WO2000039976A1 - Recepteur diversite sans erreur de decodage et circuit de regeneration d'horloge de recepteur diversite - Google Patents

Recepteur diversite sans erreur de decodage et circuit de regeneration d'horloge de recepteur diversite Download PDF

Info

Publication number
WO2000039976A1
WO2000039976A1 PCT/JP1998/005941 JP9805941W WO0039976A1 WO 2000039976 A1 WO2000039976 A1 WO 2000039976A1 JP 9805941 W JP9805941 W JP 9805941W WO 0039976 A1 WO0039976 A1 WO 0039976A1
Authority
WO
WIPO (PCT)
Prior art keywords
combined
coefficient
received signal
phase
combining
Prior art date
Application number
PCT/JP1998/005941
Other languages
English (en)
French (fr)
Inventor
Toshinori Iinuma
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to PCT/JP1998/005941 priority Critical patent/WO2000039976A1/ja
Priority to EP98961585A priority patent/EP1143676B1/en
Priority to DE69830428T priority patent/DE69830428T2/de
Priority to US09/857,184 priority patent/US6901124B1/en
Priority to AU16902/99A priority patent/AU776028B2/en
Priority to CNB98814400XA priority patent/CN1154315C/zh
Publication of WO2000039976A1 publication Critical patent/WO2000039976A1/ja
Priority to HK02102247.5A priority patent/HK1040857A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0334Processing of samples having at least three levels, e.g. soft decisions

