WO2000051789A1 - Lame circulaire a diamant - Google Patents

Lame circulaire a diamant Download PDF

Info

Publication number
WO2000051789A1
WO2000051789A1 PCT/JP2000/001061 JP0001061W WO0051789A1 WO 2000051789 A1 WO2000051789 A1 WO 2000051789A1 JP 0001061 W JP0001061 W JP 0001061W WO 0051789 A1 WO0051789 A1 WO 0051789A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
saw blade
grindstone
circular substrate
value
Prior art date
Application number
PCT/JP2000/001061
Other languages
English (en)
French (fr)
Inventor
Takuma Yoshida
Kazuhiro Mashiko
Shigeyoshi Kobayashi
Original Assignee
Sankyo Diamond Industrial Co., Ltd.
Toho Titanium Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Diamond Industrial Co., Ltd., Toho Titanium Co., Ltd filed Critical Sankyo Diamond Industrial Co., Ltd.
Priority to EP00905312A priority Critical patent/EP1114696A4/en
Publication of WO2000051789A1 publication Critical patent/WO2000051789A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/12Saw-blades or saw-discs specially adapted for working stone
    • B28D1/121Circular saw blades

Definitions

  • the present invention provides a diamond cutting tool that, when dry-ground or crushed on a brittle material typified by concrete or stone, exhibits excellent sharpness and can realize a long tool life. Regarding one blade. Background art
  • diamond saw blades have been widely used as tools for grinding and cutting hard and brittle materials such as stone and concrete structures.
  • the diamond blade is formed, for example, by attaching a diamond grindstone in which diamond abrasive grains are bonded by a bond to an outer peripheral portion of a disk-shaped metal substrate via a metal base called an underlayer.
  • the above-mentioned diamond saw blade is mounted on a rotating tool and rotated to grind or cut hard and brittle materials.
  • the conditions for exhibiting sharp sharpness are that an appropriate power is output from a rotating tool for applying power and the power
  • the minimum required number of diamond grains corresponding to the peripheral speed of the diamond saw blade is included in the diamond grindstone, and the diamond grain has a sharp edge from the tip of the bond. Larger protrusions, deep penetration into the work material while maintaining the state where the diamond abrasive particles protrude as much as possible, and destruction of these while discharging at high speed as cutting chips.
  • the decrease in the sharpness of the diamond saw blade has been solved by adjusting the hardness of the bond and giving the bond a property of performing a self-sharpening action.
  • the spontaneous cutting action means that the bond itself is also worn and the tip surface is retracted in accordance with the wear and fall of the diamond abrasive grains. This is the effect of maintaining the sharpness by protruding from the front end face of the.
  • the bond used in the diamond grindstone of the diamond saw blade is: 1) firmly holding the effective diamond grindstone, 2) depending on the state of wear of the diamond grindstone at the tip, itself wears, and causes the spontaneous cutting. , Play two contradictory roles.
  • Conventional diamond saw blades can only have one of the characteristics of good sharpness or long life.For example, when labor costs are high, the sharpness of diamond saw blades can be improved. When the cutting speed is prioritized by improving it, or when emphasizing the cost of the diamond saw blade itself, the sharpness is somewhat inferior, but the life is long. A diamond saw blade with good life characteristics was used. Thus, it was necessary to use different types of diamond saw blades according to the intended work and situation.
  • an object of the present invention is to solve the problem that either the sharpness or the life must be sacrificed, and to achieve a diamond saw blade that satisfies both good sharpness and high durability
  • the diamond saw blade according to the present invention is a diamond saw blade obtained by attaching a diamond grindstone to an outer peripheral edge of a circular substrate, wherein the circumference of a circle having a diameter equal to the maximum outer diameter of the diamond saw blade. Then, when a first value calculated by multiplying the maximum thickness of the circular substrate and a second value that is the total area of the end face of the diamond grindstone are compared, the first value The ratio of the second value is not less than 0.3 and not more than 1.0.
  • the total area value of the outer peripheral end face of the disk whose circumference is a circle whose diameter is the maximum outer diameter of the diamond saw blade and whose thickness is the maximum thickness of the circular substrate is described.
  • the ratio of the total area value of the end faces of the diamond whetstone is required to be 0.3 or more and 1.0 or less, and by satisfying this requirement, hard and brittle materials represented by concrete, stone, etc.
  • the diamond grindstone is 3.0 Om on the outer peripheral edge of the circular substrate.
  • a first value calculated by multiplying the circumferential length of a circle having a diameter equal to the maximum outer diameter of the diamond saw blade and the maximum thickness of the circular substrate, and
  • the ratio of the second value to the first value is preferably 0.3 or more and 0.8 or less.
  • the diamond grindstones are arranged on the outer peripheral edge of the circular substrate at an interval of not less than 3.0 Omm and less than 1.5 Omm, and have a circumferential length of a circle whose diameter is the maximum outer diameter of the diamond saw blade.
  • the ratio of the values of 2 is 0.4 or more and 0.9 or less.
  • the diamond saw blade of the present invention it is possible to achieve a long tool life while maintaining excellent sharpness. This eliminates the hassle of using differently, and maintains a good working environment.
  • the diamond grindstone is formed by bonding diamond abrasive grains with a bond, and when the Rockwell hardness of the bond is HRA60 or more and 80 or less, it is possible to hold the diamond abrasive grains firmly, which is preferable. is there.
  • the bond retains a sufficient holding force to hold the diamond grindstone, and the diamond grindstone falls off early. Therefore, the diamond saw blade can maintain a good sharpness and a long service life, and thus is preferable.
  • the diamond grinding stone when the concentration of the diamond abrasive grains with respect to the bond is 0.6 (ct / cm 3 ) or more and 1. (ct cm 3 ), the diamond is cut during the cutting operation on the work material. Whetstone 2 It is preferable that a sufficient load is applied to each of the diamond abrasive grains protruding from the constituent bond and a sharp edge can be exhibited.
  • the area of the end face of the cutting edge of the diamond grindstone is defined as the area of the cut surface when the diamond grindstone is extended in the outer peripheral direction of the circular substrate and cut along a plane perpendicular to the circular substrate.
  • the shape of the diamond grindstone is a shape in which at least a part of a surface parallel to the circular substrate is cut, chips of the work material are discharged from the cut portion, and the diamond saw blade has a good shape. Rotation can be obtained.
  • the diamond saw blade according to the present invention is a diamond saw blade having a diamond grindstone attached to an outer peripheral edge of a circular base, wherein the maximum thickness of the diamond grindstone is multiplied by the outer peripheral length of the diamond grindstone.
  • the value calculated by the above is compared with the area of the edge portion of the edge portion of the diamond wheel, the value of the area of the edge portion of the edge portion of the diamond wheel to the value calculated by multiplying the outer peripheral length of the diamond wheel.
  • the ratio is preferably 0.3 or more and 0.8 or less.
  • the diamond grindstone is formed by bonding diamond abrasive grains with a bond, and when the Rockwell hardness of the bond is HRA 60 or more and 80 or less, the diamond abrasive grain can be firmly held. This is preferable.
  • the bond retains a sufficient holding force to hold the diamond grindstone, and the diamond grindstone falls off early. It is preferable because the diamond saw blade can maintain good sharpness and a long life.
  • the bond with respect to the bond If the concentration of the diamond abrasive grains is 0.6 (ct / cm 3 ) or more and 1.4 (ct cm 3 ), the diamond abrasives protruding from the bond that constitutes the diamond grinding stone 2 during cutting work. A sufficient load is applied to each of the grains, and the grains can exhibit sharpness, which is preferable.
  • the area of the edge portion of the edge portion of the diamond grindstone is, more specifically, assuming that the diamond grindstone extends in the outer peripheral direction of the circular substrate, and is perpendicular to the circular substrate and the original diamond saw blade.
  • the shape of the diamond grindstone is a shape in which at least a part of a surface parallel to the circular substrate is cut out, chips of the work material are discharged from the cutout portion, and a diamond saw blade is formed. Good rotation can be obtained.
  • FIGS. 1 and 2 are schematic views showing a general diamond saw blade
  • FIG. 3 is a perspective view showing an outer peripheral edge of the diamond saw blade of FIG.
  • FIGS. 4 to 6 are explanatory views showing one embodiment of the diamond saw blade of the present invention
  • FIGS. 7 to 9 are explanatory views showing the outer peripheral portion of the diamond saw blade in the comparative example.
  • the diamond saw blade D includes a metal circular substrate 1, and a composite formed on a peripheral edge of the circular substrate 1 by diamond abrasive grains and a bond. This is a diamond saw D with a structure in which a number of diamond whetstones 2 are combined.
  • the diamond grindstone 2 is bonded to the circular substrate 1 via an underlayer, or bonded by a simultaneous sintering method without an underlayer.
  • FIG. 1 is a schematic view showing a diamond saw blade D of the present example.
