WO2000034542A1 - High strength cold rolled steel plate and method for producing the same - Google Patents

High strength cold rolled steel plate and method for producing the same Download PDF

Info

Publication number
WO2000034542A1
WO2000034542A1 PCT/JP1999/006791 JP9906791W WO0034542A1 WO 2000034542 A1 WO2000034542 A1 WO 2000034542A1 JP 9906791 W JP9906791 W JP 9906791W WO 0034542 A1 WO0034542 A1 WO 0034542A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
plate
cold
weight
steel
Prior art date
Application number
PCT/JP1999/006791
Other languages
English (en)
French (fr)
Inventor
Takeshi Fujita
Fusato Kitano
Yoshihiro Hosoya
Toru Inazumi
Yuji Yamasaki
Masaya Morita
Yasanobu Nagataki
Kohei Hasegawa
Hiroshi Matsuda
Moriaki Ono
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27564422&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000034542(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP03628699A external-priority patent/JP3570269B2/ja
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to EP99973310.8A priority Critical patent/EP1052302B2/en
Priority to DE69935125.1T priority patent/DE69935125T3/de
Publication of WO2000034542A1 publication Critical patent/WO2000034542A1/ja
Priority to US09/631,600 priority patent/US6494969B1/en
Priority to US10/122,860 priority patent/US6689229B2/en
Priority to US10/630,479 priority patent/US20040020570A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to a bow used for automobile outer panel panels such as hoods, fenders, side panels, and the like. Regarding the ⁇ method.
  • Takayasu Rei-satsu boards as steel plates for automobile outer panels such as hoods, fenders and side panels for the purpose of improving fuel efficiency.
  • the Takayasu cold bacterium plate has an even better sturdiness, so that the user can get a good view of the panelling after the pressing. It is required to have 14 types of N-synthetic type, such as heat resistance, overhanging property, and surface strain resistance (ability to generate non-uniform strain on a certain molding surface).
  • a pole with a C content of 30 ppm or less (based on g ⁇ 3 ⁇ 4 ⁇ and carbide forms such as Ti and Nb) ⁇ > ⁇ ⁇ , Si, P, etc.
  • a board has been proposed.
  • a steel sheet in which T is added to the C content of «g ⁇ 3 ⁇ 4 ⁇ and Mn is actively added is disclosed in Japanese Patent Application Laid-Open No. 5-263184.
  • Japanese Patent Application Laid-Open No. 5-78784 a steel sheet containing a large amount of Mn and further adding i or Nb is added with Mn to the Ti-added adhesive paste and further added Si and P contents.
  • Japanese Unexamined Patent Publication No. 5-46289 ⁇ Kaihei 5-195080 discloses a steel sheet in which the amount of C is 30 or more: 100 ppm and steel with Ti added to the steel which is regarded as the most iS ⁇ f. ing.
  • the Takayumi ashamed cold plate based on this type does not have excellent properties in composite formability such as sullenness, overhanging property, and surface distortion resistance, and has been demanded in recent years. Is not enough for automobiles and panels for automobiles. In particular, it is almost a ⁇ J ability to prevent the generation of undulations due to surface strain that hinders the fishiness of the panel coating.
  • the Takayose boat cold rolled board which is used for automobile panels, has the following characteristics: JOJI resistance, moldability for tailored blanks, and burr resistance against shearing. Strict requirements are also placed on the properties, surface properties, and the uniformity of the material inside the coil of the steel sheet supplied as the coil.
  • the composite formability such as stagnant property, overhang property, and surface strain resistance; resistance: ⁇ OJI property, fiber formability, burr resistance, surface property, and material uniformity in the coil.
  • the cold plate is shown below.
  • the steel sheet of the present invention 1 by weight, C: 0.0040 to 0.010%, Si: 0.05% or less, Mn: 0.10 to 1.20%, P: 0.01 to 0.05%, S: 0.02% or less, solAl: 0.01 to 0.1%, ⁇ .004% or less, 0: 0.003% or less, Nb: 0.01 to 0.20%, and the high bow boat refrigeration that satisfies the following formulas (1), (2), (3) and (4) Board.
  • C and Nb are the contents of C and Nb (S * 1 ⁇ 2), YP ttl ⁇ Inubow boat (MPa), and r is the r value (0, 45 for iHI ⁇ direction,
  • the mean ii3 ⁇ 4 and ⁇ in the 90 directions represent the ⁇ value (strain: mean ⁇ in the 0, 45, and 90 directions with respect to nii and JBi ⁇ in the range of ⁇ 5%.
  • the steel sheet 1 of the present invention includes a step of forming a rub of the steel containing T, a step of finishing the slab with the ffi of the Ar3 transformation or more and weaving the hot rolled sheet, Winding process with fig above 540 ° C and 50-85 ° / heated plate after winding. After the cold JEBS at the JET rate described above, the process is performed at a temperature of 680 to 880 ° C after the cold JEBS.
  • Invention steel sheet 2 Heavy M%, C: 0.0040-0.01%, Si: 0.05% or less, Mn: 0.1-: 1.0%, P: 0.01-0.05%, S: 0.02% or less, soLAl: 0.01-0.1% , N: 0.004% or less, Nb: 0.01 to 0.14Q / 0 , the balance is substantially composed of Fe and ri ⁇ JW impurities. Takayumi cold bacterium with a ⁇ value of 0.21 or more.
  • Invention steel sheet 3 Sft1 ⁇ 2, C: 0.0040-0.01%, Si: 0.05% or less, Mn: 0.1-: 1.0%, P: 0.01-0.05%, S: 0.02% or less, soLAl: 0.01-0.1%, N : 0.004% or less, Nb: 0.15% or less, the balance is substantially composed of Fe and ⁇ excited impurities, and satisfies the following equation (6).
  • Takayumi cold-rolled steel sheet whose n value calculated from two points of 10% is 0.21 or more.
  • Nb * Nb- (93/14)
  • XN, and C, N, and Nb represent the contents (weight *%) of the elements C, N, and Nb.
  • the steel sheet 3 of the present invention includes a step of 3 ⁇ 4igging a steel slab containing these elements, a step of finishing the slab with Ar3 ⁇ or more and weaving the thermobacterial plate, and The process of winding at 700 ° C ⁇ and the process of cold rolling the hot-rolled hot plate can be performed by the method of Takayubo cold plate.
  • Invention steel sheet 4 By weight%, C: 0.0040 to 0.01%, Si: 0.05% or less, Mn: 0.1 to: 1.0%, P: 0.01 to 0.05%, S: 0.02% or less, soLAl: 0.01 to 0.1 %, ⁇ : 0.004 %% or less, Nb: 0.01 to 0.14%, the balance is substantially composed of Fe and tl ⁇ J impurities, and satisfies the following equations (6) and (7) Takabow boat cold rolled steel plate.
  • Ceq C + (l / 50) X Si + (l / 25) X X ⁇ + (172) X XC, Si, ⁇ , ⁇ , ⁇ , Nb, is ⁇ . , Si, ⁇ , ⁇ , ⁇ , Nb content (weight *%), and TS indicates tensile bow 3 ⁇ 4
  • Invention steel sheet 5 Weight *%, C: 0.004 to 0.01%, P: 0.05% or less, S: 0.02% or less, solJ l: 0.01 to 0.1%, ⁇ : 0.004 ⁇ / ⁇ or less, i: 0.03% or less , Nb: containing an amount satisfying the following formula (8)
  • a high-strength cold beta plate whose volume fraction is 0.03 0.1%, and 70% or more of which is about 1040 nm.
  • C Nb represents the content (SM%) of the element C Nb.
  • the steel sheet 5 of the present invention comprises a step of weaving a steel slab containing these / ⁇ , and a step of heating the slab at a BET rate satisfying the following equations (9) to (1). And a step of cold iBi ⁇ TO hot-rolled steel sheet.
  • Equation (9) -; in (11), HR1 HR2 represents reduction 0/0) of the final pass before the final pass in the specification ⁇ IBi respectively.
  • Present steel sheet 6 SM%, C: 0.0040 0.010% Si: 0.05% or less, Mn: 0.10 ⁇ : 1.5% P: 0.01 0.05% S: 0.02% or less, soLAl: 0.01 0.1% ⁇ : 0 100 %%
  • Nb 0.036 0.14% is included, the force satisfies the following equation (12), and the average crystal tree is 10 m or less and the r value is 1.8 or more.
  • C Nb represents the content (weight M%) of 3 ⁇ 4 ⁇ C Nb.
  • the steel sheet 6 includes a step of forming a series of steel containing these ⁇ : » ⁇ rubbing, and a step of weaving the slab to a temperature of 1100 ° C to 1250 ° C and weaving ffiA 'by MSJHi.
  • the steel sheet according to the present invention can be produced by a method for producing a high-cooled ⁇ -sheet having a step of heating to 860T Ac3 and a step of tempering the resulting steel sheet at a rate of 0.4 L.0%.
  • C and Nb represent the contents of the elements C and Nb.
  • the steel sheet 7 of the present invention is produced by a process of
  • Fig. 2 shows the effect of (NbX12) / (CX93) on the difference in undulation height (AWca) before and after molding.
  • Figure 3 shows the Yoshida buckling test method.
  • Figure 4 shows the effect of YP, r value on plastic buckling height (YBT).
  • FIG. 5 shows the hat ⁇ K type ⁇ ⁇ method.
  • FIG. 6 shows r of the r value and the n value that affect the sticking property and the overhang property.
  • Fig. 7 shows a model of a front fender model.
  • Fig. 8 shows " ⁇ " in the equivalent strain distribution near ⁇ ff J of the front fender model molded article in Fig. 7.
  • FIG. 9 shows an equivalent strain distribution in the vicinity of the ⁇ fel portion of the steel sheet of the example of the present invention and a steel sheet which is incomparable with the example shown in FIG.
  • FIG. 11 shows the; ⁇ of (12/93) XN * / C on the r-value.
  • FIG. 12 shows ⁇ of (12/93) XNb * / C on YPE1.
  • FIG. 13 shows "extended forming S" ir.
  • FIG. 14 shows the (12/93) XNb * / C's effect on the height of the ⁇ ⁇ ⁇
  • FIG. 15 shows the output W.
  • FIG. 16 shows the fiber of (12/93) XNb * / C on the elongation rate of 3 ⁇ 4 ⁇ .
  • FIG. 17 shows a rectangular tube drawing W.
  • FIG. 18 shows the rinsing of TS on the limit of crack initiation and even on the force of ⁇ ⁇ .
  • Fig. 19 shows the distribution of fibers from the loaves on the average burr height.
  • Fig. 20 shows the distribution of lozenges on the height difference of burr heights.
  • FIG. 21 shows the effect of (bX 12) / (CX93) and C on the material uniformity H4 in the coil.
  • Fig. 22 shows the wisteria of the r value and the n value that affect the nada riability and the overhang property.
  • the steel sheet 1 of the present invention described above is a steel sheet particularly excellent in composite formability, and its ffl will be described below.
  • C forms carbonized carbides with Nb to make the steel high bow and raises the n value at low strain, thus improving the surface distortion resistance. If it is less than 0.0040%, the effect is small, and if it exceeds 0.010%, the ductility is reduced. Therefore, its content is made 0.0040 to 0.010%, more preferably 0.0050 to 0.0080%, and still more preferably 0.0050 to 0.0074%.
  • Si The content of Si is set to 0.05% or less because Si, if added in reverse, deteriorates the MIS property of the cold-rolled sheet or deteriorates the adhesion of the hot-dip coated steel sheet.
  • Mn precipitates S in steel as MnS to prevent hot cracking of the slab and to increase the steel bow without deteriorating the adhesion. If it is less than 0.10%, there is no effect of precipitating S, and if it exceeds 1.20%, the yield strength is remarkably increased and the n value at low strain J or is lowered, so its content is made 0.10 to 1.20%.
  • P has a machine of more than 0.01% due to the increase of bow, but if it exceeds 0.05%, it deteriorates the alloying reason of plating and causes poor adhesion, so its content should be 0.01 to 0.05%.
  • S is 0.02. /. If contained in excess of 0.02%, the content is reduced to 0.02% or less to reduce ductility.
  • soLAl Al has the effect of precipitating N in steel as A1N to reduce the adverse effects of solid solution N. If it is less than 0.01%, the effect is not sufficient. If it exceeds 0.1%, an effect commensurate with it is obtained. Therefore, its content should be 0.01-0.1%.
  • N should be as small as possible, but its content should be less than 0.004% due to cost.
  • 0 0 forms oxide-based inclusions and inhibits the crystal length of ⁇ , deteriorating the formability. Therefore, the content is made 0.003% or less. In addition, in order to reduce the content to 0.003% or less, there is a case where O pick-up at the time of going outside the furnace is suppressed as much as possible.
  • Nb forms carbonized carbides with C to increase the steel bow and raise the n value at low strain, thus improving the surface distortion resistance. If the content is less than 0.01%, the effect cannot be obtained. If the content is more than 0.20%, the yield strength is significantly increased and the n value in the low strain region is reduced, so the content is 0.01 to 0.20%, more preferably 0.035 to 0.20. %, More preferably 0.080 to 0.140%. By simply increasing the amount of each steel in this way, it is not possible to obtain a high bow boat cold plate with excellent composite formability such as toughness, overhang, and surface strain resistance. Is.
  • SM surface strain resistance
  • Si 0.01 to 0.02%
  • Mn 0.15 to: 1.0%
  • P 0.02 to 0.04%
  • S 0.005 to 0.015 %
  • SoLAl 0.020-0.070%
  • N 0.0015-0.0035%
  • O 0.0015-0.0025%
  • Nb 0.04-0.17% 3 ⁇ 4 (AWca) of the wave center line swell height (Wca) of the formed vertical barley was measured.
  • Fig. 2 shows the effect of (Nb X 12) / (C X 93) on the difference (AWca) in the undulation height of the molded barley! Indicates ⁇ .
  • (Nb X 12) / (C X 93) Force Satisfies the following equation (h). At the beginning, ⁇ Wca falls below 2 ⁇ 3 ⁇ 4, indicating excellent surface distortion resistance.
  • Figure 4 shows the effect of ⁇ and I ⁇ values on the plastic buckling height (YB).
  • the level is equal to or higher than that of JSC27OF, and shows excellent surface distortion resistance to plastic ttia.
  • the puddling property was determined by the limiting ratio (LDR) when forming a 50 mm diameter cylinder, and the overhanging property was shown in Fig. 5.
  • LDR limiting ratio
  • Fig. 5 By fffi. Hat shape fiber was performed using a blank sheet of 340mmLX100mmW under the conditions of pan ⁇ ⁇ (Wp): 100mm, die width (Wd): 103mm, and wrinkle holding force (P): 40ton.
  • Fig. 6 shows the r-value and n-value values that affect the spreading and overhanging properties.
  • the n value was calculated from the low strain:! ⁇ 5% for the following reason. That is, Fig. 8 shows ⁇ ⁇ of the equivalent strain distribution in the vicinity of the part of the front-fender model molded article in Fig. 7, but the generated strain at the bottom of the punch was 1 to 5%, This is because to avoid concentration of strain in the l3 ⁇ 4tf part, the plasticity at the bottom of the punch with low strain should be IS !.
  • can be added to improve the surface strain resistance. If it exceeds 0.05%, the surface properties will be significantly degraded upon melting, so the content is 0.05% or less, more preferably 0.005 to 0.02%. At this time, it is necessary to use the following equation (5) instead of the above equation (1).
  • the steel sheet 1 of the present invention has excellent composite formability, as well as excellent formability of ii, ii [5], burr resistance of shear rope, surface properties, uniform material in the coil14, etc. It has the characteristic of being applicable.
  • the humid slab whose composition was adjusted as described above including the addition of ⁇ and B, was subjected to S ⁇ , the slab was subjected to Ar3 ⁇ , and the heat ⁇ was performed with the above ffi. It is manufactured by winding a hot plate at a temperature of 540 ° C or higher, cold rolling the hot plate at a rolling reduction of 50 to 85%, and then expanding the plate at 680 to 880 ° C. it can.
  • Winding must be performed at 540 ° C or higher, more preferably 600 ° C or higher, in order to improve the r-value and n-value by forming precipitates.
  • the temperature should be 700 ° C or less, more preferably 680 ° C or less, and the carbide should be extended for a certain length so as not to adversely affect the recrystallization aggregate formation. In particular, the temperature should be above 600 ° C.
  • the rolling reduction of the cold pressure P # is set to 50 to 85% in order to obtain high values of r and n.
  • the fiber In order to increase the r-value by keying the growth of ferrite grains, and to increase the n-value by forming a region where the density of precipitates is lower than that inside the grains, the fiber is 680-880. Must be performed at a temperature of ° C. In the case of boxes, 680 to 850 ° C is more preferable.
  • the steel sheet 1 of the present invention may have a key after plating such as bacterial plating such as ⁇ 3 ⁇ 4 ⁇ plating or hot-dip plating, if necessary.
  • Examples 1 to 24 of the present invention satisfying the above formulas (1) to (4) or (5) are a high strength cold ⁇ -plate made of barley with a tensile strength of 350 MPa, which is excellent in composite formability and plating property. I understand.
  • Comparative Examples 25 to 4 do not have excellent composite moldability, and the plating properties are deteriorated if they are out of the range of Si, ⁇ and the present invention.
  • a slab with a thickness of 220 mm is manufactured by melting and manufacturing steel having the steel number No. 1 shown in Table 1, and the finish is 800 to 950 and the winding is 500 to 680 at 1200 ° C. After the cold sterilization of 46 ⁇ 87%, the cold thighs to 0.8mm, and the temperature of 750 ⁇ 900 ° C. Then, it was reconditioned at a rolling reduction of 0.7%. In the continuous plating, the plating treatment was performed under the same conditions as in Example 1.
  • Example 1A-1D of the present invention that satisfies the requirements of the present invention and the above formulas (1) to (4) or (5) is a high bow bow cold plate after 350 MPa IT, which is a bow with excellent composite formability. You can see that there is.
  • the steel sheet 2 of the present invention described above is a steel sheet particularly excellent in overhang property, and the details thereof will be described below.
