WO2000039288A1 - Polypeptides - Google Patents

Polypeptides Download PDF

Info

Publication number
WO2000039288A1
WO2000039288A1 PCT/JP1999/007009 JP9907009W WO0039288A1 WO 2000039288 A1 WO2000039288 A1 WO 2000039288A1 JP 9907009 W JP9907009 W JP 9907009W WO 0039288 A1 WO0039288 A1 WO 0039288A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
activity
nucleic acid
present
amino acid
Prior art date
Application number
PCT/JP1999/007009
Other languages
English (en)
French (fr)
Inventor
Masanori Takayama
Kahoko Umeda
Nobuto Koyama
Kiyozo Asada
Ikunoshin Kato
Original Assignee
Takara Shuzo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co., Ltd. filed Critical Takara Shuzo Co., Ltd.
Priority to JP2000591180A priority Critical patent/JP4199422B2/ja
Priority to AU16856/00A priority patent/AU1685600A/en
Priority to US09/869,197 priority patent/US6566113B1/en
Priority to EP99959804A priority patent/EP1142992A4/en
Publication of WO2000039288A1 publication Critical patent/WO2000039288A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01091Cellulose 1,4-beta-cellobiosidase (3.2.1.91)

Definitions

  • the present invention relates to polypeptides, and more particularly, to polypeptides having cellulolytic activity useful for effective utilization of biomass.
  • the present invention also relates to a gene useful for the genetic engineering production of the polypeptide.
  • Cellulose is also called fibrin and is represented by (C 6 H 10 O 5 ) n .
  • Materials containing cellulose as a main component include, for example, wood such as pine, cedar, beech, and poplar; stems such as hemp, mitsumata, rice straw, bagasse, and peach; gin skins; seed hair such as cotton; Used paper such as magazines and cardboard waste paper; other fibrous waste; pulp, senorello powder, etc.
  • waste paper from offices has been increasing.
  • Cellulose molecules have a structure in which D-dalcovirose is linked by i3_1,4 bonds, and there are no side chains.
  • cellulose is composed of glucose, which is a raw material for alcohol fermentation.If cellulose can be decomposed into glucose, it is possible to produce useful alcohol from waste paper and fibrous waste as fuel. Become.
  • Hydrolysis to glucose by the acid method or the enzymatic method has been performed as a method of decomposing (saccharifying) cellulose.
  • the acid method cellulose is contacted with hydrochloric acid or sulfuric acid to strongly decompose the fiber mass.However, it is difficult to set hydrolysis conditions, and the generated glucose reacts more strongly under strong acidity. There were problems such as difficulty in recovering glucose in high yield. Therefore, the acid method is hardly used at present.
  • the enzymatic method using cellulose hydrolase has a high reaction selectivity and is advantageous in terms of environmental protection, so it has become the mainstream hydrolytic method, and various methods have been reported. [Wood, BE, et al., Nokio Technology 'Progress (Biotechnology Progress), Vol. 13, pp. 223-237 (1997); U.S. Pat. No. 5,508,183; Zhao Xin, et al., Enzyme and Enzyme Microbial. Technology), Vol. 15, pp. 62-65 (1993), etc.].
  • cellulose hydrolase examples include, for example, endodalcanase (EC 3.2.2.
  • endoglucanase is cellulase
  • strain name is 1,4-one (1,3,1,4) -D-glucan 3 (4) -glucanohydrolase.
  • Cellulose usually rarely exists as a single cellulose chain, but forms a structure in which a large number of cellulose chains are aggregated by hydrogen bonds, and a crystalline region in which a large number of cellulose chains are densely packed. And a sparse amorphous region.
  • the rate-limiting step of the enzymatic hydrolysis reaction is in the step of separating and dispersing a large number of cellulose chains in the crystal region. Therefore, if the reaction is performed at a high temperature when decomposing with an enzyme,
  • Pyrococcus 'Fryosa' is a cellulose hydrolase derived from highly thermophilic bacteria. [Pyrococcus furiosus]] S—D—Gnorecocita
  • the mouth piohydrolase has been isolated from the thermophilic bacterium Thermotoga sp. F j SS— B. 1 strain [Ruttersmith, et al., Biochemical 'Journal (Biochemical Journal), Vol. 277, pp. 887-890, 1991] Inhibition constant of the enzyme by cellobiose
  • An object of the present invention is to provide a cellobiohydrolase having a high inhibition constant due to cellobiose and having thermostability, and a means for producing the cellobiohydrolase at low cost.
  • the present inventors have conducted intensive studies and found that there is an open reading frame (PH111) encoding a polypeptide having a mouth piohydrolase activity in the Pyrococcus horikosis III genome. .
  • the polypeptide represented by the amino acid sequence encoded by the open reading frame is Archaea A
  • amino acid sequence represented by SEQ ID NO: 1 in the sequence listing or an amino acid sequence having at least one of deletion, addition, insertion or substitution of one or more amino acid residues in the sequence, and A polypeptide exhibiting cellobiohydrolase activity,
  • nucleic acid that is hybridizable to the nucleic acid according to (3) under stringent conditions and encodes a polypeptide that exhibits cellohydrohydrolase activity
  • thermostable mouth piohydrolase activity (5) the nucleic acid described
  • (11) a polypeptide exhibiting cellobiohydrolase activity, wherein the polypeptide has an inhibition constant Ki of 1 OmM or more by mouth bioose,
  • FIG. 1 is a diagram showing the relationship between the CMC degradation activity of the polypeptide of the present invention and the reaction pH.
  • FIG. 2 is a diagram showing the relationship between the CMC degradation activity of the polypeptide of the present invention and the reaction temperature.
  • FIG. 3 is a graph showing the effect of the NaC1 concentration in the reaction solution on the CMC degrading activity of the polypeptide of the present invention.
  • FIG. 4 is a graph showing the relationship between the treatment pH and the CMC degrading activity of the polypeptide of the present invention when the polypeptide of the present invention is heated at 95 ° C. for 10 minutes.
  • FIG. 5 is a graph showing the relationship between the treatment time and the CMC degradation activity of the polypeptide of the present invention when the polypeptide of the present invention is heated at 95 ° C.
  • FIG. 6 is a graph showing the relationship between the pNPC degradation activity of the polypeptide of the present invention and the amount of the polypeptide of the present invention.
  • Figure 7 Various reagents affect the pNPC degradation activity of the polypeptide of the present invention. It is a figure which shows the influence which it blurs. Detailed description of the invention
  • the polypeptide of the present invention is an amino acid sequence represented by SEQ ID NO: 1 in the sequence listing, or an amino acid sequence having at least one of deletion, addition, insertion, or substitution of one or more amino acid residues in the amino acid sequence. And a cellohydrolase activity.
  • the cellobiohydrolase activity in the present invention refers to the hydrolysis of a darcoside bond of a polysaccharide or oligosaccharide composed of D-glucose linked by ⁇ -1,4 bonds,
  • Glucose releases cellobiose, a disaccharide in which 1,4 bonds are linked, but the darcoside bond of mouth bioose does not hydrolyse, meaning its activity.
  • a method for measuring the cellulase piohydrolase activity for example, a known method such as performing an enzyme reaction using phosphate-swollen cellulose as a substrate and confirming the presence of cellobiose in the reaction product by thin-layer silica gel chromatography is used. Method.
  • polypeptide of the present invention has cellobiohydrolase activity, and may have other glycosidase activities, for example, an endalcanase activity and a ⁇ - ⁇ -glucosidase activity.
  • polypeptides of the invention are characterized by having a thermostable cellohydrolase activity.
  • heat resistance refers to irreversible denaturation (inactivation) when subjected to the time required to degrade cellulose under high temperature conditions in an industrial process for producing alcohol from biomass. It means that the enzyme activity is not performed. Irreversible denaturation, as used herein, refers to permanent and complete loss of enzyme activity.
  • the heat-resistant cellulase biohydrolase activity is referred to as heat-resistant cellulase biohydrolase activity.
  • the polypeptide represented by the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing is treated at 75 ° C for 20 minutes, at 95 ° C for 10 minutes, and Maintains a cellohydrohydrolase activity of 80% or more even after treatment at 95 ° C for 5 hours.
  • the plastic The peptide shows cellobiotide enzyme activity even at a high temperature of 90 ° C or more, and even 100 ° C or more.
  • the polypeptide of the present invention having a thermostable cellohydrolase activity is preferably treated at 95 ° C. for 5 hours, preferably at least 20%, more preferably at least 40%, most preferably at least 80%. Has 0% or more piohydrase activity.
  • the polypeptide represented by the amino acid sequence of SEQ ID NO: 1 in the sequence listing which is an example of the polypeptide of the present invention, has, for example, an activity of producing cellobiose from phosphate-swollen cellulose-cellooligosaccharide.
  • the optimum pH of the heat-resistant lipase activity of the mouth is 5 to 6.5.
  • the polypeptide exhibits a thermostable cellobiohydrolase activity in the range of 65 ° C to 113 ° C, and the optimal temperature is about 110 ° C.
  • the polypeptide exhibits high thermostability, retains about 90% activity after heating at pH 6, 95 ° C for 5 hours in the absence of a substrate, and further heats for 24 hours. About 80% or more of the activity remains.
  • the activity When heated at 95 ° C for 10 minutes in the absence of substrate, the activity was not reduced in the pH range of 5-7.
  • the polypeptide was purified, and the activity of cellohydrolase was measured using 4-methylinoverbelliferyl-1- ⁇ -D-cellobioside as a substrate. The activity was measured at 98 ° C. and pH 6.0 for 20 minutes. When the reaction is carried out, the specific activity is 17. 0 UZmg.
  • the polypeptide can also act on carboxymethylcellulose (CMC) cellooligosaccharide.
  • CMC carboxymethylcellulose
  • the cellobiohydrolase activity of the polypeptide can also be measured using the amount of sugar-reducing terminal generated using CMC or cellooligosaccharide as an index.
  • the polypeptide also acts on a chromogenic substrate such as p-ditrophenyl-1] 3-D-cellopioside and a fluorescent substrate such as 4-methylmethylbenzylidyl-J3-D-cellobioside, so that the chromogenic substance produced by the reaction
  • the mouth biohydrolase activity of the polypeptide can be easily measured by measuring the amount of the fluorescent substance.