  • a diamond saw blade D of the present embodiment has a circular substrate 1 and a plurality of diamond grindstones 2 attached to the outer periphery of the circular substrate 1 as main components.
  • the circular substrate 1 is a metal plate formed in a disk shape, and has a configuration in which an outer peripheral portion is divided in a circumferential direction by a plurality of slits 3.
  • the portion sandwiched between the slits 3 is a mounting portion 4 for mounting the diamond whetstone 2.
  • a mounting hole 1a for mounting to a rotary tool is formed at the center position of the substrate 1.
  • the circular substrate 1 of this example has a plurality of key-shaped slits 3a and a plurality of U-shaped slits 3b, but the present invention is not limited to this. Alternatively, a configuration in which only a U-shaped slit is formed may be used. Alternatively, the shape is not limited to the key shape and the U shape, but may be any shape.
  • the diamond whetstone 2 is a segment-shaped whetstone in which diamond abrasive grains are bonded with a bond, and has a rectangular parallelepiped shape having a length corresponding to the mounting portion 4 of the circular substrate 1. Is formed.
  • the diamond grindstone 2 is fixed to the circular substrate 1 by laser welding or the like via a metal base layer. Alternatively, they are integrally joined by a simultaneous sintering method without an intermediate layer.
  • the diamond grindstone 2 of the present example is provided with a step adjacent to the slit 3 as shown in FIG.
  • the steps are formed on both sides of the diamond grinding stone 2 from the slit 3 side to the vicinity of the center of the diamond grinding stone 2.
  • the step near the center is formed deeper than the step on the slit side, and is configured so that chips can be effectively discharged and frictional heat can be effectively released.
  • the shape and number of the diamond whetstones 2 are not particularly limited, and may be appropriately changed depending on the size and the thickness of the circular substrate 1 and the material of the work material.
  • the bond of this example is adjusted to have tough properties so that the diamond abrasive grains can be held firmly.
  • the bond is prepared, for example, so that the Rockwell hardness becomes HRA 60 or more in a state of being sintered while holding the diamond abrasive grains.
  • the upper limit of the hardness is adjusted to be HRA80 or less.
  • the above-mentioned HRA be 1 ′′ 16 5 or more and 75 or less, because the balance between the retention of diamond abrasive grains and the action of spontaneous cutting can be achieved at a high level in a well-balanced manner.
  • the diamond saw blade of the present invention includes the following embodiments. That is, the diamond grindstone is formed by bonding diamond abrasive grains with a bond, and the bond has a Rockwell hardness of HRA 65 or more and 75 or less.
  • the greatest feature of the present invention is that the entire edge of the cutting edge of the diamond whetstone 2 is That is, the area obtained by multiplying the area, that is, the area of the end face of the cutting edge of each diamond wheel 2 by the number of diamond wheels 2 to be arranged is adapted to predetermined requirements.
  • the above requirements are the first value X obtained by multiplying the circumference of a circle having a diameter of the maximum outer diameter c of the diamond blade D by the maximum thickness t of the thickness of the circular substrate 1;
  • YZX is set to 0.3 or more and 1.0 or less.
  • the diamond saw blade of the present invention also includes the following embodiments.
  • the ratio of the second value to the first value is 0.
  • the ratio of the second value to the first value is 0.
  • the maximum outer diameter c (mm) of the diamond saw blade D is within the circular substrate 1.
  • the linear length extends through the center O and extends to the tip 2a of the cutting edge of the diamond grindstone 2 on one side, and extends to the tip 2a of the cutting edge of the diamond grinding stone 2 on the other side. That is, the maximum outer diameter c (mm) of the diamond saw blade D is equal to the outer diameter a (mm) of the circular substrate 1 and the height b (mm) of the diamond grindstone 2 (with the circular substrate 1 of the diamond grindstone 2). It is determined by adding twice the length from the joint to the tip of the blade).
  • the diamond saw blade of the present example has the first value X (mm 2 ), and the total area Y (mm 2 ) of the edge portion end surface area e (mm 2 ) of the diamond whetstone 2 as the second value. when comparing, it is intended to be a second value Y (mm 2) power and 100% more than 30% of the first value X (mm 2) or less.
  • the ratio is not less than 0.9 and not more than 0.9, the state in which the diamond abrasive grains protrude greatly from the tip surface of the bond can be maintained for a long time, and the desired sharpness can be maintained for a long time.
  • the diamond saw blade D is formed by attaching a diamond grindstone 2 to the outer peripheral edge of a circular substrate 1. Depending on the interval at which the diamond grindstone is arranged, the diamond saw blade D is formed. Blade D can be classified into two types. For each type of diamond saw blade D, the range of Y (mm 2 ) ZX (mm 2 ) values that achieve high tool life while maintaining excellent sharpness are as follows.
  • the ratio Y (mm 2 ) X (mm 2 ) is formed by adjusting the size and the shape of the end face so that the value is 0.3 or more and 0.8 or less.
  • the ratio Y (mm 2 ) X (mm 2 ) is 0.4 or more and 0.9 or less It is formed by adjusting the size and the end face shape of the diamond whetstone 2 so that
  • the maximum thickness t (mm) of the diamond grindstone 2 and the outer peripheral length of the diamond grindstone 2 are used as criteria for selecting the size and shape of the diamond grindstone 2.
  • the value Z (mm 2 ) calculated by multiplying the I (mm) is compared with the area e (mm 2 ) of the edge of the cutting edge of the diamond whetstone 2, and Z (mm 2 ) Ze (mm 2 )
  • the diameter is not less than 0.3 and not more than 0.8, the diamond saw blade D can obtain a long tool life while maintaining excellent sharpness.
  • the above criterion is based on the virtual area Z (mm 2 ) calculated from the maximum thickness t (mm) of the diamond whetstone 2 and the outer peripheral length I (mm) of the diamond whetstone 2. This is to determine the ratio of the area e (mm 2 ) of the end face. Therefore, this method of comparing Z (mm 2 ) and the substantial end surface area e (mm 2 ) of the diamond grinding stone 2 will be specifically described when the shape of the end surface of the diamond grinding stone 2 is not a rectangular parallelepiped.
  • the present invention can be implemented in the case where the diamond grinding stone 2 has a zigzag shape as shown in FIGS.
  • the diamond saw blade of the present invention also includes the following embodiments.
  • the Rockwell hardness of the bond is HRA 60 or more and 80 or less as described above.
  • HRA 60 or less
  • the holding power for the diamond grains protruding from the tip of the bond is weakened, the diamond grains fall off in a short time, and new abrasive grains are generated due to the abrasion of the bond.
  • it Before it can function effectively, it loses its sharpness as a diamond saw blade and shortens its life.
  • the apparent minimum thickness s (mm) of the diamond grinding wheel 2 that is, the minimum thickness in the maximum thickness w direction as shown in FIGS.
  • the diamond saw blade can maintain good sharpness and long life.
  • the concentration of the diamond abrasive grains of the diamond whetstone 2, that is, the content of the diamond abrasive grains with respect to the bond is 0.6 to 1.4 (ct no cm 3 ), preferably 0.8 to 1.2 (ctZ cm 3 ), A sufficient load is applied to each of the diamond abrasive grains protruding from the bond constituting the diamond grinding stone 2 during the cutting operation on the work material, and the sharpness can be exhibited.
  • the diamond saw blade of the present invention includes the following embodiments.
  • diamond abrasive grains concentration is 0.8 for the bond (ctZcm 3) above 1.
  • ctZcm 3 Dearuko diamond saw blade according to claim.
  • the diamond saw blade D1 of this embodiment is formed by arranging a plurality of diamond whetstones 2 on an outer peripheral edge of a circular substrate 1.
  • key-shaped and U-shaped slits 3 are formed alternately, and the outer diameter (a) is formed to be 291 mm and the maximum thickness (t) is formed to be 2 mm.
  • the diamond grindstone 2 of the diamond saw blade D1 of the present embodiment is obtained by setting a diamond grindstone layer primary compact and an underlayer primary compact adjacent to each other, charging the sintering mold, and sintering under pressure. It is formed.
  • the diamond grindstone layer primary compact has a dangsten-based bond and diamond abrasive grains with a minimum grain diameter of 0.3 mm, and the percentage of the diamond abrasive grains after firing becomes 1.0 (ct cm 3 ). It is formed by mixing and molding.
  • the tungsten-based bond is adjusted so as to have a Rock-well hardness of the bond portion after firing (HRA68).
  • the diamond whetstone 2 has a height (b) (the length from the junction with the circular substrate 1 to the tip of the blade) of 8. Omm, which is apparent.
  • the minimum thickness (s), that is, the maximum thickness is 1.6 mm and the maximum thickness (w) is 2.8 mm in the w direction, and the area of the blade tip surface (e) was 27 mm 2 .
  • a total of 42 diamond whetstones 2 are attached to the mounting portions 4 between the slits 3 of the circular substrate 1.
  • the circular substrate 1 and the diamond grindstone 2 are formed in the sizes shown in the above numerical values, so that the maximum outer diameter (c) of the diamond saw blade is equal to the outer diameter of the circular substrate 1 (a) 291 mm + the diamond grindstone. Height (b) of 2 (8. Omm X 2).
  • the circumference (307mm x 3.14) calculated using the maximum outer diameter (c) of 307mm as the diameter is 964mm.
  • the area value calculated by multiplying the circumferential length of 964 mm by the maximum thickness (t) of the circular substrate 1 (t) of 2 mm is 1928 mm 2 .
