WO2000051763A1 - Procede et dispositif d'estimation/commande de motif d'ecoulement d'acier fondu dans un coulage en continu - Google Patents

Procede et dispositif d'estimation/commande de motif d'ecoulement d'acier fondu dans un coulage en continu Download PDF

Info

Publication number
WO2000051763A1
WO2000051763A1 PCT/JP2000/001161 JP0001161W WO0051763A1 WO 2000051763 A1 WO2000051763 A1 WO 2000051763A1 JP 0001161 W JP0001161 W JP 0001161W WO 0051763 A1 WO0051763 A1 WO 0051763A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
molten steel
copper plate
mold
flow
Prior art date
Application number
PCT/JP2000/001161
Other languages
English (en)
French (fr)
Inventor
Makoto Suzuki
Masayuki Nakada
Jun Kubota
Noriko Kubo
Junichi Monda
Yuichi Yamaoka
Yoshimitsu Isobe
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to CA002364085A priority Critical patent/CA2364085C/en
Priority to EP00905398A priority patent/EP1166921B1/en
Priority to JP2000602419A priority patent/JP3386051B2/ja
Priority to DE60034322T priority patent/DE60034322T2/de
Publication of WO2000051763A1 publication Critical patent/WO2000051763A1/ja
Priority to US09/944,029 priority patent/US6712122B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
    • B22D11/182Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the present invention relates to a method for continuously producing steel.
  • the present invention relates to a method for estimating and controlling a flow pattern of molten steel in continuous production and an apparatus therefor.
  • molten steel is discharged into a mold at a high speed through an immersion nozzle, and the molten steel flows in the mold due to this discharge flow. It has a significant effect on surface and internal properties. For example, when the surface velocity of the mold surface (hereinafter referred to as “meniscus”) is too high, or when vertical vortices are generated in the meniscus, the mold powder is entrained in the molten steel. It is also known that the flotation and separation of deoxidized products such as Al 2 ⁇ 3 in molten steel is also affected by the flow of molten steel, and mold powder and deoxidized products entrapped in ⁇ However, it becomes a defect of non-metallic inclusions in the product.
  • the molten steel flow in ⁇ also ⁇ conditions are the same, A 1 2 ⁇ 3 attached inside the immersion nozzle, erosion of the immersion nozzle, the opening degree of the sliding nozzle to change in ⁇ . Therefore, a number of methods for detecting molten steel flow and controlling the flow of molten steel in the mold by controlling the strength and direction of the applied magnetic field based on the detected molten steel flow state have been proposed as an important issue for improving the quality of pieces. ing.
  • Japanese Unexamined Patent Publication No. Sho 622-2525 discloses that a difference in molten steel level between the left and right of an immersion nozzle is detected by a thermocouple embedded in a short-sided copper plate of type ⁇ .
  • a molten steel flow control method in which the stirring direction and the stirring thrust of the electromagnetic stirring device are controlled so as to eliminate the level difference.
  • Japanese Patent Application Laid-Open No. 3-2755-256 discloses a method of measuring the temperature distribution of a long copper plate of type ⁇ with a thermocouple embedded in a copper plate of long ⁇ type. Mold left and right temperature Detects the occurrence of molten steel drift from the cloth, and individually controls the current supplied to the two DC electromagnet type electromagnetic brake devices arranged on the back of the long side of the ⁇ type according to the detected direction and degree of the molten steel drift. A method for controlling the drift of molten steel in a mold is disclosed.
  • Japanese Patent Application Laid-Open No. Hei 4-2,849,56 discloses two non-contact type distance meters on a meniscus between an immersion nozzle and a short side of a ⁇ type. To measure the fluctuation of the surface level of the meniscus, determine the propagation of the surface wave from the cross-correlation function of the two measured values, and discharge the electromagnetic wave from the immersion nozzle using an electromagnetic stirrer so that the propagation is less than a predetermined value. A method for controlling the flow rate is disclosed.
  • Prior Art 1 and Prior Art 2 the flow of molten steel is detected from the temperature distribution of the ⁇ -type copper plate, and flow control is performed based on the detected flow of molten steel. It does not only occur due to changes in flow conditions, but also due to changes in the state of contact between the mold and the solidified shell and the inflow of mold powder. Since there is a change in the temperature distribution of the ⁇ -type copper sheet due to factors other than the flow of molten steel, prior art 1 and prior art 2, which simply detect the flow of molten steel from the temperature distribution of the ⁇ -type copper sheet, cannot accurately detect the flow of molten steel. I can not do such a thing.
  • Prior art 3 is an effective means of flow control, but controls only the flow velocity of the meniscus molten steel, and is insufficient for detecting the flow pattern of type II molten steel. Similarly, the flow patterns cannot be detected even in the prior arts 1 and 2.
  • An object of the present invention is to improve and stabilize the quality of a piece manufactured in a continuous process, and in particular, to improve the quality by preventing entrapment of mold powder caused by a molten steel flow pattern in a mold. It is intended to improve and stabilize and to supply good chips to the lower process.
  • the present invention provides a method for controlling the flow pattern of molten steel that can maintain an optimal flow pattern in continuous production, and furthermore, a temperature measurement device for a copper-type copper plate for accurately estimating the flow state of molten steel.
  • the present invention provides a method for estimating the flow state of molten steel in a type III using this temperature measuring device.
  • the present invention provides a method for estimating a flow pattern of molten steel in a continuous process comprising the following steps:
  • the above-described method for estimating the flow pattern of molten steel preferably includes a step of applying a magnetic field to the molten steel discharged into the mold so that the detected flow pattern has a predetermined pattern. No.
  • the applied magnetic field is preferably a moving magnetic field that moves in the horizontal direction.
  • the above method for estimating the flow pattern of molten steel preferably has the following steps:
  • ⁇ type copper sheet temperature measured by a temperature measuring device for ⁇ type copper sheet, thickness of ⁇ type copper sheet, distance from the molten steel side surface of ⁇ type copper sheet to the tip of temperature measuring element, and cooling water for ⁇ type copper sheet Using the temperature, the thickness of the solidified shell, the thickness of the mold powder layer, and the temperature of the molten steel in the mold to determine the heat flux from the molten steel in the mold to the cooling water for the copper sheet; Determining the convective heat transfer coefficient between the molten steel and the solidified shell corresponding to this heat flux; and
  • the flow pattern estimation method described above may further include a step of correcting the temperature of the long-sided copper plate at each measurement point including:
  • the temperature measuring device for the copper plate temperature in the flow pattern estimation method described above is desirably a force composed of a plurality of temperature measuring elements embedded on the back surface of the copper plate for continuous production.
  • the temperature measuring element preferably has a distance from the molten steel side surface of the copper mold plate to the tip of the temperature measuring element within a range of 10 to 135 mm away from the molten steel surface position in the mold in the direction of withdrawal.
  • the step of estimating the flow pattern described above is performed in one of the following:
  • the present invention provides an apparatus for measuring the temperature of a ⁇ -type copper plate comprising:
  • the distance from the molten steel side surface of the ⁇ -shaped copper plate to the tip of the temperature-measuring element is 16 mm within a range of 10 to 135 mm away from the molten steel surface position in the mold ⁇ in the stripping direction.
  • the installation interval in the width direction of the mold is set to 200 mm or less, and the installation is performed over a range corresponding to the entire width of the piece.
  • the temperature measuring element is installed so as to penetrate through the pipe sealed with the cooling water in the water box, and that a seal packing is provided around the area where the temperature measuring element is installed. preferable.
  • the present invention provides a method for determining a surface defect of a continuous structure piece comprising the following: (1) a back surface of a (10) to 13 (5) mm apart from a meniscus position in a mold in a direction in which a piece is pulled out; Placing a plurality of temperature measuring elements in the width direction of;
  • the surface defect of the piece is determined based on the temperature distribution in the mold width direction.
  • the above-mentioned determination of the surface defect is performed by one of the following.
  • the surface defect of the piece is determined based on the maximum value of the temperature distribution in the mold width direction.
  • the surface defect of the piece is determined based on the minimum value of the temperature distribution in the mold width direction.
  • the surface defect of the piece is determined based on the average value of the temperature distribution in the mold width direction.
  • the surface defect of the piece is determined.
  • the present invention provides a method of detecting molten steel flow in a continuous structure comprising the following: A plurality of temperature measuring elements are arranged on the back of a copper plate for continuous structure, in a direction perpendicular to the direction in which the piece is pulled out. And;
  • ⁇ type copper plate temperature is measured by these plural temperature measuring elements
  • the cutoff spatial frequency is 2 Z [ ⁇ width W] Mouth-pass filtering with a range that is greater and less than 0.01:
  • the flow of molten steel in the Type II is estimated.
  • the distance between adjacent temperature measuring elements is adjusted to a range wider than 4 4.
  • the present invention provides a method for detecting molten steel flow in continuous production comprising the following steps: The distance between adjacent thermometers in the direction perpendicular to the single piece drawing direction on the back of the copper die for continuous production. 44.3 Z 3 mm to 0.443 X [ ⁇ type width W] A plurality of temperature measuring elements are arranged as Z 6 mm;
  • ⁇ type copper plate temperature is measured by these plural temperature measuring elements
  • the flow state of molten steel in the mold is estimated based on the temperature distribution of the copper sheet temperature obtained by the spatial moving average.
  • the present invention provides a non-uniformity evaluation method for heat removal in a mold in a continuous structure, comprising:
  • thermometers are arranged on the back of the copper plate for continuous construction, in the direction perpendicular to the stripping direction;
  • ⁇ type copper plate temperature is measured by these plural temperature measuring elements
  • the measured temperature of each type I copper plate is processed by mouth and pass fill.
  • the present invention provides a method for detecting molten steel flow in a continuous structure comprising: a plurality of temperature measuring elements arranged in a direction perpendicular to a single drawing direction on a back surface of a copper plate for continuous structure;
  • ⁇ type copper plate temperature is measured by these plural temperature measuring elements
  • the present invention provides a method for controlling molten steel flow in continuous forging comprising: a plurality of temperature measuring elements arranged in the width direction on the back side of the long-side copper plate of the forging for continuous forging; Measuring the temperature distribution in the width direction of the copper plate;
  • two or more temperatures measured at a difference between the maximum value and the minimum value of the measured temperature distribution of 12 ° C or less, and at the symmetrical position in the width direction of the long side copper plate with the center of the immersion nozzle It is preferable to adjust so that the difference is 10 ° C. or less.
  • the present invention provides a method for controlling the flow of molten steel in a continuous forging comprising the following: Measure the temperature at each position in the width direction of the side copper plate;
  • the flow velocity of the molten steel at each measurement point is obtained to obtain the distribution of the molten steel flow velocity in the width direction of the long-side copper plate.
  • the magnetic field strength of the magnetic field generator attached to the mold, the pull-out speed, the immersion depth of the immersion nozzle, so that the difference between the maximum value and the minimum value of the obtained molten steel flow velocity distribution is 0.25 sec or less Adjust one or more of the Ar blowing amounts into the immersion nozzle.
  • one or two of the magnetic field strength of the magnetic field generator attached to the die, the one-piece extraction 3 ⁇ 4i, the immersion depth of the immersion nozzle, and the amount of Ar blowing into the immersion nozzle In the method of controlling molten steel flow described above, one or two of the magnetic field strength of the magnetic field generator attached to the die, the one-piece extraction 3 ⁇ 4i, the immersion depth of the immersion nozzle, and the amount of Ar blowing into the immersion nozzle.
  • the difference between the calculated maximum value and the minimum value of the molten steel flow velocity distribution is 0.25 m / sec or less, and the molten steel flow velocity at the symmetrical position on the left and right sides of the copper plate on the long side of the ⁇ type with the immersion nozzle as the center It is desirable to adjust so that the difference is less than 0.2 O mZ sec.
  • the magnetic field strength of the magnetic field generator attached to the mold is independently adjusted on the left and right in the mold width direction with respect to the immersion nozzle.
  • FIG. 1 is a schematic diagram showing a flow pattern of molten steel in a type III steel in Best Mode 1.
  • FIG. 2 is a diagram showing the relationship between the flow pattern of molten steel in Type III and the amount of defective products in the best mode 1.
  • FIG. 3 is a schematic front cross-sectional view of a continuous-molding-machine-shaped part showing an example of the first embodiment of the first embodiment.
  • FIG. 4 is a schematic cross-sectional side view of a rectangular section showing an example of the first embodiment of the present invention.
  • FIG. 5 is a diagram showing temperature transitions at two measurement points in Example 1 of Embodiment 1.
  • FIG. 6 is a diagram showing each measurement point for each time-dependent change in temperature from the temperature measurement results in Example 1 of the best mode 1.
  • FIG. 7 is a diagram showing a change in a flow pattern detected from a temperature analysis result in Example 1 of the best mode 1.
  • FIG. 8 is a diagram showing the distribution of the surface flow velocity of the molten steel in the type III in Example 1 of Best Mode 1 measured with a refractory rod.
  • FIG. 9 is a diagram showing temperature transitions at two measurement points after increasing the strength of the magnetic field in the first embodiment of the first embodiment.
  • FIG. 10 is a diagram showing the temperature of the long-sided copper plate of the rectangular shape before and after correction in Example 2 of Best Mode 1.
  • FIG. 11 is a diagram showing the flow rate of molten steel measured with a refractory rod in Example 2 of Best Mode 1.
  • FIG. 12 is a diagram showing a measurement result of a molten steel flow velocity profile in the vicinity of the meniscus under the production condition of level 1 in the best mode 2.
  • FIG. 13 is a view showing a measurement result of a molten steel flow velocity profile in the vicinity of the meniscus under the construction condition of level 2 in Best Mode 2.
  • FIG. 14 is a view showing a measurement result of a molten steel flow velocity profile in the vicinity of the meniscus under the manufacturing condition of level 3 in Best Mode 2.
  • FIG. 15 is a diagram showing the installation position of the temperature measuring element for accurately capturing the molten steel flow velocity profile in the best mode 2 by the temperature measuring element.
  • FIG. 16 is a diagram showing a flow velocity distribution just below the meniscus measured by the water model in the best mode 2.
  • FIG. 17 is a view showing a calculation result of an autocorrelation coefficient of a molten steel flow rate measured by a molten steel flow velocity meter of a refractory rod in the best mode 2.
  • FIG. 18 is a diagram showing an electric equivalent circuit of a model in which the temperature change on the molten steel side of the ⁇ -shaped copper plate in the best mode 2 is the output of the embedded temperature measuring element.
  • FIG. 19 is a diagram showing an electric equivalent circuit of a model in which the temperature change on the molten steel side of the ⁇ -shaped copper plate in the best mode 2 is the output of the embedded temperature measuring element.
  • FIG. 20 is a diagram showing a change in the temperature of the ⁇ -type copper plate at each position in the ⁇ -type copper plate when a step signal is given to the surface of the ⁇ -type copper plate on the molten steel side in the best mode 2.
  • FIG. 21 is a diagram schematically showing a temperature distribution from molten steel to cooling water for a type- ⁇ copper plate in Best Mode 2.
  • FIG. 22 is a view showing a flow pattern of the molten steel in the mold and the temperature distribution of the copper sheet in the mold width direction in the best mode 2.
  • FIG. 23 is a schematic diagram of a front cross section of a continuous forging machine type part showing an example of an embodiment in Best Mode 2.
  • FIG. 24 is a schematic diagram of a side cross section of a continuous forging machine type part showing an example of an embodiment in Best Mode 2.
  • FIG. 25 is a schematic diagram of a side cross section of a continuous manufacturing machine mold portion showing a mounting structure of a temperature measuring element in the second embodiment.
  • FIG. 26 is a diagram showing an example of the relationship between the temperature of the type II copper plate and the flow velocity of molten steel in Best Mode 2.
  • FIG. 27 is a diagram showing an example of a measurement result of the temperature of the ⁇ -shaped copper plate in Example 1 of Embodiment 2.
  • FIG. 28 is a diagram showing an example of the measurement results of the copper foil temperature in Example 1 of Embodiment 2.
  • FIG. 29 is a diagram showing the distribution of the molten steel flow velocity estimated from the temperature of the type I copper plate in Example 1 of Best Mode 2.
  • FIG. 30 is a diagram showing the distribution of the molten steel flow velocity estimated from the temperature of the ⁇ -shaped copper plate in Example 1 of Embodiment 2.
  • FIG. 31 is a view showing a flow velocity distribution of molten steel in the mold ⁇ measured in the first heat of each ⁇ in Example 2 of the best mode 2.
  • FIG. 32 is a view showing a ⁇ -type copper plate temperature distribution measured in the fifth heat in succession in Example 2 of Best Mode 2.
  • FIG. 33 is a view showing the flow velocity distribution of molten steel in the mold ⁇ measured in the fifth heat in succession in Example 2 of Best Mode 2.
  • FIG. 34 is a view showing the flow velocity distribution of molten steel in the mold ⁇ measured in the first heat of each ⁇ in Example 3 of the best mode 2.
  • FIG. 35 is a diagram showing a ⁇ -type copper plate temperature distribution measured in the third heat in succession in Example 3 of Best Mode 2.
  • FIG. 36 is a view showing the flow velocity distribution of molten steel in the mold ⁇ measured in the third heat of each successive ⁇ ⁇ ⁇ ⁇ in Example 3 of the best mode 2.
  • FIG. 37 is a diagram schematically showing a comparison between the flow state of the molten steel in the type III and the profile of the type II copper plate temperature in the best mode 3.
  • Fig. 38 schematically shows the distribution in the width direction of the type I copper plate temperature and the maximum, minimum, and average values of the type I copper plate temperature in the best mode 3 when the flow state of molten steel is pattern 1. It is.
  • FIG. 39 is a diagram schematically showing the width distribution of the type I copper plate temperature and the maximum and minimum values of the type I copper plate temperature when the flow state of molten steel is pattern 2 in the best mode 3.
  • FIG. 40 is a schematic front cross-sectional view of a continuous molding machine type part in Best Mode 3.
  • FIG. 41 shows the result of an investigation in Example 1 of the best mode 3, and shows the relationship between the maximum value (T max ) of the ⁇ -type copper plate temperature and the surface defect of the cold-rolled coil.
  • FIG. 42 shows the results of an investigation of Example 2 of the Best Mode 3 and shows the relationship between the minimum value (T min ) of the ⁇ -type copper plate temperature and ⁇ blow defects and norokami defects on the piece surface.
  • FIG. 43 shows the results of an investigation in Example 3 of the Best Mode 3, and shows the relationship between the maximum height-low temperature difference, the maximum left-right temperature difference, and the surface defects of the cold rolled coil.
  • FIG. 44 is a graph showing the relationship between the average copper sheet temperature (T avt .) And the maximum height difference between the average copper plate temperature (T avt .) And the blow defects and norokami defects on the piece surface. It is.
  • FIG. 45 is a view showing a measured value of the temperature of the ⁇ -shaped copper plate in Example 5 of Embodiment 3.
  • FIG. 46 is a diagram showing the result of an investigation in Example 5 of the best mode 3 and showing the transition of the maximum value of the temperature fluctuation amount corresponding to the cold-rolled coil.
  • FIG. 47 shows the results of an investigation in Example 6 of the best mode 3 and shows the relationship between the stripping speed and the average copper sheet temperature (T ave ) for each of the surface defect occurrence rates of the cold-rolled coil. .
  • Fig. 48 is a diagram showing the measurement results of the molten steel flow velocity profile under the forging conditions of level 1 of the best mode 4.
  • FIG. 49 is a view showing a measurement result of a molten steel flow velocity profile under the construction condition of Level 2 in Best Mode 4.
  • FIG. 50 is a view showing a measurement result of a molten steel flow velocity profile under the manufacturing condition of Level 3 of Best Mode 4;
  • FIG. 51 is a diagram showing a time-dependent change in the temperature of the rectangular long-side copper plate when the magnetic flux density of the magnetic field generator is changed in the fourth embodiment.
  • FIG. 52 is a diagram showing, in a histogram, transition periods of the temperature change of the long-sided copper plate of the fourth embodiment in the best mode 4.
  • FIG. 53 is a schematic view of a front cross section of a continuous truss machine in the best mode 4.
  • FIG. 54 is a diagram showing a temperature distribution in the width direction of the mold based on the collected raw data of the long-side copper sheet of the mold in Example 1 of Embodiment 4.
  • FIG. 55 is a diagram showing a result of calculating a change in the attenuation R due to a change in the averaged number M in the best mode 4.
  • FIG. 56 is a temperature distribution chart obtained by spatially moving average the temperature distribution shown in FIG. 54.
  • FIG. 57 is a diagram showing a temperature distribution in the width direction of the mold based on the collected raw data of the long-side copper sheet of the mold in Example 2 of the best mode 4.
  • FIG. 58 is a temperature distribution map obtained by performing a spatial moving average on the temperature distribution shown in FIG. 57 with the number of averages set to 3.
  • FIG. 59 is a temperature distribution map obtained by performing a spatial moving average on the temperature distribution shown in FIG. 57 with the number of averages set to 7.
  • FIG. 60 is a temperature distribution map obtained by performing a spatial moving average on the temperature distribution shown in FIG. 57 with the number of averages set to 9.
  • FIG. 61 is a temperature distribution chart obtained by spatially moving average the temperature distribution with the number of averaged being 3 when the thermocouple embedding interval is 100 mm in the third embodiment of the best mode 4.
  • FIG. 62 is a temperature distribution diagram obtained by spatially moving average the temperature distribution with the number of averaged being 3 when the thermocouple embedding interval is 150 mm in Example 3 of the best mode 4.
  • Fig. 63 shows that in Example 4 of Best Mode 4, data is folded back and extended at the end points.
  • FIG. 9 is a distribution diagram of a temperature obtained by performing a spatial moving average using the obtained data.
  • FIG. 64 is a diagram showing a time-dependent change in the temperature of the long side copper plate when the data collection interval is set to 1 second in Example 5 of the best mode 4.
  • FIG. 65 is a diagram showing a time-dependent change in the temperature of the long side copper plate when the data collection interval is set to 5 seconds in Example 5 of the best mode 4.
  • FIG. 66 is a diagram showing a time-dependent change in the temperature of the long side copper plate when the data collection interval is set to 10 seconds in Example 5 of the best mode 4.
  • FIG. 67 is a diagram showing a time-dependent change in the temperature of the long-side copper plate when the overnight collection interval is set to 60 seconds in Example 5 of the best mode 4.
  • FIG. 68 is a diagram showing the time-dependent change in the long-side copper plate temperature when the collection interval of data is set to 240 seconds in Example 5 of the best mode 4.
  • FIG. 69 is a diagram showing the relationship between the average value (D 0) in the width direction of the mold and the standard deviation ( ⁇ ) of the solidified shell thickness in Example 6 of the best mode 4.
  • FIG. 70 is a diagram showing an example of a molten steel flow velocity distribution at the meniscus when the flow pattern of the molten steel in the type III in the best mode 5 is pattern B.
  • FIG. 71 is a diagram showing an example of a temperature distribution of a long-side copper plate of type III when the flow pattern of the molten steel in the type III in the best mode 5 is pattern B.
  • FIG. 72 is a diagram schematically showing a temperature distribution from molten steel to cooling water for a ⁇ -type copper plate in the best mode 5.
  • FIG. 73 is a diagram showing an example of the relationship between the temperature of the type I copper plate and the flow rate of molten steel in Best Mode 5.
  • FIG. 74 is a diagram showing an example of a measurement result of a long-side copper plate temperature in the fifth best mode.
  • FIG. 75 is a diagram showing another example of the measurement results of the ⁇ -shaped long side copper plate temperature in the best mode 5.
  • FIG. 76 is a diagram in which the temperature of the long side copper plate shown in FIG. 74 is converted into molten steel flow velocity.
  • FIG. 77 is a diagram in which the temperature of the long-side copper plate shown in FIG. 75 is converted into molten steel flow velocity.
  • FIG. 78 is a schematic front sectional view of a continuous manufacturing machine showing an example of the fifth embodiment.
  • FIG. 79 is a schematic cross-sectional view of a side view of a continuous manufacturing machine showing an example of the fifth embodiment.
  • FIG. 80 is a diagram showing an example of a measurement result of a copper plate temperature in Example 1 of Embodiment 5.
  • FIG. 81 is a diagram showing the flow state of molten steel estimated from the temperature distribution of FIG.
  • FIG. 82 is a diagram showing an example of a measurement result of a copper foil temperature in Example 1 of Embodiment 5.
  • FIG. 83 is a diagram showing the flow state of molten steel estimated from the temperature distribution of FIG.
  • FIG. 84 is a diagram showing an example of a measurement result of the copper foil temperature in Example 1 of Embodiment 5.
  • FIG. 85 is a diagram showing the flow state of molten steel estimated from the temperature distribution of FIG. 84.
  • Fig. 86 shows an example of the measurement results of the copper plate temperature in Example 2 of Embodiment 5.
  • FIG. 85 is a diagram showing the flow state of molten steel estimated from the temperature distribution of FIG. 84.
  • Fig. 86 shows an example of the measurement results of the copper plate temperature in Example 2 of Embodiment 5.
  • FIG. 87 is a diagram showing an example of the measurement results of the copper plate temperature in Example 2 of Embodiment 5.
  • FIG. 88 is a diagram showing an example of the measurement results of the temperature of the ⁇ -shaped copper plate in Example 3 of Embodiment 5.
  • FIG. 89 is a diagram showing an example of the measurement results of the copper plate temperature in Example 3 of Embodiment 5.
  • FIG. 90 is a diagram showing an example of a measurement result of the temperature of the copper plate in Example 4 of Embodiment 5.
  • FIG. 91 is a diagram showing an example of a measurement result of a copper plate temperature in Example 4 of Embodiment 5.
  • FIG. 92 is a view showing an example of a measurement result of a copper plate temperature in Example 5 of Embodiment 5.
  • FIG. 93 is a diagram showing an example of the measurement results of the copper plate temperature in Example 5 of Embodiment 5.
  • FIG. 94 is a diagram showing an example of a measurement result of a copper plate temperature in Example 5 of Embodiment 5.
  • FIG. 95 is a diagram showing an example of a measurement result of a copper plate temperature in Example 5 of Embodiment 5.
  • FIG. 96 is a diagram showing an example of a temporal change in the temperature of a long-side copper plate when the magnetic flux density of the magnetic field generator is changed in Example 5 of the best mode 5.
  • Best mode 1 Method of controlling flow pattern of molten steel
  • the flow pattern of molten steel in the mold changes in a complicated manner due to the influence of Ar bubbles floating in the mold and the applied magnetic field, even if the flow is symmetrical and has no drift. If the flow pattern is simplified, it can be broadly divided into three patterns, Pattern A to Pattern C shown in Fig. 1. In Fig. 1, 3 is the short side of the triangle, 4 is the molten steel, 5 is the solidified shell, 8 is the immersion nozzle, 9 is the discharge hole, 10 is the discharge flow, 13 is the meniscus, and 14 is the mold powder. It is.
  • pattern A is the discharge flow from the immersion nozzle 8, and the force reaches the solidification shell 5 on the side of the 3-shaped short side 3 ⁇ After collision, it is separated into two flows. Rises along the solidified shell 5 on the side to the meniscus 13, and further flows the meniscus 13 from the short side 3 of the ⁇ shape toward the center side of the ⁇ shape (the immersion nozzle 8 side), and the other flow is This is a flow pattern that flows downward from the point of collision with the solidified shell 5 downwardly.
  • the discharge flow 10 from the immersion nozzle 8 is applied to the solidification shell 5 on the short side 3 of the ⁇ type due to the floating effect of Ar bubbles on the discharge flow 10 or the effect of applying a magnetic field. It does not reach and disperses between the discharge hole 9 and the solidified shell 5 on the short side 3 of the ⁇ -shaped side to form an ascending flow and a descending flow, and at the meniscus 13, the immersion nozzle 8 and the ⁇ -shaped short With the boundary near the intermediate position with Side 3, the flow on the immersion nozzle 8 side is toward the center of the ⁇ type (the immersion nozzle 8 side), and the flow on the ⁇ short side 3 side is on the contrary toward the ⁇ short side 3 It is a flowing pattern.
  • the pattern C is a flow pattern in which an upward flow of the discharge flow 10 is present near the immersion nozzle 8, and appears mainly due to the floating effect of coarse Ar bubbles or the effect of applying a magnetic field.
  • the flow from meniscus 13 toward the center of type III (on the immersion nozzle 8 side) toward the side of type III short side 3 is the main flow.
  • the flow pattern of the molten steel in the mold (1) As described above, by setting the flow pattern of the molten steel in the mold (1) to be pattern B, it is possible to prevent the quality of the piece from being deteriorated, thereby realizing a reduction in the product downgrade rate and an increase in the rate of the piece-free maintenance.
  • the flow pattern of molten steel in a type II changes during the production even if the production conditions are the same. If the flow pattern can be detected during fabrication, if the flow pattern deviates from the predetermined flow pattern, the applied magnetic field intensity can be changed to return to the predetermined flow pattern.
  • the present inventors have found that by measuring the temperature of a long-sided copper plate of type III, it is possible to detect the flow pattern of molten steel in type III.
  • the temperature of the long-side copper plate near the meniscus of the long-side copper plate increases at a position corresponding to the rising flow of molten steel, and the temperature of the long-side copper plate becomes large in accordance with the change in the flow pattern.
  • the position where the copper plate temperature is high changes. For example, in the case of the pattern A, an upward flow is formed in the vicinity of the short side of the square shape, so that the temperature of the copper plate in the long side of the square shape near the short side of the square shape increases.
  • the temperature of the discharge flow is higher than that of the molten steel inside the mold, so that at the position where the discharge flow rises, the temperature of the molten steel rises and the flow of molten steel promotes heat transfer, and the amount of heat transmitted to the copper Is increased, and the temperature of the long-side copper plate becomes high.
  • the temperature of the long side copper plate does not change only due to the flow of molten steel, but also changes due to changes in the state of contact between the mold and the solidified shell and the state of inflow of mold powder. Therefore, simply from the distribution of the absolute value of the When motion is detected, it may be detected erroneously. That is, an accurate flow pattern cannot be detected without removing the influence on the temperature of the long-side copper plate due to factors other than the flow of molten steel.
  • the present inventors have proposed that the temperature change at each measurement point for measuring the temperature of the copper plate on the long side of the ⁇ -shaped mold with the lapse of time, that is, by using the temperature rise rate and the rate of decrease every certain time as an index, It was found that the influence of the above factors on the temperature of the long side copper plate could be minimized, and that an accurate flow pattern could be detected. This is because the temperature change of the long-sided copper sheet of type I due to factors other than the flow of molten steel occurs relatively slowly.
  • measure the surface shape of the solidified shell in the piece width direction below the lower end of the mold and estimate the heat transfer resistance between the long-sided copper plate and the solidified shell based on the surface shape of the solidified shell.
  • the required time is about 50 seconds if the half-drawing speed is 1.8 mZmin. ⁇
  • control at short time intervals for example, when the applied magnetic field is changed, tends to diverge, so control with a somewhat long cycle is suitable. Therefore, this time difference is not a problem, and the flow can be sufficiently controlled.
  • the magnetic field applied to the discharge flow it is preferable to use a moving magnetic field in which the magnetic field moves in the horizontal direction.
  • FIG. 3 is a schematic view of a front cross section of a continuous forging machine mold part showing one embodiment of the present invention
  • FIG. 4 is a schematic view of a side cross section.
  • a tundish 6 is placed above a mold 1 composed of opposed long sides 2 and a short side 3 enclosed inside the long sides 2. Power is being placed.
  • a fixed plate 22, a sliding plate 23, and an immersion nozzle 8 are arranged on the bottom side of the rectifying nozzle at the bottom of the tundish 6, and the molten steel flows out from the evening dish 6 to the Type 1 2 8 Force formed.
  • the molten steel 4 injected into the tundish 6 from a ladle (not shown) is provided at the lower part of the immersion nozzle 8 via the molten steel outflow hole 28 and is immersed in the molten steel 4 in the mold 1
  • the discharge flow 10 is injected into the mold 1 from the hole 9 with the discharge flow 10 facing the mold short side 3. Then, the molten steel 4 is cooled in the mold 1 to form a solidified shell 5, and is drawn out below the mold 1 to become rust.
  • Porous bricks 25 are fitted into the molten steel outflow holes 28 of the fixing plate 22 and provided with porous bricks 2 to prevent the adhesion of A 1 2 ⁇ 3 to the wall surfaces of the molten steel outflow holes 28.
  • Ar was blown into the molten steel outflow hole 28 from 5 onwards. The injected Ar flows along with the molten steel 4 through the immersion nozzle 8 into the mold 1 through the discharge hole 9, passes through the molten steel 4 in the mold 1, and floats to the meniscus 13, and the meniscus 13 It reaches the atmosphere through the mold powder 14 added above.
  • a magnetic field generator 11 and a magnetic field generator 12 divided into two parts on the left and right sides in the width direction of the long side 2 of the mold with the immersion nozzle 8 as a boundary, a magnetic field generator 1 1
  • the center position in the manufacturing direction of 1 and 2 is defined as the range between the lower end position of the discharge hole 9 and the lower end position of the die 1, and they are arranged to face each other with the rectangular long side 2 interposed therebetween.
  • the magnetic field generators 11 and 12 are connected to a magnetic field power supply controller 19, and the intensity of the applied magnetic field is individually controlled by the magnetic field power supply controller 19.
  • the magnetic field strength of the magnetic field generators 11 and 12 may be the one which is generally used industrially with a maximum magnetic field strength of about 0.2 Tesla to 0.4 Tesla.
  • the magnetic field applied from the magnetic field generators 11 and 12 may be a static magnetic field by a direct current, but is preferably a moving magnetic field in which the magnetic field moves in the horizontal direction as described above.
  • a moving magnetic field not only the strength of the magnetic field but also the direction of movement of the magnetic field can be individually controlled. It will be easier.
  • the direction of movement of the moving magnetic field is changed from the short side 3 of the ⁇ type to the immersion nozzle 8 side, so that the discharge flow 10 is decelerated, and conversely, the moving direction is the short side 3 of the ⁇ type 3 from the immersion nozzle 8 side.
  • the discharge flow 10 is accelerated by being on the side.
  • a plurality of holes are provided on the copper plate of the mold long side 2 in the width direction of the mold long side 2, and a measurement point 15 for measuring the copper plate temperature of the mold long side 2 in the mold 1 is set.
  • a thermocouple 16 is inserted into a hole of the copper plate as a temperature measuring element, and is arranged in contact with the copper plate at the bottom of the hole. Then, the temperature of the long side copper plate is measured by the thermometer body 17 connected to the thermocouple 16.
  • the measuring points 15 are arranged side by side in the horizontal direction, the distance between the measuring points 15 is preferably less than 200 mm, and the distance from the meniscus 13 is preferably less than 300 mm.
  • the distance between each measurement point 15 exceeds 200 mm, the number of measurement points 15 is too small to make the flow pattern detection inaccurate, and the distance from meniscus 13 is 300 mm. If it exceeds, the temperature of the copper plate on the long side 2 of the ⁇ shape is affected by the discharge flow 10 flowing in the horizontal direction, and similarly, the detection of the flow pattern becomes inaccurate.
  • the ⁇ -type long side copper plate temperature measured by the thermometer body 17 is sent to the data analyzer 18 to analyze the rate of rise and fall of the copper sheet temperature at each measurement point 15.
  • the distribution of the measurement points 15 with similar changes in the copper plate temperature in the width direction of the ⁇ -shaped long side 2 is analyzed.
  • the data analyzer 18 detects the flow pattern of the molten steel in the mold 1 and sends a signal of the detected flow pattern to the magnetic field power supply controller 19.
  • the magnetic field power supply controller 19 controls the strength of the magnetic field applied from the magnetic field generators 11 and 12 individually based on the transmitted flow pattern signal so that the flow pattern becomes pattern B. Control.
  • the magnetic field strength is adjusted by increasing or decreasing the current supplied to the magnetic field generators 11 and 12.
  • the magnetic field strength can be adjusted by changing the frequency of the current.
  • the flow pattern is controlled by increasing the magnetic field strength to decelerate the discharge flow 10 when the pattern A is reached, and weakening or accelerating the magnetic field in the deceleration direction when the pattern A is reached.
  • Direction magnetic field strength By increasing the speed of the discharge flow 10 in this way, it is possible to form both patterns B.
  • Displacement meters 20, 20a, 20b, 20c, 20d for measuring the surface shape of the solidified shell 5 are disposed directly below the mold 1, and the displacement meters 20, 20a, 20b, 20c, 20 d is connected to the arithmetic unit 21.
  • Each displacement meter 20, 20a, 20b, 20c, 20d can be moved in the width direction of one piece by a moving device (not shown). Can be measured.
  • a distance measuring device such as an eddy current rangefinder, and use the displacement meters 20, 20a, 20b, 20c, and 20d for the displacement meters 20, 20.
  • the distance between a, 20b, 20c, 20d and the solidified shell 5 is measured, and the computer 21 performs force analysis processing based on the measured values to determine the surface shape of the solidified shell 5 such as unevenness in the width direction. .
  • the computing unit 21 estimates the heat transfer resistance between the solidified shell 5 and the copper plate on the long side 2 in the one-side width direction from the surface shape determined in this way, and calculates the estimated heat transfer resistance.
  • the data analyzer 18 can correct the temperature of the copper plate on the long side 2 of the mold 1 based on the transmitted heat transfer resistance data, and detect the flow pattern of molten steel in the mold 1 based on the corrected temperature of the copper plate.
  • the data analyzer 18 is configured to detect the flow pattern of the molten steel 4 from the copper plate temperature measured without using the heat transfer resistance data. Detecting from the corrected copper plate temperature makes it more accurate.
  • the thickness of the solidified shell 5 tends to be uneven in the width direction of the piece, and the surface of the solidified shell 5 Since irregularities occur on the surface, an accurate flow pattern can be detected by using the copper plate temperature corrected by the heat transfer resistance.
  • the method of correcting the copper plate temperature is as follows, for example, because the concave portion of the solidified shell 5 has poor contact with the ⁇ -shaped long-side copper plate, lowers the heat transfer resistance, and the measured ⁇ -type long-side copper plate temperature decreases accordingly.
  • the heat transfer resistance of the concave portion of the solidified shell 5 is equal to that of the convex portion, the temperature of the long-side copper plate of the concave portion is corrected to the higher temperature side.
  • the discharge angle and cross-sectional area of the discharge hole 9 of the immersion nozzle 8, the immersion depth of the immersion nozzle 8, the amount of molten steel 4 injected into the mold 1 per unit time, and the application Appropriately select the manufacturing conditions such as the magnetic field strength and the Ar injection amount, and start the manufacturing with the molten steel flow pattern in the mold 1 as pattern B.
  • a refractory rod 26 immersed in the meniscus 13 to a depth of about 100 mm is provided, and a pressure-receiving sensor 27 for detecting power acting on the refractory rod 26 is provided.
  • the surface flow velocity was measured from the force acting on the refractory rod 26 by the surface flow of the molten steel 4 at several places of the meniscus 13 to confirm whether the flow path had a predetermined pattern. Since the three flow patterns have different surface velocity distributions, the flow pattern can be inferred. Note that the refractory rod 26 and the pressure receiving sensor 27 are provided for confirmation, and are not necessarily required for implementing the present invention.
  • the magnetic field generators 1 1 and 1 2 are divided in the width direction of the long side 2 by the force immersion nozzle 8 as a boundary. It can also be implemented with a magnetic field generator. In this case, when using the moving magnetic field, it is necessary to connect the magnetic field power supply control device 19 in advance so that the moving directions of the left and right magnetic fields are opposite to each other with the immersion nozzle 8 as a boundary. However, flow control is slightly more difficult with one magnetic field generator than with the divided magnetic field generators 1 1 and 1 2. In the above description, five displacement meters are used, but the number of the displacement meters may be determined as appropriate based on the width of the piece, the moving speed of the displacement meter, and the like.
  • the piece size was 250 mm in thickness and 160 mm in width, and low carbon A1 killed steel was manufactured at a drawing speed of 2.5 mZmin.
  • the applied magnetic field was a moving magnetic field, and the center of the magnetic field generator in the manufacturing direction was positioned 150 mm from the lower end of the discharge hole.
  • the amount of Ar injected into the molten steel outlet is 9 N 1 / min.
  • a thermocouple was placed at a position of 130 mm from the upper end (at a position 50 mm from the meniscus) on the ⁇ type long side copper plate and holes were provided at 50 mm intervals, and a ⁇ type long side copper plate temperature was measured.
  • Fig. 5 shows an example of measuring the temperature of the long side copper plate at the two measurement points A and B.
  • the temperature at point B was higher than the temperature at point A, but the temperature at point A started to rise immediately before time Tt , and The temperature starts to decrease, and before and after the time, the temperatures at the two measurement points A and B are reversed, and then at time + ⁇ ⁇ , the temperature is stabilized while both the points A and B are reversed.
  • FIG. 6 shows such a time-dependent change in the temperature at each measurement point of the entire length of the rectangular long side before and after the time T.
  • FIG. 6 also shows the two measurement points ⁇ and ⁇ shown in FIG.
  • Figure 7 shows the results of detecting the molten steel flow pattern in the mold ⁇ based on the above temperature analysis results. As shown in FIG. 7, pattern B was detected at time T— ⁇ , and pattern A was detected at time T i + ⁇ .
  • Fig. 8 is a diagram showing the distribution of the surface velocity of molten steel in type II measured at the same time with a refractory rod.
  • the flow at the intermediate position between the immersion nozzle and the short side of the ⁇ type borders on the immersion nozzle side toward the center of the ⁇ type, and conversely, on the short side of the ⁇ type, flows toward the ⁇ short side.
  • Flow that is, the flow of pattern B.
  • the surface flow was from the ⁇ -shaped short side toward the ⁇ -shaped center, that is, the pattern ⁇ .
  • pattern B was confirmed at time T, — ⁇ — and pattern A at time T> + ⁇ ⁇ , confirming that the pattern detected from the copper plate temperature measurement was accurate. Prove.
  • FIG. 9 shows the results of measuring the temperature change at the two measurement points A and B while continuing the structure in this state. Immediately after the supply current was changed, the temperature at point A dropped, the temperature at point B rose, and stabilized at the same state as at time 1 ⁇ -1 ⁇ . The distribution of the surface flow in the meniscus was confirmed to be the same as the time T, -A T by using a refractory rod.
  • FIGS. 6 and 7 are the same as those in FIGS. 3 and 4.
  • ⁇ Sheet size is thick Carbon steel having a carbon content of 0.12 wt% and a width of 250 mm and a width of 1600 mm was produced at a drawing speed of 1.8 mZmin.
  • the applied magnetic field was a moving magnetic field, and the center of the magnetic field generator in the manufacturing direction was 150 mm from the lower end of the discharge hole.
  • the Ar injection rate into the molten steel outlet is 9 N 1 / min. 130mm from the upper end for ⁇ type long side copper plate
  • thermocouples were arranged to measure the temperature of the long side copper plate of type III.
  • the surface shape of the solidified shell was measured with five displacement meters provided immediately below the mold, and the temperature of the mold long side copper plate was corrected.
  • FIG. 10 is a diagram showing measured data of the temperature of the long-side copper plate at a certain point in time.
  • the broken line indicates the temperature of the long-side copper plate before correction
  • the solid line indicates the temperature of the long-side copper plate after correction.
  • the heat transfer resistance was estimated by adjusting the gap between the ⁇ -type long-side copper plate and the solidified shell to a standard value, and the ⁇ -type long-side copper plate temperature was corrected.
  • the temperature before the correction was so high and low that it was difficult to accurately detect the time-dependent changes in the long-side copper plate temperature.However, by correcting the temperature, the time zone when the long-side copper plate temperature was high could be accurately grasped. Was possible.
  • Fig. 11 shows the flow rate of molten steel measured with a refractory rod immersed in the meniscus near the measurement point shown in Fig. 10 at the same time.
  • a time zone in which the molten steel flow velocity was high occurred.
  • the flow pattern could be detected more accurately by correcting the temperature of the long-side copper plate of the ⁇ type from the surface shape of the solidified shell.
  • Best Mode 2 Method of estimating molten steel flow pattern and apparatus therefor
  • the present inventors embed in a ⁇ -shaped copper plate to accurately detect the state of molten steel flow even if there is a complicated molten steel flow near the meniscus.
  • the installation position of the temperature measuring element to be measured was examined.
  • the installation interval of the temperature measuring element in the width direction of the ⁇ type was examined.
  • the molten steel flow velocity profile near the meniscus along the mold width direction is particularly important for quality control.
  • One end of the material rod is immersed in the meniscus, and the force applied to the refractory rod by the molten steel flow is measured by a load cell to measure the flow velocity of the molten steel.
  • the molten steel flow velocity profile was measured.
  • the measurement of the molten steel flow velocity profile was carried out by changing the combination of (1) the strip drawing speed and (2) the strip width to three levels of levels 1-3. Table 1 shows the manufacturing conditions at each level.
  • Figures 12 to 14 show the measurement results of the molten steel flow velocity profiles near the meniscus at levels 1 to 3.
  • a positive value indicates the flow from the short side of the ⁇ type to the immersion nozzle side, and a negative value indicates the reverse.
  • the flow speed of the molten steel of the meniscus is represented in this manner. table 1
  • the wavelength of the molten steel flow velocity profile in the vicinity of the meniscus that is, the wavelength of the molten steel flow velocity, along the width direction of the mold, is 175 Omm, level at level 1. It is 800 mm at 2 and 880 mm at level 3, which is about 800-1800 mm.
  • 800 mm at 2 and 880 mm at level 3 which is about 800-1800 mm.
  • the wavelength of the flow velocity of the molten steel is 800 to 180 mm, it is sufficient to install the temperature measuring elements at intervals of 200 to 450 mm.
