une proteine incorrectement repliee
US7785829B2 (en) 2003-03-19 2010-08-31 Biogen Idec Ma, Inc. Nogo receptor binding protein
US8932821B2 (en) 2003-03-19 2015-01-13 Biogen Idec Ma Inc. NOGO receptor binding protein
US8765662B2 (en) 2003-03-19 2014-07-01 Biogen Idec Ma Inc. NOGO receptor binding protein
WO2005014818A1 (fr) 2003-08-08 2005-02-17 Perseus Proteomics Inc. Gene surexprime dans le cancer
EP2311468A1 (fr) 2003-08-08 2011-04-20 Perseus Proteomics Inc. Gène surexprimé dans le cancer
WO2005023833A3 (fr) * 2003-09-05 2005-06-23 Cellzome Ag Traitement de maladies neurodegeneratives
WO2005023833A2 (fr) * 2003-09-05 2005-03-17 Cellzome Ag Traitement de maladies neurodegeneratives
EP2333112A2 (fr) 2004-02-20 2011-06-15 Veridex, LLC Pronostics de cancer du sein
US8790646B2 (en) 2004-04-14 2014-07-29 Genentech Inc. Compositions and methods for modulating vascular development
US9044382B2 (en) 2004-05-18 2015-06-02 Ganymed Pharmaceuticals Ag Genetic products differentially expressed in tumors and the use thereof
US9775785B2 (en) 2004-05-18 2017-10-03 Ganymed Pharmaceuticals Ag Antibody to genetic products differentially expressed in tumors and the use thereof
WO2006032148A1 (fr) * 2004-09-24 2006-03-30 Mount Sinai Hospital Polynucleotides et polypeptides associes a la mort cellulaire des trophoblastes, a la differentiation, a l'invasion et/ou a la fusion ou au renouvellement des cellules
WO2006061628A1 (fr) 2004-12-08 2006-06-15 Ares Trading S.A. Recepteur de proteines de type tgr3
WO2006094813A3 (fr) * 2005-03-10 2007-03-08 Nascacell Ip Gmbh Microproteines dimeriques ou multimeriques
US8258258B2 (en) 2005-03-10 2012-09-04 Biontech Ag Dimeric or multimeric microproteins
US7893032B2 (en) 2005-07-07 2011-02-22 Yale University NgR variants and compositions thereof for suppressing axonal growth inhibition
US8551476B2 (en) 2005-07-08 2013-10-08 Biogen Idec Ma Inc. SP35 antibodies and uses thereof
US11739139B2 (en) 2005-11-24 2023-08-29 Astellas Pharma Inc. Monoclonal antibodies against Claudin-18 for treatment of cancer
US10017564B2 (en) 2005-11-24 2018-07-10 Ganymed Pharmaceuticals Gmbh Monoclonal antibodies against claudin-18 for treatment of cancer
US10738108B2 (en) 2005-11-24 2020-08-11 Astellas Pharma Inc. Monoclonal antibodies against claudin-18 for treatment of cancer
US10174104B2 (en) 2005-11-24 2019-01-08 Ganymed Pharmaceuticals Gmbh Monoclonal antibodies against claudin-18 for treatment of cancer
US9751934B2 (en) 2005-11-24 2017-09-05 Ganymed Pharmaceuticals Ag Monoclonal antibodies against claudin-18 for treatment of cancer
US7811787B2 (en) 2006-04-25 2010-10-12 Bristol-Myers Squibb Company Polynucleotides encoding human SLAP-2 variant, hSLAP-2v3
US8609407B2 (en) 2007-01-09 2013-12-17 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US8058406B2 (en) 2008-07-09 2011-11-15 Biogen Idec Ma Inc. Composition comprising antibodies to LINGO or fragments thereof
US9745375B2 (en) 2008-07-09 2017-08-29 Biogen Ma Inc. Compositions comprising antibodies to LINGO or fragments thereof
US8084216B2 (en) 2008-09-04 2011-12-27 Ernst-Moritz-Arndt-Universität Greifswald Screening methods for transfusion related acute lung injury (TRALI)
US8435733B2 (en) 2008-09-04 2013-05-07 Ernst-Moritz-Arndt-Universität Greifswald Screening methods for transfusion related acute lung injury
US9963741B2 (en) 2008-09-04 2018-05-08 Ernst-Moritz-Arndt-Universität Greifswald Screening methods for transfusion related acute lung injury (TRALI)
US8999651B2 (en) 2008-09-04 2015-04-07 Ernst-Moritz-Arndt-Universität Greifswald Screening methods for transfusion related acute lung injury (TRALI)
US9505816B2 (en) * 2008-12-09 2016-11-29 Dana-Farber Cancer Institute, Inc. Methods and compositions for specific modulation of MCL-1
US20150246955A1 (en) * 2008-12-09 2015-09-03 Dana-Farber Cancer Institute, Inc. Methods and compositions for specific modulation of mcl-1
US9993567B2 (en) 2009-03-23 2018-06-12 Quark Pharmaceuticals, Inc. Composition of anti-ENDO180 antibodies and methods of use for the treatment of cancer and fibrotic diseases
US8444983B2 (en) 2009-03-23 2013-05-21 Quark Pharmaceuticals, Inc. Composition of anti-ENDO180 antibodies and methods of use for the treatment of cancer and fibrotic diseases
US8574576B2 (en) 2009-05-08 2013-11-05 Genentech, Inc. Humanized anti-EGFL7 antibodies and methods using same
US8404811B2 (en) 2009-05-08 2013-03-26 Genentech, Inc. Humanized anti-EGFL7 antibodies and methods using same
US11976130B2 (en) 2012-05-09 2024-05-07 Astellas Pharma Inc. Antibodies against claudin 18.2 useful in cancer diagnosis
US10053512B2 (en) 2012-05-09 2018-08-21 Ganymed Pharmaceuticals Ag Antibodies against claudin 18.2 useful in cancer diagnosis
US9796780B2 (en) 2012-05-14 2017-10-24 Biogen Ma Inc. LINGO-2 antagonists for treatment of conditions involving motor neurons
US10022444B2 (en) 2012-05-23 2018-07-17 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against Claudin 18.2 for treatment of cancer
US10813996B2 (en) 2012-05-23 2020-10-27 Astellas Pharma Inc. Combination therapy involving antibodies against Claudin 18.2 for treatment of cancer
US9433675B2 (en) 2012-05-23 2016-09-06 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of cancer
US10946069B2 (en) 2013-02-20 2021-03-16 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic cancer
US9770487B2 (en) 2013-02-20 2017-09-26 Ganymed Pharmaceuticals Ag Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic adenocarcinoma
US11826402B2 (en) 2013-02-20 2023-11-28 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of metastatic pancreatic adenocarcinoma
US10314890B2 (en) 2013-02-20 2019-06-11 Astellas Pharma Inc. Combination therapy involving antibodies against claudin 18.2 for treatment of pancreatic cancer
US10137195B2 (en) 2013-03-18 2018-11-27 Ganymed Pharmaceuticals Gmbh Therapy involving antibodies against Claudin 18.2 for treatment of cancer
US11395852B2 (en) 2013-03-18 2022-07-26 Astellas Pharma Inc. Therapy involving antibodies against Claudin 18.2 for treatment of cancer
WO2015082525A1 (fr) * 2013-12-03 2015-06-11 INSERM (Institut National de la Santé et de la Recherche Médicale) Mutants de mafb et leurs utilisations
US10435467B2 (en) 2015-01-08 2019-10-08 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
CN112190710B (zh) * 2020-10-28 2021-07-30 江苏省人民医院(南京医科大学第一附属医院) 脂源性多肽在制备转移性乳腺癌靶向药物中的应用
CN112190710A (zh) * 2020-10-28 2021-01-08 江苏省人民医院(南京医科大学第一附属医院) 脂源性多肽在制备转移性乳腺癌靶向药物中的应用
WO2022212928A1 (fr) * 2021-04-02 2022-10-06 The Regents Of The University Of California Virus modifiés et particules virales, leurs méthodes de fabrication et leurs utilisations