  • the polypeptide exhibits a thermostable oral biohydrolase activity of 0.5 to: 1.
  • the maximum activity is exhibited in the presence of OMNaCl.
  • the activity in the absence of NaC1 was about 80% of the activity in the presence of 0.5 MNaC1, and the activity in the presence of 2.5 MNaC1 was 0.5 MNaC1.
  • About 60% of the activity of NaC1 The effect on thermostable piohydrolase activity is small.
  • the cellobiohydrolase activity of the polypeptide of the present invention is not susceptible to inhibition of the activity by the reaction product cellobiose or glucose.
  • the inhibition constant Ki of such polypeptides by cellobiose is preferably 10 mM or more, more preferably 3 OmM or more, and most preferably 10 OmM or more.
  • the inhibitory constant Ki for cellobiose of the polypeptide of the present invention represented by the amino acid sequence of SEQ ID NO: 1 in the sequence listing is 212 mM.
  • a polypeptide having such a high level of inhibition constant due to oral biose was not known before the present invention. Also, there is almost no activity inhibition by glucose. Hand, with respect to various reagents in the absence of activity, each 0.
  • polypeptide of the present invention may have one or more amino acid residues deleted, added, inserted or inserted in the amino acid sequence described in SEQ ID NO: 1 in the sequence listing as long as the polypeptide exhibits the mouth biohydrolase activity.
  • naturally occurring proteins include polymorphisms and mutations in the DNA encoding them, as well as deletions of amino acids in their amino acid sequences due to modification reactions in vivo and during purification of the resulting proteins. Mutations such as insertion, addition, and substitution can occur. However, when such a mutation is present in a portion that is not important with respect to the activity or retention of the structure of the protein, a protein having substantially the same physiological or biological activity as the protein having no mutation is required. It is known that there is.
  • Such a protein is a protein that exists in a different form in its primary structure and ultimately expresses the same function.
  • the amino acid sequence described in SEQ ID NO: 1 in the sequence listing is a sequence obtained by removing the N-terminal 28 amino acid residue signal peptide region from the amino acid sequence described in SEQ ID NO: 5 in the sequence listing.
  • a peptide chain irrelevant to the activity of the protein may be added to the amino or carboxyl terminal of the target protein.
  • a fusion protein in which a part of the amino terminal region of a protein highly expressed in a host used is added to the amino terminal of the target protein may be produced. is there.
  • a peptide having an affinity for a specific substance has been added to the amino or carboxyl terminus of a target protein.
  • These added peptides may remain added as long as they do not adversely affect the activity of the target protein, and if necessary, may be subjected to an appropriate treatment, for example, limited digestion with a protease. It may also be possible to remove it from the protein.
  • polypeptide represented by the amino acid sequence in which one or more amino acid residues have been deleted, inserted, added, or substituted in the amino acid sequence disclosed in the present invention are also within the scope of the present invention as long as they have cellobiohydrolase activity.
  • polypeptides Preferably, such polypeptides have thermostable piohydrolase activity and have a high cellobiose inhibition constant.
  • the polypeptide of the present invention includes, for example, (1) purification from a culture of a microorganism producing the polypeptide of the present invention, and (2) culture of a transformant containing a nucleic acid encoding the polypeptide of the present invention. Can be produced by a method such as purification from
  • Microorganisms that produce the polypeptide of the present invention include, for example, Pyrococcus horikoshii OT3 (JCM9974), which can be purchased from RIKEN.
  • the culture of the microorganism may be performed under conditions suitable for the growth of the microorganism, and preferably, culture conditions that increase the expression level of the target polypeptide are used.
  • the target polypeptide produced in the culture broth can be purified by a method usually used for protein purification.
  • a method usually used for culturing hyperthermophilic bacteria can be used, and the nutrient added to the medium may be any as long as the strain can be used.
  • the carbon source for example, starch and the like can be used, and as the nitrogen source, for example, tryptone, peptone, yeast extract, and the like can be used.
  • Metal salts such as magnesium salts, sodium salts and iron salts may be added to the medium as trace elements.
  • the medium is desirably a transparent medium containing no solid sulfur. With the use of the medium, the growth of cells can be easily monitored by measuring the turbidity of the culture solution.
  • the culture can be performed by static culture or stirring culture.
  • static culture for example, Applied and 'Environmental' microbiology, Vol. 55, Vol.
  • a dialysis culture method may be used, as described on pages 86-208 (1992).
  • the culture temperature is preferably around 95 ° C., and usually about 16 hours, a significant amount of polypeptide accumulates in the culture.
  • the culturing conditions are preferably set so that the production amount of the polypeptide is maximized according to the cells used and the composition of the medium.
  • a cell-free extract is prepared.
  • a cell-free extract can be prepared, for example, by collecting cells from the culture by centrifugation, filtration, and the like, and then disrupting the cells.
  • a method for disrupting the cells a method that has a high effect of extracting the target enzyme can be selected from ultrasonic crushing, bead crushing, lytic enzyme treatment, and surfactant treatment.
  • the polypeptide is secreted into the culture solution
  • the polypeptide is concentrated by ammonium sulfate salting out method, ultrafiltration method or the like, and this is used as a cell-free extract.
  • a method generally used for protein purification can be used. For example, a combination of ammonium sulfate precipitation, ion exchange chromatography, hydrophobic chromatography, gel filtration chromatography and the like can be used.
  • SEQ ID NO: 2 in the sequence listing is an example of the nucleotide sequence of the nucleic acid encoding the polypeptide of the present invention.
  • SEQ ID NO: 1 is the amino acid sequence of the polypeptide of the present invention deduced from the nucleotide sequence shown in SEQ ID NO: 2. That is, SEQ ID NO: 1 in the sequence listing is an example of the amino acid sequence of the polypeptide obtained by the present invention.
  • the host to be transformed is not particularly limited, and includes, for example, Escherichia coli, Bacillus subtilis, yeast, and filamentous fungi.
  • the polypeptide of the present invention is obtained from Escherichia coli BL21 (DE3) carrying pECEL211, which is a plasmid in which DNA represented by SEQ ID NO: 6 in the sequence listing is ligated downstream of the T7 promoter.
  • SEQ ID NO: 5 is the amino acid sequence of the polypeptide of the present invention deduced from the nucleotide sequence of SEQ ID NO: 6.
  • Escherichia coli JM109 transformed with pDCEL 211 was named and displayed as Escherichia coli JM109 / p ECEL 211, and since December 11, 1998, 1-3 1-3 Higashi, Tsukuba, Ibaraki, Japan Deposited at the Ministry of International Trade and Industry at the National Institute of Biotechnology, Japan, under the accession number FE RM P-17075, and from January 15, 2001, internationally based on the Budapest Treaty as FERM BP-6939. Transferred to deposit.
  • E. coli BL21 (DE3) carrying pECELL21 1 was cultured under normal culture conditions, for example, LB medium containing 10 ⁇ g / ml of ampicillin (tryptone 10 g / liter, yeast extract 5 gZ After culturing at 37 ° C in a little, NaCl 5 gZ little, pH 7.2) at 37 ° C until the logarithmic growth phase, add isopropyl ⁇ -D-thiogalactopyranoside to obtain 0. By further culturing at 15 ° C, the polypeptide can be expressed in the cultured cells.
  • ampicillin tryptone 10 g / liter, yeast extract 5 gZ
  • the cells collected by centrifugation are disrupted by ultrasonication, and further centrifuged, and the supernatant can be used as a cell-free extract.
  • the cell-free extract can be used for enzyme reaction.
  • the polypeptide of the present invention can be purified from the cell-free extract by using known methods such as ion exchange chromatography, gel filtration, water-phobic chromatography, and ammonium sulfate precipitation. Partially purified products can of course be used for enzymatic reactions. Since the polypeptide of the present invention expressed in Escherichia coli BL21 (DE3) carrying pECELL211 has high heat resistance, it can be used as a purification means for culture cells and Z or cell-free extraction.
  • the liquid may be heat-treated at, for example, 95 ° C for 10 minutes.
  • the polypeptide of the present invention can be obtained, for example, by using Bacillus subtilis DB104 carrying pNCEL101, which is a plasmid in which DNA represented by SEQ ID NO: 2 in the sequence listing is linked downstream of the subtilisin promoter.
  • Bacillus subtilis DB104 carrying pNCEL101 which is a plasmid in which DNA represented by SEQ ID NO: 2 in the sequence listing is linked downstream of the subtilisin promoter.
  • the present invention is obtained by culturing Bacillus subtilis DB104 retaining pNCEL101 under normal culture conditions, for example, at 37 ° C in an LB medium containing 10 ⁇ g / ml kanamycin, in a culture solution. Can be accumulated.
  • the polypeptide of the present invention in the culture solution can be purified by a known method as in the case of using Escherichia coli as a host.
  • the polypeptide of the present invention is expressed at room temperature, for example, at 37 ° C. by using a nucleic acid encoding the polypeptide, the obtained expression product exhibits its activity and heat resistance. It retains sex. That is, the polypeptide of the present invention can form its own higher-order structure even when it is expressed at a temperature far from the temperature at which the original producing bacteria grow.
  • the nucleic acid of the present invention is a nucleic acid that encodes the polypeptide of the present invention as described above. Specifically, the nucleic acid of the present invention has an amino acid sequence described in SEQ ID NO: 1 in the sequence listing, or one or more amino acid residues in the sequence.