  • C forms carbonized carbides with Nb to raise the steel to a higher S value and to increase the n value at low strain, thus improving the surface strain resistance. If it is less than 0.0040%, its effect is small, and if it exceeds 0.01%, the ductility is reduced.
  • Si The content of Si is set to 0.05% or less, since Si, if added in reverse, degrades the chemical properties of the cold plate or the adhesion 14 of the hot-dip coated steel sheet.
  • Mn precipitates S in steel as MnS to prevent hot cracking of the slab and to increase steel bow without deteriorating adhesion. If it is less than 0.1%, the effect of precipitating S is not sufficient. If it exceeds 1.0%, the yield strength is remarkably increased and the n value in the low strain region is reduced, so the content is made 0.1 to: 1.0%.
  • P is at least 0.01% due to the high bow, but if it exceeds 0.05%, the alloying processability of the plating will be degraded and adhesion will be poor, causing the content to be 0.01-0.05. %.
  • soLAl has the effect of precipitating N in steel as A1N and reducing the adverse effects of solid solution N. If it is less than 0.01%, the effect is not sufficient. If it exceeds 0.1%, the solid solution A1 causes a decrease in ductility, so the content is made 0.01 to 0.1%.
  • may precipitate as A1N, but its content should be 0.004% or less so that all N will precipitate as A1N even in soLAl TP.
  • Nb forms carbides with C to increase the bow of steel and increase the n value at low strain, thus improving the surface distortion resistance. If it is less than 0.01%, the effect cannot be obtained, and if it exceeds 0.14%, the yielding bow will be raised significantly and the n value at low strains will be reduced, so its content is 0.01 to 0.14%, more preferably 0.035 to 0.14%, more preferably 0.080 to 0.14%. The reason why the low strain Wn value is improved by Nb is not necessarily clear, but when the structure was observed in detail using an electron microscope fiber, it was found that Nb.
  • Fig. 8 shows an example of the equivalent strain distribution in the vicinity of the part of the front fender model molded product in Fig. 7.
  • the strain generated at the bottom of the punch is:! ⁇ 10%.
  • the value of n calculated from the two points of nominal strain 1% and ⁇ % of glue bow I tension is set to 0.21 or more.
  • is added in order to further refine the thickness of the hot-rolled sheet and further improve the n value. If it exceeds 0.05%, the precipitate of i is formed and its effect is not sufficiently obtained, so the content is set to 0.05% or less, more preferably 0.005 to 0.02%.
  • the steel sheet 2 of the present invention has excellent stretchability, resilience, surface strain resistance, low-resistance brittleness, intense formability, shearing properties, surface properties, coil material uniformity, etc. It also has the characteristic that it can be connected to an automobile ⁇ S panel.
  • the steel sheet 2 of the present invention can be produced by hot-cold-making a steel slab prepared as described above including the addition of Ti and B.
  • the slabs can be heated ⁇ to the concubine or re-constitution.
  • the finish at that time should be Ar33 ⁇ 4m or more in order to ensure excellent surface properties and material uniformity H4.
  • the rolled sculpture after hot rolling is more than 540 " Power is preferable. Further, the descaling property by pickling is preferably set to 680 ° C. or less.
  • the cold rolling reduction should be 50% or more to improve the resilience. Ugly, the age of the box should be 680-750 ° C, and the age of the child should be 780-880 ° C.
  • the steel sheet 2 of the present invention can apply a zinc-based plating treatment such as electric plating or melting plating and the like after plating if necessary.
  • hot-dip plating was performed at 460 ° C and alloying of the plated layer was immediately performed at 500 ° C in an inline alloying furnace.
  • the basis weight of plating is 45g m2 on one side.
  • the comparative surplus Nos. 9 to 12 have a cushioning force with an n value of low strain of 50 tons or less.
  • FIG. 9 shows an equivalent strain distribution in the vicinity of a portion where a steel sheet in a comparative example and that of the present invention were formed into the front fender of FIG.
  • Example No. 3 of the present invention the amount of strain at the bottom of the punch was large. The occurrence of strain at the wall was suppressed, and it was found that this was more advantageous than as compared with the comparative example.
  • the steel sheet 3 of the present invention described above is a steel sheet having particularly excellent anti-dWUI properties, and details thereof will be described below.
  • C forms carbonized carbides with Nb to make steel higher bow. If it is less than 0.0040%, the effect is not significant, and if it exceeds 0.01%, carbide precipitates at the grain boundary and deteriorates the ⁇ OJI resistance, so its content is 0.0040 to 0.01%, more preferably 0.0050 to 0.0080 °. More preferably, it is 0.0050 to 0.0074%.
  • Si The content of Si is set to 0.05% or less, since the addition of PT deteriorates the adhesion of the metal when PT is applied.
  • Mn precipitates S in the steel as MnS to prevent hot cracking of the slab and increase the steel bow without deteriorating the adhesion I. If it is less than 0.1%, the effect of precipitating S is not sufficient. If it exceeds 1.0%, the S-boat is remarkably raised and ductility is reduced. Therefore, the content is set to 0.1 to: 1.0%.
  • P is more than 0.01% due to high bow ashamed, but if it exceeds 0.05%, poor plating adhesion will occur, so its content should be 0.01-0.05%.
  • S content is 0.02 if it is contained in excess of 0.02% because it reduces the hot workability and ductility. /. The following is assumed.
  • soLAl has the effect of precipitating N in steel as A1N to reduce the adverse effects of solid solution N. If it is less than 0.01%, the effect is not sufficient. If it exceeds 0.1%, the solid solution A1 causes a decrease in ductility, so its content is made 0.01 to 0.1%.
  • The content of ⁇ is set to 0.004% or less so that the soLAl TM precipitates as A1N even in TM.
  • Nb precipitates solid solution C
  • »j to IT decreases ductility when ITT is used, so it is 0.15% or less, more preferably 0.035 to 0.15%, and still more preferably 0.080 to 0.14%.
  • simply increasing the amount of each of the steels by ⁇ ⁇ ⁇ ⁇ ⁇ does not result in a high bow boat cold rolled plate with excellent fcto B resistance, and the following conditional force 3 ⁇ 4 ⁇ .
  • ⁇ in: ij fb3 ⁇ 4 means that a blank with a diameter of 105 mm punched from a steel plate is drawn into a wrench and dipped in various types of cold (eg, ethyl alcohol) to reduce In other words, it breaks the end of the nip with a conical punch and breaks it.
  • Equation (6) The age that satisfies equation (6) is due to the fact that the size and dispersion form of carbides are reduced to a specific grain boundary even under compacting due to shrinkage flange deformation during draw forming, as the micro-mouth-like strain is dispersed. No grain boundary embrittlement occurs.
  • the steel sheet 3 of the present invention has a high r value and excellent stagnancy as shown in FIG. 11, and as shown in FIG. 12, YPE1 after 3 months at 30 ° C. shows 0% Is also excellent.
  • the steel sheet 3 of the present invention is a glue for adding Ti for the purpose of IT conversion of crystal grains. If it exceeds 0.05%, the surface properties will be significantly degraded when subjected to melting and plating, so the content is 0.05% or less, more preferably 0.005 to 0.02%.
  • the steel sheet 3 of the present invention is not only excellent in UI resistance, but also in composite formability, formability (5), burr resistance in shear, surface properties, uniform material in coil! For example, there are special students who can apply to automobile panels.
  • the steel sheet 3 of the present invention is prepared by heating a continuous rub of steel as described above including the age to which Ti or B is added, treating the slab with an Ar3 state or higher ⁇ iH Can be obtained by rolling the hot ⁇ plate at a temperature of 500 to 700 ° C and cold rolling the hot rolled steel sheet under ordinary conditions.
  • the slab can be rolled directly or after reheating. There is a machine that winds at 500 ° C or higher to remove NbC precipitates at a temperature of 500 ° C or higher, descales by pickling I, and 700 or less from raw rats.
  • the steel sheet 3 of the present invention can be subjected to zinc-based plating treatment such as electric plating or fusion plating or the ratio of M after plating according to the following conditions.
  • hot-dip galvanizing was performed at 460 ° C afterwards, and immediately the alloying of the deposited layer was performed at 500 ° C in an in-line alloying furnace.
  • the steel sheet 4 of the present invention described above is a steel sheet particularly excellent in formability, and the details thereof will be described below.
  • C forms carbides with Nb to make the steel high bow, raises the n value at low elongation, and suppresses the formation of crystal grains in the rinsing part. If it is less than 0.0040%, the effect is small.If it exceeds 0.01%, not only the base material but also the formability of the pseudo- ⁇ will deteriorate, so the content is 0.0040 to 0.01%, more preferably 0.0005 to 0.0080%. And more preferably 0.0050 to 0.0074%.
  • si The content of si is set to 0.05% or less, since the addition of si not only deteriorates the formability of the fiery metal 15 but also deteriorates the adhesion of the plating.
  • Mn precipitates S in steel as MnS to prevent hot cracking of the slab and to increase the steel bow without deteriorating the adhesion. If it is less than 0.1%, the effect of precipitating S will not be achieved. If it exceeds 1.0%, the bow will rise significantly and the ductility will be reduced, so its content should be 0.1 to 1.0%.
  • P is required to be 0.01% or more for high bowing.However, if it exceeds 0.05%, the content of P is reduced to 0.01- 0.05%.
  • soLAl has the effect of precipitating N in steel as A1N to reduce the adverse effects of solid solution N. If it is less than 0.01%, the effect is not enough. If it exceeds 0.1%, the solid solution A1 causes a decrease in ductility, so its content is set to o.oi to o.r1 ⁇ 2.
  • The content of ⁇ is set to 0.004% or less so that the soLAl will precipitate as eyebrows even at the T ⁇ of soLAl.
  • Nb forms carbides referred to as C and suppresses the formation of some crystal grains. It also makes the steel highly ashamed and increases the n value at low strains. However, if it is less than 0.01%, the effect cannot be obtained, and if it exceeds 0.14%, the yield bow rises and the ductility decreases, so its content is 0.01 to 0.14%, more preferably 0.035 to 0.14%, more preferably 0.080 to 0.14%. Thus, simply measuring each amount of steel does not necessarily provide the formability of comfort 15 for tailored blanks. Therefore, a 0.7 mm cold-rolled steel sheet within the above-mentioned amount of components was used to produce a laser with a laser output of 3 kW. The overhanging property of the Tsuwanai area was investigated by using a ball piece length extension El, the stretch flangeability was investigated by using a fiber, and the resilience was examined by a square tube drawing test.
  • FIG. 14 shows the effect of (12 XNb *) / (93 X C) on the overhang height of the product 15 when the condition extension shown in Table 10 is performed using f in FIG.
  • the overhang height is 26 mm or more, and excellent overhang property can be obtained. If it is less than 1.2, cracks will occur from the ⁇ part, and the overhang height will decrease significantly.
  • NbC tt is theoretically higher than 1100 ° C., but mmiz M.
  • traces of the Nb and C remain undissolved. Is said to be key to fine graining.
  • Fig. 18 shows the effect of TS on the limit of crack generation and wrinkle-holding force in the confused part when performing square drawing and drawing under the conditions shown in Table 12, using Fig. 17.
  • the limit of crack generation is as follows: It can be seen that excellent strength is obtained even with a force of 20 tons or more even for W.
  • this result makes it possible to design solid solution strong Si, Mn, and P by using precipitation strengthening and longitudinal grain strengthening of NbC. Low material bow bow It is considered that it can be reduced.
  • Corner R 18mm Lubricating oil
  • is added to convert the crystal grains. If the content exceeds o.o5%, the surface properties will be significantly deteriorated when subjected to the melt-coating treatment. Therefore, the content is set to 0.05% or less, more preferably 0.005 to 0.02%.
  • B is an additional force to improve the anti-niflt resistance. If the content exceeds 0.002%, the rendition and overhang property deteriorate, so the content is 0.002% or less, more preferably 0.0001 to 0.001%.
  • the steel sheet 4 of the present invention has excellent moldability,
  • the steel sheet 4 of the present invention can be produced by hot-cold continuation slab of steel whose composition is adjusted as described above including addition of Ti and B.
  • the slab can be hot Si for the iSf concubine or the re-carrying wheat.
  • the finish at that time should be performed at a temperature of Ar3 sensitive or higher in order to ensure excellent surface properties and material uniformity.
  • the winding temperature after hot rolling is preferably 540 or more in the case of a box, and preferably 600 ° C or more in the case of a fibre.
  • the descaling by pickling is 14 to 680 ° C or less.
  • the cold rolling reduction rate should be 50% or more to improve the deep drawability.
  • the force of the box should be 680-750 ° C for the age of 780-880 ° C. That power is good.
  • the steel sheet 4 of the present invention may be provided with a zinc-based plating treatment such as electric plating or melting plating, or after plating, as necessary.
  • hot-dip MS plating was performed at 460 ° C after TO and alloying of the plated layer was immediately performed at 500 ° C in an inline alloy IS furnace.
  • ⁇ . ⁇ : 10 of the present invention not only has excellent mechanical characteristics 14 in the base material, but also has excellent overhang height, 73 ⁇ 4S elongation rate, and wrinkle-holding force in the mm section. You can see that
  • No.ll ⁇ 20 of Comparative ⁇ ] is inferior in the formability of Gekizen15.
  • the above-described steel sheet 5 of the present invention is a steel sheet having particularly excellent burr resistance (small burr height of 1 shear), and the details thereof will be described below.
  • C forms Nb and carbide NbC with NbC and exerts an effect on burr resistance.
  • the content is less than 0.004%, the NbC content is not sufficient, so that the burr height cannot be reduced. Since the distribution unevenness H4 increases and the height of the burr height is large, the content should be 0.004 to 0.01%.
  • P, S P and S are dispersed in the steel as extraordinarily large inclusions such as sulfides and phosphides, and become cracks or SSJl ⁇ "when punching carols.
  • the content of P is set to 0.05% or less and S is set to 0.02% or less because it promotes the increase in the height of the added ttA '.
  • soLAl Al is added for steel toughness. If it is less than 0.01%, a large amount of silent oxides such as Mn and Si will be contained in the steel, and the burr height will increase as well as the addition of P and S. since the Do Al2_rei 3 fluctuation of burr height increases in «, its content 0.01 to 0.1%.
  • When ⁇ is added in reverse, nitrides such as Nb and A1 are oxidized, and cracks tend to be uniformly generated in shear and the height of burrs increases, so the content of ⁇ is 0.004%. The following shall apply.
  • Ti is a shelf for improving the formability, etc.
  • the content of NbC added in combination with Nb has a bad effect on the distribution form of NbC, so its content is made 0.03% or less.
  • Nb forms carbide NbC with C, as ⁇ 3 ⁇ 4 ⁇ , and has a key to burr resistance.
  • NbC having a high burr resistance which is excellent in resistance, it is necessary to control the content so as to satisfy the following equation (8).
  • Si and Mn did not adversely affect the customization within the range of ffl studied in the present invention, they are not particularly defined, but can be appropriately added within a range that does not impair the other characteristics such as strength and formability.
  • the steel sheet 5 according to the present invention has excellent burr resistance, as well as composite formability, 3 ⁇ 43 ⁇ 4 [nj
  • the steel sheet 5 of the present invention is obtained by performing S ⁇ i on the ⁇ ⁇ ⁇ ⁇ ⁇ 3 ⁇ 4 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ It can be produced by finish rolling, hot slab, and hot slab cold.
  • the steel sheet 5 of the present invention can be subjected to a zinc-based plating treatment such as electric plating or fusion plating, or a post-plating process, if necessary.
  • a plating treatment was performed at 460 ° C, and immediately, a plating layer alloy was formed in an in-line alloy ⁇ iding MS furnace.
  • the steel sheet having the in the present invention and having been heated under the conditions in the ⁇ present invention has an NbC distribution morphology, an average burr height of 6 m ⁇ below, and a height difference of 0.5 m3 ⁇ 4. It can be seen that it is small at the bottom and very excellent in burr resistance.
  • the unit is Wt%.
  • the steel sheet 6 of the present invention described above is a steel sheet having particularly excellent surface properties, and the details thereof will be described below.
  • C forms carbonized carbides with Nb to make the steel high bow and to reduce the crystal diameter after hot rolling to improve the r-value. Further, since the precipitation strengthening by the invert carbides is performed, excellent surface properties can be obtained without adding a large amount of Si, Mn, and P. If it is less than 0.0040%, its effect is small, and if it exceeds 0.010%, the ductility is reduced. Therefore, its content is made 0.0040 to 0.010%, more preferably 0.0050 to 0.0080%, and still more preferably 0.0050 to 0.0074%.
  • Si The content of Si is set to 0.05% or less, since Si also deteriorates the adhesion 14 when added force.
  • Mn precipitates S in the steel as MnS to prevent hot cracking of the slab and to strengthen the steel without deteriorating the adhesion 14. If it is less than 0.1%, the effect of precipitating S is not sufficient. If it exceeds 1.5%, the bow rises remarkably and the ductility decreases, so its content is made 0.1 to 1.5%.
  • P is required to be 0.01% or more for high strength. However, if it exceeds 0.05%, the content of P is reduced to 0.01 to 0.05, because the deterioration of the liquor and the poor adhesion due to cracking occur. %.
  • soLAl Al helps to deoxidize steel. If the content is less than 0.01%, the effect is not sufficient. If it exceeds 0.1%, ductility is reduced due to solid solution A1, so the content is set to 0.01 to 0.1%.
  • N Since N forms a solid solution in steel and causes surface defects such as stretch strain, its content should be 0.0100% or less.
  • Nb forms carbonized carbides with C and causes high bow plating of steel, and refines crystal grains to improve surface properties; and improves composite formability. If it is less than 0.036%, the effect cannot be obtained, and if it exceeds 0.14%, the yielding bow rises and ductility falls, so its content is made 0.036 to 0.14%, more preferably 0.08 to 0.14%.
  • S ⁇ T simply changing the amount of each component of the steel by S ⁇ T provides excellent surface properties and composite formability. A Takayumi daughter cold bacterium cannot be obtained, and the following formula (12) is satisfied, and the average crystal ⁇ is 10 m or less and the r value is 1.8 or more.