Definitions

  • the present invention relates to a diversity receiving apparatus that prevents decoding error and a clock recovery circuit used for a diversity apparatus that prevents decoding error.
  • the present invention relates to a diversity receiver used for wireless communication equipment and a clock recovery circuit used for the diversity receiver.
  • digital wireless communication devices transmit information by modulating a carrier wave with a baseband signal corresponding to the information.
  • a digital modulation method include an amplitude modulation method (ASK: Amplitude Shift Keying) that changes the amplitude of a carrier signal according to a baseband signal, a frequency modulation method (FSKrFrequency Shift) that changes the frequency of a carrier wave, and a carrier wave.
  • ASK Amplitude Shift Keying
  • FSKrFrequency Shift frequency modulation method
  • PSK Phase Shift Keying
  • QAM quadrature amplitude modulation method
  • a receiving-side wireless communication device that receives a signal modulated by these digital modulation methods demodulates information by performing a process reverse to the modulation. It is known that when such a digital modulation and demodulation method is applied to mobile communication and the like, the reception performance is significantly deteriorated due to a fading phenomenon in which the reception level fluctuates drastically due to the influence of radio wave reflection and scattering. As an effective method of compensating for a decrease in reception level due to fading, a diversity reception system that receives the same signal using multiple reception systems and combines the received signals to create a high-quality reception signal has been put into practical use.
  • Diversity reception schemes include a selective combining scheme that selects and demodulates the received signal with the maximum reception level in each receiving system, and an equal gain combining that combines and demodulates the signals of each receiving system at the same level There is a maximum ratio combining method in which the signals of each receiving system are weighted in proportion to the reception level and then combined and demodulated.
  • the maximum ratio combining method has a higher reception level, that is, the influence of noise. Since the smaller the signal is, the greater the weight is applied and the signals are combined, each received signal can be combined effectively.
  • FIG. 8 is a configuration diagram of a diversity receiver using the maximum ratio combining method.
  • This diversity receiving device is a receiving device that receives transmission data modulated by QPSK and decodes the data by performing QPSK demodulation and maximum ratio combining.
  • QPSK refers to 2-bit quaternary transmission by phase-modulating two orthogonal carriers in accordance with a 2-bit baseband signal, adding the two modulated signals resulting from the modulation, and transmitting the resulting signal. It is a method.
  • the receiving device obtains 2-bit 4-value data for each symbol by performing the reverse operation of this QPSK modulation.
  • the diversity receiver is composed of a phase demodulation section 32 9 to 33 2, an I component ROM 3 17 to 3 20, a Q component ROM 3 2 1 to 3 2 4, and an I component adder 3 2 5 , A Q component calculator 1 326, a judging unit 327, and a clock reproducing unit 328.
  • the phase demodulation section 329 is composed of an input terminal 301, a phase detection section 305, a phase delay section 309, and a phase addition section 313, and a PSK (Phase Shift Keying) modulation method.
  • a phase detection type delay detector corresponding to the expression is configured.
  • the input terminal 301 is a terminal to which a received signal digitized by an AZD converter limiter or the like is input to the device.
  • the phase detector 3505 outputs a digitized detection phase by comparing the phase of the received signal input to the input terminal 301 with the local oscillator (not shown). That is, since the phase detection section 305 detects only the phase component of the received signal and does not need the amplitude component of the received signal, the linear amplifier here is not required.
  • the phase delay unit 309 shifts the detected phase from the phase detection unit 305 for one symbol time. Delayed and output as delay phase.
  • the phase adder 313 calculates a phase difference between the detected phase and the delay phase, and outputs the result as phase data 61.
  • Phase demodulation sections 330 to 332 also output phase data 62 to ⁇ 4 by the same internal configuration as phase demodulation section 329.
  • the I-component ROMs 317 to 320 and the Q-component ROMs 321 to 324 are provided corresponding to the phase demodulators 329 to 332, respectively.
  • the combination coefficient is a reception level (RSSI'-Received Signal Strength Indicator) detected by a high-frequency reception unit (not shown) in the phase demodulation units 239 to 332.
  • the I-component ROMs 317 to 320 output Rk 2 ⁇ cos0k corresponding to the combination.
  • Q component ROM 321 to 324 are all combinations of 6k of Rk and 2 eight of ways 2 8 stores ie, the are two 16 Rk 2 ⁇ sine k.
  • the Q components ROM 321 to 324 output Rk 2 ⁇ sin0k corresponding to the combination.
  • the I-component adder 325 combines the weighted in-phase component received signals Rk 2 Outputs the received signal.
  • the clock recovery unit 328 extracts a symbol section based on the combined received signal of the in-phase component and the quadrature component output from the I-component adder 325 and the Q-component adder 326, and extracts the extracted symbol. Based on the section, a clock serving as a reference for the determination timing of the determination section 327 is reproduced.
  • the judging unit 327 calculates the combined received signal of the in-phase component and the quadrature component output from the I-component adder 325 and the Q-component adder 326 in synchronization with the clock from the clock recovery unit 328. Outputs 2-bit 4-value data by judging the sign.
  • the conventional diversity receiver using the maximum ratio combining scheme decodes data from a received signal.
  • the clock recovery section 328 shifts the extraction time of the symbol section significantly.
  • the mouthpiece reproduction unit 328 reproduces the clock with a delay
  • the determination unit 327 which makes the determination in synchronization with the clock, performs the determination at a timing that deviates from the ideal determination timing. As a result, a determination error is caused. Disclosure of the invention
  • the present invention provides a diversity receiving apparatus that prevents a decision error by a determining section by preventing a shift in symbol section extraction in a mouthpiece reproducing section, and a clock recovery circuit used in the diversity receiving apparatus.
  • a diversity receiving apparatus combines reception signals for each of a plurality of reception systems by weighting them with a combination coefficient corresponding to each amplitude component, and symbolizes the signals based on the combined reception signals.
  • a diversity receiver for extracting a section and reproducing a symbol for symbol determination, wherein a determination unit that determines whether all of the combined coefficients are lower than a predetermined threshold value, and the determination unit Is determined to be lower Multiplying means for uniformly multiplying the combined coefficient in the case of using, and combining means for combining received signals using the multiplied combined coefficient.
  • the present diversity receiver when all of the combining coefficients are lower than the predetermined threshold, the combining coefficient is multiplied uniformly, so that the dynamic range of the combined received signal is expanded. Therefore, when extracting the symbol interval based on the combined received signal, the present diversity receiver has higher detection accuracy of the 0 cross point, which is the extraction timing, and prevents a shift in symbol extraction. There is an effect that a reproduction shift is also prevented, and a determination error in performing a symbol determination in synchronization with the clock is also prevented.
  • the synthesis coefficient is one of a reception electric field strength obtained for each reception system and a parameter representing the likelihood of a reception signal obtained for each reception system. According to this configuration, the diversity receiving apparatus of the present invention can use any of the received electric field strength and the parameter indicating the certainty of the received signal as the synthesis coefficient.
  • the multiplying means multiplies all the combined coefficients by a constant when the determining means determines that all of the combined coefficients are lower than the threshold value.
  • the diversity receiving apparatus of the present invention does not need to use a general-purpose multiplier, and can multiply the synthesis coefficient by a multiplier that performs only a constant multiplication. This has the effect of ending.
  • the threshold, the value and the constant are mutually different! / Is inversely proportional to /.
  • the diversity receiving apparatus of the present invention does not exceed the full range of the combined coefficient when the combining coefficient is uniformly multiplied by the constant by the multiplication means.
  • the threshold value is 1 / (n 2) of the maximum value represented by the predetermined number of bits.
  • the constant is 2 to the power of n.
  • the multiplier for multiplying the combining coefficient can be simply configured by the shifter.
  • a diversity receiving apparatus provides a diversity receiving apparatus for each of a plurality of reception systems.
  • a diversity receiver that weights and synthesizes with a synthesis coefficient corresponding to the amplitude component, extracts a symbol section based on the synthesized reception signal, and reproduces a clock for symbol determination.
  • Judging means for judging whether or not all the forces are lower than a predetermined threshold; and when the judging means judges that all of the synthetic coefficients are lower than the predetermined threshold, the synthetic coefficients are uniformly determined.
  • Multiplying means for multiplying the received signal; synthesizing means for synthesizing the received signal using the multiplied synthesizing coefficient; and reproducing the clock synchronized with the received signal using the received signal synthesized by the synthesizing means. Reproduction means.
  • the present diversity receiver when all of the combining coefficients are lower than the predetermined threshold, the combining coefficient is multiplied uniformly, so that the dynamic range of the combined received signal is expanded. Therefore, when extracting the symbol interval based on the combined received signal, the present diversity receiver has higher detection accuracy of the 0 cross point, which is the extraction timing, and prevents a shift in symbol extraction. There is an effect that a reproduction shift is also prevented, and a determination error in performing a symbol determination in synchronization with the clock is also prevented.
  • a diversity receiving apparatus is characterized in that a reception signal for each of a plurality of reception systems is weighted and synthesized by a synthesis coefficient corresponding to each amplitude component, and a clock for symbol determination is based on the synthesized reception signal.
  • Determining means for determining whether all of the combined coefficients are lower than a predetermined threshold value, and determining that all of the combined coefficients are lower than the predetermined threshold value by the determining means.
  • Multiplying means for doubling the combined coefficient when it is determined to be low; and determining until all of the doubled combined coefficients are not determined to be smaller than the predetermined threshold value by the determining means.
  • Control means for repeatedly operating the means and the multiplying means; synthesizing means for synthesizing the received signal by using the synthesis coefficient at the time when the judgment means judges that the signal is not low; Reproducing means for reproducing a clock synchronized with the received signal by using the received signal synthesized by the above.
  • the diversity receiving apparatus of the present invention has the same effects as the above effects.
  • the mouthpiece reproducing circuit is used for a diversity receiving apparatus that combines reception signals of a plurality of reception systems by weighting them with a combination coefficient corresponding to each amplitude component.
  • a clock recovery circuit for determining whether all of the combined coefficients are lower than a predetermined threshold value; and increasing the combined coefficient when the combined means determines that the combined coefficients are lower.
  • the present clock recovery circuit increases the detection accuracy of the 0 cross point, which is the extraction timing, and prevents a shift in symbol extraction. This has the effect of preventing displacement.
  • FIG. 1 shows a diversity receiving apparatus using a maximum ratio combining scheme according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a more detailed configuration of the conversion unit 314.
  • FIG. 4 is a block diagram showing a more detailed configuration of the determination unit 202.
  • FIG. 5 is an example of a block diagram showing a more detailed configuration of each of the multipliers 203 to 206.
  • FIG. 6 is a flowchart showing the processing contents of the conversion unit 314 in the second embodiment.
  • FIG. 7 is a diagram showing an eye pattern of phase data in QPSK (phase data overwritten with synchronization for each modulation phase).