  • the molten steel flow velocity profile near the meniscus changes depending on the forging conditions, even with the same continuous forging machine. It is necessary to install temperature measuring elements at intervals of 200 mm or less so that the wavelength can be captured.
  • the installation position of the temperature measuring element in the pull-out direction was examined. Since the present invention aims at estimating the flow of molten steel near the meniscus, it is necessary to install a temperature measuring element as close to the meniscus as possible. However, due to fluctuations in the delicate balance between the flow rate of molten steel injected into the mold and the stripping speed, the position of the meniscus fluctuates in the stripping direction. The variation is generally about ⁇ 10 mm at the maximum. The installation position of the temperature measuring element must be below the meniscus position fluctuation range.
  • the upper limit of the installation position of the temperature measuring element was set to a position 10 mm away from the meniscus position in the one-side drawing direction.
  • the lower limit of the temperature measuring element in the pull-out direction was examined. This is determined by the extent to which the molten steel flow near the meniscus is uniform from the meniscus to a lower depth.
  • a water model device with a ⁇ type width of 150 mm at a position 225 mm and 375 mm away from the short side of the ⁇ type, 1 955 from the meniscus position
  • the flow velocity distribution to the position below mm was measured.
  • Fig. 16 shows the results.
  • (B) shows the results at a position of 375 mm from the short side of the box.
  • the mark in the figure indicates the average flow velocity
  • the length of the line indicates the flow velocity range.
  • the box is shown.
  • the flow velocity gradually decreases up to a position 135 mm below the meniscus, but rapidly decreases below that point. Therefore, based on this result, the lower limit of the installation position of the temperature measuring element in the one-side drawing direction was set to a position 135 mm away from the meniscus position.
  • the distance from the molten steel surface of the ⁇ -type copper plate to the tip of the temperature measuring element was examined. If this distance is too long, the response time delay of the temperature measuring element will increase, and it will not be possible to accurately follow the temporal change of the molten steel flow near the meniscus. Therefore, first, the time cycle of the molten steel flow near the meniscus was investigated using the aforementioned immersion rod type molten steel flow meter. The autocorrelation coefficient of the measured molten steel flow velocity was calculated to determine the periodicity of the molten steel flow velocity over time. Fig. 17 shows the calculation results. In this example, as shown in Fig. 17, it can be seen that the molten steel flow velocity near the meniscus has a periodicity of 9.3 seconds.
  • the X mark in the figure indicates the boundary of each cycle.
  • the present inventors conducted similar periodicity investigations under other construction conditions, and found that the periodicity was 9 to 30 seconds in some cases. Based on the results of these investigations, the following study was conducted on the buried depth of the temperature measuring element for estimating the molten steel flow velocity near the meniscus having such periodicity.
  • FIG. 21 schematically shows the temperature distribution from the molten steel to the cooling water for the ⁇ -type copper sheet during the process of heat conduction from the molten steel in the ⁇ -type through the ⁇ -type copper sheet to the cooling water for the ⁇ -type copper sheet.
  • FIG. 21 As shown in FIG. 21, between the molten steel 101 and the cooling water 105 for the ⁇ -type copper plate, there are solidified shells 102, the mold powder layer 103, and the thermal conductors of the ⁇ -type copper plate 104. Then, the temperature measuring element 106 is embedded in the ⁇ -shaped copper plate 104, and the temperature inside the ⁇ -shaped copper plate 104 is measured.
  • T 0 is the temperature of molten steel 101 and T is WO 00/51763 PCT / JP00 / ail61
  • T s is the boundary temperature between solidified shell 102 and mold powder layer 103
  • T P is the side of copper powder 104 of mold powder layer 103
  • T mH is the surface temperature on the mold powder layer 103 side of the 1-type copper plate 104
  • T mL is the surface temperature of the cooling water 105 on the ⁇ -type copper plate 104
  • Tw is the cooling water 105 The temperature of.
  • the overall thermal resistance obtained by combining the thermal resistances of the heat conductor from the molten steel 101 to the cooling water 105 is expressed by equation (4).
  • R overall thermal resistance
  • a convective heat transfer coefficient between molten steel and solidified shell
  • a s thermal conductivity of solidified shell
  • heat conduction of mold powder layer Rate
  • a m thermal conductivity of type I copper plate
  • h m mold powder Heat transfer coefficient between one layer and type I copper plate
  • h w heat transfer coefficient between type II copper plate and cooling water
  • d s Thickness of solidified shell
  • d P thickness of mold powder layer
  • d m thickness of ⁇ -shaped copper plate.
  • the thickness of the -type copper plate (d m ) and the thermal conductivity (A m ) of the ⁇ -type copper plate are values that are fixed depending on the equipment.
  • the thermal conductivity ( ⁇ 3 ) of the solidified shell is a value that is fixed once the steel type is determined.
  • the mold powder layer thickness (d P ) is a value that is fixed if the type of the mold powder, the amplitude and frequency of the ⁇ mold vibration, and the waveform and ⁇ the stripping speed are determined. It is also known that the thermal conductivity ( ⁇ ⁇ ) of the mold powder layer is almost constant irrespective of the type of the mold powder.
  • the heat transfer coefficient (h w ) between the ⁇ -type copper plate and the cooling water is a numerical value that is fixed when the flow rate of the cooling water 105 and the surface roughness of the ⁇ -type copper plate 104 are determined.
  • the heat transfer coefficient (h,gue) between the mold powder layer and the ⁇ -type copper plate is determined to be almost constant if the type of the mold powder is determined.
  • the convective heat transfer coefficient (a) between the molten steel and the solidified shell is a value that changes depending on the flow velocity of the molten steel along the surface of the solidified shell 102, and this convective heat transfer coefficient (a) is given by Eq. (5) Can be expressed by a flat plate approximation of However, in equation (5), Nu: Nusselt number,: thermal conductivity of molten steel,: representative length of heat transfer.
  • N u the Nusselt number (N u) is calculated according to the equations (6) and (7) It is expressed by an equation.
  • Pr number of prandles
  • Re number of Reynolds nozzles
  • U velocity of molten steel
  • Uo transition between laminar flow and turbulent flow of molten steel 3 ⁇ 4 ⁇ .
  • N u 0.664XP r l / 3 XR e 4/5 (U ⁇ U o)... (6)
  • the heat flux from the molten steel 101 to the cooling water 105 can be expressed by equation (10).
  • Q heat flux from molten steel to cooling water
  • To temperature of molten steel
  • Tw temperature of cooling water.
  • the surface temperature of the ⁇ -shaped copper plate 104 on the side of the cooling water 105 can be expressed by the following equation (11).
  • T mL is the surface temperature of the cooling water side of the ⁇ -type copper plate.
  • T mL T w + Q / h w ... (1 1)
  • the temperature of the ⁇ -type copper plate measured by the temperature measuring element 106 can be expressed by the equation (12).
  • T is the temperature of the type IV copper plate measured by the temperature measuring element
  • d is the distance from the surface of the molten steel side of the type II copper plate to the tip of the temperature measuring element.
  • T T + QX (d m -d) / A m ... (12)
  • T Tw + Q / h w + QX (d hinder-d) / ⁇ ,-(13)
  • the flow rate of molten steel (U) is determined by using the above equation, and the procedure will be described below.
  • the heat flux (Q) is obtained by substituting the measured value of the ⁇ type copper plate temperature ( ⁇ ) by the temperature measuring element into the equation (13).
  • Eq. (13) all the variables on the right-hand side other than the heat flux (Q) are known, so the heat flux (Q) can be calculated back.
  • the total heat resistance (R) is obtained by substituting the heat flux (Q) into Eq. (10). Again, overall thermal resistance (R) Since all the variables on the right side are known, the overall thermal resistance (R) can be calculated back.
  • the convective heat transfer coefficient ( ⁇ ) is obtained by substituting the overall thermal resistance (R) into equation (4). Again, all the variables on the right-hand side other than the convection heat transfer coefficient ( ⁇ ) are known, so the convective heat transfer coefficient (h) can be calculated back. Substituting the obtained convective heat transfer coefficient ( ⁇ ) into equation (5) to determine the Nusselt number (N u), and substituting this Nusselt number (N u) into equation (6) or (7), the Reynolds nozzle Find the number (R e). Then, the flow rate (U) of molten steel is obtained by substituting the number of Rey nozzles (R e) obtained last into Eq. (9).
  • the flow pattern of molten steel in the mold has various flow patterns depending on ⁇ one piece drawing3 ⁇ 43 ⁇ 4, immersion nozzle shape, Ar flow rate blown into the immersion nozzle, and a typical example is shown in Fig.22.
  • FIG. 22 also shows the results of the temperature measurement of the copper plate long side at that time in the die width direction.
  • reference numeral 109 denotes a rectangular short-side copper plate
  • reference numeral 116 denotes a meniscus
  • reference numeral 120 denotes an immersion nozzle
  • reference numeral 121 denotes a discharge hole
  • reference numeral 122 denotes a discharge flow
  • discharge flow. 1 2 2 is an arrow indicating the direction of the flow.
  • the results of the temperature measurement of the copper plate long side in the width direction of the mold correspond well with the molten steel flow pattern. That is, the discharge flow 122 from the immersion nozzle 120 is dominantly flowing in the portion where the temperature of the ⁇ -shaped long side copper plate is high, and the flow pattern of the molten steel is determined thereby. At that time, the flow pattern can be easily estimated by finding the number and position of the peaks of the copper foil temperature in the copper foil width direction.
  • the molten steel injected into the mold from the immersion nozzle flows symmetrically in the width direction of the mold centering on the immersion nozzle, and thus the temperature of the copper plate on the long side of the mold also becomes symmetrical. Therefore, when the position of the maximum value of the copper plate temperature is not symmetrical on the left and right in the width direction of the ⁇ -shaped long-side copper plate, it can be easily estimated that the drift has occurred.
  • FIG. 23 is a schematic view of a front cross section of a continuous forging machine type part showing one embodiment of the present invention
  • FIG. 24 is a schematic view of a side cross section.
  • FIGS. 23 and 24 it is composed of opposing ⁇ -shaped long-side copper plate 108 and opposing ⁇ -shaped short-side copper plate 109 incorporated in ⁇ -shaped long-side copper plate 108.
  • a tundish 118 is arranged above the mold 107.
  • a long-side water box 110 is installed at the upper and lower rear of the ⁇ -type long-side copper plate 108, and the cooling water 105 supplied from the long-side water box 110 at the lower rear is used for the water channel 1 After passing through 11, the ⁇ -shaped long-side copper plate 108 is cooled and discharged to the upper long-side water box 110.
  • ⁇ long side thickness from the front side surface of the copper plate 1 0 8 to waterway 1 1 1, i.e. ⁇ longer side copper plate thickness is d m.
  • the ⁇ -shaped short side copper plate 109 is cooled in the same manner.
  • An upper nozzle 1 23 is provided at the bottom of the tundish 1 18 and is connected to this upper nozzle 1 2 3 and consists of a fixed plate 1 2 4, a sliding plate 1 2 5, and a rectifying nozzle 1 2 6 Sura
  • An locating nozzle 1 19 is arranged, and an immersion nozzle 120 is arranged on the lower surface side of the sliding nozzle 1 19, and the molten steel outflow hole from the evening dish 1 18 to the ⁇ 1 107 1 2 7 is formed.
  • Molten steel 101 injected into the tundish 1 18 from a ladle (not shown) is provided at the lower part of the immersion nozzle 120 through the molten steel outflow hole 127, and The discharge flow 122 is injected into the mold 107 from the discharge hole 122 immersed in the molten steel 101 toward the mold short side copper plate 109. Then, the molten steel 101 is cooled in the mold 107 to form a solidified shell 102, and is pulled out below the mold 107 to become pieces. At that time, a mold powder 117 is added to the meniscus 1 16 in the mold 107, and the mold powder 117 is melted to form the solidified shell 102 with the mold 107. It flows into the gap to form a mold powder layer 103.
  • the long side copper plate 108 has a plurality of points along the width direction of the long side copper plate 108, with the distance from the meniscus 1 16 in the pull-out direction to These holes are provided, and serve as measurement points 112 for measuring the copper plate temperature of the rectangular long-side copper plate 108.
  • the distance (L) from the meniscus 1 16 in the direction of pulling out the piece should be in the range of 10 to 135 mm, and the installation interval (Z) should be 200 mm or less.
  • the distance between the molten steel side surface of the long-side copper plate 108 and the tip of the temperature measuring element 106 is d, and the tip is It is arranged in contact with the long side copper plate 108.
  • the distance (d) shall be 16 mm or less.
  • the other end of the temperature measuring element 106 is connected to the zero point compensator 113, and the electromotive force signal output from the temperature measuring element 106 passes through the zero point compensator 113 to the converter.
  • the signal is input to 114, and the electromotive force signal is converted to a current signal by the converter 114, and then input to the data analyzer 115 as a current signal.
  • the temperature of the copper plate at the temperature measuring contact decreases, so that accurate copper plate temperature cannot be measured.
  • a stainless steel pipe 110 8 is installed, and a welded part 130 is formed by welding around the entire circumference of the contact surface between the pipe 128 and the long-side water box 110. And a groove in the long copper plate 108 around the measuring point 112, and a long copper plate 108 and a long water box 110 in it. Seal packings 1 to 9 that come in contact with each other are installed.
  • FIG. 25 is a schematic diagram of a side cross section of a mold portion of a continuous construction machine showing a structure for mounting a temperature measuring element, and reference numeral 1331 in the figure is a back frame.
  • the temperature measuring element 106 and the cooling water 105 are completely separated in the long-side water box 110, and the cooling water 105 in the long-side water box 110 is separated. Cooling water 1 0 5 around the measuring point 1 1 2 without force to enter the measuring point 1 1 2 and through the contact gap between the long side copper plate 1 08 and the long side water box 1 10
  • the seal packing 1 29 prevents penetration into the measuring point 112. Instead of welding, a seal using a resin or a seal using a hard solder may be used. Further, the seal packing 1 29 may be provided in a groove provided in the long side water box 110 side.
  • the temperature measuring element 106 may be of any type, such as a thermocouple or a resistance thermometer, as long as it can measure the temperature with an accuracy of ⁇ 1 ° C or more.
  • the data analyzer 115 estimates the flow pattern of the molten steel in the mold ⁇ from the temperature distribution in the mold width direction of the mold ⁇ long-side copper plate temperature, the peak position and the number of the temperature, and the boundary of the immersion nozzle 120. From the position and maximum value of the maximum value of the rust-type copper plate temperature on the left and right in the width direction of the type- ⁇ long-side copper plate 108, the drift of the molten steel in the type- ⁇ is estimated and displayed.
  • d P there are three variables of the heat transfer coefficient between the 3 ⁇ copper plate and cooling water (h w), for these three variables, ⁇ condition change by physical testing or practice test
  • the change of the numerical value accompanying the above may be investigated in advance, and the molten steel flow velocity (U) may be calculated based on the numerical value corresponding to the structural conditions at the time of measuring the copper plate temperature.
  • the other 12 variables can be determined by equipment conditions and physical properties.
  • Table 2 shows that the stripping speed was 2.0 OmZmin and 1.3 mZmin.
  • FIG. 26 shows an example of each of the variables, and FIG. 26 shows the results obtained by determining the relationship between the copper plate temperature (T) and the molten steel flow velocity (U) based on the variables shown in Table 2. As shown in Fig.
  • the temperature measuring element 106 By installing the temperature measuring element 106 on the ⁇ -type copper plate as described above, even if there is a complicated molten steel flow near the meniscus 116, the ⁇ -type copper plate temperature caused by the The change can be measured accurately. And the copper plate measured in this way Based on the temperature, the flow velocity of the molten steel in the mold, the flow pattern of the molten steel in the mold, and the drift of the molten steel in the mold are estimated based on the temperature, so the estimation accuracy is improved and online estimation without hindering the operation becomes possible.
  • the temperature measuring elements 106 are arranged in a single row in the width direction of the rectangular mold 107, and a plurality of rows of thermometers may be arranged in the force direction.
  • the temperature measuring element 106 is provided only on one side of the rectangular long-side copper plate 108, but may be provided on both rectangular long-side copper plates 108.
  • the present invention is not limited to a rectangular shape having a rectangular shape, and is applicable to, for example, a circular shape. can do.
  • the continuous forging machine is a vertical bending type having a vertical portion of 3 m, and can produce a piece of up to 2100 mm.
  • Table 3 shows the specifications of the continuous machine used. Table 3
  • Long side ⁇ copper plate thickness (d m) is 4 O mm, with alumel-chromel (JIS thermocouple K) as temperature measurement element, thermocouple tip from the molten steel surface of the ⁇ copper plate (measuring junction) or WO 00/51763 PCT / JPOO / ⁇
  • thermocouple was buried.
  • a piece with a thickness of 220 mm and a width of 1650 mm was forged at a chip pulling speed of 1. ⁇ (hereinafter referred to as “structuring condition 1”), and a piece of 220 mm thick and 1750 mm wide was cut.
  • structural condition 2 the temperature of the long side copper plate of type ⁇ was measured.
  • Table 4 summarizes the manufacturing conditions. Table 4
  • FIG. 27 and FIG. 28 are examples of temperature measurement of the copper plate temperature in the copper die width direction at a certain moment under the manufacturing conditions 1 and 2 respectively.
  • the horizontal axis is the position in the piece width direction
  • the center “0 mm” is the center position in the piece width direction and the position of the immersion nozzle (hereinafter the position in the piece width direction is the same). Notation).
  • The temperature at both skirts in the one-side width direction drops significantly. This is because the ⁇ -shaped short-side copper plate is installed near the drop in temperature. Because there is.
  • FIGS. 29 and 30 show the results obtained by calculating the molten steel flow rate from the copper plate temperature shown in FIGS. 27 and 28 using the numerical values of the variables shown in Table 2.
  • the thickness of the solidified shell (d s ) was set to 0.003622 m in Manufacturing Condition 1 and to 0.003722 m in Manufacturing Condition 2.
  • the molten steel flow rate measured by the aforementioned immersion rod-type molten steel flow meter at the time when the temperature of the type I copper plate was measured is indicated by Hata. From these results, it was confirmed that the molten steel flow velocity 50 mm below the meniscus estimated from the ⁇ -type copper plate temperature and the molten steel flow velocity near the meniscus by the immersion rod agreed well.
  • molten steel flow velocity in the width direction and the direction thereof were measured using the immersion rod type molten steel flow meter described above.
  • Fig. 31 shows the measurement results.
  • the result of the immersion rod type molten steel flow meter shows that the flow from the immersion nozzle toward the ⁇ -type short side copper plate is on the immersion nozzle side in the ⁇ type, and the reverse direction is on the ⁇ type short side copper plate side.
  • Flow that is, the flow condition of Pattern 3, which agreed with the result estimated from the ⁇ ⁇ ⁇ ⁇ -type long-side copper plate temperature.
  • the temperature distribution of the long copper plate of type I after 10 minutes from the start of the production of the fifth heat of each type was different between right and left of type II, and the temperature distribution was as shown in FIG.
  • the left side of the immersion nozzle was pattern 1 with a temperature peak on the immersion nozzle side
  • the right side of the immersion nozzle was a pattern 2 with a temperature peak on the short-side copper plate side.
  • the molten steel flow velocity and its direction in the width direction of the ⁇ -shaped mold were measured using the aforementioned immersion rod type molten steel flow meter.
  • Figure 33 shows the measurement results. As shown in Fig.
  • the results of the immersion rod type molten steel flow meter show that on the left side of the ⁇ type, the flow from the immersion nozzle toward the ⁇ type short side copper plate, that is, pattern 1, and on the right side of the ⁇ type On the contrary, the flow from the short side of the ⁇ type toward the immersion nozzle, that is, the pattern 2 was obtained, which agreed with the result estimated from the temperature of the copper plate of the ⁇ type long side.
  • the temperature distribution of the copper plate on the long side of the mold after 10 minutes from the start of the structure is almost symmetrical left and right in the width direction of the mold, and the maximum value of the temperature is 180.5 T on the left and on the right. It was 18 1 ° C. There is no difference between the left and right maximum temperature positions, and the difference between the left maximum values is small. Was estimated not to have occurred.
  • the molten steel flow velocity in the width direction of the ⁇ mold and its direction were measured by the aforementioned immersion rod type molten steel flow meter.
  • Fig. 34 shows the measurement results. As shown in Fig. 34, the molten steel flow velocity of the meniscus measured by the immersion rod-type molten steel anemometer was symmetrical, no drift occurred, and was consistent with the result estimated from the type III copper plate temperature.
  • Fig. 35 shows the temperature distribution at that time.
  • the maximum value of the temperature was confirmed by a thermocouple at a position of 98.5 mm from the center of the immersion nozzle on both the left and right sides, and the value was 16.5 ° C on the left side. On the right side, it was 184.5 ° C, and there was a difference of 8 ° C. Since the difference between the maximum values of the temperatures was large, it was estimated that the drift occurred.
  • Fig. 37 schematically shows the relationship between the flow of molten steel in mold III and the profile of mold copper temperature.
  • reference numeral 206 denotes a ⁇ -shaped short-side copper plate
  • 211 denotes a meniscus
  • 215 denotes an immersion nozzle
  • 216 denotes a discharge hole
  • 217 denotes a discharge flow
  • discharge flow 2 17 indicates the direction of the flow with an arrow.
  • the inertial force of the discharge flow 2 17 from the immersion nozzle 2 15 is large, and the discharge flow 2 17 collides with the ⁇ -shaped short-side copper plate 206 and branches up and down to form a meniscus 2 1 In 1, the molten steel flows from the short-side copper plate 206 of type I toward the immersion nozzle 2 15. In this case, the molten steel flow velocity at the meniscus 2 1 1 is relatively high. At this time, the temperature of the copper plate in the vicinity of the ⁇ -shaped short-side copper plate 206 increases, and a temperature profile having a large temperature peak near the left and right ⁇ -shaped short-side copper plates 6 is obtained.
  • the temperature profiles can be roughly classified into three types: patterns 0, 1, and 2.
  • pattern 3 shown in Fig. 37 occurs when the rising flow near the immersion nozzle 2 15 accompanying the floating of Ar and the inertial force and force of the discharge flow 2 17 are dominant, and Temperature peaks appear near the nozzle 2 15 and near the ⁇ -shaped short-side copper plate 206, resulting in a temperature profile having three temperature peaks.
  • this pattern can be considered as a combination of pattern 1 and pattern 2. In other cases, pattern 0, pattern 1, And the combination of Pattern 2 was confirmed.
  • the flow of molten steel during operation is Pattern 1
  • the molten steel flow condition is Pattern 1
  • the floating of Ar is concentrated near the immersion nozzle, and the diameter of the floating Ar bubble is large.
  • the air bubbles separate from the meniscus, the meniscus is disturbed and the mold powder is entangled, or the air bubbles themselves are caught and cause a pro flaw.
  • the maximum value (T max ) of the temperature distribution in the width direction of the ⁇ -type copper plate as shown in Fig. 38 (a) should be considered as one factor indicating the magnitude of the meniscus turbulence due to Ar. can be, therefore, when the maximum value (T ma x) is too large, it is possible to predict the inclusion of mold powder due to a r.
  • the gradient of the molten steel flow velocity is related to the shear stress acting on the mold powder, and the larger the value of the gradient, the more easily the mold powder is cut.
  • the gradient of this flow velocity is detected as the gradient of the copper plate temperature.
  • the larger value hereinafter referred to as the “maximum height temperature difference” can be considered as another factor that indicates the magnitude of the meniscus turbulence due to Ar. Also, it is possible to predict the entrapment of the mold border by Ar.
  • the molten steel flow condition is Pattern 1
  • the molten steel temperature on the ⁇ -type short side copper plate side becomes low.
  • the minimum value (T min ) of the temperature distribution in the width direction of the copper plate as shown in Fig. 38) is determined by the molten steel at the meniscus.
  • the mechanism of the generation of slime is that the consumption of the mold powder abnormally increases due to variations in the physical properties of the mold powder, etc., and the thickness of the molten layer of the mold powder on the meniscus becomes thin, and the unmelted mold powder It is presumed that this is generated by adhering to the solidified shell surface.
  • the mold powder consumption increases abnormally, so that the temperature of the mold copper plate decreases as compared with the case where the mold powder consumption is normal. Therefore, capturing the ⁇ width direction of the average copper plate temperature (T ave), compared to a typical ⁇ widthwise average temperature of the copper plate temperature (T avc) at the ⁇ pull unplug speed, grasp the difference This makes it possible to predict the occurrence of norokami.
  • the ⁇ a typical ⁇ widthwise average temperature of the copper plate temperatures at drawing speed (T avc) average ⁇ widthwise copper plate temperature measured in many ⁇ opportunities in the ⁇ withdrawal speed Defined as a value.
  • the gradient of the molten steel flow velocity is related to the shear stress acting on the mold powder, as described above. The higher the value of the gradient, the more easily the mold powder is scraped. The gradient of the flow velocity is detected as a gradient of the temperature of the copper plate.
  • the maximum value of the left-side temperature distribution (T ⁇ ) and the maximum value of the right-side temperature distribution (T R1 ) in the width direction of the mold centered on the immersion nozzle can be considered as a factor representing the degree of drift that influences the entrainment of the mold powder by the vortex. Depending on the size of, the presence or absence of mold powder entrainment due to vortices can be predicted.
  • the flow condition of molten steel in the mold ⁇ ⁇ changes from, for example, pattern 1 to pattern 3 or when the discharge flow velocity of one side becomes faster than that of the other in pattern 2,
  • the molten steel flow is disturbed and the amount of fluctuation of the meniscus increases, and the probability of the occurrence of mold powder entrainment increases.
  • the flow fluctuation observed in the mold ⁇ is a force that changes slowly with its cycle being several tens of seconds. If it changes in a shorter time than this cycle, the frequency of mold powder entrainment increases.
  • This change in the flow of molten steel is detected as the amount of temperature fluctuation per unit time of the type I copper plate temperature. Therefore, it is possible to grasp the maximum value among the temperature fluctuation amounts per unit time of the temperature of the copper plate in the die width direction per unit time, and to predict the presence or absence of the mold bowl wrapping by the magnitude of the maximum value.
  • the temperature measurement position of the ⁇ -shaped copper plate is within a range of 10 to 135 mm away from the meniscus position in the ⁇ -shaped mold in the direction of the one-piece drawing.
  • the temperature of the copper plate rises and falls due to the fluctuation of the meniscus during fabrication, so that the change in the copper plate temperature due to the flow of molten steel cannot be accurately grasped.
  • the change in the temperature of the ⁇ -type copper plate due to the change in molten steel flow is small. This is because it becomes impossible to accurately grasp the amount of change in the temperature of the type II copper plate.
  • the degree of surface defects of the chip such as mold powder wrapping, skinning, blow flaws, and norokami, can be immediately determined online. Can be.
  • FIG. 38 is a diagram schematically showing the width distribution of the copper plate temperature in the width direction and the maximum, minimum, and average values of the copper plate temperature when the flow state of molten steel is pattern 1.
  • Fig. 9 is a diagram schematically showing the width distribution of the type I copper plate temperature and the maximum and minimum values of the type I copper plate temperature when the molten steel flow state is pattern 2.
  • the temperature measurement value near the ⁇ -type short side copper plate becomes lower due to the influence of the ⁇ -type short side copper plate, in the present invention, when analyzing the width distribution of the ⁇ type copper plate temperature, The analysis shall exclude the measured values in the range where the influence of the copper plate appears.
  • FIG. 40 is a schematic front cross-sectional view of a continuous mirror making machine to which the present invention is applied.
  • a ⁇ type 2 composed of opposing ⁇ type long side copper plate 205 and an opposing ⁇ type short side copper plate 200 incorporated inside ⁇ type long side copper plate 205
  • An upper nozzle 2 18 is provided at the bottom of the tundish 2 13, which is connected to the upper nozzle 2 18 and is composed of a fixed plate 2 19, a sliding plate 220, and a rectifying nozzle 2 21.
  • a sliding nozzle 2 14 is arranged, and a dipping nozzle 2 15 force S is arranged on the lower surface side of the sliding nozzle 2 14, and a molten steel outflow hole 2 from the tundish 2 13 to the ⁇ type 204 is formed. 22 is formed.
  • Molten steel 201 injected into the tundish 2 13 from a ladle (not shown) is provided at the lower part of the immersion nozzle 2 15 through the molten steel outflow hole 222, and The discharge flow 217 is injected into the ⁇ 204 from the discharge hole 216 immersed in the molten steel 201 in the ⁇ ⁇ toward the ⁇ short copper plate 206. Then, the molten steel 201 is cooled in the mold 204 to form a solidified shell 202 and pulled out below the mold 204 to become pieces. ⁇ ⁇ ⁇ ⁇ Mold powder 2 12 is added to the meniscus 2 11 in the mold 204.
  • the upper nozzle 2 18 is made of porous brick, and the alumina
  • Ar is blown into the molten steel outflow hole 222 from the upper nozzle 218 via an Ar inlet pipe (not shown) connected to the upper nozzle 218.
  • the injected Ar passes through the immersion nozzle 2 15 together with the molten steel 201, flows into the mold 204 through the discharge hole 214, and removes the molten steel 201 in the mold 204. As a result, it rises to the meniscus 2 11 and penetrates the mold powder 2 12 on the meniscus 2 1 1 to the atmosphere.
  • ⁇ on the straight line in the range of 10 to 135 mm away from the meniscus 211 in the one-side drawing direction and ⁇ perpendicular to the one-side drawing direction A plurality of holes are provided along the width direction of the long-side copper plate 205, and the measurement point 205 is used to measure the copper plate temperature of the rectangular long-side copper plate 205.
  • a temperature measuring element 203 force is placed with its tip in contact with a rust-shaped long-side copper plate 205, which enables measurement of a ⁇ -shaped copper plate temperature corresponding to the entire width of the piece.
  • the distance between adjacent measurement points 207 should be less than 200 mm.
  • the interval between the temperature measuring points 207 exceeds 200 mm, the number of the measuring points 207 becomes too small, and it becomes impossible to accurately grasp the width distribution of the copper plate temperature in the width direction.
  • the other end of the temperature measuring element 203 is connected to the zero point compensator 208, and the electromotive force signal output from the temperature measuring element 203 is transmitted through the zero point compensator 208 to the converter.
  • the signal is input to the circuit 209, the electromotive force signal is converted into a current signal by the converter 209, and then the data signal is input to the data analyzer 210 as a current signal.
  • the measuring point 207 is made of a sealing material (not shown). ) Is sealed from the cooling water.
  • the type of the temperature measuring element 203 is not particularly limited as long as it can measure the temperature with an accuracy of 1 ° C or more of soil among thermocouples, resistance thermometers, and the like.
  • the maximum value (T max ), minimum value (T min ), average copper plate temperature (T ave ), maximum height difference Calculate the maximum value of the maximum left-right temperature difference and the maximum value of the temperature fluctuation per unit time, judge the degree of defect occurrence by comparing it with the preset threshold value according to the quality grade, and decide the method of cleaning the piece. .
  • the representative value of the maximum height-low temperature difference, and the maximum left-right temperature difference is the largest value (maximum value (T max ) and the maximum height and low temperature difference and the maximum left and right temperature difference), or the smallest value (for the minimum value (T min ) and the average copper sheet temperature (T ave )), or Either may be used as the average value, but it is preferable to judge based on the largest value or the smallest value in order to surely detect the surface defect of the piece.
  • the amount of temperature fluctuation per unit time is calculated assuming that 5 to 20 seconds are the unit time, and the maximum value of the temperature fluctuation in the die width direction is calculated.
  • a value obtained by averaging the maximum values for each unit time in may be used as the representative value of the piece, or the largest value among the maximum values for each unit time in the piece may be used as the representative value.
  • the flow pattern of molten steel in mold ⁇ 204 changes over time, or it is often a combination of three basic patterns 0, 1, and 2. It is preferable to combine two or more determination methods for the determination of surface defects.
  • the quality of the piece surface is determined based on the temperature of the copper sheet measured over the entire width of the mold, so that the inside of the mold 204 has any molten steel flow pattern.
  • surface defects can be accurately determined online.
  • the temperature measuring elements 203 are installed in one row in the width direction of the rectangular long-side copper plate 205, but a plurality of rows can be installed in the manufacturing direction. In the above description, the temperature measuring element 203 is installed only on one side of the long rectangular copper plate 205, but both long rectangular copper plates 2
  • the method of blowing Ar is not limited to the above, and the blowing may be performed from the sliding nozzle 214 to the immersion nozzle 215.
  • thermocouple was used as a temperature measuring element.
  • the thermocouple was placed 50 mm below the meniscus and symmetrically arranged at 65 mm intervals about the immersion nozzle.
  • the fabricated pieces were rolled into cold-rolled coils, and the surface defects of the cold-rolled coils were visually inspected.
  • Fig. 41 shows the results of the investigation, with the horizontal axis representing the maximum value of the rust-type copper plate temperature ( Tmax ) and the vertical axis representing the number of surface defects per coil of the cold-rolled coil.
  • the maximum value (T max ) of the ⁇ -type copper plate temperature on the horizontal axis is calculated from the temperature distribution in the width direction measured every 10 seconds in the piece corresponding to each coil, and T ma 'x) measured, these maximum values averaged values of (T max) is displayed as the representative value.
  • T max the maximum value of the ⁇ -type copper plate temperature on the horizontal axis
  • the threshold value is 160 ° C, and if the maximum value (T max ) is less than 160 ° C, it is “no care”, and if it is 160 ° C or more, it is “care”. be able to. Even if the maximum value (T, nax ) is high, surface defects may not occur, but since the number of defects per coil is originally very small, there is no probability that mold powder will be involved in this case. It can be said that.
  • thermocouple was used as a temperature measuring element and placed at a position 50 mm below the meniscus, symmetrically about the immersion nozzle, at 65 mm intervals. Under these manufacturing conditions, the pattern of the copper plate temperature fluctuated with time, but was almost pattern 1.
  • FIG. 42 is its findings, the horizontal axis ⁇ minimum value of the copper plate temperature was (T mi n), displaying the vertical axis as the total number of blow defects number and Norokami number per unit area of ⁇ surface Things.
  • the minimum value of ⁇ copper plate temperature on the horizontal axis (T mi n) is the width direction temperature distribution was measured every 10 seconds in each ⁇ , each measurement period the minimum value of the (T mi n) measured, these minimum values averaged values of (T mi n) representative It is displayed as a value.
  • T mi n the minimum value of the temperature
  • the degree of the surface defect of the piece can be predicted from the minimum value (T min ) of the temperature distribution in the mold width direction, and by setting the threshold value according to the use and grade, it is possible to judge the maintenance without care.
  • the threshold value is set to 120 ° C, and when the minimum value (T min ) is less than 120 ° C, it is regarded as “care”. It can be “no care”.
  • a piece of carbon steel having a thickness of 250 mm and a width of 160 to 180 mm was manufactured. ⁇ Single withdrawal speed is 1.6 to 1.8 m / min, the amount of Ar injected into the molten steel outflow hole is 10 N 1 Zin, and the immersion nozzle is a chevron shaped two-hole nozzle with a downward discharge angle. 25 degrees.
  • a thermocouple was used as a temperature measuring element, and was placed at a position 50 mm below the meniscus, symmetrically around the immersion nozzle at 65 mm intervals. Under these fabrication conditions, the pattern of the copper plate temperature fluctuated with time, but was almost pattern 2.
  • Fig. 43 shows the results of the investigation, with the horizontal axis representing the maximum height-temperature difference and the vertical axis representing the maximum left-right temperature difference, displayed for each number of surface defects per cold-rolled coil. .
  • the maximum temperature difference on the horizontal axis and the maximum left-right temperature difference on the vertical axis are obtained from the temperature distribution in the width direction measured every 10 seconds for the piece corresponding to each coil, based on the maximum temperature difference at each measurement time.
  • the maximum left-right temperature difference is measured, and the average of these measured values is displayed as a representative value.
  • each plot is along a straight line that rises to the right, and it turns out that the number of defects in the cold rolled coil increases as the plot goes to the upper right.
  • the degree of surface defects of the cold-rolled coil can be predicted from the maximum temperature difference and the maximum left-right temperature difference in the ⁇ type width direction temperature distribution, and by setting the threshold value according to the application and grade of the cold-rolled coil, no care is required Judgment of one care becomes possible.
  • the threshold value of the maximum temperature difference was set to 10 ° C
  • the threshold value of the maximum left-right temperature difference was set to 2 ° C. It can be an uncare-and-care boundary.
  • a piece of carbon steel having a thickness of 250 mm and a width of 1800 to 2100 mm was manufactured.
  • ⁇ Single withdrawal speed is 1.0 ⁇ 1.6mZm in
  • Ar blowing into molten steel outflow hole is 1 ON IZmin
  • Immersion nozzle is a chevron 2-hole nozzle
  • discharge angle is downward 25 degrees .
  • a thermocouple was used as a temperature measuring element, and it was placed at a position 50 mm below the meniscus and symmetrically about the immersion nozzle at 65 mm intervals. Under these manufacturing conditions, the pattern of the copper plate temperature fluctuated with time, but was almost pattern 1.
  • Fig. 44 shows the results of the survey, where the horizontal axis is the average copper sheet temperature (T ave ) of the ⁇ -type copper sheet temperature, and the vertical axis is the maximum height-to-level temperature difference. Are displayed according to the total number.
  • the average copper sheet temperature (T av) at each measurement time is calculated from the temperature distribution in the width direction measured every 10 seconds on each piece, based on the average copper sheet temperature (T ave ) on the horizontal axis and the maximum height difference between the vertical axis ) And the maximum temperature difference are measured, and the average of these measured values is displayed as a representative value. As shown in Fig. 44, it was found that the lower the left plot, the greater the number of blow defects and noroscopic force.
  • the degree of surface defects ⁇ average copper plate temperature (T avc) and the maximum height difference in temperature ⁇ widthwise temperature distribution can predict, by setting the threshold depending on the application and grades, no care one care Can be determined.
  • the threshold of average copper sheet temperature (T ave ) is set to 180 ° C and the threshold of maximum temperature difference is set to 15 ° C.
  • thermocouple as a temperature measuring element A position 50 mm below was placed at 65 mm intervals symmetrically about the immersion nozzle. The number of temperature measuring elements is 25.
  • FIG. 45 shows an example of the measured value of the temperature of the copper plate at time t and at 10 seconds before time t.
  • the hatched mark indicates the temperature at time t
  • the mark ⁇ indicates the temperature 10 seconds before time t.
  • the maximum value of the temperature fluctuation per unit time is a value measured by a thermocouple No. 6 on the right side in the width direction of the mold. The value obtained by dividing this temperature difference by the unit time of 10 seconds was defined as the maximum value of the temperature fluctuation per unit time.
  • Fig. 46 shows the maximum value of the temperature fluctuation measured at intervals of 10 seconds in the strip corresponding to each coil as the vertical axis, and the horizontal axis as the 35 pieces corresponding to the pieces in the manufacturing order. It is the figure displayed in order of the coil number of a cold rolled coil. In FIG. 46, the coils corresponding to the bottom piece and the top piece are excluded from the formed pieces, and the directional force S is from the smaller coil number to the larger coil number.
  • the threshold value is 1.0 ° CZs ec, and if the maximum value of the temperature fluctuation is less than 1.0 ° CZs ec, it is “no care” and 1.0 ° C / sec. If it exceeds, it can be considered as “care”.
  • thermocouple was used as a temperature measuring element, and was placed at a position 50 mm below the meniscus and symmetrically about the immersion nozzle at 65 mm intervals.
  • FIG. 47 shows the results of the investigation, and shows the relationship between the strip pulling speed and the average copper sheet temperature (T aVL .) For each of the surface defect occurrence rates of the cold-rolled coil.
  • the average copper sheet temperature (T ave ) on the vertical axis is calculated from the temperature distribution in the width direction measured every 10 seconds in each piece, and the average copper sheet temperature (T ave ) at each measurement time is measured. The average of the measured values is displayed as the representative value.
  • the symbol ⁇ indicates the average copper sheet temperature (T ave ) of the piece corresponding to the coil in which no scab-like defect due to norokami was found.
  • Dashed line penetrating the .smallcircle is curve of the average copper plate temperature .smallcircle group obtained by the minimum square method (T ave), the average copper plate temperature representative ⁇ widthwise temperature at that ⁇ withdrawal speed (T av ). All marks were distributed in the range of ⁇ 25 ° C of this curve. Further, in FIG. 47, the temperature curve shifted to the lower temperature side by 25 ° C. is shown by a solid line.
  • the average copper plate temperature (T uve ) of the piece corresponding to the coil in which the scab-like defect caused by norokami was observed is indicated by a mark in FIG. These triangles are below the solid line above.
  • the temperature was lower than the representative average copper sheet temperature (T ave ) by 25 ° C. or more at the one-piece drawing speed.
  • the average copper sheet temperature (T ave ) of the ⁇ -type width direction temperature distribution is monitored, and the monitored value is compared with the typical average copper sheet temperature (T ave ) at the one-piece drawing speed.
  • the degree of the surface defect of the piece can be predicted.
  • ⁇ Factors that affect the temperature of the mold copper sheet include: ⁇ stripping speed, ⁇ cooling water temperature, ⁇ mold copper thickness, ⁇ molten steel temperature in the mold, molten steel flow rate along the solidified shell surface, mold powder layer and There are seven factors: the thickness of the air gap between the mold copper plate and the thickness of the mold powder layer. However, among these seven factors, the effect of ⁇ stripping is constant as far as the ⁇ width direction at a certain moment is considered, and can be ignored. In addition, since the cooling water temperature and the thickness of the copper plate do not change significantly during the manufacturing period, these effects can be neglected. The change in the molten steel temperature in the mold during the fabrication is small, and this effect can be neglected. The influence of the mold powder layer thickness and the air-gap thickness is significant, and it is necessary to remove these fluctuations when evaluating the flow rate of molten steel.
  • the actual ⁇ -shaped copper sheet temperature is a combination of the variation of the flow velocity profile, the variation of the solidified shell thickness, and the variation of the mold powder layer thickness.
  • the spatial resolution of the temperature distribution was reduced, when the interval between the temperature measuring elements is close to the integral multiple of the wavelength of the spatial fluctuation of the fluctuation of the thickness of the solidified shell and the fluctuation of the thickness of the mold powder layer, the temperature of the copper plate fluctuates greatly and the flow of molten steel Causes a large error in the estimated value.
  • the present inventors investigated the variation intervals of the thickness of the mold powder layer and the thickness of the air gap based on the variation in the thickness of the solidified shell of the piece by a continuous test machine or an actual machine. It is known that a change in the thickness of the solidified shell greatly affects a change in the thickness of the mold powder layer and the thickness of the air gap. As a result, it was found that the variation intervals of the mold powder layer thickness and the air gap thickness were several 10 mm.
  • one end of the refractory rod is immersed in the meniscus, and the force received by the refractory rod due to the molten steel flow is measured with a single cell to measure the flow rate of the molten steel.
  • the velocity profile of the molten steel along the width direction of the nearby mold was measured, and the spatial variation wavelength of the velocity profile of the molten steel in the mold was investigated.
  • the measurement of the flow velocity profile was carried out by changing the combination of (1) the stripping speed and (2) the strip width to three levels of levels 1-3.
  • Table 5 shows the manufacturing conditions at each level.
  • the measurement results of the flow velocity profile of the molten steel near the meniscus at levels 1 to 3 are shown in Figs. In Figs. 48 to 50, the positive value of the meniscus molten steel flow velocity on the vertical axis indicates the flow from the short side of the ⁇ type to the immersion nozzle side, and the negative value indicates the flow rate. This represents the reverse flow.
  • the wavelength of the molten steel flow velocity profile in the vicinity of the meniscus along the rust mold width direction is 175 O mm at level 1, It is 80 O mm in 2 and 88 O mm in level 3, which is about 800 to 180 O mm.
  • the space change interval of the molten steel flow is from several 100 Omm to several hundred Omm
  • the variation interval of the mold powder layer thickness and the air gap thickness is several Omm. I understood. Therefore, utilizing the fact that the space change interval of the molten steel flow is significantly larger than the change interval of the mold powder layer thickness and the air gap thickness, it was decided to remove the variation of the mold powder layer thickness and the air gap thickness. That is, the width distribution of the measured copper plate temperature in the width direction has a variation pitch of the heat removal of several 10 mm and a variation pitch of 100 mm to 100 mm due to the flow of molten steel. In the temperature distribution excluding the fluctuation of the O mm pitch, only the fluctuation of the copper plate temperature due to the molten steel flow remains.
  • the spatial frequency of the molten steel flow is f
  • the fluctuation wavelength of the molten steel flow is L
  • the cutoff spatial frequency ⁇ c will be less than 0.01.
  • the ⁇ -type width is W (mm)
  • removing the variable wavelength of the ⁇ -type width W of 1 Z 2 or less results in a power cutoff spatial frequency ⁇ c of more than 2 W.
  • the temperature of the copper plate is measured by a plurality of temperature measuring elements installed in the direction perpendicular to the drawing direction on the rear surface of the copper plate for continuous manufacturing, and the cut-off spatial frequency fc is set to 2 Since the low-pass filter processing is performed in a range larger than ZW and smaller than 0.01, noise due to variations in the thickness of the mold powder layer and the thickness of the air gap can be removed. Since the flow of molten steel in the mold is estimated on the basis of the temperature distribution of the copper sheet subjected to the one-pass filter treatment, the mold state caused by the fluctuation of the solidified shell thickness and the fluctuation of the mold powder layer thickness is estimated. Fluctuations in the temperature of the copper plate are eliminated, and the flow state of the molten steel in the mold ⁇ ⁇ ⁇ can be accurately detected.
  • the width of type ⁇ is finite, and the effect of the drop in measured temperature at the end point during the low-pass fill process cannot be ignored. Therefore, it is very effective to use a finite number of data by using a data sequence that is extended by folding data at the end points of the ⁇ -shaped width on both sides and performing low-pass fill processing based on this.