  • a nucleic acid encoding a polypeptide which is represented by an amino acid sequence in which at least one of group deletion, addition, insertion or substitution has been made, and which has a biosynthetic hydrolase activity (1);
  • the nucleic acid (2) represented by the nucleotide sequence of No. 2 and the nucleic acid (1) or (2) above are stringent under stringent conditions. Nucleic acids (3) that can be hybridized and encode polypeptides that exhibit mouth piohydrolase activity.
  • nucleic acid means single-stranded or double-stranded DNA or RNA.
  • nucleic acid (2) is RNA, it is represented by a nucleotide sequence in which T is replaced with U in the nucleotide sequence of SEQ ID NO: 2 in the sequence listing.
  • the nucleic acid of the present invention can be obtained, for example, as follows.
  • nucleic acid (2) represented by the nucleotide sequence described in SEQ ID NO: 2 in the sequence listing was simply obtained from Pyrococcus ⁇ horikoshii OT3 (JCM9974: RIKEN). Can be released.
  • nucleic acid encoding a polypeptide having cellohydrolase activity similar to that of the polypeptide of the present invention based on the nucleotide sequence of the nucleic acid encoding the polypeptide provided by the present invention.
  • DNA encoding a polypeptide having the following can be screened. By such a method, the nucleic acid (1) or (3) can be obtained.
  • a nucleic acid fragment containing only a part of the target nucleic acid may be obtained.
  • the base sequence of the obtained nucleic acid fragment is examined and it is a part of the target nucleic acid.
  • the nucleic acid fragment or a part thereof is used as a probe to perform hybridization, or PCR is performed using a primer synthesized based on the nucleotide sequence of the nucleic acid fragment, thereby obtaining the entire nucleic acid of interest.
  • hybridizing under stringent conditions means, for example, that hybridization is possible under the following conditions. That is, 0.5% SDS, 0.1% serum albumin (BSA), 0.1% polyvinylpyrrolidone, 0.1% Ficoll 400, 0.01% denatured salmon sperm nucleic acid 6 XS SC (1 XS SC is 0.15M NaCl, 0.015M sodium citrate Incubate with the probe in thorium, pH 7.0) at 50 ° C for 12-20 hours.
  • BSA serum albumin
  • polyvinylpyrrolidone 0.1% Ficoll 400
  • denatured salmon sperm nucleic acid 6 XS SC (1 XS SC is 0.15M NaCl, 0.015M sodium citrate Incubate with the probe in thorium, pH 7.0) at 50 ° C for 12-20 hours.
  • a recombinant DNA containing the nucleic acid of the present invention is prepared by incorporating the nucleic acid into an appropriate expression vector or the like, and then a transformant containing the recombinant DNA is prepared. It is also possible to industrially produce the above polypeptide.
  • nucleotide sequence is not the same as the nucleotide sequence disclosed in the present specification, such a nucleotide sequence is included in the scope of the present invention as long as it encodes a polypeptide showing cellohydrohydrase activity. It is as described above.
  • nucleic acids are never stable in nature, and mutations in their nucleotide sequences are not uncommon. In some cases, a mutation occurring on a nucleic acid does not change the amino acid sequence encoded therein (called a silent mutation). In this case, it can be said that different nucleic acids encoding the same amino acid sequence have been generated.
  • nucleic acid encoding a specific amino acid sequence is isolated, it is undeniable that many types of nucleic acids encoding the same amino acid sequence will be produced as the organism containing the nucleic acid is passaged. . Furthermore, it is not difficult to artificially produce various types of nucleic acids encoding the same amino acid sequence by using various genetic engineering techniques.
  • the expression level of the protein may be low.
  • high expression of the target protein can be achieved by artificially converting codons into those commonly used in the host without changing the encoded amino acid sequence.
  • Japanese Patent Publication No. 7-1102146 Japanese Patent Publication No. 7-1102146
  • cellobiose can be released from a polymer of D-dalcoviranose via a 3-1-4 bond.
  • the polymer of D-dalcoviranose via ⁇ -1,4 bond is not particularly limited in the degree of polymerization of glucose, and includes cellotriose and cellulose.
  • the polypeptide of the present invention represented by SEQ ID NO: 1 in the sequence list has high heat resistance, and has a synergistic effect with the structural change of the substrate due to heat, and can degrade cellulose more efficiently.
  • reaction conditions include, for example, when a polypeptide represented by the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing is used, the substrate is dissolved in a 50 mM MES-NaOH (pH 6.0) buffer solution. And celloose can be liberated by reacting at 98 ° C.
  • the polypeptide of the present invention may be added to the substrate suspension in a free state. However, when the polypeptide is immobilized on a suitable carrier and reacted with the substrate, the polypeptide can be easily recovered after the reaction.
  • a PCR reaction was performed using oligonucleotides 171FN and 1171RA as a pair of primers and the above-mentioned genomic DNA as type III.
  • the PCR reaction was performed at 94 ° C for 0.5 minutes, at 50 ° C for 2 minutes, according to the protocol attached to Takara EX Tuck (Takara Shuzo).
  • the reaction was performed at 94 ° C for 1.5 cycles for 25 cycles.
  • the PCR reaction product was subjected to agarose gel electrophoresis, and an amplified DNA fragment of about 1.6 kb was extracted and purified.
  • the DNA was a DNA containing the open reading frame PH1171.
  • the amplified DNA fragment of about 1.6 kb obtained in (1) above is digested with restriction enzymes StuI and AvaI (both from Takara Shuzo) and blunted with T4 DNA polymerase (Takara Shuzo). After terminating, the fragment was subjected to agarose gel electrophoresis, and a DNA fragment of about 1.5 kb was extracted and purified.
  • pET21a [Novagen] was digested with the restriction enzyme BamHI (Takara Shuzo), dephosphorylated with alkaline phosphatase (Takara Shuzo), and then treated with T4 DNA polymerase. To make the ends blunt.
  • the above two kinds of blunt-ended DNA fragments were ligated with DNA ligase (Takara Shuzo), and Escherichia coli JM109 was transformed. Several transformants were selected, and the plasmid DNA retained in each transformant was purified. A restriction enzyme map of the obtained plasmid DNA was prepared, and a plasmid DNA in which the open reading frame PH1171 was inserted in the same direction as the T7 promoter on the vector was selected. The plasmid DNA was named pECEL101.
  • the amplified DNA fragment of about 1.6 kb obtained in (1) was digested with AvaI, the ends were blunted using T4 DNA polymerase, and the first codon of PHI171 was changed to p. It was digested with the restriction enzyme NcoI (Takara Shuzo) so as to be operably located downstream of the T7 promoter of ET21d.
  • NcoI Takara Shuzo
  • pET21d was digested with BamHI and blunt-ended with T4 DNA polymerase. After further digestion with Ncol, the cells were dephosphorylated with alkaline phosphatase.
  • E. coli JM109 was transformed. Several transformants were selected and cultured, and the plasmid DNA retained in each transformant was purified. Restriction enzyme map of the obtained plasmid DNA The plasmid DNA prepared and inserted with PHI171 was selected. The plasmid DNA was named pECL211. Escherichia coli JM109 carrying pECEL211 was named Escherichai coli JM109 / p ECEL211 and was deposited with the National Institute of Advanced Industrial Science and Technology under the deposit number F ERM BP—6939. Has been deposited.
  • Example 2 Example 2
  • IPTG isopropyl-1] 3-D-thiogalactovyranoside
  • CMC carboxymethylcellulose
  • a CMC solution was prepared by dissolving CMC (manufactured by Sigma) at a concentration of 1% in 10 OmM sodium kuninate buffer (pH 5.0). After mixing 50 ⁇ l of cell-free extract diluted with 01 and 100 mM sodium tenoate buffer (pH 5.0), overlay with mineral oil, incubate at 98 ° C for 60 minutes, and centrifuge Separate and collect the aqueous layer. The reaction mixture was 10 ⁇ l, 90 ⁇ l water, 100 ⁇ l cyanide carbonate solution (5.3 g sodium carbonate and 0.65 g potassium cyanide in 1 liter water).
  • 1 unit (U) of the CMC decomposition activity is defined as an activity amount that increases the reducing power corresponding to 1 mol of glucose per minute in the above reaction system.
  • Table 1 shows the CMC degradation activity of each cell-free extract thus determined. That is, Table 1 is a table showing the CMC decomposition activity at 98 ° C detected in the cell-free extract prepared as described above.
  • an expression polypeptide solution was prepared by the following method.
  • E. coli BL2 1 (DE3) carrying pECE L2 11 was transformed to 50 / z gZml Inoculate 1 Om 1 LB medium containing ampicillin, 37 °. For 1 ⁇ . This was inoculated into 1 liter of the above medium, cultured at 37 ° C for 2.5 hours, the culture vessel was cooled on ice, IPTG was added to a final concentration of 0. Cultured 1 ⁇ . The cells were collected by centrifugation, suspended in 5 Om 1 of 2 OmM sodium phosphate buffer (pH 7.0), sonicated, and centrifuged to obtain a supernatant. Transfer the supernatant to 9
  • the centrifuged supernatant thus obtained was hereinafter used as an expression polypeptide solution.
  • the cellulose hydrolysis activity of the expressed polypeptide was identified by the following method. That is, the expressed polypeptide solution was allowed to act on various substrates, and the products were identified by thin-layer chromatography.
  • Phosphoric acid swollen cellulose was prepared by the following method.
  • the developed thin plate is sprayed with onoresinol monosulfate reagent [400 mg of orcinol (Sigma tt) dissolved in 22.8 ml of sulfuric acid, water is added to make 20 Om 1] and heated on a hot plate to be spotted. Was observed.
  • oligosaccharides were used as substrates.
  • Cellobiose Sigma
  • cellotriose cellotriose
  • cellotetraose cellopentaose
  • cellopentaose all manufactured by Seikagaku Corporation
  • oligosaccharide solution was diluted 10-fold, 50-fold, or 250-fold with the above MES buffer.25 ⁇ l of the oligosaccharide solution 25 1 was added, and the mixture was placed at 98 ° C for 20 minutes. Reacted.
  • the reaction was carried out in the same manner as described above using oligosaccharides as substrates. However, the dilution ratio of the expressed polypeptide solution was 10 times, and the reaction time was 2 hours. The centrifuged supernatant of the reaction solution was analyzed by silica gel thin layer chromatography under the same conditions as described above.
  • Example 3 Physicochemical properties of cellobiohydrolase activity possessed by the polypeptide of the present invention