  • FIG. 8 is a diagram showing a conventional diversity receiver using the maximum ratio combining method.
  • FIG. 1 is a diagram illustrating a diversity receiving apparatus using the maximum ratio combining scheme according to the first embodiment of the present invention.
  • This device weights and combines the in-phase and quadrature components of the received signals received by the four receiving systems with the corresponding received level (RSSI: Received Signal Strength Indicator) (synthesis coefficient) and obtains the result.
  • RSSI Received Signal Strength Indicator
  • 2-bit 4-value decoded data is obtained and output.
  • this device uniformly multiplies the reception level and weights it. Used.
  • the present apparatus extracts a symbol section based on a combined reception signal of the in-phase component and the quadrature component, and performs clock recovery for determining timing based on the symbol section.
  • this device consists of a converter 314, a phase demodulator 329 to 332, an I component ROM 317 to 320, a Q component ROM 321 to 324,
  • the conversion section 3 1 4 comprising the I component adder 3 2 5, the Q component adder 3 2 6, the determination section 3 2 7 and the clock recovery section 3 2 8 is a phase demodulation section 2 3 9 to 3 3 2
  • the reception level C k is uniformly multiplied and changed to a synthesis coefficient T k. Output.
  • the reception level input to the conversion unit 314 is a signal detected by a high-frequency reception unit (not shown) in the phase demodulation units 239 to 332, and is represented by, for example, 8 bits. It is digital data.
  • the phase demodulation unit 329 is composed of an input terminal 301, a phase detection unit 305, a phase delay unit 309, and a phase addition unit 313, and is a phase detection type delay detection compatible with a PSK (Phase Shift Keying) modulation method. Make up the vessel.
  • PSK Phase Shift Keying
  • the input terminal 301 is a terminal to which a received signal digitized by the A / D converter / limiter is input to the device.
  • the phase detection unit 305 outputs a digitized detection phase by comparing the phase of the received signal input to the input terminal 301 with the phase of a local oscillator (not shown). That is, phase detection section 305 detects only the phase component of the received signal and does not need the amplitude component of the received signal, so that the linear amplifier here is not necessary.
  • Phase delay section 309 delays the detection phase from phase detection section 305 by one symbol time and outputs the result as a delayed phase.
  • the phase addition unit 313 calculates a phase difference between the detected phase and the delay phase, and outputs the result as phase data ⁇ 1.
  • Phase demodulation sections 330 to 332 also output phase data ⁇ 2 to ⁇ 4 by the same internal configuration as phase demodulation section 329.
  • Tk and 0k is Runode such from 8 bits each, I component ROM 31 7-320 all the 0k Ding 1 ⁇ and 2 eight of ways 2 8 , That is, 216 kinds of the calculation results are stored.
  • the I component R OM 3 17 to 3 20 corresponds to the combination of Tk 2 and cos
  • Q components R OM 3 2 1 to 3 2 4 All set combined with 0 k of Tk and 2 eight of ways 2 8, i.e., the ways 2 16
  • the calculation result is stored.
  • Q components R OM 3 2 1 ⁇ 3 2 4 when the phase data theta k from synthesis coefficient Tk and the phase addition unit 3 1 3-3 1 6 are respectively input, Tk 2 ⁇ sin corresponding to combinations thereof Outputs 0 k.
  • the combined signal is output as a combined received signal of orthogonal components.
  • the clock recovery section 328 is composed of a symbol section extraction section 333 and a PLL (Phase Locked Loop) section 334.With this configuration, the I component adder 325 and the Q component adder 326 output Based on the combined signal of the in-phase component and the quadrature component, a clock serving as a reference of the determination timing of the determination unit 327 is reproduced.
  • PLL Phase Locked Loop
  • the symbol interval extraction unit 3 33 extracts the symbol interval based on the combined reception signal of the in-phase component and the quadrature component output from the I component adder 3 25 and the Q component adder 3 26 .
  • the symbol section extraction unit 333 extracts a symbol section by determining the zero cross point of the combined reception signal of the in-phase component and the quadrature component.
  • the PLL section 334 regenerates a clock serving as a reference for the decision timing of the decision section 327 based on the symbol section extracted by the symbol section extraction section 333.
  • the clock recovery unit 328 converts the combined reception signal of the in-phase component and The clock is reproduced by a self-timing method that reproduces a clock synchronized with the received signal based on the self-timing method.
  • the judging unit 327 is a composite reception signal of the in-phase component and the quadrature component output from the I-component adder 325 and the Q-component adder 326 in synchronization with the clock from the clock recovery unit 328. Outputs 2-bit 4-value data by judging the sign of each.
  • the cause of the judgment error in the judgment section 327 is a shift (clock phase error) of the clock input from the clock recovery section 328. If the clock input to the determination unit 327 shifts, the determination unit 327 performs the determination at a timing that deviates from the ideal determination timing, and the probability of a determination error increases. Therefore, in order to prevent a determination error, it is required that the clock reproduction unit 328 increase the accuracy of clock reproduction. In order to increase the accuracy of clock reproduction by the clock reproduction unit 328, it is required that the symbol period extraction unit 333 extracts a symbol period faithful to the synthesized received signal. In the symbol section extraction by the symbol section extraction unit 3333, the greater the dynamic range of the combined received signal of the in-phase component and the quadrature component, the higher the identification accuracy of the zero cross point of the combined received signal.
  • the diversity receiving apparatus of the present invention uniformly multiplies the reception level when any of the reception levels is lower than a predetermined threshold, and uses the multiplied reception level as a combination coefficient. Therefore, the dynamic range of the combined reception signal of the in-phase component and the quadrature component obtained as a result of the combination is not impaired.
  • FIG. 2 is a block diagram showing a more detailed configuration of the conversion unit 314.
  • the threshold is preferably about 1/4-1/8 of the full range of the reception level C k (maximum possible value of C k).
  • the thresholds and values of this embodiment are 1 to 4 of the funnel range of the reception level C k.
  • the constant N may be a value of 1 or more and may be in a relationship inversely proportional to the threshold with respect to the reception level C k. Let's do it. By making the threshold value and the constant N inversely proportional to each other, the value obtained by multiplying the reception level Ck by the constant N does not exceed the full range of the reception level Ck.
  • determination section 202 determines whether or not these are lower than a threshold. As a result, if any of them is lower than the threshold value, a determination signal 207 indicating that fact is output.
  • the multipliers 203 to 206 output the reception level C k as the combination coefficient Tk.
  • FIG. 4 is a block diagram showing a more detailed configuration of determination section 202.
  • FIG. 5 is an example of a block diagram showing a more detailed configuration of each of the multipliers 203 to 206.
  • the multipliers 203 to 206 include selectors 501 to 508 and are configured to realize a constant multiple of the input 8-bit Ck.
  • Each of the selectors 501 to 508 outputs the signal input to the eight input terminals A from X when the judgment signal 207 from the judgment unit 202 is not input, and inputs the signal when the judgment signal 207 is input. Output the signal input to terminal B from X.
  • An 8-bit signal representing Ck is input in parallel to the inputs A of the selectors 501 to 508, where 501 is the upper bit and 508 is the lower bit.
  • the vertical axis represents the full range of the combination coefficient, and the threshold of the value is 1Z4 of the full range.
  • the reception levels Ck are all lower than the threshold.
  • determination section 202 compares the threshold value with reception level Ck. As a result of the comparison, since the reception levels Ck are all smaller than the threshold value, the determination signal 207 indicating that is output to the multipliers 203 to 206.
  • FIG. 3B is a graph showing the value of the combined coefficient Tk output from the conversion unit 314 when the reception level Ck shown in FIG.
  • the I component ROMs 317 to 320 and the Q component ROMs 321 to 324 output Tk 2 ⁇ cos 6 k and Tk 2 ⁇ sin 6 k when the above-mentioned combination coefficient Tk and phase data ⁇ k are input.
  • I component adder 325 and Q component adder 326 combines the Tk 2 ⁇ cos ⁇ k and Tk 2 ⁇ sin 6k, a combined reception signal of the in-phase and quadrature components of the results and the clock reproduction unit 328 determination unit 327 And output to
  • the dynamic range of the combined reception signal of the in-phase component and the quadrature component decreases as the value of Tk decreases, and the clock recovery unit 328 extracts the symbol section.
  • Tk is the dynamic range is impaired no Rukoto of because it is multiplied Tk 2 ⁇ cos ⁇ k ⁇ Pi Tk 2 ⁇ sine k in the conversion unit 314, Therefore, there is no adverse effect.
  • Judgment section 327 makes a positive / negative judgment of the combined reception signal of the in-phase component and the quadrature component based on the clock reproduced with high accuracy by clock reproduction section 328, and outputs the result as decoded data.
  • the schematic configuration of the diversity receiving apparatus according to the present embodiment is the same as that of FIG. 1, but the internal configuration of conversion section 314 is different.
  • the difference is that the conversion unit 314 is configured by a microprocessor or a digital signal processor (DSP).
  • DSP digital signal processor
  • FIG. 6 is a flowchart showing the processing content of the conversion unit 314 in the present embodiment.
  • the initial value 0 is substituted for the variable N (step 602).
  • the value of the register A is compared with the threshold value (here, 1/2 of the full range). If the result of the comparison indicates that the value of the register A is larger than the threshold value (step 603: YES), the step After performing the processing of 606, the process ends. If the result of the comparison indicates that the value of register A is equal to or less than the threshold value (step 603: NO), first, the value obtained by increasing variable N by 1 is stored in variable N (step 604). The result of multiplying by 2 is stored in register A, and the process returns to step 603 again.
  • the threshold value here, 1/2 of the full range
  • steps 603 to 605 is repeated until the value of the register A exceeds the threshold value.
  • the reception level Ck is a reception level (RSSI) signal, but instead of the reception level signal, a parameter (deviation) representing the certainty of the reception signal is used. You can.
  • RSSI reception level
  • device device representing the certainty of the reception signal
  • Figure 7 shows the eye pattern of phase data in QPSK. Are overwritten by synchronizing with each other).
  • the discrepancies L l and L 2 refer to the likelihood of the discrimination point in each phase data with respect to the ideal discrimination point. The larger the discrepancy, the smaller the ideal signal, that is, the smaller the ratio of the interference wave included in the received signal.
  • the diversity receiving apparatus of the present invention provides a receiving level C k value when the converting section 3 14 determines that the value of the receiving level C k and the deviation are smaller than the threshold value. Is multiplied uniformly, and the value is output as a synthesis coefficient T k.
  • the in-phase component and the in-phase component output via the I component ROM 3 17 to 3 20, the Q component ROM 3 2 1 to 3 2 4, the I component adder 3 25 and the Q component adder 3 26
  • the combined reception signal of the orthogonal components is output to the clock recovery unit 328 without impairing the dynamic range.
  • the symbol section extraction section 333 can accurately extract the symbol section based on the combined received signal of the in-phase component and the quadrature component whose dynamic range has been expanded, and the PLL section 334 based on the symbol section. And reproduces a clock that is highly accurate, that is, synchronized with the original received signal with high accuracy. As a result, the determination unit 327 performs the determination at a more accurate determination timing based on the clock and more ideal determination timing, so that the probability of a determination error is reduced.
  • the diversity receiving apparatus of the present invention can prevent a determination error in the determination unit by preventing a shift in the reproduction of the clock in the clock recovery unit even when the reception level is low, so that the reception level can be reduced by fading phenomenon or the like. This is useful for mobile communication equipment, which is liable to deteriorate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Description