  • This method improves the evaluation accuracy of the copper plate temperature distribution.
  • the discharge flow rate from the immersion nozzle is high, the discharge flow collides with the ⁇ -shaped short side copper plate and branches up and down.The branched upward flow flows from the ⁇ -shaped short side toward the immersion nozzle side in the meniscus. Change direction. Therefore, as a characteristic of the copper plate temperature distribution, a high temperature is observed on the short side of the ⁇ type. In order to accurately capture this feature, it is necessary to effectively remove the temperature drop at the end of the ⁇ type width.
  • L (M-1) Z2
  • the averaged number M is an odd number.
  • an arbitrary continuous function can be generally expressed as a set of sine waves represented by the following equation (15) according to the definition of the Fourier transform.
  • the cut-off spatial frequency fc is a frequency at which the gain becomes l / 7 "2
  • the cut-off spatial frequency fc can be expressed by the following equation (16) using equation (15).
  • Equation (17) is derived.
  • the installation interval ⁇ ⁇ between adjacent temperature measuring elements must satisfy the following equation (18)
  • the installation interval Ah between adjacent temperature measuring elements is as follows (1 9) The formula must be satisfied.
  • the installation interval Ah (mm) between adjacent temperature measuring elements is within the range of equation (0), the target wave can be eliminated.
  • the averaged number M does not necessarily need to be 3, and can be determined as follows.
  • the attenuation R of the sinusoidal wave by the spatial moving average is expressed by the following equation (21).
  • 7T is the pi
  • f is the spatial frequency of the sinusoidal wave
  • M / fs M / fs
  • fs is the spatial frequency of the buried spacing in the width direction of the temperature measuring element. Is expressed as a value obtained by dividing the standard square width by the installation interval of the temperature measuring element.
  • the amount of attenuation in the frequency range of the molten steel flow velocity profile to be measured which is calculated by the formula, is as small as possible. It is sufficient to adopt an averaged number M in which the frequency range of the fluctuation of is sufficiently attenuated. In this way, by performing the spatial moving average with the averaged number M as an appropriate value, it is possible to remove fluctuations in the thickness of the solidified shell and the thickness of the mold powder layer, which are shorter in wavelength than the wavelength of the molten steel flow velocity profile.
  • Sufficient attenuation means that the value after attenuation is about 1 Z10 of the value before attenuation, and when the attenuation M is expressed in dB, the attenuation M is about 10 dB. It is a state where it becomes.
  • the variation of the copper plate temperature during the fabrication is caused by the variation of the molten steel flow rate, the variation of the mold powder layer thickness, and the variation of the air gap thickness.
  • the above low-pass filter treatment removes noise due to variations in the mold powder layer thickness and air gap thickness that affect the temperature of the copper plate. Therefore, by subtracting the low-pass-filled value from the measured value of the mold copper plate temperature, the effect of the thickness of the mold powder layer and the air gap thickness on the mold copper plate temperature in the mold width direction can be determined. .
  • the inventors of the present invention used a continuous magnetic machine and a temperature measuring device for a copper plate used in the examples described later, and used a moving magnetic field type magnetic field generator installed on the back of a copper plate having a long side to form a magnetic field inside the mold. ⁇ Installed on a ⁇ -type copper plate to intentionally change the molten steel flow and investigate how long it takes to complete the change of the molten steel flow. We examined how long the discrete time interval when collecting data overnight from the temperature measuring element was allowed.
  • FIG. 4 is a diagram showing a temporal change in temperature of a long-sided copper plate of a ⁇ type. In each case, it was found that the transition period of the temperature change of the ⁇ -shaped long side copper plate when the magnetic flux density was changed was about 60 seconds.
  • the transition period of the temperature change of the long-sided copper plate was obtained, and the results were summarized in a histogram. From FIG. 52, it was found that the transition period was distributed between 60 seconds and 120 seconds. Therefore, if the discrete time interval when collecting the temperature measurement values by the temperature measuring element is set to 60 seconds or less, the quality will be affected. It is possible to detect a change in the flow state of molten steel in the Suzu mold without omission.
  • FIG. 53 is a schematic front cross-sectional view of a mold portion of a continuous manufacturing machine to which the present invention is applied.
  • each of the copper plates is composed of a long copper plate 300 facing each other and a short copper plate 303 facing inside the long copper plate 205.
  • a tundish 3 13 is arranged above the mold 304.
  • an upper nozzle 3 18 force is provided, which is connected to the upper nozzle 3 18, from the fixed plate 3 19, the sliding plate 3 220, and the rectifying nozzle 3 2 1.
  • a sliding nozzle 3 14 is disposed on the lower surface side of the sliding nozzle 3 14, and an immersion nozzle 3 15 is disposed on the lower side of the sliding nozzle 3 14, and a molten steel outflow hole from the evening dish 3 13 to the ⁇ type 304 is formed.
  • 3 2 2 is formed.
  • Molten steel 301 injected into the tundish 3 13 from a ladle (not shown) is provided at the lower part of the immersion nozzle 3 15 via the molten steel outflow hole 3 2
  • the discharge flow 317 is injected into the 3 type 304 from the discharge hole 316 immersed in the molten steel 310 in the 0 direction toward the ⁇ type short side copper plate 306.
  • the molten steel 301 is cooled in the mold 304 to form a solidified shell 302, and pulled out below the mold 304 to become pieces.
  • ⁇ ⁇ ⁇ ⁇ Mold powder 3 12 is added to meniscus 3 1 1 in mold 304.
  • the upper nozzle 3 18 is made of a porous material, and is connected via an Ar inlet pipe (not shown) connected to the upper nozzle 3 18 in order to prevent alumina from adhering to the wall surface of the molten steel outflow hole 3 2 2.
  • Ar is blown into the molten steel outflow hole 3 22 from the upper nozzle 3 18.
  • the injected Ar passes through the immersion nozzle 3 15 together with the molten steel 301, flows into the mold 304 through the discharge hole 316, and removes the molten steel 301 in the mold 304. As a result, it rises to the meniscus 311 and passes through the mold powder 312 on the meniscus 311 to the atmosphere.
  • ⁇ the width of the ⁇ -shaped long-side copper plate 300 Along the direction A plurality of holes are provided, and a measurement point 307 for measuring the copper plate temperature of the rectangular long-side copper plate 305 is provided.
  • a temperature measuring element 3 0 3 force The tip of which is placed in contact with the long copper plate 3 05, which can measure the temperature of the long copper plate corresponding to the full width of the piece I have.
  • the distance from the meniscus 311 to the measurement point 307 be within a range of 10 to 135 mm apart in the one-side drawing direction. In the range of meniscus 311 to less than 10 mm, the temperature of the copper plate rises and falls due to the fluctuation of the meniscus 311 during fabrication, so that the temperature change of the copper plate due to the flow of molten steel can be accurately grasped.
  • the distance from the molten steel side surface of the long side copper plate 305 to the tip of the temperature measuring element 303 should be 16 mm or less in order to accurately capture the instantaneous change in molten steel flow velocity. preferable.
  • the other end of the temperature measuring element 303 is connected to the zero point compensator 308, and the electromotive force signal output from the temperature measuring element 303 is passed through the zero point compensator 308 to the converter.
  • the signal is input to 309, the electromotive force signal is converted into a current signal by the converter 309, and then input to the data analyzer 310 as a current signal.
  • the data analysis device 310 is provided with a function for calculating a low-pass filtering process, for example, a spatial moving average according to the above-mentioned equation (20).
  • the measuring point 307 is sealed by a sealing material (not shown) so that the tip of the temperature measuring element 303 serving as a temperature measuring contact is not directly cooled by the cooling water (not shown) of the type 304. Sealed from cooling water.
  • the temperature measuring element 303 may be of any type, such as a thermocouple or a resistance thermometer, as long as it can measure the temperature with an accuracy of 1 ° C. or more.
  • the data analyzer 310 reads the long-side copper plate temperature data transmitted from the converter 309 intermittently at intervals of 60 seconds or less, and reads the data at each of the read measurement points 307.
  • the spatial moving average is calculated by the equation (20), and the spatial distribution of the temperature T n (ave) is displayed on a monitor (not shown) of the temperature T n (ave) on the monitor (not shown). Displays the defined molten steel flow pattern. For the averaged number M in equation (20), an optimum value should be input in advance in consideration of the frequency of the molten steel flow velocity profile. You.
  • the flow state of the molten steel 301 in the mold ⁇ is detected in this way, it is possible to remove noise caused by fluctuations in the thickness of the solidified shell and the thickness of the mold powder layer, and to collect the data overnight.
  • the intervals are optimized, and it is possible to accurately detect flow changes without leakage.
  • the temperature measuring element 303 is installed in one row in the width direction of the copper plate on one side of the long side 305. However, even if a plurality of rows are installed in the manufacturing direction, It may be installed on the long side copper plate of the mold. Further, the temperature measuring element 303 is not provided on the ⁇ -shaped short-side copper plate 303, but may be provided on the ⁇ -shaped short-side copper plate 303. Further, the method of blowing Ar is not limited to the above, and the blowing may be performed from the sliding nozzle 314 to the immersion nozzle 315.
  • the continuous forging machine is a vertical bending type having a vertical portion of 3 m, and can produce a piece of up to 2100 mm.
  • Table 6 shows the specifications of the continuous machine used.
  • thermocouple K alumel / chromel
  • FIG. 54 shows the temperature distribution in the width direction of the mold due to the raw copper temperature of the mold long side copper plate collected under these fabrication conditions.
  • the horizontal axis in Fig. 54 is the position in the width direction of the mold.
  • the center position "0 mm" is the center position in the width direction of the mold, the position of the immersion nozzle, and the minus sign is the shape of the mold.
  • the averaged number M was determined as follows.
  • the standard width for determining the spatial frequency f of the sinusoidal wave f and the spatial frequency fs of the buried spacing of the temperature measuring element is set to the maximum width of type II, 210 mm, and the averaged number M is 3,
  • the attenuation R of the sinusoidal wave was calculated by changing to the three levels of 5, 7.
  • the results are shown in FIG.
  • a difference occurs in the attenuation R of the sinusoidal wave having a wavelength of 100 Omm or less.
  • the sinusoidal wave having a wavelength of about 20 Omm which is considered to be caused by the fluctuation of the thickness of the solidified shell and the fluctuation of the thickness of the mold powder layer, is removed to correspond to the velocity profile of molten steel.
  • Sinusoidal wave with a wavelength of about 800 mm is to be retained.
  • the average number M when the attenuation R of the wave of the wavelength of about 200 mm is the largest is 3, and the average number M is 3 is appropriate. It was determined. When the averaged number M is 5 or 7, the flow velocity profile This can also attenuate the filter significantly, which proves to be unsuitable. Therefore, the number of averages M was set to 3.
  • FIG. 56 shows the temperature distribution in the width direction of the long side copper plate obtained by performing a spatial moving average on the temperature distribution shown in FIG. 54 with the number of averages M set to 3.
  • the short-wavelength fluctuation that existed in Fig. 54 disappeared, and only the temperature fluctuation due to the flow velocity profile of the molten steel could be displayed.
  • thermocouple tip temperature measuring junction
  • thermocouple K Alumel Chromel
  • the raw data of the temperature distribution of the copper plate during fabrication measured at this time is shown in FIG.
  • This raw data shows a fluctuation of 10 Omm wavelength or more, which is twice the embedding interval.
  • a spatial moving average was used as a low-pass filter.
  • the cut-off spatial frequency f c is 0.003 and the wavelength is 34 Omm.
  • the cut-off spatial frequency f c is 0.0013 and the wavelength is 79 Omm.
  • the cut-off spatial frequency f c is 0.001 and the wavelength is 1015 mm.
  • thermocouple embedding intervals were set to 50 mm, 100 mm, and 150 mm.
  • Fig. 58 above shows the temperature distribution when thermocouples are embedded at 50 mm intervals
  • Fig. 61 shows the temperature distribution when thermocouples are embedded at 100 mm intervals
  • Fig. 62 shows the temperature distribution when thermocouples are embedded at 150 mm intervals.
  • thermocouple embedding interval is specified as 0.443Z (3 X f) mm, and the maximum is 0.443 X [ ⁇ width (W)] / 6 mm (1500 mm for 1500 mm width) It turned out that it was good if it was within.
  • Example 2 Using the same continuous forming machine and temperature measuring device as in Example 1, a piece having a thickness of 220 mm and a width of 1550 mm was removed at a piece removing speed of 2.0 m / min Ar under a blowing condition of I ON 1Z min. Built.
  • a moving magnetic field type magnetic field generator was installed on the back side of the long side copper plate, and a moving magnetic field was applied in the direction of braking the discharge flow from the immersion nozzle to produce rust.
  • the measured temperature of the long side copper plate was collected by the data analyzer every second.
  • the data collected by the data analyzer was changed to the data collection / analysis personal computer at 1-, 5-, and 5-second intervals in order to change the data collection interval of the long-side copper plate temperature.
  • Data analysis Transmission of data from the device used the TCP IP procedure.
  • the computer for data collection and analysis is a general-purpose PC with a CPU clock frequency of 200 MHz and a RAM memory capacity of 128 MB.
  • Fig. 64 to Fig. 68 show the aging of ⁇ -type long-side copper plate temperature when the data collection interval of the data collection and analysis personal computer was set to 1, 5, 10, 60, and 240 seconds. Indicates a change.
  • Example 2 Using the same continuous machine and temperature measuring device as in Example 2, a piece having a thickness of 250 mm, a width of 1400 to 1800 mm, and an Ar blowing rate of 1 ON 1 / min, 1.2 to 1.8 m / min ⁇ Pull out ⁇ ⁇ J made.
  • Fig. 69 shows the relationship between the obtained average value in the width direction (D o) and the standard deviation ( ⁇ ) of the solidified shell thickness obtained from the sulfur distribution. As can be seen from the figure, there is a very good linear relationship between the two, and it can be seen that the average value in the mold width direction (D 0) accurately evaluates the unevenness of heat removal in the mold. Was. If the non-uniformity of the heat removal is evaluated online, the resulting non-uniformity of the solidified shell thickness can be indirectly predicted.
  • the flow of molten steel in the mold is captured in real time without relying on the estimation data base, and the flow of molten steel is appropriately controlled based on this information.
  • a sensor is required to capture the flow of molten steel in the mold for continuous production in real time. Therefore, the present inventors installed a plurality of temperature measuring elements as sensors in the width direction of the back surface of the long-sided copper plate. ⁇
  • the convective heat transfer coefficient between the molten steel in the mold and the solidified shell changes according to the flow of the molten steel in the mold. The magnitude of the heat flux towards the water varies. Therefore, by monitoring the temperature of the long-sided copper plate of type III, the flow of molten steel in type II can be monitored. Also, since the temperature measuring element does not directly contact the molten steel, it is durable and can always detect the flow rate of molten steel in the mold while the mold is mounted on a continuous forging machine.
  • Japanese Patent Application Laid-Open No. H10-1099145 describes four factors: (1) die size, (2) piece extraction speed, Ar blowing amount into the immersion nozzle, and magnetic field strength for controlling molten steel flow.
  • the molten steel flow pattern in the mold can be roughly classified into three patterns, A, B, and C.
  • the flow pattern of molten steel in the mold is measured, and the flow pattern of the molten steel in the mold under specific manufacturing conditions is estimated based on the measurement results and applied to the discharge flow so that the flow pattern becomes pattern B.
  • a method for adjusting the magnetic field strength to be applied or the amount of Ar blowing into the immersion nozzle is disclosed.
  • the pattern A is a pattern in which the discharge flow from the immersion nozzle branches up and down after reaching the solidified shell on the short side of the ⁇ type.
  • the flow is from the short side of the ⁇ type to the immersion nozzle
  • the pattern B Is a pattern in which the discharge flow from the immersion nozzle does not reach the solidified shell on the short side of the ⁇ type but is dispersed from the discharge port to the solidified shell on the short side of the ⁇ type. Is a flow in which an upward flow exists near the immersion nozzle.In the meniscus, the flow is from the immersion nozzle toward the short side of the triangle. According to the report, the pattern B force is the best.
  • the flow pattern of the molten steel in the mold should be the above pattern ⁇ That is best. Therefore, the present inventors determined the flow rate of the molten steel in the meniscus when the flow state of the molten steel in the mold became pattern B using a continuous rusting machine shown in Examples described below. ⁇ Piece width: 160 mm, ⁇ Piece withdrawal speed: 1.3 m / min, Ar blowing amount into immersion nozzle: 1 ON 1 Zm in, immersion nozzle immersion depth: 260 mm Measured under manufacturing conditions.
  • the molten steel flow velocity was measured by immersing a refractory rod in a meniscus and measuring the deflection angle of the refractory rod due to the molten steel flow (hereinafter referred to as “immersion rod type meniscus molten steel flow meter”).
  • the results are shown in FIG.
  • the molten steel flow velocity distribution at the meniscus when the pattern B corresponds to the pattern B is almost symmetrical with respect to the center of the ⁇ type in the width direction, and the absolute value of the flow velocity in the ⁇ type width direction is obtained.
  • the difference was found to be small.
  • the flow rate of the positive sign on the vertical axis is the flow from the short side of the ⁇ type toward the immersion nozzle
  • the flow rate of the negative sign is the flow flowing in the opposite direction
  • the horizontal axis is ⁇ .
  • the position in the mold width direction is 0 mm at the center, the center position in the mold width direction, and the position of the immersion nozzle.
  • the minus sign indicates the left side in the mold width direction
  • the plus sign indicates the mold width.
  • the right side of the direction is indicated (hereinafter the position in the width direction of the ⁇ is indicated by the same notation).
  • the temperature distribution of the copper type long side plate at this time is flat and bilaterally symmetric.
  • the results shown in Fig. 71 were obtained for the temperature distribution in the width direction of the ⁇ -shaped long side copper plate in the pattern B.
  • the temperature distribution at the time of pattern B was almost symmetric on the left and right sides of the ⁇ type, and became a flat temperature distribution with a small difference between the maximum value and the minimum value.
  • the difference between the maximum value and the minimum value in the temperature distribution of the long rectangular copper plate in pattern B was 12 ° C or less.
  • the temperature distribution of the copper plate at the symmetrical position with respect to the center of the mold width direction was found to be 10 ° C or less from the viewpoint of the symmetry in the mold width direction.
  • the difference between the maximum value and the minimum value of the temperature distribution in the width direction of the long side copper plate is set to 12 ° C. or less, and preferably, the difference between the left and right sides of the long side copper plate in the width direction of the long side copper plate is centered on the immersion nozzle. Since the temperature difference at the symmetric position is controlled to be 10 ° C or less, the flow of molten steel in mold ⁇ is controlled by pattern B, and the product quality is improved.
  • a magnetic field generator is used as means for controlling the flow of molten steel in this way.
  • One or two or more of the magnetic field strength, the one-sided drawing, the immersion depth of the immersion nozzle, and the Ar blowing amount into the immersion nozzle were determined.
  • the magnetic field generated by the magnetic field generator is a static magnetic field
  • the molten steel flow in the mold is subjected to a braking force by Lorentz force
  • the magnetic field generated by the magnetic field generator is a moving magnetic field
  • the movement of the magnetic field The molten steel in the mold is driven in the direction, and the molten steel flow excited thereby controls the flow of the molten steel in the mold.
  • Such a magnetic field generator can instantaneously change the magnetic field intensity by instantaneously changing the supplied power. Therefore, the flow of molten steel can be controlled in accordance with the instantaneous change in the flow of molten steel in the type III measured by the temperature measuring element.
  • the magnetic field generator does not directly touch the molten steel, and has good operational durability.Therefore, it is possible to apply a magnetic field to the molten steel as needed while the ⁇ die is mounted on the continuous machine. it can.
  • the flow rate of the discharge flow from the immersion nozzle can be adjusted, so that the flow of molten steel in the mold can be controlled. Also, when the immersion depth of the immersion nozzle is adjusted, the position at which the discharged flow collides with the solidified shell on the short side is moved up and down. This means adjusting the distance from the collision position to the meniscus, and adjusting the degree of damping until the molten steel flow branched upwards reaches the meniscus after colliding with the short-side solidified shell. As a result, the flow of molten steel in the mold can be controlled.
  • the immersion depth of the immersion nozzle represents the distance from the upper end of the discharge hole of the immersion nozzle to the meniscus.
  • the flow of molten steel in the mold can be controlled based on the temperature distribution of the copper plate on the long side of the mold, but the temperature of the copper plate on the long side of the mold measured by the temperature measuring element depends on the thickness of the copper plate, It also changes depending on factors such as the temperature and flow rate of the rust type cooling water. Therefore, including the above factors, the heat transfer calculation model was used to determine the molten steel flow velocity in the mold ⁇ from the mold ⁇ copper sheet temperature.
  • Flow control of molten steel in the mold can be performed.
  • the method of converting the molten steel flow velocity in the mold (2) from the temperature of the mold long side copper plate measured by the temperature measuring element shall be performed as follows.
  • Fig. 72 shows that heat is transferred from the molten steel in the mold ⁇ to the cooling water for the copper ⁇ It is the figure which represented typically the temperature distribution from the molten steel to the cooling water in the process in which conduction occurs.
  • each heat of the solidified shell 402, the mold powder layer 403, and the long-side copper plate 404 is provided between the molten steel 401 and the cooling water 405 for the long-side copper plate ⁇ .
  • a conductor is present, and a temperature measuring element 406 is embedded in the long copper plate 404 to measure the temperature inside the long copper plate 404.
  • T o is the molten steel 40 1 temperature
  • 1 interface temperature between the molten steel 40 1 of the solidified shell 402 T s is the boundary temperature between the solidified shell 40 2 and mold powder further 403
  • T P is the mold powder Surface temperature of layer 403 ⁇ long side copper plate 404 side
  • T mH is mold powder of ⁇ long side copper plate 404
  • T mL is surface of long side copper plate 404 cooling water 405 side
  • the temperature, Tw is the temperature of the cooling water 405.
  • the overall thermal resistance obtained by combining the thermal resistances of the heat conductor from the molten steel 401 to the cooling water 405 is expressed by the following equation (23).
  • R overall thermal resistance
  • a convective heat transfer coefficient between molten steel and solidified shell
  • ⁇ 5 thermal conductivity of solidified shell
  • thermal conductivity of mold powder layer
  • a m Thermal conductivity of long-side copper plate
  • h m Heat transfer coefficient between the mold powder layer and long-side copper plate
  • h w Heat between long-side copper plate and cooling water Transfer coefficient
  • d s solidified shell thickness
  • d P mold powder layer thickness
  • d m ⁇ -type long side copper plate thickness.
  • the thickness of the long-sided copper sheet ( mm ) and the thermal conductivity ( m ) of the long-sided copper sheet are constant values determined by the equipment.
  • the thermal conductivity ( ⁇ 5 ) of the solidified shell is a value that is fixed when the type of steel is determined.
  • the mold powder layer thickness (d P ) is a value that is fixed if the type of mold powder, the amplitude, frequency, and vibration waveform of mold vibration, and the stripping speed are determined.
  • the thermal conductivity ( ⁇ ⁇ ) of the mold powder layer is almost constant regardless of the type of the mold powder.
  • the heat transfer coefficient (h w ) between the ⁇ -shaped long-side copper plate 404 and the cooling water is a numerical value that is fixed if the flow rate of the cooling water 405 and the surface roughness of the ⁇ -shaped long-side copper plate 404 are determined. Further, the heat transfer coefficient between the mold powder layer and ⁇ longer side copper plate (h m) is also determined to a value of nearly constant once the type of mold powder.
  • the convective heat transfer coefficient ( ⁇ ) between the molten steel and the solidified shell is The convective heat transfer coefficient ( ⁇ ) can be expressed by a flat plate approximation of Eq. (24).
  • Nu number of Nusselts
  • Xi representative length of heat transfer.
  • Equation (25) the Nusselt number (Nu) is expressed by Equations (25) and (26) for each velocity range of molten steel flow velocity.
  • Pr is the number of prandles
  • Re is the number of Reynolds nozzles
  • U is the flow velocity of molten steel
  • U 0 is the transition velocity between laminar flow and turbulent flow of molten steel.
  • N u 0.664XP r I / 3 XR e V5 (U ⁇ U o)... (25)
  • Equation (27) The number of prandles (P r) and the number of Reynolds (R e) are expressed by equations (27) and (28), respectively.
  • X 2 is the representative length of the molten steel flow
  • is the kinematic viscosity coefficient of the molten steel.
  • Equation (29) the heat flux from the molten steel 401 to the cooling water 405 can be expressed by equation (29).
  • Q heat flux from molten steel to cooling water
  • To molten steel temperature
  • Tw cooling water temperature
  • the surface temperature of the long side copper plate 404 on the cooling water 405 side can be expressed by the following equation (30).
  • T m L Ru cooling water side surface temperature der of ⁇ longer side copper plates.
  • T mL Tw + QZh w ... (30)
  • the temperature of the long-sided copper plate measured by the temperature measuring element 406 can be expressed by the following equation (31).
  • T is the temperature of the long side copper plate measured by the temperature measuring element
  • d is the distance from the molten steel side surface of the long side copper plate to the tip of the temperature measuring element.
  • T T mL + QX (d m -d) / X m ... (3 1)
  • the procedure for obtaining the molten steel flow rate (U) from the ⁇ type long side copper plate temperature (T) is as follows.
  • the heat flux (Q) is obtained by substituting the measured value of the long side copper plate temperature (T) by the temperature measuring element into the equation (32).
  • the variables on the right-hand side other than the heat flux (Q) are all known, so the heat flux (Q) can be calculated back.
  • the total heat resistance (R) is obtained by substituting the heat flux (Q) into Eq. (29). Again, all variables on the right-hand side except for the overall thermal resistance (R) are known, so the overall thermal resistance (R) can be calculated back.
  • the convective heat transfer coefficient ( ⁇ ) is obtained by substituting the overall thermal resistance (R) into Eq. (23). Again, all the variables on the right-hand side other than the convective heat transfer coefficient ( ⁇ ) are known, so the convective heat transfer coefficient ( ⁇ ) can be calculated back. The obtained convective heat transfer coefficient ( ⁇ ) is
  • the present invention captures the change in the temperature (T) of the long-side copper plate due to the change in the convective heat transfer coefficient () between the molten steel and the solidified shell caused by the flow velocity (U) of the molten steel, Estimate the flow velocity (U) of molten steel along the solid interface.
  • Fig. 73 is an example of the relationship between the flow rate of molten steel and the temperature of the long-side copper plate of type ⁇ obtained by the above principle. As shown in Fig. 73, even if the temperature of the long-sided copper sheet is the same, the molten steel flow velocity is greatly different depending on the stripping speed, and it can be estimated from the temperature of the long-sided copper sheet. It turns out that it is possible.
  • Fig. 73 shows the flow rate of molten steel calculated from the temperature of the long-side copper plate based on the variables shown in Table 7 based on the variables shown in Table 7, and Table 7 shows that: ⁇ One-piece drawing speed is 2. Om / min and 1.3 m / min. It shows an example of each variable under the construction conditions of FIG.
  • transition speed (U 0) between the laminar flow and the turbulent flow of the molten steel is calculated as 0.1 lmZs ec, and Vc in Table 7 and FIG. 73 is ⁇ -piece drawn ili.
  • thermocouple K An alumel-chromel thermocouple (JIS thermocouple K) was used as the temperature measuring element, and the temperature measuring contact point of the thermocouple was 5 Omm below the meniscus, from the molten steel side surface of the long side copper plate to the thermocouple tip. The distance (d) at 13 mm was 13 mm, and the distance between adjacent thermocouples was 66.5 mm.
  • This thermocouple array covers a length of 210 mm in the width direction of the long side copper plate.
  • the electromotive force of each thermocouple is connected to a zero-point compensator via a compensating wire.After that, the electromotive force is converted to a current analog output (4 to 20 mA) and input to a personal computer for data collection and analysis. .
  • FIGS. 74 and 75 The measurement results of the temperature of the ⁇ type long side copper plate are shown in FIGS. 74 and 75.
  • Fig. 74 shows ⁇ piece thickness: 220mm, ⁇ piece width: 1650mm, ⁇ piece pulling speed: 1.85m / m
  • FIGS. 76 and 77 show the flow rate of molten steel obtained from the temperature of the long side copper plate shown in FIGS. 74 and 75 by the above-described conversion method.
  • the plots of the seal marks in FIGS. 76 and 77 are the results of measuring the flow velocity of the molten steel near the meniscus using the immersion rod type meniscus molten steel flow meter under the respective construction conditions.
  • FIGS. 76 and 77 it was found that the molten steel flow rate estimated from the temperature of the long side copper plate ⁇ and the molten steel flow rate measured by the immersion rod type meniscus molten steel flow meter agreed well.
  • the thickness of the solidified shell (d s ) was 0.003622 m under the manufacturing condition 1 and 0.00372 m under the manufacturing condition 2.
  • the time constant of the output change of the temperature measuring element becomes It can be enough to capture change.
  • the difference between the maximum value and the minimum value of the flow velocity is a relatively flat velocity distribution of 0.25 mZsec or less, and From the viewpoint of left-right symmetry, it was found that the difference in the flow velocity at the left-right symmetric position with respect to the center in the width direction of the ⁇ type was 0.2 Om / sec or less.
  • the speed difference of the present invention refers to a difference between the absolute values of the flow velocity irrespective of the flowing direction of the molten steel.
  • the molten steel flow velocity difference is controlled to be 0.2 Om / sec or less at the left and right symmetrical positions in the width direction of the long side copper plate around the immersion nozzle.
  • the flow is controlled in pattern B, and the product quality is improved.
  • the measurement temperature of the portion close to the ⁇ -type short-side copper plate is also affected by the cooling effect from the ⁇ -type short-side copper plate, and the measurement temperature becomes lower.
  • Type I Long side copper plate temperature up to 150 mm toward the center in the width direction shall not be monitored.
  • FIG. 78 is a schematic view of a front section of a continuous machine showing one embodiment of the present invention
  • FIG. 79 is a schematic view of a side section thereof.
  • it is composed of an opposing long-side copper plate 404 facing each other, and an opposing short-side copper plate 408 accommodated in the long side copper plate 404.
  • a tundish 423 loaded with a tundish force (not shown) is arranged at a predetermined position above the mold 407.
  • the tundish 4 23 is moved up and down by an elevating device (not shown) installed in the tundish car, and is held at a predetermined position. This elevating device is controlled by an elevating control device 419.
  • a long-side water box 409 is installed at the upper back and lower back of the ⁇ -shaped long-side copper plate 404, and the cooling water 405 supplied from the long-side water box 409 at the lower back is used for the waterway 4 1
  • the 0-shaped long-side copper plate 404 is cooled through 0 and discharged to the upper long-side water box 409. ⁇ length Hendo plate 4 0 4 of the thickness of the front side surface to the water channel 4 1 0, i.e. ⁇ longer side copper plate thickness is d m.
  • the ⁇ -shaped short side copper plate 408 is cooled in the same manner.
  • a magnetic field generator 411 is installed on the back of the ⁇ -shaped long side copper plate 404.
  • the magnetic field generated by the magnetic field generator 4 11 may be a static magnetic field or a moving magnetic field.
  • the magnetic field strength of the magnetic field generator 411 is controlled by the magnetic field strength controller 417.
  • the magnetic field intensity generated from the magnetic field generator 411 was separately set in the left and right directions in the mold width with the immersion nozzle 425 as a boundary. Being able to adjust is powerful.
  • An upper nozzle 4 28 is provided at the bottom of the tundish 4 2 3, and is connected to the upper nozzle 4 2 8, and is composed of a fixing plate 4 2 9, a sliding plate 4 30, and a rectifying nozzle 4 3 1
  • a sliding nozzle 4 24 is arranged, and an immersion nozzle 4 25 is arranged on the lower surface side of the sliding nozzle 4 24, and a molten steel outflow hole from the tundish 4 23 to the ⁇ type 4 07 is provided.
  • 4 3 2 is formed.
  • Molten steel 401 injected into the evening dish 4 23 from a ladle (not shown) is provided at the lower part of the immersion nozzle 4 25 via the molten steel outflow hole 4 32, and The discharge flow 427 is injected into the mold 407 from the discharge hole 426 immersed in the molten steel 410 in the mold 7 toward the copper plate 408 with short sides. Then, the molten steel 401 is cooled in the mold 407 to form a solidified shell 402, and is pulled out below the mold 407 by the bow I piercing roll 412 to become pieces. At that time, mold powder 142 is added to the meniscus 421 in the mold 407, and the mold powder 422 is melted and the solidified shell 402 and the mold 407 are combined. The mold powder layer flows into the gap to form a mold powder layer 403.
  • the drawing roll 4 1 2 is controlled by a piece drawing speed control device 4 18.
  • the upper nozzle 4 28 is made of porous brick, and an Ar inlet pipe (not shown) connected to the upper nozzle 4 28 to prevent alumina from adhering to the wall of the molten steel outlet 4 32.
  • Ar is blown from the upper nozzle 4 28 into the molten steel outflow hole 4 32 through an Ar supply device including an Ar flow rate control valve (not shown) installed in the introduction pipe.
  • the injected Ar passes through the immersion nozzle 4 25 together with the molten steel 401, flows into the mold 407 through the discharge hole 424, and flows into the mold 407 in the mold 407. As a result, it rises to the meniscus 4 2 1 and passes through the mold powder 4 2 2 on the meniscus 4 2 1 to reach the atmosphere.
  • the Ar supply device is controlled by an Ar blowing amount control device 420.
  • a plurality of holes are provided on the back of the long copper plate ⁇ along the width direction of the long copper plate ⁇ , and a measuring point for measuring the temperature of the copper plate of the long copper plate ⁇ 4 1 3
  • the distance from the molten steel side surface of the long-side copper plate 404 to the tip of the temperature measuring element 406 is d, and the tip is the long side of the ⁇ -shaped element. It is arranged in contact with the copper plate 404.
  • (d) is preferably 16 mm or less. Further, the distance from the meniscus 4 21 to the measurement point 4 13 is preferably 10 mm or more so as not to be affected by the temperature fluctuation due to the upward and downward movement of the meniscus 4 21 during the fabrication. Further, in order to accurately grasp the temperature distribution in the width direction of the mold, it is preferable that the interval between adjacent measurement points 4 13 is 200 mm or less.
  • the other end of the temperature measuring element 406 is connected to the zero point compensator 414, and the electromotive force signal output from the temperature measuring element 406 passes through the zero point compensator 414. Enter 4 1 5
  • the electromotive force signal is converted into a current signal by the converter 415, and then input to the data analyzer 416 as a current signal.
  • the data analyzer 416 has a function to calculate the flow rate of molten steel from the temperature of the long-sided copper plate of type III.
  • the output of the data analyzer 4 16 is sent to the magnetic field intensity controller 4 17, the single-drawing speed controller 4 18, the lifting controller 4 19, and the Ar blowing amount controller 4 220 .
  • the measuring point 4 13 is sealed with a sealing material (not shown) from the cooling water 405 so that the tip of the temperature measuring element 406 serving as a temperature measuring contact is not directly cooled by the cooling water 405. ing.
  • the type of the temperature measuring element 406 is not particularly limited as long as it can measure the temperature with an accuracy of ⁇ 1 or more among thermocouples, resistance thermometers and the like.
  • the flow of molten steel in the type III is controlled as follows.
  • the data analyzer 4 16 captures the maximum and minimum values of the temperature from time to time from the temperature distribution in the width direction of the ⁇ -type copper plate of the ⁇ -type long-side copper plate, and the ⁇ -type long-side copper plate around the immersion nozzle 4 25
  • Figure 4 shows the temperature difference at the left and right symmetrical positions in the width direction.
  • the temperature difference at the symmetrical position on the left side in the width direction of the ⁇ -shaped long-side copper plate 404 is further reduced so that the difference between the captured maximum value and the minimum value is 12 ° C. or less.
  • each control device that has received the control signal controls the flow of molten steel by changing the magnetic field strength, the half-drawing speed, the immersion depth of the immersion nozzle 425, and the Ar blowing amount according to the control signal.
  • the magnetic field strength control device 4 17 is so controlled that the difference in the flow velocity of the molten steel at the symmetrical position on the left and right in the width direction of the long side copper plate 4 0 4 with the immersion nozzle 25 as the center is 0.2 Om / sec or less.
  • a control signal is transmitted to any one or more of the piece pull-out speed control device 4 18, the lifting control device 4 19, and the Ar blowing amount control device 420.
  • Each control that receives a control signal The apparatus controls the flow of molten steel by changing the magnetic field strength, the strip pulling speed, the immersion depth of the immersion nozzle 425, and the Ar blowing amount according to the control signal.
  • the variables that change depending on the construction conditions and that cannot be directly measured during fabrication are: s), 2 mold powder layer thickness (d P), but there are three variables of heat transfer our coefficient between the 3 ⁇ copper plate and the cooling water (h w), for these three variables, the actual machine test Alternatively, a change in the numerical value accompanying a change in the forming conditions may be investigated in advance by a simulation test, and the molten steel flow rate may be calculated based on the numerical value corresponding to the forming condition at the time of measuring the temperature of the copper plate.
  • the other 12 variables can be determined by equipment conditions and physical properties.
  • the temperature measuring elements 406 are provided in one row in the width direction of the rectangular long side copper plate 404, but a plurality of rows may be provided in the manufacturing direction.
  • the force for installing the temperature measuring element 406 on only one side of the long rectangular copper plate 404 may be installed on both long rectangular copper plates 404.
  • the position of Ar injection into the molten steel outflow hole 432 is not limited to the upper nozzle 428, but may be a fixed plate 429 ⁇ dipping nozzle 425.
  • the continuous forging machine is a vertical bending type having a vertical part of 3 m, and can produce a piece of up to 210 mm.
  • Table 8 shows the specifications of the continuous machine used. Table 8
  • the distance (d) from the thermocouple to the thermocouple tip (temperature measuring junction) is 13 mm, the distance between adjacent thermocouples is 66.5 mm, and the distance from the meniscus is 50 mm.
  • a thermocouple was buried.
  • the discharge flow is braked on a piece with a thickness of 220 mm and a width of 1875 mm, under the conditions of a piece withdrawing speed of 1.60 m / min, an Ar blowing amount of 10 N 1 Zin, and a immersion nozzle immersion depth of 260 mm.
  • a moving magnetic field was applied by a magnetic field generator in the direction in which the magnetic field was generated.
  • Table 9 shows the specifications of the magnetic field generator. Table 9 Item Specifications
  • Magnetic flux density 0.21 Tesla (max) Initially, the magnetic field density of the magnetic field generator was set to 0.03 Tesla, and the temperature distribution of the long side copper plate temperature at that time was obtained as shown in Fig. 80. In this temperature distribution, it was estimated that the temperature near the ⁇ -type short side copper plate was high, and therefore the molten steel flow velocity near the ⁇ -type short side copper plate was high in the meniscus. In this case, the corresponding molten steel flow condition in Type III was estimated as shown in Figure 81. This flow pattern corresponds to the pattern A in Japanese Patent Application Laid-Open No. 10-10945. Therefore, when the power supplied to the magnetic field generator was increased and the magnetic flux density was set to 0.05 Tesla, the temperature distribution of the long-sided copper plate of FIG.
  • Example 2 Using the same continuous rusting machine and temperature measuring device as in Example 1, a piece with a thickness of 220 mm and a width of 600 mm was pulled out at a piece withdrawal speed of 1.30 m / min, and an Ar blowing amount. Under a condition of 10 N 1 / min and an immersion depth of the immersion nozzle of 260 mm, a moving magnetic field was applied by a magnetic field generator in a direction in which the discharge flow was braked, and the structure was manufactured.
  • the temperature distribution of the long-sided copper plate was as shown in Fig. 86.
  • the temperature on the right side of the center in the slab width direction is higher than that on the left side, and therefore it is estimated that the meniscus has a faster molten steel flow velocity than the left molten steel velocity. In other words, there is a drift on the left and right in the mold width direction. That is.
  • the magnetic flux density of the magnetic field generator was increased to 0.17 Tesla, the temperature distribution shown in Fig. 87 was obtained.
  • the difference between the maximum value and the minimum value was 9 ° C
  • the temperature difference at the symmetrical position was less than 10 ° C
  • the meniscus flow velocity was estimated to be almost equal on both sides of the ⁇ -shaped width.
  • the molten steel flow velocity of the meniscus was measured using an immersion rod-type molten steel flow meter, and it was confirmed that the molten steel flow pattern in the ⁇ type was pattern B.
  • Example 2 Using the same continuous forming machine and temperature measuring device as in Example 1, a piece having a thickness of 220 mm and a width of 600 mm was used, and a blowing amount of Ar was 1 ON 1 Zin, and the immersion depth of the immersion nozzle. It was manufactured under the condition of 260 mm. In this example, the magnetic field generator was manufactured without using it. Initially, when the piece drawing was made with 1.6 O mZmin, the temperature distribution of the long side copper plate was as shown in Fig. 88. In this temperature distribution, the temperature distribution has a local maximum near the ⁇ -shaped short-side copper plate and near the immersion nozzle.
  • the meniscus had a high flow rate of molten steel near the ⁇ -shaped short-side copper plate and near the immersion nozzle.
  • the molten steel flow near the ⁇ -shaped short-side copper plate is a flow caused by the upward flow generated after the discharge flow from the immersion nozzle collides with the short-side solidification shell and branches up and down.
  • the molten steel flow in the vicinity is a flow caused by the upward flow of molten steel induced when the molten steel flows into the immersion nozzle and rises near the discharge port of the Ar force immersion nozzle.
  • the temperature distribution shown in FIG. 89 was obtained when the stripping speed was reduced to 1.3 O mZm i ⁇ .
  • the difference between the maximum value and the minimum value was 12 ° C
  • the temperature difference at the symmetrical position was less than 10 ° C
  • the meniscus flow velocity was estimated to be almost equal on both sides of the left and right sides of the ⁇ -shaped width.
  • the molten steel flow velocity of the meniscus was measured using an immersion rod type molten steel flow meter, and it was confirmed that the flow pattern of molten steel in the ⁇ type was Pattern B.
  • Example 2 Using the same continuous forming machine and temperature measuring device as in Example 1, a piece having a thickness of 220 mm and a width of 100 mm was removed, and a piece withdrawing speed of 1.5 m / min, Ar blowing amount Under a condition of IONI / in, a moving magnetic field was applied by a magnetic field generator in a direction in which the discharge flow was braked, thereby producing the structure.
  • the temperature distribution of the long side copper plate was as shown in Fig. 90. It became. In this temperature distribution, the temperature distribution has a local maximum near the immersion nozzle. From this temperature distribution, it was estimated that the molten steel flow velocity around the immersion nozzle was high at the meniscus. In other words, it was found that the molten steel flow mainly consisted of the flow caused by the ascending flow of the molten steel induced when floating near the discharge port of the Ar force immersion nozzle injected into the immersion nozzle.
  • the immersion depth of the immersion nozzle was increased to 230 mm, and the temperature distribution shown in FIG. 91 was obtained.
  • the difference between the maximum value and the minimum value is 9 ° C
  • the temperature difference at the left symmetric position is 10 ° C or less
  • the meniscus flow velocity is almost equal on both sides of the center of the ⁇ width. It was estimated that In this state, the molten steel flow velocity of the meniscus was measured using an immersion rod type molten steel flow meter, and it was confirmed that the flow pattern of molten steel in the ⁇ type was Pattern B. This is considered to be because the rising flow near the immersion nozzle began to rise to a position distant from the immersion nozzle due to an increase in the immersion depth of the immersion nozzle, and the ascending flow velocity near the immersion nozzle was substantially reduced.
  • Example 2 Using the same continuous machine and temperature measuring device as in Example 1, a piece having a thickness of 220 mm and a width of 600 mm was removed, and a piece withdrawing speed of 2.0 mZm in, Ar blowing amount ION 1 Zm In, a moving magnetic field was applied in the direction of damping the discharge flow with a magnetic field generator with a dipping depth of 220 mm of the dipping nozzle.
  • the magnetic field generator can individually adjust the strength of the applied magnetic field in the left and right directions in the width direction of the rectangle with the immersion nozzle as a boundary. Initially, when the magnetic flux density of the magnetic field generator was set to 0.06 Tesla on both the left and right sides, the temperature distribution of the ⁇ -shaped long-side copper plate was as shown in Fig. 92.
  • the temperature distribution on the right side is higher than that on the left side with respect to the center of the ⁇ type width direction. It was estimated that the flow velocity of the molten steel on the right was faster than the flow velocity of the molten steel on the left. In other words, there is a drift on the left and right in the width direction.
  • the molten steel flow velocity of the meniscus was measured using a immersion rod type molten steel flow meter, and it was confirmed that the molten steel flow pattern in the ⁇ -type was Pattern B.
  • the magnetic flux density of the right side magnetic field generator was returned to the same original value of 0.06 Tesla as the left side, and the temperature distribution was as shown in Fig. 95. In this temperature distribution, it was confirmed that the temperature distribution on the right side in the width direction of the mold was higher than that on the left side, and the flow returned to the original state with a drift in the left and right directions in the mold width.
  • Figure 96 shows the transition of the copper plate temperature measured by a thermocouple installed at a distance of 665 mm to the left and right from the center of the mold width direction, respectively. It can be seen that the drift is controlled by applying left and right independent magnetic fields.
  • a method in which the strength of the magnetic field is increased on the side where the flow is strong may be adopted, and a method in which the strength of the magnetic field is weakened on the side where the flow is weak may be adopted. If a moving magnetic field is applied in the direction that accelerates the flow, a method of reducing the strength of the magnetic field on the side of strong flow or a method of increasing the strength of the magnetic field on the side of weak flow Can be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