  • Omm 2 calculated by multiplying the maximum thickness of the diamond grindstone by the outer peripheral length of the diamond grindstone, and the area of the substantial end face of the diamond grindstone (e) 27. The ratio of Omm 2 was 0.64.
  • the diamond saw blade D1 produced as described above was mounted on an engine cutter with a displacement of 85c G , and was rotated at 5000 rpm to produce a concrete plate (material age: 1 year, aggregate particle size: 20mm, plate Thickness: 60 mm) was subjected to a dry cutting test. As a result, high-speed cutting at a cutting speed of 1300 mm Zmin is possible without causing uneven wear of the diamond diamond wheel 2 on the circular substrate 1, and a cutting operation of 185 m before the life of the diamond saw blade D1 is reached. It was confirmed that it was possible.
  • the primary compact was made of a tungsten-based bond and diamond abrasive grains having a minimum grain diameter of 0.3 mm, and a diamond abrasive grain. It was formed by mixing and molding such that the concentration of the abrasive grains was 1.4 (ct Z cm 3 ).
  • the tungsten-based bond was prepared such that the Rockwell hardness of the bonded portion after firing was HRA70.
  • the diamond grindstone is formed to have a wall thickness of 30 ⁇ 20 thinner and a length reduction of 20% from the shape of the grindstone portion shown in Example 1, and the area of the blade tip surface ( e ) is 15.1 mm.
  • the diamond saw blade D2 was formed by welding 42 pieces to a circular substrate having a thickness of 2, Omm.
  • the circumference (307 mm X 3.14) calculated with the maximum outer diameter (c) of 307 mm of the diamond saw blade D2 as a diameter is 964 mm.
  • the area value calculated by multiplying the circumferential length 964 mm by the maximum thickness (t) of the circular substrate 2.0 is 1928 mm 2 .
  • this maximum thickness of the diamond wheel, for this virtual area by multiplying the outer circumferential length is calculated in the diamond grindstone (z) 33. 6mm 2, the area of the substantial end surface of the dust Iyamondo grindstone (e ) ratio of 15. 1 mm 2 was 0.45.
  • the diamond saw blade D2 produced as described above was subjected to a concrete cutting test in the same manner as in Example 1, and as a result, high-speed cutting at a cutting speed of 1200 mmZmin was possible, and the life of the diamond saw blade D2 was reached. It was confirmed that cutting work of 100m was possible by then.
  • the primary formed body is composed of a tungsten-based bond and a diamond abrasive having a minimum particle diameter of 0.3 mm, and the diamond abrasive has a concentration of 1.0 (ctZcm 3 ). It was formed by mixing and molding at a certain ratio.
  • the tungsten-based bond has a The rock well hardness of the hand part was adjusted to HRA65.
  • the diamond wheel 2 has a height (b) of 11. Omm, an apparent minimum thickness (s) of 2. Omm, and a maximum thickness (w) of 3.2 mm.
  • the shape of the blade tip surface (e) was 90.2 mm 2 , and 21 pieces were welded to a circular substrate 1 having a thickness (t) of 2.2 mm to produce a diamond sorbade D3.
  • the circumference (308 mm x 3.14) calculated using the maximum outer shape (c) of 308 mm as the diameter of the diamond saw blade D3 is 968 mm.
  • the area value calculated by multiplying the circumference of 968 mm by the maximum thickness of the circular substrate (22.2) is 2129 mm 2 .
  • a virtual area (z) calculated by multiplying the maximum thickness of the diamond grindstone by the outer peripheral length of the diamond grindstone (z) is 129.6 mm 2
  • a substantial end face area of the diamond grindstone (e) was 0.70.
  • the diamond saw blade D3 produced as described above was subjected to a concrete cutting test in the same manner as in Example 1. As a result, high-speed cutting at a cutting speed of 11 OOmmZmin was possible, and the life of the diamond saw blade D3 was reached. It was confirmed that cutting work of 320m was possible by now.
  • the diamond saw blade D4 of this comparative example is formed by arranging a plurality of diamond whetstones 2 on the outer peripheral edge of the circular substrate 1. You.
  • the circular substrate 1 of this comparative example is provided with a key-shaped slit 3 having a maximum outer diameter (c) of 307 mm and a maximum thickness (t) of 2 mm.
  • the diamond grindstone 2 of this comparative example is formed in a rectangular parallelepiped shape as shown in FIG. 8 and FIG. 8, and the area of the tip end surface (e) of the blade is 103 mm 2 .
  • a total of 21 diamond whetstones 2 are attached to the mounting portions 4 between the slits 3 of the circular substrate 1.
  • the circular substrate 1 and the diamond grindstone 2 are formed in the sizes shown in the above numerical values, and as a result, the circumferential length (307 mm) calculated by using the maximum outer diameter (c) of the diamond saw blade D4 as 307 mm in diameter is obtained.
  • X 3.14) is 964 mm.
  • the area value calculated by multiplying the circumferential length of 964 mm by the maximum thickness (t) of the circular substrate 1 of 2 mm is 1928 mm 2 .
  • the ratio of 103.0 mm 2 is 1.00.
  • the diamond saw blade D4 produced as described above was subjected to the same cutting test as in Example 1, and as a result, although the wear of the diamond whetstone 2 hardly progressed, the sharpness gradually became dull and every 10 m cut was performed. In addition, sharpening was required, and the average cutting speed before sharpening was required was 650 mmZmin.
  • Example 3 a cutting test was performed on an iron pipe (named “Ductile” iron pipe 80AJ, inner mortar lining, outer diameter 093 mm). Each cut took an average of 36 seconds.
  • the diamond saw blade D5 of this comparative example is formed by arranging a plurality of diamond whetstones 2 on the outer periphery of the circular substrate 1.
  • the circular substrate 1 of this comparative example has the same shape as that of the example 1, and has a key type and a U type slit 3 alternately formed, an outer diameter (a) of 291 mm, and a maximum thickness (t) of 2 mm. Is formed.
  • the diamond grindstone 2 of this comparative example has a length (b) (the length from the joint portion with the circular substrate 1 to the tip of the blade portion) of 8. Omm N as in the first embodiment.
  • the (s) 1. 6 mm are formed the maximum thickness (w) of 2. 8 mm, the area of the blade tip surface (e) to 27 mm 2, the mounting portion 4 between the slits 3 of the circular substrate 1, if A total of 42 are installed.
  • the rock well hardness after firing was adjusted to be HRA57 as the bond of the diamond whetstone 2.
  • the diamond saw blade D6 of this comparative example is formed by arranging a plurality of diamond whetstones 2 on the outer peripheral edge of the circular substrate 1.
  • the circular substrate 1 of this comparative example has the same shape as that of the example 1, and has a key type and a U type slit 3 alternately formed, an outer diameter (a) of 291 mm, and a maximum thickness (t) of 2 mm. Is formed.
  • the diamond grindstone 2 of this comparative example is similar to the diamond grindstone 1 of the first embodiment.
  • a total of 42 pieces are attached to the mounting part 4 between the slits 3, but as shown in Fig. 9, the apparent minimum thickness, that is, the maximum thickness (s) in the .
  • the diamond grindstone 2 in this comparative example is mixed with 4050 mesh diamond abrasive grains having the same particle size as in Example 1. Therefore, the apparent minimum thickness (s) of the diamond grindstone of this example is about 2.times.
  • the diamond saw blade D7 of this comparative example is formed by arranging a plurality of diamond grindstones on the outer peripheral edge of a circular substrate, and the maximum thickness (t) of the circular substrate is 1.8 mm. Except for this, it has the same shape as Comparative Example 1.
  • the diamond grindstone 2 of the present comparative example has a rectangular parallelepiped shape similar to that of the comparative example 1, the thickness (w) is 2.5 mm, and the area of the blade tip surface (e) is 95 mm2. As in the case of Comparative Example 1, a total of 21 diamond whetstones are attached to the mounting portions between the slits of the circular substrate.
  • the circumference (307 mm x 3.14) calculated with the maximum outer diameter (c) of the diamond saw blade D7 as 307 mm is 964 mm.
  • the area value calculated by multiplying the circumferential length of 964 mm by the maximum thickness (t) of the circular substrate 1 (1.8 mm) is “I 736 mm 2 .
  • a virtual area (z) of 95. Omm 2 calculated by multiplying the maximum thickness of the diamond grinding wheel by the outer peripheral length of the diamond grinding stone, and the area of the substantial end face of the diamond grinding stone (e ) The ratio of 95.0 mm 2 is 1.00.
  • the primary compact was a tungsten-based bond and diamond grain having a minimum grain diameter of 0.3 mm, and the sintered diamond grain had a concentration of 0.6 (ctZcm 3 ) It was formed by mixing and molding at a ratio of:
  • the tungsten-based bond was prepared such that the Rockwell hardness of the bond after firing was HRA58, and the diamond saw blade D3 produced as described above was subjected to a concrete cutting test in the same manner as in Example 1.
  • the cutting speed was 640 mmZmin, and the cutting distance until the life of the diamond saw blade D7 was reached was 50 m.
  • Example 3 a cutting test was performed on a steel pipe (namely, “Ductile—iron pipe 80A”, inner mortar lining, outer diameter 093 mm). As a result, one cut required an average of 45 seconds. Industrial applicability
  • the diamond saw blade of the present invention has a circle whose diameter is the maximum outer diameter of the diamond saw blade as a circumference and a surface area value of the disk whose plate thickness is the maximum thickness of the circular substrate.
  • the condition that the ratio of the total area value is 0.3 or more and 1.0 or less is a requirement. By satisfying this requirement, hard and brittle materials such as concrete and stone are dry-ground and cut. When performing cutting, it is possible to achieve a long tool life while maintaining excellent sharpness.