  • (NbX 12) / (CX93) is more than 1.5, more preferably 1.7 or more, so as to make the NbC crane U more effective.
  • i is set to 0.019% or less, more preferably 0.005 to 0.019% in order to show the conversion of crystal grains, and the force is applied so as to satisfy the following equation (13). Pi "is a strong job.
  • the steel sheet 6 of the present invention has characteristics of a body that can be converted into a car ⁇ ⁇ ⁇ panel, such as composite formability, resistance to OJI, resistance to burrs, and uniformity of the material inside the coil.
  • the steel sheet 6 of the present invention is a continuous steel slab composed as described above, including the age to which i and B are added.
  • S t the coarse noise, finish ffiA'— so that the total draft before and after the final pass is 10 to 40%, heat the ⁇ plate for $ m, and heat the plate for 15 minutes. Cool at 700 ° C / sec or more to 700 or less, wind at 620 to 670, cool at 50% or more reduction rate, and heat at 20: / sec or more 860 ° C to below Ac3 and tempered with 0.4% to 1.0% reduction.
  • the age at which the slab is reheated is less than iioo ° c, the hot JEW change ⁇
  • the scale may stick to »j and the surface properties may be degraded. Therefore, it is necessary to perform the process at a temperature of 1100 to 250 ° C.
  • the total rolling reduction before and after the final pass should be 10% or more to reduce the size of crystal grains after hot rolling, and 40% or less to prevent uneven]
  • the thickness of the sheet after rolling should be set to 2.0 to 4.5 mm so as to secure a reduction ratio of cold i3 ⁇ 4P #. After hot JHS, cooling to 15 ° C / sec or more and cooling to 700 ° C or less may be used to prevent & ⁇ formation of crystal grains.
  • Winding should be carried out at 620 to 670 ° C after the precipitation of A1N and descaling by pickling 14.
  • the rolling reduction of [cold] may be set to 50% or more to increase the r-value.
  • the « is heated with a heating body of 20 ° C / sec or more to prevent deterioration of the surface properties due to the crystallization of the crystal grains and to increase the r- value. is there. Temper rolling must be performed at a rolling reduction of 0.4 to 1.0% in order to suppress aging and prevent an increase in yield strength.
  • the steel sheet 6 of the present invention may have a sub-metallic plating treatment such as electric plating or melting plating, if necessary, or after plating.
  • Examples A, C, and E of the present invention produced under the conditions of the present invention have average crystal densities of 10 or less, r values of 1.8 or more, and have excellent surface properties and M ⁇ resistance. You can see that.
  • the unit is wt%.
  • the steel sheet 7 of the present invention described above is a steel sheet which is particularly excellent in the uniformity of the material inside the coil I and will be described in detail below.
  • C forms carbonized carbides with N to increase the steel bow and increase the n value at low strain, thus improving the surface distortion resistance. If it is less than 0.0050%, the effect is not significant, and if it exceeds 0.010%, the ductility is reduced. Therefore, its content is made 0.0050 to 0.010%, more preferably 0.0050 to 0.0080%, and still more preferably 0.0050 to 0.0074%.
  • Si when added in the reverse direction, degrades the properties of the cold-rolled plate and deteriorates the adhesion of the plated steel sheet with the molten layer, so its content is made 0.05% or less.
  • Mn precipitates S in steel as MnS to prevent hot cracking of the slab and to increase the strength of the steel without deteriorating the adhesion! 4. If it is less than 0.10%, there is no effect of precipitating S, and if it exceeds 1.5%, the yield strength is significantly increased and the n value at low strain ⁇ is reduced, so the content is made 0.10 to: 1.5%.
  • P may be set to 0.01% or more due to high bow ashamedy. However, if P exceeds 0.05%, the alloying processability of the plating is degraded and poor adhesion occurs, so the content is 0.01 to 0.05. %.
  • soLAl A1 has the effect of precipitating N in steel as A1N to mitigate the harmful effects of solid solution N. Less than 0.01% does not provide sufficient effect. Therefore, its content should be 0.01-0.1%.
  • N should be as small as possible, but its content should be less than 0.004% due to cost.
  • Nb forms carbonized carbides with C to increase the steel bow and raise the n value at low strain, thus improving the surface distortion resistance. If it is less than 0.01%, it will not be effective, and if it exceeds 0.20%, it will significantly increase the yield bow jeal and decrease the n value at low strain ⁇ ⁇ , so its content is 0.01 to 0.20%, more preferably 0.035 To 0.20%, more preferably 0.080 to 0.140%. Thus, simply increasing the amount of each of the steels by PI3 ⁇ 4 ”does not provide a high-bow jewel-cooled ⁇ plate with excellent coil uniformity, workability, and overhanging properties, and the following conditions: ⁇ .
  • Fig. 21 shows the effect of Combo 12) / (093) and C on the material uniformity in the coil.
  • the above steel sheet was used to measure the critical draw ratio in cylindrical forming described in the best mode 1 and the hat forming height after the hat-jojo fiber. .
  • Figure 22 shows the r-value and n-value fibers that affect the resilience and overhang.
  • Ti can be added to the steel sheet 7 of the present invention in order to refine crystal grains and improve the surface strain resistance. If it exceeds 0.05%, the surface properties are significantly degraded when the molten zinc plating treatment is performed. Therefore, the content is 0.05% or less, more preferably 0.005 to 0.02 ° /. And At this time, it is necessary to use the following equation (15) instead of the above equation (14).
  • a continuation slab of the steel awakened as described above including the addition of i and B is subjected to S3 ⁇ 4g, and the slab is finished so that the total draft before and after the final pass is 60% or less. It can be manufactured by manufacturing a winding plate with EM, and then performing a cold iBi on the hot ⁇ plate. When hot rolling a slab, the slab can be directly or reheated.
  • the finish rolling should be 870 or more
  • the rewinding should be 550 ° C or more
  • the cold rolling reduction should be 50 or more.
  • the winding is more preferably performed at 700 ° C. or less, more preferably 680 ° C. or less, in view of the stability of descaling by pickling.
  • the steel sheet 7 of the present invention can have a system plating ⁇ such as M plating or hot-dip plating according to the following conditions.
  • hot-dip plating was performed at 460 ° C afterwards, and immediately an alloy-forming treatment of the plated layer was performed at 500 ° C in an in-line alloying S furnace.
  • the basis weight of plating is 45 g / m2 on one side.
  • the adhesion of the plating was measured by attaching a cellophane tape to the surface of the plated steel sheet, bending and bending it 90 degrees, measuring the amount of plating adhered to the cellophane tape, 1: no peeling, 2: mm, 3: small peeling, 4: peeling Separation, 5: Classified into 5 stages of silence, and 1 and 2 were accepted.
  • the steel sheet of the present invention is excellent in the properties of nada, overhanging property, uniformity of the material in the coil, and also excellent in the adhesion to the plating.
  • the steel sheet of the comparative example is inferior in the toughness and the overhanging property, and particularly in the age that does not satisfy the above formula (14), and the material uniformity in the longitudinal direction of the coil is remarkably inferior.
  • the age with high P and Ti contents is also inferior to the force plating adhesion.
  • the drawability in the coil longitudinal direction (the n value was calculated by 5% strain), the r value, the limiting ratio, and the hat forming height were measured.
  • the steel sheet in the present invention having a total i iT ratio of 60% or less before the final pass and the final pass has excellent material uniformity in the longitudinal direction of the coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明細書 高弓 冷 β板およびその^^法 腿分野 本発明は、 フード、 フェンダー、 サイドパネルなどの自動車外板パネルに使用される弓 I 張弓娘が 340~440MPaの高弓艘冷幽板およびその ^^法に関する。
近年、 フード、 フェンダー、 サイドパネルなどの自動車外板パネルに使用される鋼板に は、 や燃費の向上を目的にして高弓艘冷薩板が多用される傾向にある。 この高弓艘冷菌板には、 部品の 化による部品点激の削減やプレス工程の省力化に も対 き、 力つプレス後に舰なパネリ 観の得られるように、 より一層優れた膽り 性、 張出し性、 耐面ひずみ性 (ある成形面において不均一ひずみを発生させない能力)など のネ复合成形' 14力 ^求されている。
そのため、 : では、 C量が 30ppm以下の極 (g^¾ ^をベースに Ti、 Nbなどの炭化 物形 )^^> Μη、 Si、 Pなどの固溶強化 を添加した高弓嫉冷 β板が提案されてい る。 例えば、 特開平 5-112845 報には、 «g^¾ ¾の C量に T艮を設け、 Mnを積 極的に添加した鋼板が、特開平 5-263184号公報には、極低炭素鋼に多量の Mnを添加し、 さらに iまたは Nbを添加した鋼板が、 特開平 5-78784 報には、 Tiの添加された極 顯糊に Mnを積 W)に添加し、さらに Siや P量を制御した引張弓娘が 343~490MPa の鋼板が開示されている。また、特開平 5-46289 ^ ^報^ 開平 5-195080 報等には、 C量を 30〜: lOOppmと極 iS^ fとしては多目に された鋼に Tiを添加した鋼板も開 示されている。