明細書 連続铸造における溶鋼の流動パターン推定 ·制御方法およびそのための装置 技術分野
本発明は、 鋼の連続铸造方法に関する。 特に、 連続铸造における溶鋼の流動パ夕 ーン推定 ·制御方法およびそのための装置に関する。 背景技術
鋼の連続铸造では、浸漬ノズルを介して溶鋼を铸型内に高速度で吐出させるため、 この吐出流に起因して铸型内で溶鋼流動が発生し、 そして、 この溶鋼流動は铸片の 表面及び内部性状に大きな影響を及ぼしている。 例えば、 铸型内湯面 (以下、 「メ ニスカス」 と記す) の表面流速が速すぎる場合や、 メニスカスに縦渦が発生する場 合には、 モールドパウダーが溶鋼中に巻き込まれる。 又、 溶鋼中の A l 23等の脱 酸生成物の浮上分離も溶鋼流動に左右されることが知られており、 铸片中に巻き込 まれたモールドパウダ一や脱酸生成物は、 製品において非金属介在物性の欠陥とな る。
又、 铸型内の溶鋼流動は、 铸造条件が同一であっても、 浸漬ノズル内部の A 1 23付着、 浸漬ノズルの溶損、 スライディングノズルの開度等により、 铸造中に変 化する。 そのため、 溶鋼流動を検知し、 検知した溶鋼流動状況から印加する磁場の 強度や方向を制御して铸型内の溶鋼流動を制御する方法が、 铸片品質向上の重要な 課題として、 多数提案されている。
例えば、 特開昭 6 2 - 2 5 2 6 5 0号公報 (以下、 「先行技術 1」 と記す) には、 浸漬ノズル左右の溶鋼レベル差を铸型短辺銅板に埋設した熱電対により検知し、 レ ベル差が無くなるように電磁攪抻装置の攪拌方向と攪拌推力とを制御した溶鋼流動 制御方法が開示されている。
特開平 3— 2 7 5 2 5 6号公報 (以下、 「先行技術 2」 と記す) には、 铸型長辺 銅板に埋設した熱電対により铸型長辺銅板の温度分布を測定し、 铸型左右の温度分 布から溶鋼偏流の発生を検知し、 検知した溶鋼偏流の発生方向及び程度に応じて、 铸型長辺の背面に配置した 2個の直流電磁石型電磁ブレーキ装置へ供給する電流を 個別に制御して铸型内溶鋼の偏流を制御する方法が開示されている。
特開平 4一 2 8 4 9 5 6号公報 (以下、 「先行技術 3」 と記す) には、 浸漬ノズ ルと铸型短辺との間のメニスカス上に 2個の非接触式距離計を設けてメニスカスの 湯面変動を測定し、 この 2つの測定値の相互相関関数から表面波動の伝播 を求 め、 この伝播 が所定値以下となるように電磁攪拌装置にて浸漬ノズルからの吐 出流速を制御する方法が開示されている。
先行技術 1及び先行技術 2では、 铸型銅板温度の分布から溶鋼流動を検知し、 検 知した溶鋼流動を基に流動制御を行なっているが、 铸型銅板温度分布の変化は、 溶 鋼の流動状況の変化だけで発生するわけではなく、 铸型と凝固シェルとの接触状態 やモールドパウダーの流入状態等の変化によっても発生する。 このように溶鋼流動 以外の要因による铸型銅板温度分布の変化があるため、 単に铸型銅板温度の分布か ら溶鋼流動を検知する先行技術 1及び先行技術 2では的確に溶鋼流動を検知するこ とはできない。
又、 詳細は後述するが、 本発明者等の調査結果から、 モールドパウダーや脱酸生 成物を減少させるためには、 铸型内において偏流を防止して左右対称な流れとする だけでは不十分であり、 幾つかの左右対称な流れの内で、 最適な流動パターンが存 在すること力確認された。
先行技術 3は流動制御方法として有効な手段ではあるが、 メニスカスの溶鋼流速 のみ制御するもので、 铸型溶鋼の流動パターンを検知するには不十分である。 又、 同様に、 先行技術 1及び先行技術 2でも流動パターンは検知できない。 発明の開示 本発明の目的は、 連続铸造において製造される铸片の品質の改善と安定化、 特に 铸型内の溶鋼流動パターンに起因して生ずるモールドパウダーの巻き込みを防止す ることによる品質の改善と安定化を図り、 下工程への良好な錡片の供給を意図する ものである。
そこで、 本発明は、 連続铸造において最適な流動パターンを保持することができ る溶鋼の流動パターン制御方法を提供し、 更に、 溶鋼流動状況を精度良く推定する ための铸型銅板の温度計測装置とこの温度計測装置を用いた铸型内溶鋼の流動状況 を推定する方法を提供する。 上記目的を達成するために、 第 1に、 本発明は以下の工程からなる連続铸造にお ける溶鋼の流動パターン推定方法を提供する:
浸清ノズルから铸型内に吐出された溶鋼を連続铸造する工程;
铸型長辺幅方向の銬型銅板温度を鐯型銅板の温度計測装置により複数点測定す る工程; と
各測定点における銅板温度の分布から铸型内溶鋼の流動パターンを推定するェ 程。 上記の溶鋼の流動パ夕一ン推定方法は、 検知された流動パターンが所定のパ夕 —ンとなるように、 铸型内に吐出された溶鋼に磁場を印加する工程を有するのが好 ましい。 印加する磁場は水平方向に移動する移動磁場であるのが好ましい。
更に、 上記の溶鋼の流動パターン推定方法は、 以下の工程を有するのが好まし い:
铸型銅板温度の温度計測装置により測定された铸型銅板温度と、 铸型銅板の厚 みと、 铸型銅板の溶鋼側表面から測温素子先端までの距離と、 铸型銅板用の冷却水 温度と、 凝固シェル厚みと、 モールドパウダー層厚みと、 铸型内の溶鋼温度と、 を 用し ^て铸型内溶鋼から铸型銅板用冷却水への熱流束を求める工程; この熱流束に相当する溶鋼と凝固シェルとの間の対流熱伝達係数を求めるェ 程;と
この対流熱伝達係数から凝固シエルに沿つた溶鋼の流速を求める工程。 上記の流動パターン推定方法は、 更に、 以下からなる各測定点の铸型長辺銅板温 度を補正する工程を有してもよい:
铸型下端より下方で铸片幅方向の凝固シェルの表面形状を測定し;
測定した表面形状から铸型長辺銅板と凝固シェルとの間の伝熱抵抗を推定し; 推定した伝熱抵抗により各測定点の铸型長辺銅板温度を補正する。 上記の流動パターン推定方法における铸型銅板温度の温度計測装置は、 連続铸造 用铸型銅板背面に埋設された複数の測温素子からなるの力 ^望ましい。 前記測温素子 は、 好ましくは、 铸型内溶鋼湯面位置から铸片引抜き方向に 1 0〜1 3 5 mm離れ た範囲に、铸型銅板の溶鋼側表面から測温素子先端までの距離を 1 6 mm以下とし、 且つ、 銬型幅方向の設置間隔を 2 0 0 mm以下として铸片全幅に相当する範囲に渡 つて設置される。 上記の流動パターンを推定する工程は、 以下から選択された一つで行うのが好ま しい:
(A) 铸型長辺銅板温度の経時変化から、 铸型長辺銅板温度が上昇する測定点の 分布を求め、 上昇する測定点の分布に基づいて铸型内溶鋼の流動パターンを推定す る。
(B) 、 铸型長辺銅板温度の経時変化から、 铸型長辺銅板温度が下降する測定点 の分布を求め、 下降する測定点の分布に基づいて铸型内溶鋼の流動パターンを推定 する。
(C) 铸型長辺銅板温度の経時変化から、 铸型長辺銅板温度が上昇する測定点及 び下降する測定点の分布を求め、 上昇する測定点の分布及び下降する測定点の分布 に基づいて銪型内溶鋼の流動パターンを推定する。 (D) 铸型幅方向の铸型銅板温度のピークの数とピークの位置により铸型内溶鋼 の流動パターンを推定する。
(E)測定された温度により铸型幅方向中央位置を基準とした铸型幅方向左右で、 铸型銅板温度の最大値と最大値の位置とを比較することにより铸型内溶鋼の偏流を 推定する。 第 2に、 本発明は以下からなる铸型銅板の温度計測装置を提供する:
連続铸造用铸型銅板背面に埋設された複数の測温素子;
前記測温素子は、 銬型内溶鋼湯面位置から铸片引抜き方向に 1 0〜1 3 5 mm 離れた範囲に、 铸型銅板の溶鋼側表面から測温素子先端までの距離を 1 6 mm以下 とし、 且つ、 铸型幅方向の設置間隔を 2 0 0 mm以下として铸片全幅に相当する範 囲に渡って設置されている。 上記の温度計測装置において、 測温素子が、 水箱中の冷却水とはシールされたパ イブ内を貫通して設置され、 且つ、 測温素子の設置される周囲にシールパッキンが 設けられのが好ましい。 第 3に、 本発明は以下からなる連続铸造铸片の表面欠陥判定方法を提供する: 铸型内のメニスカス位置から铸片引抜き方向に 1 0〜1 3 5 mm離れた範囲の 铸型銅板背面の幅方向に複数個の測温素子を配置し;
铸型銅板温度の幅方向分布を測定し;
铸型幅方向温度分布に基づいて铸片の表面欠陥を判定する。 上記の表面欠陥の判定は、 以下の一つによって行われる。
(A) 铸型幅方向温度分布の最大値に基づいて铸片の表面欠陥を判定する。
(B) 铸型幅方向温度分布の最小値に基づいて铸片の表面欠陥を判定する。
(C) 铸型幅方向温度分布の平均値に基づいて铸片の表面欠陥を判定する。
(D) 铸型幅方向温度分布の平均値と、 その铸片引き抜き速度における代表的な WO 00/51763 PCT/JPOO/ΟΊ 1¾1
6 铸型幅方向温度分布の平均値との差に基づいて铸片の表面欠陥を判定する。
(E) 铸型の中央に配置した浸漬ノズルを中心として、 铸型幅方向左側の温度分 布の最大値から最小値を差し引いた値と、 铸型幅方向右側の温度分布の最大値から 最小値を差し引いた値のうちで、 大きい方の値に基づいて鎵片の表面欠陥を判定す る。
(F) 铸型の中央に配置した浸漬ノズルを中心として、 铸型幅方向左側の温度分 布の最大値と铸型幅方向右側の温度分布の最大値との差の絶対値に基づいて铸片の 表面欠陥を判定する。
(G) 各測温素子による温度測定値のうちで単位時間当りの温度変動量の最大値 に基づいて錄片の表面欠陥を判定する。 第 4に、 本発明は以下からなる連続鎵造における溶鋼流動検知方法を提供する: 連続錶造用铸型銅板背面の、 铸片引抜き方向と直交する方向に、 複数の測温素 子を配置し;
これら複数の測温素子により铸型銅板温度を測定し;
溶鋼流動の空間周波数 f を溶鋼流動の変動波長 L (mm) を用いて f = 1 Z L で定義したとき、 測定された各铸型銅板温度をカットオフ空間周波数が 2 Z [铸型 幅 W] より大きく、 且つ、 0 . 0 1より小さい範囲として口一パスフィルター処理 し:
この口一パスフィル夕一処理した铸型銅板温度の温度分布に基づいて錶型内の 溶鋼流動状況を推定する。 上記の溶鋼流動検知方法は、 隣合う測温素子との間隔が 4 4. S Z S mmより広 く、 且つ、 0 . 4 4 3 X [铸型幅 W] ノ 6 mmより狭い範囲に調整されるの力好ま しい。
更に、 上記の溶鋼流動検知方法は、 両側の铸型幅の端点で測定データを折り返し て拡張したデ一夕系列を用いて、 口一パスフィルタ一処理を行うのが好ましい。 第 5に、 本発明は以下からなる連続铸造における溶鋼流動検知方法を提供する: 連続铸造用铸型銅板背面の、 铸片引抜き方向と直交する方向に、 隣合う測温素 子との間隔を 4 4 . 3 Z 3 mm〜 0 . 4 4 3 X [铸型幅 W] Z 6 mmとして複数 の測温素子を配置し;
これら複数の測温素子により铸型銅板温度を測定し;
測定された各铸型銅板温度を空間移動平均し;
この空間移動平均した铸型銅板温度の温度分布に基づいて铸型内の溶鋼流動状 況を推定する。 第 6に、 本発明は以下からなる連続鍀造における铸型内抜熱の不均一度評価方法 を提供する:
連続铸造用錶型銅板背面の、 铸片引抜き方向と直交する方向に、 複数の測温素 子を配置し;
これら複数の測温素子により铸型銅板温度を測定し;
測定された各铸型銅板温度を口一パスフィル夕一処理し;
铸型銅板温度の測定値とローパスフィル夕一処理した铸型銅板温度との差に基 づいて铸型内抜熱の不均一度を評価する。 第 7に、 本発明は以下からなる連続铸造における溶鋼流動検知方法を提供する: 連続铸造用铸型銅板背面の、 铸片引抜き方向と直交する方向に複数の測温素子 を配置し;
これら複数の測温素子により铸型銅板温度を測定し;
測定された各铸型銅板温度を 6 0秒以下の間隔で採取し;
この間隔で採取した铸型銅板温度に基づいて铸型内の溶鋼流動状況を推定する。 第 8に、 本発明は以下からなる連続铸造における溶鋼流動制御方法を提供する: 連続铸造用铸型の铸型長辺銅板背面の幅方向に複数の測温素子を配置して铸型 長辺銅板幅方向の温度分布を測定し;
測定された温度分布の最大値と最小値との差が 1 2 以下となるように、 铸型 WO 00/51763 PCT/JPOO/ΟΊ 161
に取り付けた磁場発生装置の磁場強度、 铸片引抜き速度、 浸漬ノズルの浸漬深さ、 浸漬ノズル内への A r吹き込み量のうちの何れか 1つ又は 2つ以上を調整する。 上記の溶鋼流動制御方法において、 铸型に取り付けた磁場発生装置の磁場強度、 銪片引抜き i$i 、 浸漬ノズルの浸漬深さ、 浸漬ノズル内への A r吹き込み量のうち の何れか 1つ又は 2つ以上を、 測定された温度分布の最大値と最小値との差が 1 2 °C以下で、 且つ、 浸漬ノズルを中心として铸型長辺銅板幅方向左右の対称位置にお ける温度差が 1 0 °C以下となるように、 調整するのが好ましい。
上記の溶鋼流動制御方法において、铸型に取り付けた磁場発生装置の磁場強度が、 浸漬ノズルを境として铸型幅方向左右で独立して調整されるのが好ましい。 第 9に、 本発明は以下からなる連続铸造における溶鋼流動制御方法を提供する: 連続銕造用铸型の铸型長辺銅板背面の幅方向に複数の測温素子を配置して铸型 長辺銅板幅方向各位置の温度を測定し;
この温度測定値に基づき各測定点での溶鋼の流速を求めて铸型長辺銅板幅方向 の溶鋼流速分布を求め;
求めた溶鋼流速分布の最大値と最小値との差が 0 . 2 5 s e c以下となる ように、 铸型に取り付けた磁場発生装置の磁場強度、 铸片引抜き速度、 浸漬ノズル の浸漬深さ、 浸漬ノズル内への A r吹き込み量のうちの何れか 1つ又は 2つ以上を 調整する。 上記の溶鋼流動制御方法において、 铸型に取り付けた磁場発生装置の磁場強度、 铸片引抜き ¾i 、 浸漬ノズルの浸漬深さ、 浸漬ノズル内への A r吹き込み量のうち の何れか 1つ又は 2つ以上を、 求めた溶鋼流速分布の最大値と最小値との差が 0 . 2 5 m/ s e c以下で、 且つ、 浸漬ノズルを中心として铸型長辺銅板幅方向左右の 対称位置における溶鋼流速の差が 0 . 2 O mZ s e c以下となるように、 調整する のが望ましい。 WO 00/51763 PCT/JP00/Oll¾l
9 上記の溶鋼流動制御方法において、铸型に取り付けた磁場発生装置の磁場強度が、 浸漬ノズルを境として铸型幅方向左右で独立して調整されるのが好ましい。
図面の簡単な説明 第 1図は、 最良の形態 1における铸型内溶鋼の流動パターンを示す模式図であ る。
第 2図は、 最良の形態 1における铸型内溶鋼の流動パターンと製品不良の発生量 との関係を示す図である。
第 3図は、 最良の形態 1の実施の形態の例を示す連続铸造機铸型部の正面断面概 略図である。
第 4図は、 最良の形態 1の実施の形態の例を示す铸型部の側面断面の概略図であ る。
第 5図は、 最良の形態 1の実施例 1における 2つの測定点における温度推移を示 す図である。
第 6図は、 最良の形態 1の実施例 1における測温結果から、 温度の経時変化別に 各測定点を示した図である。
第 7図は、 最良の形態 1の実施例 1において、 温度解析結果から検知した流動パ ターンの変化を示す図である。
第 8図は、 最良の形態 1の実施例 1において、 耐火物製棒にて測定した铸型内溶 鋼の表面流速の分布を示す図である。
第 9図は、 最良の形態 1の実施例 1において、 磁場の強度を高めた後の 2つの測 定点における温度推移を示す図である。
第 1 0図は、 最良の形態 1の実施例 2において、 補正前後の錶型長辺銅板温度を 示す図である。
第 1 1図は、 最良の形態 1の実施例 2において、 耐火物棒にて測定した溶鋼流速 を示す図である。 WO 00/51763 PCT/JPOO/ΟΠΐΙ
1 1 第 1 2図は、 最良の形態 2における水準 1の铸造条件でのメニスカス近傍の溶鋼 流速プロフアイルの測定結果を示す図である。
第 1 3図は、 最良の形態 2における水準 2の铸造条件でのメニスカス近傍の溶鋼 流速プロフアイルの測定結果を示す図である。
第 1 4図は、 最良の形態 2における水準 3の铸造条件でのメニスカス近傍の溶鋼 流速プロファイルの測定結果を示す図である。
第 1 5図は、 最良の形態 2における溶鋼流速プロファイルを測温素子により正確 に捉えるための測温素子の設置位置を示す図である。
第 1 6図は、 最良の形態 2において水モデルにより測定したメニスカス直下の流 速分布を示す図である。
第 1 7図は、 最良の形態 2において耐火物製棒の溶鋼流速計にて測定した溶鋼流 速の自己相関係数の計算結果を示す図である。
第 1 8図は、 最良の形態 2における铸型銅板の溶鋼側温度変化が埋設された測温 素子の出力となるモデルの電気的等価回路を示す図である。
第 1 9図は、 最良の形態 2における铸型銅板の溶鋼側温度変化が埋設された測温 素子の出力となるモデルの電気的等価回路を示す図である。
第 2 0図は、 最良の形態 2における铸型銅板の溶鋼側表面にステップ信号を与え た時の、 铸型銅板内各位置の铸型銅板温度の変化を表わす図である。
第 2 1図は、 最良の形態 2における溶鋼から铸型銅板用の冷却水までの温度分布 を模式的に表わす図である。
第 2 2図は、 最良の形態 2における铸型内溶鋼の流動パターンと铸型幅方向の铸 型銅板温度分布とを示す図である。
第 2 3図は、 最良の形態 2における実施の形態の例を示す連続铸造機铸型部の正 面断面の概略図である。
第 2 4図は、 最良の形態 2における実施の形態の例を示す連続铸造機铸型部の側 面断面の概略図である。
第 2 5図は、 最良の形態 2における測温素子の取り付け構造を示す連続铸造機铸 型部の側面断面の概略図である。 第 2 6図は、 最良の形態 2における铸型銅板温度と溶鋼流速との関係の 1例を示 す図である。
第 2 7図は、 最良の形態 2の実施例 1における铸型銅板温度の測定結果の 1例を 示す図である。
第 2 8図は、 最良の形態 2の実施例 1における铸型銅板温度の測定結果の 1例を 示す図である。
第 2 9図は、 最良の形態 2の実施例 1において铸型銅板温度から推定した溶鋼流 速の分布を示す図である。
第 3 0図は、 最良の形態 2の実施例 1において铸型銅板温度から推定した溶鋼流 速の分布を示す図である。
第 3 1図は、 最良の形態 2の実施例 2において、 連々铸の 1ヒート目に測定され た铸型内の溶鋼流速分布を示す図である。
第 3 2図は、 最良の形態 2の実施例 2において連々铸の 5ヒート目に測定された 铸型銅板温度分布を示す図である。
第 3 3図は、 最良の形態 2の実施例 2において、 連々铸の 5ヒート目に測定され た铸型内の溶鋼流速分布を示す図である。
第 3 4図は、 最良の形態 2の実施例 3において、 連々铸の 1ヒート目に測定され た铸型内の溶鋼流速分布を示す図である。
第 3 5図は、 最良の形態 2の実施例 3において連々铸の 3ヒート目に測定された 铸型銅板温度分布を示す図である。
第 3 6図は、 最良の形態 2の実施例 3において、 連々铸の 3ヒート目に測定され た铸型内の溶鋼流速分布を示す図である。 第 3 7図は、 最良の形態 3における铸型内溶鋼の流動状況と铸型銅板温度のプロ ファイルとの対比を模式的に示した図である。
第 3 8図は、 最良の形態 3において溶鋼流動状況がパターン 1のときの铸型銅板 温度の幅方向分布、 及び铸型銅板温度の最大値、 最小値、 平均値を模式的に示した 図である。
第 3 9図は、 最良の形態 3において溶鋼流動状況がパターン 2のときの铸型銅板 温度の幅方向分布、及び铸型銅板温度の最大値、最小値を模式的に示した図である。 第 4 0図は、最良の形態 3における連続铸造機铸型部の正面断面の概略図である。 第 4 1図は、 最良の形態 3の実施例 1における調査結果であり、 铸型銅板温度の 最大値 (Tm a x) と冷延コイルの表面欠陥との関係を示す図である。
第 4 2図は、 最良の形態 3の実施例 2における調査結果であり、 銬型銅板温度の 最小値 (Tm i n) と铸片表面のブロー疵及びノロカミ欠陥との関係を示す図である。 第 4 3図は、 最良の形態 3の実施例 3における調査結果であり、 最大高低温度差 及び最大左右温度差と冷延コィルの表面欠陥との関係を示す図である。
第 4 4図は、最良の形態 3の実施例 4における調査結果であり、平均銅板温度 (T a v t.) および最大高低温度差と、 铸片表面のブロー疵及びノロカミ欠陥との関係を 示す図である。
第 4 5図は、 最良の形態 3の実施例 5における铸型銅板温度の測定値を示す図で ある。
第 4 6図は、 最良の形態 3の実施例 5における調査結果であり、 温度変動量の最 大値の推移を冷延コイルに対応して示す図である。
第 4 7図は、 最良の形態 3の実施例 6における調査結果であり、 铸片引き抜き速 度と平均銅板温度 (T a v e) との関係を冷延コイルの表面欠陥発生率別に示す図で ある。 WO 00/51763 PCT/JPOO/Olttl
14 第 4 8図は、 最良の形態 4の水準 1の踌造条件における溶鋼流速プロファイルの 測定結果を示す図である。
第 4 9図は、 最良の形態 4の水準 2の铸造条件における溶鋼流速プロファイルの 測定結果を示す図である。
第 5 0図は、 最良の形態 4の水準 3の铸造条件における溶鋼流速プロファイルの 測定結果を示す図である。
第 5 1図は、 最良の形態 4において磁場発生装置の磁束密度を変化させた時の铸 型長辺銅板温度の経時変化を示す図である。
第 5 2図は、 最良の形態 4における铸型長辺銅板の温度変化の遷移期間をヒスト グラムにまとめて示す図である。
第 5 3図は、最良の形態 4における連続銕造機銬型部の正面断面の概略図である。 第 5 4図は、 最良の形態 4の実施例 1において、 収集した銬型長辺銅板温度の生 データに基づく铸型幅方向の温度分布を示す図である。
第 5 5図は、 最良の形態 4において平均化個数 Mの変更による減衰量 Rの変化を 算出した結果を示す図である。
第 5 6図は、 第 5 4図に示す温度分布を空間移動平均した温度の分布図である。 第 5 7図は、 最良の形態 4の実施例 2において、 収集した铸型長辺銅板温度の生 データに基づく铸型幅方向の温度分布を示す図である。
第 5 8図は、 第 5 7図に示す温度分布を平均化個数を 3として空間移動平均した 温度の分布図である。
第 5 9図は、 第 5 7図に示す温度分布を平均化個数を 7として空間移動平均した 温度の分布図である。
第 6 0図は、 第 5 7図に示す温度分布を平均化個数を 9として空間移動平均した 温度の分布図である。
第 6 1図は、 最良の形態 4の実施例 3において、 熱電対埋め込み間隔が 1 0 0 m mのとき温度分布を平均化個数を 3として空間移動平均した温度の分布図である。 第 6 2図は、 最良の形態 4の実施例 3において、 熱電対埋め込み間隔が 1 5 0 m mのとき温度分布を平均化個数を 3として空間移動平均した温度の分布図である。 第 6 3図は、 最良の形態 4の実施例 4において、 端点でデータを折り返し拡張し たデータを使用して空間移動平均した温度の分布図である。
第 6 4図は、 最良の形態 4の実施例 5において、 データ収集間隔を 1秒間隔とし た時の、 铸型長辺銅板温度の経時変化を示す図である。
第 6 5図は、 最良の形態 4の実施例 5において、 データ収集間隔を 5秒間隔とし た時の、 铸型長辺銅板温度の経時変化を示す図である。
第 6 6図は、 最良の形態 4の実施例 5において、 データ収集間隔を 1 0秒間隔と した時の、 铸型長辺銅板温度の経時変化を示す図である。
第 6 7図は、 最良の形態 4の実施例 5において、 デ一夕収集間隔を 6 0秒間隔と した時の、 铸型長辺銅板温度の経時変化を示す図である。
第 6 8図は、 最良の形態 4の実施例 5において、 デ一夕収集間隔を 2 4 0秒間隔 とした時の、 铸型長辺銅板温度の経時変化を示す図である。
第 6 9図は、 最良の形態 4の実施例 6において、 铸型幅方向平均値 (D 0) と凝 固シェル厚みの標準偏差 ( σ ) との関係を示す図である。
第 7 0図は、 最良の形態 5において铸型内溶鋼の流動パターンがパターン Bの場 合のメニスカスでの溶鋼流速分布例を示す図である。
第 7 1図は、 最良の形態 5において鎵型内溶鋼の流動パターンがパターン Bの場 合の铸型長辺銅板温度の温度分布例を示す図である。
第 7 2図は、 最良の形態 5における溶鋼から铸型銅板用の冷却水までの温度分布 を模式的に表わした図である。
第 7 3図は、 最良の形態 5における铸型銅板温度と溶鋼流速との関係の 1例を示 す図である。
第 7 4図は、 最良の形態 5における铸型長辺銅板温度の測定結果の例を示す図で ある。
第 7 5図は、 最良の形態 5における铸型長辺銅板温度の測定結果の他の例を示す 図である。
第 7 6図は、 第 7 4図に示す铸型長辺銅板温度を溶鋼流速に換算した図である。 第 7 7図は、 第 7 5図に示す铸型長辺銅板温度を溶鋼流速に換算した図である。 第 7 8図は、 最良の形態 5の実施の形態の例を示す連続铸造機の正面断面の概略 図である。
第 7 9図は、 最良の形態 5の実施の形態の例を示す連続铸造機の側面断面の概略 図である。
第 8 0図は、 最良の形態 5の実施例 1における铸型銅板温度の測定結果の 1例を 示す図である。
第 8 1図は、 第 8 0図の温度分布から推定した溶鋼流動状況を示す図である。 第 8 2図は、 最良の形態 5の実施例 1における铸型銅板温度の測定結果の 1例を 示す図である。
第 8 3図は、 第 8 2図の温度分布から推定した溶鋼流動状況を示す図である。 第 8 4図は、 最良の形態 5の実施例 1における铸型銅板温度の測定結果の 1例を 示す図である。
第 8 5図は、 第 8 4図の温度分布から推定した溶鋼流動状況を示す図である。 第 8 6図は、 最良の形態 5の実施例 2における铸型銅板温度の測定結果の 1例を 示す図である。
第 8 7図は、 最良の形態 5の実施例 2における銬型銅板温度の測定結果の 1例を 示す図である。
第 8 8図は、 最良の形態 5の実施例 3における铸型銅板温度の測定結果の 1例を 示す図である。
第 8 9図は、 最良の形態 5の実施例 3における铸型銅板温度の測定結果の 1例を 示す図である。
第 9 0図は、 最良の形態 5の実施例 4における铸型銅板温度の測定結果の 1例を 示す図である。
第 9 1図は、 最良の形態 5の実施例 4における铸型銅板温度の測定結果の 1例を 示す図である。
第 9 2図は、 最良の形態 5の実施例 5における铸型銅板温度の測定結果の 1例を 示す図である。
第 9 3図は、 最良の形態 5の実施例 5における铸型銅板温度の測定結果の 1例を 示す図である。
第 9 4図は、 最良の形態 5の実施例 5における铸型銅板温度の測定結果の 1例を 示す図である。
第 9 5図は、 最良の形態 5の実施例 5における铸型銅板温度の測定結果の 1例を 示す図である。
第 9 6図は、 最良の形態 5の実施例 5において磁場発生装置の磁束密度を変化さ せた時の銬型長辺銅板温度の経時変化の 1例を示す図である。
発明を実施するための最良の形態
最良の形態 1 ( 溶鋼の流動パターン制御方法 )
铸型内溶鋼の流動パターンは、 偏流のない左右対称な流動であつても铸型内を浮 上する A r気泡や印加される磁場の影響で複雑に変化する。 その流動パターンを簡 略化すると、 第 1図に示すパターン Aからパターン Cの 3つのパターンに大別でき る。 尚、 第 1図において、 3は铸型短辺、 4は溶鋼、 5は凝固シェル、 8は浸漬ノ ズル、 9は吐出孔、 1 0は吐出流、 1 3はメニスカス、 1 4はモールドパウダーで ある。
この中でパターン Aは、 浸漬ノズル 8からの吐出流 1 0力 鎵型短辺 3側の凝固 シェル 5に到達 ·衝突した後に 2つの流れに分離し、 1つの流れは、 铸型短辺 3側 の凝固シェル 5に沿ってメニスカス 1 3まで上昇して、 更にメニスカス 1 3を铸型 短辺 3側から铸型中央側 (浸漬ノズル 8側) に向かう流れとなり、 他の 1つの流れ は、 凝固シェル 5への衝突点から铸型下方に下降する流れとなる流動パターンであ る。
これに対しパターン Bは、 吐出流 1 0への A r気泡の浮上の影響あるいは磁場印 加の影響等により、 浸漬ノズル 8からの吐出流 1 0が錄型短辺 3側の凝固シェル 5 に到達せず、 吐出孔 9から铸型短辺 3側の凝固シェル 5までの間で分散して、 上昇 流と下降流とを形成し、 そして、 メニスカス 1 3では、 浸漬ノズル 8と铸型短辺 3 との中間位置付近を境として、 浸漬ノズル 8側では铸型中央側 (浸漬ノズル 8側) に向かう流れと、 鎵型短辺 3側では逆に铸型短辺 3に向かう流れとなる流動パター ンである。
又、 パターン Cは、 浸漬ノズル 8近傍に吐出流 1 0の上昇流が存在する流動パ夕 —ンで、 主に粗大な A r気泡の浮上の影響或は磁場印加の影響等により出現する。 パターン Cではメニスカス 1 3において、 铸型中央側 (浸漬ノズル 8側) から铸型 短辺 3側に向かう流れが主流となる。
铸型内溶鋼の流動パターン別に、 薄鋼板製品におけるモールドパウダー性欠陥に よる製品不良の発生量を調査した。 第 2図はその調査結果である。 第 2図に示すよ うに、 铸型内溶鋼の流動パターンがパターン Bの場合にモールドパウダー性欠陥が 少なく、 铸片品質が最も良好であることが判明した。 この理由は以下のように考え られる。
パターン Aの場合、 铸型中央と铸型中央から铸型幅の 1 Z 4隔てた位置との間の メニスカスにおいて、 溶鋼中へのモールドパウダー混入の原因となる渦が発生し易 く、 又、 溶鋼の表面流速が速い場合には、 溶鋼表面流によりモールドパウダーが削 り取られ、 この原因によるモールドパウダー混入も発生し易いためである。 又、 ノ\° ターン Cの場合、 浸漬ノズル近傍の溶鋼の上昇流や、 浮上する粗大な A r気泡によ つて、 メニスカスの変動 ·擾乱が引き起こされ、 モールドパウダーの混入が発生す るほか、 溶鋼の表面流速が速い場合には铸型短辺近傍で縦渦が発生し、 モールドパ ウダ一混入の原因となるからである。 これに対し、 パターン Bの場合には、 メニス カスにおける渦の発生や、 強い表面流の出現がなく、 モールドパウダー巻き込みの 発生しにくい流動条件になっているためである。
このように、 铸型内溶鋼の流動パターンをパターン Bとすることによって、 铸片 の品質低下を防止することができ、 製品格落ち率の低減、 铸片無手入れ率の向上が 実現できる。 しかし前述のように、 铸造条件を同一としても铸型内溶鋼の流動パ夕 —ンは铸造途中で変化する。 銬造中に流動パ夕一ンを検知することができれば、 所 定の流動パターンから逸脱している場合、 印加する磁場強度を変更して所定の流動 パターンに戻すことができる。
本発明者等は、 铸型長辺銅板の温度を測定することで、 铸型内溶鋼の流動パター ンを検知できることを見いだした。 即ち、 铸型のメニスカス近傍の铸型長辺銅板温 度は、 溶鋼の上昇流に相当する位置で铸型長辺銅板温度が高くなり、 そして、 流動 パターンの変化に対応して铸型長辺銅板温度の高い位置が変化する。 例えば、 バタ ーン Aの場合には铸型短辺近傍に上昇流が形成されるため、 鎵型短辺近傍の铸型長 辺銅板温度が高くなる。 これは、 吐出流は铸型内溶鋼より温度が高いので、 吐出流 が上昇する位置で、 溶鋼の温度が高くなると共に溶鋼の流動により熱伝達が促進さ れ、铸型長辺銅板に伝わる熱量が増加して铸型長辺銅板温度が高くなるからである。 しかし、 铸型長辺銅板温度は、 溶鋼流動の影響のみで変化するものではなく、 铸 型と凝固シェルとの接触状態やモールドパウダーの流入状態等の変化によっても変 化する。 そのため、 単に铸片幅方向の銬型長辺銅板温度の絶対値の分布から溶鋼流 動を検知すると、 誤って検知することも発生する。 即ち、 このような溶鋼流動以外 の要因による錶型長辺銅板温度への影響を除去しないと、 正確な流動パターンを検 知することはできない。
本発明者等は、 铸型長辺の銅板温度を測定する各測定点毎の温度の経時変化、 即 ち、 ある時間毎の温度の上昇速度や下降速度を指標とすることで、 溶鋼流動以外の 要因による铸型長辺銅板温度への影響を最小にすることができ、 正確な流動パター ンを検知できることを見いだした。 溶鋼流動以外の要因による铸型長辺銅板の温度 変化は、 比較的緩やかに起こるためである。
その際に、铸型長辺銅板温度が上昇する測定点及び下降する測定点の分布を求め、 上昇する測定点の分布及び Z又は下降する測定点の分布に基づいて流動パターンを 検知すれば、 一層正確に検知できることが分かった。 これは、 流動パターンが変化 すると、 铸型長辺銅板温度が分布を持つて変化するためである。
又、 铸型下端より下方で铸片幅方向の凝固シェルの表面形状を測定し、 凝固シェ ルの表面形状から、 铸型長辺銅板と凝固シェルとの間の伝熱抵抗を推定し、 推定し た伝熱抵抗により各測定点の铸型長辺銅板温度を補正すれば、 铸型と凝固シェルと の接触状態による铸型長辺銅板温度に及ぼす影響を低減でき、 一層正確に流動パ夕 —ンを検知することができる。 この場合、 メニスカス近傍の铸型長辺銅板温度の測 定値に対して铸型下端より下方で測定した凝固シェルの表面形状をフィードバック させるので、 フィードバックされる凝固シェルの表面形状デ一夕は凝固シェルがメ ニスカス近傍から表面形状測定位置に到達するまでの時間差を伴ったものとなる。 しかし、 仮に表面形状測定位置がメニスカスから 1 . 5 m下方の位置でも、 銬片引 抜き速度が 1 . 8 mZm i nであれば、 その所要時間は 5 0秒程度である。 铸型内 溶鋼の流動制御においては、 短い時間間隔での制御、 例えば印加する磁場を変更す ると、 かえって発散する傾向があるため、 ある程度長周期での制御が適している。 従って、 この程度の時間差は問題にはならず、 十分に流動制御が可能である。 吐出流に印加する磁場は、 磁場が水平方向に移動する移動磁場を用いること力好 ましい。 移動磁場では、 適切な磁場強度を選択して印加することにより、 直流電流 による静磁場に比較して、 溶鋼流速や流動ノ ターンを自由に制御することができる からである。 本発明を図面に基づき説明する。 第 3図は本発明の 1つの実施の形態を示す連続 铸造機铸型部の正面断面の概略図、 第 4図は側面断面の概略図である。
第 3図及び第 4図において、 相対する铸型長辺 2と、 铸型長辺 2内に内装された 相対する铸型短辺 3とから構成された铸型 1の上方に、 タンディッシュ 6力 己置さ れている。 タンディッシュ 6の底部には固定板 2 2、 摺動板 2 3、 及び整流ノズル の下面側には浸漬ノズル 8が配置されて、 夕ンディッシュ 6から铸型 1への溶鋼流 出孔 2 8力形成される。 図示せぬ取鍋からタンディッシュ 6内に注入された溶鋼 4 は、 溶鋼流出孔 2 8を経由して、 浸漬ノズル 8の下部に設けられ、 且つ铸型 1内の 溶鋼 4に浸漬された吐出孔 9より、 吐出流 1 0を铸型短辺 3に向けて铸型 1内に注 入される。 そして、 溶鋼 4は铸型 1内で冷却されて凝固シェル 5を形成し、 铸型 1 の下方に引き抜かれ銹片となる。
固定板 2 2の溶鋼流出孔 2 8には、ポーラス煉瓦 2 5が嵌合して設けられており、 溶鋼流出孔 2 8の壁面への A 1 23付着を防止するため、 ポーラス煉瓦 2 5から溶 鋼流出孔 2 8円に A rが吹き込まれている。 吹き込まれた A rは、 溶鋼 4と共に浸 漬ノズル 8を通り吐出孔 9を介して铸型 1内に流入し、 铸型 1内の溶鋼 4を通って メニスカス 1 3に浮上し、 メニスカス 1 3上に添加したモールドパウダー 1 4を貫 通して大気に至る。
铸型長辺 2の背面には、 浸漬ノズル 8を境として铸型長辺 2の幅方向左右で 2つ に分割された磁場発生装置 1 1及び磁場発生装置 1 2が、 磁場発生装置 1 1 、 1 2 の铸造方向の中心位置を吐出孔 9の下端位置と铸型 1の下端位置との範囲として、 铸型長辺 2を挟んで対向して配置されている。 この磁場発生装置 1 1 、 1 2は、 磁 場電源制御装置 1 9に結線され、 磁場電源制御装置 1 9により印加する磁場の強度 を個別に制御される。 尚、 磁場発生装置 1 1、 1 2の磁場強度は、 最大磁場強度が 0 . 2テスラ〜 0 . 4テスラ程度の工業的に通常使用されているものでよい。
磁場発生装置 1 1、 1 2より印加する磁場は、直流電流による静磁場でも良いが、 前述のように磁場が水平方向に移動する移動磁場が好ましい。移動磁場の場合には、 磁場強度のみならず磁場の移動方向も個別に制御できるので、 流動制御が一層行い 易くなる。 移動磁場では、 移動磁場の移動方向を铸型短辺 3側から浸漬ノズル 8側 とすることで、 吐出流 1 0力減速され、 逆に、 移動方向を浸漬ノズル 8側から铸型 短辺 3側とすることで、 吐出流 1 0が加速される。 尚、 移動磁場の場合には磁場発 生装置 1 1 、 1 2を铸型長辺 2を挟んで対向する必要はなく、 片側の铸型長辺 2の 背面に配置するだけでも、 吐出流 1 0の制御はできる。 但し、 片側の背面にのみ配 置する場合には磁場強度が減衰するため、 磁場強度の高い移動磁場発生装置を配置 する必要がある。
铸型長辺 2の銅板には、 铸型長辺 2の幅方向に複数の孔を設け、 铸型 1内におけ る銬型長辺 2の銅板温度を測定する測定点 1 5とする。 各測定点 1 5には、 測温素 まとして熱電対 1 6が銅板の孔に挿入され、孔底部の銅板に接して配置されている。 そして、熱電対 1 6と結線された温度計本体 1 7にて铸型長辺銅板温度を測定する。 各測定点 1 5は水平方向に並べて配置され、 各測定点 1 5間の距離は 2 0 0 mm以 下、 又、 メニスカス 1 3からの距離は 3 0 0 mm以内とすること力好ましい。 各測 定点 1 5間の距離が 2 0 0 mmを超えると測定点 1 5の数が少な過ぎて流動パター ンの検知が不正確となり、 又、 メニスカス 1 3からの距離が 3 0 0 mmを超えると 铸型長辺 2の銅板温度が水平方向に流れる吐出流 1 0の影響を受け、 同様に流動パ 夕一ンの検知が不正確となるためである。
温度計本体 1 7で測定された铸型長辺銅板温度はデータ解析装置 1 8に送られ、 各測定点 1 5における銅板温度の上昇率や下降率を解析する。 そして同時に、 铸型 長辺 2の幅方向において、銅板温度の変化が類似する測定点 1 5の分布を解析する。 そして、 これらの解析データを基に、 データ解析装置 1 8は铸型 1内の溶鋼流動パ 夕一ンを検知し、 検知した流動パターンの信号を磁場電源制御装置 1 9に送る。 磁 場電源制御装置 1 9は、 送られて来た流動パターンの信号に基づき、 磁場発生装置 1 1 , 1 2から印加する磁場強度を個別に制御して、 流動パターンをパターン Bと なるように制御する。 磁場強度の調整は、 磁場発生装置 1 1 、 1 2に供給する電流 を増減させて行なう。 又、 移動磁場 (交流電源を用いる) の場合には、 電流の周波 数を変化させても磁場強度の調整ができる。 流動パターンの制御方法は、 パターン Aとなった場合には、 磁場強度を強くして吐出流 1 0を減速し、 又、 パターン と なった場合には、 減速方向の磁場強度を弱くする若しくは加速方向の磁場強度を強 くして吐出流 10を増速させれば、 共にパターン Bとすることができる。
又、 铸型 1の直下には、 凝固シェル 5の表面形状を測定する変位計 20、 20 a, 20 b, 20 c、 20dが配置され、 変位計 20、 20 a、 20b、 20 c、 20 dは演算機 21に結線されている。 各変位計 20、 20 a、 20 b、 20 c、 20 dは、 移動装置 (図示せず) により、 それぞれが铸片幅方向に移動可能であり、 铸 片幅全体の凝固シェル 5の表面形状を測定することができる。変位計 20、 20 a, 20b、 20 c、 20 dには渦流式距離計等の距離測定器を用い、 それぞれの変位 計 20、 20 a、 20b、 20 c、 20 dで変位計 20、 20 a、 20b、 20 c、 20 dと凝固シェル 5との距離を測定し、 この測定値を基に演算機 21力解析処理 して、 凝固シェル 5の幅方向の凹凸等の表面形状を決定する。 そして、 演算機 21 は、 こうして決定した表面形状から、 铸片幅方向の铸型長辺 2の銅板と凝固シェル 5との間の伝熱抵抗を推定し、 推定した伝熱抵抗をデ一夕解析装置 18に送る。 データ解析装置 18は送られてきた伝熱抵抗のデータを基に、 铸型長辺 2の銅板 温度を補正し、 補正した銅板温度から铸型 1内の溶鋼流動パターンを検知すること ができる。 尚、 データ解析装置 18は、 前述したように、 伝熱抵抗のデ一夕を用い ずに測定された銅板温度から溶鋼 4の流動パ夕一ンを検知することもできる構成に なっているが、 補正した銅板温度から検知することでより正確になる。 特に、 炭素 含有量が 0. 1〜0. 15w t %の亜包晶領域の炭素鋼の場合には、 凝固シェル 5 の厚みが铸片幅方向で不均一になりやすく、 凝固シェル 5の表面に凹凸が発生する ので、 伝熱抵抗により補正した銅板温度を用いれば、 正確な流動パターンを検知す ることができる。
銅板温度の補正方法は、 例えば、 凝固シェル 5の凹部は、 铸型長辺銅板との接触 状態が悪く、 伝熱抵抗が低くなり、 その分測定される錶型長辺銅板温度が低下する ため、 凝固シェル 5の凹部の伝熱抵抗を凸部と同等になるように補正することで、 凹部の铸型長辺銅板温度が高温側に補正される。 尚、 鎵造開始する前に、 浸漬ノズ ル 8の吐出孔 9の吐出角度や断面積、 浸漬ノズル 8の浸漬深さ、 単位時間当たりの 溶鋼 4の铸型 1内への注入量、 印加する磁場強度、 及び、 A r吹き込み量等の錡造 条件を適切に選択して、 铸型 1内の溶鋼流動パターンをパターン Bとして、 铸造を 開始する。 本実施の形態では、 1 0 0 mm程度の深さまでメニスカス 1 3に浸漬される耐火 物製棒 2 6と、耐火物製棒 2 6に作用するカを検知する受圧センサー 2 7とを設け、 メニスカス 1 3の数力所において溶鋼 4の表面流により耐火物製棒 2 6に作用する 力から表面流速を測定し、 流動パ夕一ンが所定のパターンになっているかを確認し た。 3つの流動パターンでそれぞれ異なる表面流速分布になるので、 流動パターン が類推できる。 尚、 耐火物製棒 2 6及び受圧センサー 2 7は確認のために配置した もので、 本発明の実施に当たり必ずしも配置する必要はない。
上記説明では、 磁場発生装置 1 1、 1 2力浸漬ノズル 8を境として铸型長辺 2の 幅方向で分割されているが、 本発明は铸型長辺 2の幅方向全体を覆う 1つの磁場発 生装置でも実施することができる。 その場合、 移動磁場を用いる際には、 浸漬ノズ ル 8を境として、 左右の磁場の移動方向が逆向きとなるように予め磁場電源制御装 置 1 9と結線させること力必要である。 但し、 分割された磁場発生装置 1 1、 1 2 に比較して 1つの磁場発生装置では流動制御が若干困難となる。又、上記説明では、 5つの変位計を用いて説明しているが、 変位計の数は铸片の幅や変位計の移動速度 等から適宜決めれば良い。
〔実施例 1〕
第 3図及び第 4図に示す連続铸造機における実施例を説明する。 錶片サイズは厚 み 2 5 0 mm、 幅 1 6 0 0 mmであり、 低炭素 A 1キルド鋼を引抜き速度 2. 5 m Zm i nで铸造した。 印加する磁場を移動磁場とし、 磁場発生装置の鎵造方向の中 心を吐出孔下端から 1 5 0 mmの位置とした。 溶鋼流出孔内への A r吹き込み量は 9 N 1 /m i nである。 銬型長辺銅板には上端から 1 3 0 mm (メニスカスから 5 0 mmの位置) の位置に、 5 0 mm間隔で孔を設けて熱電対を配置し銬型長辺銅板 温度を測定した。
第 5図に A点及び B点の 2つの測定点における铸型長辺銅板温度の測定例を示す。 図に示すように、時刻 Τ , —Δ Τでは B点の温度が A点の温度に比べて高かったが、 時刻 T t の直前から A点の温度は上昇を開始し、 又、 B点の温度は下降を開始し、 そして、 時刻 の前後で A点及び B点の 2つの測定点における温度は逆転し、 そ の後、 時刻 + Δ Τでは A点及び B点とも逆転したまま温度力安定していた。 このような時刻 T , 前後での铸型長辺幅全体の各測定点における温度の経時変 化を第 6図に示す。 第 6図において、 秦印は時刻 前後で温度変化がない測定点 1 5、 ◎は温度が上昇した測定点 1 5、 Xは温度が下降した測定点 1 5である。 図 に示すように、 温度が上昇した測定点は鎵型短辺 3側に分布し、 又、 温度が下降し た測定点は浸漬ノズル 8と铸型短辺 3との中間位置に分布しており、 温度が上昇し た測定点と下降した測定点とが、 特徴的な分布を示していることが分かる。 尚、 第 6図には第 5図に示した Α点及び Β点の 2つの測定点を併せて示してレ る。
上記の温度解析結果に基づき、 铸型内の溶鋼流動パターンを検知した結果を第 7 図に示す。第 7図に示すように、 時刻 T — Δ Τではパターン B、 時刻 T i + Δ Τ ではパターン Aであると検知された。
第 8図は、 同じ時期に耐火物製棒にて測定した铸型内溶鋼の表面流速の分布を示 す図である。 時刻 一 Δ Τでは、 浸漬ノズルと铸型短辺との中間位置を境に、 浸 漬ノズル側では铸型中央に向いた流れで、 逆に、 铸型短辺側では铸型短辺に向いた 流れ、 即ち、 パターン Bの流れとなっていた。 ところが時刻 + Δ Τでは表面流 は铸型短辺から铸型中央に向いた流れ、 即ち、 パターン Αとなっていた。 このよう に、溶鋼の表面流の分布からも時刻 T , — Δ Τではパターン B、時刻 T > + Δ Τで はパターン Aと確認され、 銅板温度の測定から検知したパターンが正確であること を証明している。