  • the polypeptide solution of the present invention used in this example was prepared in Example 2- (2).
  • the cellobiohydrolase activity can be calculated as follows: 1) CMC degradation activity measured by the Park 'and' Johnson method using the amount of cellobiose produced using CMC as a substrate, and 2) p-nitrophenyl jS-D-cellobioside. (PNP
  • PNPC degradation activity measured by measuring the amount of cellobiose produced using C) as a substrate as the amount of p-nitrophenol, or The amount was measured as the amount of 4-methyldecane berifuerone (4-MU), and the activity was determined as the amount of 4-MUC degrading activity.
  • 0.2M sodium citrate buffer at pH 2.8, 3.8, 4.9 and 6.0 0.2M MES at pH 4.6, 5.5 and 6.5—NaOH buffer, H5.6 6.6 and 7.7 0.2 M Tris-HC1 buffer and pH 7.7, 8.7 and 9.8 0.2 M glycine-NaOH buffer were prepared. These pH values are measured at 80 ° C.
  • Figure 1 shows the results.
  • Figure 1 shows the relationship between pH and CMC decomposition activity 1 "during the reaction.
  • the horizontal axis indicates pH, and the vertical axis indicates CMC decomposition activity (relative value,%).
  • the sodium buffer, the closed circle (Hata) indicates the MES-Na ⁇ H buffer, the open square ( ⁇ ) indicates the Tris-HC1 buffer, and the closed square (picture) indicates the glycine-NaOH buffer.
  • Diluted polypeptide solution of the present invention with 0.1 M MES-NaOH buffer (pH 6.0) 50 ⁇ l of 1% CMC in 0.1 M MES-NaOH buffer (pH 6.0) 50 ⁇ l of the solution was added, and reacted at 37, 65, 98, 108 or 113 ° C for 20 minutes.
  • the resulting reducing sugars were measured by the Park 'and' Johnson method to determine the CMC degradation activity.
  • FIG. 2 is a graph showing the relationship between the reaction temperature and the CMC spectrum activity of the polypeptide of the present invention.
  • the horizontal axis shows the temperature (° C.), and the vertical axis shows the CMC decomposition activity (relative value,%).
  • the polypeptide of the present invention exhibited the maximum CMC-degrading activity at 108 ° C., about 80% of the maximum activity at 90 ° C., and about 60% of the maximum activity at 80 ° C.
  • polypeptide solution of the present invention is dissolved in water or 1M, 2M, 3M, 4M or 5M.
  • FIG. 3 is a graph showing the relationship between the NaCl concentration and the CMC-degrading activity of the polypeptide of the present invention.
  • the horizontal axis represents the NaCl concentration (M), and the vertical axis represents the CMC-degrading activity (relative value,%). .
  • the polypeptide of the present invention exhibited the maximum CMC degradation activity in the presence of 0.5 to 0.6 M NaCl.
  • the polypeptide solution 251 of the present invention and 25 ⁇ l of each buffer prepared in Example 3 (1) were mixed and heated at 95 ° C. for 10 minutes. This heat-treated solution is diluted 50-fold with water. To this diluted solution 501 is added 0.1% MMC-NaOH buffer (pH 6.0) solution 5 of 1% CMC, and the mixture is treated at 98 ° C for 20 minutes. Reacted. The amount of reducing sugars contained in the centrifugal supernatant of the reaction solution was measured by the Park'and Johnson method, and the CMC decomposition activity was calculated.
  • FIG. 4 shows the results.
  • Figure 4 shows the relationship between the pH and the residual CMC decomposition activity during heat treatment at 95 ° C for 10 minutes.
  • the horizontal axis is the pH during heat treatment, and the vertical axis is the residual CMC decomposition activity (U / m 1). Is shown.
  • White circles ( ⁇ ) are sodium citrate buffer, black circles ( ⁇ ) Indicates MES-NaOH buffer, open square (mouth) indicates Tris-HC1 buffer, solid square ( ⁇ ) indicates glycine-NaOH buffer.
  • the CMC-degrading activity of the polypeptide of the present invention exhibited the highest stability at pH 5 to 7.
  • CMC was dissolved in a 0.1 M MES_NaOH buffer (pH 6.0) to give a 1% CMC solution (pH 6.0).
  • 50 ⁇ l of the above ES buffer was added to 50 ⁇ l of the polypeptide solution of the present invention, and the mixture was heated at 95 ° C. for 0, 1, 5 or 24 hours.
  • the supernatant obtained by centrifuging the heat-treated product was diluted 50-fold, 200-fold, or 500-fold with the above-mentioned MES buffer.
  • the reaction was performed at 8 ° C for 20 minutes.
  • the amount of reducing sugars in the reaction solution was measured by the Park-and-Johnson method to determine the CMC decomposition activity.
  • FIG. 5 shows the results.
  • FIG. 5 is a graph showing the relationship between the heat treatment time and the residual activity after the heat treatment.
  • the horizontal axis represents the heat treatment time (hour), and the vertical axis represents the residual activity (%) after the heat treatment.
  • the polypeptide of the present invention had about 90% CMC decomposition activity after heating at 95 ° C. for 24 hours.
  • the polypeptide solution of the present invention is diluted 1-, 2-, 5-, 10-, or 20-fold with 0.1 M MES-NaOH buffer solution (pH 6.0), and the 50 // 1 is diluted with 0.1 M of 10 mM pNPC.
  • the reaction was carried out at 98 ° C for 20 minutes using 50 ⁇ l of MES-NaOH buffer solution (pH 6.0). After centrifugation, the absorbance of the supernatant at 405 nm was measured, and the pNP C-degrading activity was determined from the amount of released paranitrophenol (pNP).
  • FIG. 6 is a graph showing the relationship between the dilution factor of the polypeptide solution of the present invention and the pNPC-degrading activity of each diluted solution. Is shown.
  • the pNPC degradation activity increased in a concentration dependent manner on the polypeptide solution of the present invention.
  • the pNPC degradation activity of the polypeptide of the present invention was hardly inhibited by glucose, and the K i could not be calculated.
  • the Ki by Seguchi Bios was 212 mM.
  • the pNPC degradation activity was calculated from a calibration curve showing the relationship between the concentration of p-nitrophenol (pNP) and the absorbance at 405 nm.
  • One unit (U) of pNPC-degrading activity of the polypeptide of the present invention was defined as the amount of 1 ⁇ 1 of pNP released per minute in the above reaction solution.
  • FIG. 7 is a diagram showing the relationship between various reagents and the activity of decomposing pNPC.
  • the horizontal axis represents the concentration of various reagents (mM), and the vertical axis represents the activity of decomposing pNPC (relative value,%).
  • pNPC decomposition activity of the polypeptide of the present invention is by DTT not inhibited, Cu 2 + of 0. 5 mM, F e 3+ and Z n 2 + about is 90% inhibited by, Co 2+ of lmM, Ca 2 +, was about 50% inhibited by M g 2+ and EDTA.
  • Example 2 An expressed polypeptide solution was prepared in the same manner as in (2). However, the heat treatment temperature was 75 ° C and the time was 20 minutes.
  • the heat-treated centrifugal supernatant was subjected to anion exchange chromatography using a Hitrap Q column (Pharmacine). Two 5 ml High Trap Q columns were connected in series and the sample was applied. The flow rate was set to 2 ml / min, and elution was carried out with a linear concentration gradient (20 minutes) from 5 OmM MES-NaOH buffer (pH 6.0) to the same buffer containing 200 mM NaCl. 6 mM 4—MUC lO OmM MES—NaOH buffer (pH 6.
  • Solution 501 was added and reacted at 98 ° C for 20 minutes.
  • the fluorescence value was measured at an excitation wavelength of 355 nm and a fluorescence wavelength of 460 nm, and the 41 MUC decomposition activity was calculated from the amount of released 41 MU.
  • the active fraction from the anion exchange column chromatography was subjected to a hydrophobic column chromatography using Hitrap Phenyl Sepharose 6 Fast Flow (1 ow sub) (Pharmacia). Saturated ammonium sulfate was added to the active fraction of the anion exchange column chromatograph to make it 20% saturated, and applied to the above hydrophobic column (1 ml volume) equilibrated with 20% saturated ammonium sulfate. The flow rate was set to lm1 per minute, and elution was performed with a linear concentration gradient from the MES buffer containing 20% saturated ammonium sulfate to the MES buffer containing no ammonium sulfate over 15 minutes. The fraction eluted with almost 0% saturated ammonium sulfate
  • the purified polypeptide prepared in Example 3 (9) was subjected to SDS-polyacrylamide gel electrophoresis according to a conventional method. After completion of the electrophoresis, wash the gel with 10 OmM succinate buffer (pH 5.8) containing 10 mM DTT, and in a 10 OmM succinate buffer (pH 5.8) containing 1 mM 4-MUC at 60 ° C. The reaction was performed for 1 hour. When the gel was irradiated with UV light at 340 nm, a fluorescent band was observed. The proteins contained in the gel were transferred to a polyvinylidene difluoride (PVDF) membrane by the semi-dried blotting method and stained with Coomassie 1. Brilliant Blue (CBB). 4- A band stained with CBB was observed at the position of the band showing MUC degradation activity. The PVDF membrane was cut off from this area, and the N-terminal amino acid sequence was analyzed using a peptide theta-sensor.
  • PVDF polyvinylidene diflu
  • plasmids After ligation of these DNA fragments with DNA ligase, transformation of Escherichia coli, culturing of the transformant, and extraction and purification of plasmid were performed according to a conventional method. From the obtained plasmids, a plasmid into which the 4.5 Kb DNA fragment was inserted with the 1 ac promoter on pUCl19 and the subtilisin gene promoter in the reverse direction was selected, and pUC119-BV It was named. Next, the pECEL101 constructed in Example 1 was digested with BamHI and subjected to agarose gel electrophoresis to obtain about 1 coding from the 19th leucine residue to the termination codon of the open reading frame PH1171.
  • the 5 Kb DNA fragment was extracted and purified from agarose gel according to a conventional method.
  • the previously obtained pUCl19-BV was digested with BamHI and subjected to agarose gel electrophoresis, and a DNA fragment of about 4.5 Kb containing the replication origin of Bacillus subtilis was extracted and purified from agarose gel according to a conventional method.
  • a DNA fragment of about 4.5 Kb containing the replication origin of Bacillus subtilis was extracted and purified from agarose gel according to a conventional method.
  • ligation of these DNA fragments by DNA ligase transformation of Bacillus subtilis DB104, culturing of the transformant, and extraction and purification of plasmid were performed according to a conventional method.
  • a plasmid into which the open reading frame PHI171 was inserted in the same direction as the subtilisin gene promoter on the vector was selected from the obtained plasmids and named pNCEL101.