Description

明 細 書
ダイヤモンドソーブレード
技術分野
本発明は、コンクリー卜や石材などに代表される硬脆材に対して、乾 式で研削や切断加工を施す場合、優れた切れ味を示すと共に、高いェ 具寿命の実現を可能としたダイヤモンドソ一ブレードに関する。 背景技術
石材やコンクリート構造物などの硬脆材に研削や切断加工を施すた めに用いられる工具として、従来からダイヤモンドソーブレードが汎用さ れている。ダイヤモンドソ一ブレードは、例えば、円盤状の金属製基板の 外周部に、ダイヤモンド砥粒をボンドで結合させたダイヤモンド砥石を、 下地層と呼ばれる金属基台を介して取り付けることにより形成されてい る。上記ダイヤモンドソ一ブレードを回転工具に取り付け、回転させるこ とにより硬脆材の研削や切断を行う。
このとき、ダイヤモンドソ一ブレードがコンクリート等に対して切断加工 を施す際に、鋭い切れ味を示すための条件としては、動力を与えるため の回転工具から適切なパワーが出力されていること、そのパワーに伴な うダイヤモンドソーブレードの周速度に見合った必要最小限の数のダイ ャモンド砥粒がダイヤモンド砥石に含まれていること、さらに、ダイヤモン ド砥粒がボンドの先端から鋭いエッジを有する状態でより大きく突き出し ていること、ダイヤモンド砥粒が突き出している状態を可能な限り持続さ せながら被削材に深く食い込み、これを破壊しつつ切リ屑として高速で 排出すること、等が挙げられる。
ところが従来では、硬脆材の切断加工を行う際、切断加工の進行に 伴って、ダイヤモンド砥石先端のダイヤモンド砥粒が次第に磨耗, 破壊 されたり、或いは脱落し、ダイヤモンドソーブレードの切れ味が次第に低 下するという問題があった。
上記ダイヤモンドソーブレードの切れ味の低下に対して、従来では、ボ ンドの硬度を調整し、ボンドに自生発刃作用を行う性質を持たせること により解決していた。 自生発刃作用とは、ダイヤモンド砥粒の磨耗や脱 落に合わせて、ボンド自体をも磨耗させ、先端面を後退させることにより、 ボンドに理入しているダイヤモンド砥粒を、新たにダイヤモンド砥石の先 端面から突出させて、切れ味を維持させる作用である。
しかし、 自生発刃作用を盛んに発現させる目的で、ボンドを摩耗しや すい特性となるような組成または焼結状態に仕上げると、切れ味が向 上するが、摩耗速度が高まる分、ダイヤモンドソーブレードとしての寿命 は短くなる、という問題があった。
逆に、ダイヤモンド砥粒を強固に保持させるベく、ボンドを強靭な埤械 特性となるような組成または焼結状態に仕上げると、ダイヤモンドソープ レードの寿命は向上するが、同時に磨耗し難い特性ともなり、 自生発刃 作用を機能させることが難しくなるので、寿命に反比例して切れ味性能 は低下する。
このように、ダイヤモンドソーブレードのダイヤモンド砥石に用いられる ボンドは、①有効なダイヤモンド砥粒を強固に保持する、②先端のダイ ャモンド砥粒の磨耗状態に応じて自らも磨耗し、 自生発刃させる、とい う相反する 2つの役割を担っている。
従来のダイヤモンドソーブレードは、 良好な切れ味か、或いは高い寿 命か、のいずれか一つの特性しか持たせることができなかったため、例 えば人件費のコストが大きいときには、ダイヤモンドソーブレードの切れ 味を向上させて切削速度を優先させたり、或いは、ダイヤモンドソーブレ ードそのもののコストを重視するときには、ある程度切れ味は劣るが寿 命特性の良いダイヤモンドソーブレードを使用していた。このように、 目 的とする作業や状況に応じてダイヤモンドソーブレードの品種を使い分 けることが必要であった。
かかる実情に鑑み、本発明の目的は、切れ味か、または寿命のどちら かを犠牲にしなければならないという課題を解決して、良好な切れ味と、 高い耐久性とのいずれをも満足するダイヤモンドソーブレードを得ること にある。 発明の開示
本発明におけるダイヤモンドソーブレードは、円形基板の外周縁にダ ィャモンド砥石を取着してなるダイヤモンドソーブレードであって、前記ダ ィャモンドソーブレードの最大外径を直径とする円の円周長さに、前記 円形基板の最大厚さを乗じて算出される第 1の値と、前記ダイヤモンド 砥石の端面の総面積である第 2の値と、を比較したときに、前記第 1の 値に対する前記第 2の値の比が 0 · 3以上 1 . 0以下であることを特徴と する。
上記のように、本発明のダイヤモンドソーブレードは、ダイヤモンドソー ブレードの最大外径を直径とする円を円周とし、円形基板の最大厚さを 板厚とする円盤の、外周端面の総面積値に対して、ダイヤモンド砥石 の端面の総面積値の比が 0. 3以上 1 . 0以下となることを要件としてお リ、この要件を満たすことにより、コンクリートや石材などに代表される硬 脆材に対し乾式で研削や切断加工を施すに当り、優れた切れ味を維 持しつつ、高い工具寿命を実現することが可能となるものである。
なお、ダイヤモンド砥石が、円形基板に所定間隔を持って配設されて いる場合は次のような構成とすると好適である。
すなわち、前記ダイヤモンド砥石は前記円形基板の外周縁に 3 . O m m未満の間隔で配置され、前記ダイヤモンドソ一ブレードの最大外径を 直径とする円の円周長さに、前記円形基板の最大厚さを乗じて算出さ れる第 1の値と、前記ダイヤモンド砥石の端面の総面積である第 2の値 と、を比較したときに、前記第 1の値に対する前記第 2の値の比が 0. 3 以上 0. 8以下であると好適である。
また、前記ダイヤモンド砥石は前記円形基板の外周縁に 3 . O m m以 上 1 5 . O m m未満の間隔で配置され、前記ダイヤモンドソーブレードの 最大外径を直径とする円の円周長さに、前記円形基板の最大厚さを 乗じて算出される第 1の値と、前記ダイヤモンド砥石の端面の総面積で ある第 2の値と、を比較したときに、前記第 1の値に対する前記第 2の 値の比が 0. 4以上 0. 9以下であると好適である。
このように、本発明のダイヤモンドソーブレードによれば、優れた切れ 味を維持しつつ、高い工具寿命を実現することが可能であるため、 目的 とする作業や状況に応じてダイヤモンドソーブレードの品種を使い分け るという煩わしさが除かれ、良好な作業環境が保たれる。
なお、前記ダイヤモンド砥石はダイヤモンド砥粒をボンドで結合してな リ、該ボンドのロックウェル硬さが H RA60以上 80以下であるとダイヤモ ンド砥粒を強固に保持することが可能となり、好適である。
また、前記ダイヤモンド砥石の肉厚が前記ダイヤモンド砥粒の最小粒 径の 3 . 0倍以上であると、ボンドがダイヤモンド砥粒を保持する保持力 が適切に保たれ、ダイヤモンド砥粒が早期に脱落することなく、ダイヤモ ンドソーブレードの良好な切れ味と高い寿命を維持することができ好適 である。
さらにまた、前記ダイヤモンド砥石において、前記ボンドに対する前記 ダイヤモンド砥粒のコンセントレーションが 0. 6 ( ct/ cm3 )以上 1 . ( ct cm3 )であると、被削材に対する切断作業中に、ダイヤモンド砥石 2を 構成するボンドより突き出したダイヤモンド砥粒の個々に、充分な荷重 が掛かり、鋭い切れ味を発揮することができ、好適である。
また、前記ダイヤモンド砥石の刃部端面の面積は、該ダイヤモンド砥 石を前記円形基板の外周方向に延長し、前記円形基板に垂直な面で 切ったときの切断面の面積とする。
さらにまた、前記ダイヤモンド砥石の形状を、前記円形基板に平行な 面の少なくとも一部が切欠された形状とすると、切欠された部分から、 被削材の切り屑が排出され、ダイヤモンドソーブレードの良好な回転を 得ることが可能となる。
また、本発明におけるダイヤモンドソーブレードは、円形基盤の外周縁 にダイヤモンド砥石を取着してなるダイヤモンドソーブレードであって、前 記ダイヤモンド砥石の最大厚さに、前記ダイヤモンド砥石の外周長さを 乗じて算出される値と、前記ダイヤモンド砥石の刃部端面の面積と、を 比較したときに、前記ダイヤモンド砥石の外周長さを乗じて算出される 値に対する前記ダイヤモンド砥石の刃部端面の面積の値の比が 0 . 3 以上 0 . 8以下であることを特徵とする。
上記ダイヤモンドソーブレードにおいて、前記ダイヤモンド砥石はダイヤ モンド砥粒をボンドで結合してなり、該ボンドのロックウェル硬さが H R A 6 0以上 80以下であるとダイヤモンド砥粒を強固に保持することが可能と なり、好適である。
また、前記ダイヤモンド砥石の肉厚が前記ダイヤモンド砥粒の最小粒 径の 3 . 0倍以上であると、ボンドがダイヤモンド砥粒を保持する保持力 が適切に保たれ、ダイヤモンド砥粒が早期に脱落することな ダイヤモ ンドソーブレードの良好な切れ味と高い寿命を維持することができ好適 である。
さらにまた、前記ダイヤモンド砥石において、前記ボンドに対する前記 ダイヤモンド砥粒のコンセントレーションが 0 . 6 ( ct / c m 3 )以上 1 . 4 ( ct c m 3 )であると、被削材に対する切断作業中に、ダイヤモンド砥石 2を 構成するボンドより突き出したダイヤモンド砥粒の個々に、充分な荷重 が掛かり、銳ぃ切れ味を発揮することができ、好適である。
また、前記ダイヤモンド砥石の刃部端面の面積とは、より詳しくは、該 ダイヤモンド砥石を前記円形基板の外周方向に延長したと仮定したと き、前記円形基板に垂直で、かつ元のダイヤモンドソーブレードの外周 円を通る面で切ったときの切断面の面積とする。
さらにまた、前記ダイヤモンド砥石の形状を、前記円形基板に平行な 面の少なくとも一部が切欠された形状とすると、切欠された部分から、 被削材の切り屑が排出され、ダイヤモンドソ一ブレードの良好な回転を 得ることが可能となる。 図面の簡単な説明
図 1及び図 2は一般的なダイヤモンドソーブレードを示す概略図、図 3は 図 1のダイヤモンドソ一ブレードの外周縁部を示す斜視図、である。図 4 乃至図 6は本発明のダイヤモンドソーブレードの一実施例を示す説明 図、図 7乃至図 9は比較例におけるダイヤモンドソーブレードの外周縁 部を示す説明図である。 発明を実施するための最良の形態
以下、本発明の実施例を図面に基づいて説明する。なお、以下に説 明する部材、配置等は本発明を限定するものでなく、本発明の趣旨の 範囲内で種々改変することができるものである。