そこで、 磁場発生装置に供給する電流を増加して浸漬ノズルの左右の移動磁場の 強度を高め、 吐出流を減速した。 この状態で铸造を継続しつつ上記の A点及び B点 の 2つの測定点における温度変化を測定した結果を第 9図に示す。 供給する電流を 変更した直後から A点の温度は下降し、 B点の温度は上昇し、 そして、 時刻 1\ 一 Δ Τと同一の状態で安定した。メニスカスにおける表面流の分布も時刻 T , —A T と同一となったことを耐火物製棒により確認した。
本実施例により得られた铸片を薄鋼板に圧延した結果、 モールドパウダー性欠陥 の発生量は低く、 高い歩留りを達成することができた。 尚、 第 6図及び第 7図にお ける符号は、 第 3図及び第 4図と同一である。
〔実施例 2〕
第 3図及び第 4図に示す連続铸造機における実施例を説明する。 铸片サイズは厚 み 250mm、 幅 1600mmであり、 炭素含有量が 0. 12wt%の炭素鋼を引 抜き速度 1. 8mZmi nで铸造した。 印加する磁場を移動磁場とし、 磁場発生装 置の铸造方向の中心を吐出孔下端から 150mmの位置とした。 溶鋼流出孔内への A r吹き込み量は 9 N 1 /m i nである。 铸型長辺銅板には上端から 130mm
(メニスカスから 50mmの位置) の位置に、 50mm間隔で孔を設けて熱電対を 配置し铸型長辺銅板温度を測定した。 本実施例では、 铸型直下に設けた 5台の変位 計で凝固シェルの表面形状を測定して铸型長辺銅板温度を補正した。
第 10図は、 ある時刻における铸型長辺銅板温度の測定データを示す図であり、 破線は補正前の铸型長辺銅板温度、 実線は補正後の铸型長辺銅板温度を示す。 尚、 铸型長辺銅板と凝固シェルとの間隙を標準的な値にそろえて伝熱抵抗を推定し、 铸 型長辺銅板温度を補正した。 補正前の温度は昇降が激しく铸型長辺銅板温度の経時 変化を正確に ίΕΜすることが困難であつたが、 補正することで铸型長辺銅板温度の 高い時間帯を正確に把握すること力可能であった。
第 11図は、 同一時刻に第 10図に示した測定点近傍において、 メニスカスに浸 潰した耐火物棒にて測定した溶鋼流速である。 第 10図の铸型長辺銅板温度の高い 時間帯が発生した時刻と同一時刻に、 溶鋼流速の速い時間帯が発生していた。 この ように、 铸型長辺銅板温度を凝固シェル表面形状から補正することで、 一層正確に 流動パターンを検知することができた。
最良の形態 2 ( 溶鋼の流動パターン推定方法とそのための装置) 本発明者等は、 メニスカス近傍に複雑な溶鋼流動があっても、 精度良く溶鋼流動 状況を検知するために、 铸型銅板に埋設する測温素子の設置位置を検討した。
第一に、 铸型幅方向の測温素子の設置間隔について検討した。 メニスカス近傍の 複雑な溶鋼流動の中でも、 铸型幅方向に沿ったメニスカス近傍の溶鋼流速プロファ ィルは品質管理上特に重要であり、 そこで、 後述の実施例で使用した連続铸造機を 用い、 耐火物製棒の一端をメニスカスに浸潰させ、 溶鋼流により耐火物製棒が受け る力をロードセルで測定して溶鋼流速を計測する溶鋼流速計により、 メニスカス近 傍の铸型幅方向に沿った溶鋼流速プロファイルを測定した。 この溶鋼流速プロファ ィルの測定は、 鐯片引抜き速度と铸片幅との組み合せを水準 1〜 3の 3水準に変更 して実施した。 表 1に各水準の铸造条件を示す。 又、 水準 1〜3におけるメニスカ ス近傍の溶鋼流速プロファイルの測定結果を第 1 2図〜第 1 4図に示す。 尚、 第 1 2図〜第 1 4図において、 縦軸のメニスカス溶鋼流速で 「正」 の値は铸型短辺側か ら浸漬ノズル側への流れを表わし、 「負」 の値はその逆向きの流れを表わすもので、 以下本発明ではメニスカスの溶鋼流速をこのように表示する。 表 1
Figure imgf000029_0001
第 1 2図〜第 1 4図に示すように、 铸型幅方向に沿った、 メニスカス近傍の溶鋼 流速プロファイルの波長、即ち溶鋼流速の高低の波長は、水準 1では 1 7 5 O mm, 水準 2では 8 0 0 mm、 水準 3では 8 8 O mmとなり、 8 0 0〜 1 8 0 0 mm程度 であることが分かる。 この溶鋼流速プロファイルを铸型銅板に埋設した測温素子で正確に捉えるには、 第 1 5図に示すように、 1波長の間に少なくとも 5点の温度測定点が必要である。 尚、 第 1 5図はメニスカス近傍の溶鋼流速の高低の波長と鎵型銅板温度とを対応し て示すもので、 本発明者等の経験により溶鋼流速が速い場所ほど铸型銅板温度が高 くなることが分かっている。
従って、 溶鋼流速の高低の波長が 8 0 0〜 1 8 0 0 mmの場合には、 2 0 0〜4 5 0 mmの間隔で測温素子を設置すれば良いことになる。 しかし、 前述の第 1 2図 〜第 1 4図に示すように同一の連続铸造機であっても铸造条件によりメニスカス近 傍の溶鋼流速プロファイルが変化するので、 上記の最も短い溶鋼流速の高低の波長 を捉えることができるように、 2 0 0 mm以下の間隔で測温素子を設置する必要が ある。
第二に、 測温素子の铸片引抜き方向の設置位置について検討した。 本発明はメニ スカス近傍の溶鋼流動を推定することを目的としているので、 できるだけメニスカ スの近くに測温素子を設置する必要がある。 しかし、 铸型内へ注入された溶鋼流量 と、 铸片引抜き速度との微妙なバランスの揺らぎにより、 メニスカスの位置は铸片 引抜き方向に変動する。 その変動量は一般的に最大で ± 1 0 mm程度である。 測温 素子の設置位置は、 このメニスカス位置変動範囲よりも下方とする必要がある。 何 故なら、 測温素子位置よりもメニスカスが铸片引抜き方向下方に下がると、 測定さ れる铸型銅板温度が大きく下降し、 メニスカス近傍の溶鋼流動の推定に大きな誤差 が生じるからである。 以上から測温素子の設置位置の上方側限界をメニスカス位置 から铸片引抜き方向に 1 0 mm離れた位置とした。
次に、 測温素子の铸片引抜き方向下方の限界について検討した。 これはメニスカ ス近傍の溶鋼流がメニスカスからどの程度下方の深さまで一様な流れになつている かで決まる。 これを検討するために、 錶型幅が 1 5 0 0 mmの水モデル装置を用い て、 铸型短辺側から 2 2 5 mm及び 3 7 5 mm離れた位置で、 メニスカス位置から 1 9 5 mm下方の位置までの流速分布を測定した。 第 1 6図は、 その結果を示す図 であり、 ( A) 力铸型短辺側から 2 2 5 mmの位置の測定結果、 ( B ) が铸型短辺 側から 3 7 5 mmの位置の測定結果で、 図中〇印が平均流速で、 線の長さが流速範 囲を示している。 第 16図に示すように、 測定した 2点の位置では、 共にメニスカ スから 135 mm下方の位置までは流速が緩やかに減衰するが、 それより下方では 急激に流速が減衰する。 従って、 この結果より測温素子の設置位置の铸片引抜き方 向下方の限界をメニスカス位置から 135mm離れた位置とした。
第三に、 铸型銅板の溶鋼側表面から測温素子の先端までの距離について検討した。 この距離が長すぎると測温素子の応答時間の遅れが大きくなり、 メニスカス近傍の 溶鋼流動の時間的な変化を正確に追うことができなくなる。 そこで先ず、 メニスカ ス近傍の溶鋼流速がどの程度の時間周期で変動しているかを、 前述の浸漬棒型溶鋼 流速計を用いて調査した。 そして、 溶鋼流速の時間変化の周期性を求めるために、 測定した溶鋼流速の自己相関係数を計算した。 その計算結果を第 17図に示す。 こ の例では、 第 17図に示すように、 メニスカス近傍の溶鋼流速は 9. 3秒の周期性 を有していることが分かる。 尚、 図中の X印は各周期の境界を表わしている。 本発 明者等は他の铸造条件においても同様な周期性の調査を行い、 場合により 9〜 30 秒の周期性を有することを見出した。 これらの調査結果に基づき、 このような周期 性を有するメニスカス近傍の溶鋼流速を推定するための測温素子の埋設深さにつ 、 て以下の検討を行った。
铸型銅板の溶鋼側表面の温度変化が、 铸型銅板に埋設された測温素子の出力とな るモデルは第 18図に示すような分布定数を有する電気的等価回路に置き換えられ る。 簡単化のためこの分布定数回路を第 19図のような集中定数回路に置き換えて 考えると、 これは RC積分回路による口一パスフィル夕一である。 この回路のカツ トオフ周波数は (1) 式で表わされる。 但し (1) 式において、 f 0 :カットオフ 周波数、 R:直流抵抗成分、 C:容量成分である。
f 0 = \/ (2 TtXRXC) ··· (1)
前述のように本発明では 9秒周期のメニスカス近傍の溶鋼流速の変動、 即ち铸型 銅板の溶鋼側表面温度の変動を捉える必要がある。この周期をカツトオフ点として、 これより長周期の铸型銅板温度の変動を測温素子で測定するものとすると、 この時 の RXCの積は (2) 式となる。
27CX RX C=9 … (2) 従って (2) 式より RXC=1. 4秒となる。 次に、 この RXCの積が、 1. 4 秒となるための銬型銅板の溶鋼側表面から測温素子先端までの距離を求めた。 第 2 0図は铸型銅板の溶鋼側表面に 25°Cから 300°Cへと上昇するステップ信号を与 え、 铸型銅板の冷却水側の表面温度は 25 °Cの一定とした時の铸型銅板内各位置の 铸型銅板温度の変化を、 非定常 1次元伝熱方程式を解いて表わしたものである。 第 20図の横軸はステップ信号を入力した時点からの経過時間 (t) 、 縦軸は定常状 態に達した時の铸型銅板温度 (TJ を分母に、 その時刻での铸型銅板温度 (T i ) を分子とした温度の比 (T i ZT) である。 又、 第 20図では铸型銅板の溶鋼側 表面を起点として冷却水側に向かう距離 (X) が異なる複数の位置における比 (Τ i /TJ を示しており、 図中曲線に付与した数値は mmで表示した距離 (X) で ある。 ここで、 第 20図の曲線は (3) 式で近似できる。
T i = { 1 -exp [- t/ (RXC) ] } XT ··· (3)
又、 t=RXCとなる時は、 比 (T i /TJ =0. 63である。 従って、 t = RXC= 1. 4 (秒) で、 比 (T i ZTJ ≥0. 63となるような距離 (x) に 測温素子があれば、 この測温素子の RXCの積は 1. 4秒以下であり、 上述の変動 周期が 9秒以上の铸型銅板温度変化、 即ちメニスカス近傍の溶鋼流速の変化を捉え ることができる。 この条件を満足する距離 (x) は、 第 20図に示すように、 16 mm以下であることが分かる。 従って、 本発明では、 銪型銅板の溶鋼側表面から測 温素子先端までの距離を 16 mm以下とした。
続いて、 上記の温度計測装置を用いた铸型内溶鋼流動推定方法について説明する。 先ず最初に铸型銅板温度から铸型内の溶鋼流速を推定する方法について、 その原理 を説明する。
第 21図は、 铸型内溶鋼から銬型銅板を経て、 铸型銅板用の冷却水へ熱伝導が生 じる過程の、 溶鋼から铸型銅板用の冷却水までの温度分布を模式的に表わした図で ある。 第 21図に示すように、 溶鋼 101から铸型銅板用の冷却水 105までの間 には、 凝固シェル 102、 モールドパウダー層 103、 及び铸型銅板 104の各熱 伝導体が存在しており、 そして、 測温素子 106が铸型銅板 104に埋設され、 铸 型銅板 104内の温度を測定している。尚、図中、 T 0 は溶鋼 101の温度、 T は WO 00/51763 PCT/JP00/ail61
31 凝固シェル 1 02の溶鋼 1 0 1との界面温度、 Ts は凝固シェル 1 02とモールド パウダー層 1 03との境界温度、 TP はモールドパウダー層 1 03の铸型銅板 1 0 4側の表面温度、 TmHは铸型銅板 1 04のモールドパウダー層 1 0 3側の表面温度、 TmLは铸型銅板 1 04の冷却水 1 0 5側の表面温度、 T w は冷却水 1 0 5の温度 である。
この場合、 溶鋼 1 0 1から冷却水 1 05までの熱伝導体の熱抵抗を合成した総括 熱抵抗は (4) 式で表わされる。 但し (4) 式において、 R:総括熱抵抗、 a:溶 鋼と凝固シェルとの間の対流熱伝達係数、 As :凝固シェルの熱伝導率、 λΡ :モ 一ルドパウダー層の熱伝導率、 Am :铸型銅板の熱伝導率、 hm :モールドパウダ 一層と铸型銅板との間の熱伝達係数、 hw :铸型銅板と冷却水との間の熱伝達係数、 ds :凝固シェル厚み、 dP :モールドパウダー層厚み、 dm :铸型銅板厚みであ る。
R=(l/a) + (d S/As)l(d P/AP) + (l/h m) + (d m/Am)l(l/hw) … (4)
ここで铸型銅板厚み (dm ) 、 铸型銅板の熱伝導率 (Am ) は設備によって一定 に決まる値である。 又、 凝固シェルの熱伝導率 (λ3 ) は鋼種が決まれば一定に決 まる値である。 又、 モールドパウダー層厚み (dP ) はモールドパウダーの種類と 鎵型振動の振幅、 振動数、 及び波形と铸片引抜き速度とが決まれば一定に決まる数 値である。 又、 モールドパウダー層の熱伝導率 (λΡ ) はモールドパウダーの種類 によらず、 ほぼ一定であることが知られている。 又、 铸型銅板と冷却水との間の熱 伝達係数 (hw ) は冷却水 1 05の流量、 铸型銅板 1 04の表面粗度が決まれば一 定に決まる数値である。又、モールドパウダー層と铸型銅板との間の熱伝達係数(h ,„ ) もモ一ルドパウダーの種類が決まればほぼ一定の値に決まる。
しかし、 溶鋼と凝固シェルとの間の対流熱伝達係数 (a) は、 凝固シェル 1 02 の表面に沿った溶鋼流速によって変化する値であり、 この対流熱伝達係数 (a) は (5) 式の平板近似の式で表わすことができる。 但し (5) 式において、 N u :ヌ ッセルト数、 :溶鋼の熱伝導率、 :伝熱代表長さである。
a=N u Χλ! X, ■■■ (5)
ここで、 ヌッセルト数 (N u ) は、 溶鋼流速の速度範困別に (6) 式及び (7) 式で表わされる。但し (6)式及び(7)式において、 P r :プランドル数、 R e : レイノズル数、 U :溶鋼流速、 Uo :溶鋼の層流と乱流との遷移 ¾ ^である。
N u = 0.664X P rl/3 XR e4/5 (U<U o ) … (6)
N u = 0.036XP r1/3 X R el/2 (U≥U o ) ··· (7)
又、 プランドル数 (P r ) 及びレイノズル数 (R e ) は、 それぞれ (8) 式及 び (9) 式で表わされる。 但し (9) 式において、 X2 :溶鋼流代表長さ、 レ :溶 鋼の動粘性係数である。
P r =0.1715 ··· (8)
R e =UXX2 /v … (9)
一方、 溶鋼 101から冷却水 105への熱流束は (10) 式で表わすことができ る。 但し (10) 式において、 Q:溶鋼から冷却水への熱流束、 To :溶鋼温度、 Tw :冷却水温度である。
Q= (To -T w ) /R … (10)
又、 铸型銅板 104の冷却水 105側の表面温度は (1 1) 式で表わすことがで きる。 但し (1 1) 式において、 TmL :铸型銅板の冷却水側表面温度である。
TmL =T w +Q/hw … (1 1)
更に、 測温素子 106にて測定される铸型銅板温度は (12) 式で表わすことが できる。但し (12)式において、 T:測温素子にて測定される铸型銅板温度、 d : 铸型銅板の溶鋼側表面から測温素子先端までの距離である。
T = T + QX (dm - d) /Am … (12)
そして、 (1 1) 式を (12) 式に代入することで、 铸型銅板温度 (T) は (1 3) 式で表わされる。
T = Tw + Q/hw+QX (d„-d) /λ , - (13)
本発明は上記の式を用いて溶鋼流速 (U) を求めるものであり、 以下にその手順 を説明する。 先ず、 測温素子による铸型銅板温度 (Τ) の測定値を、 (13) 式に 代入して熱流束 (Q) を求める。 (13) 式では熱流束 (Q) 以外の右辺の変数は 全て既知であるので、 熱流束 (Q) を逆算することができる。 次に、 熱流束 (Q) を (10) 式に代入して、 総括熱抵抗 (R) を求める。 ここでも総括熱抵抗 (R) 以外の右辺の変数は全て既知であるので、 総括熱抵抗 ( R) を逆算することができ る。 そして、 総括熱抵抗 ( R) を (4 ) 式に代入して対流熱伝達係数 (α ) を求め る。 ここでも対流熱伝達係数 (α ) 以外の右辺の変数は全て既知であるので、 対流 熱伝達係数 (ひ) を逆算することができる。 求めた対流熱伝達係数 (α ) を (5 ) 式に代入してヌッセルト数 (N u ) を求め、 このヌッセル卜数 (N u ) を (6 ) 式又は (7 ) 式に代入してレイノズル数 (R e ) を求める。 そして最後に求めたレ ィノズル数 (R e ) を (9 ) 式に代入して溶鋼流速 (U) を求める。
このように、 溶鋼流速に起因する溶鋼と凝固シェルとの間の対流熱伝達係数の変 化によって生じる铸型銅板温度の変化を捉えることで、 凝固界面に沿った溶鋼流速 を推定することができる。
次に、 铸型銅板温度から铸型内溶鋼の流動パターンを推定する方法について説明 する。 铸型内溶鋼の流動パターンは、 铸片引抜き ¾¾、 浸漬ノズル形状、 浸漬ノズ ル内に吹き込む A r流量等により種々の流動パターンとなるが、 その代表的な例を 第 2 2図に示す。 又、 第 2 2図には、 その時の铸型長辺銅板温度の铸型幅方向の測 温結果も合せて示す。 尚、 第 2 2図において、 1 0 9は铸型短辺銅板、 1 1 6はメ ニスカス、 1 2 0は浸漬ノズル、 1 2 1は吐出孔、 1 2 2は吐出流であり、 吐出流 1 2 2は矢印でその流れの方向を表わしている。 第 2 2図に示すように、 鎵型長辺 銅板温度の铸型幅方向の測温結果は溶鋼流動パターンと良く対応していることが分 かる。 即ち、 铸型長辺銅板温度の高い部分に浸漬ノズル 1 2 0からの吐出流 1 2 2 が支配的に流れており、 それにより溶鋼流動パターンが決定されるからである。 そ の際に、 铸型幅方向の铸型銅板温度のピークの数及びピークの位置を見つけること で、 容易に流動パターンを推定することができる。
例えば、 第 2 2図のパターン 0では、 特に支配的な流れが存在せず、 銹型幅方向 全体に渡り穏やかな流れであり、 測温素子の測定値に大きな差は現れないが、 パ夕 ーン 1では、 浸漬ノズル 1 2 0内に吹き込んだ A rの浮上に随伴した浸漬ノズル近 傍の上昇流が支配的であり、 浸漬ノズル近傍での温度測定値が高くなる。 これは浸 漬ノズル近傍に温度ピークが 1つ観察される場合である。 パターン 2では、 浸漬ノ ズル 1 2 0からの吐出流 1 2 2が铸型短辺銅板 1 0 9に衝突して流れるため、 铸型 WO 00/51763 PCT/JPOO/ΟΙΙΐΙ
34 短辺銅板近傍の測定値が高くなる。 この時、 温度ピークは铸型短辺銅板 1 0 9の近 傍に現れ、 铸型全体では温度ピークは 2つ存在する。 パターン 3では、 浸漬ノズル 1 2 0内に吹き込んだ A rによる浸漬ノズル近傍の上昇流と吐出流 1 2 2の慣性力 による流れが共に支配的となり、 浸漬ノズル近傍と铸型短辺銅板近傍の両方で温度 測定値が高くなる。 この時、 温度のピークは铸型幅全体で 3つ存在する。 因みに、 第 2 2図に示すパターン N 0.の整数部は、铸型幅方向全体の温度ピークの数を示し、 少数点部は、 铸型短辺側の温度のピーク位置が銬型短辺銅板 1 0 9から浸漬ノズル 1 2 0側に離れた位置にあることを示している。
最後に、 銬型銅板温度から铸型内溶鋼の偏流の有無を推定する方法について説明 する。 通常浸漬ノズルから铸型内に注入された溶鋼は、 浸漬ノズルを中心として銬 型幅方向で左右対称な流れとなり、 従って、 铸型長辺銅板温度も左右対称となる。 そのため、 铸型長辺銅板の幅方向左右で銅板温度の最大値の位置が左右対称でない 場合には、 偏流が発生したことを容易に推定することができる。 又、 銅板温度の最 大値の位置が左右対称であっても、 最大値に差がある場合には、 吐出流量が左右で 異なっているためであり、 この場合も偏流が発生したと推定できる。 本発明を図面に基づき説明する。 第 2 3図は本発明の 1つの実施の形態を示す連 続踌造機铸型部の正面断面の概略図、 第 2 4図は側面断面の概略図である。
第 2 3図及び第 2 4図において、 相対する铸型長辺銅板 1 0 8と、 铸型長辺銅板 1 0 8内に内装された相対する铸型短辺銅板 1 0 9とから構成された铸型 1 0 7の 上方に、 タンディッシュ 1 1 8が配置されている。 铸型長辺銅板 1 0 8の背面上部 及び背面下部には長辺水箱 1 1 0が設置されており、 背面下部の長辺水箱 1 1 0か ら供給された冷却水 1 0 5は水路 1 1 1を通って铸型長辺銅板 1 0 8を冷却し、 上 部の長辺水箱 1 1 0へ排出される。 铸型長辺銅板 1 0 8の前面側表面から水路 1 1 1までの厚み、 即ち铸型長辺銅板厚みは d mである。 図示はしないが铸型短辺銅板 1 0 9も同様にして冷却される。
タンディッシュ 1 1 8の底部には上ノズル 1 2 3が設けられ、 この上ノズル 1 2 3に接続して、 固定板 1 2 4、 摺動板 1 2 5、 及び整流ノズル 1 2 6から成るスラ イデイングノズル 1 1 9が配置され、 更に、 スライディングノズル 1 1 9の下面側 には浸漬ノズル 1 2 0が配置されて、 夕ンディッシュ 1 1 8から铸型 1 0 7への溶 鋼流出孔 1 2 7が形成される。
図示せぬ取鍋からタンディッシュ 1 1 8内に注入された溶鋼 1 0 1は、 溶鋼流出 孔 1 2 7を経由して、 浸漬ノズル 1 2 0の下部に設けられ、 且つ铸型 1 0 7内の溶 鋼 1 0 1に浸漬された吐出孔 1 2 1より、 吐出流 1 2 2を铸型短辺銅板 1 0 9に向 けて铸型 1 0 7内に注入される。 そして、 溶鋼 1 0 1は铸型 1 0 7内で冷却されて 凝固シェル 1 0 2を形成し、 铸型 1 0 7の下方に引き抜かれ錶片となる。 その際、 铸型 1 0 7内のメニスカス 1 1 6上にはモールドパウダー 1 1 7力添加され、 モー ルドパウダー 1 1 7は溶融して、 凝固シェル 1 0 2と铸型 1 0 7との間に流れ込み モールドパウダー層 1 0 3を形成する。
鐯型長辺銅板 1 0 8には、 メニスカス 1 1 6から铸片引抜き方向への距離が の 位置に、 隣合う設置間隔を Ζとして铸型長辺銅板 1 0 8の幅方向に沿って複数の孔 が設けられ、铸型長辺銅板 1 0 8の銅板温度を測定する測定点 1 1 2となっている。 その際、 メニスカス 1 1 6から铸片引抜き方向への距離 (L ) は 1 0〜1 3 5 mm の範囲とし、 設置間隔 (Z ) は 2 0 0 mm以下とする。 各測定点 1 1 2には測温素 子 1 0 6力 铸型長辺銅板 1 0 8の溶鋼側表面から測温素子 1 0 6の先端までの距 離を dとして、 その先端を銬型長辺銅板 1 0 8に接して配置されている。 距離 ( d ) は 1 6 mm以下とする。
一方、 測温素子 1 0 6の他端は零点補償器 1 1 3に連結されており、 測温素子 1 0 6から出力される起電力信号は零点補償器 1 1 3を経由して変換機 1 1 4に入力 され、 変換器 1 1 4にて起電力信号を電流信号に変換された後、 電流信号としてデ —夕解析装置 1 1 5に入力される。
測定点 1 1 2内に冷却水 1 0 5が侵入すると、 測温接点部の銅板温度が低下する ため、 正確な銅板温度を測定できなくなる。 本発明では、 測定点 1 1 2内への冷却 水 1 0 5の侵入を防止するために、 第 2 5図に示すように、 長辺水箱 1 1 0内にス テンレス鋼製のパイプ 1 2 8を設置し、 パイプ 1 2 8と長辺水箱 1 1 0との接触面 の全周に溶接による溶接部 1 3 0を設け、 このパイプ 1 2 8内を貫通させて測温素 子 1 0 6を設置し、 更に、 測定点 1 1 2の周囲の铸型長辺銅板 1 0 8に溝を設け、 その中に鎵型長辺銅板 1 0 8及び長辺水箱 1 1 0に接触するシールパッキン 1 2 9 を設置している。 そして、 コイル状パネ (図示せず) により、 測温素子 1 0 6の先 端を铸型長辺銅板 1 0 8に押し付けている。 尚、 第 2 5図は、 測温素子の取り付け 構造を示す連続铸造機铸型部の側面断面の概略図であり、 図中の符号 1 3 1はバッ クフレームである。
このような構造にすることで、 長辺水箱 1 1 0内において測温素子 1 0 6と冷却 水 1 0 5とは完全に分離され、 長辺水箱 1 1 0中の冷却水 1 0 5が測定点 1 1 2に 侵入すること力なく、 又、 铸型長辺銅板 1 0 8と長辺水箱 1 1 0との接触間隙を伝 わって冷却水 1 0 5が測定点 1 1 2の周囲に達しても、 シールパッキン 1 2 9によ り測定点 1 1 2内への侵入が防止される。 尚、 溶接の代わりに樹脂によるシールや 硬ローによるシールでも良い。 又、 シールパッキン 1 2 9は、 長辺水箱 1 1 0側に 溝を設けてその中に設置しても良い。 測温素子 1 0 6は、 熱電対や抵抗測温体等の うち ± 1 °C以上の精度で測温できるものであれば種類を問わない。
データ解析装置 1 1 5では、 铸型長辺銅板温度の铸型幅方向の温度分布や温度の ピーク位置及び数から铸型内溶鋼の流動パターンを推定し、 又、 浸漬ノズル 1 2 0 を境とした錶型長辺銅板 1 0 8の幅方向左右の銹型銅板温度の最大値の位置及び最 大値から鐯型内溶鋼の偏流を推定して表示する。 更に、 前述の溶鋼流速測定原理に 基づいて、 銬型長辺銅板温度 (T) 、 錄型長辺銅板厚み (d m ) 、 前記距離 (d ) 、 溶鋼温度、 冷却水温度等のデ一夕を用いて、 各測定点 1 1 2における溶鋼流速 (U ) が算出されて表示される。 尚、 (4 ) 式から (1 3 ) 式を構成する 1 5の変数の うち铸造条件により変化し、 且つ、 铸造中に直接測定できない変数として①凝固シ エル厚み (d s ) 、 ②モールドパウダー層厚み (d P ) 、 ③铸型銅板と冷却水との 間の熱伝達係数 (h w ) の 3つの変数があるが、 これらの 3つの変数については、 実機試験又は模擬試験により铸造条件変更に伴う数値の変化を予め調査しておき、 铸型銅板温度測定時の铸造条件に対応する数値に基づいて溶鋼流速 (U) を算出す れば良い。 その他の 1 2の変数は設備条件及び物性値により定めることができる。 表 2は、 銬片引抜き速度が 2 . O mZm i n及び 1 . 3 mZm i nの铸造条件に おける各変数の一例を示したものであり、 又、 第 2 6図に表 2に示す変数に基づい て铸型銅板温度 (T) と溶鋼流速 (U) との関係を求めた結果を示す。 第 2 6図に 示すように、 鎵型銅板温度が同一であっても铸片引抜き速度により溶鋼流速は大幅 に異なっており、 铸型銅板温度から溶鋼流速を推定することが可能であることが分 かる。 尚、 溶鋼の層流と乱流との遷移速度 (U 0) は 0 . l mZ s e cとして算出 し、 表 2及び第 2 6図中の V cは铸片引抜き ϋ ^である。 表 2
Figure imgf000039_0001
上記のように測温素子 1 0 6を铸型銅板に設置することで、 メニスカス 1 1 6の 近傍に複雑な溶鋼流動があっても、 铸型内の溶鋼流動に起因する铸型銅板温度の変 化を精度良く測定することができる。 そして、 このようにして測定された铸型銅板 温度に基づいて、 鎵型内の溶鋼流速、 铸型内溶鋼の流動パターン、 及び铸型内溶鋼 の偏流を推定するので、 その推定精度が向上すると共に、 操業を阻害することなく オンラインでの推定が可能となる。
尚、 上記説明では、 測温素子 1 0 6が鎵型 1 0 7の幅方向 1列に設置されている 力^ 铸造方向に複数列設置することもできる。 又、 上記説明は铸型長辺銅板 1 0 8 の片側だけに測温素子 1 0 6を設置しているが、 両方の铸型長辺銅板 1 0 8に設置 しても良い。 更に、 上記説明は断面形状が矩形型の铸型 1 0 7について説明してい るが、 本発明は、 铸型 1 0 7の断面形状は矩形型にかぎることなく、 例えば円形で あっても適用することができる。
[実施例 1 ]
第 2 3図に示すスラブ連続铸造機と铸型銅板温度計測装置とを用い、 溶鋼流速を 推定した実施例を以下に説明する。 連続铸造機は 3 mの垂直部を有する垂直曲げ型 であり、 最大 2 1 0 0 mmの铸片を铸造することができる。 表 3に用いた連続铸造 機の諸元を示す。 表 3
Figure imgf000040_0001
長辺铸型銅板厚み (d m ) は 4 O mmであり、 測温素子としてアルメル ·クロメル ( J I S熱電対 K) を用い、 鎵型銅板の溶鋼側表面から熱電対先端 (測温接点) ま WO 00/51763 PCT/JPOO/ΟΠβΙ
39 での距離 (d) を 13mm、 相隣り合う熱電対間の間隔 (Z) を 66. 5mm、 メ ニスカスからの距離 (L) を 50mmとして、 铸型幅方向長さ 2100 mmに渡つ て熱電対を埋設した。 そして、 厚み 220mm, 幅 1650mmの铸片を铸片引抜 き速度 1. δ δπιΖπιί ηで铸造 (以下、 「铸造条件 1」 と記す) した場合と、 厚 み 220mm、 幅 1750 mmの铸片を铸片引抜き速度 1. 75m/mi nで铸造 (以下、 「铸造条件 2」 と記す) した場合において、 铸型長辺銅板温度を測定した。 表 4に铸造条件をまとめて示す。 表 4
Figure imgf000041_0001
第 27図及び第 28図は、 それぞれ銬造条件 1及び铸造条件 2におけるある瞬間 の铸型幅方向の铸型銅板温度の測温デ一夕の例である。 これらの図で横軸は铸片幅 方向の位置であり、 中央の 「0mm」 の位置が錶片幅方向の中心位置で、 浸漬ノズ ルの位置である (以降、 铸片幅方向位置を同一の表示法で示す) 。 第 27図及び第 28図に示すように、 铸片幅方向の両裾の温度が大きく降下しているが、 これは、 温度の大きく降下している付近に铸型短辺銅板が設置されているからである。
第 29図及び第 30図は、 表 2に示す変数の数値を用いて、 第 27図及び第 28 図に示す铸型銅板温度から溶鋼流速を算出したものである。 尚、 表 2の変数の内、 凝固シェル厚み (ds ) は、 铸造条件 1では 0. 00362m、 铸造条件 2では 0. 00372mとした。 又、 第 29図及び第 30図には、 铸型銅板温度を測定した時 刻に、 前述の浸漬棒型溶鋼流速計により測定した溶鋼流速値を秦印で表示した。 こ れらの結果から、 铸型銅板温度から推定したメニスカス下 50 mmの溶鋼流速と、 浸漬棒によるメニスカス近傍の溶鋼流速とは良く一致することが確認できた。
[実施例 2]
実施例 1と同一の連続铸造機と铸型銅板温度計測装置とを用い、 浸漬ノズル内に A rを 1 0 N 1 Zm i n吹込みつつ、 厚み 2 5 O mm、 幅 1 6 0 O mmの铸片を錶 片引抜き速度 2 . 2 mZm i nで銹造し、 铸型内溶鋼の流動パターンを推定した。 铸造開始から 1 0分経過時の铸型長辺銅板の温度分布は、 浸漬ノズル位置と両錶 型短辺銅板側との 3箇所に温度ピークがあり、 且つ、 铸型幅方向左右でほぼ対称な 温度分布となり、 その結果から、 前述の第 2 2図に示すパターン 3であることが推 定できた。 これを確認するために、 前述の浸漬棒型溶鋼流速計を用いて、 铸型幅方 向の溶鋼流速及びその方向を測定した。 その測定結果を第 3 1図に示す。 第 3 1図 に示すように、 浸漬棒型溶鋼流速計による結果は、 铸型内の浸漬ノズル側では浸漬 ノズルから铸型短辺銅板に向かう流れで、 铸型短辺銅板側ではその逆向きの流れで あること、 即ちパターン 3の流動状況であることが確認され、 铸型長辺銅板温度か ら推定した結果と一致した。
又、 連々铸の 5ヒート目の铸造開始から 1 0分経過時の铸型長辺銅板の温度分布 は、 铸型左右で異なっており、 第 3 2図に示す温度分布となった。 この温度分布か ら流動パターンを推定した結果、 浸漬ノズルの左側は浸漬ノズル側に温度ピークの あるパターン 1で、 浸漬ノズルの右側は铸型短辺銅板側に温度ピークのあるパ夕一 ン 2であると推定された。 これを確認するために、 前述の浸漬棒型溶鋼流速計を用 いて、 铸型幅方向の溶鋼流速及びその方向を測定した。 その測定結果を第 3 3図に 示す。第 3 3図に示すように、 浸漬棒型溶鋼流速計による結果は、 铸型の左側では、 浸漬ノズルから铸型短辺銅板に向かう流れ、 即ちパターン 1となり、 又、 铸型の右 側では、 その逆の铸型短辺から浸漬ノズルに向かう流れ、 即ちパターン 2となり、 铸型長辺銅板温度から推定した結果と一致した。
[実施例 3 ]
実施例 1と同一の連続铸造機と鎵型銅板温度計測装置とを用い、 浸漬ノズル内に A rを 1 O N 1 /m i n吹込み、 厚み 2 5 0 mm, 幅 1 6 0 0 mmの铸片を铸片引 抜き速度 2 . 6 mZm i nで铸造し、 铸型内溶鋼の偏流の有無を推定した。
铸造開始から 1 0分経過時の铸型長辺銅板の温度分布は、 铸型の幅方向でほぼ左 右対称な分布となり、 温度の最大値は左側で 1 8 0 . 5 T:、 右側で 1 8 1 °Cであつ た。 温度の最大値位置に左右差がなく、 左おの最大値も差が小さいことから、 偏流 は発生していないと推定された。 これを確認するために、 前述の浸漬棒型溶鋼流速 計により、 铸型幅方向の溶鋼流速及びその方向を測定した。 その測定結果を第 3 4 図に示す。 第 3 4図に示すように、 浸漬棒型溶鋼流速計によるメニスカスの溶鋼流 速は左右対称であり偏流が発生しておらず、 铸型銅板温度から推定した結果と一致 した。
又、 連々銬の 3ヒート目の铸造開始から 1 0分経過時の铸型長辺銅板の温度分布 は铸型幅方向左右で異なっていた。 その時の温度分布を第 3 5図に示す。 第 3 5図 に示すように、 温度の最大値は左右どちらも浸漬ノズル中心から 5 9 8 . 5 mmの 位置の熱電対で確認されたが、 その値は左側で 1 7 6 . 5 °C、 右側で 1 8 4 . 5 °C となり 8 °Cの差があった。 温度の最大値の差が大きいので、 偏流が起こっていると 推定された。 これを確認するために、 前述の浸漬棒型溶鋼流速計により、 铸型幅方 向の溶鋼流速及びその方向を測定した。 その測定結果を第 3 6図に示す。 第 3 6図 に示すように、 浸漬棒型溶鋼流速計によるメニスカスの溶鋼流速は浸漬ノズル左右 で異なっており、 偏流が発生していること力確認された。 本発明では、 铸型銅板温度を測定する測温素子を上記説明のように設置するので、 メニスカス近傍に複雑な溶鋼流動があっても、 铸型内の溶鋼流動に起因する銬型銅 板温度の変化を精度良く測定することができる。 そして、 このようにして測定され た铸型銅板温度に基づいて、 铸型内の溶鋼流速、 铸型内溶鋼の流動パターン、 及び 铸型内溶鋼の偏流を推定するので、 その推定精度が向上すると共に、 操業を阻害す ることなくオンラインでの推定が可能となる。その結果、铸片の品質管理が向上し、 高品質の铸片を高歩留りで生産することが達成され、その工業的効果は格別である。 最良の形態 3 ( 連続铸造铸片の表面欠陥判定方法)
本発明者等は実機での計測、 モデル実験、 及び数値解析を行い種々の铸造条件に ついて、 铸型内の溶鋼流動状況と、 そのときの錶型幅方向の铸型銅板温度プロファ ィルとを調査した。 第 3 7図に铸型内溶鋼の流動状況と铸型銅板温度のプロフアイ ルとの対比を模式的に示す。 尚、 第 3 7図において、 2 0 6は铸型短辺銅板、 2 1 1はメニスカス、 2 1 5は浸漬ノズル、 2 1 6は吐出孔、 2 1 7は吐出流であり、 吐出流 2 1 7は矢印でその流れの方向を表わしている。
パターン 0では、 特に支配的な流れが存在せず、 铸型幅方向全体に渡り穏やかな 流れであり、 铸型幅方向の測温素子の測定値に大きな差は現れない。 即ち、 温度ピ 一夕が顕著に表れない場合で、温度プロフアイルは铸型幅全体に渡つて平坦である。 パターン 1では、 浸漬ノズル 2 1 5内に吹き込まれた A rの浮上に随伴した浸漬ノ ズル近傍の上昇流が支配的となり、 メニスカス 2 1 1では浸漬ノズル 2 1 5から铸 型短辺銅板 2 0 6に向かって溶鋼は流れる。 このため、 铸型銅板幅方向の温度分布 では浸漬ノズル 2 1 5の近傍で高くなり、 浸漬ノズル 2 1 5の近傍に大きな温度ピ —クが 1つ発生する。 パターン 2では、 浸漬ノズル 2 1 5からの吐出流 2 1 7の慣 性力が大きく、 吐出流 2 1 7は铸型短辺銅板 2 0 6に衝突した後上下に分岐し、 メ ニスカス 2 1 1では铸型短辺銅板 2 0 6から浸漬ノズル 2 1 5に向かう溶鋼流とな る。 この場合、 メニスカス 2 1 1での溶鋼流速は比較的速い。 このときは、 铸型短 辺銅板 2 0 6の近傍の銅板温度が高くなり、 大きな温度ピークが左右の铸型短辺銅 板 6の近傍に存在する温度プロファイルとなる。
このように、 温度プロファイルはパターン 0、 1 、 2の 3種類に大別できる。 し かし、 実際にはこの 3種類のパターン以外の温度パターンが存在する。 例えば、 第 3 7図に示すパターン 3は、 A rの浮上に随伴する浸漬ノズル 2 1 5近傍の上昇流 と、 吐出流 2 1 7の慣性力と力 共に支配的な場合に発生し、 浸漬ノズル 2 1 5近 傍と铸型短辺銅板 2 0 6近傍とに温度ピークが現われて、 3つの温度ピークを持つ た温度プロファイルとなる。 しかし、 このパターンはパターン 1とパターン 2との 組み合せと考えることができる。 これ以外の他の場合も、 パターン 0、 パターン 1 、 及びパターン 2の組み合せにより表わされることを確認した。
以上の調査から、 铸造条件により溶鋼流動状況は様々に変化し、 この溶鋼流動状 況と対応して、 様々な温度プロファイルが存在することが分かった。 そして、 铸片 表面の品質判定の際には、 これらの流動状況を考慮して、 対応する温度プロフアイ ルから判定することが重要且つ可能であることが分かった。
先ず、 操業中の溶鋼流動状況がパターン 1の場合について説明する。 溶鋼流動状 況がパターン 1の場合には、 浸漬ノズルの近傍で A rの浮上が集中しており、 浮上 する A r気泡径も大きい。 この気泡がメニスカスから離脱するときにメニスカスを 乱してモールドパウダーが巻込まれたり、 或いは、 気泡そのものが捕捉されてプロ ー疵の原因となる。 このとき、 第 3 8図 (a ) に示すような铸型銅板の幅方向温度 分布のうちの最大値 (Tm a x) を、 A rによるメニスカスの乱れの大きさを表わす 1つの因子と考えることができ、 従って、 最大値 (Tma x) が大きすぎる場合には、 A rによるモールドパウダーの巻込みを予測することができる。
又、 メニスカスに速い流れと遅い流れの両方が存在すると、 この溶鋼流速の勾配 はモールドパウダーに作用する剪断応力と関係して、 勾配の値が大きいほどモール ドパウダーが削り込まれ易くなる。 この流速の勾配は铸型銅板温度の勾配として検 出される。 そこで、 第 3 8図 (b ) に示すように、 浸漬ノズルを中心として铸型幅 方向左側の温度分布の最大値 (T L 1) から最小値 (TL 2) を差し引いた値 (T L 1 - TL 2) と、 铸型幅方向右側の温度分布の最大値 (TR 1) から最小値 (TR 2) を差 し引いた値 (TR 1 - TR 2) のうちで、 大きい方の値 (以下、 「最大高低温度差」 と 記す) を、 A rによるメニスカスの乱れの大きさを表わす他の 1つの因子と考える ことができ、 従って、 最大高低温度差の大小によっても、 A rによるモールドバウ ダ一の巻込みを予測することができる。
又、 溶鋼流動状況がパターン 1の場合には、 メニスカスの溶鋼は浸漬ノズル側か ら铸型短辺銅板側に向かって流れるために、铸型短辺銅板側の溶鋼温度は低くなり、 そのため、 溶鋼の循環量が少ない場合、 铸型短辺銅板近傍のメニスカスでは、 溶鋼 力凝固する所謂皮張りやノロカミが発生する。 このため、 第 3 8図 ) に示すよ うな铸型銅板の幅方向温度分布のうちの最小値 (Tm i n) を、 メニスカスでの溶鋼 の循環量を表わす 1つの因子と考えることができ、 従って、 最小値 (Tm i n) 力小 さすぎる場合には皮張りの危険があり、 又、 ブロー疵及びノロカミが多発すると予 測できる。 又、 第 3 8図 (c ) に示すような铸型幅方向全体の平均銅板温度 (T a v r) も、 メニスカスでの溶鋼の循環量を表わす他の 1つの因子と考えることができ、 従って、 平均銅板温度 (T a v e) の大小によっても、 皮張りやノロカミを予測する ことができる。
又、 ノロカミの発生メカニズムは、 モールドパウダーの物性値のバラツキ等によ りモールドパウダーの消費量が異常に増加して、 メニスカス上のモールドパウダ一 の溶融層厚みが薄くなり、 未溶融のモールドパウダーが凝固シェル表面に付着して 発生するものと推定されている。 この場合には、 モールドパウダーの消費量が異常 に増加するため、 铸型銅板温度は、 モールドパウダー消費量が通常の場合に較べて 低下する。 従って、 铸型幅方向の平均銅板温度 (T a v e) を捉え、 その铸片引き抜 き速度における代表的な铸型幅方向温度の平均銅板温度 (T a v c) と比較し、 その 差を把握することで、 ノロカミ発生の有無を予測することができる。 ここで、 その 铸片引き抜き速度における代表的な铸型幅方向温度の平均銅板温度 (T a v c) とは、 その錢片引き抜き速度での数多くの铸造機会において測定した铸型幅方向銅板温度 の平均値と定義する。
次に、 操業中の溶鋼流動状況がパターン 2の場合について説明する。 溶鋼流動状 況がパターン 2のように、 メニスカスに比較的速い流れの溶鋼流が存在する場合に は、 この流れによりメニスカスを覆うモールドパウダーが削り込まれる虞がある。 溶鋼流速が速ければ铸型銅板温度も高くなる。 そこで、 第 3 9図 (a ) に示すよう な铸型銅板の幅方向温度分布のうちの最大値 (Tm a x) を、 メニスカスにおける溶 鋼の最大速度を表わす因子と考えることができ、 従って、 最大値 (Tm a x) が大き すぎる場合には、 モールドパウダーが削り込まれることが予測できる。
又、 溶鋼流動状況がパターン 2のように、 メニスカスに比較的速い流れと遅い流 れの両方が存在すると、 前述したように、 この溶鋼流速の勾配はモールドパウダー に作用する剪断応力と関係して、 勾配の値が大きいほどモールドパウダーが削り込 まれ易くなる。 この流速の勾配は铸型銅板温度の勾配として検出される。 そこで、 第 3 9図 (b ) に示すように、 浸漬ノズルを中心として铸型幅方向左側の温度分布 の最大値 (TL 1) から最小値 (T 2) を差し引いた値 (TL 1— 1 2) と、 铸型幅方 向右側の温度分布の最大値 (TR 1) 力^最小値 (TR 2) を差し引いた値 (TR 1 - T R 2) のうちで、 大きい方の値、 即ち最大高低温度差を流速勾配の大きさを表わす因 子と考えることができ、 従って、 最大高低温度差の大小によりモールドパウダーの 削り込みの有無を予測することができる。
又、 溶鋼流動状況がパターン 2の場合、 铸型幅方向左右のメニスカスの溶鋼流速 のバラツキが大きいときには、 流れのぶっかり合うところで渦を発生させ易く、 モ 一ルドパウダーを巻込む虞がある。 そこで、 第 3 9図 (c ) に示すように、 浸漬ノ ズルを中心として铸型幅方向の左側温度分布の最大値 (T^) と右側温度分布の最 大値 (TR 1) との差の絶対値 (以下、 「最大左お温度差」 と記す) を、 渦によるモ —ルドパウダーの巻込みに影響を及ぼす偏流度を表わす因子と考えることができ、 従って、 この最大左右温度差の大小によって渦によるモールドパウダー巻込みの有 無を予測することができる。
更に、 铸型内溶鋼の流動状況が、 例えばパターン 1からパターン 3のように変化 する場合や、 パターン 2であっても片側の吐出流速が他方に比べて速くなる場合に は、 铸型内の溶鋼流動は乱れてメニスカスの変動量も大きくなり、 モ一ルドパウダ 一巻込みの発生する確率が高くなる。 通常、 銪型内で観測される流動変動は、 その 周期を数十秒として緩やかに変化する力 この周期より短い時間で変化する場合に は、 モールドパウダー巻込みの発生頻度が高くなる。 この溶鋼流動の変化は、 铸型 銅板温度の単位時間当りの温度変動量として検出される。 従って、 铸型幅方向の铸 型銅板温度の単位時間当りの温度変動量のうちで最大値を把握して、 この最大値の 大小によってモールドバウダ一巻込みの有無を予測することができる。
但し、 踌型銅板の測温位置を铸型内のメニスカス位置から銬片引抜き方向に 1 0 〜 1 3 5 mm離れた範囲とする必要がある。 メニスカス位置から 1 0 mm未満の範 囲は铸造中のメニスカスの変動により铸型銅板温度が昇降するため、 溶鋼流動によ る铸型銅板温度の変化を正確に把握することができず、 又、 メニスカスから 1 3 5 mmを越えた下方の位置では、 溶鋼流動の変化による铸型銅板温度の変化量が少な くなり、 正確に鎵型銅板温度の変化量を把握することができないからである。 このようにして铸型銅板温度の幅方向分布を解析することで、 モールドパウダー の巻込み、 皮張り、 ブロー疵、 及びノロカミ等の錶片の表面欠陥の程度をオンライ ンで即座に判定することができる。