明 細 書
復号の判定誤りを防止したダイバーシチ受信装置及び復号の判定誤りを防止する ダイバーシチ装置に用いるためのクロック再生回路 技術分野
本発明は、 無線通信機器に用いられるダイバーシチ受信装置及びダイバーシチ 受信装置に用いられるクロック再生回路に関する。 背景技術
従来、 デジタル方式の無線通信機器は、 情報に相当するベースバンド信号で搬 送波を変調することによって情報の伝送を行う。 このようなデジタル変調方式と しては、 ベースバンド信号に応じて搬送波信号の振幅を変化させる振幅変調方式 (ASK:Amplitude Shift Keying)、 搬送波の周波数を変化させる周波数変調方式 ( FSKrFrequency Shift) , 搬送波の位相を変化させる位相変調方式 (PSK:Phase Shift Keying)、 搬送波の振幅及び位相をそれぞれ独立して変化させる直交振幅変調方 式 (QAM:Quadrature Amplitude Modulation) などの各種方式がある。
これらのデジタル変調方式によって変調された信号を受信する受信側の無線通 信機器は、 変調と逆の処理を行って情報を復調する。 このようなデジタル変復調 方式は、 移動通信等に適用した場合、 電波の反射や散乱などの影響で受信レベル が激しく変動するフェージング現象によつて受信性能が著しく劣化することが知 られている。 フェージングによる受信レベル低下を補う有効な方法として、 同じ 信号を複数の受信系を用いて受信し、 受信された複数の受信信号を合成すること によって高品質の受信信号を作り出すダイバーシチ受信方式が実用化されている ダイバーシチ受信方式には、 各受信系の中で最大受信レベルの受信信号を選択 して復調を行う選択合成方式、 各受信系の信号を等レベルで合成して復調を行う 等利得合成方式、 各受信系の信号を受信レベルに比例した重み付けを行った後合 成して復調を行う最大比合成方式がある。
この中で最大比合成方式は、 受信レベルがより大きい、 すなわち、 雑音の影響 がより小さい信号ほど大きい重み付けをして合成するので、 各受信信号を効果的 に合成できる。
以下に最大比合成方式を用いたダイバーシチ受信装置について説明する。 図 8は、 最大比合成方式のダイバーシチ受信装置の構成図である。
このダイバーシチ受信装置は、 QPSKにより変調された送信データを受信して 、 QPSK復調と最大比合成とを施すことによってデータを復号する受信装置であ る。
ここにおいて QPSK とは、 2ビットのベースバンド信号に応じて直交する 2 つの搬送波をそれぞれ位相変調し、 変調結果の 2つの変調信号を加算して送信す ることにより 2ビット 4値の伝送を行う方式である。 受信装置側においては、 こ の QPSK変調と逆の操作を行うことにより 1シンボル毎に 2ビット 4値のデー タを得る。
同図においてダイバーシチ受信装置は、 位相復調部 3 2 9〜 3 3 2、 I成分 R OM 3 1 7〜 3 2 0、 Q成分 R OM 3 2 1〜 3 2 4、 I成分加算器 3 2 5、 Q成 分¾1算器3 2 6、 判定部 3 2 7及びクロック再生部 3 2 8から構成される。 位相復調部 3 2 9〜 3 3 2は、 受信された受信信号の位相とその 1シンボル前 の位相との位相差分を検出して、 位相データ Θ k (k= 1,2,3,4) として出力する。 ここで k = l , 2 , 3 , 4はそれぞれ位相復調部 3 2 9、 3 3 0、 3 3 1、 3 3 2に対応している。
詳しくは、 位相復調部 3 2 9は、 入力端子 3 0 1、 位相検出部 3 0 5、 位相遅 延部 3 0 9、 位相加算部 3 1 3から構成され、 PSK (Phase Shift Keying) 変調方 式に対応した位相検波型の遅延検波器を構成している。
入力端子 3 0 1は、 AZD変換器ゃリミタなどでデジタル化された受信信号が 本装置に入力される端子である。
位相検出部 3 0 5は、 入力端子 3 0 1に入力された受信信号と図示されていな い局部発振器との位相比較を行うことによって、 デジタル化された検出位相を出 力する。 すなわち、 位相検出部 3 0 5は、 受信信号の位相成分のみを検出し、 受 信信号の振幅成分を必要としなレ、ため、 ここでの線形増幅器は必要なくなる。 位相遅延部 3 0 9は、 位相検出部 3 0 5からの検出位相を 1 シンボル時間だけ 遅延されて、 遅延位相として出力する。
位相加算部 313は、 前記検出位相と遅延位相との位相差分を算出し、 位相デ ータ 6 1として出力する。
位相復調部 330〜332についても、 位相復調部 329と同様の内部構成に よって位相データ 62〜θ 4を出力する。
I成分 ROM 31 7〜320及び Q成分 ROM 321〜 324は、 それぞれ位 相復調部 329〜332に対応して設けられ、 合成係数 Rk (k= 1,2,3,4) と位相 データ Θ k (k=l,2,3,4) とから合成係数 R kで重み付けられた同相成分の受信信 号 R k 2 · cos 0 k (k=l, 2,3,4) と合成係数 R kで重み付けられた直交成分の受信 信号 Rk2 ' sin0 k (k=l,2,3,4) とを出力する。 ここで合成係数とは、 位相復調 部 239〜332内の高周波受信部 (図外) によって検出された受信レベル ( RSSI'- Received Signal Strength Indicator; を表す ί¾·½ "である。
詳しくは、 I成分 ROM31 7〜320は、 合成係数 Rk (k = l,2, 3,4) の取 り得る値と位相データ 0 k (k=l,2, 3, 4) の取り得る値との全ての組合せについ て、 同相成分の受信信号 Rk2 · cose k (k=l,2,3,4) を予め記憶している。 Rk 及び 0k はそれぞれ 8ビットからなるので、 I成分 ROM3 1 7〜320は 28 通りの Rk と 28通りの 0k との全ての組合せ、 すなわち、 216通りの Rk2 · cos 9k を記憶している。 I成分 ROM 31 7〜320は、 合成係数 Rk と位相加算 部 313〜316からの位相データ 0k がそれぞれ入力されると、 それらの組合 せに該当する Rk2 · cos0kを出力する。
同様に、 Q成分 ROM321〜324は、 合成係数 Rk (k=l,2,3,4) の取り 得る値と位相データ 0k (k-1,2, 3,4) の取り得る値との全ての組合せについて 、 直交成分の受信信号 Rk2 · sin 0 k (k=l, 2, 3, 4) を予め記憶している。 Q成分 ROM 321〜324は 28通りの Rk と 28通りの 6k との全ての組合せ、 すな わち、 216通りの Rk2 · sine kを記憶している。 Q成分 R OM 321〜 324は 、 合成係数 Rk と位相加算部 313〜316からの位相データ 0k がそれぞれ入 力されると、 それらの組合せに該当する Rk2 · sin0kを出力する。
I成分加算器 325は、 I成分 ROM 31 7〜320から出力される重み付け られた同相成分の受信信号 Rk2 · cos 0k (k=l, 2, 3, 4) を合成して同相成分の合 成受信信号を出力する。
Q成分加算器 3 2 6は、 Q成分 R OM 3 2 1〜3 2 4から出力される重み付け られた直交成分の受信信号 Rk2 · sin e k (k=l, 2, 3, 4) を合成して直交成分の合 成受信信号を出力する。
クロック再生部 3 2 8は、 I成分加算器 3 2 5及び Q成分加算器 3 2 6より出 力される同相成分及び直交成分の合成受信信号に基づいてシンボル区間の抽出を 行い、 抽出したシンボル区間に基づいて判定部 3 2 7の判定タイミングの基準と 成るクロックを再生する。
判定部 3 2 7は、 クロック再生部 3 2 8からのクロックに同期して I成分加算 器 3 2 5及び Q成分加算器 3 2 6から出力される同相成分及び直交成分の合成受 信信号についてそれぞれ正負判定することによって 2ビット 4値のデータを出力 する。
以上のようにして従来の最大比合成方式によるダイバーシチ受信装置は受信信 号からデータを復号する。
ところで従来のダイバーシチ受信装置においては、 クロック再生部 3 2 8にお いてシンボル区間の抽出時点が大きくずれる場合がある。 この場合ク口ック再生 部 3 2 8は、 クロックの再生もずれて再生することとなり、 クロックに同期して 判定を行う判定部 3 2 7は、 理想的な判定タイミングからずれたタイミングで判 定を行うことになるので判定誤りを起こす結果となる。 発明の開示