本発明におけるダイヤモンドソーブレード Dは、金属製の円形基板 1と、 該円形基板 1の外周縁に、ダイヤモンド砥粒とボンドとで形成された複 数のダイヤモンド砥石 2を、一体に結合した構造のダイヤモンドソーブレ —ド Dである。なお、ダイヤモンド砥石 2は、下地層を介して円形基板 1 に接合されるか、あるいは下地層を介することなく同時焼結方法によつ て結合される。
本発明のダイヤモンドソ一ブレードについて、図 1乃至図 3においてより 具体的に説明する。図 1は、本例のダイヤモンドソーブレード Dを示す概 略図である。図 1に示すように、本例のダイヤモンドソーブレード Dは、円 形基板 1と、円形基板 1の外周に取着された複数のダイヤモンド砥石 2 とを主たる構成要素としている。
円形基板 1は、円盤状に形成した金属製の板体であり、複数のスリツ ト 3により外周部が周方向に分割された構成とされている。スリット 3に 挟まれた部分は、ダイヤモンド砥石 2を取り付けるための取付部 4とされ る。また、基板 1の中心位置には、回転工具に取り付けるための取付 孔 1 aが形成されている。
なお、本例の円形基板 1には、キー形状のスリット 3 aと、 U字形のスリ ット 3 bが複数形成されているが、これに限らず、キー形状のスリットのみ を形成したり、或いは U字形状のスリットのみを形成した構成としても良 し、。或いは、キー形状や U字形に限らず、 自由な形状としても良い。 ダイヤモンドソーブレード Dに、スリット 3を設けることにより、ダイヤモン ド砥石の切れ味が上昇すると共に、砥石の先端と被削材との間に発生 する摩擦熱を効果的に排除し、併せて切り屑の排出もスムースとなるた め、ライフ性能の著しい向上に寄与する。なお、図 1では、スリット 3力《形 成されたダイヤモンドソーブレード Dを示したが、図 2に示すように、スリツ トを設けない構成としても良いことは勿論である。
ダイヤモンド砥石 2は、ダイヤモンド砥粒をボンドで結合したセグメント 状の砥石であり、円形基板 1の取付部 4に対応する長さの直方体状に 形成されている。なお、ダイヤモンド砥石 2は、金属製の下地層を介して、 レーザー溶接等により円形基板 1に固着される。或いは、下地層を介す ることなく同時焼結方法によって一体に結合される。
また、本例のダイヤモンド砥石 2には、図 3に示すように、スリット 3に隣 接して、段差が設けられている。段差は、ダイヤモンド砥石 2の両側面に おいて、スリット 3側からダイヤモンド砥石 2の中央部付近まで形成され ている。そして、中央部付近の段差は、スリット側の段差より深く形成さ れており、切り屑の排出や、摩擦熱の放出を効果的に行うことが可能な ように構成されている。
なお、ダイヤモンド砥石 2の形状や個数は特に限定されるものではなく、 円形基板 1の大きさ及び板厚との関係により、また被削材の材質等に より適宜変更されるものである。
本例のボンドは、ダイヤモンド砥粒を強固に保持することが可能なよう に、強靱な特性に調製されている。ボンドは、例えば、ダイヤモンド砥粒 を保持して焼結された状態に於て、 ロックウェル硬さが H RA 60以上に なるよう調製されている。しかしながら、ダイヤモンド砥粒の適宜な自生 発刃作用を促すために、その硬度の上限は、 H RA80以下となるよう調 製される。
なお、上記 H RAについて、 1"1 6 5以上7 5以下とすると、ダイヤモンド 砥粒の保持性と、 自生発刃作用とが高いレベルでバランス良く両立す ることができ、好適である。
よって、本発明のダイヤモンドソーブレードは、次の実施態様も含むも のとする。すなわち、ダイヤモンド砥石はダイヤモンド砥粒をボンドで結合 してなリ、該ボンドのロックウェル硬さが H RA 6 5以上 7 5以下であること を特徴とする。
そして本発明の最大の特徴は、ダイヤモンド砥石 2の刃部端面の総 面積、すなわち、個々のダイヤモンド砥石 2の刃部端面の面積に、ダイ ャモンド砥石 2の配設個数を乗じて得られる面積を予め定められた要 件に適合させたことにある。
上記要件とは、ダイヤモンドソ一ブレード Dの最大外径 cを直径とする 円の円周長さに、円形基板 1の板厚の最大厚さ tを乗じて得られる第 1 の値 Xと、前記ダイヤモンド砥石 2の刃部端面の総面積である第 2の値 Yを比較したとき、 YZX = 0 . 3以上 1 . 0以下とすることである。
なお、第 1の値 Xと、第 2の値 Υを比較したとき、 Y Z X = 0 . 4以上 0 . 9 以下、さらに好ましくは、 Y Z X = 0 . 5以上 0 . 8以下となれば、ダイヤモ ンドソーブレード Dの切断速度性能と寿命性能とを、特に高いレベルで バランス良く両立することができ好適である。
すなわち、本発明のダイヤモンドソーブレードは、次の実施態様も含む ものである。円形基板の外周縁にダイヤモンド砥石を取着してなるダイ ャモンドソーブレードであって、前記ダイヤモンドソーブレードの最大外径 を直径とする円の円周長さに、前記円形基板の最大厚さを乗じて算出 される第 1の値と、前記ダイヤモンド砥石の端面の総面積である第 2の 値と、を比較したときに、前記第 1の値に対する前記第 2の値の比が 0. 4以上 0 . 9以下であることを特徴とするダイヤモンドソーブレード。
円形基板の外周縁にダイヤモンド砥石を取着してなるダイヤモンドソ 一ブレードであって、前記ダイヤモンドソ一ブレードの最大外径を直径と する円の円周長さに、前記円形基板の最大厚さを乗じて算出される第 1の値と、前記ダイヤモンド砥石の端面の総面積である第 2の値と、を 比較したときに、前記第 1の値に対する前記第 2の値の比が 0 . 5以上 0 . 8以下であることを特徴とするダイヤモンドソーブレード。
上記要件について、図 1及び図 3においてさらに詳細に説明する。 ダイヤモンドソーブレード Dの最大外径 c ( m m )とは、円形基板 1の中 心 Oを通リ、一方側のダイヤモンド砥石 2の刃部先端部 2a力、ら他方側 のダイヤモンド砥石 2の刃部先端部 2aまで延出する直線長さである。す なわち、ダイヤモンドソーブレード Dの最大外径 c(mm)は、円形基板 1 の外径 a (mm)に、ダイヤモンド砥石 2の高さ b ( m m ) (ダイヤモンド砥石 2の円形基板 1との接合部から刃部先端部までの長さ)を 2倍して加え ることにより求められる。
上記第 1の値 Xは、最大外径 c(mm)を直径とする円の円周長さ(cx 7T ) (mm)に、円形基板 1 の板厚の最大厚さ t(mm)を乗ずることによ り、すなわち式 X (mm2) =c(mm) 兀 xt(mm)により求められる。 一方、第 2の値 Yは、個々のダイヤモンド砥石 2の刃部端面の面積 e (mm2)に、ダイヤモンドソーブレード Dに配設されるダイヤモンド砥石 2 の総和 y (個)を乗ずることにより、すなわち式 Y (mm2) =e (mm2) X y (個)により求められる。
本例のダイヤモンドソーブレードは、前記第 1の値 X (mm2)と、前記第 2の値としての、ダイヤモンド砥石 2の刃部端面面積 e(mm2)の総面積 Y (mm2)とを比較したときに、第 2の値 Y( mm2)力 第 1の値 X (mm2) の 30%以上且つ 100%以下とされるものである。
すなわち、 Y(mm2) X(mm2) =0. 3以上且つ 1. 0以下であることを 必須の要件とする。
Y(mm2)ノ X(mm2)力 、 1. 0を越えた場合、すなわちダイヤモンド砥 石 2の刃部端面面積 e (mm2)が大きくなリ、結果として総面積 Y (mm 2)を大ならしめた状態では、ダイヤモンドソ一ブレードの良好な切れ味が 妨げられてしまう。これは、ダイヤモンド砥石 2の自生発刃作用が有効 に機能しなくなることによる。
これは、本例のボンドが、ダイヤモンド砥粒を強固に保持することが可 能なように強靱な特性に調製されていることによる。本実施例のように、 ボンドが強靱な特性に調製されているときに、ダイヤモンド砥石 2の刃部 端面面積 e (mm2)の総面積 Y (mm2)が大きくなりすぎると、ボンドの磨 耗が進行せず、ボンドに埋入しているダイヤモンド砥粒を新たに突出さ せにくくなり、良好な切れ味が妨げられてしまう。
一方、上記の比丫(mm2)ZX(mm2)が 0. 3以下のように極端に小さ な値となる場合、すなわちダイヤモンド砥石 2の刃部端面面積 e ( m m 2 ) が小さくなり過ぎ、結果として総面積 Y (mm2)を必要以上に小ならしめ た状態では、ダイヤモンドソ一ブレードの耐久性が低下する。
このように、ボンドのロックウェル硬さを HRA60以上 80以下とし、上記 要件に従って、 Y (mm2)ノ X (mm2) =0. 3以上且つ 1. 0以下、好まし くは 0. 4以上且つ 0. 9以下とすれば、ボンドの先端面からダイヤモンド 砥粒が大きく突き出した状態を長く維持することができ、所望の切れ味 を長時間維持することが可能となる。
なお、ダイヤモンドソーブレード Dは、図 1に示すように、円形基板 1の 外周縁にダイヤモンド砥石 2が取着されて形成されているが、このダイヤ モンド砥石が配置される間隔により、ダイヤモンドソ一ブレード Dを 2つの タイプに分類することができる。それぞれのタイプのダイヤモンドソーブレ ード Dについて、優れた切れ味を維持しつつ、高い工具寿命を実現する Y (mm2) ZX (mm2)の値の範囲は次の通りである。
例えば、ダイヤモンド砥石 2が比較的狭い間隔で配置されている場合、 より具体的には、ダイヤモンド砥石 2を 3. Omm未満の間隔で配置する 場合は、比 Y(mm2) X(mm2)が 0. 3以上 0. 8以下となるように、ダ ィャモンド砥石 2の大きさや端面形状を調整して形成する。
また、ダイヤモンド砥石 2が比較的広い間隔で配置されている場合、 より具体的には、ダイヤモンド砥石 2を 3. Omm以上 15. Omm未満の 間隔で配置する場合は、比 Y(mm2)ノ X(mm2)が 0. 4以上 0. 9以下 となるように、ダイヤモンド砥石 2の大きさや端面形状を調整して形成す る。