  • This plasmid pNCEL101 is a 31 amino acid residue derived from a vector containing a secretory signal sequence derived from the subtilisin gene consisting of 29 amino acid residues at the N-terminal downstream of the promoter of the subtilisin gene that functions constitutively in Bacillus subtilis.
  • the leader sequence encodes a fusion polypeptide joined at the leucine residue at position 19 of PH1171.
  • B. subtilis DB104 transformed with pNCEL101, pNCEL001, and pNBV obtained as described above was inoculated into LB medium containing 10 g / ml kanamycin, respectively, and aerobically at 37 ° C. Cultured overnight.
  • the CMC-degrading activity in the culture was measured by replacing the obtained culture with the cell-free extract in the CMC-degrading activity measurement procedure of Example 2- (1).
  • the CMC degradation activity was calculated to be 0.63 milliunits per 1 m 1 of culture medium, using the reducing power obtained by subtracting the control value as the glucose equivalent.
  • the plasmid pNCELO in which PHI 171 was inserted in the opposite direction was obtained. In the case of 01, the same reducing power as in the case of pNB V was not shown.
  • the present invention provides a polypeptide having cellobiohydrolase activity.
  • the polypeptide of the present invention has high heat resistance and can degrade cellulose efficiently.
  • glucose can be efficiently produced from cellulose by using the polypeptide of the present invention together with an endothermic enzyme derived from highly thermophilic bacterium, such as endodalcanase, exo-1,41-] 3-D-gnorecosidase, and] 3-D-gnorecosidase.
  • an endothermic enzyme derived from highly thermophilic bacterium such as endodalcanase, exo-1,41-] 3-D-gnorecosidase, and] 3-D-gnorecosidase.
  • endodalcanase exo-1,41-] 3-D-gnorecosidase
  • 3-D-gnorecosidase 3-D-gnorecosidase
  • Q ID NO: 3 Designed oligonucleotide primer designated as 1171FN to amplify a 1.6-kb DNA fragment containing the open reading frame PHI 171.
  • SEQ ID NO: 4 Designed oligonucleotide primer designated as 1171RA to amplify a 1.6-kb DNA fragment containing the open reading frame PHI 171.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書 ポリぺプチド 発明の分野
本発明はポリペプチド、 さらに詳しくは、 バイオマスの有効利用に有用な、 セ ルロース分解活性を有するポリペプチドに関する。 また、 本発明は該ポリべプチ ドの遺伝子工学的生産に有用な遺伝子にも関する。 発明の背景
セルロースは繊維素とも呼ばれ、 (C 6 H 1 0 O 5) nで表される。 セルロースを 主成分とする物質として、 例えば、 マツ、 スギ、 ブナ、 ポプラなどの木材;麻類、 ミツマタ、 稲ワラ、 バガス、 モミガラなどの茎類'ジン皮類;綿などの種子毛; 新聞紙、 雑誌、 ダンボール廃紙などの古紙類;その他繊維質廃棄物;パルプ、 セ ノレロースパウダーなどが挙げられ、 最近はオフィスよりの古紙類が増加している。 セルロース分子は D—ダルコビラノースが i3 _ 1, 4結合で連なった構造を有 し、 側鎖は存在しない。 すなわち、 セルロースはアルコール発酵の原料物質とな るグルコースから構成されており、 セルロースをグルコースまで分解することが 出来れば古紙類、 繊維質廃棄物から燃料などとして有用なアルコールを製造する ことが可能となる。
セルロースの分解 (糖化) 方法として酸法または酵素法によるグルコースへの 加水分解が行なわれてきた。 酸法は、 セルロースを塩酸や硫酸に接触させて繊維 の塊部分を強力に分解するものであるが、 加水分解条件の設定が困難であり、 生 成するグルコースが強酸性下において、 さらに反応してしまレ、、 グルコースを高 収率で回収することが困難である等の問題点があった。 したがって、 酸法は現在 では殆ど利用されていない。 これに対して、 セルロース加水分解酵素を用いた酵 素法は、 反応選択性が高く、 環境保護などの面においても有利であるため、 加水 分解法の主流となっており、 様々な方法が報告されている [ウッドら (Wood, B. E. , et al. ) 、 ノくィォテクノロジー 'プログレス (Biotechnology Progress) 、 第 1 3卷、 第 223— 237頁 (1997) ;米国特許第 5, 508, 183号; ジャォ 'シンら (Zhao Xin, et al. ) 、 ェンザィム 'アンド .マイクロバイァ ル ·テクノロジー (Enzyme Microbial Technology) 、 第 15卷、 第 62— 65 頁 (1993) 等] 。
セルロース加水分解酵素として、 例えば、 エンドダルカナーゼ (EC 3. 2.
1. 4) , —D—ダルコシダーゼ (EC3. 2. 1. 21) 、 ェキソ— 1, 4 — jS— D—グノレコシダーゼ (EC3. 2. 1. 74) 、 セロビォヒ ドロラ一ゼ
(EC 3. 2. 1. 91) が挙げられる。 エンドグルカナーゼの推奨名はセルラ ーゼ、 系統名は 1, 4一 (1, 3, 1, 4) — D—グルカン 3 (4) —グル カノヒ ドロラーゼである。
セルロースを分解するには通常、 エンドグルカナーゼ、 ]3— D—ダルコシダー ゼ、 ェキソ一 1, 4— 一 D—ダルコシダーゼ、 セロビォヒドロラーゼなどから なる混合物を用い、 これらが共同的に作用してセルロースをグルコースにまで分 解する。 この作用機作には様々な学説があるが、 村尾らはまず、 エンドダルカナ ーゼがセルロースの非結晶域に切れ目を入れ、 その切れ目にセロビォヒドロラー ゼが作用しながら結晶をほぐしていくとともに、 ェンドグルカナーゼとセ口ピオ ヒドロラーゼによってオリゴ糖が生成し、 オリゴ糖が) 3— D—ダルコシダーゼに よって分解されてグルコースが生成するというモデルを提出している [1987 年 5月 10日、 株式会社講談社発行、 村尾沢夫ら著、 「セルラーゼ」 、 第 102 〜 104頁] 。
セルロースは、 通常、 単一のセルロース鎖として存在することは殆ど無く、 水 素結合によつて多数のセルロース鎖が集合した構造を形成しており、 多数のセル ロース鎖が密集している結晶領域と、 疎な非晶領域とが存在する。 酵素法による 加水分解反応の律速段階は、 該結晶領域にある多数のセルロース鎖を分離 ·分散 する段階にある。 したがって、 酵素で分解する場合に高温で反応を行えば、
( 1 ) セルロースの結晶がほぐれ易レ、ので反応が効率良く進行すると共に、
(2) 雑菌による汚染の危険が小さい、 (3) 加熱を必要とする工業プロセスに おいて酵素反応前の冷却を必要としない等の利点がある。
高度好熱菌由来のセルロース加水分解酵素としては、 ピロコッカス 'フリオサ ス (Pyrococcus furiosus) の ]S— D—グノレコシタ、、一ゼ、 ^ "一モコッカス
(Thermococcus) s p . の j8—D—グノレコシダーゼ、 サーモ トガ 'マリティマ (Thermotoga maritima) ■のエンドグノレカナーゼ、 j3—D—グノレコシダ一ゼ、 サ 一モトガ 'ネアポリタナ (Thermotoga neapolitana) のエンドグルカナーゼ、 β 一 D—ダルコシダーゼ等が知られている レくゥァ一ら (Bauer, et al. ) 、 カレ ント ·オピニオン 'イン 'バイオテクノ口ジー (Current Opinion in
Biotechnology) 、 第 9卷、 第 141〜 145頁、 1998年] 。 高度好熱菌由 来の ]3— D—ダルコシダーゼ遺伝子のク口一二ング例としては、 米国特許第 5 , 744, 345号があり、 また、 高度好熱菌由来のェンドグルカナーゼ遺伝子の クローニング例としては、 W097/44361がある。
—方、 セ口ピオヒドロラ一ゼは好熱性細菌であるサーモトガ (Thermotoga) s p. F j S S— B. 1株から単離されている [ラタ一スミスら (Ruttersmith, et al.) 、 バイオケミカル ' ジャーナル (Biochemical Journal) 、 第 277卷、 第 887〜890頁、 1991年] 力 該酵素のセロビオースによる阻害定数
(K i ) は 0. 2 mMと低いために生産物阻害を受け易く、 4—メチルゥンベリ フェリル— 一 D—セ口ビオシドを基質とした時の比活性は 3. 6 U/m gであ る。 また, 該細菌の培養は高温嫌気条件下で行なう必要があるなどの理由で酵素 の工業的大量生産は困難である。 また、 該酵素をコードする遺伝子がクローニン グされていなレ、ため、 遺伝子工学的な生産も実施することはできなレ、。 発明の目的
本発明の目的は、 セロビオースによる阻害定数が高く、 更に耐熱性を有するセ 口ビォヒドロラーゼおよび該セロビォヒドロラーゼを安価に製造するための手段 を提供することにある。 発明の要旨
ピロコッカス .ホリコシィ (Pyrococcus horikoshii) OT3ゲノムは全 DN A塩基配列が決定されており [力ヮラバヤシら (Kawarabayasi, et al. ) 、 DN Aリサーチ (DNA Research) 、 第 5卷、 第 55〜 76頁、 1 998年;カヮラバ ヤシら、 DNAリサーチ、 第 5卷、 第 1 47〜 1 55頁、 1 99 8年] 、 各ォー プンリーディングフレームから予想される遺伝子産物とアミノ酸配列のホモロジ 一を持つタンパクのリストが公開されている
(http://w w. bio. nite. go. jp/ot3db_index. html) 。 なお、 公知のセノレ口一スカロ 水分解酵素をコードする核酸とのホモロジ一を比較することにより、 このリスト から、 ピロコッカス 'ホリコシィ OT 3ゲノムには α—アミラーゼ、 α—マンノ シダーゼ、 jS— D—ガラクトシダーゼ、 — D—ダルコシダーゼ、 β—D—マン ノシダーゼ、 ェンドグルカナーゼ等のポリべプチドをコ一ドするオープンリーデ イングフレームが存在することが予想されている。 しかしながら、 公知のセロビ ォヒ ドロラーゼをコードする核酸とホモロジ一を有するオープンリーディングフ レームの存在は予想されていない。
本発明者らは鋭意研究した結果、 ピロコッカス ·ホリコシィ Ο Τ 3ゲノムにセ 口ピオヒドロラーゼ活性を有するポリぺプチドをコードするオープンリーデイン グフレーム (PH 1 1 7 1) が存在することを見出した。 当該オープンリーディ ングフレームにコードされるアミノ酸配列で示されるポリペプチドは、 古細菌 A
EP I I 1 a由来のエンドグルカナーゼを始めとする種々のエンドグルカナーゼ とホモロジ一を示すにも関わらず、 意外にもセロビォヒドロラ一ゼ活性を示すポ リペプチドであることが判明した。 さらに、 該ポリペプチドの遺伝子工学的な製 造方法を確立し、 本発明を完成するに至った。
すなわち、 本発明は、
(1) 配列表の配列番号 1記載のアミノ酸配列、 または該配列において、 1個 以上のァミノ酸残基の欠失、 付加、 揷入もしくは置換の少なくとも 1つを有する アミノ酸配列で示され、 かつセロビォヒドロラーゼ活性を示すポリペプチド、
( 2 ) 耐熱性セ口ピオヒドロラーゼ活性を示す上記 ( 1 ) 記載のポリぺプチド、 (3) 上記 (1) 又は (2) 記載のポリペプチドをコードする核酸、
(4) 配列表の配列番号 2記載の塩基配列で示される上記 (3) 記載の核酸、
(5) 上記 ( 3 ) 記載の核酸にストリンジェントな条件でハイブリダイズ可能 であり、 かつセロビォヒドロラ一ゼ活性を示すポリペプチドをコードする核酸、
( 6 ) 耐熱性セ口ピオヒドロラーゼ活性を示すポリぺプチドをコードする上記 (5) 記載の核酸、
(7) 上記 (3) 〜 (6) いずれかに記載の核酸を含む,袓換え DNA、
(8) 上記 (7) 記載の組み換え DNAにより形質転換された形質転換体、
(9) 上記 ( 8 ) 記載の形質転換体を培養し、 該培養物中よりセロビォヒ ドロ ラーゼ活性を有するポリペプチドを採取する工程を包含する上記 (1 ) 記載のポ リペプチドの製造方法、 および
( 1 0) β— 1, 4結合を介した D—ダルコビラノースの重合体に、 上記
( 1 ) 記載のポリぺプチドを作用させてセ口ビオースを遊離させる工程を包含す る i3— 1, 4結合を介した D—ダルコビラノースの重合体の分解方法、
( 1 1 ) セロビォヒ ドロラーゼ活性を示すポリぺプチドであって、 セ口ビオー スによる阻害定数 K iが 1 OmM以上であるポリペプチド、
(1 2) 9 5°Cにおける 5時間の処理によって 2 0%以上のセロビォヒドロラ ーゼ活性を保持する上記 (1 1 ) 記載のポリペプチド、
を提供するものである。 図面の簡単な説明
図 1 :本発明ポリペプチドが有する CMC分解活性と反応 pHの関係を示す図 である。
図 2 :本発明ポリペプチドが有する CMC分解活性と反応温度の関係を示す図 である。
図 3 :本発明のポリべプチドが示す CMC分解活性に対する反応液中の N a C 1濃度の影響を示す図である。
図 4 :本発明のポリペプチドを 9 5 °Cで 1 0分間加熱処理した場合の、 処理 p Hと本発明のポリぺプチドが有する CMC分解活性の関係を示す図である。 図 5 :本発明のポリぺプチドを 9 5 °Cで加熱処理した場合の、 処理時間と本発 明のポリペプチドが有する C M C分解活性の関係を示す図である。
図 6 :本発明のポリぺプチドが有する p N P C分解活性と本発明のポリぺプチ ド量との関係を示す図である。
図 7 :本発明のポリぺプチドが有する p N P C分解活性に対する各種試薬が及 ぼす影響を示す図である。 発明の詳細な説明
1 . 本発明のポリペプチドについて
本発明のポリペプチドは、 配列表の配列番号 1記載のアミノ酸配列、 または該 アミノ酸配列において、 1個以上のアミノ酸残基の欠失、 付加、 揷入もしくは置 換の少なくとも 1つを有するアミノ酸配列で示され、 かつセロビォヒ ドロラーゼ 活性を示すことを特徴とする。
本発明におけるセロビォヒ ドロラーゼ活性とは、 β— 1 , 4結合で連結された D—グルコースからなる多糖またはオリゴ糖のダルコシド結合を加水分解し、 D
—グルコースが 一 1, 4結合した二糖であるセロビオースを遊離させるが、 セ 口ビオースのダルコシド結合は加水分解しなレ、活性を意味する。 セ口ピオヒ ド口 ラーゼ活性を測定する方法としては、 例えば、 リン酸膨潤セルロースを基質とし て酵素反応を行い、 薄層シリカゲルクロマトグラフィーにより反応物中のセロビ オースの存在を確認するなどの公知の方法が挙げられる。
なお、 本発明のポリペプチドは、 セロビォヒドロラーゼ活性を有していれば良 く、 その他のグリコシダーゼ活性、 例えば、 エンドダルカナーゼ活性、 β - Ό - グルコシダーゼ活性を有していてもよい。
1つの実施態様において、 本発明のポリぺプチドは耐熱性のあるセロビォヒド 口ラーゼ活性を有することを特徴とする。
本明細書における 「耐熱性」 とは、 バイオマスからのアルコール生産を目的と した工業プロセスにける高温条件下でセルロースを分解するのに必要な時間委ね られる場合、 不可逆的に変性 (不活性化) されない酵素活性を有することを意味 する。 本明細書における不可逆的変性とは、 酵素活性の永久的且つ完全な損失を 意味する。 以下、 該耐熱性を示すセ口ビォヒドロラーゼ活性を耐熱性セ口ビォヒ ドロラーゼ活性と称する。 本発明を特に限定するものではないが、 配列表の配列 番号 1記載のアミノ酸配列で示されるポリペプチドは 7 5 °Cにおける 2 0分間の 処理、 9 5 °Cにおける 1 0分間の処理、 更には 9 5 °Cにおける 5時間の処理によ つても 8 0 %以上のセロビォヒドロラ一ゼ活性を保持している。 また、 該ポリべ プチドは 9 0 °C以上、 更には 1 0 0 °C以上の高温条件下においてもセロビォヒド 口ラ一ゼ活性を示す。 耐熱性セロビォヒドラーゼ活性を有する本発明のポリぺプ チドは、 9 5 °Cにおける 5時間の処理によって、 好ましくは 2 0 %以上、 より好 ましくは 4 0 %以上、 最も好ましくは 8 0 %以上のセ口ピオヒドラ一ゼ活性を保 持している。
本発明のポリぺプチドの 1例である配列表の配列番号 1記載のァミノ酸配列で 示されるポリペプチドは、 例えば、 リン酸膨潤セルロースゃセロオリゴ糖からセ 口ビオースを生成する活性を有する。 該ポリぺプチドが示す耐熱性セ口ピオヒド 口ラ一ゼ活性の至適 p Hは 5〜6 . 5である。 また、 該ポリペプチドは 6 5 °C〜 1 1 3 °Cの範囲で耐熱性セロビォヒドロラーゼ活性を示し、 至適温度は約 1 1 0 °Cである。 該ポリペプチドは高い耐熱性を示し、 基質非存在下、 p H 6、 9 5 °Cにて 5時間の加熱後に約 9 0 %の活性を保持しており、 さらに 2 4時間加熱 しても約 8 0 %以上の活性が残存する。 また、 基質非存在下 9 5 °Cで 1 0分間加 熱した場合、 p H 5〜 7の範囲では活性は減少しなレ、。 該ポリぺプチドを精製し、 4—メチノレゥンベリフェリル一 β—D—セロビオシドを基質としてセロビォヒド 口ラ一ゼ活性を測定すると、 9 8 °C、 p H 6 . 0において 2 0分間の反応を行つ た場合、 比活性は 1 7 . O UZm gである。
なお、 該ポリペプチドはカルボキシメチルセルロース (CMC ) ゃセロオリゴ 糖にも作用することができる。 該ポリペプチドのセロビォヒ ドロラ一ゼ活性は、 CM C又はセロオリゴ糖を基質として生じる糖還元末端量を指標として測定する こともできる。 また、 該ポリペプチドは p—二トロフエニル一 ]3— D—セロピオ シド等の発色基質や 4一メチルゥンべリフヱリル— J3— D—セロビオシド等の蛍 光基質にも作用するので、 反応によって生じる発色物質又は蛍光物質の量を測定 することによって該ポリぺプチドのセ口ビォヒドロラーゼ活性を簡便に測定する ことができる。
また、 該ポリぺプチドが示す耐熱性セ口ビォヒドロラーゼ活性は、 0 . 5〜: 1 . O M N a C 1存在下で最大の活性を示す。 しかしながら、 N a C 1非存在下の 活性は 0 . 5 M N a C 1存在下の活性の約 8 0 %、 2 . 5 M N a C 1存在下 の活性は 0 . 5 M N a C 1存在下の活性の約 6 0 %を示し、 N a C 1濃度によ る耐熱性セ口ピオヒドロラーゼ活性への影響は少なレ、。
1つの実施態様において、 本発明のポリペプチドが示すセロビォヒドロラーゼ 活性は、 反応生成物であるセロビオース、 またはグルコースによる活性阻害を受 け難い。 このようなポリペプチドのセロビオースによる阻害定数 K iは、 好まし ぐは 10mM以上であり、 より好ましくは 3 OmM以上であり、 最も好ましくは 1 0 OmM以上である。 例えば、 配列表の配列番号 1記載のアミノ酸配列で示さ れる本発明のポリペプチドのセロビオースによる阻害定数 K iは 212mMであ る。 このような高レ、セ口ビオースによる阻害定数を有するポリぺプチドは本発明 以前には知られていなかった。 また、 グルコースによる活性阻害は殆ど無レ、。 一 方、 各種試薬非存在下の活性に対し、 各々 0. 5mMのF e3 +、 Cu2 +、 Z n2 +によって約 90%、 各々 ImMの Co2 +、 Ca 2 +、 Mg2 +、 エチレンジアミ ン四酢酸によって約 50%の活性阻害を受ける。 1 OmMのジチオスレィトール によつては殆ど阻害を受けない。
なお、 本発明のポリぺプチドは、 セ口ビォヒドロラーゼ活性を示す限りにおい て配列表の配列番号 1記載のァミノ酸配列に、 1個以上のァミノ酸残基の欠失、 付加、 挿入もしくは置換の少なくとも 1つがなされたアミノ酸配列で示されるポ リペプチドを包含する。
すなわち、 天然に存在するタンパク質にはそれをコードする DN Aの多形や突 然変異の他、 生成後のタンパク質の生体内および精製中の修飾反応などによって そのアミノ酸配列中にアミノ酸の欠失、 挿入、 付加、 置換等の変異が起こりうる。 し力 し、 このような変異が該タンパク質の活性や構造の保持に関して重要でない 部分に存在する場合には、 変異を有しないタンパク質と実質的に同等の生理、 生 物学的活性を示すものがあることが知られている。
人為的にタンパク質のアミノ酸配列に上記のような変異を導入した場合も同様 であり、 この場合にはさらに多種多様の変異体を作製することが可能である。 例 えば、 ヒトインターロイキン 2 ( I L- 2) のアミノ酸配列中のあるシスティン 残基をセリンに置換したポリペプチドがインターロイキン 2活·生を保持すること が知られている [サイエンス (Science) 、 第 224卷、 1431頁 (198 4) ] 。 また、 ある種のタンパク質は、 活性には必須でないペプチド領域を有している ことが知られている。 例えば、 細胞外に分泌されるタンパク質に存在するシグナ ルぺプチドゃ、 プロテア一ゼの前駆体等に見られるプロ配列などがこれにあたり、 これらの領域のほとんどは翻訳後、 あるいは活性型タンパク質への転換に際して 除去される。 このようなタンパク質は一次構造上は異なった形で存在している力 最終的には同等の機能を発現するタンパク質である。 配列表の配列番号 1記載の ァミノ酸配列は配列表の配列番号 5記載のァミノ酸配列から N末端 2 8アミノ酸 残基のシグナルぺプチド領域が除かれた配列である。 配列番号 5記載のァミノ酸 配列を持つポリぺプチドをコードした配列表の配列番号 6記載の塩基配列で示さ れる核酸を含むベクターを大腸菌に導入して培養すると、 発現したポリペプチド からシグナルぺプチド領域が除去されて配列表の配列番号 1記載のァミノ酸配列 を持つポリぺプチドが生産される。