上記課題を解決するため本発明は、 ク口ック再生部においてシンボル区間抽出 のずれを防ぐことにより判定部による判定誤りを防ぐダイバーシチ受信装置及び ダイバーシチ受信装置に用いるクロック再生回路を提供することを目的とする。 上記目的を達成するため、 本発明に係るダイバーシチ受信装置は、 複数の受信 系統毎の受信信号をそれぞれの振幅成分に応じた合成係数で重み付けして合成し 、 合成された受信信号を基にシンボル区間を抽出してシンボル判定のためのク口 ックを再生するダイバーシチ受信装置にであって、 合成係数の全てが所定のしき い値より低いか否かを判定する判定手段と、 前記判定手段により低いと判定され た場合に前記合成係数を一律に増倍する増倍手段と、 前記増倍された合成係数を 用レ、て受信信号を合成する合成手段とを備える
この構成によれば、 合成係数の全てが所定のしきい値より低い場合には合成係 数が一律に増倍されるので、 合成された受信信号のダイナミックレンジが拡大す る。 このため本ダイバーシチ受信装置は、 合成された受信信号を基にシンボル区 間を抽出する際、 抽出タイミングとなる 0クロス点の検出精度が高くなり、 シン ボル抽出のずれが防止されるので、 クロック再生のずれも防止され、 そのクロッ クに同期してシンボル判定を行う際の判定誤りも防止されるという効果がある。 前記合成係数は、 受信系統毎に得られる受信電界強度と、 受信系統毎に得られ る受信信号の確からしさを表すパラメ一タとの何れかであることを特徴とする。 この構成によれば、 本発明のダイバーシチ受信装置は、 合成係数として受信電 界強度及び受信信号の確からしさを表すパラメータとの何れかを用いることがで さる。
また前記増倍手段は、 前記判定手段により前記合成係数の全てが前記しきい値 より低いと判定された場合に全ての合成係数に定数を乗算する。
この構成によれば本発明のダイバーシチ受信装置は、 汎用的な乗算器を使用す る必要がなく、 定数倍のみを行う乗算器で合成係数を増倍することができるので 、 ハードゥエァ規模が小さくて済むという効果がある。
また前記しきレ、値と前記定数とは互!/、に反比例の関係にあることを特徴とする 。
この構成によれば本発明のダイバーシチ受信装置は、 増倍手段によつて合成係 数を一律に前記定数で増倍した場合に合成係数のフルレンジを越えることがない また前記合成係数は所定のビット数で表され、 nを 1以上であって所定のビッ ト数を越えない整数とするとき、 前記しきい値は前記所定ビット数で表される最 大値の 2の n乗分の 1であり、 前記定数は 2の n乗であることを特徴とする。 この構成によれば本発明のダイバーシチ受信装置は、 合成係数を増倍するため の乗算器をシフタによつて簡単に構成することができる。
本発明に係るダイバーシチ受信装置は、 複数の受信系統毎の受信信号をそれぞ れの振幅成分に応じた合成係数で重み付けして合成し、 合成された受信信号を基 にシンボル区間を抽出してシンボル判定のためのクロックを再生するダイバーシ チ受信装置であって、 合成係数の全てが所定のしきい値より低い力否かを判定す る判定手段と、 前記判定手段により前記合成係数の全てが前記所定のしきい値よ り低いと判定された場合に前記合成係数を一律に増倍する増倍手段と、 前記増倍 された合成係数を用いて受信信号を合成する合成手段と、 前記合成手段により合 成された受信信号を用いて受信信号に同期したクロックを再生する再生手段とを 備える。
この構成によれば、 合成係数の全てが所定のしきい値より低い場合には合成係 数が一律に増倍されるので、 合成された受信信号のダイナミックレンジが拡大す る。 このため本ダイバーシチ受信装置は、 合成された受信信号を基にシンボル区 間を抽出する際、 抽出タイミングとなる 0クロス点の検出精度が高くなり、 シン ボル抽出のずれが防止されるので、 クロック再生のずれも防止され、 そのクロッ クに同期してシンボル判定を行う際の判定誤りも防止されるという効果がある。 本発明にかかるダイバーシチ受信装置は、 複数の受信系統毎の受信信号をそれ ぞれの振幅成分に応じた合成係数で重み付けして合成し、 合成された受信信号を 基にシンボル判定のためのクロックを再生するダイバーシチ受信装置であって、 合成係数の全てが所定のしきい値より低いか否かを判定する判定手段と、 前記判 定手段により前記合成係数の全てが前記所定のしきい値より低いと判定された場 合に前記合成係数を 2倍にする増倍手段と、 前記判定手段により前記 2倍にされ た合成係数全てが前記所定のしきい値より小さいと判定されなくなるまで、 判定 手段と乗算手段とを繰り返し動作させる制御手段と、 前記判定手段により低くな いと判定された時点における合成係数を用いて受信信号を合成する合成手段と、 前記合成手段により合成された受信信号を用レ、て受信信号に同期したクロックを 再生する再生手段とを備える。
この構成によれば本発明のダイバーシチ受信装置は、 上記効果と同様の効果が ある。
本発明に係るク口ック再生回路は、 複数の受信系統毎の受信信号をそれぞれの 振幅成分に応じた合成係数で重み付けをして合成するダイバーシチ受信装置に用 いるクロック再生回路であって、 前記合成係数の全てが所定のしきい値より低い か否かを判定する判定手段と、 前記判定手段により低いと判定された場合に前記 合成係数を増倍する増倍手段と、 前記増倍された合成係数を用いて受信信号を合 成する合成手段と、 前記合成手段により合成された受信信号を用いて受信信号に 同期したクロックを再生する再生手段とを備える。
この構成によれば、 合成係数の全てが所定のしきい値より低い場合には合成係 数が一律に増倍されるので、 合成された受信信号のダイナミックレンジが拡大す る。 このため本クロック再生回路は、 合成された受信信号を基にシンボル区間を 抽出する際、 抽出タイミングとなる 0クロス点の検出精度が高くなり、 シンボル 抽出のずれが防止されるので、 クロック再生のずれも防止されるという効果があ る。 図面の簡単な説明
第 1図は、 本発明の第 1実施形態に係る最大比合成方式によるダイバーシチ受 信装置を示す。
第 2図は、 変換部 3 1 4のより詳細な構成を示すブロック図である。
第 3図は、 変換部 3 1 4に入力される受信レベル C k (k=l, 2, 3, 4) の値 (同 図 (a ) ) と、 変換部 3 1 4より出力される合成係数 T k (k=l,2,3,4) の値 (同 図 (b ) ) とを示すグラフである。
第 4図は、 判定部 2 0 2のより詳細な構成を示すブロック図である。
第 5図は、 上記乗算器 2 0 3〜 2 0 6それぞれのより詳細な構成を示すプロッ ク図の一例である。
第 6図は、 第 2実施形態における変換部 3 1 4の処理内容を示すフローチヤ一 トである。
第 7図は、 QPSK における位相データのアイパターン (位相データを、 変調位 相ごとに同期をとつて重ね書きしたもの) を示す図である。
第 8図は、 従来の最大比合成方式によるダイバーシチ受信装置を示す図である 発明を実施するための最良の形態
(第 1実施形態)
図 1は、 本発明の第 1実施形態に係る最大比合成方式によるダイバーシチ受信 装置を示す図である。
本装置は、 4つの受信系統で受信される受信信号それぞれの同相成分と直交成 分について対応する受信レベル (RSSI : Received Signal Strength Indicator) ( 合成係数) で重み付けして合成し、 その結果得られる同相成分の合成受信信号と 直交成分の合成受信信号とを正負判定することにより 2ビット 4値の復号データ を得て出力する。 本装置は、 同相成分と直交成分の受信信号を受信レベルで重み 付けする際、 受信レベルのいずれもが所定のしきい値よりも低い場合には、 受信 レベルを一律に増倍して重み付けに用いる。 また、 本装置は、 正負判定の際、 同 相成分及び直交成分の合成受信信号に基づいてシンボル区間を抽出し、 シンボル 区間に基づいて判定タイミングとなるクロック再生を行う。