すなわち、ダイヤモンド砥石 2を比較的狭い間隔で配置する場合の方 力 広い間隔で配置する場合に比して、ダイヤモンド砥石 2の端面の面 積 e (mm2)をより小さくすることができるものである。
なお、上記丫(mm2) X (mm2)の他に、ダイヤモンド砥石 2の大きさ や形状を選定する基準として、ダイヤモンド砥石 2の最大厚さ t (mm)に、 ダイヤモンド砥石 2の外周長さ I (mm)を乗じて算出される値 Z (mm2)と、 ダイヤモンド砥石 2の刃部端面の面積 e (mm2)と、を比較し、 Z (mm2) Ze(mm2)が 0. 3以上 0. 8以下であるときに、ダイヤモンドソ一ブレード Dが、優れた切れ味を維持しつつ、高い工具寿命を得ることができると する方法がある。
上記基準は、ダイヤモンド砥石 2の最大厚さ t (mm)と、ダイヤモンド砥 石 2の外周長さ I (mm)とから算出される仮想の面積 Z (mm2)に対する、 ダイヤモンド砥石 2の実質的な端面の面積 e (mm2)の比を求めるもの である。よって、 Z( mm2)と、ダイヤモンド砥石 2の実質的な端面の面積 e(mm2)を比較する本方法は、ダイヤモンド砥石 2の端面の形状が直 方体形状でない場合、具体的に述べると、図 3乃至図 6に示すようなジ グザグ形状のダイヤモンド砥石 2である場合に実施することが可能なも のである。
なお、上記構成において、ダイヤモンド砥石 2の最大厚さ t (mm)に、ダ ィャモンド砥石 2の外周長さ I (mm)を乗じて算出される Z (mm2)と、ダ ィャモンド砥石 2の刃部端面の面積 e(mm2)と、を比較し、 Z (mm2) Z e(mm2)が 0. 4以上 0. 7以下となるようにすると、ダイヤモンドソーブレ ード Dの切断速度性能と寿命性能とを、より高いレベルでバランス良く 両立することができ好適である。 すなわち、本発明のダイヤモンドソーブレードは、次の実施態様も含む ものである。円形基盤の外周縁にダイヤモンド砥石を取着してなるダイ ャモンドソーブレードであって、前記ダイヤモンド砥石の最大厚さに、前 記ダイヤモンド砥石の外周長さを乗じて算出される値と、前記ダイヤモ ンド砥石の刃部端面の面積と、を比較したときに、前記ダイヤモンド砥 石の外周長さを乗じて算出される値に対する前記ダイヤモンド砥石の 刃部端面の面積の値の比が 0 . 4以上 0 . 7以下であることを特徴とす るダイヤモンドソーブレード。
次に、ボンドの硬度について述べる。ボンドのロックウェル硬さについて は、前記したように、 H RA 60以上 80以下とする。 H RA 60以下になると、 ボンドの先端から突き出たダイヤモンド砥粒に対する保持力が弱くなリ、 短時間でダイヤモンド砥粒が脱落し、ボンドの磨耗によって新しい砥粒 が発生する、いわゆる自生発刃作用が有効に機能する以前に、ダイヤ モンドソーブレードとしての切れ味を失い、その寿命も短縮する。
一方、ボンドのロックウェル硬さが H RA 8 0以上となると、ボンドの磨耗 が進行せず、ボンドに埋入しているダイヤモンド砥粒の自生発刃作用を 妨げて、良好な切れ味を失うことにつながる。
さらに、ダイヤモンド砥石 2の見かけの最小肉厚 s ( m m )、すなわち図 3乃至図 4で示すように、最大肉厚 w方向に対しての最小肉厚を、これ に含まれるダイヤモンド砥粒の最小粒径の 3倍以上、好まし〈は 4 . 5倍 以上とすると、ダイヤモンドソーブレードの良好な切れ味と高い寿命を維 持することができる。
ダイヤモンド砥石 2の見かけの最小肉厚 s ( m m )を、ダイヤモンド砥粒 の最小粒径に対し 3 . 0倍以下とした場合、すなわちダイヤモンド砥石 2 を極度に薄く形成した場合は、ダイヤモンド砥石 2の鋭角部に存在する ダイヤモンド砥粒の確率が高くなる。ダイヤモンド砥石 2の銳角部ではボ ンドによる保持力に限界があるため、構造的にダイヤモンド砥粒の早期 脱落の原因となる。従って、ダイヤモンドソーブレードの良好な切れ味を 得ることができず、また、ダイヤモンドソーブレードの寿命を永く維持する こともできない。
一方、ダイヤモンド砥石 2の見かけの最小肉厚 sが、ダイヤモンド砥粒 の最小粒径に対し極端に厚くされた場合は、ダイヤモンド砥石 2の刃部 端面の総面積 Yが大きくなリ過ぎてしまい、本発明の必須の構成要件 である Y(mm2)ZX(mm2) . 0を満たすことができなくなる。このよう に、必須の要件を満たしていないダイヤモンドソーブレードが、良好な切 れ味と高寿命を両立して満足できないことは言うまでもない。
さらに、ダイヤモンド砥石 2のダイヤモンド砥粒のコンセントレーション、 すなわちボンドに対するダイヤモンド砥粒の含有率を、 0. 6~ 1. 4(ct ノ cm3)、好ましくは 0. 8〜1. 2(ctZcm3)となるように調製すると、被 削材に対する切断作業中に、ダイヤモンド砥石 2を構成するボンドより 突き出したダイヤモンド砥粒の個々に、充分な荷重が掛かり、銳ぃ切れ 味を発揮し得る。
すなわち、本発明のダイヤモンドソーブレードは、次の実施態様を含む ものである。ダイヤモンド砥石において、ボンドに対するダイヤモンド砥粒 のコンセントレーションが 0. 8 (ctZcm3)以上 1. 2(ctZcm3)であるこ とを特徴とするダイヤモンドソーブレード。
ダイヤモンド砥粒のコンセントレーションが高くなリ過ぎると、切断作業 中の先端砥粒当りの荷重が小さくなるため、被削材への食い込みが鈍 化して切れ味の低下を招く。
また、コンセントレーションが低くなり過ぎるとダイヤモンドソーブレード の寿命が低下し、さらに極端な場合、先端砥粒の絶対的不足が発生し, 被削材に対しボンドが直接当接してしまい、切断不能に陥ることにな る。
従って、上記のように、ダイヤモンド砥石 2のダイヤモンド砥粒のコンセ ントレ一シヨンを、重量比で 0. 6〜1 . 4(ctZcm3)、好ましくは 0. 8〜1. 2 (ctZcm3)に限定した。
以下、本発明を実施例及び比較例により更に具体的に説明するが、 本発明に用いられる材質、形状、寸法等はこれにより特定されるもので はな 本発明の構成要件の範囲内において自由に設計変更が可能 である。
(実施例 1 )
本実施例のダイヤモンドソーブレード D1は、図 4に示すように、円形基 板 1の外周縁に、複数のダイヤモンド砥石 2が配設されて形成されてい る。
本実施例の円形基板 1には、キー型と U 型のスリット 3が交互に形成 され、外径(a)が 291 mm、最大厚さ(t)が 2mmに形成されている。
本実施例のダイヤモンドソーブレード D1のダイヤモンド砥石 2は、ダイ ャモンド砥石層一次成形体と、下地層一次成形体とを隣接してセットし、 焼結用モールドに仕込み、加圧焼結することによって形成される。ダイ ャモンド砥石層一次成形体は、ダングステン系ボンドと、最小粒径 0. 3 m mのダイヤモンド砥粒とを、焼成後のダイヤモンド砥粒のコンセントレ ーシヨンが 1. 0 (ct cm3)になる割合で混合成形することによリ形成さ れる。また、前記タングステン系ボンドは、焼成後のボンド部分のロック ゥエル硬さ力《HRA68になるよう調整される。
また、上記ダイヤモンド砥石 2は、図 4及び図 5に示すように、高さ(b) (円形基板 1との接合部から刃部先端部までの長さ)が 8. Omm、見か けの最小肉厚(s)、すなわち最大肉厚 w方向に対しての最小肉厚が 1. 6mm、最大肉厚(w)が 2. 8mmに形成され、刃部先端面(e)の面積 は 27mm2であった。
このダイヤモンド砥石 2を、円形基板 1のスリット 3間の取付部 4に、合 計 42個取着する。
円形基板 1とダイヤモンド砥石 2とは上記数値に示す大きさに形成さ れており、これによりダイヤモンドソーブレードの最大外径(c)は、円形 基板 1の外径(a) 291 mm +ダイヤモンド砥石 2の高さ(b) (8. Omm X 2)として求められる。この最大外径(c)307 mmを直径として計算され る円周長(307mm X 3. 14)は 964mmである。この円周長 964mm に、円形基板 1の最大厚さ(t) 2mmを乗じて算出される面積値は 192 8mm2である。
上記面積値 1928mm2に対する、刃部先端面(e)の面積総和(27 mm2 X 42 = 1134mm2)の比は 0. 59であった。
また、このダイヤモンド砥石の最大厚さに、このダイヤモンド砥石の外 周長さを乗じて算出される仮想の面積(z) 42. Omm2に対する、このダ ィャモンド砥石の実質的な端面の面積(e) 27. Omm2の比は、 0. 64 であった。
以上の如くして作製されたダイヤモンドソーブレード D1を、排気量 85c Gのエンジンカッターに装着し、回転数 5000rpmで回転させ、コンクリー 卜板(材令: 1年、骨材粒径: 20mm、板厚: 60 m m )に対し乾式による 切断試験を実施した。その結果、円形基板 1のブレゃダイヤモンド砥石 2の偏磨耗の発生もな 切断速度 1300mm Zminの高速切断が可 能であり、また、ダイヤモンドソーブレード D1の寿命に達するまでに 185 mの切断作業が可能であることが確認された。
(実施例 2)
本実施例では、ダイヤモンド砥石層として、その一次成形体は、タング ステン系ボンドと最小粒径 0. 3 mmのダイヤモンド砥粒とを、ダイヤモン ド砥粒のコンセントレーションが 1. 4 ( c t Z c m 3 )になる割合で混合成形 することにより形成した。また、前記タングステン系ボンドは、焼成後のボ ンド部分のロックウェル硬さが H RA70になるように調製した。
さらに、上記ダイヤモンド砥石は、実施例 1で示した砥石部形状から 肉厚を 30<½薄く、かつ長さ方向に 20%短く形成され、刃部先端面(e) の面積が 15. 1 mm2である形状とし、これを厚み 2, Ommの円形基板 に 42個溶接してダイヤモンドソーブレード D 2を作成した。
なお、該ダイヤモンドソーブレード D2の最大外形(c) 307 mmを直径 として計算される円周長(307mm X 3. 14)は、 964mmである。この 円周長 964mmに円形基板の最大厚さ(t)2. 0を乗じて算出される面 積値は、 1928mm2である。
上記面積値 1928mm2に対する、刃部先端面(e)の面積総和(15. 1 X 42 = 634mm2)の比は、 0. 33であった。