尚、 第 3 8図は溶鋼流動状況がパターン 1のときの铸型銅板温度の幅方向分布及 び錄型銅板温度の最大値、 最小値、 平均値を模式的に示す図であり、 第 3 9図は溶 鋼流動状況がパターン 2のときの铸型銅板温度の幅方向分布及び铸型銅板温度の最 大値、 最小値を模式的に示す図である。 又、 铸型短辺銅板付近の温度測定値は铸型 短辺銅板の影響を受けて低くなるので、 本発明においては铸型銅板温度の幅方向分 布を解析する際に、 铸型短辺銅板の影響の現れる範囲の測定値は除いて解析するこ ととする。 以下、 本発明を図面に基づき説明する。 第 4 0図は本発明を適用した連続鏡造機 铸型部の正面断面の概略図である。
第 4 0図において、 相対する铸型長辺銅板 2 0 5と、 铸型長辺銅板 2 0 5内に内 装された相対する铸型短辺銅板 2 0 6とから構成された錡型 2 0 4の上方に、 タン ディッシュ 2 1 3力配置されている。 タンディッシュ 2 1 3の底部には上ノズル 2 1 8が設けられ、 この上ノズル 2 1 8に接続して、 固定板 2 1 9、 摺動板 2 2 0 、 及び整流ノズル 2 2 1から成るスライディングノズル 2 1 4が配置され、 更に、 ス ライディングノズル 2 1 4の下面側には浸漬ノズル 2 1 5力 S配置されて、 タンディ ッシュ 2 1 3から銬型 2 0 4への溶鋼流出孔 2 2 2が形成される。
取鍋 (図示せず) からタンディッシュ 2 1 3内に注入された溶鋼 2 0 1は、 溶鋼 流出孔 2 2 2を経由して、 浸漬ノズル 2 1 5の下部に設けられ、 且つ铸型 2 0 4内 の溶鋼 2 0 1に浸漬された吐出孔 2 1 6より、 吐出流 2 1 7を铸型短辺銅板 2 0 6 に向けて铸型 2 0 4内に注入される。 そして、 溶鋼 2 0 1は铸型 2 0 4内で冷却さ れて凝固シェル 2 0 2を形成し、 铸型 2 0 4の下方に引き抜かれて铸片となる。 铸 型 2 0 4内のメニスカス 2 1 1上にはモールドパウダー 2 1 2が添加されている。 上ノズル 2 1 8はポ一ラス煉瓦からなり、 溶鋼流出孔 2 2 2の壁面へのアルミナ 付着を防止するため、 上ノズル 2 1 8と連結された A r導入管 (図示せず) を介し て上ノズル 2 1 8から溶鋼流出孔 2 2 2内に A rが吹き込まれる。 吹き込まれた A rは、 溶鋼 2 0 1と共に浸漬ノズル 2 1 5を通り、 吐出孔 2 1 6を介して铸型 2 0 4内に流入し、 铸型 2 0 4内の溶鋼 2 0 1を通ってメニスカス 2 1 1に浮上し、 メ ニスカス 2 1 1上のモールドパウダー 2 1 2を貫通して大気に至る。
铸型長辺銅板 2 0 5の背面には、 メニスカス 2 1 1から铸片引抜き方向へ 1 0〜 1 3 5 mm離れた範囲の、 且つ、 铸片引抜き方向に直交する直線上に、 铸型長辺銅 板 2 0 5の幅方向に沿って複数の孔が設けられ、 铸型長辺銅板 2 0 5の銅板温度を 測定する測定点 2 0 7となっている。 各測定点 2 0 7には測温素子 2 0 3力 その 先端を銹型長辺銅板 2 0 5に接して配置され、 铸片の全幅に対応する铸型銅板温度 の測定を可能としている。 尚、 隣合う測定点 2 0 7の間隔は 2 0 0 mm以下とする こと力 子ましい。 各測温点 2 0 7の間隔が 2 0 0 mmを超えると測定点 2 0 7が少 なくなり過ぎて、铸型銅板温度の幅方向分布を正確に把握できなくなるからである。 一方、 測温素子 2 0 3の他端は零点補償器 2 0 8に連結されており、 測温素子 2 0 3から出力される起電力信号は零点補償器 2 0 8を経由して変換器 2 0 9に入力 され、 変換器 2 0 9にて起電力信号を電流信号に変換された後、 電流信号としてデ —夕解析装置 2 1 0に入力される。 尚、 測温接点となる測温素子 2 0 3の先端が铸 型 2 0 4の冷却水 (図示せず) により直接冷却されないように、 測定点 2 0 7はシ ール材 (図示せず) により冷却水からシールされている。 又、 測温素子 2 0 3は、 熱電対や抵抗測温体等のうち土 1 °C以上の精度で測温できるものであれば種類を問 わない。
データ解析装置 2 1 0では、 測定された铸型長辺銅板温度の幅方向温度分布から 最大値 (Tm a x) 、 最小値 (Tm i n) 、 平均銅板温度 (T a v e) 、 最大高低温度差、 最大左右温度差、 及び単位時間当たりの温度変動量の最大値を求め、 品質グレード に応じてそれぞれ予め設定された閾値と比較して欠陥の発生程度を判定し、 铸片の 手入れ方法を決定する。 これら最大値 (Tma x) 、 最小値 (Tm i n) 、 平均銅板温度
(T a v e) 、 最大高低温度差、 及び最大左右温度差の铸片の代表値としては、 一定 間隔又は連続的に測定される幅方向温度分布のうちで、 最も大きな値 (最大値 (T m a x) と最大高低温度差と最大左右温度差の場合) 、 若しくは最も小さな値 (最小 値 (Tm i n) と平均銅板温度 (T a v e) の場合) としても、 又は、 その铸片における 測定値の平均値としてもどちらでも良いが、 铸片の表面欠陥を確実に検知する意味 では、 最も大きな値、 若しくは最も小さな値に基づいて判定することが好ましい。 又、 単位時間当たりの温度変動量は、 5〜 2 0秒を単位時間として、 この間の温度 変動量を算出し、 铸型幅方向の温度変動量の最大値を求め、 こうして求めたその铸 片における単位時間毎の最大値を平均した値を铸片の代表値としても、 又、 その錶 片における単位時間毎の最大値のうちで最も大きいものを代表値としてもどちらで も良い。
又、実際の操業時には、铸型 2 0 4内の溶鋼流動パターンが時間的に変化したり、 又は、 3種類の基本パターン 0、 1、 2の組み合せとなっている場合が多いので、 铸片表面欠陥の判定には 2つ以上の判定方法を組み合わせることが好ましい。 このように、 本発明では铸型幅全体に渡って測定した铸型銅板温度に基づいて銬 片表面の品質判定を行うので、 铸型 2 0 4の内部がどのような溶鋼流動パターンと なっても、 正確に表面欠陥をオンラインで判定することが可能となる。
尚、 上記説明では、 測温素子 2 0 3が铸型長辺銅板 2 0 5の幅方向 1列に設置さ れているが、 錶造方向に複数列設置することもできる。 又、 上記説明では铸型長辺 銅板 2 0 5の片側だけに測温素子 2 0 3を設置しているが、 両方の錄型長辺銅板 2
0 5に設置しても良い。 又、 A rの吹き込み方法は上記に限るものではなく、 スラ ィディングノズル 2 1 4ゃ浸漬ノズル 2 1 5から吹き込んでも良い。
[実施例 1 ]
第 4 0図に示すスラブ連続铸造機を用い、 厚みが 2 5 0 mmで、 幅が 1 6 0 0〜 1 8 0 0 mmの炭素鋼の铸片を铸造した。 铸片引抜き速度は 1 . 2〜 1 . 8 m/m
1 n、 溶鋼流出孔内への A rの吹き込み量は 1 0 N 1 Zm i n、 浸漬ノズルは山形 の 2孔ノズルで、 その吐出角度は下向き 2 5度である。 測温素子として熱電対を用 レ メニスカスから 5 0 mm下のィ立置に、 浸漬ノズルを中心として左右対称に 6 5 mm間隔で配置した。 铸造した铸片を冷延コイルに圧延し、 冷延コイルの表面欠陥を目視で検査した。 第 41図は、 その調査結果であり、 横軸を銹型銅板温度の最大値 (Tmax) とし、 縦軸を冷延コイルの 1コイル当たりの表面欠陥個数として表示したものである。 こ の場合、 横軸の銬型銅板温度の最大値 (Tmax) は、 各コイルに対応する铸片にお いて 10秒毎に測定した幅方向温度分布から、 それぞれの測定時期の最大値 (Tma' x) を計測し、 これらの最大値 (Tmax) を平均した値を代表値として表示している。 第 41図に示すように、各プロッ卜は右上がりの直線に沿っていること力分かった。 このように、 铸型幅方向温度分布の最大値 (Tmax) から冷延コイルの表面欠陥 の程度が予測でき、冷延コィルの用途及びグレードによつて閾値を設定することで、 無手入れ一手入れの判断が可能となる。 因みに第 41図の場合には、 閾値を 160 °Cとして、 最大値 (Tmax) が 160°C未満の場合には 「無手入れ」 とし、 160 °C以上の場合には 「手入れ」 とすることができる。 尚、 最大値 (T,nax) が高くて も表面欠陥が発生しないことがあるが、 元々 1コイル当たりの欠陥個数が非常に少 ないので、 この場合は確率的にモールドパウダーの巻込みがなかったと言える。
[実施例 2]
第 40図に示すスラブ連続铸造機を用い、 厚みが 250mmで、 幅が 2000m mの炭素鋼の铸片を铸造した。 铸片引抜き速度は 1. 2mZmi n、 溶鋼流出孔内 への A rの吹き込み量は 10 N 1 Zm i n、 浸漬ノズルは山形の 2孔ノズルで、 そ の吐出角度は下向き 25度である。 測温素子として熱電対を用い、 メニスカスから 50 mm下の位置に、浸漬ノズルを中心として左右対称に 65 mm間隔で配置した。 この铸造条件では铸型銅板温度のパターンは、 時間的に揺らぐものの、 ほぼパター ン 1となっていた。
铸造した铸片表面をカラーチェック法を用いて目視で検査して、 ブロー疵及びノ ロカミを調査した。 第 42図は、 その調査結果であり、 横軸を铸型銅板温度の最小 値 (Tmi n) とし、 縦軸を錡片表面の単位面積当たりのブロー疵個数及びノロカミ 個数の総数として表示したものである。この場合、横軸の鎵型銅板温度の最小値(T mi n) は、 各铸片において 10秒毎に測定した幅方向温度分布から、 それぞれの測 定時期の最小値 (Tmi n) を計測し、 これらの最小値 (Tmi n) を平均した値を代表 値として表示している。 第 4 2図に示すように、 温度の最小値 (Tm i n) が低くな るにしたがい、 プロ一疵及びノロカミが多くなることが分かった。
このように、 錶型幅方向温度分布の最小値 (Tm i n) から铸片表面欠陥の程度が 予測でき、 用途及びグレードによって閾値を設定することで、 無手入れ一手入れの 判断が可能となる。因みに第 4 2図の場合には、閾値を 1 2 0 °Cとして、最小値(T m i n) が 1 2 0 °C以下の場合には 「手入れ」 とし、 1 2 0でを越える場合には 「無 手入れ」 とすることができる。
[実施例 3 ]
第 4 0図に示すスラブ連続铸造機を用い、 厚みが 2 5 0 mmで、 幅が 1 6 0 0〜 1 8 0 0 mmの炭素鋼の銬片を铸造した。 铸片引抜き速度は 1 . 6〜 1 . 8 m/m i n、 溶鋼流出孔内への A rの吹き込み量は 1 0 N 1 Zm i n、 浸漬ノズルは山形 の 2孔ノズルで、 その吐出角度は下向き 2 5度である。 測温素子として熱電対を用 い、 メニスカスから 5 0 mm下の位置に、 浸漬ノズルを中心として左右対称に 6 5 mm間隔で配置した。 この铸造条件では铸型銅板温度のパターンは、 時間的に揺ら ぐものの、 ほぼパターン 2となっていた。
铸造した錶片を冷延コイルに圧延し、 冷延コイルの表面欠陥を目視で検査した。 第 4 3図は、 その調査結果であり、 横軸を最大高低温度差とし、 縦軸を最大左右温 度差として、 冷延コイルの 1コイル当たりの表面欠陥の発生個数別に表示したもの である。 この場合、 横軸の最大高低温度差及び縦軸の最大左右温度差は、 各コイル に対応する铸片において 1 0秒毎に測定した幅方向温度分布から、 それぞれの測定 時期の最大高低温度差及び最大左右温度差を計測し、 これらの計測値を平均した値 を代表値として表示している。 第 4 3図に示すように、 各プロットは右上がりの直 線に沿っており、 右上のプロッ卜になるほど冷延コイルの欠陥個数が増加している ことが分かった。
このように、 铸型幅方向温度分布の最大高低温度差及び最大左右温度差から冷延 コイルの表面欠陥の程度が予測でき、 冷延コイルの用途及びグレードによって閾値 を設定することで、 無手入れ一手入れの判断が可能となる。 因みに第 4 3図の場合 には、 最大高低温度差の閾値を 1 0 °Cとし、 最大左右温度差の閾値を 2 °Cとして、 無手入れ一手入れの境界とすることができる。
[実施例 4]
第 40図に示すスラブ連続铸造機を用い、 厚みが 250mmで、 幅が 1800〜 2100mmの炭素鋼の铸片を銬造した。 銬片引抜き速度は 1. 0〜1. 6mZm i n、 溶鋼流出孔内への A rの吹き込み量は 1 ON IZmi n、 浸漬ノズルは山形 の 2孔ノズルで、 その吐出角度は下向き 25度である。 測温素子として熱電対を用 い、 メニスカスから 50mm下の位置に、 浸漬ノズルを中心として左右対称に 65 mm間隔で配置した。 この铸造条件では铸型銅板温度のパターンは、 時間的に揺ら ぐものの、 ほぼパターン 1となっていた。
铸造した铸片表面をカラ一チェック法を用いて目視で検査して、 ブロー疵及びノ ロカミを調査した。 第 44図は、 その調査結果であり、 横軸を鎵型銅板温度の平均 銅板温度 (Tave) とし、 縦軸を最大高低温度差として、 铸片の単位面積当たりの ブロー疵個数及びノロカミ個数の総数別に表示したものである。 この場合、 横軸の 平均銅板温度 (Tave) 及び縦軸の最大高低温度差は、 各铸片において 10秒毎に 測定した幅方向温度分布から、 それぞれの測定時期の平均銅板温度 (Tav ) 及び 最大高低温度差を計測し、 これらの計測値を平均した値を代表値として表示してい る。 第 44図に示すように、 左下のプロットになるほどブロー疵及びノロ力ミが増 加していることが分かった。
このように、 铸型幅方向温度分布の平均銅板温度 (Tavc) 及び最大高低温度差 から錶片の表面欠陥の程度が予測でき、 用途及びグレードによって閾値を設定する ことで、 無手入れ一手入れの判断が可能となる。 因みに第 44図の場合には、 平均 銅板温度 (Tave) の閾値を 180°Cとし、 最大高低温度差の閾値を 15°Cとして、 無手入れ一手入れの境界とすることができる。
[実施例 5 ]
第 40図に示すスラブ連続铸造機を用い、 厚みが 250mmで、 幅が 1600m mの炭素鋼を 5ヒート連々铸した。 銬片引抜き速度は 1. 8mZmi n、 溶鋼流出 孔内への A rの吹き込み量は 10 N 1 Zm i n、浸漬ノズルは山形の 2孔ノズルで、 その吐出角度は下向き 25度である。 測温素子として熱電対を用い、 メニスカスか ら 5 0 mm下の位置に、 浸漬ノズルを中心として左右対称に 6 5 mm間隔で配置し た。 測温素子の数は 2 5個である。
先ず最初に、 浸漬棒をメニスカスに浸漬させて浸漬棒の受ける力から溶鋼流速を 測定する方法により、 メニスカスにおける溶鋼流速を測定して、 铸型内溶鋼の長周 期の流動変動を調査した。 その結果、 長周期の流動変動は約 3 0秒であることが分 かった。 そこで、 単位時間を 1 0秒として铸型銅板温度の変動量を測定した。 第 4 5図に、 時刻 t及び時刻 tの 1 0秒前における铸型銅板温度の測定値の例を示す。 尚、 第 4 5図において、 秦印は時刻 tにおける温度で、 〇印は時刻 tの 1 0秒前の 温度である。
第 4 5図に示すように、 この期間では浸漬ノズルを中心として铸型幅方向左側で はこの 1 0秒間で铸型銅板温度が上昇し、 逆に右側では铸型銅板温度が下降した。 この場合、 この単位時間当たりにおける温度変動量の最大値は、 铸型幅方向右側の N o. 6の熱電対による測定値となる。 この温度差を単位時間の 1 0秒で除算した値 を、 この単位時間当たりにおける温度変動量の最大値とした。
そして、 铸造した铸片を冷延コイルに圧延し、 冷延コイルの表面欠陥を目視で検 査した。 第 4 6図は、 各コイルに相当する铸片において 1 0秒間隔毎に測定した温 度変動量の最大値を縦軸とし、 横軸を錶造順の铸片に対応する 3 5個の冷延コイル のコイル番号順に表示した図である。 尚、 第 4 6図において、 铸造した铸片の内、 ボトム铸片とトツプ铸片に対応するコィルは除外してあり、 コィル番号の小さい方 から大きい方に向かう方向力 S铸造方向である。
第 4 6図において斜線を付けた N 0. 1、 N 0. 5、 N 0. 8、 N o. 1 2、 N o. 2 0、 N o. 2 1 、 Ν ο· 2 3、 N o. 3 0、 及び N o. 3 1のコイルにおいて表面欠陥が見つ かった。 これらのコイルでは、 铸片の何処かで温度変動量の最大値が 1 . 0 °C/ s e cを越えていた。 そして、 温度変動量の最大値が 1 . 5 °CZ s e cを越えた N o. 1 、 N o. 2 1 、 N o. 3 0、 及び N ο· 3 1コイルでは表面欠陥がコイル当り 3個以 上発生して歩留り低下の原因となった。
このように、 温度変動量の最大値から冷延コイルの表面欠陥の程度が予測でき、 冷延コイルの用途及びグレードによって閾値を設定することで、 無手入れ一手入れ の判断が可能となる。 因みに第 46図の場合には、 閾値を 1. 0°CZs e cとして、 温度変動量の最大値が 1. 0°CZs e c以下の場合には 「無手入れ」 とし、 1. 0 °C/s e cを越える場合には 「手入れ」 とすることができる。
[実施例 6]
第 40図に示すスラブ連続铸造機を用い、 厚みが 250 mmで、 幅が 1250〜 1900mmの炭素鋼の铸片を、 その組成が C aO: 33. 6wt%、 S i 02: 39. lwt%、 A l 23 : 5. Owt %, Na20: 3. 4w t %, F: 7. 6 w t , MgO: 6. 9wt%で、 1300°Cにおける粘度が 0. 35Pa . sで あるモールドパウダーを用いて铸造した。 铸片引抜き速度は 0. 78〜1. 82m m i n、 溶鋼流出孔内への A rの吹き込み量は 10 N 1 Zm i n、 浸漬ノズルは 山形の 2孔ノズルで、 その吐出角度は下向き 25度である。 測温素子として熱電対 を用い、 メニスカスから 50mm下の位置に、 浸漬ノズルを中心として左右対称に 65 mm間隔で配置した。
铸造した铸片を冷延コイルに圧延し、 冷延コイルにおいてノロ力ミカ原因と考えら れるへゲ状表面欠陥を目視で検査し、 铸型銅板温度の平均銅板温度 (Tave) と対 比した。 第 47図は、 その調査結果であり、 铸片引き抜き速度と平均銅板温度 (T aVL.) との関係を冷延コイルの表面欠陥発生率別に示した図である。 この場合、 縦 軸の平均銅板温度 (Tave) は、 各铸片において 10秒毎に測定した幅方向温度分 布から、 それぞれの測定時期の平均銅板温度 (Tave) を計測し、 これらの計測値 を平均した値を代表値として表示している。
第 47図において、 〇印はノロカミに起因するへゲ状欠陥が認められなかったコ ィルに対応する铸片の平均銅板温度 (Tave) である。 この〇印を貫く破線は最少 自乗法で求めた〇印群の平均銅板温度 (Tave) の曲線であり、 その铸片引き抜き 速度における代表的な铸型幅方向温度の平均銅板温度 (Tav ) となる。 全ての〇 印は、 この曲線の ±25°Cの範囲に分布していた。 又、 第 47図には 25°Cだけ低 温側にシフトさせた温度曲線を実線で示している。
一方、 ノロカミに起因するへゲ状欠陥が認められたコイルに対応する铸片の平均 銅板温度 (Tuve) を△印で第 47図に示した。 これらの△印は上述の実線より下 側、 即ち、 その铸片引き抜き速度での代表的な平均銅板温度 (Tave) よりも 25 °C以上低温となっていたことが分かつた。
このように、 铸型幅方向温度分布の平均銅板温度 (Tave) を監視し、 監視され た値と、 その铸片引き抜き速度での代表的な平均銅板温度 (Tave) とを比較する ことで铸片の表面欠陥の程度が予測できる。 そして、 用途及びグレードによって閾 値を設定することで、 無手入れ一手入れの判断が可能となる。 因みに第 47図の場 合には、 平均銅板温度 (Tave) の差の閾値を 25 として、 無手入れ一手入れの 境界とすることができる。
WO 00/51763 PCT/JPOO/σΐΙΒΙ
55
最良の形態 4
先ず、 铸型銅板温度の測定値からモールドパウダー層と铸型銅板との間のエアー ギャップ厚みの変動や、 モールドパウダー層厚みの変動による雑音を取り除くこと について検討した結果から説明する。
銬型銅板温度に変動を及ぼす因子として、 铸片引き抜き速度、 铸型用冷却水の温 度、 铸型銅板厚み、 铸型内溶鋼温度、 凝固シェル表面に沿った溶鋼流速、 モールド パウダー層と铸型銅板との間のエアーギャップ厚み、 モールドパウダー層厚み、 の 7つの因子が存在する。 しかし、 この 7つの因子の中で、 铸片引き抜き の影響 は、 或る瞬間の铸型幅方向を考える限り一定であり、 無視することができる。 又、 冷却水温度ゃ铸型銅板厚みは、 当該铸造期間中には大きく変化しないので、 これら の影響も無視することができる。 当該铸造中における铸型内の溶鋼温度の変化は少 なく、 この影響も無視することができる。 モールドパウダー層厚みの影響及びエア 一ギャップ厚みの影響は大きく、 溶鋼流速の評価の際にはこれらの変動分を取り除 く必要がある。
実際の铸型銅板温度には、 流速プロファイルの変動、 凝固シェル厚みの変動、 及 びモールドパウダー層厚みの変動が合成された形になっている。 仮に、 凝固シェル 厚みの変動やモールドパウダー層厚みの変動の影響を避けるために、 測温素子の铸 型幅方向配設間隔をまばらにして、 温度分布の空間的分解能を減じたとしても、 た またま測温素子の配設間隔が凝固シェル厚みの変動やモールドパウダー層厚みの変 動の空間変動波長の整数倍に近くなつたところでは、 铸型銅板温度は大きく変動し て、 溶鋼流動状況の推定値に大きな誤差が生じる。
そこで本発明者等は、 モールドパウダ一層厚み及びエアーギヤップ厚みの変動間 隔を試験連続铸造機や実機による铸片の凝固シェル厚みの変動から調査した。 凝固 シェル厚みの変動は、 モールドパウダー層厚み及びエアーギヤップ厚みの変動に大 きく影響することが知られている。 その結果、 モールドパウダー層厚み及びエアー ギヤップ厚みの変動間隔は数 1 0 mmであることが分かった。
一方、 耐火物製棒の一端をメニスカスに浸漬させ、 溶鋼流により耐火物製棒が受 ける力を口一ドセルで測定して溶鋼流速を計測する溶鋼流速計により、 メニスカス 近傍の铸型幅方向に沿った溶鋼の流速プロファイルを測定して、 铸型内溶鋼の流速 プロファイルの空間変動波長を調査した。 この流速プロファイルの測定は、 铸片引 抜き速度と铸片幅との組み合せを水準 1〜 3の 3水準に変更して実施した。 表 5に 各水準の錶造条件を示す。 又、 水準 1〜3におけるメニスカス近傍の溶鋼流速プロ ファイルの測定結果を第 4 8図〜第 5 0図に示す。 尚、 第 4 8図〜第 5 0図におい て、 縦軸のメニスカス溶鋼流速で 「正」 の値は铸型短辺側から浸漬ノズル側への流 れを表わし、 「負」 の値はその逆向きの流れを表わしている。 表 5
Figure imgf000058_0001
第 4 8図〜第 5 0図に示すように、 銹型幅方向に沿った、 メニスカス近傍の溶鋼 流速プロファイルの波長、即ち溶鋼流速の高低の波長は、水準 1では 1 7 5 O mm、 水準 2では 8 0 O mm、 水準 3では 8 8 O mmとなり、 8 0 0〜1 8 0 O mm程度 であることが分かる。
このように、 溶鋼流動の空間変化間隔が数 1 0 O mmから数 1 0 0 O mmである のに対し、 モ一ルドパウダー層厚み及びエアーギャップ厚みの変動間隔は数 1 O m mであることが分かった。 そこで、 溶鋼流動の空間変化間隔がモールドパウダー層 厚み及びエアーギヤップ厚みの変動間隔に較べて著しく大きいことを利用して、 モ 一ルドパウダー層厚み及びエアーギャップ厚みの変動分をとり除くこととした。 即ち、 測定した铸型銅板温度の幅方向分布には、 数 1 O mmの抜熱量の変動ピッ チと溶鋼流動による数 1 0 O mm〜数 1 0 0 0 mmの変動ピッチがあり、 数 1 O m mピッチの変動を取り除いた温度分布には、 溶鋼流動による铸型銅板温度の変動分 だけが残留することになる。 故に、 少なくともモールドパウダー層厚みやエア一ギ ヤップ厚みによる 1 0 O mm以下の細かい変動を取り除き、 铸型全体にわたる大き な変動を評価したい場合には、 1 0 0 mm以下の変動波長を除去するようにし、又、 最大波長の場合でも铸型幅の 1 Z 2以下の変動波長を除去するように、 ローバスフ ィル夕一処理を行う。
ここにおいて、 溶鋼流動の空間周波数を f、 溶鋼流動の変動波長を Lとし、 この 変動波長 L (mm) を用いて溶鋼流動の空間周波数 f を f = 1 ZL (mm—1) で定 義すると、 1 0 0 mm以下の変動波長を除去することは、 カツトオフ空間周波数 ί cを 0 . 0 1未満にすることになる。 同様に、 铸型幅を W (mm) とすると、 铸型 幅 Wの 1 Z 2以下の変動波長を除去することは、 力ットオフ空間周波数 ί cを 2 Wより大きくすることになる。
このように、 本発明では、 連続铸造用铸型銅板背面の、 铸片引抜き方向と直交す る方向に設置された複数の測温素子により铸型銅板温度を測定し、 カツトオフ空間 周波数 f cを 2 ZWより大きく、 且つ、 0 . 0 1より小さい範囲としてローバスフ ィルター処理を行うので、 モールドパウダー層厚みやエアーギャップ厚みの変動に よる雑音を取り除くことができる。 そして、 口一パスフィルター処理された铸型銅 板温度の温度分布に基づいて铸型内の溶鋼流動状況を推定するので、 凝固シェル厚 みの変動やモールドパウダー層厚みの変動に起因する铸型銅板温度への変動が除去 されて、 铸型内溶鋼の流動状況を精度良く検知することができる。
錶型の幅は有限であり、 ローパスフィル夕一処理の際の端点における測定温度の 落ち込みの影響は無視できない。 そのため、 両側の铸型幅の端点でデータを折り返 して拡張したデータ系列を用い、 これに基づいてローパスフィル夕一処理を行うこ とは、 有限個のデータを利用する上で非常に有効な方法であり、 銅板温度分布の評 価精度も向上する。 特に浸漬ノズルからの吐出流速が速い場合には、 吐出流は铸型 短辺銅板に衝突して上下に分岐し、 分岐した上向き流はメニスカスにおいて铸型短 辺側から浸漬ノズル側に向かって流れるように向きを変える。 そのため、 銅板温度 分布の特徴としては、 铸型短辺側で高い温度が観測される。 この特徴を正確に捉え るためにも、 やはり铸型幅端点の温度降下を有効に除去する必要がある。
ローパスフィルター処理の例として空間移動平均があり、 この方法は簡便であり、 铸型銅板温度の測定値からモールドパウダー層と铸型銅板との間のエア一ギヤップ 厚みやモールドパウダー層厚みの変動による雑音を取り除く手段として用いること が好ましい。
空間移動平均とは、 銬型銅板温度の測温点に一方の端から他方の端に向かって一 方向に i = l、 2、 · · ·、 K (Kは他方の端の測温点) と番号をつけた時、 i = Nの測温点の温度 T nについて、 空間移動平均後の温度 T n(ave)を下記の (14) 式により定義するものである。 但し、 (14) 式において L= (M— 1) Z2であ り、 平均化個数 Mは奇数である。
m=L
T n (ave) = ( 1 /M) X ∑ T n+ra …… (14)
m=— L
ところで、 任意の連続関数は一般にフーリエ変換の定義により、 下記の (1 5) 式に示す正弦波の集合として表現できる。
h+L
u (L,h) = (l/L) x S sin2 π f h · dh
L
= (1/2 π fL) x [(2-2cos2 π fL) 1/2Xsin(2 π fh+Φ)] …… (1 5) 但し、 ^taiT1 [(卜 cos2 π fL)/sin2 π fL]
カツトオフ空間周波数 f cは利得が l/7"2になる周波数であるので、 (1 5) 式を用いてカットオフ空間周波数 f cを下記の (1 6) 式で表すことができる。
(1/2 π fc L) X [(2-2cos2 π fc L) l/2 = \/ 2 …… (1 6)
(1 6) 式から f c XL=0. 443が得られる。
そして、 平均化する点数を M、 隣合う測温素子との設置間隔を Δϊιとすると、 (1 7) 式が導かれる。
f c XL= 0.443 = f c XMXAh …… (1 7)
ここで、 Mが最小の 3の場合に、 変動ピッチが 1 00mmより短い波動を遮断す るためには、 隣合う測温素子との設置間隔 Δ ΙΊは下記の (1 8) 式を満たす必要が あり、 又、 Mが最小の 3の場合に、 変動ピッチが铸型幅 Wの 1Z2より短い波動を 遮断するためには、 隣合う測温素子との設置間隔 Ahは下記の (1 9) 式を満たす 必要がある。
Ah= 0.443/[(1/100) X3] = 44.3/3 …一 (1 8)
△ h= 0.443/[(2/W) X3] = 0.443 W/6 …… (1 9)
従って、通常の操業では、隣合う測温素子との設置間隔 Ah (mm) を下記の(2 0) 式の範囲とすれば、 目的とする波動を除去することができる。
44.3/3 < Ah < 0. 43 W/6 …… (20)
平均化個数 Mは必ずしも 3である必要はなく、 次のようにして決めることができ る。 空間移動平均による正弦波状の波の減衰量 Rは下記の (21) 式で表される。 (21) 式において 7Tは円周率、 f は正弦波状の波の空間周波数、 て =M/f sで あり、 f sは測温素子の铸型幅方向の埋設間隔の空間周波数であり、 具体的には、 基準となる铸型幅を測温素子の設置間隔で除算した値で表わされる。
R= (ΐΖ2πί τ) x [2- 2 cos (2πίて) ] 1/2…… (21)
平均化個数 Μを変更して、 正弦波状の波のそれぞれの周波数 fの減衰量 Μを (2
1) 式により算出し、 測定しょうとする溶鋼流速プロファイルの周波数域の減衰量 尺カ極力小さくなり、 且つ、 除去したい凝固シェル厚みの変動やモールドパウダー 層厚みの変動に起因する铸型銅板温度への変動の周波数域が、 十分に減衰される平 均化個数 Mを採用すれば良い。 このように、 平均化個数 Mを適正値として空間移動 平均することで、 溶鋼流速プロファイルの波長に比べて短波長である凝固シェル厚 みやモールドパウダー層厚みの変動を除去することができる。尚、十分な減衰とは、 減衰後の値が減衰前の値の 1 Z 10程度となる状態であり、 減衰量 Mを d Bで表示 した場合には、 一 10 d B程度の減衰量 Mとなる状態である。
上記説明のように、 铸造中の铸型銅板温度の変動は、 溶鋼流速の変動、 モールド パウダー層厚みの変動、 及び、 エアーギャップ厚みの変動に起因する。 上記のロー パスフィルター処理は、 铸型銅板温度に及ぼすモールドパウダー層厚み及びエア一 ギャップ厚みの変動による雑音を取り除くものである。 従って、 铸型銅板温度の測 定値からローパスフィル夕一処理した値を差し引けば、 铸型幅方向における铸型銅 板温度に及ぼすモールドパウダ一層厚み及びエアーギヤップ厚みの影響を求めるこ とができる。
連続铸造においては、 モールドパウダー層厚み及びエアーギャップ厚みの変動に より铸型内の抜熱が铸型幅方向で不均一になると、 铸型幅方向の凝固シェル厚みが 不均一になり、 铸片表面に縦割れが発生して铸片品質を劣化させるばかり力 凝固 シェル厚み力極端に薄くなると、 铸型直下で溶鋼静圧に負けて溶鋼が流出する、 所 謂ブレークァゥ卜が発生する。 WO 00/51763 PCT/JPOO/011¾1
60 上記に説明したように、 铸型銅板温度の測定値からローパスフィルター処理した 値を差し引けば、 铸型幅方向における抜熱の不均一度をオンラインで ffigすること が可能となり、 その把握した結果を铸造条件にフィードバックすることで、 铸片の 品質向上ゃ铸造の安定性を確保することができる。
次いで、 データ収集の採取間隔の適正化について検討した結果を説明する。
铸型銅板背面に設置した複数の測温素子の温度測定値に基づいて、 铸型銅板温度 の分布を捉える場合や、 求めた铸型銅板温度分布から溶鋼流動状況を類推する場合 には、 通常コンピューターを用いて行われることが一般的である。 しかし、 コンビ ユー夕一のデータ処理は、 装置の構造上、 時間的に連続ではなく離散化されたデ一 夕を用いなければならない。
そこで本発明者等は、 後述する実施例で使用した連続铸造機及び铸型銅板用温度 測定装置において、 铸型長辺銅板背面に設置した移動磁場式の磁場発生装置を用い て铸型内の溶鋼流動を意図的に変化させ、 どの程度の時間で溶鋼流動の変化が完了 するかを調査して、 铸型内溶鋼の流動状況の変化を漏れなく検知するためには、 铸 型銅板に設置した測温素子からデ一夕収集する時の離散時間間隔はどの程度まで許 容されるかを検討した。
調査は次のようにして行った。 鎵片厚み: 2 2 O mm、 铸片幅: 1 8 7 5 mm、 铸片引抜き i¾ : 1 . 6 mZm i n、 浸漬ノズル内への A r吹き込み量 1 3 N 1 / m i nの铸造条件で、移動磁場式磁場発生装置の磁束密度を 0 . 0 3テスラから 0. 0 5テスラにステップ的に増加させ、 一定時間経過後、 再び 0 . 0 3テスラにステ ップ的に減少させた時の铸型長辺銅板温度の経時変化を調査した。 調査結果を第 5 1図に示す。 第 5 1図は、 铸型長辺銅板の幅方向中心から右側に 7 3 1 . 5 mm、 7 9 8 mm、 8 6 4. 5 mm、 及び左側に 8 6 4. 5 mm離れた位置における铸型 長辺銅板温度の経時変化を示す図である。 何れの場合も磁束密度を変化させた時の 銬型長辺銅板の温度変化の遷移期間は、 約 6 0秒であることが分かった。
同様の調査を種々の铸造条件について行い、 铸型長辺銅板の温度変化の遷移期間 を求め、 ヒストグラムにまとめたもの力 S第 5 2図である。 第 5 2図から遷移期間は 6 0秒から 1 2 0秒の間に分布していることが分かった。 従って、 測温素子による 温度測定値を収集する際の離散時間間隔を 6 0秒以下とすれば、 品質に影響を及ぼ す铸型内溶鋼流動状況の変化を漏れなく検知することができる。
以上説明したように、 本発明では、 鎵型銅板に設置された測温素子の温度測定値 を収集する際に、 6 0秒以下の間隔で間歇的に採取し、 この間隔で採取した铸型銅 板温度に基づいて铸型内の溶鋼流動状況を推定するので、 品質に影響を及ぼす铸型 内溶鋼流動状況の変化を漏れなく且つ正確に検知することができる。 以下、 本発明を図面に基づき説明する。 第 5 3図は本発明を適用した連続铸造機 铸型部の正面断面の概略図である。
第 5 3図に示すように、 相対する铸型長辺銅板 3 0 5と、 銬型長辺銅板 3 0 5内 に内装された相対する铸型短辺銅板 3 0 6とから構成された铸型 3 0 4の上方に、 タンディッシュ 3 1 3が配置されている。 タンディッシュ 3 1 3の底部には上ノズ ル 3 1 8力設けられ、 この上ノズル 3 1 8に接続して、 固定板 3 1 9、 摺動板 3 2 0、及び整流ノズル 3 2 1から成るスライディングノズル 3 1 4が配置され、更に、 スライディングノズル 3 1 4の下面側には浸漬ノズル 3 1 5が配置されて、 夕ンデ ィッシュ 3 1 3から铸型 3 0 4への溶鋼流出孔 3 2 2が形成される。
取鍋 (図示せず) からタンディッシュ 3 1 3内に注入された溶鋼 3 0 1は、 溶鋼 流出孔 3 2 2を経由して、 浸漬ノズル 3 1 5の下部に設けられ、 且つ铸型 3 0 4内 の溶鋼 3 0 1に浸漬された吐出孔 3 1 6より、 吐出流 3 1 7を铸型短辺銅板 3 0 6 に向けて铸型 3 0 4内に注入される。 そして、 溶鋼 3 0 1は铸型 3 0 4内で冷却さ れて凝固シェル 3 0 2を形成し、 铸型 3 0 4の下方に引き抜かれて铸片となる。 铸 型 3 0 4内のメニスカス 3 1 1上にはモールドパウダー 3 1 2が添加されている。 上ノズル 3 1 8はポーラス慷瓦からなり、 溶鋼流出孔 3 2 2の壁面へのアルミナ 付着を防止するため、 上ノズル 3 1 8と連結された A r導入管 (図示せず) を介し て上ノズル 3 1 8から溶鋼流出孔 3 2 2内に A rが吹き込まれる。 吹き込まれた A rは、 溶鋼 3 0 1と共に浸漬ノズル 3 1 5を通り、 吐出孔 3 1 6を介して铸型 3 0 4内に流入し、 铸型 3 0 4内の溶鋼 3 0 1を通ってメニスカス 3 1 1に浮上し、 メ ニスカス 3 1 1上のモールドパウダー 3 1 2を貫通して大気に至る。
铸型長辺銅板 3 0 5の背面の、 メニスカス 3 1 1よりも铸片引抜き方向下方の位 置には、 銪片引抜き方向に直交する直線上に、 铸型長辺銅板 3 0 5の幅方向に沿つ て複数の孔が設けられ、 铸型長辺銅板 3 0 5の銅板温度を測定する測定点 3 0 7と なっている。 各測定点 3 0 7には測温素子 3 0 3力 その先端を铸型長辺銅板 3 0 5に接して配置され、 铸片の全幅に対応する铸型長辺銅板温度の測定を可能として いる。 铸型銅板温度を口一パスフィル夕一処理する場合には、 隣合う測定点 3 0 7 の間隔を 4 4. 3 / 3 = 1 4. 8 mm以上、 0. 4 4 3 X [铸型幅 (mm) ] / 6 以下の範囲とする必要がある。 尚、 メニスカス 3 1 1から測定点 3 0 7までの距離 は錶片引抜き方向に 1 0〜1 3 5 mm離れた範囲とすることが好ましい。 メニスカ ス 3 1 1から 1 0 mm未満の範囲は铸造中のメニスカス 3 1 1の変動により铸型銅 板温度が昇降するため、 溶鋼流動による铸型銅板温度の変化を正確に把握すること ができず、 又、 メニスカス 3 1 1から 1 3 5 mmを越えた下方の位置では、 凝固シ エル 3 0 2の発達により銅板温度の変化量が少なくなり、 測定精度が期待できなく なってくるからである。 更に、 錶型長辺銅板 3 0 5の溶鋼側表面から測温素子 3 0 3の先端までの距離は、 時々刻々の溶鋼流速の変化を正確に捉えるために、 1 6 m m以下とすること力好ましい。
一方、 測温素子 3 0 3の他端は零点補償器 3 0 8に連結されており、 測温素子 3 0 3から出力される起電力信号は零点補償器 3 0 8を経由して変換器 3 0 9に入力 され、 変換器 3 0 9にて起電力信号を電流信号に変換された後、 電流信号としてデ 一夕解析装置 3 1 0に入力される。 データ解析装置 3 1 0には、 ローパスフィル夕 —処理、 例えば前述の (2 0 ) 式により空間移動平均を算出する機能が設置されて いる。 尚、 測温接点となる測温素子 3 0 3の先端が铸型 3 0 4の冷却水 (図示せず ) により直接冷却されないように、 測定点 3 0 7はシール材 (図示せず) により冷 却水からシールされている。 又、 測温素子 3 0 3は、 熱電対や抵抗測温体等のうち 土 1 °C以上の精度で測温できるものであれば種類を問わない。
データ解析装置 3 1 0は、 変換器 3 0 9から送信される铸型長辺銅板温度データ を 6 0秒以下の間隔で間歇的に読み取り、 読み取った各測定点 3 0 7におけるデ一 夕を (2 0 ) 式により空間移動平均して、 空間移動平均した温度 T n (ave)の铸型幅 方向分布をモニター (図示せず) に表示し、 又は、 予め铸型長辺銅板温度分布から 定義した溶鋼流動パターンを表示する。 尚、 (2 0 ) 式における平均化個数 Mは、 溶鋼流速プロファイルの周波数を考慮して、 最適な値を予め入力しておくこととす る。
本発明では、 このようにして铸型内溶鋼 3 0 1の流動状況を検知するので、 凝固 シェル厚みやモールドパウダー層厚みの変動の雑音を取り除くことが可能となると 共に、 デ一夕収集の採取間隔が適正化され、 流動変化を精度良く且つ漏れなく検知 することが可能となる。 又、 検知された溶鋼流動パターンから、 铸片引抜き速度、 溶鋼流出孔 3 2 2内への A r吹き込み量等の铸造条件にフィ一ドバックして溶鋼流 動を制御する際には、 検知した情報が正確であるので、 迅速に且つ適正にフィード バック制御することが可能となる。
尚、 上記説明では、 測温素子 3 0 3が片側の錶型長辺銅板 3 0 5の幅方向 1列に 設置されているが、 铸造方向に複数列設置しても、 又、 両方の铸型長辺銅板 3 0 5 に設置しても良い。 又、 铸型短辺銅板 3 0 6には測温素子 3 0 3が設置されていな いが、 铸型短辺銅板 3 0 6に設置することもできる。 更に、 A rの吹き込み方法は 上記に限るものではなく、 スライディングノズル 3 1 4ゃ浸漬ノズル 3 1 5から吹 き込んでも良い。
[実施例 1 ]
第 5 3図に示すスラブ連続錶造機を用いて鎵型内溶鋼の流動検知を実施した実 施例を以下に説明する。 連続鎵造機は 3 mの垂直部を有する垂直曲げ型であり、 最 大 2 1 0 0 mmの铸片を铸造することができる。 表 6に用いた連続铸造機の諸元を 示す。
測温素子としてアルメル ·クロメル (J I S熱電対 K) を用い、 铸型長辺銅板の 溶鋼側表面から熱電対先端 (測温接点) までの距離を 1 3 mm、 相隣り合う熱電対 間の間隔を 6 6 . 5 mm、 メニスカスからの距離を 5 0 mmとして、 铸型幅方向長 さ 2 1 0 0 mmに渡って熱電対を埋設した。 そして、 厚み 2 2 0 mm、 幅 1 7 0 0 mmの铸片を、 鎵片引抜き速度 2 . 1 mZm i n、 A r吹き込み量 1 0 N 1 Zm i nの铸造条件で铸造した。 表 6
1ェ
链 娥刑 ^f*
o m
½¾麵 魯 250 ton
、リ ノ,
y ^ j Λ ッノュ ν ¾ ^^^綱^ Aβ直 80 ton
$^r\ f 675〜謂誦
铸片引抜き速度 最大 3 m/min
浸漬ノズル 下向き 25度,吐出孔 80 删 第 5 4図は、 この铸造条件で収集した铸型長辺銅板温度の生デ一夕による铸型幅 方向の温度分布である。 温度分布には、 凝固シェル厚みの変動やモールドパウダー 層厚みの変動に起因すると考えられる短波長の変動が合成されている。 尚、 第 5 4 図の横軸は銬型幅方向の位置であり、 中央の 「0 mm」 の位置が铸型幅方向の中心 位置で、 浸潰ノズルの位置であり、 負符号が铸型幅方向左側を表わし、 正符号が铸 型幅方向右側を表わしている (以降、 铸型幅方向位置を同一の表示法で示す) 。 そこで第 5 4図に示す温度分布に空間移動平均を施すことにした。 先ず、 平均化 個数 Mを次のようにして決めた。 正弦波状の波の空間周波数 f及び測温素子の埋設 間隔の空間周波数 f sを求める際の基準となる铸型幅を铸型の最大幅の 2 1 0 0 m mにとり、 平均化個数 Mを 3、 5、 7の 3水準に変更して、 正弦波状の波の減衰量 Rを算出した。 その結果を第 5 5図に示す。 第 5 5図に示すように平均化個数 Mを 変更することで、 波長が 1 0 0 O mm以下の正弦波状の波の減衰量 Rに差が生じて くる。
本実施例では、 凝固シェル厚みの変動やモールドパウダー層厚みの変動に起因す ると考えられる 2 0 O mm程度の波長の正弦波状の波は除去して、 溶鋼の流速プロ ファイルに対応すると考えられる 8 0 0 1 8 0 0 mm程度の波長の正弦波状の波 は残留させたい。 この観点から第 5 5図を検討すると、 2 0 0 mm程度の波長の波 の減衰量 Rが最も大きくなる時の平均化個数 Mは 3であり、 平均化個数 Mは 3が適 当であると判断された。 平均化個数 Mが 5及び 7の場合には、 溶鋼の流速プロファ ィルも大きく減衰させる可能性があり、 不適であることが分かる。 そこで平均化個 数 Mを 3とした。
第 56図は、 第 54図に示す温度分布に平均化個数 Mを 3として空間移動平均を 施した铸型長辺銅板幅方向の温度分布である。 第 56図に示すように、 第 56図に おいては第 54図で存在した短波長の変動がなくなり、 溶鋼の流速プロファイルに よる温度変動のみを表示することができた。
[実施例 2]
実施例 1と同一の連続铸造機を用い、厚み 250mm,幅 1500mmの铸片を、 铸片引抜き速度 2. OmZmi r A r吹き込み量 10 N 1 Zm i nの铸造条件で 铸造した。 本実施例では、 測温素子としてアルメル ·クロメル (J I S熱電対 K) を用い、 铸型長辺銅板の溶鋼側表面から熱電対先端 (測温接点) までの距離を 13 mm、 相隣り合う熱電対間の間隔を 5 Omm、 メニスカスからの距離を 50 mmと して、 铸型幅方向全面に渡って熱電対を埋設した。
このとき測定した铸造中の銅板温度分布の生データを第 57図に示す。 この生デ 一夕は、 埋め込み間隔の 2倍である 10 Omm波長以上の変動を表している。 ロー パスフィルタ一として、 空間移動平均を用いた。 第 58図〜第 60図に平均化個数 M=3、 7、 9で処理した温度分布を示す。 平均化個数 M= 3に対して、 遮断され る空間周波数 f cは 0. 003、 波長は 34 Ommである。 平均化個数 M== 7に対 して、 遮断される空間周波数 f cは 0. 0013、 波長は 79 Ommである。 平均 化個数 M= 9に対して、 遮断される空間周波数 f cは 0. 001、 波長は 101 5 mmである。