遺伝子工学的にタンパク質の生産を行う場合には、 目的のタンパク質のァミノ 末端、 あるいはカルボキシル末端に該タンパク質の活性とは無関係のぺプチド鎖 が付カ卩されることがある。 例えば、 目的のタンパク質の発現量を上げるために、 使用される宿主中で高発現されているタンパク質のァミノ末端領域の一部を目的 のタンパク質のァミノ末端に付加した融合タンパク質が作製されることがある。 あるいは、 発現されたタンパク質の精製を容易にするために、 特定の物質に親和 性を有するぺプチドを目的のタンパク質のァミノ末端またはカルボキシル末端に 付加することも行われている。 これらの付加されたペプチドは目的タンパク質の 活性に悪影響をおよぼさない場合には付加されたままであってもよく、 また、 必 要であれば適当な処理、 例えば、 プロテアーゼによる限定分解などによって目的 タンパク質から除去できるようにすることもできる。
したがって、 本発明によって開示されたアミノ酸配列 (配列表の配列番号 1 ) に 1個以上のアミノ酸残基の欠失、 挿入、 付加、 置換が生じたアミノ酸配列によ つて示されるポリペプチドであっても、 セロビォヒドロラーゼ活性を有していれ ば本発明の範囲内に属するものである。 好ましくは、 このようなポリペプチドは、 耐熱性セ口ピオヒドロラーゼ活性を有し、 高いセロビオースによる阻害定数を有 する。 本発明のポリペプチドは、 例えば、 (1 ) 本発明のポリペプチドを生産する微 生物の培養物からの精製、 ( 2 ) 本発明のポリペプチドをコードする核酸を含有 する形質転換体の培養物からの精製、 等の方法により製造することができる。
( 1 ) 本発明のポリぺプチドを生産する微生物の培養物からの精製
本発明のポリペプチドを生産する微生物としては、 例えば、 理化学研究所より 購入可能なピロコッカス ·ホリコシィ O T 3 ( J CM 9 9 7 4 ) が挙げられる。 微生物の培養は、 その微生物の生育に適した条件で行えばよく、 好ましくは、 目的のポリペプチドの発現量が高くなるような培養条件が用いられる。 力べして 菌体ぁるレ、は培養液中に生産された目的のポリぺプチドは、 通常のタンパク質の 精製に用いられる方法によって精製することができる。
上記菌株の培養にあたっては、 通常、 超好熱菌の培養に用いられる方法が利用 でき、 培地に加える栄養源は該菌株が利用しうるものであればよレ、。 炭素源とし ては、 例えば、 デンプン等が利用でき、 窒素源としては、 例えば、 トリプトン、 ペプトン、 酵母エキス等が利用できる。 培地中には、 マグネシウム塩、 ナトリウ ム塩、 鉄塩等の金属塩を微量元素として加えてもよい。 また、 例えば、 培地の調 製に人工海水を用いることが有利である。 さらに、 培地は固形の硫黄を含んでい ない透明な培地が望ましく、 該培地を用いれば、 菌体の増殖は培養液の濁度を測 定することにより容易に監視することができる。
培養は静置培養または撹拌培養で行なうことができるが、 例えば、 アプライ ド .アンド 'エンバイロンメンタル 'マイクロバイオロジー、 第 5 5卷、 第 2 0
8 6〜2 0 8 8頁 (1 9 9 2 ) に記載のように、 透析培養法を用いてもよい。 一 般に培養温度は 9 5 °C前後が好ましく、 通常 1 6時間程度でポリぺプチドが培養 物中に著量蓄積する。 培養条件は、 使用する菌体、 培地組成に応じポリペプチド の生産量が最大になるように設定するのが好ましい。
ポリペプチドを採取するに当たっては、 まず、 無細胞抽出液を調製する。 無細 胞抽出液は、 例えば、 培養液から遠心分離、 濾過などによって菌体を集め、 つい で菌体を破砕することにより調製できる。 菌体の破碎方法としては、 超音波破枠、 ビーズ破砕、 溶菌酵素処理、 界面活性剤処理等のうちから目的酵素の抽出効果の 高い方法を選べばよレ、。 また、 培養液中に該ポリペプチドが分泌されている場合 には、 硫安塩析法ゃ限外濾過法等によってポリペプチドを濃縮し、 これを無細胞 抽出液とする。 かくして得られた無細胞抽出液からポリペプチドを単離するにあ たっては、 通常のタンパク質の精製に用いられる方法を使用できる。 例えば、 硫 安塩析処理、 イオン交換クロマトグラフィー、 疎水クロマトグラフィー、 ゲル濾 過クロマトグラフィー等の方法を組み合わせて使用できる。
(2) 本発明のポリペプチドをコードする核酸を含む組換え DN Aにより形質 転換された形質転換体の培養物からの精製
配列表の配列番号 2は本発明のポリぺプチドをコ一ドする核酸の塩基配列の 1 例である。 配列番号 1は、 配列番号 2に示される塩基配列より推定される本発明 のポリペプチドのアミノ酸配列である。 すなわち、 配列表の配列番号 1は本発明 によって得られるポリぺプチドのァミノ酸配列の 1例である。
形質転換すべき宿主は、 特に限定するものではなく、 例えば、 大腸菌、 枯草菌、 酵母、 糸状菌等が挙げられる。
例えば、 本発明のポリペプチドは、 T 7プロモーターの下流に配列表の配列番 号 6で表される DNAを連結したプラスミドである pECEL21 1を保持する 大腸菌 (Escherichia coli) B L 21 (DE 3) を用いて得ることができる。 配 列番号 5は、 配列番号 6に示される塩基配列より推定される本発明のポリべプチ ドのァミノ酸配列である。 なお、 p D C E L 21 1で形質転換された大腸菌 J M 109は、 Escherichia coli JM109/p ECEL 21 1と命名、表示され、 平成 10年 12月 1 1日より日本国茨城県つくば市東 1丁目 1—3通商産業省ェ 業技術院生命工学工業技術研究所に受託番号 F E RM P— 17075として寄 託され、 平成 1 1年 1 1月 1 5日より FERM BP— 6939としてブダぺス ト条約に基づく国際寄託へ移管されている。
すなわち、 p ECE L 21 1を保持する大腸菌 B L 21 (DE 3) を通常の培 養条件、 例えば、 10 Ομ g/m 1のアンピシリンを含む LB培地 (トリプトン 10 g/リ ツトル、 酵母エキス 5 gZリ ツトル、 Na C l 5 gZリツトル、 p H 7. 2) 中、 37 °Cで対数増殖期まで培養後、 0. ImMとなるようイソプロピ ルー β一 D—チォガラクトピラノシドを添加し、 さらに 1 5 °Cで培養することに より、 培養菌体中にポリぺプチドを発現させることができる。 培養終了後、 遠心分離によって集めた菌体を超音波で破砕し、 さらに遠心分離 して、 上清を無細胞抽出液として用いることができる。 該無細胞抽出液は酵素反 応に用いることができる。 さらにイオン交換クロマトグラフィー、 ゲルろ過、 疎 水クロマトグラフィー、 硫安沈殿等の公知の方法を用いることにより該無細胞抽 出液から本発明のポリペプチドを精製することができる。 部分精製品も当然酵素 反応に用いることができる。 なお、 p ECE L 21 1を保持する大腸菌 B L 21 (DE 3) で発現される本発明のポリべプチドは高い耐熱性を有しているため、 精製手段として培養菌体および Zまたは無細胞抽出液を、 例えば、 95°C、 10 分間の熱処理を行ってもよい。
また、 本発明のポリペプチドは、 例えば、 サブチリシンプロモーターの下流に 配列表の配列番号 2で表される DN Aを連結したプラスミ ドである pNCEL 1 01を保持する枯草菌 DB 104を用いて得ることができる。 すなわち、 pNC EL 101を保持する枯草菌 DB 104を通常の培養条件、 例えば、 10 μ g/ m 1のカナマイシンを含む LB培地中、 37°Cでー晚培養することにより培養液 中に本発明のポリペプチドを蓄積させることができる。 培養液中の本発明のポリ ペプチドは大腸菌を宿主とした場合と同様、 公知の方法によって精製することが 可能である。
上記のように本発明のポリぺプチドを、 当該ポリぺプチドをコ一ドする核酸を 用いて常温、 例えば、 37 °Cで発現させた場合でも、 得られた発現産物はその活 性、 耐熱性などを保持している。 すなわち、 本発明のポリペプチドは、 その本来 の生産菌が生育する温度とは大きく離れた温度において発現された場合にも、 そ の固有の高次構造を形成し得る。
2. 本発明の核酸について
本発明の核酸は、 上記のような本発明のポリペプチドをコードする核酸であり、 具体的には、 配列表の配列番号 1記載のアミノ酸配列、 または該配列において、 1個以上のァミノ酸残基の欠失、 付加、 挿入もしくは置換の少なくとも 1つがな されたァミノ酸配列で示され、 かつセ口ビォヒドロラーゼ活性を示す、 ポリぺプ チドをコードする核酸 (1) 、 配列表の配列番号 2記載の塩基配列で示される核 酸 (2) 、 および上記核酸 (1) または (2) にストリンジェントな条件でハイ ブリダイズ可能であり、 かつセ口ピオヒドロラーゼ活性を示すポリぺプチドをコ ードする核酸 (3) 等である。
本明細書における核酸とは、 1本鎖または 2本鎖の DNAまたは RNAを意味 する。
上記核酸 (2) が RNAである場合は、 配列表の配列番号 2記載の塩基配列に ぉレ、て Tを Uで置換した塩基配列で示される。
本発明の核酸は、 例えば、 つぎのようにして得ることができる。
まず、 配列表の配列番号 2記載の塩基配列で示される核酸 (2) は、 本発明の ポリペプチドの説明中に記載したように、 ピロコッカス♦ホリコシィ OT 3 ( J CM9974 :理化学研究所) より単離することができる。
また、 本発明により提供されるポリべプチドをコ一ドする核酸の塩基配列を基 に本発明のポリぺプチドと同様のセロビォヒドロラーゼ活性を有するポリぺプチ ドをコードする核酸を取得することも可能である。 すなわち、 本発明のポリぺプ チドをコ一ドする核酸、 またはその塩基配列の一部をハイブリダィゼーションの プローブ、 あるいは PC R等の遺伝子増幅法のプライマーに用いることにより、 セロビォヒドロラーゼ活性を有するポリペプチドをコードする DNAをスクリー ニングすることができる。 かかる方法により、 上記核酸 (1) または (3) を得 ることができる。
上記の方法では目的の核酸の一部のみを含む核酸断片が得られることがある力 その際には得られた核酸断片の塩基配列を調べて、 それが目的の核酸の一部であ ることを確かめた上、 該核酸断片、 あるいはその一部をプローブとしてハイプリ ダイゼーシヨンを行う力、 または該核酸断片の塩基配列に基づいて合成されたプ ライマーを用いて PCRを行うことにより、 目的の核酸全体を取得することがで さる。
上記の 「ストリンジヱントな条件でハイブリダィズする」 とは、 例えば、 以下 の条件でハイブリダィズ可能なことをいう。 すなわち、 核酸を固定したメンブレ ンを 0. 5%SDS、 0. 1%ゥシ血清アルブミン (BSA) 、 0. 1%ポリビ ニルピロリ ドン、 0. 1 %フィコール 400、 0. 01 %変性サケ精子核酸を含 む 6 XS SC (1 XS SCは 0. 15M Na C l、 0. 01 5Mクェン酸ナ トリウム、 p H 7 . 0を示す) 中で、 5 0 °Cにて 1 2〜 2 0時間、 プローブとと もにインキュベートする。 インキュベーション終了後、 0 . 5 % S D Sを含む 2 X S S C中、 3 7 °Cでの洗浄から始めて、 S S C濃度は 0 . 1倍までの範囲で、 また、 温度は 5 0 °Cまでの範囲で変化させ、 固定された核酸由来のシグナルがバ ックグラウンドと区別できるようになるまでメンプレンを洗浄したうえ、 プロ一 ブの検出を行う。 また、 こうして得られた新たな核酸について、 そこにコードさ れているタンパクの有する活性を上記同様の方法によって調べることにより、 得 られた核酸が目的とするものであるかどうかを確認することができる。
さらに、 これらの核酸を適切な発現べクタ一などに組込むことによって本発明 の核酸を含む組換え D N Aを作製し、 次いでこの組換え D N Aを含有する形質転 換体を作製し、 これを用いて上記のポリペプチドを工業的に生産することも可能 になる。
本発明においては、 本明細書に開示された塩基配列と同一の塩基配列ではなく とも、 それがセロビォヒ ドロラーゼ活性を示すポリペプチドをコードする限り、 そのような塩基配列は本発明の範囲に含まれるものであることは上記したとおり である。
すなわち、 遺伝子上でアミノ酸を指定するコドン (3つの塩基の組み合わせ) はァミノ酸の種類ごとに 1 〜 6種類ずつが存在することが知られている。 したが つて、 あるアミノ酸配列をコードする核酸はそのアミノ酸配列にもよるが多数存 在することができる。 核酸は自然界において決して安定に存在しているものでは なく、 その塩基配列に変異が起こることはまれではない。 核酸上に起こった変異 がそこにコードされるアミノ酸配列には変化を与えない場合 (サイレント変異と 呼ばれる) もあり、 この場合には同じアミノ酸配列をコードする異なる核酸が生 じたといえる。 したがって、 ある特定のアミノ酸配列をコードする核酸が単離さ れても、 それを含有する生物が継代されていくうちに同じアミノ酸配列をコード する多種類の核酸ができていく可能性は否定できない。 さらに同じアミノ酸配列 をコードする多種類の核酸を人為的に作製することは種々の遺伝子工学的手法を 用レ、れば困難なことではない。
例えば、 遺伝子工学的なタンパク質の生産において、 目的のタンパク質をコー ドする本来の核酸上で使用されているコドンが宿主中では使用頻度の低レ、もので あった場合には、 タンパク質の発現量が低いことがある。 このような場合にはコ ードされているアミノ酸配列に変化を与えることなく、 コドンを宿主で繁用され ているものに人為的に変換することにより、 目的タンパク質の高発現を図ること が行われている (例えば、 特公平 7— 1 0 2 1 4 6号) 。 このように特定のアミ ノ酸配列をコードする多種類の核酸は人為的に作製可能なことは言うまでもなく、 自然界においても生成されうるものである。
3 . 本発明のポリペプチドを用いた ]3— 1, 4結合を介した D—ダルコピラノ ースの重合体分解方法について
本発明のポリペプチドを用いることにより ]3— 1, 4結合を介した D—ダルコ ビラノースの重合体からセロビオースを遊離させることができる。 なお、 本発明 における β— 1 , 4結合を介した D—ダルコビラノースの重合体はグルコースの 重合度に特に限定はなく、 セロトリオースやセルロースなどが包含される。 配列 表の配列番号 1で示される本発明のポリべプチドは耐熱性が高く、 熱による基質 の構造変化との相乗効果もあって、 より効率よくセルロースを分解することがで きる。
具体的な反応条件としては、 例えば、 配列表の配列番号 1記載のァミノ酸配列 で示されるポリペプチドを用いる場合、 5 0 mM M E S - N a O H ( p H 6 . 0 ) 緩衝液中で基質と 9 8 °Cで反応させることにより、 セロビオースを遊離させ ることができる。 ただし、 セルロース、 セロテトラオースなど基質の種類により 反応条件が異なるのは当然のことである。 本発明のポリべプチドは基質懸濁液中 に遊離の状態で添加してもよいが、 適当な担体に固定化して基質と反応させると 反応終了後のポリぺプチドの回収が容易である。
また、 本発明のポリペプチドと共に耐熱性を有するエンドダルカナ一ゼ、 ェキ ソー 1, 4一 ]3— D—ダルコシダーゼ、 β—D—ダルコシダーゼを使用すること により、 高レ、効率でセルロースを D—グルコースまで分解することが可能となる。 実施例
以下に実施例を挙げて本発明をさらに具体的に説明するが、 本発明は以下の実 施例のみに限定されるものではない。
また、 本明細書に記載の操作のうち、 プラスミ ド DNAの調製、 制限酵素消化 などの基本的な操作については 1 989年、 コールド · スプリング ·ハ一バー · ラボラトリー発行、 T. マニアテイス (T. Maniatis) ら編集、 モレキュラー ' クローニング: ァ♦ ラボラトリー 'マニュアル第 2版 (Molecular Cloning: A
Laboratory Manual 2nd ed. ) に記載の方法によった。 さらに、 以下に示す大腸 菌を用いたプラスミ ドの構築には、 特に記載の無い限り大腸菌 JM109あるい は HB 101を宿主とし、 100 / gZm 1のアンピシリンを含む LB培地 (ト リプトン 1%、 酵母エキス 0. 5%、 Na C 1 0. 5%、 pH 7. 0) あ るレ、は LB培地に 1. 5%の寒天を加え固化させた LBプレートを用いて 37°C で好気的に培養した。 実施例 1
ピロコッカス 'ホリコシィ OT 3ゲノム中に存在するオープンリーディングフ レーム PH 1 1 71を含む組換え DN Aの作製
(1) オープンリーディングフレーム PHI 1 71を含む DN Aの調製 ピロコッカス ·ホリコシィ〇T 3ゲノム DNAを铸型とした PCRを行なうこ とによりオープンリーディングフレーム ΡΗ 1 1 71を含む約 1. 6 k bの増幅 DN A断片を得るため、 ピロコッカス ·ホリコシィ〇T 3ゲノム塩基配列をもと にして、 配列表の配列番号 3記載の塩基配列で示されるオリゴヌクレオチド 1 1 7 1 FNおよび配列表の配列番号 4記載の塩基配列で示されるオリゴヌクレオチ ド 1 1 71 R Aを合成した。
そこで先ず、 ピロコッカス ·ホリコシィ OT3 J CM9974 (理化学研究 所より購入) を J CMカタログ (理化学研究所) に記載の培地で 95。C、 1 6時 間培養し、 培養菌体よりゲノム DNAを精製した。
ついでオープンリーディングフレーム PH 1 1 71を含む DN Aを得るために、 オリゴヌクレオチド 1 171 FNおよび 1 1 71 R Aをプライマ一対とし、 上記 ゲノム DN Aを铸型として PC R反応を行った。 PCR反応は、 タカラ EXタツ ク (宝酒造社製) 添付のプロトコ一ルに従い、 94°Cで 0. 5分、 50°Cで 2分、 94°Cで 1. 5分の反応を 25サイクル行った。 PCR反応物をァガロースゲル 電気泳動に供し、 約 1. 6 k bの増幅 DN A断片を抽出精製した。 得られた DN Aの塩基配列を解析した結果、 該 DN Aはオープンリ一ディングフレーム PH 1 1 71を含む DNAであった。
(2) 組換え DNA pECEL l O lの構築
上記 ( 1 ) で得られた約 1. 6 k bの増幅 DNA断片を制限酵素 S t u Iおよ び Av a I (ともに宝酒造社製) で消化し、 T4 DN Aポリメラーゼ (宝酒造 社製) により平滑末端化した後ァガロースゲル電気泳動に供し、 約 1. 5 k bの DN A断片を抽出精製した。 一方、 pET21 a [ノバジェン (N o v a g e n) 社製] を制限酵素 BamH I (宝酒造社製) で消化し、 アルカリホスファタ ーゼ (宝酒造社製) により脱リン酸ィ匕処理後、 T4 DN Aポリメラーゼにより 平滑末端化した。 上記 2種の平滑末端処理 D N A断片を D N Aリガーゼ (宝酒造 社製) により連結後、 大腸菌 JM109を形質転換した。 数個の形質転換体を選 択し、 各形質転換体に保持されるプラスミ ド DN Aの精製を行った。 得られたプ ラスミ ド DNAの制限酵素地図を作成し、 ベクター上の T 7プロモーターと同じ 向きにオープンリーディングフレーム PH 1 1 71が揷入されたプラスミ ド DN Aを選択した。 該プラスミ ド DNAを pECEL 101と命名した。
(3) 組換え DNA pECEL21 1の構築
下記方法により、 上記 ( 1 ) で得られた約 1. 6 k bの増幅 D N A断片と p E T21 d (ノバジェン社製) の組み換え DN Aを調製した。
先ず、 ( 1 ) で得られた約 1. 6 k bの増幅 DNA断片を A v a Iで消化し、 末端を T4 DN Aポリメラーゼを用いて平滑化した後、 更に PHI 1 71の第 1コドンが p ET 21 dの T 7プロモーター下流に作動可能に配置されるように 制限酵素 N c o I (宝酒造社製) で消化した。 一方、 pET21 dは B amH I で消化し、 T4 DNAポリメラーゼにより平滑末端ィヒした。 さらに Nc o lで 消化後、 アルカリホスファターゼにより脱リン酸化処理した。
上記 2種の処理 DN A断片を DN Aリガーゼにより連結後、 大腸菌 J M 109 を形質転換した。 数個の形質転換体を選択、 培養し、 各形質転換体に保持される プラスミ ド DNAの精製を行った。 得られたプラスミ ド DNAの制限酵素地図を 作成し、 PH I 1 7 1が挿入されたプラスミ ド DNAを選択した。 該プラスミ ド DNAを p ECE L 2 1 1と命名した。 なお p E C E L 2 1 1を保持する大腸菌 JM1 0 9は Escherichai coli JM1 09/p ECE L 2 1 1と命名して工業 技術院生命工学工業技術研究所に寄託番号 F ERM B P— 6 9 3 9として寄託 されている。 実施例 2
本発明ポリペプチドの製造
( 1 ) ポリペプチドの発現
実施例 1の (3) で作製した p ECE L 2 1 1またはベクターコントロールの p ET 2 1 dを用いて大腸菌 B L 2 1 (DE 3) (ノバジヱン社製) を形質転換 した。 得られた各形質転換体をそれぞれ 1 00 μ g/m 1のアンピシリンを含む 5 m 1の L B培地に接種し、 3 7 °Cで好気的に一晩培養した。 この培養液をそれ ぞれ新鮮な 5 m 1の同じ培地に 1 %ずつ植菌して 3 7 °Cで好気的に培養し、 濁度 が OD600= 0. 4〜0. 7に達した時点で終濃度 1 mMとなるようにイソプロ ピル一 ]3— D—チォガラクトビラノシド (I PTG ;宝酒造 を加え、 培養 温度を 1 5 °Cとして更に一晩培養した。 培養終了後、 菌体を遠心分離して集め、 0. 5m 1の 1 0 OmMクェン酸ナトリウム緩衝液 (p H 5. 0) に懸濁し、 超 音波処理により破砕した。 これを遠心分離して上清を回収し、 無細胞抽出液とし た。
エンドダルカナーゼ、 セロビォヒドロラーゼなどのセルロース加水分解酵素で セルロースを分解した場合、 新たにグルコース残基の還元末端が生じる。 そこで 上記の大腸菌抽出液中に新たにグルコース残基の還元末端を生じさせるようなセ ルロース加水分解活性を有するポリぺプチドが存在しているかどうかを確認する ために、 カルボキシメチルセルロース (CMC) を基質とし、 単位反応時間にお ける還元末端の増加量をパーク ·アンド ·ジョンソン (Park & Johnson) 法によ り測定した。
すなわち、 1 %濃度になるように CMC (シグマ社製) を 1 0 OmMクニン酸 ナトリウム緩衝液 (p H 5. 0) に溶解して CMC溶液を調製し、 CMC溶液 5 0 1 と 1 00 mMタエン酸ナトリゥム緩衝液 ( p H 5. 0 ) で希釈した無細胞 抽出液 5 0 μ 1を混合後、 ミネラルオイルを重層し、 98°Cで 6 0分間保温後、 遠心分離して水層を回収した。 この反応液 1 0 μ 1、 90 μ Iの水、 1 00 μ 1 の炭酸シアン化物溶液 (5. 3 gの炭酸ナトリウムと 0. 6 5 gのシアン化カリ ゥムを 1 リ ットルの水に溶解したもの) 、 および 1 00 /i lの 0. 05%フェリ シアン化力リゥム水溶液を混合し、 沸騰湯浴中 1 5分間反応させた。 反応液と 5 00 μ 1の鉄ミョゥバン液 (1. 5 gの鉄ミョゥバンと 1 gのラウリル硫酸ナト リウム (SD S) を 1 リッ トルの 0. 1 5 N硫酸に溶解したもの) を混合して 1 5分間室温で放置後、 6 9 0 nmの吸光度を測定した。 還元末端量は、 濃度既知 のグルコースを用いて検量線を作成し、 グルコース換算量として求めた。
なお、 CMC分解活性 1単位 (U) は、 上記反応系において 1分間に 1 mo 1のグルコースに相当する還元力を増加させる活性量とする。
このようにして求めた各無細胞抽出液の CMC分解活性量を表 1に示す。 すな わち、 表 1は、 上記のようにして調製された無細胞抽出液中に検出された、 9 8 °Cにおける C M C分解活性を示した表である。
Figure imgf000021_0001
表 1に示すように、 p E C E L 2 1 1で形質転換された大腸菌の無細胞抽出液 に明らかな CMC分解活性が検出された。 なお、 p ET 2 1 dで形質転換された 大腸菌の無細胞抽出液には CMC分解活性は認められなかった。 したがって、 ピ ロコッカス .ホリコシィ OT 3ゲノムにおけるオープンリーディングフレーム P H 1 1 7 1より発現したポリペプチドは新たにグルコース残基の還元末端を生じ させるようなセノレ口ース加水分角军活性を有することが明らかとなった。