また、このダイヤモンド砥石の最大厚さに、このダイヤモンド砥石の外 周長さを乗じて算出される仮想の面積(z)33. 6mm2に対する、このダ ィャモンド砥石の実質的な端面の面積(e) 15. 1 mm2の比は、 0. 45 であった。
以上の如くして作製されたダイヤモンドソーブレード D 2を、実施例 1と 同様にコンクリート切断試験に供した結果、切断速度 1200mmZmin の高速切断が可能であり、またダイヤモンドソーブレード D2の寿命に達 するまでに 100mの切断作業が可能であることが確認された。
(実施例 3)
本実施例では、ダイヤモンド砥石層として、その一次成形体は、タンダ ステン系ボンドと最小粒径 0. 3mmのダイヤモンド砥粒とを、ダイヤモン ド砥粒のコンセントレーションが 1. 0(ctZcm3)になる割合で混合成形 することにより形成した。また、前記タングステン系ボンドは、焼成後のボ ンド部分のロックウェル硬さが HRA65になるように調製した。
さらに、上記ダイヤモンド砥石 2は、図 6に示すように、高さ(b)が 11. Omm、見かけの最小肉厚(s)が 2. Omm、最大肉厚(w)が 3. 2mm に形成され、刃部先端面(e)の面積が 90. 2mm2である形状とし、これ を厚み(t)2. 2mmの円形基板 1に 21個溶接してダイヤモンドソーブレ —ド D3を作成した。
なお、該ダイヤモンドソーブレード D3の最大外形(c) 308mmを直径 として計算される円周長(308mm x 3. 14)は、 968mmである。この 円周長 968mmに円形基板の最大厚さ(02. 2を乗じて算出される面 積値は、 2129mm2である。
上記面積値 2129mrr>2に対する、刃部先端面(e)の面積総和(90. 2 X 21 = 1894mm2)の比は、 0. 89であった。
また、このダイヤモンド砥石の最大厚さに、このダイヤモンド砥石の外 周長さを乗じて算出される仮想の面積(z) 129. 6mm2に対する、この ダイヤモンド砥石の実質的な端面の面積(e)90. 2mm2の比は、 0. 7 0であった。
以上の如くして作製されたダイヤモンドソーブレード D3を、実施例 1と 同様にコンクリート切断試験に供した結果、切断速度 11 OOmmZmin の高速切断が可能であり、またダイヤモンドソーブレード D3の寿命に達 するまでに 320mの切断作業が可能であることが確認された。
また、同様に錶鉄管(呼称「ダクタイル錶鉄管 80A」、内面モルタルラ イニング、外径 093mm)の切断試験を行った結果、 1回の切断にあた り平均 24秒の高速切断が可能であった。
(比較例 1 )
本比較例のダイヤモンドソーブレード D4は、図 7に示すように、円形基 板 1の外周縁に、複数のダイヤモンド砥石 2が配設されて形成されてい る。
本比較例の円形基板 1には、キー型のスリット 3が形成され、最大外 径(c)が 307mm、最大厚さ(t)が 2mmの大きさに形成されている。 本比較例のダイヤモンド砥石 2は、図フ及び図 8に示すように、直方体 形状に形成されており、刃部先端面(e)の面積は 103mm2とされてい る。
このダイヤモンド砥石 2を、円形基板 1のスリット 3間の取付部 4に、合 計 21個取着する。
円形基板 1とダイヤモンド砥石 2とは上記数値に示す大きさに形成さ れており、これにより、ダイヤモンドソ一ブレード D4の最大外径(c) 307 mmを直径として計算される円周長(307mm X 3. 14)は 964mmとな る。この円周長 964mmに、円形基板 1の最大厚さ(t) 2mmを乗じて 算出される面積値は 1928mm2である。
上記面積値 1928mm2に対する、刃部先端面(e)の面積総和(103 mm2 X 21 =2163mm2)の比は 1. 12であった。
また、このダイヤモンド砥石の最大厚さに、このダイヤモンド砥石の外 周長さを乗じて算出される仮想の面積(z) 103. 0mm2に対する、この ダイヤモンド砥石の実質的な端面の面積(e) 103. 0mm2の比は、 1. 00である。
以上の如くして作製されたダイヤモンドソーブレード D4を、実施例 1と 同様の切断試験に供した結果、ダイヤモンド砥石 2の磨耗は殆ど進行 しなかったが、徐々に切れ味が鈍り、 10m切断する毎に、 目立てをする 必要があり、 目立てを要するまでの平均切断速度は 650mmZminで あった。
また、上記実施例 3と同様に、錶鉄管(呼称 Γダクタイル錶鉄管 80AJ、 内面モルタルライニング、外径 093mm)の切断試験を行った結果、 1 回の切断にあたり平均 36秒を要した。
(比較例 2)
本比較例のダイヤモンドソーブレード D5は、円形基板 1の外周緣に、 複数のダイヤモンド砥石 2が配設されて形成されている。
本比較例の円形基板 1は、実施例 1と同形状であり、キー型と U型の スリット 3が交互に形成され、外径(a)が 291 mm、最大厚さ(t)が 2m mに形成されている。
本比較例のダイヤモンド砥石 2は、実施例 1と同様に、長さ(b) (円形 基板 1との接合部から刃部先端部までの長さ)を 8. OmmN見かけの最 小肉厚(s)を 1. 6mm、最大肉厚(w)を 2. 8 m m、刃部先端面( e )の 面積を 27mm2に形成され、円形基板 1のスリット 3間の取付部 4に、合 計 42個取着されている。
本比較例では、上記ダイヤモンド砥石 2のボンドとして、焼成後のロッ クウエル硬さを、 HRA57となるよう調節した。
本比較例におけるダイヤモンドソーブレード D 5を、実施例 1と同一の 条件で切断試験に供したところ、ダイヤモンド砥石の磨耗が顕著に進 行し、 自生発刃作用が活発である一方、砥粒の脱落も多発した。平均 切断速度は 91 Omm Zminであり、ダイヤモンドソーブレード D 5の寿命 に至るまでの切断距離は 75mであった。
(比較例 3)
本比較例のダイヤモンドソーブレード D6は、円形基板 1の外周縁に、 複数のダイヤモンド砥石 2が配設されて形成されている。
本比較例の円形基板 1は、実施例 1と同形状であり、キー型と U型の スリット 3が交互に形成され、外径(a)が 291 mm、最大厚さ(t)が 2m mに形成されている。
本比較例のダイヤモンド砥石 2は、実施例 1と同様に、 円形基板 1の スリット 3間の取付部 4に、合計 42個取着されているが、図 9に示すよう に、見かけの最小肉厚、すなわち最大肉厚 w方向に対しての最小肉厚 (s)を 0. 8mmとして形成されている。
本比較例におけるダイヤモンド砥石 2には、実施例 1 と同様の粒度で ある 40 50メッシュのダイヤモンド砥粒が配合されている。従って、本 例のダイヤモンド砥石の見かけの最小肉厚(s)は、ダイヤモンド砥粒の 約 2. フ倍となる。
上記の如くして作製されたダイヤモンドソーブレード D6を、実施例 1と 同一の条件で切断試験したところ、砥石側面の端部にダイヤモンド砥 粒の存在する確率が非常に高くなり、該端部のダイヤモンド砥粒の早 期脱落により、良好な切れ味が損なわれた。また、ダイヤモンド砥石 2の 磨耗が顕著に進行し、寿命が短縮した。一方、平均切断速度は 900 mm inであり、該ブレードの寿命に至るまでの切断距離は 40m で あった。
(比較例 4)
本比較例のダイヤモンドソ一ブレード D7は、円形基板の外周縁に、複 数のダイヤモンド砥石が配設されて形成されており、円形基板は、その 最大厚さ(t)が 1. 8mmである以外は、比較例 1と同形状である。
本比較例のダイヤモンド砥石 2は、比較例 1と同様の直方体形状であ リ、肉厚(w)は 2. 5mm、刃部先端面(e)の面積は 95mm2とされてい る。このダイヤモンド砥石を、比較例 1のときと同様に上記円形基板の スリット間の取付部に、合計 21個取着する。
このダイヤモンドソーブレード D7の最大外径(c) 307 mmを直径として 計算される円周長(307 mm X 3. 14)は 964mmとなる。この円周長 9 64mmに、円形基板 1の最大厚さ(t) 1. 8mmを乗じて算出される面 積値は" I 736mm2である。 上記面積値 1736mm2に対する、刃部先端面(e)の面積総和(95 mm2 X 21 = 1995mm2)の比は 1. 15であった。
また、このダイヤモンド砥石の最大厚さに、このダイヤモンド砥石の外 周長さを乗じて算出される仮想の面積(z) 95. Omm2に対する、このダ ィャモンド砥石の実質的な端面の面積(e) 95. 0mm2の比は、 1. 00 である。
本比較例のダイヤモンド砥石層として、その一次成形体は、タングス テン系ボンドと最小粒径 0. 3 mmのダイヤモンド砥粒とを、焼成後のダ ィャモンド砥粒のコンセントレーションが 0. 6 (ctZcm3)になる割合で混 合成形することにより形成した。また、前記タングステン系ボンドは、焼 成後のボンド部分のロックウェル硬さが HRA58になるように調製され 以上の如くして作製されたダイヤモンドソーブレード D3を、実施例 1と 同様にコンクリート切断試験に供した結果、切断速度 640mmZmin であり、またダイヤモンドソーブレード D7の寿命に達するまでの切断距 離は 50mであった。
また、実施例 3と同様に錶鉄管(呼称「ダクタイル錶鉄管 80A」、内面 モルタルライニング、外径 093mm)の切断試験を行った結果、 1回の 切断にあたり平均 45秒を要した。 産業上の利用性
本発明のダイヤモンドソーブレードは、ダイヤモンドソーブレードの最大 外径を直径とする円を円周とし、 円形基板の最大厚さを板厚とする円 盤の表面積値に対して、ダイヤモンド砥石の端面の総面積値の比が 0. 3以上 1. 0以下となることを要件としておリ、この要件を満たすことによ り、コンクリートや石材などに代表される硬脆材に対し乾式で研削や切 断加工を施すに当り、優れた切れ味を維持しつつ、高い工具寿命を実 現することが可能となるものである。
従って、 目的とする作業や状況に応じてダイヤモンドソーブレードの品 種を使い分けるという煩わしさも除かれ、 しかも乾式で作業が可能なた め、良好な作業環境が保たれる。