上記を実現するため本装置は、 変換部 3 1 4、 位相復調部 3 2 9〜3 3 2、 I 成分 R OM 3 1 7〜3 2 0、 Q成分 R OM 3 2 1〜3 2 4、 I成分加算器 3 2 5 、 Q成分加算器 3 2 6、 判定部 3 2 7及びクロック再生部 3 2 8から構成される 変換部 3 1 4は、 位相復調部 2 3 9〜3 3 2それぞれに対応する受信レベル C k (k= 1,2,3,4) が入力されると、 受信レベル C k (k=l,2,3,4) の何れもが所定の しきい値より低い力、否か (所定のしきい値を越える受信レベルが 1つ以上あるか ) を判定する。 この判定の結果、 受信レベル C k (k= 1,2,3,4) の何れもが所定の しきい値より低い場合には、 受信レベル Ck を一律に増倍して合成係数 Tk に変 換して出力する。 変換部 3 1 4は、 判定の結果、 所定のしきい値を越える受信レ ベルが 1つ以上ある場合には、 受信レベル C k (k=l,2,3,4) を合成係数 T k ( k=l,2,3,4) として出力する。 ここにおいて変換部 3 1 4に入力される受信レベル は、 位相復調部 2 3 9〜3 3 2内の高周波受信部 (図外) によって検出される信 号であり、 例えば 8ビットで表されるディジタルデータである。 また、 一律に増 倍するとは、 4つの受信レベルに所定の倍率をかけることによって 4つの受信レ ベルの値を相互の比を保ったまま増倍することを示す。 位相復調部 329〜 332は、 受信された受信信号の位相とその 1シンボル前 の位相との位相差分を検出して、 位相データ Θ k (k=l,2,3,4) として出力する。 ここで k= l, 2, 3 , 4はそれぞれ位相復調部 329、 330、 331、 33 2に対応している。
詳しくは、 位相復調部 329は、 入力端子 301、 位相検出部 305、 位相遅 延部 309、 位相加算部 313から構成され、 PSK (Phase Shift Keying) 変調方 式に対応した位相検波型の遅延検波器を構成している。
入力端子 301は、 A/D変換器ゃリミタなどでデジタル化された受信信号が 本装置に入力される端子である。
位相検出部 305は、 入力端子 301に入力された受信信号と図示されていな い局部発振器との位相比較を行うことによって、 デジタル化された検出位相を出 力する。 すなわち、 位相検出部 305は、 受信信号の位相成分のみを検出し、 受 信信号の振幅成分を必要としないため、 ここでの線形増幅器は必要なくなる。 位相遅延部 309は、 位相検出部 305からの検出位相を 1シンボル時間だけ 遅延されて、 遅延位相として出力する。
位相加算部 313は、 前記検出位相と遅延位相との位相差分を算出し、 位相デ ータ Θ 1として出力する。
位相復調部 330〜332についても、 位相復調部 329と同様の内部構成に よって位相データ θ 2〜θ 4を出力する。
I成分 ROM31 7〜320及び Q成分 ROM321〜324は、 それぞれ位 相復調部 329〜332に対応して設けられ、 合成係数 Tk (k=l,2,3,4) と位相 データ 0 k (k=l,2,3,4) とから合成係数 Tkで重み付けられた同相成分の受信信 号 T k 2 · cos 0 k (k=l,2,3,4) と合成係数 T kで重み付けられた直交成分の受信 信号 T k 2 · sin Θ k (k=l,2,3,4) とを出力する。
詳しくは、 I成分 ROM31 7〜320は、 合成係数 Tk (k=l,2,3,4) の取 り得る値と位相データ 0k (k=l,2, 3,4) の取り得る値との全ての組合せについ て、 合成係数 Tk (k=l,2,3,4) で重み付けられた同相成分の受信信号 Tk2 · cos 6 k (k=l, 2, 3, 4) を予め記憶している。 Tk及び 0k はそれぞれ 8ビットからな るので、 I成分 ROM 31 7〜320は 28通りの丁1^ と 28通りの 0k との全て の組合せ、 すなわち、 2 16通りの前記演算結果を記憶している。 I成分 R OM 3 1 7〜3 2 0は、 合成係数 Tk と位相加算部 3 1 3〜3 1 6からの位相データ Θ kがそれぞれ入力されると、 それらの組合せに該当する Tk2 · cos Θ kを出力する 同様に、 Q成分 R OM 3 2 1〜3 2 4は、 合成係数 Tk (k= l, 2, 3, 4) の取り 得る値と位相データ 0 k (k = l, 2, 3, 4) の取り得る値との全ての組合せについて 、 合成係数 T k (k=l,2,3,4) で重み付けられた直交成分の受信信号 Tk2 · sin e k (k=l, 2,3,4) を予め記憶している。 Tk及び 0 kはそれぞれ 8ビットからなるの で、 Q成分 R OM 3 2 1〜3 2 4は 2 8通りの Tk と 2 8通りの 0 k との全ての組 合せ、 すなわち、 2 16通りの前記演算結果を記憶している。 Q成分 R OM 3 2 1 〜 3 2 4は、 合成係数 Tk と位相加算部 3 1 3〜 3 1 6からの位相データ Θ k が それぞれ入力されると、 それらの組合せに該当する Tk2 · sin 0 kを出力する。
I成分加算器 3 2 5は、 I成分 R OM 3 1 7〜3 2 0から出力される重み付け られた同相成分の受信信号 Tk2 · cos Θ k (k=l, 2, 3, 4) を合成して同相成分の合 成受信信号を出力する。
Q成分加算器 3 2 6は、 Q成分 R OM 3 2 1〜3 2 4から出力される重み付け られた直交成分の受信信号 Tk2 · sin 6 k (k=l, 2, 3, 4) を合成して直交成分の合 成受信信号を出力する。
クロック再生部 3 2 8は、 シンボル区間抽出部 3 3 3及び P L L (Phase Locked Loop) 部 3 3 4から構成され、 この構成により I成分加算器 3 2 5及び Q成分加算器 3 2 6より出力される同相成分及び直交成分の合成信号に基づいて 判定部 3 2 7の判定タイミングの基準となるクロックを再生する。
より詳しくは、 シンボル区間抽出部 3 3 3は、 I成分加算器 3 2 5及び Q成分 加算器 3 2 6より出力される同相成分及び直交成分の合成受信信号を基にシンポ ル区間を抽出する。 シンボル区間抽出部 3 3 3は、 同相成分及び直交成分の合成 受信信号の 0クロス点を判定することによってシンボル区間を抽出する。
P L L部 3 3 4は、 シンボル区間抽出部 3 3 3により抽出されたシンボル区間 に基づいて判定部 3 2 7の判定タイミングの基準となるクロックを再生する。 このようにクロック再生部 3 2 8は、 同相成分及び直交成分の合成受信信号に 基づいて受信信号に同期したクロックを再生する自己同期 (self-timing) 方式に よってクロックを再生する。
判定部 3 2 7は、 クロック再生部 3 2 8からのクロックに同期して I成分加算 器 3 2 5及ぴ Q成分加算器 3 2 6から出力される同相成分及び直交成分の合成受 信信号についてそれぞれ正負判定することによって 2ビット 4値のデータを出力 する。
判定部 3 2 7において、 判定誤りを起こす原因として、 クロック再生部 3 2 8 より入力されるクロックのずれ (クロック位相誤差) がある。 判定部 3 2 7に入 力されるクロックがずれると、 判定部 3 2 7は、 理想的な判定タイミングからず れたタイミングで判定を行うこととなり、 判定誤りの確率が増大するのである。 よって判定誤りを防止するためにはクロック再生部 3 2 8においてクロック再 生の精度を高くすることが要求される。 クロック再生部 3 2 8によるクロック再 生の精度を高くするためには、 シンボル区間抽出部 3 3 3による合成受信信号に 忠実なシンボル区間の抽出が要求される。 シンボル区間抽出部 3 3 3によるシン ボル区間の抽出においては、 入力される同相成分及び直交成分の合成受信信号の ダイナミックレンジが大きいほど、 合成受信信号の 0クロス点の識別精度が高く なる。
この点に関し、 本発明のダイバーシチ受信装置は、 受信レベルの何れもが所定 のしきい値より低い場合に受信レベルを一律に増倍し、 その増倍された受信レべ ルを合成係数として用いるため、 合成の結果得られる同相成分及び直交成分の合 成受信信号のダイナミックレンジが損なわれることがない。
図 2は変換部 3 1 4のより詳細な構成を示すプロック図である。
変換部 3 1 4は、 判定部 2 0 2、 乗算器 2 0 3〜 2 0 6を備え、 図 3 ( a ) ( b ) の例に示すように受信レベル C k (k = l, 2, 3, 4) のいずれもがしきい値より も小さい場合には、 それらを一律に定数 Nによって N倍するよう構成されている 。 ここでしきい値は、 受信レベル C kのフルレンジ (C kの取り得る最大値) の 1 / 4 - 1 / 8程度が望ましレ、。 本実施形態のしきレ、値は受信レベル C kのフノレ レンジの 1ノ 4としている。 また、 定数 Nは、 1以上の値であって、 受信レベル C kに対してしきい値と反比例する関係であればよく、 本実施形態では 4として レ、る。 このようにしきい値と定数 Nとが反比例の関係を有するようにすることで 、 受信レベル C kの定数 N倍された値が受信レベル C kのフルレンジを越えない ようにしている。