( 2 ) 発現ポリぺプチドが有するセルロース加水分解活性の同定
検討に先立ち下記方法により発現ポリぺプチド溶液を調製した。
p ECE L 2 1 1を保持する大腸菌 B L 2 1 (DE 3) を 5 0 /z gZm lのァ ンピシリンを含む 1 Om 1の LB培地接種し、 37°。で1晚培養した。 これを 1 リットルの上記培地に植菌し、 37°Cで 2. 5時間培養後、 培養容器を氷冷し、 終濃度 0. ImMになるように I PTGを添加した後、 20°Cで 1晚培養した。 遠心によって菌体を集め、 5 Om 1の 2 OmMリン酸ナトリウム緩衝液 (pH7. 0) に懸濁し、 超音波処理の後、 遠心によって上清を得た。 この遠心上清を 9
5。じで 10分間処理し、 さらに遠心して上清を得た。 こうして得た遠心上清を以 下、 発現ポリぺプチド溶液として使用した。
発現したポリペプチドが有するセルロース加水分解活性の同定は下記方法によ り行なった。 すなわち、 各種基質に発現ポリペプチド溶液を作用させ、 生成物を 薄層クロマトグラフィーにより同定した。
まず、 リン酸膨潤セルロースを基質に用いた。 リン酸膨潤セルロースは下記の 方法により調製した。
ァビセル S F (旭化成社製) 2 gを 50 m 1の氷冷した 85 %リン酸に徐々に 加え、 時々超音波処理をしながら氷上で撹拌してアビセル S Fを溶解した。 これ を 1. 5リットルの氷水に投入し、 セルロースゲルを遠心分離で回収した。 セル ロースゲルを水で 6回洗浄してリン酸を除き、 4 Om lの 0. 1Mクェン酸ナト リウム緩衝液 (pH5. 0) に懸濁した。 これをリン酸膨潤セルロースとして以 下の実験に用いた。
リン酸膨潤セルロース 75 1に発現ポリべプチド溶液 75 μ 1を加え、 9 8。じで 8時間反応させた。 反応液 60 μ 1に等量のァセトニトリルを加えて混合 し、 遠心によって得た上清を減圧下乾固した。 これを 10 / 1の水に溶解し、 2 μ 1をシリカゲル薄層クロマトグラフィーに供した。 薄層プレートはシリカゲル 60 F254 (メルク社製) 、 展開溶媒はエタノール:ブタノール:水 =5 : 5 : 1 を用い、 2回の展開を行った。 展開後の薄層プレートにオノレシノール一硫酸試薬 [オルシノール (シグマ tt ) 400mgを 22. 8mlの硫酸に溶解し、 水を 加えて 20 Om 1 としたもの] を噴霧し、 ホットプレートで加熱してスポットを 観察した。
その結果、 セ口ビオースが生成することが明らかになつた。
ついで各種オリゴ糖を基質として用いた。 セロビオース (シグマ ¾ ) 、 セロトリオース、 セロテトラオースまたはセロ ペンタオース (以上生化学工業社製) を 1 % (w/ v ) になるように 0 . 1 M M E S - N a O H緩衝液 ( p H 6 . 0 ) に溶解し、 ォリゴ糖溶液を調製した。 発 現ポリぺプチド溶液を上記 M E S緩衝液で 1 0倍、 5 0倍または 2 5 0倍希釈し たもの 2 5 μ 1にオリゴ糖溶液 2 5 1を加え、 9 8 °Cで 2 0分間反応させた。 対 照として希釈した発現ポリぺプチド溶液の代りに上記 ME S緩衝液を加えたもの、 ォリゴ糖溶液の代りに上記 M E S緩衝液を加えたものを同時に反応させた。 反応 後、 遠心分離を行いその上清 1 μ 1を上記リン酸膨潤セルロースを基質として用 いた場合と同様のシリカゲル薄層クロマトグラフィーに供した。 なお、 基質がセ ロビオース、 セロトリオース、 セロテトラオースの場合は 2回、 セロペンタォー スの場合は 3回の展開を行つた。
発現ポリペプチド溶液を加えない反応の場合、 セロビオース、 セロトリオース、 セロテトラオース、 セロペンタオースの各基質のスポットが検出された。 基質を 加えない反応の場合、 スポッ トは全く検出されなかった。 発現ポリペプチド溶液 と基質を加えて反応を行った場合、 セロビオース以外の全てのオリゴ糖から未分 解の基質より R f 値の大きいスポットを与える物質が生成しており、 その量は加 えた発現ポリぺプチド溶液量に依存して増加した。
上記と同様にオリゴ糖を基質として反応を行った。 ただし、 発現ポリペプチド 溶液の希釈倍率は 1 0倍、 反応時間は 2時間とした。 反応液の遠心上清を上記と 同じ条件のシリカゲル薄層クロマトグラフィーにより分析した。
その結果、 セロビオース以外の各基質はほぼ完全に消費され、 セロトリオース、 セロテトラオースからはセロビオースが生じていた。 セロペンタオースからはセ 口 トリオースとセロビオースが生じていた。 いずれのオリゴ糖を基質とした場合 も、 主な分解産物はセ口ビオースであった。
上記結果より、 ピロコッカス ·ホリコシィ O T 3ゲノムにおけるオープンリー デイングフレーム P H I 1 7 1より発現したポリペプチドはセロビォヒ ドロラー ゼ活性を有することが明らかとなった。 実施例 3 本発明のポリべプチドが有するセロビォヒドロラーゼ活性の理化学的性質 本実施例で使用した本発明のポリペプチド溶液は、 実施例 2— (2) で調製し たものである。 また、 セロビォヒドロラーゼ活性は、 1) CMCを基質として生 成するセロビオース量を還元糖量としてパーク 'アンド 'ジョンソン法で測定し た CMC分解活性、 2) p—ニトロフエ二ルー jS— D—セロビオシド (pNP
C) を基質として生成するセロビオース量を p—ニトロフエノール量として測定 した pNPC分解活性、 または 3) 4—メチルゥンベリフェリル一j3—D—セロ ビオシド (4—MUC) を基質として生成するセロビオース量を 4—メチルゥン ベリフエロン (4— MU) 量として測定した 4—MUC分解活性、 として測定し た。
(1) 反応 pH依存性
pH2. 8、 3. 8、 4. 9および 6. 0の 0. 2Mクェン酸ナトリウム緩衝 液、 pH4. 6、 5. 5および 6. 5の 0. 2M MES— NaOH緩衝液、 H 5. 6、 6. 6および 7. 7の 0. 2M T r i s— HC 1緩衝液および p H 7. 7、 8. 7および 9. 8の 0. 2 Mグリシン一 N a OH緩衝液を調製した。 なお、 これらの p Hは 80°Cでの測定値である。
水で 50倍希釈した本発明のポリぺプチド溶液 50 μ 1、 2 % CMC水溶液 25 // 1および上記緩衝液 25 1を混合し、 98°Cで 20分間反応させた。 反 応液の遠心上清に含まれる還元糖量をパーク ·アンド ·ジョンソン法で測定し、 CMC分解活性を計算した。
その結果を図 1に示す。 図 1は反応時の p Hと CMC分解活 1"生の関係を示す図 であり、 横軸は pH、 縦軸は CMC分解活性 (相対値、 %) を示す。 白丸 (〇) はクェン酸ナトリゥム緩衝液、 黒丸 (秦) は ME S— N a〇H緩衝液、 白四角 (□) は T r i s— HC 1緩衝液、 黒四角 (画) はグリシン— N a OH緩衝液を 示す。
その結果、 本発明のポリペプチドは pH4. 9〜6. 5で最大の活 1"生を示した c
(2) 反応温度依存性
本発明のポリペプチド溶液を 0. 1M ME S— NaOH緩衝液 (pH6. 0) で希釈したもの 50 μ 1に 1 % CMCの 0. 1M ME S— NaOH緩衝液 (pH6. 0) 溶液 50 μ 1を加え、 37、 65、 98、 108または 1 1 3°C で 20分間反応させた。 生じた還元糖をパーク 'アンド 'ジョンソン法で測定し、 CMC分解活性を求めた。
その結果を図 2に示す。 図 2は反応温度と本発明のポリぺプチドの CMC分角军 活性の関係を示す図であり、 横軸は温度 (°C) 、 縦軸は CMC分解活性 (相対 値、 %) を示す。
その結果、 本発明のポリペプチドは 108°Cで最大の CMC分解活性を示し、 90 °Cで最大活性の約 80%、 80 °Cで最大活性の約 60 %の活性を示した。
(3) 塩濃度の影響
本発明のポリペプチド溶液を水または 1M、 2M、 3M、 4M若しくは 5M
N a C 1で 50倍に希釈した。 希釈した本発明のポリべプチド溶液 50 μ 1に 1% CMCの 0. 1M MES— Na OH緩衝液 (pH6. 0) 溶液 50 μ 1 を加え、 98°Cで 20分間反応させた。 生じた還元糖をパーク 'アンド 'ジョン ソン法で測定し、 CMC分解活"生を求めた。
その結果を図 3に示す。 図 3は Na C 1濃度と本発明のポリペプチドの CMC 分解活性の関係を示す図であり、 横軸は Na C l濃度 (M) 、 縦軸は CMC分解 活性 (相対値、 %) を示す。
その結果、 本発明のポリペプチドは 0. 5〜0. 6M Na C l存在下で最大 の C M C分解活性を示した。
(4) pH安定性
本発明のポリぺプチド溶液 25 1 と実施例 3— ( 1 ) で調製した各緩衝液 2 5 μ 1を混合し、 95°Cで 10分間加熱した。 この加熱処理液を水で 50倍希釈 し、 本希釈液 50 1に 1 % CMCの 0. 1M ME S— N a OH緩衝液 (p H6. 0) 溶液 5 を加え、 98 °Cで 20分間反応させた。 反応液の遠心上 清に含まれる還元糖量をパーク 'アンド,ジョンソン法で測定し、 CMC分解活 性を計算した。
その結果を図 4に示す。 図 4は 95°C、 10分間加熱処理時の pHと残存 CM C分解活性の関係を示す図であり、 横軸は熱処理時の pH、 縦軸は残存 CMC分 解活性 (U/m 1 ) を示す。 白丸 (〇) はクェン酸ナトリウム緩衝液、 黒丸 (·) は ME S—N a OH緩衝液、 白四角 (口) は T r i s— HC 1緩衝液、 黒 四角 (騸) はグリシン一 N a OH緩衝液を示す。
その結果、 本発明のポリぺプチドが有する CMC分解活性は p H 5〜 7で最大 の安定性を示した。
(5) 熱安定性
CMCを 0. 1M MES_NaOH緩衝液 (pH6. 0) に溶解し、 1% CMC溶液 (pH6. 0) とした。 本発明のポリペプチド溶液 50 μ 1に上記 Μ E S緩衝液 50 μ 1を加え、 95°Cで 0、 1、 5または 24時間加熱処理した。 この加熱処理物を遠心分離して得た上清を上記 ME S緩衝液で 50倍、 200倍 または 500倍希釈したもの 50 / 1に 1% CMC溶液 50 /i 1を加え、 9
8°Cで 20分間反応を行った。 反応液中の還元糖量をパーク ·アンド ·ジョンソ ン法により測定し、 CMC分解活性を求めた。
その結果を図 5に示す。 図 5は加熱処理時間と加熱処理後の残存活性の関係を 表す図であり、 横軸は加熱処理時間 (時間) を、 縦軸は加熱処理後の残存活性 (%) を示す。
その結果、 本発明のポリぺプチドは 95 °Cで 24時間加熱後に約 90 %の CM C分解活性を有していた。
(6) 合成基質に対する分解活性
本発明のポリペプチド溶液を 0. 1M MES— NaOH緩衝液 (pH6. 0) で 1倍、 2倍、 5倍、 10倍または 20倍希釈し、 その 50 // 1に 10mM pNPCの 0. 1M MES— N a OH緩衝液 (pH 6. 0 ) 溶液 50 μ 1を力口 え、 98 °Cで 20分間反応を行った。 遠心分離を行い、 405 nmにおける上清 の吸光度を測定し、 遊離されたパラニトロフエノール (pNP) の量より pNP C分解活性を求めた。
その結果を図 6に示す。 図 6は本発明のポリペプチド溶液の希釈倍数と各希釈 液の p N P C分解活性との関係を示す図であり、 横軸は希釈倍数の逆数、 縦軸は pNPC分解活性 (mU/m 1 ) を示す。
その結果本発明のポリぺプチド溶液濃度依存的に p N P C分解活性が増加した
(7) グルコースおよびセロビオースによる阻害 0、 10、 20、 50、 100もしくは 20 OmMのグルコースまたは 0、 5、 10、 25もしくは 5 OmMのセロビオース、 0. 4、 0. 8、 1. 2または 1· 6 mMの pN PCおよび本発明のポリペプチド溶液を含む 5 OmM ME S-N a OH緩'衝液 (pH6. 0) を 98 °Cで 20分間反応させ、 405 nmにおける 吸光度を測定した。 横軸にグルコースまたはセロビオースの濃度、 縦軸に 405 nmにおける吸光度の逆数をとつてプロットし、 各 pN PC濃度での点を結んだ 直線の交点を求めた。 この交点の横軸の値の符号を逆にしたものが阻害定数 K i となる。
この結果、 本発明のポリべプチドが有する pNPC分解活性はグルコースによ る阻害は殆ど受けず、 K iは算出出来なかった。 一方セ口ビオースによる K iは 212mMであった。
(8) 各種試薬の及ぼす影響
0、 0. 5、 1、 2または 1 OmMの C o C 12、 CuC l 2、 C a C 12、 F e C 13、 Z n C 12、 Mg C 12、 ジチオスレィ トール (DTT) またはェチレ ンジァミン四酢酸 (EDTA) 、 5mMの p—ニトロフエ二ルー ]3— D—セロビ オシド ( p N P C ;シグマ社製) および本発明のポリぺプチド溶液を含む 50m M MES—NaOH緩衝液 (pH6. 0) を 98°Cで 20分間反応させ、 40 5 nmにおける吸光度を測定した。 p—ニトロフエノーノレ (pNP) 濃度と 40 5 n mにおける吸光度の関係を示す検量線から p N P C分解活性を計算した。 な お、 本発明のポリペプチドが有する pNPC分解活性 1単位 (U) は、 上記反応 液において 1分間に 1 μπιο 1の pNPを遊離する量と定義した。
その結果を図 7に示す。 図 7は各種試薬と p N P C分解活性の関係を示す図で あり、 横軸は各種試薬濃度 (mM) 、 縦軸は pN PC分解活性 (相対値、 %) を 示す。 図 7において白丸 (〇) は CoC l 2を、 黒丸 (參) は CuC l 2を、 白 四角 (口) は Ca C l 2を、 黒四角 (画) は F eC l 3を、 白三角 (△) は Zn C 12を、 黒三角 (▲) は MgC 12を、 白ひし形 (◊) は DTTを、 黒ひし形 (♦) は EDTAを示す。
その結果、 DTTによって本発明のポリペプチドの pNPC分解活性は阻害さ れず、 0. 5mMのCu2 +、 F e 3+および Z n 2 +によって約 90%阻害され、 lmMのCo2+、 Ca 2 +、 M g 2+および E D T Aによって約 50 %阻害された。
(9) 本発明のポリペプチドの精製
実施例 2— (2) と同様の方法で発現ポリペプチド溶液を調製した。 但し熱処 理の温度は 75 °C、 時間は 20分間とした。
上記熱処理後の遠心上清を、 ハイトラップ Qカラム (フアルマシァネ ± ) を用 いた陰イオン交換クロマトグラフィ一に供した。 5m lのハイトラップ Qカラム 2本を直列に連結し、 サンプルをアプライした。 流速を毎分 2m 1に設定し、 5 OmM MES—Na OH緩衝液 (pH6. 0) から 200mM N a C 1を含 む同緩衝液までの直線濃度勾配 (20分間) で溶出した。 段階希釈した各画分 5 Ομ ΐに 6mM 4— MUCの l O OmM ME S— N a OH緩衝液 ( p H 6.
0) 溶液 50 1を加え、 98°Cで 20分間反応させた。 励起波長 355 nm、 蛍光波長 460 nmで蛍光値を測定し、 遊離された 4一 MU量より 4一 MUC分 解活性を計算した。
陰イオン交換カラムクロマトグラフィ一の活性画分をハイ トラップ ·フエニル セファロース 6ファストフロー ( 1 o w s ub) (フアルマシア社製) を用い た疎水カラムクロマトグラフィ一に供した。 陰イオン交換カラムクロマトグラフ ィ一の活性画分に飽和硫安を加えて 20 %飽和とし、 20 %飽和硫安で平衡化し た上記疎水カラム (1ml容) にアプライした。 流速を毎分 lm 1に設定し、 1 5分かけて 20%飽和硫安を含む上記 ME S緩衝液から硫安を含まない上記 ME S緩衝液までの直線濃度勾配で溶出した。 ほぼ 0%飽和硫安で溶出された画分に
4—MU C分解活性が検出された。
(10) 比活性の測定
疎水カラムクロマトグラフィ一の活性画分のうち 2 m 1を限外ろ過によって脱 塩し、 凍結乾燥した後、 気相 HC 1存在下、 135°Cで 3時間加水分解した。 加 水分解物を 100 μ 1の水に溶解し、 50/ lをァミノ酸分析計 (日立製作所製、 L-8500) で分析したところ、 分析した試料には 3. 61 gのタンパクが 含まれていた。 4— MUC分解活性にして 6 OmUのポリペプチドをアミノ酸分 析に供したことから、 比活性は 17. OUZnigであった。 得られた精製ポリべ プチドは、 実施例 3において決定した理化学的性質と同様の性質を示した。 (1 1) N末端アミノ酸配列の分析
実施例 3— (9) で調製した精製ポリペプチドを常法に従って SDS—ポリア クリルアミ ドゲル電気泳動に供した。 電気泳動終了後、 10mM DTTを含む 10 OmMコハク酸緩衝液 (pH5. 8) でゲルを洗い、 1 mM 4— MUCを 含む 10 OmMコハク酸緩衝液 (pH 5. 8) 中、 60°Cで 1時間反応させた。 ゲルに 340 nmの紫外線を照射したところ蛍光を発するバンドが観察された。 ゲルに含まれるタンパクをセミ ドライブロッテイング法によってポリビニリデ ンジフルオリ ド (PVDF) 膜に転写し、 クーマシ一.ブリリアント 'ブルー (CBB) で染色した。 4— MUC分解活性を示したバンドの位置に CBBで染 色されるバンドが見られたのでこの部分の PVDF膜を切り取り、 ペプチドシー タエンサ一で N末端アミノ酸配列を分析した。
その結果、 N末端 6残基のアミノ酸配列は G 1 u-A s n-Th r -T h r - Ty r— G 1 nであった。 よって、 大腸菌で発現した本発明のポリペプチドは N 末端側 28アミノ酸残基が除去されていることが明らかになった。 実施例 4
枯草菌を用いた本発明のポリべプチドの製造
(1) 枯草菌用発現ベクターの構築
WO 97/21823記載のプラスミ ド p NAPS 1を構築後、 H i n d i I I (宝酒造社製) で消化後ァガロースゲル電気泳動に供し、 枯草菌の複製起源、 サブチリシン遺伝子のプロモーター、 およびサブチリシン分泌シグナルをコード する配列などを含む約 4. 5 K bの D N A断片を常法に従つてァガ口一スゲルよ り抽出精製した。 一方、 pUC 1 19 (宝酒造社製) を H i n d I I Iで消化し、 アルカリホスファターゼにより脱リン酸ィ匕処理した。 これら DNA断片を DNA リガーゼにより連結後、 常法に従って大腸菌の形質転換、 形質転換体の培養、 お よびプラスミ ドの抽出精製を行った。 得られたプラスミ ドの中から pUC l 1 9 上の 1 a cプロモーターとサブチリシン遺伝子のプロモーターが逆向きに該 4. 5 Kb DN A断片が挿入されたプラスミ ドを選択し、 pUC 1 1 9— BVと命名 した。 つぎに、 実施例 1で構築した p E C E L 101を B a mH Iで消化後ァガロー スゲル電気泳動に供し、 オープンリーディングフレーム PH 1 1 71の 19番目 のロイシン残基から終止コドンまでをコードする約 1. 5KbのDNA断片を常 法に従ってァガロースゲルより抽出精製した。 一方、 先に得た pUC l 19-B Vを B a m H Iで消化後ァガロースゲル電気泳動に供し、 枯草菌の複製起源など を含む約 4. 5 K bの D N A断片を常法に従ってァガロースゲルより抽出精製し た。 これら DNA断片を DNAリガーゼにより連結後、 常法に従って枯草菌 DB 104の形質転換、 形質転換体の培養、 およびプラスミ ドの抽出精製を行った。 得られたプラスミ ドの中からベクタ一上のサブチリシン遺伝子プロモータ一と 同じ向きにオープンリーディングフレーム PHI 1 71が挿入されたプラスミ ド を選択し、 pNCEL 101と命名した。 このプラスミ ド pNCEL 101は、 枯草菌中で構成的に働くサブチリシン遺伝子のプロモーターの下流に、 N末端に 29アミノ酸残基からなるサブチリシン遺伝子由来の分泌シグナル配列を含むベ クタ一由来の 31アミノ酸残基からなるリーダー配列が PH 1 1 71の 1 9番目 のロイシン残基のところでつながった融合ポリペプチドをコードしている。 なお、 このプラスミ ドの選択中に、 ベクター上のサブチリシン遺伝子プロモーターと逆 向きにオープンリーディングフレーム PHI 1 71が挿入されたプラスミ ドおよ びベクターが自己連結したプラスミ ドも得られた。 これらプラスミ ドを pNCE
LO O 1および pNBVとそれぞれ命名し、 発現チェック用のベクターコント口 ールとして用いた。
(2) 本発明ポリペプチドの発現
上記のように得られた p NCE L 101、 pNCEL001、 および pNBV で形質転換された枯草菌 DB 104をそれぞれ 10 g/m 1のカナマイシンを 含む LB培地に接種し、 37 °Cで好気的に一晩培養した。 得られた培養液をその まま実施例 2— (1) の CMC分解活性測定操作における無細胞抽出液に換えて 用いることにより、 培養液中の CMC分解活性を測定した。
すなわち、 50 μ 1の各枯草菌形質転換体培養液と 50μ 1の l O OmMタエ ン酸ナトリウム緩衝液 (pH 5. 0) により調製された 1 %の CMC溶液を混合 後、 ミネラルオイルを重層し、 98°Cで 60分間保温後、 遠心分離して上清を回 収した。 この反応液の還元力を実施例 2— (1) と同様にパーク 'アンド ·ジョ ンソン法により測定した。 その結果、 pNCEL l O lにより形質転換された枯 草菌 DB 104の培養液の反応液は、 ベクターが自己連結したプラスミ ド pNB Vにより形質転換された D B 104の培養液の反応液 (対照) と比較して明らか に高い還元力を示した。 対照の値を差し引いた還元力をグルコース換算量として CMC分解活"生を計算すると 1 m 1培養液当たり 0. 63ミリユニットとなった。 なお、 逆向きに PHI 1 71が挿入されたプラスミド pNCELO 01の場合は pNB Vの場合と同等の還元力し力、示さなかつた。 実施例 5
本発明ポリぺプチドを用いた紙の分解
キムワイプ (クレシァネ: h^) 25mgを約 1 mm角に裁断し、 480 1の 5 OmM ME S-Na OH (pH6. 0) と 2 O μ 1の上記緩衝液または実施例 2— ( 1 ) で調製した p E C E L 21 1で形質転換された大腸菌の無細胞抽出液 を加えて 95 °Cで 66時間反応させた。 遠心上清 50 μ 1に 100 μ 1のァセト 二トリルを加え、 遠心によって不溶物を除いた後、 減圧下乾固した。 10 μ 1の 50 %ァセトニトリル水溶液に再溶解し、 1 μ 1を実施例 2— ( 2 ) に記載の方 法でシリ力ゲル薄層クロマトグラフィ一に供した。
その結果、 p E C E L 21 1で形質転換された大腸菌の無細胞抽出液添加試料 においてのみセロビオースと同じ R f値を示すスポットが観察された。 産業上の利用の可能性
本発明によって、 セロビォヒドロラーゼ活性を有するポリペプチドが提供され る。 本発明のポリペプチドは高い耐熱性を有し、 セルロースを効率よく分解する ことができる。 また、 本発明のポリペプチドと高度好熱菌由来のエンドダルカナ —ゼ、 ェキソ一 1, 4一 ]3— D—グノレコシダーゼ、 ]3— D—グノレコシダーゼと併 用する事によりセルロースから効率よくグルコースを製造することができ、 セル ロース系バイオマスの利用が容易になる。 配列表フリーテキスト
i> Q ID NO: 3 : Designed oligonucleotide primer designated as 1171FN to amplify a 1. 6-kb DNA fragment containing the open reading frame PHI 171.
SEQ ID NO: 4 : Designed oligonucleotide primer designated as 1171RA to amplify a 1. 6 - kb DNA fragment containing the open reading frame PHI 171.