Claims

請求の範囲
1. 円形基板の外周縁にダイヤモンド砥石を取着してなるダイヤモン ドソーブレードであって、
前記ダイヤモンドソーブレードの最大外径を直径とする円の円周長さ に、前記円形基板の最大厚さを乗じて算出される第 1の値と、
前記ダイヤモンド砥石の端面の総面積である第 2の値と、を比較した ときに、
前記第 1の値に対する前記第 2の値の比が 0. 3以上 1. 0以下である ことを特徴とするダイヤモンドソーブレード。
2. 前記ダイヤモンド砥石は前記円形基板の外周縁に 3. Omm未 満の間隔で配置され、
前記ダイヤモンドソーブレードの最大外径を直径とする円の円周長さ に、前記円形基板の最大厚さを乗じて算出される第 1の値と、
前記ダイヤモンド砥石の端面の総面積である第 2の値と、を比較した ときに、
前記第 1の値に対する前記第 2の値の比が 0. 3以上 0. 8以下である ことを特徴とする請求項 1記載のダイヤモンドソーブレード。
3. 前記ダイヤモンド砥石は前記円形基板の外周縁に 3. Omm以 上 15. Omm未満の間隔で配置され、
前記ダイヤモンドソーブレードの最大外径を直径とする円の円周長さ に、前記円形基板の最大厚さを乗じて算出される第 1の値と、
前記ダイヤモンド砥石の端面の総面積である第 2の値と、を比較した ときに、
前記第 1の値に対する前記第 2の値の比が 0. 4以上 0. 9以下である ことを特徴とする請求項 1記載のダイヤモンドソーブレード。
4. 前記ダイヤモンド砥石はダイヤモンド砥粒をボンドで結合してなり、 該ボンドのロックウェル硬さが HRA60以上 80以下であることを特徴と する請求項 1記載のダイヤモンドソーブレード。
5. 前記ダイヤモンド砥石の肉厚が前記ダイヤモンド砥粒の最小粒 径の 3. 0倍以上であることを特徴とする請求項 1記載のダイヤモンドソ 一ブレード。
6. 前記ダイヤモンド砥石において、前記ボンドに対する前記ダイヤ モンド砥粒のコンセントレーションが 0. 6(ctZcm3)以上 1. 4(ctZcm 3 )であることを特徴とする請求項 1記載のダイヤモンドソ一ブレード。
7. 前記ダイヤモンド砥石の刃部端面の面積は、該ダイヤモンド砥石 を前記円形基板の外周方向に延長し、前記円形基板に垂直な面で切 つたときの切断面の面積であることを特徴とする請求項 1記載のダイヤ モンドソーブレード。
8. 前記ダイヤモンド砥石は、前記円形基板に平行な面の少なくとも 一部が切欠されたことを特徴とする請求項 1記載のダイヤモンドソープ レード。
9. 円形基盤の外周縁にダイヤモンド砥石を取着してなるダイヤモン ドソーブレードであって、
前記ダイヤモンド砥石の最大厚さに、前記ダイヤモンド砥石の外周長 さを乗じて算出される値と、前記ダイヤモンド砥石の刃部端面の面積と、 を比較したときに、
前記ダイヤモンド砥石の外周長さを乗じて算出される値に対する前記 ダイヤモンド砥石の刃部端面の面積の値の比が 0. 3以上 0. 8以下で あることを特徴とするダイヤモンドソーブレード。
10. 前記ダイヤモンド砥石はダイヤモンド砥粒をボンドで結合してな リ、該ボンドのロックウェル硬さが HRA60以上 80以下であることを特徴 とする請求項 9記載のダイヤモンドソ一ブレード。
11. 前記ダイヤモンド砥石の肉厚が前記ダイヤモンド砥粒の最小粒 径の 3. 0倍以上であることを特徴とする請求項 9記載のダイヤモンドソ 一ブレード。
12. 前記ダイヤモンド砥石において、前記ボンドに対する前記ダイヤ モンド砥粒のコンセントレーションが 0. 6(ctZcm3)以上 1. 4(ct/cm
3)であることを特徴とする請求項 9記載のダイヤモンドソーブレード。
13. 前記ダイヤモンド砥石の刃部端面の面積は、該ダイヤモンド砥 石を前記円形基板の外周方向に延長し、前記円形基板に垂直な面で 切ったときの切断面の面積であることを特徴とする請求項 9記載のダイ ャモンドソーブレード。
14. 前記ダイヤモンド砥石は、前記円形基板に平行な面の少なくと も一部が切欠されたことを特徴とする請求項 9記載のダイヤモンドソー ブレード。
PCT/JP2000/001061 1999-02-26 2000-02-24 Lame circulaire a diamant WO2000051789A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00905312A EP1114696A4 (en) 1999-02-26 2000-02-24 DIAMOND CIRCULAR BLADE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11051728A JP2000246651A (ja) 1999-02-26 1999-02-26 ダイヤモンドソーブレード
JP11/51728 1999-02-26

Publications (1)

Publication Number Publication Date
WO2000051789A1 true WO2000051789A1 (fr) 2000-09-08

Family

ID=12894961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001061 WO2000051789A1 (fr) 1999-02-26 2000-02-24 Lame circulaire a diamant

Country Status (3)

Country Link
EP (1) EP1114696A4 (ja)
JP (1) JP2000246651A (ja)
WO (1) WO2000051789A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254732A1 (en) * 2001-01-11 2002-11-06 Shiga Yamashita Co., Ltd. Cutting-off apparatus
JP2011509853A (ja) * 2008-01-22 2011-03-31 サンゴバン アブレシブ インコーポレーティド 楕円形ガレットを備えた丸鋸ブレード
US8701536B2 (en) 2008-01-22 2014-04-22 Saint-Gobain Abrasives, Inc. Circular saw blade with offset gullets

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10224596C1 (de) * 2002-06-04 2003-11-20 Krebs & Riedel Schleifscheiben Diamant-Segment für eine Trennscheibe und Trennscheibe zum Bearbeiten von Naturstein, Kunststein und/oder Feuerfest-Materialien
DE10302318C1 (de) * 2003-01-20 2003-11-20 Klaus Eiche Diamantwerkzeuge G Schneidsegment und Trennscheibe mit Schneidsegmenten
JP2008012606A (ja) * 2006-07-04 2008-01-24 Sumitomo Metal Mining Co Ltd 削孔用カップ型回転砥石

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113757U (ja) * 1990-03-08 1991-11-21
GB2281075A (en) * 1993-08-18 1995-02-22 Hiroshi Hashimoto Grinding tool having abrasive protruberances on the surface thereof
JPH0731266U (ja) * 1993-11-09 1995-06-13 アカシロイ工業株式会社 電動カッタ−の刃体
JPH08309664A (ja) * 1995-05-16 1996-11-26 Matsushita Electric Ind Co Ltd ダイヤモンド砥石及び磁気ヘッドの製造方法
JPH09272857A (ja) * 1996-04-05 1997-10-21 Denki Kagaku Kogyo Kk 多結晶型立方晶窒化ほう素砥粒

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2811960A (en) * 1957-02-26 1957-11-05 Fessel Paul Abrasive cutting body
DD122794A1 (ja) * 1975-12-22 1976-11-05
JPS57201119A (en) * 1981-05-28 1982-12-09 Niro Inoue Diamond saw for cutting stone and the like
US4461268A (en) * 1982-01-04 1984-07-24 Jiro Inoue Diamond saw
US4739745A (en) * 1985-05-21 1988-04-26 N E D Corp. Circular diamond saw blade incorporating a novel cutting segment
DE8705599U1 (ja) * 1987-04-15 1987-07-02 Buettner, Rudolf, 6345 Eschenburg, De
JPH0753892Y2 (ja) * 1989-10-31 1995-12-13 大見工業株式会社 回転切削刃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113757U (ja) * 1990-03-08 1991-11-21
GB2281075A (en) * 1993-08-18 1995-02-22 Hiroshi Hashimoto Grinding tool having abrasive protruberances on the surface thereof
JPH0731266U (ja) * 1993-11-09 1995-06-13 アカシロイ工業株式会社 電動カッタ−の刃体
JPH08309664A (ja) * 1995-05-16 1996-11-26 Matsushita Electric Ind Co Ltd ダイヤモンド砥石及び磁気ヘッドの製造方法
JPH09272857A (ja) * 1996-04-05 1997-10-21 Denki Kagaku Kogyo Kk 多結晶型立方晶窒化ほう素砥粒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1114696A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254732A1 (en) * 2001-01-11 2002-11-06 Shiga Yamashita Co., Ltd. Cutting-off apparatus
JP2011509853A (ja) * 2008-01-22 2011-03-31 サンゴバン アブレシブ インコーポレーティド 楕円形ガレットを備えた丸鋸ブレード
US8701536B2 (en) 2008-01-22 2014-04-22 Saint-Gobain Abrasives, Inc. Circular saw blade with offset gullets

Also Published As

Publication number Publication date
EP1114696A1 (en) 2001-07-11
JP2000246651A (ja) 2000-09-12
EP1114696A4 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
KR100329309B1 (ko) 연마절삭공구및연마절삭방법
JP2994466B2 (ja) 改善された超研磨工具
WO2001076821A1 (fr) Meule
JP3619813B2 (ja) 回転工具
JP3739304B2 (ja) 回転円盤砥石
WO2000051789A1 (fr) Lame circulaire a diamant
JP4340184B2 (ja) 砥石
US20100326416A1 (en) High speed abrasive cutting blade with simulated teeth
JPH07266239A (ja) ダイヤモンドコアビット
KR100353154B1 (ko) 철근 구조물 절단용 소우 블레이드
JPH05345280A (ja) ダイヤモンド切断砥石のチップ構造
JPH1128670A (ja) カッティングソー
JP4966065B2 (ja) 建材用加工刃物
JP3361631B2 (ja) ブレード
JP4073414B2 (ja) 回転円盤カッター
JP3539679B2 (ja) ダイヤモンドブレードのセグメント構造
JPH11309711A (ja) ダイヤモンドソーブレード及びそれに用いるダイヤモンド砥石の製造方法
JPH04101781A (ja) 切断刃
JPH02212074A (ja) 切削用ダイヤモンド砥石
JP2002018729A (ja) 三層構造の砥石及びブレード
JP3317478B2 (ja) ダイヤモンド切断砥石
JP2601098Y2 (ja) カップホイール
JP2002127021A (ja) 回転円盤カッタ
JP3830457B2 (ja) ブレード
JP3998648B2 (ja) カップ型回転砥石

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09673575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000905312

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000905312

Country of ref document: EP