しかしながら、 こうした爾 をベースにした高弓嫉冷薩板は、 膽り性、 張出 し性、 耐面ひずみ性などの複合成形性において優れた特性を備えておらず、 昨今要求され ている自動車顺パネル用鋼板としては十分でない。 特に、 パネルの塗 g¾の魚械性 を阻害する面ひずみに起因したうねりの発生を防止することはほとんど^ J能である。 また、 では、 自動車 パネルに細される高弓艘冷翻板には、 こうした複合成 形性のほか、 耐ニ^ JOJI性、 テーラ一ドブランクに対応した謝錢の成形性、 剪鹏の 耐バリ性、 表面性状、 コイルとして供給される鋼板のコイル内材質均 H4などに対しても 厳しい要^^出されている。 発明の開示 滞り性、 張出し性、 耐面ひずみ性などの複合成形性、 耐:^ OJI性、 纖の成形 性、 耐バリ性、 表面性状、 コイル内材質均 に優れた本発明の高弓艘冷翻板を以下に 示す。 本発明鋼板 1: 重 で、 C:0.0040〜0.010%、 Si:0.05%以下、 Mn:0.10〜1.20%、 P:0.01 〜0.05%、 S:0.02%以下、 solAl:0.01〜0.1%、 Ν·Ό.004%以下、 0:0.003%以下、 Nb:0.01〜 0.20%を含有し、 力り下記の式 (1)、 (2)、 (3)、 (4)を満足する高弓艘冷翻板。
-0.46-0.83 X log[C]≤(Nb X 12)/(C X 93)≤-0.88-1.66 X log[q (1)
10.8≥5.49Xlog[YP]-r (2)
11.0≤r+50.0Xn (3)
2.9≤r 5.00Xn (4)
式 (1)〜(4)において、 C、 Nbは C、 Nbの含有量 (S*½)、 YP ttl^犬弓艘 (MPa)、 r は r値 (iHI^向に対し 0、 45、 90 向の平均 ii¾、 ηは η値 (ひずみ:!〜 5%の翻におけ る n ii 、 JBi^向に対し 0、 45、 90 向の平均蟛を表す。 .
本発明鋼板 1は、 これらの を含^ Tる鋼の ラブを ^igする工程と、 スラ ブを Ar3変態 以上の ffiで仕 ±JB して熱翻板を織する工程と、熱囊板を 540°C 以上の figで卷取る工程と、 巻取り後の熱薩板を 50〜85°/。の JET率で冷間 JEBS後、 680 〜880°Cの温度で «する工程とを る 法により作製できる。 本発明鋼板 2: 重 M%で、 C:0.0040〜0.01%、 Si:0.05%以下、 Mn:0.1〜: 1.0%、 P:0.01 -0.05%, S:0.02%以下、 soLAl:0.01〜0.1%、 N:0.004%以下、 Nb:0.01〜0.14Q/0、 残部が 実質的に Feおよ r i^J W不純物からなり、力り «引張り ΐ纖による公称ひずみ 1%と 10%の 2点から算出された η値が 0.21以上である高弓艘冷菌板。 本発明鋼板 3 : Sft½で、 C:0.0040〜0.01%、 Si:0.05%以下、 Mn:0.1〜: 1.0%、 P:0.01 〜0.05%、 S:0.02%以下、 soLAl:0.01〜0.1%、 N:0.004%以下、 Nb:0.15%以下、 残部が実 質的に Feおよ ^励不純物からなり、 カゝっ下記の式 (6)を満足し、 さらに糊引張り 言擦による公称ひずみ 1%と 10%の 2点から算出された n値が 0.21以上である高弓艘冷延 鋼板。
(12/93) XNb*/C≥1.2 (6)
式 (6)において、 Nb*=Nb-(93/14)XNで、 C、 N、 Nbは元素 C、 N、 Nbの含有量 (重 *%) を表す。
本発明鋼板 3は、 これらの を含 る鋼の連 ラブを ¾igする工程と、 スラ ブを Ar3变 ¾ 以上の で仕 ±JB して熱菌板を織する工程と、熱菌板を 500〜 700°Cの^^で巻取る工程と、 巻取り後の熱薩板を冷間圧延 る工程とを^ Tる 高弓艘冷應板の 法により ί懐できる。 本発明鋼板 4 : 重量%で、 C:0.0040〜0.01%、 Si:0.05%以下、 Mn:0.1〜: l.0%、 P:0.01 〜0.05%、 S:0.02%以下、 soLAl:0.01〜0.1%、 Ν:0·004%%以下、 Nb:0.01〜0.14%、 残部 が実質的に F eおよ t l^J避不純物からなり、力り下記の式 (6)、(7)を満足する高弓艘冷延 鋼板。
(12/93) XNb*/C≥1.2 (6)
TS-4050 X Ceq≥-0.75 X TS+380 (7)
式 (7)において、 Ceq=C+(l/50) X Si+(l/25) X Μη+(172) X Ρ C、 Si、 Μη、 Ρ、 Ν、 Nb、 は^。、 Si、 Μη、 Ρ、 Ν、 Nbの含有量 (重 *%)、 TSは引張弓 ¾|¾MPa)を表す。 本発明鋼板 5: 重 *%で、 C:0.004〜0.01%、 P:0.05%以下、 S:0.02%以下、 solJ l:0.01 〜0.1%、 Ν:0.004ο/ο以下、 i:0.03%以下、 Nb:下記の式 (8)を満足する量を含有し、力つ NbC の体積率が 0.03 0.1%で、 その 70%以上が、お ϊί圣 10 40nmである高強度冷 β板。
l≤(93/12)X(Nb/C)≤2.5 (8)
式 (8)において、 C Nbは元素 C Nbの含有量 (SM%)を表す。
本発明鋼板 5は、 これらの /^を含 る鋼の連 ラブを織する工程と、 スラ ブを下記の式 (9)〜ひ 1)を満足する BET率で仕 ±ΕΒίして熱翻板を する工程と、 熱延 鋼板を冷間 iBi^TOする工程とを有する高 冷 »板の製 ^法により作製できる。
10≤HR1 (9)
2≤HR2≤30 (10)
HR1+HR2 -HR1 X HR2/100≤60 (11)
式 (9)〜(; 11)において、 HR1 HR2はそれぞれ仕 ±ΙΒίにおける最終パス前と最終パス の圧下 0 /0)を表す。 本発明鋼板 6: SM%で、 C:0.0040 0.010% Si:0.05%以下、 Mn:0.10〜: 1.5% P:0.01 0.05% S:0.02%以下、 soLAl:0.01 0.1% Ν:0·0100%%以下、 Nb:0.036 0.14%を含 有し、 力り下記の式 (12)を満足し、 さらに平均結晶樹圣が 10 m以下、 r値が 1.8以上で ある高弓鍍冷誦
1.1 (Nb X 12)/(C X 93) 2.5 (12)
式 (12)において、 C Nbは ¾^C Nbの含有量 (重 M%)を表す。
本発明鋼板 6は、 これらの ^^を含 "る鋼の連 :» ^ラブを する工程と、 スラ ブを謹あるいは 1100 1250°Cの に加謝 MSJHiして ffiA'—を織する工程と、 粗 一を最終パス前と最終パスの合計圧下率が 10 40%となるように仕 ±JB£して熱翻 板を製造する工程と、熱延鋼板を 15 sec以上の冷却速度で 700°C以下の温度まで冷却し、 620 670°Cの^^で卷取る工程と、 巻取り後の熱翻板を 50%以上の圧下率で冷間圧延 後、 20°C/sec以上の加熱艘で加熱し 860T Ac3变態 以下の で る工程と、 ί 後の鋼板を 0.4 L.0%の ]Ϊ 率で調質圧延する工程とを有する高 冷 β板の製造 方法により できる。 本発明鋼板 7: S*%で、 C:0.0050%超え 0.010%以下、 Si:0.05%以下、 Mn:0.10 1.5% P:0.01 0.05% S:0.02%以下、 solAl:0.01 0.1% N:0.004%以下、 Nb:0.01 0.20%を含 有し、 力つ下記の式 (3)、 (4)、 (14)を満足する高弓艘冷翻板。
Figure imgf000007_0001
2.9≤r 5.00Xn (4)
1.98-66.3 X C≤(Nb X 12)/(C X 93)≤3.24-80.0 X C (14)
式 (14)において、 C、 Nbは元素 C、 Nbの含有量 を表す。
本発明鋼板 7は、 これらの を含 る鋼の遙» ^ラブを |¾tする工程と、 スラ ブを最終パス前と最終パスの合計圧下率が 60%以下となるように仕 JbiE®して巻取り熱 β板を^する工程と、 熱 5^板を冷間圧延^^する工程とを有する高弓艘冷 β板 の 法により作製でさる。 図面の簡単な説明 第 1図は、 耐面ひずみ性の! ¾Bに用いたパネ 狱を示す。
第 2図は、 成形前後のうねり高さの差 (AWca)におよぼす (NbX 12)/(CX93)の影響を示 す。
第 3図は、 吉田バックリングテスト方法を示す。
第 4図は、 塑性座屈高さ (YBT)におよぼす YP、 r値の影響を示す。
第 5図は、 ハット^ K形 ΐβ^法を示す。
第 6図は、 «り性、 張出し性におよぼす r値、 n値の丽を示す。
第 7図は、 フロントフエンダ一モデル成形品を示す。
第 8図は、 図 7のフロントフェンダーモデル成形品の ^ff J 部近傍の相当ひずみ分布 の "^を示す。
第 9図は、本発明例と比翻の鋼板を図 7のフロントフェンダーに成形した の麵 fel 部近傍の相当ひずみ分布を示す。
第 10図は、
Figure imgf000007_0002
第 11図は、 r値におよぼす (12/93) XN */Cの;^ を示す。
第 12図は、 YPE1におよぼす (12/93) XNb*/Cの^ を示す。
第 13図は、 ί«長出し成形 S»irを示す。
第 14図は、 ¾ ^の ί観長出し高さにおよぼす (12/93)XNb*/Cの體を示す。 第 15図は、 ¾£けW を示す。
第 16図は、 ¾^の Λ¾げ率におよぼす (12/93)XNb*/Cの纖を示す。
第 17図は、 角筒絞り成形W を示す。
第 18図は、 辦鄉の割れ発生限界し »さえ力におよぼす TSの景濯を示す。
第 19図は、 平均バリ高さにおよぼ 斤出物の分布形態の纖を示す。
第 20図は、 バリ高さの標聰差におよぼ 斤出物の分布形態の景濯を示す。
第 21図は、 コイル内材質均 H4におよぼす ( bX 12)/(CX93)、 Cの影響を示す。 第 22図は、 灘り性、 張出し性におよぼす r値、 n値の藤を示す。 発明を実施するための最良の形態 最良の形態 1
上記した本発明鋼板 1は、 特に複合成形性に優れた鋼板であり、 以下にその fflを説明 する。
C: Cは、 Nbと翻炭化物を形成して鋼を高弓艘化させるとともに低ひず における n値を高めるので、 耐面ひずみ性を向上させる。 0.0040%未満ではその効果が少なく、 0.010%を超えると延性を低下させるため、 その含有量を 0.0040〜0.010%、 より好ましく は 0.0050〜0.0080%、 さらに好ましくは 0.0050〜0.0074%とする。
Si : Siは、 翻に添加されると冷應板のィ MIS性を劣化させたり、 溶¾«めっき 鋼板のめつき密着性を劣化させるため、 その含有量を 0.05%以下とする。
Mn : Mnは、鋼中の Sを MnSとして析出させてスラブの熱間割れを防止したり、 めつ き密着 ffiを劣化させることなく鋼を高弓艘化できる。 0.10%未満では Sを析出させる効果 がなく、 1.20%を超えると降伏強度を著しく上昇させるとともに低ひずみ J或における n値 を低下させるため、 その含有量を 0.10〜1.20%とする。
P : Pは、高弓艘化のため 0.01%以上に機があるが、 0.05%を超えると碰めっきの合 金ィ 理性を劣化させめつき密着不良を発生させるため、 その含有量を 0.01〜0.05%とす る。
S : Sは、 0.02。/。を超えて含有されると延性を低下させるため、その含有量を 0.02%以下 とする。
soLAl: Alは、 鋼中 Nを A1Nとして析出させて固溶 Nの弊害を軽 l"る作用がある。 0.01%未満ではその効果が十分でなぐ 0.1%を超えてもそれに見合う効果が得ら よいた め、 その含有量を 0.01〜0.1%とする。
N : Nは、 可能な限り少なレ汸カ籽ましいが、 コスト上その含有量を 0.004%以下とす る。
0: 0は、 酸化物系介在物を形成して^^の結晶 長 14を阻害し、 成形性を劣化さ せるため、 その含有量を 0.003%以下とする。 なお、 0.003%以下とするため、 炉外 降でにおける Oのピックアップを極力抑制する がある。
Nb: Nbは、 Cと翻炭化物を形成して鋼を高弓艘化させるとともに低ひず におけ る n値を高めるので、 耐面ひずみ性を向上させる。 0.01%未満ではその効果が得られず、 0.20%を超えると降伏強度を著しく上昇させるとともに低ひずみ域における n値を低下さ せるため、 その含有量を 0.01〜0.20%、 より好ましくは 0.035〜0.20%、 さらに好ましく は 0.080〜0.140%とする。 このように鋼の各)^量を ^るだけでは、 碰り性、 張出し性、 耐面ひずみ性など の複合成形性に優れた高弓艘冷 板は得られず、 さらに次のような条件が である。 まず、 耐面ひずみ性を言鞭するために、 SM%で、 C:0.0040〜0.010%、 Si:0.01~0.02% Mn:0.15〜: 1.0%、 P:0.02〜0.04%、 S:0.005〜0.015%、 soLAl:0.020〜0.070%、 N:0.0015 〜0.0035%、 O:0.0015〜0.0025%、 Nb:0.04〜0.17%を含む娜 0.8mmの冷翻板を用い、 図 1に示す刺犬のパネルに成幵縱、成形謝麦の波中心線うねり高さ (Wca)の ¾(AWca)を測 定した。
図 2に、成形謝麦のうねり高さの差 (AWca)におよぼす (Nb X 12)/(C X 93)の!^を示す。 (Nb X 12)/(C X 93)力下記の式ひ)を満足する ±始に、 Δ Wcaが 2 πΐ¾下となり、優れた 耐面ひずみ性を示す。
-0.46-0.83 X log[q≤(Nb X 12)/(C X 93)≤-0.88-1.66 X log[C] ひ)
耐面ひずみ性を mffiTる は、 上記のうねり高さのみならずサイドパネルなどで生じ やすレ塑' につ ても検討する がある。
そこで、 上記の冷翻板を用い、 図 3に示 田バックリングテスト方法、 すなわち引 張 験機で図中の矢印方向にチャック間 β 101mmで弓 1張り、
Figure imgf000010_0001
に一定の弓 I張ひずみ量 (λ=1%)を与えた後、 荷重を除荷して残留する塑 tt ®高さ (ΥΒΤ) を測定する方法により、 塑性 Bに対する耐面ひずみ性を評価した。 なお、 測定は、 スパ ン 50mmの曲率計を用いて引張直角方向に行った。
図 4に、 塑性座屈高さ (YB )におよぼす ΥΡ、 I·値の影響を示す。
YP、 r値の関係が下記の式 (2)を満足する齢に、 塑' 高さ (ΥΒΊが 1.5醒以下と
JSC27OFと同等以上のレベルになり、 塑 tt iaに対しても優れた耐面ひずみ性を示す。
10.8≥5.49Xlog[YP]-r (2)
次に、 上記の冷塵板を用い、 浦り性を 50mm径の円筒成形時の限搬り比 (LDR) により、 また張出し性を図 5に示すハツト盡形言纖後のハツト成形高さにより fffiした。 ハツト 形言纖は、 340mmLX 100mmWのブランクシートを用いて、パン 畐 (Wp) : 100mm, ダイス幅 (Wd) : 103mm, しわ押さえ力 (P) : 40tonの条件で行った。
図 6に、 碰り性、 張出し性におよぼす r値、 n値の體を示す。 ここで、 n値は、 次 の理由により低ひずみ:!〜 5%鄉ゝら求めた ίίΙ ある。すなわち、第 8図に、図 7のフロン トフエンダーモデル成形品の 部近傍の相当ひずみ分布の ~ ^を示すが、 パンチ底 部の発生ひずみは 1〜5%であり、彻歷部などの破 l¾tf 部におけるひずみの集中を回避す るには、 この低ひずみのパンチ底部における塑性 を IS!すればよいからである。
図 6より、 r値、 n値の関係が下記の式 (3)、 (4)を満足する齢に、 JSC270Fと同等以 上の限界铰り比 (LDR)、ハツ卜成形高さ力^られ優れた微り性および張出し性を示す。
11.0≤r+50.0Xn (3)
2.9≤r+5.00Xn (4) 本発明鋼板 1には、耐面ひずみ性を向上させるために Ίϊを添加できる。 0.05%を超える と溶讓メッ 理した際に表面性状を著しく劣化させるため、 0.05%以下、 より好ま しくは 0.005〜0.02%とする。 また、 このとき、 上記式 (1)の代わりに下記の式 (5)を用いる 必要がある。
-0.46-0.83Xlog[q≤(NbX 12)/(CX93)+(Ti*X 12)/(CX48)≤-0.88-1.66Xlog[q (5) さらに、耐: ^fcbnUE性を向上させるため、 Bを添力 ιτΤること力補である。 0.002%を 超えると ί«り性、 張出し性が劣化するため、 0.002%以下、 より好ましくは 0.0001〜 0.001%とする。 なお、 本発明鋼板 1は、 優れた複合成形性のほか、 i u ii, 激 [5の成形性、 剪綱の耐バリ性、 表面性状、 コイル内材質均一 14などに対しても自動車顺パネルに適 用できる の特性を有している。 本発明鋼板 1は、 Ήや Bを添加した も含め上記のように成分調整され の謙 スラブを S ^し、スラブを Ar3变 、以上の ffiで仕 ±£Β£して熱翻板を し、 熱 «板を 540°C以上の温度で巻取り、巻取り後の熱 »板を 50〜85%の圧下率で冷間圧 延後、 680〜880°〇の で¾ "ることにより作製できる。
仕 ±J«は、 Ar3変 妹満の¾^行うと、 r値や伸びが著しく低下するため Ar3変 態 以上の で行う必要がある。 より高い伸びを得るには、 900°C以上で行うの力 子ま しい。 なお、 逢^ igスラブを熱間 J¾するときは、 スラブを雄または再加熱してから 麵できる。
巻取りは、 析出物の形成を腿し r値、 n値の向上を図るため 540°C以上、 より好まし くは 600°C以上で行う必要がある。 酸洗による脱スケール 14と材質の安定性の観 から 700°C以下、 より望ましくは 680°C以下に、 また、 炭化物をある 長させて再結晶集 合垂形成に悪 をおよぼさないように、 その ί魏 される は 600°C以上にす ること力 子ましい。
冷間圧 P#の圧下率は、 高レゝ r値と n値を得るために 50〜85%とする。
纖は、 フェライト粒の成長を鍵して高 r値化を、 また、 結晶粒界に粒内よりも析出 物の密度の低い領域 を形成して高 n値化を図るために、 680〜880°Cの温度で行う必 要がある。なお、箱謹の場合は 680〜850°Cが、連徹幾の齢は 780〜880°Cがより好 ましい。
本発明鋼板 1には、 必要に応じて ^¾ ^めっきや溶融めつきなどの菌系めっき鍵やめ つさ後の有 を ことが きる。
(雄例 1)
表 1、 2に示す鋼番 No.l〜29の鋼を ί§«、 により 220mm厚のスラブを し、 1200°Cに加纖、 仕上 fi¾ 880〜910°C、 巻取^ 540〜560。C (箱纖向け)、 600〜 680°〇( 樹满、 連樹纖 +溶 鉛めつき向け)で板厚 2.8mmの熱翻板を製造し、 板 厚 0.80mmに冷間 JE 後、 840〜860°Cの 徹纖(〇 )、 680〜720°Cの箱膽 (ΒΑΓ)ま たは 850〜860°Cの^ 溶融亜鉛めつき (CGL)のいずれかを実施し、 圧下率 0.7%で 調質圧延を行った。
連続^ S+溶 ϋ«めっきでは、 «後 46(TCで溶 §4¾鉛めっき処理を行い、 直ちにィ ンライン合金ィ S炉で 500°Cでめつき層の合金ィ 理を行った。 めっき目付け量は、 片 側 45g m2である。
そして、
Figure imgf000012_0001
JIS 5号!«+、 値は:!〜 5%ひす で算出)、 面ひ ず ¾ AWca、 YBT)、 限^^り比 (LDR;)、 ハット成形高さ (H)を測定した。
結果を、 表 3、 4に示す。
上記式ひ)〜 (4)、 あるいは (5)を満足する本発明例 1〜24は、 複合成形性、 めっき性 に優れた弓 I張強度が 350MPa謝麦の高強度冷 β板であることがわかる。
一方、 比較 25〜4 は、 優れた複合成形性を有しておらず、 Si、 Ρ、 本発明讓 から外れる には、 めっき性も劣化している。