ローパスフィル夕一処理を行っていないときには、 一見して特徴がつかめないが、 M=3のときは、 第 58図に示すように強い吐出流による短辺近傍の強い流れが高 い温度として観察され、 同時に、 A rによる浸漬ノズル近傍の浮上流が、 中央付近 の高い温度として観察できる。 M=7になると、 第 59図に示すように短辺近傍と 中央付近の温度が高くなつている特徴を残しているが、ややあいまいになっている。
M=9のときには、 第 60図に示すように温度分布はほぼフラットで、 全く特徴が 分からなくなつている。 以上より、 フィル夕一の遮断波長は 10 Ommから铸型幅 (W) / 2 (=75 Omm) の範囲で行うのが良いことが分かった。 [実施例 3]
実施例 2と同一の連続铸造機及び同一の铸造条件において、 熱電対埋め込み間隔 を 50mm、 100mm、 150mmとした。 ローパスフィルター処理として、 空 間移動平均を用い、 最小の平均化個数 M= 3で処理した。 前述の第 58図に 50m m間隔で熱電対を埋め込んだ場合の温度分布を示し、 又、 第 61図に 100mm間 隔、 第 62図に 150mm間隔で熱電対を埋め込んだ場合の温度分布を示す。 各埋め込み間隔に対応する M== 3の場合の遮断波長は、 間隔 50 mm、 100m m、 150mmに対して、 それぞれ、 340mm, 680mm, 1015mmであ る。 第 62図に示すように 150mm間隔の場合、 ローパスフィルター処理を行う とフラットな温度分布になり、 温度分布の特徴を ffigすることができない。 これら の結果から、 熱電対埋め込み間隔は 0. 443Z (3 X f ) mmで規定され、 最大 で 0. 443 X [铸型幅 (W) ] /6 mm (1500 mm幅の場合: 1 10 mm) 以内であれば良いことが分かった。
[実施例 4]
実施例 2と同一の連続铸造機及び温度測定装置を用いて、 実施例 2と同一の铸造 条件で铸造した。 铸型端点でデータを折り返して拡張したデータを使用し、 平均化 個数 M= 7として空間移動平均した場合を第 63図に示し、 デ一夕を折り返しなか つた場合の前述の第 59図と比較した。 データを折り返した場合は铸型端までよく 生デ一夕の特徴を捉えており、 より正確な温度分布の評価が可能になった。
[実施例 5 ]
実施例 1と同一の連続铸造機及び温度測定装置を用い、 厚み 220mm、 幅 15 50 mmの铸片を、 铸片引抜き速度 2. 0 m/m i n A r吹き込み量 I ON 1Z m i nの铸造条件で錶造した。 本実施例では、 铸型長辺銅板背面に移動磁場式磁場 発生装置を設置して、 浸漬ノズルからの吐出流を制動する方向に移動磁場を印加し て銹造した。
铸造中、 測定した铸型長辺銅板温度を 1秒毎にデータ解析装置で収集した。 本実 施例では、 鐯型長辺銅板温度のデ一夕収集間隔を変更するために、 データ解析装置 で収集したデータを、 更にデータ収集 ·解析用パソコンに 1秒間隔、 5秒間隔、 1 0秒間隔、 60秒間隔、 及び 240秒間隔の 5水準の間隔で送信した。 データ解析 装置からのデータの送信には TCP I P手順を用いた。 デ一夕収集 ·解析用パソ コンは、 CPUクロック周波数が 200 MHz、 RAMメモリ容量が 128MBの 汎用品である。
そして铸造中、 铸込み長が 165mに達した時に、 移動磁場式磁場発生装置の磁 束密度を 0. 125テスラから 0. 145テスラにステップ的に増加させ、 この時 の铸型長辺銅板の温度変化を上記の 5水準の収集間隔でモニタ一して、 得られるデ 一夕に差があるか否かを確認した。 第 64図〜第 68図に、 データ収集'解析用パ ソコンでのデータ収集間隔を 1秒、 5秒、 10秒、 60秒、 240秒間隔とした時 の、 铸型長辺銅板温度の経時変化を示す。
第 64図〜第 68図に示すように、 最もデ一夕収集間隔の短い 1秒間隔で収集し た時の温度変化に対して、 データ収集間隔の長い 60秒の場合でも、 移動磁場式磁 場発生装置の磁束密度変化に伴う铸型長辺銅板温度の変化をほぼ正確に捉えること ができた。 ところがデータ収集間隔を 240秒とした場合には、 铸型長辺銅板温度 の温度変化は鈍重になり、 正確な温度変化を捉えることができなかった。 尚、 第 6 4図〜第 68図に示すデータは、 铸型長辺銅板の幅方向中心から右側に 665mm 離れた測定点における温度測定値である。
[実施例 6]
実施例 2と同一の連続铸造機及び温度測定装置を用い、 厚み 250mm、 幅 14 00〜1800mmの铸片を、 Ar吹き込み量を 1 ON 1/mi nとし、 1. 2〜 1. 8m/m i nの铸片引き抜き ¾J で铸造した。
铸造中に铸型内に硫化鉄を添加し、 铸造後の铸片の切断面における硫黄の分布か ら、 各切断面で 30点の凝固シェル厚みを測定し、 その標準偏差 (σ) を求めた。 一方、 铸型銅板温度の測定データを平均化個数 Μ= 3として空間移動平均し、 各 測定点において、 測定値 (T i) から空間移動平均後の値 T n(ave)を差し引いた値 (D i =T i-T n(ave)) をオンラインで求めた。 そして、 下記の (22) 式に示 すように、 この値 (D i ) の絶対値の铸型幅方向平均値 (D o) を铸型内抜熱の不 均一度を表す代表値として求めた。
Do- (l/n) x ∑ I D i I "-… (22)
i = 1 求めた铸型幅方向平均値 (D o) と硫黄の分布から求めた凝固シェル厚みの標準 偏差 (σ ) との関係を第 6 9図に示す。 図から明らかなように、 両者には非常に良 い直線関係があり、 铸型幅方向平均値 (D 0) は铸型内における抜熱の不均一度を 精度良く評価していることが分かつた。 抜熱量の不均一度をォンラインで評価すれ ば、 その結果生ずる凝固シェル厚みの不均一度を間接的に予測可能となる。
最良の形態 5
本発明では、 銬型内の溶鋼流動状況を、 推定用デ一夕ベースに頼らずにリアル夕 ィムに捉え、 この情報に基づいて溶鋼流動状況を適正に制御することを目的とする 力^ 連続铸造用铸型内の溶鋼流動状況をリアルタイムで捉えるにはセンサーが必要 である。 そこで本発明者等はセンサーとして铸型長辺銅板背面の幅方向に測温素子 を複数個設置した。 铸型内の溶鋼流動に応じて铸型内の溶鋼と凝固シェルとの間の 対流熱伝達係数は変化し、 これに伴い、 溶鋼から铸型長辺銅板を通して铸型長辺銅 板用の冷却水に向かう熱流束の大きさは変化する。 従って、 銬型長辺銅板の温度を 監視すれば铸型内の溶鋼流動状況を監視することができる。 又、 測温素子は溶鋼に は直接には接触しないので、 耐久性があり銬型を連続铸造機に上架している間、 常 時铸型内の溶鋼流速を検知することが可能である。
ところで、 特開平 1 0— 1 0 9 1 4 5号公報には、铸型サイズ、铸片引抜き速度、 浸漬ノズル内への A r吹き込み量、 及び溶鋼流動制御用の磁場強度の 4つの要素を 変化させることにより、 銬型内の溶鋼流動パターンは A、 B、 Cの 3つのパターン に大別できるとして、 これら 4つの要素を铸造条件の対象とし、 これら要素からな る複数の铸造条件において予め铸型内の溶鋼流動パターンを測定して、 この測定結 果に基づいて個別の鎵造条件における铸型内溶鋼の流動パターンを推定し、 流動パ ターンがパターン Bになるように吐出流に印加する磁場強度又は浸漬ノズルへの A r吹き込み量を調整する方法が開示されている。 尚、 パターン Aとは、 浸漬ノズル からの吐出流が铸型短辺側の凝固シェルに到達した後に上下に分岐するパターンで あり、 メニスカスでは铸型短辺から浸漬ノズルに向かう流れとなり、 パターン Bと は、 浸漬ノズルからの吐出流が铸型短辺側の凝固シェルに到達せずに、 吐出口から 铸型短辺側の凝固シェルまでの間で分散するパターンであり、又、パターン Cとは、 浸潰ノズル近傍に上昇流が存在するパ夕一ンであり、 メニスカスでは浸漬ノズルか ら铸型短辺に向かう流れとなり、 そして、 これらパターン別の製品におけるモール ドパゥダ一性欠陥の発生量から、 パターン B力最も良好であるとしている。
このように、 製品の品質、 特にモールドパウダーの巻込みによる介在物の製品中 への混入を最小にするには、 铸型内溶鋼の流動パターンを上記のパターン Βとする ことが最も良い。 そこで本発明者等は、 铸型内の溶鋼流動状況がパターン Bとなつ た時のメニスカスにおける溶鋼流速を、後述する実施例に示す連続銹造機を用いて、 铸片厚み: 2 2 0 mm、 铸片幅: 1 6 0 0 mm、 铸片引抜き速度: 1 . 3 m/m i n、浸漬ノズル内への A r吹き込み量: 1 O N 1 Zm i n、浸漬ノズルの浸漬深さ: 2 6 0 mmの铸造条件で測定した。 溶鋼流速は耐火物製の棒をメニスカスに浸潰し て溶鋼流による耐火物製棒の振れ角度から測定する方法 (以下、 「浸漬棒式メニス カス溶鋼流速計」 と記す) で行った。
その結果を第 7 0図に示す。 第 7 0図に示すように、 パターン Bに相当する時の メニスカスでの溶鋼流速分布は、 铸型の幅方向中心に対してほぼ対称であり、 且つ 铸型の幅方向で流速の絶対値の差が小さいことが分かった。 尚、 第 7 0図で縦軸の 正符号の流速は鎵型短辺側から浸漬ノズル側に向かう流れであり、 負符号の流速は その反対方向に流れる流れを示しており、 横軸は铸型幅方向の位置であり、 中央の 「0 mm」 の位置が铸型幅方向の中心位置で、 浸漬ノズルの位置であり、 負符号が 铸型幅方向左側を表わし、 正符号が铸型幅方向右側を表わしている (以降、 铸型幅 方向位置を同一の表示法で示す) 。
従って、 前述した溶鋼流動に対する铸型銅板温度の対応特性から、 この時の錶型 長辺銅板の温度分布は平坦かつ左右対称になると考えられる。 実際、 パターン Bの 時の铸型長辺銅板の幅方向温度分布は図 7 1に示す結果が得られた。 第 7 1図に示 すように、 パターン Bの時の温度分布は铸型幅左右でほぼ対称で、 最大値と最小値 との差が小さい平坦な温度分布となった。 このようにして、 パターン Bにおける温 度分布の測定を種々の铸造条件について行った結果、 パターン Bにおける铸型長辺 銅板の温度分布では、 最大値と最小値との差が 1 2 °C以下の比較的平坦な温度分布 であり、 铸型幅方向左右の対称性の観点では铸型幅方向中心に対して左右対称位置 の銅板温度の差は 1 0 °C以下であることが分かった。
本発明では、 铸型長辺銅板幅方向の温度分布の最大値と最小値との差を 1 2 °C以 下とし、 好ましくは更に、 浸漬ノズルを中心として铸型長辺銅板幅方向左右の対称 位置における温度差を 1 0 °C以下となるように制御するので、 铸型内溶鋼流動はパ ターン Bに制御され、 製品の品質が向上する。
そして、 本発明では溶鋼流動をこのように制御する手段として、 磁場発生装置の 磁場強度、 铸片引抜き 、 浸漬ノズルの浸漬深さ、 浸漬ノズル内への A r吹き込 み量のうちの何れか 1つ又は 2つ以上を調整することとした。
磁場発生装置の発生する磁場が静磁場の場合には、 铸型内の溶鋼流はローレンツ 力によって制動力を受け、又、磁場発生装置が発生する磁場が移動磁場の場合には、 磁場の移動方向に铸型内溶鋼が駆動され、 これによつて励起された溶鋼流れによつ て鎵型内の溶鋼流動が制御される。 このような磁場発生装置は供給電力を瞬時に変 化させることで磁場強度を瞬時に変ィ匕させることができる。 従って、 測温素子で測 定した時々刻々の铸型内溶鋼流動の変化に対応して、 溶鋼流動の制御を行うことが できる。 又、 磁場発生装置は溶鋼に直接触れることはなく、 操業上の耐久性は良く、 従って、 铸型を連続銬造機に上架している間常時必要に応じて磁場を溶鋼に印加す ることができる。
铸片引抜き i¾¾を調節すれば、 浸漬ノズルからの吐出流の を調節することが できるので、 錡型内の溶鋼流動を制御することができる。 又、 浸漬ノズルの浸漬深 さを調節すると、 吐出流が短辺側の凝固シェルに衝突する位置が上下する。 これは その衝突位置からメニスカスまでの距離を調節することになり、 短辺側凝固シェル に衝突後、 上方に向かって分岐した溶鋼流がメニスカスに到達するまでの減衰の度 合いを調節することができるので、铸型内の溶鋼流動を制御することができる。又、 浸漬ノズルに吹き込む A rは浸漬ノズルから出た時に浸漬ノズル付近に浮上し、 そ の際に溶鋼の上昇流も誘起する。 従って、 A rの吹き込み量を調節することにより 铸型内の溶鋼流動を調節することができる。 尚、 本発明において浸漬ノズルの浸漬 深さとは、 浸漬ノズルの吐出孔上端からメニスカスまでの距離を表わす。
以上説明したように铸型長辺銅板の温度分布に基づいて銬型内の溶鋼流動を制 御することができるが、 測温素子で測定した铸型長辺銅板の温度は、 銅板の厚み、 銹型用冷却水の温度や流量等の要因によっても変化する。 従って、 これらの要因も 含めて、 伝熱計算モデルを用いて錶型銅板温度から铸型内の溶鋼流速を求めること により、 溶鋼流速以外の铸型銅板温度の変化要因を排除した上で、 铸型内の溶鋼流 動制御を行うことができる。 測温素子により測定した铸型長辺銅板温度から铸型内 溶鋼流速を換算する方法は、 以下のようにして行うこととする。
第 7 2図は、 铸型内溶鋼から铸型長辺銅板を経て、 铸型長辺銅板用の冷却水へ熱 伝導が生じる過程の、溶鋼から冷却水までの温度分布を模式的に表わした図である。 第 7 2図に示すように、 溶鋼 40 1から铸型長辺銅板用の冷却水 405までの間に は、 凝固シェル 402、 モ一ルドパウダー層 403、 及び铸型長辺銅板 404の各 熱伝導体が存在しており、 そして、 測温素子 406が铸型長辺銅板 404に埋設さ れ、 铸型長辺銅板 404内の温度を測定している。 尚、 図中、 T o は溶鋼 40 1の 温度、 1 は凝固シェル 402の溶鋼 40 1との界面温度、 Ts は凝固シェル 40 2とモールドパウダ一層 403との境界温度、 TP はモールドパウダー層 403の 铸型長辺銅板 404側の表面温度、 TmH は铸型長辺銅板 404のモールドパウダ 一層 403側の表面温度、 TmLは铸型長辺銅板 404の冷却水 40 5側の表面温度、 T w は冷却水 40 5の温度である。
この場合、 溶鋼 40 1から冷却水 40 5までの熱伝導体の熱抵抗を合成した総括 熱抵抗は (2 3) 式で表わされる。但し (23) 式において、 R:総括熱抵抗、 a : 溶鋼と凝固シェルとの間の対流熱伝達係数、 λ5 :凝固シェルの熱伝導率、 λΡ : モールドパウダー層の熱伝導率、 Am :铸型長辺銅板の熱伝導率、 hm :モ一ルド パウダー層と铸型長辺銅板との間の熱伝達係数、 hw :铸型長辺銅板と冷却水との 間の熱伝達係数、 ds :凝固シェル厚み、 dP :モ一ルドパウダー層厚み、 dm : 铸型長辺銅板厚みである。
R=(l/a) + (d s/As) + (d P/AP) + (l/h m) + (d m/Am) + (l/h w) … (23) ここで铸型長辺銅板厚み (dm ) 、 铸型長辺銅板の熱伝導率 (入 m ) は設備によ つて一定に決まる値である。 又、 凝固シェルの熱伝導率 (λ5 ) は鋼種が決まれば 一定に決まる値である。 又、 モールドパウダー層厚み (dP ) はモールドパウダー の種類と、 铸型振動の振幅、 周波数、 及び振動波形と、 銬片引抜き速度とが決まれ ば一定に決まる数値である。 又、 モールドパウダー層の熱伝導率 (λΡ ) はモール ドパウダーの種類によらず、 ほぼ一定であることが知られている。 又、 铸型長辺銅 板と冷却水との間の熱伝達係数 (hw ) は冷却水 405の流量、 铸型長辺銅板 40 4の表面粗度が決まれば一定に決まる数値である。 又、 モールドパウダー層と铸型 長辺銅板との間の熱伝達係数 (hm ) もモールドパウダーの種類が決まればほぼ一 定の値に決まる。
しかし、 溶鋼と凝固シェルとの間の対流熱伝達係数 (α) は、 凝固シェル 402 の表面に沿った溶鋼流速によって変化する値であり、 この対流熱伝達係数 (α) は (24)式の平板近似の式で表わすことができる。但し(24)式において、 N u : ヌッセル卜数、 :溶鋼の熱伝導率、 Xi :伝熱代表長さである。
a = N u Χλ , / χ … (24)
ここで、 ヌッセルト数 (Nu ) は、 溶鋼流速の速度範囲別に (25) 式及び (2 6) 式で表わされる。 但し (25) 式及び (26) 式において、 P r :プランドル 数、 R e : レイノズル数、 U:溶鋼流速、 U 0 :溶鋼の層流と乱流との遷移速度 である。
N u = 0.664XP rI/3 XR eV5 (U<U o ) … (25)
N u = 0.036XP r'/3 XR e1/z (U≥U o ) ··· (26)
又、 プランドル数 (P r ) 及びレイノズル数 (R e ) は、 それぞれ (27) 式 及び (28) 式で表わされる。 但し (28) 式において、 X2 :溶鋼流代表長さ、 レ :溶鋼の動粘性係数である。
P r =0.1715 … (27)
R e =UXX2 /v … (28)
一方、 溶鋼 40 1から冷却水 40 5への熱流束は (29) 式で表わすことができ る。 但し (29) 式において、 Q:溶鋼から冷却水への熱流束、 T o :溶鋼温度、 T w :冷却水温度である。
Q= (T 0 -T w ) /R ··· (29)
又、 铸型長辺銅板 404の冷却水 405側の表面温度は (30) 式で表わすこと ができる。 但し (30) 式において、 TmL:铸型長辺銅板の冷却水側表面温度であ る。
TmL = Tw +QZhw … (30)
更に、 測温素子 406にて測定される铸型長辺銅板温度は (3 1) 式で表わすこ とができる。 但し (3 1) 式において、 T:測温素子にて測定される铸型長辺銅板 温度、 d :铸型長辺銅板の溶鋼側表面から測温素子先端までの距離である。
T = TmL + QX (dm - d) /Xm … (3 1)
そして、 (30) 式を (3 1) 式に代入することで、 铸型長辺銅板温度 (T) は (32) 式で表わされる。 T-T w+Q/hw+QX (dm-d) / m "' (32)
従って、 铸型長辺銅板温度 (T) から溶鋼流速 (U) を求める手順は以下のよう になる。 先ず、 測温素子による铸型長辺銅板温度 (T) の測定値を、 (32) 式に 代入して熱流束 (Q) を求める。 (32) 式では熱流束 (Q) 以外の右辺の変数は 全て既知であるので、 熱流束 (Q) を逆算することができる。 次に、 熱流束 (Q) を (29) 式に代入して、 総括熱抵抗 (R) を求める。 ここでも総括熱抵抗 (R) 以外の右辺の変数は全て既知であるので、 総括熱抵抗 (R) を逆算することができ る。 そして、 総括熱抵抗 (R) を (23) 式に代入して対流熱伝達係数 (α) を求 める。 ここでも対流熱伝達係数 (α) 以外の右辺の変数は全て既知であるので、 対 流熱伝達係数 (α) を逆算することができる。 求めた対流熱伝達係数 (α) を (2
4) 式に代入してヌッセルト数 (Nu ) を求め、 このヌッセルト数 (Nu ) を (2
5) 式又は (26) 式に代入してレイノズル数 (Re ) を求める。 そして最後に求 めたレイノズル数 (Re ) を (28) 式に代入して溶鋼流速 (U) を求める。 この ように、 本発明では、 溶鋼流速 (U) に起因する溶鋼と凝固シェルとの間の対流熱 伝達係数 ( ) の変化によって生じる錡型長辺銅板温度 (T) の変化を捉えて、 凝 固界面に沿った溶鋼流速 (U) を推定する。
第 73図は、 以上の原理によって溶鋼流速と铸型長辺銅板温度との関係を求めた 一例である。 第 73図に示すように、 铸型長辺銅板温度が同一であっても錡片引抜 き速度により溶鋼流速は大幅に異なっており、 铸型長辺銅板温度から溶鋼流速を推 定することが可能であることが分かる。 尚、 第 73図は表 7に示す変数に基づき、 銪型長辺銅板温度から溶鋼流速を算出したもので、 表 7は、 铸片引抜き速度が 2. Om/mi n及び 1. 3m/m i nの铸造条件における各変数の一例を示したもの である。 又、 溶鋼の層流と乱流との遷移速度 (U 0) は 0. lmZs e cとして算 出し、 表 7及び第 73図中の Vcは铸片引抜き ili である。 変数 数値
1 凝固ンエルの熱伝導率 (λ s) 20 W/m-K
2 モールドパウダー層の熱伝導率 (λρ) 1.5 W/m-K
3 铸型銅板の熱伝導率 (Am) 300 W/m-K
モールドパウダー層と铸型銅板との間
4 2500 W/m2-K
の熱伝達係数 (hm)
お Ji¾SB¾te1¾とレ * fc1fl〗,7」レ、とレ O| 二
曰 jC^) ¾i / 1 :達去/ 1 f7Sft3*¾r
5 28750 W/m2-K
(hw)
6 铸型銅板厚み (dm) 0.04 m
7 铸型銅板の溶鋼側表面から測温素子ま
ί U. U 1 o 111
での距離 (d)
8 冷却水温度 (Tw) 25°C
0.00348 m(Vc-2.0m/min)
9 凝固シェル厚み (ds)
0.00432 m(Vc=1.3m/min)
10 モールドパウダー層厚み (dP) 0.0006 m
11 溶鋼温度 (To) 1545で
12 溶鋼の熱伝導率 (λ!) 33.44 W/m-K
13 伝熱代表長さ 0.23 m
14 溶鋼流代表長さ (Χ2) 0.23 m
15 溶鋼の動粘性係数 (レ) 1 X10— 6 m'Vsec 以上説明したように、 铸型長辺銅板温度から铸型内の溶鋼流速を求めることがで きる。 そこで本発明者等はこの原理を確かめるために、 上述した連続錶造機を用い て測温素子を铸型長辺銅板の幅方向に沿って複数個配設し、 各測温素子の温度に基 づき銬型内の溶鋼流速及び铸型幅方向の流速分布を推定する試験を行つた。 測温素 子としてはアルメル ·クロメル熱電対 (J I S熱電対 K) を用い、 熱電対の測温接 点は、 メニスカスから 5 Omm下で、 錶型長辺銅板の溶鋼側表面から熱電対先端ま での距離 (d) を 13mmとし、 相隣り合う熱電対間の間隔を 66. 5mmとした。 この熱電対列は铸型長辺銅板の幅方向長さ 210 Ommをカバーしている。 各熱電 対の起電力は補償導線を介して、 零点補償器に接続され、 その後、 起電力を電流ァ ナログ出力 (4〜20mA) に変換して、 デ一夕収集 ·解析用パソコンに入力した。 铸型長辺銅板温度の測定結果を第 74図及び第 75図に示す。 尚、 第 74図は、 铸片厚み: 220mm、 铸片幅: 1650mm、 铸片引抜き速度: 1. 85m/m
1 n、 浸漬ノズル内への A r吹き込み量: 1 ON 1 Zm i n、 浸漬ノズルの浸漬深 さ: 260 mmの铸造条件 (铸造条件 1 ) で測定した結果で、 第 75図は、 鎵片厚 み: 220 mm、 铸片幅: 1750 mm、 铸片引抜き : 1. 75 mZm i n、 浸漬ノズル内への A r吹き込み量: 1 ON 1 /m i η、 浸漬ノズルの浸漬深さ: 2 60 mmの铸造条件 (铸造条件 2) で測定した結果である。 第 74図及び第 75図 共に踌型幅方向の両裾の温度が大きく降下しているが、 これらは温度の大きく降下 している付近に铸型短辺があるためである。
第 76図及び第 77図は、 上述した換算方法により、 第 74図及び第 75図に示 す铸型長辺銅板温度から溶鋼流速を求めたものである。 又、 第 76図及び第 77図 中の書印のプロットは、 それぞれの铸造条件で、 浸漬棒式メニスカス溶鋼流速計を 用いてメニスカス近傍の溶鋼流速を測定した結果である。 第 76図及び第 77図に 示すように、 铸型長辺銅板温度から推定した溶鋼流速と、 浸漬棒式メニスカス溶鋼 流速計で測定した溶鋼流速とは、 良く一致することが分かった。 尚、 表 7の変数の 内、 凝固シェル厚み (ds ) は、 铸造条件 1では 0. 00362m、 铸造条件 2で は 0. 00372mとした。
この方法によれば、 铸型長辺銅板の溶鋼側表面から測温素子先端までの距離 (d ) を適切にとることにより、 測温素子の出力変化の時定数は、 時々刻々の溶鋼流速 の変化を捉えるに十分なものとすることができる。
この換算方法によると、 銬型内溶鋼の流動パターンがパターン Bの時には、 流速 の最大値と最小値との差は 0.25mZs e c以下の比較的平坦な速度分布であり、 又、 铸型幅方向左右の対称性の観点では铸型幅方向中心に対して左右対称位置の流 速の差は 0. 2 Om/s e c以下であることが分かった。 尚、 本発明の速度差とは、 溶鋼の流れる方向には関わらず流速の絶対値の差を表わす。
本発明では、 铸型長辺銅板幅方向の溶鋼流速分布の最大値と最小値との差を 0.
25m/s e c以下とし、 好ましくは更に、 浸漬ノズルを中心として铸型長辺銅板 幅方向左右の対称位置における溶鋼流速差を 0. 2 Om/s e c以下となるように 制御するので、 铸型内溶鋼流動はパターン Bに制御され、 製品の品質が向上する。 尚、 铸型短辺銅板に近い部分の測定温度は铸型短辺銅板からの冷却効果も加わり、 測定温度が低目になるので、 本発明では、 铸型短辺銅板の溶鋼側表面位置から铸型 幅方向中心に向かって 1 5 0 mmまでの間の铸型長辺銅板温度は監視対象としない こととする。 以下、 本発明を図面に基づき説明する。 第 7 8図は本発明の 1つの実施の形態を 示す連続铸造機の正面断面の概略図、 第 7 9図はその側面断面の概略図である。 第 7 8図及び第 7 9図において、 相対する铸型長辺銅板 4 0 4と、 铸型長辺銅板 4 0 4内に内装された相対する铸型短辺銅板 4 0 8とから構成された铸型 4 0 7の 上方所定位置に、 タンディッシュ力一 (図示せず) に積載されたタンディッシュ 4 2 3が配置されている。 タンディッシュ 4 2 3は、 タンディッシュカーに設置され た昇降装置 (図示せず) により上下移動されて、 所定位置で保持されるようになつ ている。 この昇降装置は昇降制御装置 4 1 9により制御される。
铸型長辺銅板 4 0 4の背面上部及び背面下部には長辺水箱 4 0 9が設置されて おり、 背面下部の長辺水箱 4 0 9から供給された冷却水 4 0 5は水路 4 1 0を通つ て鎵型長辺銅板 4 0 4を冷却し、 上部の長辺水箱 4 0 9へ排出される。 铸型長辺銅 板 4 0 4の前面側表面から水路 4 1 0までの厚み、 即ち铸型長辺銅板厚みは d mで ある。 図示はしないが铸型短辺銅板 4 0 8も同様にして冷却される。
铸型長辺銅板 4 0 4の背面には、 磁場発生装置 4 1 1が設置されている。 磁場発 生装置 4 1 1の発生する磁場は静磁場であっても、 又、 移動磁場であってもどちら でも良い。 磁場発生装置 4 1 1の磁場強度は磁場強度制御装置 4 1 7により制御さ れる。 尚、 铸型 4 0 7内の溶鋼流動の制御を容易とするために、 磁場発生装置 4 1 1から発生される磁場強度を、 浸漬ノズル 4 2 5を境として铸型幅方向左右で別々 に調整できるようにすること力 子ましい。
タンディッシュ 4 2 3の底部には上ノズル 4 2 8が設けられ、 この上ノズル 4 2 8に接続して、 固定板 4 2 9、 摺動板 4 3 0、 及び整流ノズル 4 3 1から成るスラ ィディングノズル 4 2 4が配置され、 更に、 スライディングノズル 4 2 4の下面側 には浸漬ノズル 4 2 5が配置されて、 タンディッシュ 4 2 3から铸型 4 0 7への溶 鋼流出孔 4 3 2が形成される。 図示せぬ取鍋から夕ンディッシュ 4 2 3内に注入された溶鋼 4 0 1は、 溶鋼流出 孔 4 3 2を経由して、 浸漬ノズル 4 2 5の下部に設けられ、 且つ铸型 4 0 7内の溶 鋼 4 0 1に浸漬された吐出孔 4 2 6より、 吐出流 4 2 7を铸型短辺銅板 4 0 8に向 けて铸型 4 0 7内に注入される。 そして、 溶鋼 4 0 1は铸型 4 0 7内で冷却されて 凝固シェル 4 0 2を形成し、 弓 I抜きロール 4 1 2により铸型 4 0 7の下方に引き抜 かれ铸片となる。 その際、 铸型 4 0 7内のメニスカス 4 2 1上にはモールドパウダ 一 4 2 2力添加され、 モールドパウダー 4 2 2は溶融して、 凝固シェル 4 0 2と铸 型 4 0 7との間に流れ込みモールドパウダー層 4 0 3を形成する。 引抜きロール 4 1 2は铸片引抜き速度制御装置 4 1 8により制御される。
上ノズル 4 2 8はポーラス煉瓦からなり、 溶鋼流出孔 4 3 2の壁面へのアルミナ 付着を防止するために、 上ノズル 4 2 8と連結された A r導入管 (図示せず) と A r導入管に設置された A r流量調整弁 (図示せず) とからなる A r供給装置を介し て、 上ノズル 4 2 8から溶鋼流出孔 4 3 2内に A rが吹き込まれる。 吹き込まれた A rは、 溶鋼 4 0 1と共に浸漬ノズル 4 2 5を通り、 吐出孔 4 2 6を介して铸型 4 0 7内に流入し、 铸型 4 0 7内の溶鋼 4 0 1を通ってメニスカス 4 2 1に浮上し、 メニスカス 4 2 1上のモールドパウダー 4 2 2を貫通して大気に至る。 A r供給装 置は A r吹き込み量制御装置 4 2 0により制御される。
铸型長辺銅板 4 0 4の背面には、 铸型長辺銅板 4 0 4の幅方向に沿って複数の孔 が設けられ、銬型長辺銅板 4 0 4の銅板温度を測定する測定点 4 1 3となっている。 各測定点 4 1 3には測温素子 4 0 6力 铸型長辺銅板 4 0 4の溶鋼側表面から測温 素子 4 0 6の先端までの距離を dとして、 その先端を铸型長辺銅板 4 0 4に接して 配置されている。 その 、 時々刻々の溶鋼流速の変化を正確に捉えるために、 距離
( d ) は 1 6 mm以下とすることが好ましい。 又、 铸造中のメニスカス 4 2 1の上 下動による温度変動の影響を受けないために、 メニスカス 4 2 1から測定点 4 1 3 までの距離は 1 0 mm以上とすることが好ましい。 更に、 铸型幅方向の温度分布を 正確に把握するために、 隣合う測定点 4 1 3の間隔は 2 0 0 mm以下とすることが 好ましい。
一方、 測温素子 4 0 6の他端は零点補償器 4 1 4に連結されており、 測温素子 4 0 6から出力される起電力信号は零点補償器 4 1 4を経由して変換器 4 1 5に入力 され、 変換器 4 1 5にて起電力信号を電流信号に変換された後、 電流信号としてデ 一夕解析装置 4 1 6に入力される。 データ解析装置 4 1 6には、 铸型長辺銅板温度 から溶鋼流速を算出する機能が設置されている。 データ解析装置 4 1 6の出力は磁 場強度制御装置 4 1 7、 铸片引抜き速度制御装置 4 1 8、 昇降制御装置 4 1 9、 及 び A r吹き込み量制御装置 4 2 0に送信される。 尚、 測温接点となる測温素子 4 0 6の先端が冷却水 4 0 5により直接冷却されないように、 測定点 4 1 3はシール材 (図示せず) により冷却水 4 0 5からシールされている。 又、 測温素子 4 0 6は、 熱電対や抵抗測温体等のうち ± 1で以上の精度で測温できるものであれば種類を問 わない。
このような構成の連続铸造設備において、 以下のようにして铸型内溶鋼の流動を 制御する。 データ解析装置 4 1 6では、 铸型長辺銅板温度の铸型幅方向の温度分布 から時々刻々の温度の最大値及び最小値を捉えると共に、 浸漬ノズル 4 2 5を中心 として铸型長辺銅板 4の幅方向左右の対称位置における温度差を捉える。 そして、 捉えた最大値と最小値との差が 1 2 °C以下となるように、 好ましくは、 更に、 铸型 長辺銅板 4 0 4の幅方向左おの対称位置における温度差が 1 0 °C以下となるように、 磁場強度制御装置 4 1 7、 铸片引抜き速度制御装置 4 1 8、 昇降制御装置 4 1 9、 A r吹き込み量制御装置 4 2 0のうちの何れか 1つ又は 2つ以上に制御信号を送信 する。 制御信号を受けた各制御装置は制御信号に沿って、 磁場強度、 铸片引抜き速 度、 浸漬ノズル 4 2 5の浸漬深さ、 及び A r吹き込み量を変化させて、 溶鋼流動を 制御する。
又、 データ解析装置 4 1 6では、 前述の (2 3 ) 式から (3 2 ) 式に基づき、 铸 型長辺銅板温度、 铸型長辺銅板厚み (d m ) 、 上記の距離 (d ) 、 溶鋼温度、 冷却 水温度等のデータを用いて、各測定点 4 1 3における溶鋼流速を推定する。そして、 铸型長辺銅板 4 0 4の幅方向の溶鋼流速分布を捉え、 捉えた溶鋼流速分布の最大値 と最小値との差が 0 . 2 5 mZ s e c以下となるように、 好ましくは、 更に、 浸漬 ノズル 2 5を中心として铸型長辺銅板 4 0 4の幅方向左右の対称位置における溶鋼 流速の差が 0 . 2 O m/ s e c以下となるように、 磁場強度制御装置 4 1 7、 铸片 引抜き速度制御装置 4 1 8、 昇降制御装置 4 1 9、 A r吹き込み量制御装置 4 2 0 のうちの何れか 1つ又は 2つ以上に制御信号を送信する。 制御信号を受けた各制御 装置は制御信号に沿って、 磁場強度、 铸片引抜き速度、 浸漬ノズル 4 2 5の浸漬深 さ、 及び A r吹き込み量を変化させて、 溶鋼流動を制御する。
尚、 磁場発生装置 4 1 1を用いて制御する場合、 本発明者等の経験では、 铸型 4 0 7内の溶鋼流動が定常状態になるまでに 3 0秒を要するので、 少なくとも 3 0秒 以上の間隔を隔てて磁場強度を変更することが好ましい。
尚、 表丄に示す、 (2 3 ) 式から (3 2 ) 式を構成する 1 5個の変数のうち铸造 条件により変化し、 且つ、 铸造中に直接測定できない変数として①凝固シェル厚み ( d s ) 、 ②モールドパウダー層厚み (d P ) 、 ③铸型銅板と冷却水との間の熱伝 達係数 (hw ) の 3つの変数があるが、 これらの 3つの変数については、 実機試験 又は模擬試験により铸造条件変更に伴う数値の変化を予め調査しておき、 銬型銅板 温度測定時の铸造条件に対応する数値に基づいて溶鋼流速を算出すれば良い。 その 他の 1 2の変数は、 設備条件及び物性値により定めることができる。
このようにして铸型内の溶鋼流動を制御することで、 铸型内の溶鋼流動はオンラ ィンで且つリアルタイムに適切な流動パターンに制御され、 清浄性に極めて優れた 铸片を安定して製造することが可能となる。
尚、 上記説明では、 測温素子 4 0 6が铸型長辺銅板 4 0 4の幅方向 1列に設置さ れているが、 铸造方向に複数列設置することもできる。 又、 上記説明は铸型長辺銅 板 4 0 4の片側だけに測温素子 4 0 6を設置している力 両方の铸型長辺銅板 4 0 4に設置しても良い。 更に、 溶鋼流出孔 4 3 2内への A r吹き込み位置は、 上ノズ ル 4 2 8に限るものではなく、 固定板 4 2 9ゃ浸漬ノズル 4 2 5としても良い。
[実施例 1 ]
第 7 8図に示すスラブ連続铸造機を用いて铸型内の溶鋼流動制御を実施した実 施例を以下に説明する。 連続铸造機は 3 mの垂直部を有する垂直曲げ型であり、 最 大 2 1 0 O mmの铸片を铸造することができる。 表 8に用いた連続錶造機の諸元を 示す。 表 8
項臼 tt禄
お 刑
取綱 合直 i)U ton
: yノフ ッノュ½" %«直 ou ton
^ n β7 [〜 91ΠΠ mm
屮田
铸片引抜き速度 最大 3 m/min
浸漬ノズル 下向き 25度,吐出孔 80 ϋΐπι 長辺铸型銅板厚み (dm ) は 4 Ommであり、 測温素子としてアルメル ·クロメ ル (J I S熱電対 K) を用い、 铸型銅板の溶鋼側表面から熱電対先端 (測温接点) までの距離 (d) を 13mm、 相隣り合う熱電対間の間隔を 66. 5mm, メニス カスからの距離を 50mmとして、 铸型幅方向長さ 2100mmに渡って熱電対を 埋設した。 そして、 厚み 220mm、 幅 1875 mmの铸片を、 铸片引抜き速度 1. 60 m/m i n、 A r吹き込み量 10 N 1 Zm i n、 浸漬ノズルの浸漬深さ 260 mmの条件で、 吐出流を制動する方向に磁場発生装置にて移動磁場を印加して铸造 した。 磁場発生装置の諸元を表 9に示す。 表 9 項目 仕様
磁場形式 移動磁場
容量 2000 kVA
電圧 430 V (最大)
電流 2700 A (最大)
周波数 2.6 Hz (最大)
磁束密度 0.21 テスラ (最大) 当初、 磁場発生装置の磁束密度を 0 . 0 3テスラとして铸造し、 その時の铸型長 辺銅板温度の温度分布として第 8 0図が得られた。 この温度分布では、 铸型短辺銅 板近傍の温度が高く、 従って、 メニスカスでは铸型短辺銅板近傍の溶鋼流速が速い と推定された。 この場合、 対応する铸型内溶鋼流動状況は第 8 1図と推定された。 この流動パ夕一ンは特開平 1 0— 1 0 9 1 4 5号公報のパターン Aに相当する。 そこで、 磁場発生装置への供給電力を増加し、 磁束密度を 0 . 0 5テスラとした ところ、 铸型長辺銅板の温度分布は第 8 2図に示す温度分布となった。 この温度分 布では最大値と最小値との差は 8 °Cであり、 铸型幅方向左右対称位置の温度差も 1 0 °C以下となった。 従って、 メニスカスにおける溶鋼流速は铸型幅方向でほぼ均一 と推定され、 この場合、 対応する铸型内溶鋼流動状況は第 8 3図と推定された。 こ の流動パターンは特開平 1 0— 1 0 9 1 4 5号公報のパターン Bに相当する。 次に、 磁場発生装置への供給電力をさらに増し、 磁束密度を 0 . 0 7テスラとし たところ、 铸型長辺銅板の温度分布は第 8 4図に示す温度分布となった。 この温度 分布では浸漬ノズル近傍の温度が高く、 従って、 メニスカスでの溶鋼流速は浸漬ノ ズル付近で最も速いと推定され、 この場合、 対応する铸型内溶鋼流動状況は第 8 5 図と推定された。 この流動パ夕一ンは特開平 1 0— 1 0 9 1 4 5号公報のパターン Cに相当する。
このように、 磁場発生装置の磁場強度を制御することで、 銪型内溶鋼流動状況を 適切な流動パターンに制御することができること力分かった。 尚、 第 8 1図、 第 8 3図、 第 8 5図において、 白抜きの矢印は移動磁場の移動方向を表わしている。
[実施例 2 ]
実施例 1と同一の連続銹造機と温度計測装置とを用い、 厚み 2 2 0 mm、 幅 1 6 0 0 mmの铸片を、 铸片引抜き速度 1 . 3 0 m/m i n、 A r吹き込み量 1 0 N 1 /m i n、 浸漬ノズルの浸漬深さ 2 6 0 mmの条件で、 吐出流を制動する方向に磁 場発生装置にて移動磁場を印加して铸造した。
当初、 磁場発生装置の磁束密度を 0 . 1 3テスラとしたところ、 铸型長辺銅板温 度の温度分布は第 8 6図に示す温度分布となった。 この温度分布ではスラブ幅方向 中央より右側の温度が左側よりも高く、 従って、 メニスカスでは右側の溶鋼流速が 左側の溶鋼流速よりも速いことが推定された。 つまり铸型幅方向の左右で偏流があ るということである。 そこで磁場発生装置の磁束密度を 0 . 1 7テスラに増したと ころ、 第 8 7図に示す温度分布となった。 この温度分布では最大値と最小値との差 は 9 °Cであり、 左右対称位置における温度差も 1 0 °C以下となり、 メニスカス流速 もほぼ铸型幅左右の両側で等しくなつたと推定された。 この状態で、 浸漬棒型溶鋼 流速計を用いてメニスカスの溶鋼流速を測定して、 铸型内溶鋼流動パターンはパ夕 —ン Bであることを確認した。
[実施例 3 ]
実施例 1と同一の連続錡造機と温度計測装置とを用い、 厚み 2 2 0 mm、 幅 1 6 0 0 mmの铸片を、 A r吹き込み量 1 O N 1 Zm i n、 浸漬ノズルの浸漬深さ 2 6 0 mmの条件で铸造した。 この実施例では磁場発生装置は使用せずに铸造した。 当初、 铸片引抜き を 1 . 6 O mZm i nで铸造したところ、 铸型長辺銅板温 度の温度分布は第 8 8図に示す温度分布となった。 この温度分布では铸型短辺銅板 近傍と浸漬ノズル近傍に極大値を持つ温度分布となった。 この温度分布からメニス カスでは、 铸型短辺銅板近傍及び浸漬ノズル周辺の溶鋼流速が速いと推定された。 つまり、 铸型短辺銅板近傍の溶鋼流は、 浸漬ノズルからの吐出流が短辺凝固シェル に衝突して上下に分岐したあと発生する上昇流に起因する流れであり、 又、 浸濱ノ ズル近傍の溶鋼流は、 浸漬ノズル内に吹き込まれた A r力浸濱ノズルの吐出口の近 傍で浮上する時に誘起する溶鋼の上昇流に起因した流れである。 これら両者の溶鋼 流が出会う位置すなわち铸型の铸型短辺銅板と浸漬ノズルの中間点では、 両者の流 れが相殺して溶鋼流速は小さくなつていると考えられ、 実際測定された温度分布に は極小値があった。
そこで、 铸片引抜き速度を減速し、 1 . 3 O mZm i ηとしたところ、 第 8 9図 に示す温度分布となった。この温度分布では最大値と最小値との差は 1 2 °Cであり、 左右対称位置における温度差も 1 0 °C以下となり、 メニスカス流速もほぼ铸型幅左 右の両側で等しくなつたと推定された。 この状態で、 浸漬棒型溶鋼流速計を用いて メニスカスの溶鋼流速を測定して、 铸型内溶鋼流動パターンはパターン Bであるこ とを確認した。 これは、 铸片引抜き速度を減じたために吐出流が遅くなり、 吐出流 が铸型短辺側の凝固シエルに到達せず、 吐出口から短辺凝固シェルまでの間で分散 したためと考えられる。 [実施例 4 ]
実施例 1と同一の連続铸造機と温度計測装置とを用い、 厚み 2 2 0 mm、 幅 1 0 0 0 mmの铸片を、 銬片引抜き速度 1 . 5 0 m/m i n , A r吹き込み量 I O N I / i nの条件で、 吐出流を制動する方向に磁場発生装置にて移動磁場を印加して 铸造した。
当初、 磁場発生装置の磁束密度を 0 . 0 3テスラとし、 浸漬ノズルの浸漬深さを 1 8 0 mmとして铸造したところ、 铸型長辺銅板温度の温度分布は第 9 0図に示す 温度分布となった。 この温度分布では浸演ノズル近傍に極大値を持つ温度分布とな つた。 この温度分布からメニスカスでは、 浸漬ノズル周辺の溶鋼流速が速いと推定 された。 つまり、 浸漬ノズル内に吹き込まれた A r力浸漬ノズルの吐出口の近傍で 浮上する時に誘起する溶鋼の上昇流に起因した流れが主体となった溶鋼流動である ことが分かった。
そこで、 磁束密度を 0 . 0 3テスラに保持したまま、 浸漬ノズルの浸漬深さを 2 3 0 mmに増したところ、 第 9 1図に示す温度分布となった。 この温度分布では最 大値と最小値との差は 9 °Cであり、 左お対称位置における温度差も 1 0 °C以下とな り、 メニスカス流速もほぼ铸型幅中央の両側で等しくなつたと推定された。 この状 態で、 浸漬棒型溶鋼流速計を用いてメニスカスの溶鋼流速を測定して、 铸型内溶鋼 流動パターンはパターン Bであることを確認した。 これは、 浸漬ノズルの浸漬深さ を増したために浸漬ノズル近傍の上昇流が浸漬ノズルから離れた位置に上昇するよ うになり、 実質的に浸漬ノズル近傍の上昇流速が減じられたためと考えられる。
[実施例 5 ]
実施例 1と同一の連続踌造機及び温度計測装置を用い、 厚み 2 2 0 mm、 幅 1 6 0 0 mmの铸片を、 铸片引き抜き速度 2 . 0 mZm i n、 A r吹き込み量 I O N 1 Zm i n、 浸漬ノズルの浸漬深さ 2 2 0 mmの条伴で、 磁場発生装置にて吐出流を 制動する方向に移動磁場を印加して踌造した。 磁場発生装置は、 浸漬ノズルを境と して銪型幅方向左右で個別に印加磁場の強度を調整することが可能になっている。 当初、 磁場発生装置の磁束密度を左右共に 0 . 0 6テスラとしたところ、 铸型長 辺銅板温度の温度分布は第 9 2図に示す温度分布となった。 この温度分布では铸型 幅方向中央を境として右側の温度分布が左側よりも高く、 従って、 メニスカスでは 右側の溶鋼流速が左側の溶鋼流速よりも速いことが推定された。 つまり、 铸型幅方 向の左右で偏流があるということである。
そこで、 鋅型の右側だけ磁場発生装置の磁束密度を 0 . 0 6 5テスラに増加した ところ、 第 9 3図に示す温度分布となり、 铸型幅方向左右の偏流が緩和された。 更 に、 铸型の右側だけ磁場発生装置の磁束密度を 0 . 0 7テスラに増加したところ、 第 9 4図に示す温度分布となった。 この温度分布では最大値と最小値との差は 1 2 °Cであり、 铸型幅方向左右対称位置における温度差も 1 0 °C以下となり、 メニスカ ス流速もほぼ銬型幅左右の両側で等しくなつたと推定された。
この状態で、 浸漬棒型溶鋼流速計を用いてメニスカスの溶鋼流速を測定して、 铸 型内溶鋼流動パターンはパターン Bであることを確認した。 確認のため、 錶型右側 の磁場発生装置の磁束密度を左側と同じ元の 0 . 0 6テスラに戻したところ、 第 9 5図に示す温度分布となった。 この温度分布では、 铸型幅方向右側の温度分布が左 側よりも高く、 再び元の铸型幅方向左右で偏流のある状態に戻つていること力確認 できた。
铸型幅方向中心から左側及び右側に、 それぞれ 6 6 5 mm離れた位置に設置した 熱電対により測定した铸型銅板温度の推移を第 9 6図に示す。 左右独立の磁場印加 により偏流が制御される様子が見て取れる。
この例では、 流動の強い側で磁場の強度を増加する方法を採用した力 流動の弱 い側で磁場強度を弱くする方法を採用しても良い。 又、 流動を加速する方向で移動 磁場を印加している場合には、 流動の強い側で磁場の強度を弱くする方法、 若しく は、 流動の弱い側で磁場強度を強くする方法を採ることができる。