判定部 202は、 4つの受信レベル C kが入力されると、 それらがしきい値よ り低いか否かを判定する。 その結果、 それらがいずれもしきい値より低い場合は 、 その旨を示す判定信号 207を出力する。
乗算器 203〜 206は、 判定部 202カゝら判定信号 207がそれぞれ入力さ れると、 Ck に定数 Nを乗算した値を合成係数 Tk として出力する。 すなわち、 Tk=Ck*N (k=l, 2, 3, 4) である。 乗算器 203〜206は、 判定部 202か ら判定信号 207がそれぞれ入力されなかった場合には、 受信レベル C kを合成 係数 Tkとして出力する。
図 4は、 判定部 202のより詳細な構成を示すプロック図である。
判定部 202は、 比較回路 40:!〜 404、 AND回路 405より構成される 比較回路 401〜404は、 しきい値と Ck (k=l,2,3,4) との大小をそれぞれ 比較し、 しきい値〉 Ck であるとき、 信号 Sk (k= 1,2,3,4) を AND回路 405 に出力する。
AND回路 405は、 信号 Sk (k= 1,2,3,4) 全てが入力されたとき、 すなわち 、 Ckがいずれもしきい値より小さいとき、 判定信号 207を出力する。
図 5は、 上記乗算器 203〜 206それぞれのより詳細な構成を示すブロック 図の一例である。
乗算器 203〜 206は、 セレクタ 501〜 508を備え、 入力される 8ビッ トの Ckの定数倍を実現するように構成される。
セレクタ 501〜 508はそれぞれ、 判定部 202からの判定信号 207の入 力がない場合は 8個の入力端子 Aに入力された信号を Xから出力し、 判定信号 2 07の入力がある場合は入力端子 Bに入力された信号を Xから出力する。 セレク タ 501〜508の入力 Aには、 Ck を表す 8ビット信号が並列に入力され、 5 01が上位ビット、 508が下位ビッ トである。 セレクタ 501〜506の入力 Bには、 C kを表す 8ビット信号各桁の 2ビット下位の信号が入力され、 セレク タ 507、 508には、 0が入力される。 これにより乗算器 203〜206は、 判定信号 207の入力がない場合 Tk=Ck を出力し、 判定信号 207の入力が ある場合に Tk=Ck* 4を出力する。
以上のように構成された本発明の第 1実施形態におけるダイバーシチ受信装置 についてその動作を説明する。
図 3 (a) は、 変換部 314に、 入力される受信レベル Ck (k=l, 2, 3, 4) の 値の一例をグラフで表している。 同図において、 縦軸は、 合成係数のフルレンジ を表し、 フルレンジの 1Z4の値をしきい値としている。 同図において受信レべ ル Ckは、 いずれもしきい値より小さレヽ。
変換部 314にこれら Ck が入力されると、 判定部 202では、 しきい値と受 信レベル Ckとの大小を比較する。 比較した結果、 受信レベル Ckはいずれもし きい値より小さいので、 その旨を示す判定信号 207を乗算器 203〜206に 出力する。
乗算器 203〜 206は、 判定部 202から判定信号 207が入力されると、 受信レベル Ckを上位桁に 2ビットシフトする。 こうして 4 (22) 倍された合 成係数 Tkが出力される。 図 3 (b) は、 変換部 314に図 3 (a) に示す受信 レベル Ckが入力された場合に変換部 314より出力される合成係数 Tkの値を 示すグラフである。
一方、 位相復調部 329〜332は、 受信信号が入力されると、 受信信号の振 幅成分を除外した位相成分を検出し、 この位相と、 遅延させた位相との位相差分 から位相データ 0 k (k=l, 2, 3, 4) を出力する。
I成分 ROM 31 7〜320及び Q成分 ROM 321〜 324は、 上記の合成 係数 Tkと位相データ Θ kとを入力されると Tk2 · cos 6 k及び Tk2 · sin 6 kを出 力する。
I成分加算器 325及び Q成分加算器 326は、 Tk2 · cos Θ k及び Tk2 · sin 6k を合成して、 結果の同相成分及び直交成分の合成受信信号をクロック再生部 328と判定部 327とに出力する。
ここにおレ、て同相成分及び直交成分の合成受信信号は Tk の値が小さいほどダ イナミックレンジが減少し、 クロック再生部 328におけるシンボル区間の抽出 に悪影響を与えるのであるが、 本装置においては、 Tkが変換部 314で増倍さ れているので Tk2 · cos Θ k及ぴ Tk2 · sine k のダイナミックレンジは損なわれ ることがなく、 よって悪影響を与えることがない。
判定部 327は、 クロック再生部 328によって精度高く再生されるクロック に基づいて同相成分及ぴ直交成分の合成受信信号の正負判定を行って、 結果を復 号データとして出力する。
(第 2実施形態)
本実施形態におけるダイバーシチ受信装置の概略構成は、 図 1と同様であるが 、 変換部 314の内部構成が異なっている。 異なる点は、 変換部 314が、 マイ クロプロセッサまたは D S P (Digital Signal Processor)により構成されている 点である。
図 6は、 本実施形態における変換部 314の処理内容を示すフローチャートで あ 。
変換部 3 14は、 入力される 4つの受信レベル C k (k= 1,2,3,4) のうち、 最も 値の大きい信号値をレジスタ Aに格納する (ステップ 601)。 変数 Nには、 初 期値 0を代入しておく (ステップ 602)。 次に、 レジスタ Aの値としきい値 ( ここではフルレンジの 1/2) との大小を比較して、 比較の結果レジスタ Aの値 がしきい値より大きい場合 (ステップ 603 : YE S), ステップ 606の処理 をして終了する。 比較の結果レジスタ Aの値がしきい値以下のときは (ステップ 603 : NO), まず、 変数 Nに 1増加した値を変数 Nに格納し (ステップ 60 4)、 次に、 レジスタ Aの値に 2をかけた値をレジスタ Aに格納し、 再びステツ プ 603の判定へ戻る。 このように、 レジスタ Aの値がしきい値を越えるまで、 ステップ 603〜 605の処理を繰り返す。 レジスタ Aの値がしきい値を越えた とき (ステップ 603 : YES)、 各受信レベルについて Ck* 2 N (k=l,2,3,4) を計算し、 その値を合成係数 Tk (k=l, 2, 3, 4) とする。
なお、 第 1、 2実施形態では、 受信レベル Ckは、 受信レベル (RSSI) 信号と しているが、 受信レベル信号の代わりに、 受信信号の確からしさを表すパラメ一 タ (乖離量) を使用してもよレ、。
図 7は、 QPSK における位相データのアイパターン (位相データを、 変調位相 ごとに同期をとつて重ね書きしたもの) を示している。 乖離量 L l、 L 2 とは、 各位相データにおける判定点の理想判定点に対する尤度をいい、 乖離量が大きい ほど理想的な信号、 即ち、 その受信信号に含まれる干渉波の割合が少ないことを 意味する。
以上のようにして本発明のダイバーシチ受信装置は、 変換部 3 1 4が受信レべ ル C kの値のレ、ずれもがしきい値より小さいと判定した場合に、 受信レベル C k の値を一律に増倍してその値を合成係数 T kとして出力する。 これにより I成分 R OM 3 1 7〜3 2 0、 Q成分 R OM 3 2 1〜 3 2 4、 I成分加算器 3 2 5、 Q 成分加算器 3 2 6を介して出力される同相成分及び直交成分の合成受信信号はダ ィナミックレンジが損なわれることなくクロック再生部 3 2 8に出力されること となる。 シンボル区間抽出部 3 3 3は、 ダイナミックレンジの拡大された同相成 分及び直交成分の合成受信信号に基づいて精度高くシンボル区間を抽出すること ができ、 P L L部 3 3 4はそのシンボル区間に基づいて精度の高い、 つまり元の 受信信号に精度高く同期したクロックを再生する。 その結果判定部 3 2 7は、 精 度高レ、クロックに基づレ、てより理想的な判定タイミングで判定を行うため判定誤 りの確率が低くなる。 産業上の利用可能性
本発明のダイバーシチ受信装置は、 受信レベルが低レ、場合にもクロック再生部 におけるク口ック再生のずれを防止することにより判定部における判定誤りを防 止するので、 フェージング現象等によって受信レベルの劣化が起こりやすい移動 体通信機に有用である。