(雄例 2)
表 1に示す鋼番 No.lの鋼を溶 、 造により 220mm厚のスラブを製造し、 1200°Cに加雖、 仕上 800〜950 、 巻取 500〜680。Cで娜 1.3〜6.0匪 の熱 菌板を S¾ し、 圧下率 46〜87%で娜 0.8mmに冷間腿後、 750〜900°Cの連 また 溶鬲 ί«めっきのレずれかを魏し、 圧下率 0.7%で調質 を行った。 連^ Φ+溶鬲 ί«めっきでは、 麵例 1と同様な条件でめっき処理を行った。
そして、 «例 1と同様な言 を行った。
結果を、 表 5に示す。
本発明の 件および上記式ひ)〜 (4)、 あるいは (5)を満足する本発明例 1A-1Dは、 複合成形性に優れた弓 I張弓艘が 350MPa IT後の高弓艘冷 板であることがわかる。
Figure imgf000013_0001
I I ひ €700 OAV
I6,90/66df/X3<I
Figure imgf000014_0001
Z I
l690/66dr :>d ひ S £700 O 表 3
O
Figure imgf000015_0001
Y**=5.49log(YP( Pa))- Z*** = r+50.0(n) V**** = r+5.0(n)
おめつき性状に起因
表 4
鋼板の f寺性 プレス後パネル ク状 鋼板の成形性
No 鋼番 件 YP(MPa) TS( Pa) EL(¾) n値 「値 z*** 面歪み AWca m) YBT(mm) H (画) し DR 備考
25 17 CAし 206 359 34 0.196 1.64 1 1.06 1 1.4 2.6 無 0.23 1.87 33.6 2.04 比較例
26 1 7 CGし 209 360 32 0.193 1.C2 1 1.12 1 1.3 2.6 無 0.21 1.96 33.5 2.04 比較例
27 18 CAし 186 319 43 0.166 2.00 10.46 10.3 2.8 無 0.42 1.01 25.5 2.07 比較例 8 l o し Gし 182 314 44 0.169 1.98 10.43 10.4 2.8 ? S 0.39 u.yo 26.2 2.07 比較例 on し AL 203 348 45 0.197 2.01 10.66 1 1.9 3.0 有 # 0.58#2 34.4 2.16 比較例
30 20 CGL 238 371 39 0.156 1.84 1 1.21 9.6 2.6 0.66 22.5 2.04
31 21 CGし 246 384 36 0.149 1 .98 1 1.15 9.4 2.7 有 # 0.74#2 2.00 21.8 2.05
32 22 CGし 207 358 34 0.175 .0 1 1 1.04 10.4 2.5 ¾†谷内 0.4ο 1.83 26.2 2.03 比較例
33 23 し Aし 233 357 31 0.138 1.38 1 1 .62 8.3 2.1 有 0.83 20.3 1.99 比較例
34 24 CAし 242 350 33 0.134 1 .42 1 1.67 8.1 2.1 有 0.79 2.79 20.1 1 .99 比較例
35 25 CAし 238 367 32 0.142 1.87 Π .18 9.0 2.6 有 0.56 2.06 21.0 2.04 比較例
36 26 BAF 226 361 34 0.153 1.91 1 1.01 9.6 2.7 有 0.45 1 .80 22.5 2.05 比較例
37 26 CGし 234 355 36 0.148 1.46 1 1.55 8.9 2.2 有 0.72 2.60 20.9 2.00 比較例
38 27 CAし 208 354 27 0.168 1.86 10.87 10.3 2.7 許容内 0.42 1.62 25.5 2.05
39 27 BAF 201 351 29 0.201 1.95 10.69 12.0 3.0 無 0.40 1.34 34.6 2.16 比較例
40 27 CGし 218 357 25 0.159 1.77 1 1.07 ' 9.7 2.6 有 0.45 1.81 22.7 2.04
41 28 CAし 210 353 26 0.167 1.79 10.96 10.1 2.6 許容内 0.51 1.72 24.0 2.04
42 28 BAF 203 351 27 0.1 71 1.99 10.68 10.5 2.8 無 0.46 1.32 27.0 2.07
43 28 CGL 215 356 23 0.1 61 1.74 1 1.07 9.8 2.5 有 0.58 1 .80 22.9 2.03 比較例
44 29 CAし 231 371 32 0.164 2.02 10.96 10.2 2.8 有 0.36 1.72 24.8 2.07 比較例
Y**=5.49log(YP(MPa))-r Z*** = r+50.0(n) V**** = r+5.0(n)
#めっき性状に起因
し Γ 表 5
Figure imgf000017_0001
Y**=5.49log(YP(MPa))-r Z*** = r+50.0(n) V**** = r+5.0(n) 800#:Ar3未満
最良の形態 2
上記した本発明鋼板 2は、 特に張出し性に優れた鋼板であり、 以下にその詳細を説明す る。
C: Cは、 Nbと翻炭化物を形成して鋼を高 S艘化させるとともに低ひず における n値を高めるので、 耐面ひずみ性を向上させる。 0.0040%未満ではその効果が少なく、 0.01%を超えると延性を低下させるため、 その含有量を 0.0040〜0.01%、 より好ましくは 0.0050〜0.0080%、 さらに好ましくは 0.0050〜0.0074%とする。
Si : Siは、 翻に添加されると冷删板の化腿理性を劣化させたり、 溶議めっき 鋼板のめつき密着 14を劣化させるため、 その含有量を 0.05%以下とする。
Mn: Mnは、鋼中の Sを MnSとして析出させてスラブの熱間割れを防止したり、 めつ き密着性を劣化させることなく鋼を高弓艘化できる。 0.1%未満では Sを析出させる効果が なぐ 1.0%を超えると降伏強度を著しく上昇させるとともに低ひずみ域における n値を低 下させるため、 その含有量を 0.1〜: 1.0%とする。
P : Pは、高弓艘化のため 0.01%以上に があるが、 0.05%を超えると めっきの合 金化処理性を劣化させめつき密着不良を発生させるため、 その含有量を 0.01〜0.05%とす る。
S : Sは、 0.02%を超えて含有されると延性を低下させるため、その含有量を 0.02%以下 とする。
soLAl: A1は、 鋼中 Nを A1Nとして析出させて固溶 Nの弊害を軽 ilittる作用がある。 0.01%未満ではその効果が十分でなぐ 0.1%を超えると固溶 A1により延性低下を招くの で、 その含有量を 0.01〜0.1%とする。
Ν: Νは、 A1Nとして析出させる があるが、 soLAl TP通でも全ての Nが A1Nと して析出するように、 その含有量を 0.004%以下とする。
Nb: Nbは、 Cと讓炭化物を形成して鋼を高弓艘化させるとともに低ひず におけ る n値を高めるので、 耐面ひずみ性を向上させる。 0.01%未満ではその効果が得られず、 0.14%を超えると降伏弓艘を著しく上昇させるとともに低ひず における n値を低下さ せるため、 その含有量を 0.01〜0·14%、 より好ましくは 0.035〜0.14%、 さらに好ましく は 0.080〜0.14%とする。 Nbにより低ひず W ? n値が向上する理由は、 必ずしも明確でなレが、 電子顕纖を 用いて詳細に組織観察したところ、 Nb、。量が適切にされた場合、結晶粒内に多量の bC カ淅出し、粒界近傍に析出物の しない析出物枯渴帯 (PFZ)が 成されており、この PZF が、 粒内に比べ、 低い応力" ^できるためと考えられる。 このように鋼の各成分量を ΡΙ^Τるだけでは、 張出し性に優れた高弓艘冷 β板は得ら れず、 さらに次のような条件が必 である。
第 8図に、 図 7のフロントフェンダーモデル成形品の 部近傍の相当ひずみ分布 の一例を示すが、 パンチ底部の発生ひずみは:!〜 10%であり、 張出し成形の行われる側壁 部などの 部におけるひずみの集中を回避するには、 この低ひずみのパンチ底部に おける塑性 を鍵する必 がある。そのためには、糊弓 I張りの公称ひずみ 1 %と ιο% の 2点から算出される n値を 0.21以上とする がある。 本発明鋼板 2には、 熱 ¾ ^板の をより微細化して n値をより向上させるために、 Ή の添加カ^)である。 0.05%を超えると iの析出物が 化して、その効果が十分に得ら l¾いので、 0.05%以下、 より好ましくは 0.005〜0.02%とする。
さらに、耐: l^dlinJI性を向上させるため、 Bを添力 ること力 ^^¾である。 0.002%を 超えると深铰り性、 張出し性が劣化するため、 0.002%以下、 より好ましくは 0.0001〜 0.001%とする。 なお、 本発明鋼板 2は、 優れた張出し性のほか、 り性、 耐面ひずみ性、 耐ニ効ロェ 脆性、 激 の成形性、 剪 »の而パリ '14、 表面性状、 コイル内材質均 などに対して も自動車^ Sパネルに綱できる離の特 を有している。 本発明鋼板 2は、 Tiや Bを添加した も含め上記のように 調整された鋼の膽 l¾gスラブを、 熱間 冷間 することにより作製できる。
スラブは、 獻妾あるいは再加 »に熱間 βできる。 その時の仕上 は、 優れた表面 性状と材質の均 H4を確保するために、 Ar3¾m 以上の で行うことカ ましい。 熱延後の巻取雕は、 箱霞の には 540" 以上に、 の齢には 以上 にすること力好ましい。 また、 酸洗による脱スケール性の 、から 680°C以下にすること 力好ましい。
冷間 の圧下率は、 り性を向上させるために 50%以上にすることカ籽ましい。 醜^ は、箱讓の齢は 680〜750°Cに、逢^t£の ±胎は 780〜880°Cにすること 力 子ましい。
本発明鋼板 2には、 必要に応じて電気めつきや溶融めつきなどの亜鉛系めつき処理やめ つき後の有¾»¾を ί^τこと力 きる。
(鎌例 1)
表 6に示す鋼番 No.l〜: 10の鋼を 後、連^fjlにより 220mm厚のスラブを し、 1200°Cに加熱後、仕上温度 880〜940°C、巻取温度 540〜560°C (箱猶向け)、 600〜660°C (W m. 連 溶 SUM鉛めつき向け)で板厚 2.8mmの熱^板を製造し、 酸洗後圧 下率 50〜85%で冷間麵し、 800〜860。Cの連 ^(CAL)、 680〜740。Cの箱猫 (BAF) または 800〜860°Cの連 溶 めっき (CGL)のいずれかを難し、 圧下率 0.7% で調質 を行った。
溶鬲 めっきでは、 後 460°Cで溶 鉛めつき処理を行い、 直ちにィ ンライン合金化麵炉で 500°Cでめつき層の合金ィ t ^理を行った。 めっき目付け量は、 片 側 45g m2である。
そして、 機 ¾ I4(JBS^向、 JIS 5号言 W 、 値は 1〜5%ひず で算出)および 図 7のフロン卜フエンダ一に成形して «5艮界クッションカを測定した。
結果を、 表 7に示す。
本発明例である No.!!〜 8は、謹艮界クッション力が 65ton以上あり、張出し性に優れ ていることがわかる。
一方、 比較剩である No.9〜12は、 低ひず の n値が低レ寸乙め 50ton以下のクッシ ョン力で する。
また、 It^Jである Νο.10、 11は、 Siや Ήが »jに添加されているため、 »めっき 後の表面性状が劣っている。 表 6
CD
Figure imgf000021_0001
*印は、 本発明範囲外であることを示す。
表 7
Figure imgf000022_0001
(難例 2)
表 7の本発明例 No.3と] t»j No.10を、 クッションカ 40tonで図 7のフロントフェン ダ一に成形して、 ひずみ分布を測定した。
第 9図に、本発明例と比翻の鋼板を図 7のフロントフェンダーに成形した の麵 ® 部近傍の相当ひずみ分布を示す。
本発明例 No.3では、 パンチ底部におけるひずみ量が大きぐ 彻壁部におけるひずみ発 生が抑制されており、 比翻に比べ麵に対して有利であることがわかる。
最良の形態 3
上記した本発明鋼板 3は、 特に耐:^ dWUI性に優れた鋼板であり、 以下にその詳細を 説明する。
C: Cは、 Nbと翻炭化物を形成して鋼を高弓艘化させる。 0.0040%未満ではその効果 カ沙なく、 0.01%を超えると粒界に炭化物の析出が起こり耐 ^OJI性を劣化させるた め、その含有量を 0.0040〜0.01%、 より好ましくは 0.0050〜0.0080°ん さらに好ましくは 0.0050〜0.0074%とする。
Si: Siは、翻に添力 PTると«めつきの密着 を劣化させるため、その含有量を 0.05% 以下とする。
Mn: Mnは、鋼中の Sを MnSとして析出させてスラブの熱間割れを防止したり、 めつ き密着 I生を劣化させることなく鋼を高弓 ¾化できる。 0.1%未満では Sを析出させる効果が なぐ 1.0%を超えると S艘を著しく上昇させるとともに延性を低下させるため、その含有 量を 0.1〜: 1.0%とする。
P : Pは、高弓嫉化のため 0.01%以上に があるが、 0.05%を超えると めっき密着 不良を発生させるため、 その含有量を 0.01〜0.05%とする。
S : Sは、 0.02%を超えて含有されると熱間加工性や延性を低下させるため、その含有量 を 0.02。/。以下とする。
soLAl: A1は、 鋼中 Nを A1Nとして析出させて固溶 Nの弊害を軽 る作用がある。 0.01%未満ではその効果が十分でなぐ 0.1%を超えると固溶 A1により延性低下を招くた め、 その含有量を 0.01〜0.1%とする。
Ν: Νは、 上記 soLAlの TMでも A1Nとして析出するように、 その含有量を 0.004% 以下とする。
Nb : Nbは、 固溶 Cを析出させ、
Figure imgf000024_0001
しか しな力ら、 »jに添力 ITTると延性を低下させるので、 0.15%以下、 より好ましくは 0.035 〜0.15%、 さらに好ましくは 0.080〜0.14%とする。 このように鋼の各]^量を Ρ·δ^Τるだけでは、 耐:^ fcto B性に優れた高弓艘冷翻板 は得られず、 さらに次のような条件力 ¾ ^である。 重 M%で、 C:0.0040〜0.01%、 Si:0.01〜0.05%、 Mn:0.1〜: l.0%、 P:0.01〜0.05%、 S:0.002 〜0.02%、 soLAl:0.020〜0.070%、 N:0.0015〜0.0035%、 Nb:0.01〜0.15°/。を含む板厚
0.8匪の冷删板を用い、二 jfc!raiati [^を測定した。 ここで、 ^in:ij fb¾とは、 鋼板から打ち抜かれた直径 105mmのブランクを力ップに絞り成形し、種々の冷 ¾ (例えば、 エチルアルコール)の中に浸漬して力ップの を変え、円錐ポンチで力ップ端部を広げて 破壊させ、 破面鶴して求めた延性破壊から脆性破壊^ ΐする のことである。
図 10に、
Figure imgf000025_0001
棚弓 I張り言雄による公称ひずみ 1%と 10%の 2点から算出された n値が 0.21以上の鋼 板では、 下記の式 (6)を満足すると^ fc¾口: ィ h¾が著しく低下し、優れた耐ニ 口: at 性が得られる。
(12/93) XNb*/C≥1.2 (6)
この原園泌ずしも明確でないが、 以下の 3つ現象の複合効果によるものと考えられる。 i) 1〜: 10%の低ひずみ域における n値の向上により、 絞り成形時のパンチ底 部のひ ずみ量が増大し、 絞り成形での林料の^ λカ戰少して縮みフランジ変形における J I成形 の體が 減される。
ϋ) 式 (6)を満足する齢は、 炭化物の寸法および分散形態が髓化され 絞り成形時の 縮みフランジ変形における 成形下においても、 ミク口的なひずみが均 散化されて 特定の粒界へ鐘することなぐ 粒界脆化が生じない。
iii) NbCにより結晶粒力棚化し、 靱 が 善される。 本発明鋼板 3は、 図 11に示すように、 高い r値を有し優れた滞り性を示すとともに、 図 12に示すように、 30°Cで 3ヶ月後の YPE1が 0%で而轉効 にも優れている。 本発明鋼板 3には、結晶粒の翻化を^ ITるために Tiの添加力糊である。 0.05%を 超えると溶鬲垂メツキ処理した際に表面性状を著しく劣化させるため、 0.05%以下、 よ り好ましくは 0.005〜0.02%とする。
また、耐 m:U性をさらに向上させるため、 Bを添力 ること力職である。 0.002% を超えると赚り性、 張出し性が劣化するため、 0.002%以下、 より好ましくは 0.0001〜 0.001%とする。 なお、 本発明鋼板 3は、 優れた耐 ¾ UI性のほか、 複合成形性、 謝 [5の成形性、 剪隱の耐バリ性、 表面性状、 コイル内材質均一! 4などに対しても自動車 パネルに適 用できる程度の特 I生を有している。 本発明鋼板 3は、 Tiや Bを添加した齢も含め上記のように成分醒された鋼の連続 ラブを^^し、スラブを Ar3变態 以上の^で仕 ±iH£して熱應板を S¾gし、 熱 β板を 500〜700°Cの温度で巻取り、 巻取り後の熱延鋼板を通常の条件で冷間圧延. することにより できる。
仕 ±βは、 Ατ3 ¾ 妹満の で行うと、 :!〜 10%の低ひす における n値が低 下して、耐ニ ^dJinJI性が劣化するため ΑΓ3 ¾ 以上の で行う必要がある。なお、 連^jEスラブを熱間 IBSするときは、 スラブを直接または再加熱してから圧延できる。 巻取りは、 NbCの析出物の形成をS1するため 500°C以上で、また酸洗による脱スケー ル I、生の鼠 から 700 以下で行う機がある。
本発明鋼板 3には、 に応じて電気めつきや溶融めつきなどの亜鉛系めつき処理やめ つき後の有 M 理を こと力 きる。
(鍾
表 8に示す鋼番 No.:!〜 23の鋼を溶製後、連^ iにより 250mm厚のスラブを^ iし、 1200°Cにカロ藤、仕上 ¾! 890〜940°C、巻取^ 600〜650°Cで 2.8mmの熱 板 を製造し、 板厚 0.7mmに冷間圧延後、 800〜860°Cの連^ $+溶 S$M鉛めつきを行い、 圧下率 0.7¾で調質腿した。
逢^ 溶 鉛めっきでは、 «後 460°Cで溶 鉛めつき処理を行い、 直ちにィ ンライン合金ィ匕処理炉で 500°Cでめつき層の合金ィ 理を行った。
そして、 引弓勝 14値 (BB ^向、 JIS 5号 !i¾j )、 r値、 ±ί ϋした ^diniUIィ 、 30°Cで 3ヶ月後の YPE1、 目視による表面性状の測定を行つた。
結果を、 表 9に示す。
本発明例である鋼番 1〜: L5は、
Figure imgf000026_0001
lOt性を示すとともに、 高い r値を有し、 非時効 であり、 表面性状にも優れていること がわかる。 一方、 比較 の鋼番 16、 21では C、 P力体発明^ ffl外なため十分な弓艘が得られず、 鋼番 19、 20では Si、 Pが本発明義外なため表面性状に劣り、 鋼番 18、 22では Nb*/C 力体発明 Sffl外なため!HtnJ性に劣っている。
表 8
鋼番 C Si n P S N Nb Ti B (12/93) x Nb*/C 備考
1 0.0052 0.01 0.41 0.019 0.01 2 0.0033 0.08 • • 1.44 本発明鋼
2 0.0053 0.05 0.33 0.020 0.007 0.0020 0.09 • 1.87 本発明鋼
3 0.0062 0.02 0.16 0.042 0.009 0.0026 0.08 1.31 本発明鋼
4 0.0065 0.04 0.31 0.025 0.010 0.0030 0.10 1.59 本発明鋼
5 0.0065 0.01 0.20 0.040 0.012 0.001 8 0.1 2 • 2.14 本発明鋼
6 0.0068 0.03 0.68 0.015 0.010 0.0035 0.1 2 1.84 本発明鋼