Also Published As

Publication number Publication date
WO2000058473A3 (fr) 2001-01-25
AU3774500A (en) 2000-10-16
EP1165784A2 (fr) 2002-01-02
JP2004507202A (ja) 2004-03-11
CA2383592A1 (fr) 2000-10-05

Similar Documents

Publication Publication Date Title
AU2020203837B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
AU2021200054B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing yield of plants
AU2020203872B2 (en) Optimal maize loci
AU2020202369B2 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
AU2020204196B2 (en) Optimal maize loci
KR102630357B1 (ko) 단백질 발현이 어려운 다중-부위 ssi 세포
AU2023214237A1 (en) Modified polynucleotides for the production of biologics and proteins associated with human disease
KR102239125B1 (ko) 인간 이디오타입을 갖는 설치류 항체를 인코딩하는 폴리뉴클레오티드 및 이를 포함하는 동물
AU2021202753A1 (en) Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency
AU2020204520A1 (en) Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
KR101234281B1 (ko) 염색체 안정화에 관한 유전자를 표적으로 하는 암세포 특이적 아포토시스 유도제
EP1165784A2 (fr) Acides nucleiques comprenant des phases de lecture ouverte codant des polypeptides; orfx
KR20180054871A (ko) 다중화 게놈 편집
KR20190129857A (ko) 아데노-관련 바이러스 생산을 위한 포유동물 세포
JP2003088388A (ja) 新規な全長cDNA
JP2003135075A (ja) 新規な全長cDNA
WO1995014772A1 (fr) Signature genique
AU2017289886A1 (en) Engineered parasites for delivering protein to the central nervous system (CNS)
KR20220025749A (ko) 대장암의 검출
KR20220054401A (ko) 감염의 숙주 rna 바이오마커의 신속한 조기-검출 및 인간의 covid-19 코로나바이러스 감염의 조기 식별을 위한 시스템, 방법 및 조성물
KR20220024184A (ko) 대장암의 검출
KR20190104400A (ko) 다중 중쇄 면역글로불린 유전자좌를 갖는 트랜스제닉 설치류 기원의 인간 항체
AU2017336160A1 (en) Screening methods using olfactory receptors and novel compounds identified using the same
KR101978399B1 (ko) 자궁내막증에 대한 진단 마커로서의 돌연변이 유전자 및 이의 용도
JP2002017375A (ja) 全長cDNA合成用プライマー、およびその用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US US US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US US US US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2383592

Country of ref document: CA

ENP Entry into the national phase in:

Ref country code: JP

Ref document number: 2000 608754

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000916677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 37745/00

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2000916677

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000916677

Country of ref document: EP