Claims

請 求 の 範 囲
1 . 複数の受信系統毎の受信信号をそれぞれの振幅成分に応じた合成係数で重み 付けして合成し、 合成された受信信号を基にシンボル区間を抽出してシンボル判 定のためのクロックを再生するダイバーシチ受信装置において、
合成係数の全てが所定のしきい値より低いか否かを判定する判定手段と、 前記判定手段により低いと判定された場合に前記合成係数を一律に増倍する増 倍手段と、
前記増倍された合成係数を用レヽて受信信号を合成する合成手段と
を備えることを特徴とするダイバーシチ受信装置。
2 . 前記合成係数は、 受信系統毎に得られる受信電界強度と、 受信系統毎に得ら れる受信信号の確からしさを表すパラメータとの何れかである
ことを特徴とする請求の範囲第 1項に記載のダイバーシチ受信装置。
3 . 前記増倍手段は、
前記判定手段により前記合成係数の全てが前記しきい値より低いと判定された 場合に全ての合成係数に定数を乗算する
ことを特徴とする請求の範囲第 2項に記載のダイバーシチ受信装置。
4 . 前記しきい値と前記定数とは互いに反比例の関係にある
ことを特徴とする請求の範囲第 3項に記載のダイバーシチ受信装置。
5 . 前記合成係数は所定のビット数で表され、
nを 1以上であって所定のビット数を越えない整数とするとき、 前記しきい値 は前記所定ビット数で表される最大値の 2の n乗分の 1であり、 前記定数は 2の n乗である
ことを特徴とする請求の範囲第 4項に記載のダイバーシチ受信装置。
6 . 複数の受信系統毎の受信信号をそれぞれの振幅成分に応じた合成係数で重み 付けして合成し、 合成された受信信号を基にシンボル区間を抽出してシンボル判 定のためのクロックを再生するダイバーシチ受信装置において、
合成係数の全てが所定のしきい値より低いか否かを判定する判定手段と、 前記判定手段により低いと判定された場合に前記合成係数を一律に増倍する増 倍手段と、
前記増倍された合成係数を用いて受信信号を合成する合成手段と、
前記合成手段により合成された受信信号を用いて受信信号に同期したクロック を再生する再生手段と
を備えることを特徴とするダイバーシチ受信装置。
7 . 前記合成係数は、 受信系統毎に得られる受信電界強度と、 受信系統毎に得ら れる受信信号の確からしさを表すパラメータとの何れかである
ことを特徴とする請求の範囲第 6項に記載のダイバーシチ受信装置。
8 . 前記増倍手段は、
前記判定手段により前記合成係数の全てが前記しきい値より低いと判定された 場合に全ての合成係数に定数を乗算する
ことを特徴とする請求の範囲第 7項に記載のダイバーシチ受信装置。
9 . 前記しきい値と前記定数とは互いに反比例の関係にある
ことを特徴とする請求の範囲第 8項に記載のダイバーシチ受信装置。
1 0 . 前記合成係数は所定のビット数で表され、
nを 1以上であって所定のビット数を越えない整数とするとき、 前記しきい値 は前記所定ビット数で表される最大値の 2の n乗分の 1であり、 前記定数は 2の n乗である
ことを特徴とする請求の範囲第 9項に記載のダイバーシチ受信装置。
1 1 . 複数の受信系統毎の受信信号をそれぞれの振幅成分に応じた合成係数で重 み付けして合成し、 合成された受信信号を基にシンボル判定のためのクロックを 再生するダイバーシチ受信装置において、
合成係数の全てが所定のしきい値より低いか否かを判定する判定手段と、 前記判定手段により低いと判定された場合に前記合成係数を 2倍にする増倍手 段と、
前記合成係数全てが前記所定のしきい値より低いと判定されなくなるまで、 判 定手段と乗算手段とを繰り返し動作させる制御手段と、
前記判定手段により低くないと判定された時点における合成係数を用いて受信 信号を合成する合成手段と、
前記合成手段により合成された受信信号を用いて受信信号に同期したクロック を再生する再生手段と
を備えることを特徴とするダイバーシチ受信装置。
1 2 . 前記合成係数は、 受信系統毎に得られる受信電界強度と、 受信系統毎に得 られる受信信号の確からしさを表すパラメータとの何れかである
ことを特徴とする請求の範囲第 1 1に記載のダイバ一シチ受信装置。
1 3 . 複数の受信系統毎の受信信号をそれぞれの振幅成分に応じた合成係数で重 み付けをして合成するダイバーシチ受信装置に用いるクロック再生回路であって 、
前記合成係数の全てが所定のしきい値より低レ、か否かを判定する判定手段と、 前記判定手段により低いと判定された場合に前記合成係数を増倍する増倍手段 と、
前記増倍された合成係数を用いて受信信号を合成する合成手段と、
前記合成手段により合成された受信信号を用いて受信信号に同期したクロック を再生する再生手段と
を備えることを特徴とするクロック再生回路。
PCT/JP1998/005941 1998-12-25 1998-12-25 Recepteur diversite sans erreur de decodage et circuit de regeneration d'horloge de recepteur diversite WO2000039976A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP1998/005941 WO2000039976A1 (fr) 1998-12-25 1998-12-25 Recepteur diversite sans erreur de decodage et circuit de regeneration d'horloge de recepteur diversite
EP98961585A EP1143676B1 (en) 1998-12-25 1998-12-25 Diversity receiver free from decoding error, and clock regeneration circuit for diversity receiver
DE69830428T DE69830428T2 (de) 1998-12-25 1998-12-25 Dekodierungsfehlerfreier diversitätsempfänger, sowie schaltung zur talzurückgewinnung für diversitätsempfänger
US09/857,184 US6901124B1 (en) 1998-12-25 1998-12-25 Diversity receiving apparatus that prevents judgement errors during decoding and a clock generating circuit for a diversity circuit that prevents judgement errors during decoding
AU16902/99A AU776028B2 (en) 1998-12-25 1998-12-25 Diversity receiver free from decoding error, and clock regeneration circuit for diversity receiver
CNB98814400XA CN1154315C (zh) 1998-12-25 1998-12-25 分集接收装置和用于分集接收装置中的时钟发生电路
HK02102247.5A HK1040857A1 (zh) 1998-12-25 2002-03-25 防止解碼誤判的分集接收裝置和用於防止解碼誤判的分集接收裝置中的時鐘發生電路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/005941 WO2000039976A1 (fr) 1998-12-25 1998-12-25 Recepteur diversite sans erreur de decodage et circuit de regeneration d'horloge de recepteur diversite

Publications (1)

Publication Number Publication Date
WO2000039976A1 true WO2000039976A1 (fr) 2000-07-06

Family

ID=14209725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005941 WO2000039976A1 (fr) 1998-12-25 1998-12-25 Recepteur diversite sans erreur de decodage et circuit de regeneration d'horloge de recepteur diversite

Country Status (7)

Country Link
US (1) US6901124B1 (ja)
EP (1) EP1143676B1 (ja)
CN (1) CN1154315C (ja)
AU (1) AU776028B2 (ja)
DE (1) DE69830428T2 (ja)
HK (1) HK1040857A1 (ja)
WO (1) WO2000039976A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038733B2 (en) * 2002-01-30 2006-05-02 Ericsson Inc. Television receivers and methods for processing signal sample streams synchronously with line/frame patterns
JP5356060B2 (ja) * 2009-02-13 2013-12-04 シャープ株式会社 受信装置、通信システム、受信方法及び通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177806A (ja) * 1992-12-04 1994-06-24 Kokusai Electric Co Ltd 電力和一定自動利得制御回路
JPH07307724A (ja) * 1994-05-16 1995-11-21 Sanyo Electric Co Ltd ダイバーシチ装置
JPH0897804A (ja) * 1994-09-27 1996-04-12 Sanyo Electric Co Ltd ダイバーシチ装置
JPH09214410A (ja) * 1996-01-31 1997-08-15 Mitsubishi Electric Corp ダイバーシチ受信機
JPH1132001A (ja) * 1997-07-08 1999-02-02 Sanyo Electric Co Ltd ダイバーシチ受信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY113061A (en) * 1994-05-16 2001-11-30 Sanyo Electric Co Diversity reception device
DE69636472T2 (de) * 1995-11-29 2007-02-01 Ntt Docomo, Inc. Diversity-empfänger und zugehöriges steuerverfahren
JPH1028108A (ja) * 1996-07-11 1998-01-27 Nec Corp 合成ダイバーシティ受信方式
US6577686B1 (en) * 1998-10-13 2003-06-10 Matsushita Electric Industrial Co., Ltd. Receiver
US6289062B1 (en) * 1998-12-11 2001-09-11 Nortel Networks Limited Method and apparatus for high rate data communication utilizing an adaptive antenna array

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177806A (ja) * 1992-12-04 1994-06-24 Kokusai Electric Co Ltd 電力和一定自動利得制御回路
JPH07307724A (ja) * 1994-05-16 1995-11-21 Sanyo Electric Co Ltd ダイバーシチ装置
JPH0897804A (ja) * 1994-09-27 1996-04-12 Sanyo Electric Co Ltd ダイバーシチ装置
JPH09214410A (ja) * 1996-01-31 1997-08-15 Mitsubishi Electric Corp ダイバーシチ受信機
JPH1132001A (ja) * 1997-07-08 1999-02-02 Sanyo Electric Co Ltd ダイバーシチ受信装置

Also Published As

Publication number Publication date
AU1690299A (en) 2000-07-31
EP1143676B1 (en) 2005-06-01
EP1143676A1 (en) 2001-10-10
CN1337113A (zh) 2002-02-20
EP1143676A4 (en) 2003-05-28
DE69830428D1 (de) 2005-07-07
AU776028B2 (en) 2004-08-26
US6901124B1 (en) 2005-05-31
CN1154315C (zh) 2004-06-16
DE69830428T2 (de) 2006-01-26
HK1040857A1 (zh) 2002-06-21

Similar Documents

Publication Publication Date Title
CA2149364C (en) Diversity reception device
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
EP0738064B1 (en) Modulator and method of modulation and demodulation
JPH033524A (ja) ダイバシティ無線システム
JPH10308717A (ja) 受信装置および受信方法
US6175591B1 (en) Radio receiving apparatus
EP0235300B1 (en) Radio data transmission system
JPH0621992A (ja) 復調器
JP3252820B2 (ja) 復調及び変調回路並びに復調及び変調方法
WO2000039976A1 (fr) Recepteur diversite sans erreur de decodage et circuit de regeneration d'horloge de recepteur diversite
US6381288B1 (en) Method and apparatus for recovering data from a differential phase shift keyed signal
AU731683B2 (en) Diversity apparatus with improved ability of reproducing carrier wave in synchronous detection
JPH06311195A (ja) Apsk変調信号復調装置
JP3182376B2 (ja) ダイバーシチ受信装置
JP2000188580A (ja) Ofdm受信装置
JP3088892B2 (ja) データ受信装置
JPH06232939A (ja) フレーム同期回路
JP3738997B2 (ja) 通信方法
JPH06311192A (ja) ディジタル復調器
JP3387407B2 (ja) デジタル変調復調方法およびデジタル通信装置
JP3633715B2 (ja) デジタル無線伝送方式
JP3311910B2 (ja) 位相比較器及び復調器並びに通信装置
JPH0748677B2 (ja) 等化器
JPH09214461A (ja) ディジタル多重無線の交差偏波伝送受信機
JPH10290265A (ja) 無線受信機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98814400.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN ID IN SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 16902/99

Country of ref document: AU

Ref document number: 1998961585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09857184

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998961585

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 16902/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998961585

Country of ref document: EP