7 0.0066 0.02 0J8 0.040 0.009 0.0022 0.12 • 2.06 本発明鋼
8 0.0072 0.03 0.84 0.038 0.010 0.0030 0.1 2 1 J9 本発明鋼
9 0.0067 0.01 0.13 0.035 0.008 0.0022 0.10 1 .64 本発明鋼
10 0.0075 0.01 0.24 0.030 0.016 0.0021 0.1 1 1 .65 本発明鋼
C
1 1 0.0077 0.03 0.21 0.028 0.007 0.0019 0.10 1.46 本発明鋼
12 0.0093 0.01 0.18 0.034 0.009 0.0022 0.13 1.60 本発明鋼
13 0.0065 0.03 0.35 0.022 0.01 1 0.0023 0.09 0.01 6 1 .48 本発明鋼
14 0.0063 0.02 0.32 0.025 0.010 0.0029 0.10 * 0.0009 1.65 本発明鋼
1 5 0.0068 0.01 0.33 0.028 0.009 0.0026 0.09 0.01 1 0.0004 1.38 本発明鋼
1 6 0.0034 0.01 0.27 0.022 0.01 2 0.0019 0.05 1.42 比較鋼
17 0.0041 0.02 0.21 0.030 0.010 0.0022 0.06 1.43
18 0.0043 0.01 0.24 0.029 0.01 1 0.0025 0.03 0.40 比較鋼
19 0.0058 0.12 0.23 0.040 0.008 0.0025 0.09 1.63 比較鋼
20 0.0063 0.01 0.26 0.065 0.008 0.0024 0.08 1.31 比較鋼
21 0.0062 0.02 0.10 0.003 0.013 0.0024 0.10 1 J5 比較鋼
22 0.0072 0.01 0.33 0.021 0.01 2 0.0030 0.07 0.90
23 0.0130 0.01 0.1 7 0.017 0.009 0.0038 0.18 1.54 比較
I 表 9
CO
Figure imgf000029_0001
** Tc:二次加工脆化温度
最良の形態 4
上記した本発明鋼板 4は、 特に の成形性に優れた鋼板であり、 以下にその詳細を 説明する。
C: Cは、 Nbと讓炭化物を形成して鋼を高弓艘化させ、低ひす ¾ ^における n値を高 めるとともに、 謝謹濯部の結晶粒の 化を抑制する。 0.0040%未満ではその効果が 少なぐ 0.01%を超えると母材のみならず溶擬 βの成形性が劣化するため、 その含有量を 0.0040〜0.01%、より好ましくは 0·0050〜0·0080%、さらに好ましくは 0.0050〜0.0074% とする。
si: siは、 翻に添力 ると激錢 15の成形性を劣化させるのみならず めっきの密着 性も劣化させるため、 その含有量を 0.05%以下とする。
Mn : Mnは、鋼中の Sを MnSとして析出させてスラブの熱間割れを防止したり、 めつ き密着 を劣化させることなく鋼を高弓艘化できる。 0.1%未満では Sを析出させる効果が なぐ 1.0%を超えると弓艘を著しく上昇させるとともに延性を低下させるため、その含有 量を 0.1〜: 1.0%とする。
P : Pは、高弓艘化のため 0.01%以上に必要があるが、 0.05%を超えると激¾¾の靱 I生劣 化ゃ薩めつき密着不良が発生するため、 その含有量を 0.01〜0.05%とする。
S : Sは、 0.02%を超えて含有されると延性を低下させるため、その含有量を 0.02%以下 とする。
soLAl: A1は、 鋼中 Nを A1Nとして析出させて固溶 Nの弊害を軽 Tる作用がある。 0.01%未満ではその効果が十分でなぐ 0.1%を超えると固溶 A1により延性低下を招くた め、 その含有量を o.oi〜o.r½とする。
Ν: Νは、 上記 soLAlの T«でも眉として析出するように、 その含有量を 0.004% 以下とする。
Nb: Nbは、 Cと誦炭化物を形成し、 辦 部の結晶粒の 化を抑制する。 ま た、 鋼を高弓嫉化させ、 低ひず における n値を高める。 しカゝしながら、 0.01%未満で はその効果が得られず、 0.14%を超えると降伏弓艘が上昇し、 延性が低下するので、 その 含有量を 0.01〜0.14%、 より好ましくは 0.035〜0.14%、 さらに好ましくは 0.080〜0.14% とする。 このように鋼の各 量を るだけでは、 必ずしもテーラードブランクに対 き る慰齄 15の成形性カ^ら い。 そこで、 上記した成分量の麵内にある 0.7mmの冷延 鋼板をレーザー レーザー出力 3kW、
Figure imgf000031_0001
辦灣部の張出し性を球 駒長出し Elにより、 伸びフランジ性を:^け ¾纖により、 また、 り性を角筒絞り試 験により調査した。
図 14に、 図 13の f» を用い、 表 10の条件 長出し を行ったときの辦錢 15 の張出し高さにおよぼす (12 XNb*)/(93 X C)の影響を示す。
Nb、 Cの含有量が下記の式 (6)を満足するとき、 張出し高さが 26mm以上となり優れた 張出し性の得られることがわかる。 1.2未満では^ 部からき裂が発生し、 張出し高さ 力^しく低下する。
(12/93) XNb*/C≥1.2 (6)
図 16に、 図 15の試験片を用い、 表 11の条件で穴広け ¾纖を行ったときの溶接部の穴 広げ率におよぼす (12 X Nb*)/(93 X C)の景濯を示す。
Nb、 Cの含有量が、上言己の式 (6)を満足するとき、 7¾Sげ率が 80%以上となり優れた伸び フランジ性の得られることがわかる。 1.2未満では麵灣部からき裂が発生し、 mm^ に沿って醒する。 このこと力ら、 濯部の粗粒化による軟化力,びフランジ性を劣化 させると ^変される。
なお、 本発明の Nb、 C量の麵では、 1100°C以上で NbC tt«論上錢固^ Tるが、 mmiz M .急冷される辦濯部では非 に跡が進み、 溶け残りの Nbcが 果的 に細粒化を鍵していると鶴される。
讓濯部においてより優れた張出し性と伸びフランジ性を得るには、 (12XNb*)/(93XC )を 1.3-2.2の範囲に規制すること力軒ましい。
図 18に、 図 17の を用い、 表 12の条件で角筒絞り成形言纖を行ったときの激妾 部の割れ発生限界しわ押さえ力におよぼす TSの影響を示す。
下記の式 (7)を満足する鋼では、割れ発生限界し: Wさえ力は 20ton以上で、優れた丫 り性能が得られることがわかる。
TS-4050 X Ceq≥-0.75TS+380 (7)
この結果は、 上記の式 (7)の関係により、 NbCの析出強化と縦粒強化を利用し、 固溶強 Si, Mn、 Pを ί繊した]^設計を可能とし、 鹏 [5と母材の相綱な弓艦を低 減できることによると考えられる。
Q 1
O 丄 表 10
球頭張出し試験条件 パンチ 100mm— Rp50mm
φ 10omm— Rd6.omm ダイス 三角ビ一ド付き (ビード位置: < 33mm) しわ押え力 60ton (—定)
潤滑 ポリエチレンフィルム +高粘度プレス油
表 11
穴拡げ試験条件 パンチ φ 50mm— Rp8mm
05omm— Rd5mm ダイス 三角ビード付き (ビード位置: 80mm) しわ押え力 8ton (—定)
潤滑 防鲭油
表 12
角筒絞り試験条件
100 X 100mm— Rp5mm、 パンチ
コーナー R : 15mm
106 x 106mm— Rd5mm、 ダイス
コーナ一 R : 18mm 潤滑 防鑌油 本発明鋼板 4には、結晶粒の翻化を {© るために τίの添加カ^ ·¾である。 o.o5%を 超えると溶 メツキ処理した際に表面性状を著しく劣化させるため、 0.05%以下、 よ り好ましくは 0.005〜0.02%とする。
また、耐:^ niflt性を向上させるため、 Bを添力 ΠΤること力 である。 0.002%を超 えると灘り性、張出し性が劣化するため、 0.002%以下、より好ましくは 0.0001〜0.001% とする。 なお、 本発明鋼板 4は、 優れた激錢の成形性のほか、 複合成形' 14、
Figure imgf000034_0001
剪睛の耐バリ性、 表面性状、 コイル内材質均一性などに対しても自動車 «パネルに適 用できる程度の特性を有している。 本発明鋼板 4は、 Tiや Bを添加した も含め上記のように成分調整された鋼の 続 スラブを、 熱間 冷間 することにより作製できる。
スラブは、 iSf妾あるいは再加謝麦に熱間 Siできる。 その時の仕上 は、 優れた表面 性状と材質の均 を確保するために、 Ar3变敏 以上の温度で行うこと力 ましい。 熱延後の巻取温度は、 箱謹の場合には 540で以上に、 違徹纖の場合には 600°C以上 にすることが好ましい。 また、 酸洗による脱スケール 14の から 680°C以下にすること 力 ましい。
冷間圧 «の圧下率は、深絞り性を向上させるために 50%以上にすること力^ Fましレ 讓 は、箱誰の齢は 680〜750 に、 の は 780〜880°Cにすること 力 ましい。
本発明鋼板 4には、 必 に応じて電気めつきや溶融めつきなどの亜鉛系めつき処理やめ つき後の有 を すことか きる。
(難 )
表 13に示す鋼番 No.:!〜 20の鋼を^^、連^^により 250mm厚のスラブを し、 1200。Cにカロ謝 仕上 &¾880〜940°C、巻取^ ¾ 540〜560°C (箱^ 6向け)、 600〜680°C m, 連 ίί^«+碰めっき向け)で娜 2.8画の熱薩板を S¾gし、 W 0.7mm に冷間腿後、 680〜740。Cの箱脑 (BAF)、 800〜860。Cの遙»¾CAL)、 800〜860 の連^ i+溶 ®«めつき (CGL)を行い、 圧下率 0.7%で調質 AE した。
溶 MMめっきでは、 TO後 460°Cで溶 MS鉛めつき処理を行い、 直ちにィ ンライン合金 i S炉で 500°cでめつき層の合金ィ 理を行つた。
そして、 母材の引弓勝 14値 (JB ¾T向、 JIS 5号 iW )と r値を測定した。 また、 した方法で溶 部の球駒長出し試験、 ; ^:け試験、 角筒絞り Ϊ 験を行った。
結果を、 表 14に示す。
本発明例の Νο.ι〜: 10は、 母材において優れた機械特 14値を射るのみならず、 mm 部においても優れた張出し高さ、 7¾Sげ率、 割 艮界しわ押さえ力を有していること がわかる。
一方、 比較^]の No.ll〜20は、 激錢 15の成形性に劣っている。
表 13
Figure imgf000036_0001
表 14
TS El BH -0J5 X TS rz出し さ
No. 穴拡げ率 割れ発生限界
r値
(MPa) (%) (MPa) +380 ( mm) (%) しわ押え力 (ton) 備考
1 197 325 43.5 1 J9 0 261 136 28.0 105 20.5 本発明例
2 193 323 43.2 1.80 0 265 138 27.6 95 20.5 本発明例
3 207 344 41.8 1 J2 0 224 122 27.5 100 20.0 本発明例
4 209 345 41.0 1.69 0 212 121 28.0 105 21.0 本発明例
5 210 348 42.0 1 J0 0 220 1 19 27.4 95 22.5 本発明例
6 227 375 40.8 1.85 0 124 99 27.6 95 21.5 本発明例
7 229 378 40.5 1.86 0 140 97 27.4 100 22.0 本発明例
8 234 385 39.9 1 J6 0 1 10 91 27.5 95 23.0 本発明例 CO
9 241 398 39.5 1 J1 0 106 82 26J 85 24.5 本発明例
10 239 394 39.3 1.70 0 145 85 26.5 85 25.0 本発明例
1 1 215 325 41.5 1.69 0 248 136 23.2 55 16.5 比較例
12 222 340 40.5 1.65 19.5 120 125 25.1 55 16.0 比較例
13 228 342 40.2 1.63 1 1.5 217 124 22.5 40 17.0 比較例
14 229 341 39.8 1.59 0 212 124 25.9 70 19.0 比較例
15 234 346 37.9 1.56 0 224 121 22.5 40 16.0 比較例
16 248 374 38.5 1.71 2.5 58 100 23.7 40 18.0 比較例
17 255 369 38.1 1 J2 0 133 103 22.8 45 16.5 比較例
18 256 379 38.9 1.69 0 162 96 21.0 40 16.0 比較例
19 266 391 37.4 1.59 0 81 87 26.0 65 17.0 比較例
20 264 395 37.1 1.62 0 201 84 21.5 25 16.5 比較例
最良の形態 5
上記した本発明鋼板 5は、 特に耐バリ性 (剪 1»のバリ高さが小さいこと)に優れた鋼板 であり、 以下にその詳細を説明する。
C: Cは、 Nbと炭化物 NbCを形成して耐バリ性に體をおよぼすが、 0.004%未満では NbCの體率が十分でないのでバリ高さを小さくできず、 0.01%を超えると NbCの 圣 分布の不均 H4が増大するのでバリ高さの麵が大きいため、その含有量を 0.004〜0.01% とする。
P、 S : P、 Sは、 硫化物やリン化物などの比動おおきな介在物として鋼中に分散し、 打ち抜きカロ工時のクラックの あるいはイ ^SJl^"トとなり、 ノ J高さを fg させる効果 がある。しかし、翻な添加 ttA'リ高さの麵を助長させるので、その含有量を Pは 0.05% 以下、 Sは 0.02%以下とする。
soLAl : Alは、鋼の膽のために添加される。 0.01%未満では Mnや Siなどの默な酸 化物が鋼中に多数分 ϋτΤることになり、 P、 Sの»添加と同様にバリ高さの麵が大き くなり、 0.1%を超えると駄な Al2〇3が «してバリ高さの変動が大きくなるため、その 含有量を 0.01〜0.1%とする。
Ν: Νは、翻に添加されると Nbや A1などの窒化物が ¾Λ化して、 剪 にクラック カ坏均一に発生しやすくなりバリ高さの麵が大きくなるため、 その含有量を 0.004%以 下とする。
Ti : Tiは、 成形性の向上などに棚な であるが、 Nbと複合添加された 、 NbC の分布形態に悪灣をおよぼすため、 その含有量を 0.03%以下とする。
Nb : Nbは、 ±¾βしたように、 Cとともに炭化物 NbCを形成して耐バリ性に鍵をお よぼす。 ί»Τるような優れた耐バリ性の得られる NbCの髓率ゃ 纷布にするには、 その含有量を下記の式 (8)を満足するように制御する必要がある。
l≤(93/12)X (Nb/C)≤2.5 (8) 耐バリ性におよぼす NbCの 率や粒 ίΐ^布の影響を、 種々の成分系の高強度冷 « 板について調査したところ、 図 19、図 20に示すように、 NbCの籠率が 0.03〜0.1%で、 その 70%以上が 圣 10〜40nmである齢に、平均バリ高さが 6 m以下、その標 差 力 0.5; ηι¾下と小さく、 耐バリ性に非常に優れている。
こうした NbCの分布形態により優れた耐バリ性が得られる明確な理由は不明であるが、 以下のように »される。 打ち抜きカロェのせん断縁のような局所変形領域に非常に均一微 細に析出物が分 tSr る 、 鋼中に^ Tる析出物近傍から同時に多数のクラックが発生 し、 それらがほぼ伺時に!^し破壊に至るため、 ノ リ高さの平均値のみならずその麵も 極めて小さくなる。 我々は、 i、 Vについても検討を行つたが、 NbCのような効果は認めら ょかつた。 こ れらの炭化物では、 NbCに比べて大きさや分布が不均一のためと思われる。
Si、 Mnは、 本発明で検討した^ ffl内では特注に悪^ をおよぼさなかったので、 特に 規定しないが、 強度、 成形性など他の特 14を損なわない範固で適宜添加できる。
また、 Bは lOppm以下、 Vは 0.2%以下、 Crと Moは 0.5%以下であれば、 本発明の効 果を損なわないので適宜添加できる。 なお、 本発明鋼板 5は、 優れた耐バリ性のほか、 複合成形性、 耐 ¾¾[nj|性、 表面性 状、 コイル内材質均一 14などに対しても自動車瓶パネルに翻できる離の特性を有し ている。 本発明鋼板 5は、 上記のように^ ¾され^の遙^ ラブを S¾iし、 スラブを 下記の式 (9)〜(11)を満足する最終パス前と最終パスの圧下率 HR1、 HE2で仕上圧延して 熱 «板を s ^し、 熱薩板を冷間 ΐΐ¾»τることにより作製できる。
10≤HR1 (9)
2≤HR2≤30 (10)
HR1+HR2 -HR1 X HR2/100≤60 (11)
熱間圧延後のランナウト冷却や «後の冷却などにおいて 200°C/secを超えるような冷 却 ϋ¾としないかぎり、 本発明の効果が得られるので、 最終パス前と最終パスの圧下率以 外の^^件については特に職しない。
本発明鋼板 5には、 必 に応じて電気めつきや溶融めつきなどの亜鉛系めつき処理やめ つき後の有 «»理を こと力 きる。 表 15〜: L6に示す鋼番 No.l〜35の鋼を^ »、 により 250mm厚のスラブを 製造し、 1200°Cに加熱後、仕上温度 890〜960°C、巻取温度 500〜700°Cで板厚 2.8mmの 熱 5 ^板を S¾gし、 0.7mmに冷間 β後、 750〜900°Cの逢樹^ i¾CAL)あるい ttii 溶 ΒίΜめつき (CGL)を行い、 圧下率 0.7%で調質 iH£した。
Figure imgf000040_0001
«後 460°Cで溶 a«めっき処理を行い、 直ち にィンライン合金 ί匕 MS炉で でめつき層の合金ィ,を行つた。
そして、 それぞれの鋼 ゝら直径 50mmの円板を 50樹了ち抜いて、 端面のバリ高さを 測定し、 平均バリ高さとバリ高さの標^ 差を求めた。
結果を、 表 17〜: 19に示す。
本発明麵内の を有し、本発明麵内の条件で熱間 された鋼板は、 NbCの分布 形態が 化されており、平均バリ高さが 6 m ^下、その標«差が 0.5 m¾下と小さ く、 耐バリ性に非常に優れていることがわかる。
表 15
CO CD
Figure imgf000041_0001
単位は Wt%。
*は、本発明の範囲からはずれる: :とを示す。
表 16
^ ο
Figure imgf000042_0001
単位は Wt%
*は、本発明の範囲からはずれる: :とを示す。
表 17
Figure imgf000043_0001
*は、 本発明の範囲からはずれることを示す。
表 18
C
Figure imgf000044_0001
*は、 本発明の範囲からはずれることを示す。
表 19
Figure imgf000045_0001
*は、 本発明の範囲からはずれることを示す。
最良の形態 6
上記した本発明鋼板 6は、 特に表面性状に優れた鋼板であり、 以下にその詳細を説明す る。
C: Cは、 Nbと翻炭化物を形成して鋼を高弓艘化させるとともに熱延後の結晶径を微 細化して r値を向上させる。 また、 翻炭化物による析出強化を禾佣しているため、 Si、 Mn、 Pの多量添加が なぐ優れた表面性状が得られる。 0.0040%未満ではその効果が 少なく、 0.010%を超えると延性を低下させるため、 その含有量を 0.0040〜0.010%、 より 好ましくは 0.0050〜0.0080%、 さらに好ましくは 0.0050〜0.0074%とする。
Si: Siは、翻に添力 ると めつきの密着 14も劣化させるため、その含有量を 0.05% 以下とする。
Mn: Mnは、鋼中の Sを MnSとして析出させてスラブの熱間割れを防止したり、 めつ き密着 14を劣化させることなく鋼を高強荬化できる。 0.1%未満では Sを析出させる効果が なぐ 1.5%を超えると弓艘を著しく上昇させるとともに延性を低下させるため、その含有 量を 0.1〜: 1.5%とする。