Claims

^ ' TZJ iSl
1 . 連続铸造における溶鋼の流動パターン推定方法は以下の工程からなる:
浸漬ノズルから铸型内に吐出された溶鋼を連続铸造する工程;
铸型長辺幅方向の铸型銅板温度を铸型銅板の温度計測装置により複数点測定す る工程; と
各測定点における銅板温度の分布から铸型内溶鋼の流動パターンを推定するェ
2. 検知された流動パターンが所定のパターンとなるように、 铸型内に吐出された 溶鋼に磁場を印加する工程を有する請求の範囲 1記載の溶鋼の流動パターン推定方 法。
3 . 更に、 以下の工程を有する請求の範囲 1記載の溶鋼の流動パターン推定方法: 铸型銅板温度の温度計測装置により測定された铸型銅板温度と、 铸型銅板の厚 みと、 铸型銅板の溶鋼側表面から測温素子先端までの距離と、 鎵型銅板用の冷却水 温度と、 凝固シェル厚みと、 モールドパウダー層厚みと、 铸型内の溶鋼温度と、 を 用いて铸型内溶鋼から銬型銅板用冷却水への熱流束を求める工程;
この熱流束に相当する溶鋼と凝固シェルとの間の対流熱伝達係数を求めるェ 程;
この対流熱伝達係数から凝固シェルに沿った溶鋼の流速を求める工程。
4. 铸型銅板温度の温度計測装置が連続铸造用铸型銅板背面に埋設された複数の測 温素子からなり、 前記測温素子が、 铸型内溶鋼湯面位置から铸片引抜き方向に 1 0 〜1 3 5 mm離れた範囲に、 铸型銅板の溶鋼側表面から測温素子先端までの距離を 1 6 mm以下とし、 且つ、 铸型幅方向の設置間隔を 2 0 0 mm以下として铸片全幅 に相当する範囲に渡って設置されている請求の範囲 1記載の溶鋼の流動パターン推 定方法。
5 . 前記流動パターンを推定する工程が、 铸型幅方向の铸型銅板温度のピークの数 とピークの位置により铸型内溶鋼の流動パターンを推定することからなる請求の範 囲 1記載の溶鋼の流動パターン推定方法。
6 . 前記流動パターンを推定する工程が、 測定された温度により铸型幅方向中央位 置を基準とした铸型幅方向左右で、 鎵型銅板温度の最大値と最大値の位置とを比較 することにより铸型内溶鋼の偏流を推定することからなる請求の範囲 1記載の溶鋼 の流動パターン推定方法。
7 . 铸型銅板の温度計測装置は以下からなる:
連続铸造用铸型銅板背面に埋設された複数の測温素子;
前記測温素子は、 铸型内溶鋼湯面位置から铸片引抜き方向に 1 0〜1 3 5 mm 離れた範囲に、 铸型銅板の溶鋼側表面から測温素子先端までの距離を 1 6 mm以下 とし、 且つ、 铸型幅方向の設置間隔を 2 0 0 mm以下として铸片全幅に相当する範 囲に渡って設置されている。
8 . 測温素子が、 水箱中の冷却水とはシールされたパイプ内を貫通して設置され、 且つ、 測温素子の設置される周囲にシールパッキンが設けられたことからなる請求 の範囲 7記載の温度計測装置。
9 . 連続銬造铸片の表面欠陥判定方法は以下からなる:
铸型内のメニスカス位置から铸片引抜き方向に 1 0〜1 3 5 mm離れた範囲の 铸型銅板背面の幅方向に複数個の測温素子を配置し;
铸型銅板温度の幅方向分布を測定し;
铸型幅方向温度分布に基づいて铸片の表面欠陥を判定する。
1 0 . 表面欠陥の判定が铸型幅方向温度分布の最大値に基づいて鎵片の表面欠陥を 判定することからなる請求の範囲 9記載の表面欠陥判定方法。
1 1 . 表面欠陥の判定が铸型幅方向温度分布の最小値に基づいて铸片の表面欠陥を 判定することからなる請求の範囲 9記載の表面欠陥判定方法。
1 2 . 表面欠陥の判定が铸型幅方向温度分布の平均値に基づいて铸片の表面欠陥を 判定することからなる請求の範囲 9記載の表面欠陥判定方法。
1 3 . 表面欠陥の判定が铸型幅方向温度分布の平均値と、 その铸片引き抜き速度に おける代表的な铸型幅方向温度分布の平均値との差に基づいて銬片の表面欠陥を判 定することからなる請求の範囲 9記載の表面欠陥判定方法。
1 4. 表面欠陥の判定が、 铸型の中央に配置した浸漬ノズルを中心として、 铸型幅 方向左側の温度分布の最大値から最小値を差し引いた値と、 铸型幅方向右側の温度 分布の最大値から最小値を差し引いた値のうちで、 大きい方の値に基づいて铸片の 表面欠陥を判定することからなる請求の範囲 9記載の表面欠陥判定方法。
1 5 . 表面欠陥の判定が、 铸型の中央に配置した浸漬ノズルを中心として、 铸型幅 方向左側の温度分布の最大値と铸型幅方向右側の温度分布の最大値との差の絶対値 に基づいて铸片の表面欠陥を判定することからなる請求の範囲 9記載の表面欠陥判 定方法。
1 6 . 表面欠陥の判定が、 各測温素子による温度測定値のうちで単位時間当りの温 度変動量の最大値に基づいて铸片の表面欠陥を判定することからなる請求の範囲 9 記載の表面欠陥判定方法。
1 7 . 連続铸造における溶鋼流動検知方法は以下からなる:
連続铸造用铸型銅板背面の、 铸片引抜き方向と直交する方向に、 複数の測温素 子を配置し; これら複数の測温素子により铸型銅板温度を測定し;
溶鋼流動の空間周波数 f を溶鋼流動の変動波長 L (mm) を用いて f = lZL で定義したとき、 測定された各鎵型銅板温度をカットオフ空間周波数が 2 Z [铸型 幅 W] より大きく、 且つ、 0. 01より小さい範囲として口一パスフィル夕一処理 し;
この口一パスフィル夕一処理した铸型銅板温度の温度分布に基づいて铸型内の 溶鋼流動状況を推定する。
18. ローパスフィル夕一処理が空間移動平均であり、 平均化数 3のときには、 隣 合う測温素子との間隔が 44. 3Z3mmより広く、 且つ、 0. 443X [銬型幅 W] Z 6 mmより狭い範囲に調整される請求の範囲 17記載の溶鋼流動検知方法。
1 9.両側の铸型幅の端点で測定データを折り返して拡張したデータ系列を用いて、 口一パスフィルター処理を行うことからなる請求の範囲 17記載の溶鋼流動検知方 法。
20. 連続鎵造における溶鋼流動検知方法は以下からなる:
連続铸造用铸型銅板背面の、 铸片引抜き方向と直交する方向に、 隣合う測温素 子との間隔を 44. 3Z3mm〜0. 443X [铸型幅 W] /6 mmとして複数の 測温素子を配置し;
これら複数の測温素子により铸型銅板温度を測定し;
測定された各铸型銅板温度を空間移動平均し;
この空間移動平均した铸型銅板温度の温度分布に基づいて铸型内の溶鋼流動状 況を推定する。
2 1. 連続铸造における铸型内抜熱の不均一度評価方法は以下からなる:
連続铸造用铸型銅板背面の、 铸片引抜き方向と直交する方向に、 複数の測温素 子を配置し;
これら複数の測温素子により铸型銅板温度を測定し; WO 00/51763 PCT/JPOO/01 Ιδΐ
90 測定された各铸型銅板温度をローパスフィルター処理し;
铸型銅板温度の測定値とローパスフィルター処理した铸型銅板温度との差に基 づいて铸型内抜熱の不均一度を評価する。
2 2 . 連続铸造における溶鋼流動検知方法は以下からなる:
連続铸造用鎵型銅板背面の、 铸片引抜き方向と直交する方向に複数の測温素子 を配置し;
これら複数の測温素子により铸型銅板温度を測定し;
測定された各铸型銅板温度を 6 0秒以下の間隔で採取し;
この間隔で採取した铸型銅板温度に基づいて铸型内の溶鋼流動状況を推定する。
2 3 . 連続铸造における溶鋼流動制御方法は以下からなる:
連続铸造用铸型の铸型長辺銅板背面の幅方向に複数の測温素子を配置して錡型 長辺銅板幅方向の温度分布を測定し;
測定された温度分布の最大値と最小値との差が 1 2 °C以下となるように、 銬型 に取り付けた磁場発生装置の磁場強度、 铸片引抜き速度、 浸漬ノズルの浸漬深さ、 浸漬ノズル内への A r吹き込み量のうちの何れか 1つ又は 2つ以上を調整する。
2 4 . 铸型に取り付けた磁場発生装置の磁場強度が、 浸漬ノズルを境として铸型幅 方向左右で独立して調整される請求の範囲 2 3記載の溶鋼流動制御方法。
2 5 . 铸型に取り付けた磁場発生装置の磁場強度、 铸片引抜き速度、 浸漬ノズルの 浸漬深さ、 浸漬ノズル内への A r吹き込み量のうちの何れか 1つ又は 2つ以上が、 測定された温度分布の最大値と最小値との差が 1 2 °C以下で、 且つ、 浸漬ノズルを 中心として铸型長辺銅板幅方向左右の対称位置における温度差が 1 0 °C以下となる ように、 調整される請求の範囲 2 3記載の溶鋼流動制御方法。
2 6 . 铸型に取り付けた磁場発生装置の磁場強度が、 浸漬ノズルを境として铸型幅 方向左右で独立して調整される請求の範囲 2 5記載の溶鋼流動制御方法。
2 7 . 連続铸造における溶鋼流動制御方法は以下からなる:
連続铸造用铸型の銹型長辺銅板背面の幅方向に複数の測温素子を配置して铸型 長辺銅板幅方向各位置の温度を測定し;
この温度測定値に基づき各測定点での溶鋼の流速を求めて铸型長辺銅板幅方向 の溶鋼流速分布を求め;
求めた溶鋼流速分布の最大値と最小値との差が 0 . 2 5 s e c以下となる ように、 铸型に取り付けた磁場発生装置の磁場強度、 铸片引抜き速度、 浸漬ノズル の浸漬深さ、 浸漬ノズル内への A r吹き込み量のうちの何れか 1つ又は 2つ以上を 調整する。
2 8 . 铸型に取り付けた磁場発生装置の磁場強度が、 浸漬ノズルを境として铸型幅 方向左右で独立して調整される請求の範囲 2 7記載の溶鋼流動制御方法。
2 9 . 铸型に取り付けた磁場発生装置の磁場強度、 铸片引抜き速度、 浸漬ノズルの 浸漬深さ、 浸漬ノズル内への A r吹き込み量のうちの何れか 1つ又は 2つ以上が、 求めた溶鋼流速分布の最大値と最小値との差が 0 . 2 5 mZ s e c以下で、 且つ、 浸漬ノズルを中心として铸型長辺銅板幅方向左右の対称位置における溶鋼流速の差 が 0 . 2 O mZ s e c以下となるように、 調整される請求の範囲 2 7記載の溶鋼流 動制御方法。
3 0 . 铸型に取り付けた磁場発生装置の磁場強度が、 浸漬ノズルを境として銬型幅 方向左右で独立して調整される請求の範囲 2 9記載の溶鋼流動制御方法。
PCT/JP2000/001161 1999-03-02 2000-02-29 Procede et dispositif d'estimation/commande de motif d'ecoulement d'acier fondu dans un coulage en continu WO2000051763A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002364085A CA2364085C (en) 1999-03-02 2000-02-29 Method for estimating flow pattern of molten steel in continuous casting, temperature measurement device and continuous casting method
EP00905398A EP1166921B1 (en) 1999-03-02 2000-02-29 Method for estimating molten steel flowing pattern in continuous casting
JP2000602419A JP3386051B2 (ja) 1999-03-02 2000-02-29 連続鋳造における溶鋼の流動パターン推定方法、鋳型銅板の温度計測装置、連続鋳造鋳片の表面欠陥判定方法、溶鋼流動検知方法、鋳型内抜熱の不均一度評価方法、溶鋼流動制御方法、鋼の連続鋳造における品質管理方法、鋼の連続鋳造方法、溶鋼流速の推定方法
DE60034322T DE60034322T2 (de) 1999-03-02 2000-02-29 Verfahren zum schätzen des schmelzflussmusters beim strangguss
US09/944,029 US6712122B2 (en) 1999-03-02 2001-08-31 Method for estimating and controlling flow pattern of molten steel in continuous casting and apparatus therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP5463099 1999-03-02
JP11/54630 1999-03-02
JP11/54998 1999-03-03
JP5499899 1999-03-03
JPPCT/JP99/01158 1999-03-10
PCT/JP1999/001158 WO2000051762A1 (fr) 1999-03-02 1999-03-10 Procede et dispositif permettant, en coulee continue, de predire et de reguler la configuration d'ecoulement de l'acier en fusion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/944,029 Continuation US6712122B2 (en) 1999-03-02 2001-08-31 Method for estimating and controlling flow pattern of molten steel in continuous casting and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2000051763A1 true WO2000051763A1 (fr) 2000-09-08

Family

ID=26395417

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1999/001158 WO2000051762A1 (fr) 1999-03-02 1999-03-10 Procede et dispositif permettant, en coulee continue, de predire et de reguler la configuration d'ecoulement de l'acier en fusion
PCT/JP2000/001161 WO2000051763A1 (fr) 1999-03-02 2000-02-29 Procede et dispositif d'estimation/commande de motif d'ecoulement d'acier fondu dans un coulage en continu

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001158 WO2000051762A1 (fr) 1999-03-02 1999-03-10 Procede et dispositif permettant, en coulee continue, de predire et de reguler la configuration d'ecoulement de l'acier en fusion

Country Status (7)

Country Link
US (1) US6712122B2 (ja)
EP (1) EP1166921B1 (ja)
JP (1) JP3386051B2 (ja)
CN (1) CN1188235C (ja)
CA (1) CA2364085C (ja)
DE (1) DE60034322T2 (ja)
WO (2) WO2000051762A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055034A1 (de) 2008-12-19 2010-07-01 Forschungszentrum Dresden - Rossendorf E.V. Verfahren und Anordnung zur kontaktlosen Bestimmung von Geschwindigkeitsverteilungen eines flüssigen Metalls in einer Stranggießkokille
EP1551580B1 (fr) * 2002-10-14 2011-03-02 Rotelec Procede et dispositif pour la maitrise des ecoulements dans une lingotiere de coulee continue de brames
JP2011251303A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251307A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251305A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251309A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2017536240A (ja) * 2014-11-19 2017-12-07 ポスコPosco 湯面流動制御装置及びこれを用いた湯面流動制御方法
DE102019105628B3 (de) * 2019-03-06 2020-03-19 Helmholtz-Zentrum Dresden - Rossendorf E.V. Anordnung zur berührungslosen Bestimmung der Geschwindigkeitsverteilung eines Schmelzvolumens in einer Stranggusskokille
JP2020171945A (ja) * 2019-04-11 2020-10-22 日本製鉄株式会社 溶鋼流動制御装置、溶鋼流動制御方法、およびプログラム
CN113165056A (zh) * 2018-10-26 2021-07-23 株式会社Posco 铸造设备和铸造方法
JP7368725B2 (ja) 2020-01-10 2023-10-25 日本製鉄株式会社 溶鋼流動制御装置、溶鋼流動制御方法、およびプログラム

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462164C (zh) * 2007-05-31 2009-02-18 武汉钢铁(集团)公司 一种防止钢液冒顶的板坯连铸封顶工艺
CN101396725B (zh) * 2007-09-27 2010-12-01 上海梅山钢铁股份有限公司 一种能稳定结晶器钢液面温度的浇注方法及其装置
EP2272605A1 (de) * 2009-06-24 2011-01-12 Siemens AG Regelverfahren für den Gießspiegel einer Stranggießkokille
KR101376565B1 (ko) * 2011-12-15 2014-04-02 (주)포스코 연속 소둔라인 급냉대의 스트립 온도제어 방법 및 장치
KR101456453B1 (ko) * 2012-07-24 2014-10-31 주식회사 포스코 주편 품질 예측 장치 및 그 방법
EP2958691A1 (en) * 2013-02-19 2015-12-30 ABB Technology Ltd. Method, controller and tundish control system for a continuous casting process
CN103341609B (zh) * 2013-07-10 2015-03-11 鞍钢股份有限公司 一种结晶器液面波动的控制方法
WO2015115651A1 (ja) 2014-01-31 2015-08-06 新日鐵住金株式会社 連続鋳造における鋳造状態の判定方法、装置及びプログラム
JP5935837B2 (ja) * 2014-07-07 2016-06-15 Jfeスチール株式会社 溶鋼の流動状態推定方法及び流動状態推定装置
CN104226951B (zh) * 2014-09-05 2016-02-24 河北钢铁股份有限公司邯郸分公司 一种连铸机停浇阶段提高合格定尺铸坯产量的方法
CN104408287B (zh) * 2014-10-27 2017-11-28 重庆大学 一种连铸结晶器保护渣粘度预测方法
CN104493122B (zh) * 2014-12-05 2016-10-05 华南理工大学 一种气压充型的半连续铸造方法和装置
BR102015009492B1 (pt) * 2015-01-30 2021-05-04 Jfe Steel Corporation método de lingotamento contínuo de aço
CN106111925A (zh) * 2016-07-15 2016-11-16 江苏联峰能源装备有限公司 连铸大包水口氩气保护浇铸自动控制系统及控制方法
CN106825475A (zh) * 2016-12-26 2017-06-13 中冶连铸技术工程有限责任公司 消除电磁搅拌对热电偶信号干扰的数字滤波方法及系统
BR112020019226B1 (pt) 2018-07-17 2024-01-23 Nippon Steel Corporation Equipamento de molde e método de lingotamento contínuo
CN109550906B (zh) * 2019-01-22 2021-01-29 东北大学 一种连铸结晶器内钢液流速的测量方法
US11360039B2 (en) * 2019-01-28 2022-06-14 Colorado School Of Mines Identification of variations or defects in a slab material, made from a continuous casting process
US11890671B2 (en) * 2019-02-19 2024-02-06 Jfe Steel Corporation Control method for continuous casting machine, control device for continuous casting machine, and manufacturing method for casting
WO2020170563A1 (ja) * 2019-02-19 2020-08-27 Jfeスチール株式会社 連続鋳造機の制御方法、連続鋳造機の制御装置、及び鋳片の製造方法
CN113543907B (zh) * 2019-03-06 2023-09-05 杰富意钢铁株式会社 板坯铸坯的连续铸造方法
BE1026740B1 (fr) * 2019-06-21 2020-05-28 Ebds Eng Sprl Procédé pour équilibrer un écoulement d'acier liquide dans une lingotière et système de coulée continue d'acier liquide
CN111872338B (zh) * 2020-07-10 2021-11-05 上海大学 板坯结晶器流场形态的判定方法
CN111998892A (zh) * 2020-07-23 2020-11-27 麦特勒智能科技(张家港)有限公司 一种基于流场和浓度场数值模拟计算的混钢模型系统
CN114309520B (zh) * 2020-09-30 2024-02-13 宝山钢铁股份有限公司 一种钢水液面稳定性监控的反馈方法
CN112819749A (zh) * 2020-12-30 2021-05-18 中冶赛迪重庆信息技术有限公司 一种转炉出钢钢包液位识别方法、系统、介质及终端
CN115026272B (zh) * 2022-07-01 2023-04-25 新余钢铁股份有限公司 连铸浸入式水口对中报警系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695460A (en) * 1979-12-28 1981-08-01 Nippon Steel Corp Mold for continuous casting
JPH0360852A (ja) * 1989-07-31 1991-03-15 Kawasaki Steel Corp オンライン鋳片の表面欠陥検出方法
JPH0484650A (ja) * 1990-07-27 1992-03-17 Kawasaki Steel Corp 連続鋳造鋳型内における溶鋼の偏流抑制方法
JPH04105756A (ja) * 1990-08-22 1992-04-07 Kawasaki Steel Corp 連続鋳造鋳型内における溶鋼の偏流制御方法
JPH11216550A (ja) * 1998-01-29 1999-08-10 Nippon Steel Corp 鋳型内液面レベルの検出方法及び装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2743492A (en) * 1953-04-20 1956-05-01 Allegheny Ludlum Steel Apparatus for controlling the flow of molten metal
JPS5584259A (en) * 1978-12-21 1980-06-25 Kawasaki Steel Corp Preventing method of breakout of slab at continuous casting
JPS5946703B2 (ja) * 1979-12-28 1984-11-14 新日本製鐵株式会社 鋳型温度計測素子を備えた鋳型による連続鋳造法
JPS6054138B2 (ja) * 1981-01-08 1985-11-28 新日本製鐵株式会社 連続鋳造鋳型における鋳造鋼の介在物検出方法
EP0101521B1 (en) * 1982-02-24 1986-11-05 Kawasaki Steel Corporation Method of controlling continuous casting facility
AU562731B2 (en) * 1985-02-01 1987-06-18 Nippon Steel Corporation Preventtion of casting defects in continuous casting
JPS62252650A (ja) 1986-04-25 1987-11-04 Nippon Steel Corp 溶鋼連続鋳造鋳型内の偏流制御方法
US4949777A (en) * 1987-10-02 1990-08-21 Kawasaki Steel Corp. Process of and apparatus for continuous casting with detection of possibility of break out
JPH0673732B2 (ja) * 1988-04-12 1994-09-21 川崎製鉄株式会社 鋼の連続鋳造方法
US5158128A (en) * 1988-09-01 1992-10-27 Sumitec, Inc. Thermocouple for a continuous casting machine
US5020585A (en) * 1989-03-20 1991-06-04 Inland Steel Company Break-out detection in continuous casting
JPH03275256A (ja) * 1990-03-22 1991-12-05 Kawasaki Steel Corp 連続鋳造鋳型内における溶鋼の偏流制御方法
JP2720611B2 (ja) 1991-03-12 1998-03-04 日本鋼管株式会社 鋼の連続鋳造方法
JPH05277691A (ja) * 1992-03-31 1993-10-26 Kawasaki Steel Corp ガス吹き込み浸漬ノズルによる連鋳鋳型内の溶鋼偏流防止方法
FR2693136A1 (fr) * 1992-07-03 1994-01-07 Lorraine Laminage Dispositif d'implantation d'un thermocouple dans une paroi, et lingotière de coulée continue équipée d'un tel dispositif.
ES2122805T3 (es) * 1995-04-03 1998-12-16 Siemens Ag Instalacion para la deteccion precoz de una rotura durante la fundicion continua.
DE19725433C1 (de) * 1997-06-16 1999-01-21 Schloemann Siemag Ag Verfahren und Vorrichtung zur Durchbruchfrüherkennung beim Stranggießen von Stahl mit einer oszillierenden Kokille
SE523157C2 (sv) * 1997-09-03 2004-03-30 Abb Ab Förfarande och anordning för att styra metallflödet vid stränggjutning medelst elektromagnetiska fält
JP3252769B2 (ja) * 1997-09-12 2002-02-04 日本鋼管株式会社 連続鋳造鋳型内における溶鋼流動制御方法
JP3252768B2 (ja) * 1997-09-12 2002-02-04 日本鋼管株式会社 連続鋳造鋳型内における溶鋼流動制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695460A (en) * 1979-12-28 1981-08-01 Nippon Steel Corp Mold for continuous casting
JPH0360852A (ja) * 1989-07-31 1991-03-15 Kawasaki Steel Corp オンライン鋳片の表面欠陥検出方法
JPH0484650A (ja) * 1990-07-27 1992-03-17 Kawasaki Steel Corp 連続鋳造鋳型内における溶鋼の偏流抑制方法
JPH04105756A (ja) * 1990-08-22 1992-04-07 Kawasaki Steel Corp 連続鋳造鋳型内における溶鋼の偏流制御方法
JPH11216550A (ja) * 1998-01-29 1999-08-10 Nippon Steel Corp 鋳型内液面レベルの検出方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1166921A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1551580B1 (fr) * 2002-10-14 2011-03-02 Rotelec Procede et dispositif pour la maitrise des ecoulements dans une lingotiere de coulee continue de brames
DE102008055034A1 (de) 2008-12-19 2010-07-01 Forschungszentrum Dresden - Rossendorf E.V. Verfahren und Anordnung zur kontaktlosen Bestimmung von Geschwindigkeitsverteilungen eines flüssigen Metalls in einer Stranggießkokille
JP2011251303A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251307A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251305A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251308A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
JP2011251309A (ja) * 2010-06-01 2011-12-15 Nippon Steel Corp 連続鋳造方法、連続鋳造の制御装置及びプログラム
US10710152B2 (en) 2014-11-19 2020-07-14 Posco Meniscus flow control device and meniscus flow control method using same
JP2017536240A (ja) * 2014-11-19 2017-12-07 ポスコPosco 湯面流動制御装置及びこれを用いた湯面流動制御方法
CN113165056A (zh) * 2018-10-26 2021-07-23 株式会社Posco 铸造设备和铸造方法
JP2022509011A (ja) * 2018-10-26 2022-01-20 ポスコ 鋳造設備及び鋳造方法
JP7148724B2 (ja) 2018-10-26 2022-10-05 ポスコ 鋳造設備及び鋳造方法
CN113165056B (zh) * 2018-10-26 2022-12-23 株式会社Posco 铸造设备和铸造方法
WO2020178319A1 (de) 2019-03-06 2020-09-10 Helmholtz-Zentrum Dresden - Rossendorf E. V. Anordnung zur berührungslosen bestimmung der geschwindigkeitsverteilung eines schmelzvolumens in einer stranggusskokille
DE102019105628B3 (de) * 2019-03-06 2020-03-19 Helmholtz-Zentrum Dresden - Rossendorf E.V. Anordnung zur berührungslosen Bestimmung der Geschwindigkeitsverteilung eines Schmelzvolumens in einer Stranggusskokille
JP2020171945A (ja) * 2019-04-11 2020-10-22 日本製鉄株式会社 溶鋼流動制御装置、溶鋼流動制御方法、およびプログラム
JP7368725B2 (ja) 2020-01-10 2023-10-25 日本製鉄株式会社 溶鋼流動制御装置、溶鋼流動制御方法、およびプログラム

Also Published As

Publication number Publication date
DE60034322T2 (de) 2007-12-20
CA2364085A1 (en) 2000-09-08
CA2364085C (en) 2007-05-29
CN1342110A (zh) 2002-03-27
DE60034322D1 (de) 2007-05-24
EP1166921A4 (en) 2004-08-18
EP1166921B1 (en) 2007-04-11
CN1188235C (zh) 2005-02-09
JP3386051B2 (ja) 2003-03-10
US20020079083A1 (en) 2002-06-27
US6712122B2 (en) 2004-03-30
WO2000051762A1 (fr) 2000-09-08
EP1166921A1 (en) 2002-01-02

Similar Documents

Publication Publication Date Title
WO2000051763A1 (fr) Procede et dispositif d&#39;estimation/commande de motif d&#39;ecoulement d&#39;acier fondu dans un coulage en continu
JP6430467B2 (ja) 鋳片品質の予測装置及びその方法
KR970001552B1 (ko) 연속주조 중 용융금속이 브레이크 아우트(break-out)될 가능성을 예측하는 방법 및 장치
JP2003181609A (ja) 連続鋳造における溶鋼の流動パターン推定・制御方法およびそのための装置
US7669638B2 (en) Control system, computer program product, device and method
Liu et al. Measurement of molten steel surface velocity with SVC and nail dipping during continuous casting process
He et al. A novel principle for molten steel level measurement in tundish by using temperature gradient
Thomas On-line detection of quality problems in continuous casting of steel
JP2009061469A (ja) 連続鋳造におけるブレークアウト検出方法及び装置、該装置を用いた鋼の連続鋳造方法、ブレークアウト防止装置
JP4802718B2 (ja) 連続鋳造鋳片における表層欠陥発生危険部位の予測方法および連続鋳造鋳片の製造方法
JP2000246413A (ja) 連続鋳造用鋳型内における溶鋼流速の推定方法
Jenkins et al. Investigation of Strand surface defects using Mold instrumentation and Modelling
KR100516028B1 (ko) 연속주조에 있어서의 용강의 유동패턴추정·제어방법 및그를 위한 장치
Yamauchi et al. Cooling behavior and slab surface quality in continuous casting with alloy 718 mold
JP5800241B2 (ja) 連続鋳造用鋳型内の溶融金属の湯面レベル及びモールドパウダー厚の測定方法
Yao et al. Monitoring and analysis of local mould thermal behaviour in continuous casting of round billets
JP4745929B2 (ja) 連続鋳造における凝固遅れ抑制方法
JP4972776B2 (ja) 鋳型内溶鋼の流動制御方法及び連続鋳造鋳片の表面品質判定方法
JPH0790343B2 (ja) 連続鋳造におけるブレ−クアウト予知方法
JP3252770B2 (ja) 連続鋳造における湯面変動検知方法及び制御方法
JPH04284956A (ja) 鋼の連続鋳造方法
Mazza et al. The mold temperature mapping with Ultrasonic Contactless Technology is the key for the real-time initial solidification process control tools
JPH1177263A (ja) 連続鋳造鋳型内における溶鋼流動制御方法
JPS6330162A (ja) 連続鋳造におけるシエル厚測定方法
JP4398848B2 (ja) 鋼の連続鋳造鋳型内流速測定装置及び検知方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00804398.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2000 602419

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2364085

Country of ref document: CA

Ref document number: 2364085

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017011089

Country of ref document: KR

Ref document number: 09944029

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000905398

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017011089

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000905398

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017011089

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000905398

Country of ref document: EP