Claims

請 求 の 範 囲
I . 配列表の配列番号 1記載のアミノ酸配列、 または該配列において、 1個以 上のアミノ酸残基の欠失、 付力 B、 揷入もしくは置換の少なくとも 1つを有するァ ミノ酸配列で示され、 かつセ口ピオヒ ドロラーゼ活性を示すポリぺプチド。
2 . 耐熱性セ口ピオヒドロラーゼ活性を有する請求項 1記載のポリぺプチド。
3 . 請求項 1又は 2記載のポリぺプチドをコ一ドする核酸。
4 . 配列表の配列番号 2記載の塩基配列で示される請求項 3記載の核酸。
5 . 請求項 3記載の核酸にストリンジェントな条件でハイブリダイズ可能であ り、 かつセロビォヒドロラーゼ活性を示すポリペプチドをコードする核酸。
6 . 耐熱性セ口ピオヒ ドロラーゼ活性を示すポリぺプチドをコードする請求項 5記載の核酸。
7 . 請求項の 3〜 6レ、ずれか 1項記載の核酸を含む組換え D N A。
8 . 請求項 7記載の組み換え D N Aにより形質転換された形質転換体。
9 . 請求項 8記載の形質転換体を培養し、 該培養物中よりセロビォヒ ドロラ一 ゼ活性を有するポリぺプチドを採取する工程を包含する請求項 1記載のポリぺプ チドの製造方法。
1 0 . β— 1 , 4結合を介した D—ダルコビラノースの重合体に、 請求項 1又 は 2記載のポリべプチドを作用させてセロビオースを遊離させる工程を包含する β— 1, 4結合を介した D—ダルコビラノースの重合体の分解方法。
I I . セロビォヒドロラーゼ活性を示すポリペプチドであって、 セロビオース による阻害定数 K iが 1 O mM以上であるポリペプチド。
1 2 . 9 5 °Cにおける 5時間の処理によって 2 0 %以上のセロビォヒ ドロラ一 ゼ活性を保持する請求項 1 1記載のポリペプチド。
PCT/JP1999/007009 1998-12-24 1999-12-14 Polypeptides WO2000039288A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000591180A JP4199422B2 (ja) 1998-12-24 1999-12-14 ポリペプチド
AU16856/00A AU1685600A (en) 1998-12-24 1999-12-14 Polypeptides
US09/869,197 US6566113B1 (en) 1998-12-24 1999-12-14 Polypeptide having cellobiohydrolase activity
EP99959804A EP1142992A4 (en) 1998-12-24 1999-12-14 POLYPEPTIDES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/366237 1998-12-24
JP36623798 1998-12-24

Publications (1)

Publication Number Publication Date
WO2000039288A1 true WO2000039288A1 (fr) 2000-07-06

Family

ID=18486274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007009 WO2000039288A1 (fr) 1998-12-24 1999-12-14 Polypeptides

Country Status (7)

Country Link
US (1) US6566113B1 (ja)
EP (1) EP1142992A4 (ja)
JP (1) JP4199422B2 (ja)
KR (1) KR100682599B1 (ja)
CN (1) CN1203174C (ja)
AU (1) AU1685600A (ja)
WO (1) WO2000039288A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517499A (ja) * 2003-04-01 2007-07-05 ジェネンコー・インターナショナル・インク 変異体フミコーラ・グリセアcbh1.1
JP2009273379A (ja) * 2008-05-13 2009-11-26 National Institute Of Advanced Industrial & Technology セルロースの糖化方法
JP2014502144A (ja) * 2010-10-06 2014-01-30 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド バリアントcbhiポリペプチド
JP2015173602A (ja) * 2014-03-13 2015-10-05 本田技研工業株式会社 酵素の自然変異体の取得方法及び超耐熱性セロビオハイドロラーゼ
JP2016111953A (ja) * 2014-12-12 2016-06-23 本田技研工業株式会社 耐熱性セロビオハイドロラーゼ
JP2016167985A (ja) * 2015-03-11 2016-09-23 本田技研工業株式会社 耐熱性セロビオハイドロラーゼ
US9611487B2 (en) 2012-12-21 2017-04-04 Greenlight Biosciences, Inc. Cell-free system for converting methane into fuel and chemical compounds
US9637746B2 (en) 2008-12-15 2017-05-02 Greenlight Biosciences, Inc. Methods for control of flux in metabolic pathways
US9688977B2 (en) 2013-08-05 2017-06-27 Greenlight Biosciences, Inc. Engineered phosphoglucose isomerase proteins with a protease cleavage site
JP2017205106A (ja) * 2010-05-07 2017-11-24 グリーンライト バイオサイエンシーズ インコーポレーテ 酵素リロケーションにより代謝経路のフラックスを制御する方法
US10036001B2 (en) 2010-08-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Recombinant cellular iysate system for producing a product of interest
US10858385B2 (en) 2017-10-11 2020-12-08 Greenlight Biosciences, Inc. Methods and compositions for nucleoside triphosphate and ribonucleic acid production
US10954541B2 (en) 2016-04-06 2021-03-23 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
US11274284B2 (en) 2015-03-30 2022-03-15 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210182A (ja) * 2001-11-14 2003-07-29 Rakuto Kasei Industrial Co Ltd 好熱性エンドグルカナーゼ
CA2865180A1 (en) * 2002-08-16 2004-02-26 Genencor International, Inc. Novel variant hyprocrea jecorina cbh1 cellulases
BRPI0412279A (pt) * 2003-07-02 2006-09-19 Diversa Corp glucanases, ácidos nucléicos codificando as mesmas e métodos para preparar e aplicar os mesmos
JP4938688B2 (ja) * 2005-01-06 2012-05-23 ノボザイムス,インコーポレイティド セロビオヒドロラーゼ活性を有するポリペプチド及びそれをコードするポリヌクレオチド
NZ594810A (en) * 2005-03-15 2012-12-21 Verenium Corp Cellulases, nucleic acids encoding them and methods for making and using them
FI120045B (fi) * 2005-12-22 2009-06-15 Roal Oy Selluloosamateriaalin käsittely ja siinä käyttökelpoiset entsyymit
DK2420570T3 (en) * 2006-02-10 2014-03-10 Bp Corp North America Inc Arabinofuranosidaseenzymer, nucleic acids encoding them, and methods for making and using them
CN106222185B (zh) * 2006-08-04 2021-12-03 维莱尼姆公司 葡聚糖酶、编码它们的核酸及制备和使用它们的方法
WO2008095033A2 (en) * 2007-01-30 2008-08-07 Verenium Corporation Enzymes for the treatment of lignocellulosics, nucleic acids encoding them and methods for making and using them
JP2009077703A (ja) * 2007-09-04 2009-04-16 Kazusa Dna Kenkyusho 形質転換植物
CN101619309B (zh) * 2009-06-24 2011-10-05 郑荣 一种高效分解纤维素的酶组合物
US9624482B2 (en) 2009-09-28 2017-04-18 Sandia Corporation Thermophilic cellobiohydrolase
US8771994B1 (en) * 2013-02-12 2014-07-08 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US8778641B1 (en) * 2013-02-12 2014-07-15 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US8993275B2 (en) * 2013-02-12 2015-03-31 Novozymes, Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
US8778640B1 (en) * 2013-02-12 2014-07-15 Novozymes Inc. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same
CN104561071A (zh) * 2013-10-29 2015-04-29 天津强微特生物科技有限公司 一种表达内切葡聚糖酶的重组大肠杆菌的构建方法
CN105176949B (zh) * 2015-10-21 2018-07-13 青岛蔚蓝生物集团有限公司 一种纤维二糖水解酶突变体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044361A1 (en) * 1996-05-22 1997-11-27 Recombinant Biocatalysis, Inc. Endoglucanases

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656057A1 (en) * 1993-05-10 1995-06-07 Gist-Brocades N.V. Combined action of endoglucanases and cellobiohydrolases
CN1198923C (zh) * 1997-01-31 2005-04-27 诺沃奇梅兹有限公司 一种耐热的内切-β-1,4-葡聚糖酶

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044361A1 (en) * 1996-05-22 1997-11-27 Recombinant Biocatalysis, Inc. Endoglucanases

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1142992A4 *
YUTAKA KAWARABAYASI ET AL: "Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3", DNA RESEARCH, vol. 5, no. 2, 1998, pages 55 - 76, XP002923615 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125341A (ja) * 2003-04-01 2011-06-30 Genencor Internatl Inc 変異体フミコーラ・グリセアcbh1.1
JP2007517499A (ja) * 2003-04-01 2007-07-05 ジェネンコー・インターナショナル・インク 変異体フミコーラ・グリセアcbh1.1
JP2009273379A (ja) * 2008-05-13 2009-11-26 National Institute Of Advanced Industrial & Technology セルロースの糖化方法
US9637746B2 (en) 2008-12-15 2017-05-02 Greenlight Biosciences, Inc. Methods for control of flux in metabolic pathways
US10006062B2 (en) 2010-05-07 2018-06-26 The Board Of Trustees Of The Leland Stanford Junior University Methods for control of flux in metabolic pathways through enzyme relocation
JP2017205106A (ja) * 2010-05-07 2017-11-24 グリーンライト バイオサイエンシーズ インコーポレーテ 酵素リロケーションにより代謝経路のフラックスを制御する方法
US10036001B2 (en) 2010-08-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Recombinant cellular iysate system for producing a product of interest
JP2014502144A (ja) * 2010-10-06 2014-01-30 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド バリアントcbhiポリペプチド
US9611487B2 (en) 2012-12-21 2017-04-04 Greenlight Biosciences, Inc. Cell-free system for converting methane into fuel and chemical compounds
US10421953B2 (en) 2013-08-05 2019-09-24 Greenlight Biosciences, Inc. Engineered proteins with a protease cleavage site
US9688977B2 (en) 2013-08-05 2017-06-27 Greenlight Biosciences, Inc. Engineered phosphoglucose isomerase proteins with a protease cleavage site
US9944914B2 (en) 2014-03-13 2018-04-17 Honda Motor Co., Ltd. Method for obtaining natural variant of enzyme and super thermostable cellobiohydrolase
JP2015173602A (ja) * 2014-03-13 2015-10-05 本田技研工業株式会社 酵素の自然変異体の取得方法及び超耐熱性セロビオハイドロラーゼ
JP2016111953A (ja) * 2014-12-12 2016-06-23 本田技研工業株式会社 耐熱性セロビオハイドロラーゼ
US10131892B2 (en) 2015-03-11 2018-11-20 Honda Motor Co., Ltd. Thermostable cellobiohydrolase
JP2016167985A (ja) * 2015-03-11 2016-09-23 本田技研工業株式会社 耐熱性セロビオハイドロラーゼ
US11274284B2 (en) 2015-03-30 2022-03-15 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
US10954541B2 (en) 2016-04-06 2021-03-23 Greenlight Biosciences, Inc. Cell-free production of ribonucleic acid
US10858385B2 (en) 2017-10-11 2020-12-08 Greenlight Biosciences, Inc. Methods and compositions for nucleoside triphosphate and ribonucleic acid production

Also Published As

Publication number Publication date
JP4199422B2 (ja) 2008-12-17
KR100682599B1 (ko) 2007-02-15
AU1685600A (en) 2000-07-31
US6566113B1 (en) 2003-05-20
KR20010099842A (ko) 2001-11-09
EP1142992A1 (en) 2001-10-10
EP1142992A4 (en) 2003-05-14
CN1334868A (zh) 2002-02-06
CN1203174C (zh) 2005-05-25

Similar Documents

Publication Publication Date Title
JP4199422B2 (ja) ポリペプチド
Hakamada et al. Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans
Ikeda et al. Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli
Jiao et al. A GH57 family amylopullulanase from deep-sea Thermococcus siculi: expression of the gene and characterization of the recombinant enzyme
AU2007244753B2 (en) Thermostable cellulase and methods of use
CN109355275B (zh) 高热稳定性β-葡萄糖苷酶突变体及其应用
Hatada et al. Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes α-1, 4 and α-1, 6 linkages in polysaccharides at different active sites
Koch et al. Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium, Fervidobacterium pennavorans Ven5
WO2012048334A2 (en) Novel fungal proteases
Gantelet et al. Purification and properties of a thermoactive and thermostable pullulanase from Thermococcushydrothermalis, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent
CN105647888B (zh) 内切几丁质酶及其编码基因和在生产几丁二糖中的应用
CN105695436A (zh) 耐热性β-木糖苷酶
US8778649B2 (en) Use of acidothermus cellulolyticus xylanase for hydrolyzing lignocellulose
CN109456954B (zh) 热稳定性提高的β-葡萄糖苷酶突变体及其应用
JP4228073B2 (ja) 高活性融合酵素
US8088612B2 (en) Thermostable cellulase and methods of use
KR101137020B1 (ko) 호열성 미생물 유래의 셀룰라아제 유전자
KR100921980B1 (ko) 노스탁속 균주 유래 아밀로플루란네이즈 및 이를 이용한고순도 말토올리고당의 제조방법
JP5062730B2 (ja) 改良耐熱性セルラーゼ
Mardina et al. Optimization of cellulase production from a thermohalophilic bacterium PLS 75 isolated from underwater fumaroles
Mesta et al. Construction of a chimeric xylanase using multidomain enzymes from Neocallimastix frontalis
KR101014802B1 (ko) 복합 탈분지 효소를 이용하여 전분으로부터 포도당을 제조하는 방법
KR101834493B1 (ko) 신규 베타-만노시다제 및 이의 생산방법
Nagayoshi et al. Characterization of β-glucosidase produced from Aspergillus awamori MIBA335
CN118086256A (zh) 一种中温α-淀粉酶及其基因和应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99816216.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2000 16856

Country of ref document: AU

Kind code of ref document: A

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017007774

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2000 591180

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999959804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09869197

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999959804

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020017007774

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999959804

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017007774

Country of ref document: KR