P : Pは、高強度化のため 0.01%以上に必要があるが、 0.05%を超えると溶賠の靱 I生劣 化や «めつき密着不良が発生するため、 その含有量を 0.01〜0.05%とする。
S : Sは、 0.02%を超えて含有されると延性を低下させるため、その含有量を 0.02%以下 とする。
soLAl : Alは、鋼の脱酸のために添力 る。 0.01%未満ではその効果が十分でなぐ 0.1% を超えると固溶 A1により延性低下を招くため、 その含有量を 0.01〜0.1%とする。
N: Nは、 鋼中に固溶しストレツチヤーストレインなどの表面欠陥の原因となるので、 その含有量を 0.0100%以下とする。
Nb: Nbは、 Cと翻炭化物を形成し鋼を高弓鍍化させ、 また結晶粒を微細化させて表 面性;! 複合成形性を向上させる。 0.036%未満ではその効果が得られず、 0.14%を超える と降伏弓艘が上昇し、 延性カ氐下するので、 その含有量を 0.036〜0.14%、 より好ましく は 0.08〜0.14%とする。 このように鋼の各成分量をS^Tるだけでは、 表面性状およ 复合成形性ともに優れた 高弓娘冷菌板は得られず、 さらに下記の式 (12)を満足させ、 平均結晶 圣を 10 m以下、 r値を 1.8以上にする がある。
1. K(Nb X 12)/(C X 93)<2.5 (12)
なお、 (NbX 12)/(CX93)は、 NbCの鶴 Uをより効果的にするために、 1.5を超えるよう に、 より好ましくは 1.7以上とする。 本発明鋼板 6には、 結晶粒の翻化を碰するために iを、 0.019%以下、 より好まし くは 0.005〜0.019%で、 力り下記の式 (13)を満足するように添力 Pi"ること力職である。
i≤(48/14) X N+(48/32) X S (13)
また、耐 l^KEUI性を向上させるため、 Bを 0.0015%以下添力 PTること力職である。 なお、 本発明鋼板 6は、 優れた表面性状のほか、 複合成形性、 耐二 OJI性、 耐バリ 性、 コイル内材質均 生などに対しても自動車 «パネルに翻できる體の特 (4を有し ている。 本発明鋼板 6は、 iや Bを添加した齢も含め上記のように成分薩された鋼の連続 «スラブを $¾gし、 スラブを ifii妾あるいは 1100〜1250°Cの^に加 して粗 ノ ーを S¾tし、 ffiA'—を最終パス前と最終パスの合計圧下率が 10〜40%となるように仕上 して熱 β板を $mし、熱應板を 15°C/sec以上の冷却 で 700で以下の まで 冷却して 620〜670での で卷取り、 50%以上の圧下率で冷間 |¾後、 20 :/sec以上の カロ熱趣で加熱して 860°C〜Ac3 以下の で腿し、 0.4〜: 1.0%の圧下率で調質 することにより作製できる。
スラブを再加熱する齢は、 iioo°c未満では熱間 JEWの変^ |職が著しく高くなり、
1250°Cを超えると »jにスケールが «して表面性状を劣化させるおそれがあるので、 1100〜: L250°Cの温度で行う必要がある。
仕 _hi¾では、 最終パス前と最終パスの合計圧下率を、 熱延後の結晶粒の «ィ匕を図る ために 10%以上、不均一な ]¾«の«を防止するために 40%以下にする がある。 なお、 圧延後の板厚は、 その後の冷間 i¾P#の圧下率を確保できるように 2.0〜4.5mmに すること力 子ましい。 熱間 JHS後は、 結晶粒の &λ化を防ぐために、 15°C/sec以上の冷却 ϋ¾で 700°C以下の まで冷却する がある。
巻取りは、 A1Nの析出を碰するとともに酸洗による脱スケール 14の から 620〜 670°Cで行う必要がある。
冷間] の圧下率は、 高 r値化を図るために 50%以上にする がある。
«は、 結晶粒の «化による表面性状の劣化を防止するとともに高 r値化を図るため に 20°C/sec以上の加熱體で加熱し、 860t:〜 Ac3变 ¾ 以下の ¾gで行う がある。 調質圧延は、 時効の抑制や降伏強度の上昇を防ぐために 0.4〜: 1.0%の圧下率で行う必要 がある。
本発明鋼板 6には、 必要に応じて電気めつきや溶融めつきなどの亜鉑系めつき処理やめ つき後の有 を; ことが きる。
(難例 1)
表 20に示す鋼番 No.:!〜 13の鋼を :、連^igにより 250mm厚のスラブを し、 1200°Cにカロ舰、 880〜910°Cで仕 ±JB し、 平均冷却 20で/ secで冷却後、 640 で 巻取って娜 2.8mmの熱翻板を I ^し、娜 0.70mmに冷間 IH£後、約 30°C/secのカロ 熱速度で加熱し、 865 で 60secの連 溶鬲$¾鉛めつきを行い、 圧下率 0.6%で調質 腿した。
そして、
Figure imgf000048_0001
の調査を行った。
結果を、 表 21に示す。
本発明^ H内の を有し、本発明^ H内の条件で作製された本発明例である鋼番 1〜9 は、 10 m以下の平均結晶樹圣、 1.8以上の r値を有し、 表面性状と耐艦れ性に優れて いること力わかる。
一方、 比較刺の鋼番 10は、 C含有量が 0.0040%未満であるため結晶粒が 化し、 耐 Ul^ 性に劣る。 鋼番 11は、 C含有量が 0.010%を超えているため NbCの析出量が多過 ぎ、 伸びや r値に劣る。鋼番 12は、 (NbX 12)/(CX93)が 1.1以下なので固溶 Cヵ璣留し、 伸びや r値に劣る。鋼番 13は、(NbX 12)/(CX93)が 2.5以上なので、伸びや r値に劣る。 (麵例 2)
表 20に示す鋼番 No.:!〜 5のスラブを用い、表 22に示すようなの熱間 件と^^ 件で溶裔$«めつき鋼板を $¾iした。
そして、 難例 1と同様な調査を行った。
結果を、 表 22に示す。
本発明麵内の条件で作製された本発明例である A、 C、 Eは、 10 以下の平均結晶 樹圣、 1.8以上の r値を有し、 表面性状と耐 M^ 性に優れていることがわかる。
一方、 比 WJの B、 Fは、 r鶴 く成形性が十分でない。
表 20
CO
Figure imgf000050_0001
単位は wt%。
*は、本発明範囲外であることを示す。
表 21
I S El 牛均
鋼番 ¾ i
(MPa) (%) HI ( μ m) 表面性状 耐肌
備考 荒れ性
1 350 42.9 2.14 8.6 A 〇 本発明例
2 385 40.5 2.03 8.1 A 〇 本発明例
3 360 41.7 1.97 7.8 A 〇 本発明例
4 354 42.4 1.99 9.3 A 〇 本発明例
5 371 40.4 2.02 8.1 A 〇 本発明例
6 380 39.5 1.91 9.2 A 〇 本発明例
7 373 40.2 1.96 9.5 A 〇 本発明例
8 376 39.9 1.90 7.3 B 〇 本発明例
9 385 38.9 1.95 9.9 B 〇 本発明例
10 345 43.5 2.17 19.0 C X 比較例
1 1 392 34.5 1 .78 6.9 A 〇 比較例
12 375 37.5 1.65 8.1 B 〇 比較例
13 370 36.5 1.58 6.4 A 〇 比較例
表 22
最終パス前と
加熱温度 仕上温度焼鈍温度 E! 均粒径 表面 肌
鋼番 最終パスの
(°C) (°C) (°C) (%) Hit 平 耐
、μ m 備考
性状 荒れ性
合計圧下率 (%)
A 1 1 120 15 900 860 348 43.2 2.15 8.9 A 〇 本発明例
B 4 1 180 43 910 860 354 42.4 1.65 8.5 A 〇 比較例
C 5 1200 15 890 865 371 40.4 2.02 8.1 A 〇 本発明例
D 1 1230 18 930 860 350 42.9 1.88 8.6 A 〇 本発明例
E 2 1200 25 890 840 390 38.9 1.85 7.5 A 〇 本発明例
F 3 1210 30 900 820 365 41.7 1.70 7.2 A 〇 比較例 Ο
最良の形態 7
上記した本発明鋼板 7は、 特にコイル内材質均一 I生に優れた鋼板であり、 以下にその詳 細を説明する。
C : Cは、 N と翻炭化物を形成して鋼を高弓艘化させるとともに低ひず における n値を高めるので、 耐面ひずみ性を向上させる。 0.0050%未満ではその効果カ沙なく、 0.010%を超えると延性を低下させるため、 その含有量を 0.0050〜0.010%、 より好ましく は 0.0050〜0.0080%、 さらに好ましくは 0.0050〜0.0074%とする。
Si : siは、 翻に添加されると冷翻板の i «理性を劣化させたり、 溶層纏めつき 鋼板のめっき密着 を劣化させるため、 その含有量を 0.05%以下とする。
Mn: Mnは、鋼中の Sを MnSとして析出させてスラブの熱間割れを防止したり、 めつ き密着 !4を劣化させることなく鋼を高強度化できる。 0.10%未満では Sを析出させる効果 がなく、 1.5%を超えると降伏強度を著しく上昇させるとともに低ひずみ减における n値を 低下させるため、 その含有量を 0.10〜: 1.5%とする。
P: Pは、高弓嫉化のため 0.01%以上にする があるが、 0.05%を超えると めっき の合金化処理性を劣化させめつき密着不良を発生させるため、 その含有量を 0.01〜0.05% とする。
S : Sは、 0.02%を超えて含有されると延性を低下させるため、その含有量を 0.02%以下 とする。
soLAl: A1は、 鋼中 Nを A1Nとして析出させて固溶 Nの弊害を軽 "る作用がある。 0.01%未満ではその効果が十分でなぐ 0.1%を超えてもそれに見合う効果力 ら池いた め、 その含有量を 0.01〜0.1%とする。
N : Nは、 可能な限り少ない方力 ましいが、 コスト上その含有量を 0.004%以下とす る。
Nb: Nbは、 Cと翻炭化物を形成して鋼を高弓艘化させるとともに低ひず におけ る n値を高めるので、 耐面ひずみ性を向上させる。 0.01%未満ではその効果力 られず、 0.20%を超えると降伏弓嫉を著しく上昇させるとともに低ひず^ ¾における n値を低下さ せるため、 その含有量を 0.01〜0.20%、 より好ましくは 0.035〜0.20%、 さらに好ましく は 0.080〜0.140%とする。 このように鋼の各]^量を PI¾ "るだけでは、 コイル内材質均ー性、 職り性、 張出し 性ともに優れた高弓嫉冷 β板は得られず、 さらに次のような条件が^である。
重 S0 /。で、 C:0.0061%、 Si:0.01%、 Mn:0.30%> P:0.02%、 S:0.005%、 soLAl:0.0500/o、 N:0.0024%, Nb:0.040〜0.170%を含むスラブを、 40%の最終パス前と最終パスの合計圧 下率、 900°Cの仕上^ gで仕 ± Biし、 580〜680°Cで卷取り、娜 0.8mmに冷間 iBi後、
85o°c mm 0.7%の圧下率で調質 ΙΞ した鋼板を用い、 コイル内材質均一 itを調 査した。
図 21に、 コィル内材質均ー性にぉょぼすひ 12)/(0 93)、 Cの影響を示す。
(NbX 12)/(CX93)が下記の式 (14)を満足する給に、 優れたコイル内材質均一 14が得ら れる。
I.98-66.3 X C≤(Nb X 12)/(C X 93)≤3.24-80.0 X C (14)
また、 深絞り性と張出し性に関しては、 上記の鋼板を用い、 最良の形態 1で述べた円筒 成形時の限界絞り比とハツト 城形言纖後のハツ卜成形高さを測定して ϊ¾5した。
図 22に、 り性、 張出し性におよぼす r値、 n値の纖を示す。
最良の形態 1の と同様、下記の式 (3)、 (4)を満足させれば、優れた り性と張出し 性が得られる。
II.0≤r+50.0Xn (3)
2.9≤r+5.00Xn (4) 本発明鋼板 7には、 結晶粒を微細化し耐面ひずみ性を向上させるために Tiを添加でき る。 0.05%を超えると溶融亜鉛メツキ処理した際に表面性状を著しく劣ィ匕させるため、 0.05%以下、 より好ましくは 0.005〜0.02°/。とする。 このとき、 上記式 (14)の りに下記 の式 (15)を用いる必要がある。
1.98-66.3 X C≤(Nb X 12)/(C X 93)+( i* X 12)/(C X 48)≤3.24-80.0 X C (15) さらに、耐 ^ΠΙΜ性を向上させるため、 Βを添力 ΠΤることカ^]である。 0.002%を 超えると り性、 張出し性が劣化するため、 0.002%以下、 より好ましくは 0.0001〜 0.001%とする。 なお、 本発明鋼板 7は、 優れたコイル内材質均 のほか、 複合成形性、 Mi=MuiM 性、 の成形性、 剪幌の耐バリ性、 表面性状などに対しても自動車 パネルに適 用できる程度の特 14を有している。 本発明鋼板 7は、 iや Bを添加した も含め上記のように 醒された鋼の 続 ラブを S¾gし、スラブを最終パス前と最終パスの合計圧下率が 60%以下となるよう に仕上 EMして巻取り熱 ¾ ^板を製造し、 熱 β板を冷間 iBi することにより作製 できる。 なお、 ^^^スラブを熱間圧延するときは、 スラブを直接または再加熱してか ら «できる。
優れたコイル内材質均ー性、 »り性、 張出し性をより確実に得るには、 仕上圧延を 870 以上で、 謹後の巻取りを 550°C以上で、 冷間 の圧下率を 50〜85%で、 纖 を 780〜880での ^$で行うのカ籽ましい。 また、 巻取りは、 酸洗による脱スケール 性の安定性の氍 から 700°C以下、より望ましくは 680°C以下で行うことがより好ましい。 本発明鋼板 7には、 に応じて€Mめっきや溶融めつきなどの 系めつき βやめ つき後の有 を S Tことが きる。
(難例 1)
表 23に示す鋼番 No.l〜: 10の鋼を i§i 、)i«iiにより 220mm厚のスラブを Migし、 1200°Cに加^^ 30〜50%の最終パス前と最終パスの合計圧下率、 880〜960 の仕上温 度で娜 2.8mmまで熱間 ffi^し、 580〜680°Cの巻取 で卷取り、 W 0.80mmに冷間 圧延後、 840〜870°Cの連続 «(CAL)または 850〜870°Cの連続焼鈍 +溶鬲 鉛めつき (CGL)を行レ 圧下率 0.7%で調質 ΙΒίした。
連 溶裔1¾鉛めつきでは、 «後 460°Cで溶 めっき処理を行い、 直ちにィ ンライン合金ィ匕 S炉で 500°Cでめつき層の合金 ί匕処理を行った。 めっき目付け量は、 片 側 45g/m2である。
そして、 引弓! JB£^向、 JIS 5号言 ί!^Γ、 η値は 1〜5%ひず ¾ 算出)、 r値、 限界絞り比 (LDR)、八ット成形高さ (H)を測定した。 また、 めっき鋼板に対しては、 め つき密着 も調査した。
めっき密着性は、めっき鋼板表面にセロテープを貼り付け、 90度曲げ曲け哀しを行い、 セロテープに付着しためっき量を測定し、 1 :剥離なし、 2: mm , 3 :剥離小、 4 :剥 離中、 5 :剥默の 5段階に分類し、 1、 2を合格とした。
結果を、 表 24〜26に示す。
本発明例の鋼板は、 灘り性、 張出し性、 コイル内材質均」性に優れ、 力つめっき密着 性にも優れていることがわかる。
これに対し、 比較例の鋼板は、 碰り性や張出し性に劣り、 特に上記の式 (14)を満足し ない齢、 コイル長手方向における材質均 に著しく劣る。 また、 P、 Ti含有量が多い 齢は、 力つめっき密着 にも力劣っている。
(雄例 2)
表 23に示す鋼番 No.lの鋼スラブを 1200°Cに加謹、 30〜70%の最終パス前と最終パ スの合計圧下率、 880〜910°Cの仕上 で®¥ 2.8mmまで熱間 )Ξ¾し、 580〜640。Cの 巻取 で卷取り、 ¾»0.80mmに冷間 E 後、 840〜870 の または 850〜870°C の 溶鬲謹めっきを行い、 圧下率 0.7%で調質 i£®した。
溶 めっき Sの条件は、 難例 1の と同様である。
そして、 コイル長手方向の引赚性 (n値は 〜 5%ひず 算出)、 r値、限赚り比、 ハツ卜成形高さを測定した。
結果を、 表 27に示す。
最終パス前と最終パスの合計 i£T率が 60%以下で本発明麵内にある鋼板は、コイル長 手方向における材質均 に優れていることがわかる。
(難例 3)
表 23に示す鋼番 No.lの鋼スラブを 1200°Cに加 »、 40%の最終パス前と最終パスの 合計圧下率、 840〜980°Cの仕上 で ¾ff 1.3〜6.0mmまで熱間 «し、 500〜700°Cの 巻取 で卷取り、 46〜87%の J£T率で 0.80mmに冷間 後、 750〜900 の連続 讓また〖鍵^ 溶高讓めっきを行い、 JET率 0.7%で調質 Ε¾した。
溶鬲讓めっき綱の条件は、 雄例 1の と同様である。
そして、 コイ 手方向の引 性 (η値は 1〜5%ひず 算出)、 r値、限微り比、 ハット成形高さを測定した。
結果を、 表 28、 29に示す。 仕上温度、 巻取温度、 冷間 JB tの圧下率、 が本発明範囲内にある鋼板は、 コ ィル長手方向における材質均 に優れていることがわかる。
¾
Figure imgf000058_0001
表 24
Figure imgf000059_0001
Y**=r 50.0 X η Ζ***=Γ+·5.0 n
表 25
00
Figure imgf000060_0001
丫**= 50.0 X n、 Z***=r+5.0 x n
表 26
J1 D
Figure imgf000061_0001
γ**+50.0 x n、 Z***=r+5.0 X n
表 27 o
Figure imgf000062_0001
Y**=r+50.0 n Zネネ氺 =r+5.0 X n
表 28
Figure imgf000063_0001
γ**+50.0 x n Z***=r+-5.0 x n
表 29
C
Figure imgf000064_0001
Y**=r+50.0 x n、 Z**氺 = 5,0 x n

Claims

請求の範囲
1. 重 ¾%で、 C:0.0040〜0.010%、 Si:0.05%以下、 Mn:0.10〜: 1.20%、 Ρ:0.01〜0.05ο/ο、 S:0.02%以下、 soLAl:0.01〜0. /o、 Ν:0·004%以下、 Ο:0.003%以下、 Nb:0.01〜0.20%を含 有し、 力つ下記の式 (1)、 (2)、 (3)、 (4)を満足する高弓艘冷菌板;
-0.46-0.83 X log[q≤(Nb X 12)/(C X 93)≤-0.88-1.66 X log[Q (1)、
10.8≥5.49Xlog[YP]-r (2)、
11.0≤r 50.0Xn (3)、
2.9≤r 5.00Xn (4)、
式ひ)〜 (4)において、 C、 Nbは元素 C、 Nbの含有量 (重 *%)、 YP〖鹏伏鍍 (MPa)、 rは r値、 nは nィ直(1-5%ひずみ)を表す。
2. 重 M で、 C:0.0040〜0.010%、 Si:0.05%以下、 Mn:0.10〜: l.20%、 P:0.01〜0.05%、 S:0.02%以下、 soLAl:0.01〜ai0/0、 N:0.004%以下、 0:0.003%以下、 Nb:0.01〜0.20%、 Ή:0.05%以下を含有し、 力つ下記の式(2)、 (3)、 (4)、 (5)、 を満足する高弓 冷,板;
10.8≥5.49Xlog[YP]-r (2)、
11.0≤ H50.0Xn (3)、
2.9≤r+5.00Xn (4)、
-0.46-0.83 X log[C]≤(Nb X 12)/(C X 93)+(Ti* X 12)/(C X 48)≤-0.88-1.66 X log[C] (5)、 式 (2)〜(5)において、 YP は降伏強度 (MPa)、 rは r値、 nは n値 (1-5%ひずみ)を、 i*=Ti-(48/14)XN-(48/32)XSで、 Ti*が 0以下のときは Ti*=0、 C、 S、 N、 Nb、 Tiは元 素 C、 S、 N、 Nb、 Tiの含有量 を表す。
3. さらに、 B:0.002重 M%以下を含 #Tる請求の議 1また «I青求の β 2に記載の高 弓鍍冷麵板。
4. 重: 1%で、 C:0.0040〜0.010%、 Si:0.05%以下、 Mn:0.10〜: 1.20%、 Ρ:0.01〜0.05ο/ο、 S:0.02%以下、 soLAl:0.01〜0.1%、 Ν:0·004%以下、 0:0.003%以下、 Nb:0.01〜0.20%を含 有し、 かつ下記の式 (l)を満足する鋼の; ラブを する工程と、 編己スラブを、 Ar3变態 以上の で仕 ±i¾して熱翻板を i ^する工程と、 羅激 β板を、 540°C以上の^で卷取る工程と、
Ι ΙΕ 取り後の熱 β板を、 50〜85%の圧下率で冷間圧延後、 680〜880°Cの で連 ^ rる工程と、
を #Tる高 冷 «板の^ 法;
-0.46-0.83 X log[C]≤(Nb X 12)/(C X 93)≤-0.88-1.66 X log[C] (1)、
式 (1)において、 C、 Nbは元素 C、 Nbの含有量 (重 Μ )を表す。
5. 重 ¾%で、 C:0.0040〜0.010%、 Si:0.05%以下、 Μη:0·10〜: 1.20%、 Ρ:0.01〜0.05ο/ο、 S:0.02%以下、 soLAl:0.01〜0.1%、 N:0.004%以下、 0:0.003%以下、 Nb:0.01〜0.20%、 Ti:0.05%以下を含有し、カゝっ下記の式 (5)を満足する鋼の連 ラブを $¾gする工程と、
MISスラブを、 Ar3变態 以上の雕で仕±«して熱薩板を製造する工程と、 編激 5 ^板を、 540°C以上の^^で卷取る工程と、
嫌 B 取り後の熱讓板を、 50〜85%の圧下率で冷間 ISS後、 680〜880 の で連 る工程と、
を る高 冷 板の I ^法;
-0.46-0.83Xlog[q≤(NbX 12)/(CX93)+(Ti* X 12)/(CX48)≤-0.88-1.66Xlog[Q (5)、 式 (5)において、 Ti*=Ti-(48/14)XN-( 8/32)XSで、 Ti*が 0以下のときは i*=0、 C、 S、 N、 Nb、 iは C、 S、 N、 Nb、 Tiの含有量 (重 * )を表す。
6.重 M0/。で、 C:0.0040〜0.01%、 Si:0.05%以下、 Μη:0·1〜: l.0%、 P:0.01〜0.05%、 S:0.02% 以下、 soLAl:0.01〜0.1%、 N:0.004%以下、 Nb:0.01〜0.14%、 残部が実質的に Feおよび 励不純物からなり、 かつ糊弓 I張り言纖による公称ひずみ 1%と 10%の 2点から算 出された n値力 0.21以上である高 冷 β板。
7. さらに、 i:0.05重 * 以下を含有している請求の繊6に記載の高弓艘冷謹板。
8. さらに、 B:0.002 S*%以下を含有している請求の範囲 6または請求の範囲 7に記 載の高 冷 β板。
9. SM%で、 C:0.0040〜0.01%、 Si:0.05%以下、 Mn:0.1〜: 1.0%、 Ρ:0.01〜0·05%、 S:0.02% 以下、 soLAl:0.01〜0.1%、 N:0.004%以下、 Nb:0.15%以下、 残部が実質的に Feおよ 可 «不純物からなり、 力り下記の式 (6)を満足し、 さらに 引張り言纖による公称ひず み 1%と 10%の 2点から算出された n値が 0.21以上である高弓艘冷翻板;
(12/93) XNb*/C≥1.2 (6)、
式 (6)において、 Nb*=Nb-(93/14)XNで、 C、 N、 Nbは 。、 N、 Nbの含有量 (重 M%) を表す。
10. さらに、 Ti:0.05重量%以下を含有している請求の範固 9に記載の高弓嫉冷延鋼 板。
11. さらに、 B:0.002 ΕΜ%以下を含有している請求の範固 9または請求の範囲 10 に記載の高 ¾¾冷«板。
12. 重: %で、 C:0.0040〜0.01%、 Si:0.05%以下、 Mn:0.!!〜 1.0%、 Ρ:0.01〜0.05ο/ο、 S:0.02%以下、 soLAl:0.01〜0.1%、 N:0.004%以下、 Nb:0.15%以下、 残部が実質的に Fe およ T励不純物からなり、かつ下記の式 (6)を満足する鋼の ^スラブを す る工程と、
tiifSスラブを、 Ar3变 ¾ 以上の^^で仕 して熱 板を する工程と、 嫌激»板を、 500〜700 の^^で卷取る工程と、
嫌 S 取り後の熱删扳を、 冷間 る工程と、
を る高 ¾S冷 板の^ ^法;
(12/93) XNb*/C≥1.2 (6)、
式 (6)において、 Nb*=Nb-(93/14)XNで、 C、 N、 Nbは C、 N、 Nb (^有量 (SM ) を表す。
13. 重量%で、 C:0.0040〜0.01%、 Si:0.05%以下、 Mn:0.1〜: l.0%、 P:0.01~0.05%, S:0.02°/。以下、 soLAl:0.01〜0.10/0、 Ν:0.004。/。%以下、 Nb:0.01〜0.14%、 残部が実質的に F eおよ 避不純物からなり、 力り下記の式 (6)、 (7)を満足する高弓艘冷菌板;
(12/93) XNb*/C≥1.2 (6)、
TS-4050 X Ceq≥-0.75 X TS+380 (7)、
式 (6)、 (7)において、 Nb*=Nb-(93/14)XN、 Ceq二 C+(l/50)XSi+(l/25)XMn+(172)XPで、 C、 Si、 Mn、 P、 N、 Nb、 は^^ C、 Si、 Mn、 P、 N、 Nbの含有量 (重 *%)、 TSは引張 弓艘 (MPa)を表す。
14. さらに、 Ti:0.05 SM%以下を含 る請求の麵 13に記載の高弓嫉冷删板。
15. さらに、 Β .002重 *%以下を含 る請求の麵 13また〖 青求の麵 14に記載 の高弓鍍冷麵板。
16. 重 *%で、 C:0.004〜0.01%、 Ρ:0·05%以下、 S:0.02%以下、 soLAl:0.01〜0.P/0、 N:0.004%以下、 i:0.03%以下、 Nb:下記の式 (8)を満足する量を含有し、 力つ NbCの體 率が 0.03〜0.1%で、 その 70%以上が樹圣 10〜40nmである高弓艘冷翻板;
l≤(93/12)X(Nb/C)≤2.5 (8)、
式 (8)において、 C、 Nb tt/C^ C, Nbの含有量 (重 M%)を表す。
17. 重 M%で、 C:0.004〜0.01%、 P:0.05%以下、 S:0.02%以下、 soLAl:0.01〜0.10/0、 Ν:0Ό04°/ο以下、 Ή:0Ό3%以下、 Nb:下記の式 (8)を満足する量を含有する鋼の連 ¾ ^スラ ブを^する工程と、
編己スラブを、 下記の式 (8)〜(11)を満足する ffiT率で仕 ±JB£して熱麵板を纖する 工程と、
編激 β板を、 冷間 る工程と、
を "る高弓 ¾冷 板の 法;
l≤(93/12)X(Nb/C)≤2.5 (8)、
10≤HR1 (9)、
2≤HR2≤30 (10)、 HR1+HR2 -HR1 X HE2/100≤60 (11)、
式 (8)〜ひ 1)において、 C、 Nb
Figure imgf000069_0001
N の含有量 (重 *%)、 HR1、 HR2はそれぞれ仕 ±J3E延における最終パス前と最終パスの圧下^ (%)を表す。
18. で、 C:0.0040〜0.010%、 Si:0.05%以下、 Mn:0.10〜: 1.5%、 P:0.01〜0.05%、 S:0.02%以下、 soLAl:0.01〜0. ½、 N:0.0100%%以下、 Nb:0O36〜0.14%を含有し、 かつ 下記の式 (12)を満足し、 さらに平均結晶樹圣が 10 m以下、 r値が 1.8以上である高弓艘 冷纏板;
1. K(Nb X 12)/(C X 93)く 2.5 (12)、
式 (12)において、 C、 Nbは 。、 Nbの含有量 (重 * )を表す。
19. さらに、 i:0.019重 *%以下を含有し、 力つ下記の式 (13)を満足する請求の議 21 に記載の高 ¾l 冷 板;
Ti≤(48/14) X N+(48/32) X S (13)、
式 (13)において、 N、 S、 Tiは ¾¾N、 S、 iの含有量 (重 を表す。
20. さらに、 B:0.0015 S %以下を含^ Τる請求の iSffl 18また ttl青求の 19に記 載の高 冷 β板。
21. 重 Μ%で、 C:0.0040〜0.010%、 Si:0.05%以下、 Mn:0.10〜: 1.5%、 Ρ:0.01〜0.05ο/ο、 S:0.02%以下、 solAl:0.01〜0.1%、 N:0.0100%%以下、 Nb:0.036〜0.14%を含有し、 かつ 下記の式 (12)を満足する鋼の ^ラブを S¾gする工程と、
廳己スラブを、 ίΐί妾あるいは 1100〜: 1250°Cの に加讓 ffiiE延して を § ^す る:!:程と、
嫌己 ffiA'—を、最終パス前と最終パスの合計圧下率が 10-40%となるように仕 ±]Βίし て熱 β板を する工程と、
認激應板を、 IS /sec以上の冷却 で 70CTC以下の^ ¾まで冷却し、 620〜670 の^ i で卷き取る工程と、
鎌 取り後の熱 «板を、 50%以上の圧下率で冷間 j¾後、 20。C/sec _¾±の加熱 igm で加熱し、 860°C〜Ac3 態 以下の^^で る工程と、
fS 後の鋼板を、 0.4〜: 1.0%の] ΪΤ率で調質 Ε5ίする工程と、
を る高 冷 »板の 法。
22. 重量0/。で、 C:0.0050%超え 0.010%以下、 Si:0.05%以下、 Μη.Ό.10〜: 1.5%、 Ρ. .01 〜0.05%、 S:0.02%以下、 soLAl:0.01〜0.r½、 Ν:0·004ο/ο以下、 Nb:0.01〜0.20%を含有し、 力つ下記の ¾(3)、 (4)、 (14)を満足する高弓艘冷 β板;
11.0≤ι+50.0Χη (3)、
2.9≤r+5.00Xn (4)、
I.98-66.3 X C≤(Nb X 12)/(C X 93)≤3.24-80.0 X C (14)、
式 (3)、 (4)、 (14)において、 rは r値、 nは n値 (1-5%ひずみ)、 C、 Nbは^ C、 Nbの含 有量 (重 /0)を表す。
23. 重 ft0 /。で、 C:0.0050%超え 0.010%以下、 Si:0.05%以下、 Mn:0.10〜1.5%、 P:0.01 〜 05%、 S:0.02%以下、 solAl:0.01〜ai%、 Ν·Ό.004%以下、 Nb:0.01〜0.20%、 Ή:0.05% 以下を含有し、 力つ下記の式 (3)、 (4)、 (15)を満足する高弓艘冷删板;
II.0≤r 50.0 n (3)、
2.9≤rf5.00Xn (4)、
1.98-66.3 X C≤(Nb X 12)/(C X 93)+ Π* X 12)/(C X 48) ≤3.24-80.0 X C (15)、 式 (3)、 (4)、 (15)において、 rは r値、 nは n値 (1-5%ひずみ)、 i*=Ti-(48/14) X N-(48/32) XSで、 Ti*が 0以下のときは i*=0、 C、 S、 N、 Nb、 Tiは元素 C、 S、 N、 Nb、 Tiの含 有量 を表す。
24. さらに、 B:0.002重 M%以下を含 る請求の麵 22また i¾f求の麵 23に記載 の高艇冷删板。
25. 重 M%で、 C:0.0050%超え 0.010%以下、 Si:0.05%以下、 Mn:0.10〜: l.5%、 0.01 〜0.05%、 S:0.02%以下、 sol_Al:0.01〜0.1%、 N:0.004%以下、 Nb:0.01〜0.20%を含有し、 かつ下記の式 Q4)を満足する鋼の^^スラブを i¾tする工程と、 ΙίίΙ己スラブを、最終パス前と最終パスの合計圧下率が 60%以下となるように仕上圧延し て巻取り熱 β板を ¾ する工程と、
t¾ 板を、 冷間 る工程と
を "る高 冷 板の i ^法;
1.98-66.3 X C≤(Nb X 12)/(C X 93)≤3.24-80.0 X C (14)、
式 (14)において、 C、 Nb ¾7C¾ C, Nbの含有量 (重 *%)を表す。
26. C:0.0050%超え 0.010%以下、 Si:0.05%以下、 Mn:0.10~1.5% P:0.01〜0.05%、 S:0.02%以下、 soLAl:0.01〜0.1%、 N:0.004%以下、 Nb:0.01〜0.20%、 i:0.05%以下を含 有し、 かつ下記の式 (15)を満足する鋼の連 スラブを i ^する工程と、
編己スラブを、最終パス前と最終パスの合計圧下率が 60%以下となるように仕 ±iB£し て巻取り熱薩板を する工程と、
tfi fg^板を、 冷間 る工程と
を る高 冷 »板の^^法;
1.98-66.3 X C≤(Nb X 12)/(C X 93)+(Ti* X 12)/(C X 48)≤3.24-80.0 X C (15)、 式 (15)において、 Ti*=Ti-(48/14) N-(48/32) X S \ i*が 0以下のときは i*=0、 C> S、 N、 Nb、 iは元素 C、 S、 N、 Nb、 iの含有量 (重量%)を表す。
27. 870°C以上の で仕 ±J¾し、 550°C以上の^^で巻取り、 50〜85%の圧下率で 冷間 ffigし、 780〜880°Cの^で る請求の範囲 25また〖 青求の fflS 26に記 載の高 冷 板の Sit^法。
PCT/JP1999/006791 1998-12-07 1999-12-03 High strength cold rolled steel plate and method for producing the same WO2000034542A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99973310.8A EP1052302B2 (en) 1998-12-07 1999-12-03 High strength cold rolled steel plate and method for producing the same
DE69935125.1T DE69935125T3 (de) 1998-12-07 1999-12-03 Hochfestes, kaltgewalztes Stahlblech und Verfahren zu dessen Herstellung
US09/631,600 US6494969B1 (en) 1998-12-07 2000-08-03 High strength cold rolled steel sheet and method for manufacturing the same
US10/122,860 US6689229B2 (en) 1998-12-07 2002-04-15 High strength cold rolled steel sheet and method for manufacturing the same
US10/630,479 US20040020570A1 (en) 1998-12-07 2003-07-29 High strength cold rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP10/346974 1998-12-07
JP34697498 1998-12-07
JP3628599 1999-02-15
JP11/36288 1999-02-15
JP11/36286 1999-02-15
JP3628399 1999-02-15
JP11/36285 1999-02-15
JP11/36283 1999-02-15
JP3628899 1999-02-15
JP3628799 1999-02-15
JP11/36284 1999-02-15
JP11/36287 1999-02-15
JP3628499 1999-02-15
JP03628699A JP3570269B2 (ja) 1999-02-15 1999-02-15 耐バリ性に優れた鋼板およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/631,600 Continuation US6494969B1 (en) 1998-12-07 2000-08-03 High strength cold rolled steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2000034542A1 true WO2000034542A1 (en) 2000-06-15

Family

ID=27564422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006791 WO2000034542A1 (en) 1998-12-07 1999-12-03 High strength cold rolled steel plate and method for producing the same

Country Status (7)

Country Link
US (3) US6494969B1 (ja)
EP (2) EP1052302B2 (ja)
KR (1) KR100382414B1 (ja)
CN (3) CN1223695C (ja)
AT (2) ATE387516T1 (ja)
DE (2) DE69938265T2 (ja)
WO (1) WO2000034542A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312009A1 (en) * 2000-06-20 2011-04-20 JFE Steel Corporation Steel sheet and method for manufacturing the same
CN102925796A (zh) * 2012-10-30 2013-02-13 鞍钢股份有限公司 一种非合金化超低碳结构用冷轧板及其生产方法
CN103924054A (zh) * 2014-04-30 2014-07-16 重庆钢铁(集团)有限责任公司 航空用20a钢管的防锈方法
CN104060066A (zh) * 2013-06-07 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种冷轧钢板及其制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507851B2 (ja) * 2003-12-05 2010-07-21 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
US20060037677A1 (en) * 2004-02-25 2006-02-23 Jfe Steel Corporation High strength cold rolled steel sheet and method for manufacturing the same
KR100711463B1 (ko) * 2005-12-05 2007-04-24 주식회사 포스코 항복강도가 낮은 고강도 냉연강판의 제조방법
WO2008108363A1 (ja) * 2007-03-05 2008-09-12 Sumitomo Metal Industries, Ltd. 冷間圧延鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
JP5272548B2 (ja) * 2007-07-11 2013-08-28 Jfeスチール株式会社 降伏強度が低く、材質変動の小さい高強度冷延鋼板の製造方法
CN101660092B (zh) * 2008-08-27 2011-04-13 宝山钢铁股份有限公司 高强度高韧性Zr-B复合微合金钢及其生产方法
JP4998757B2 (ja) * 2010-03-26 2012-08-15 Jfeスチール株式会社 深絞り性に優れた高強度鋼板の製造方法
JP5408314B2 (ja) * 2011-10-13 2014-02-05 Jfeスチール株式会社 深絞り性およびコイル内材質均一性に優れた高強度冷延鋼板およびその製造方法
KR101424863B1 (ko) 2012-03-29 2014-08-01 현대제철 주식회사 냉연강판 및 그 제조 방법
KR101318060B1 (ko) * 2013-05-09 2013-10-15 현대제철 주식회사 인성이 향상된 핫스탬핑 부품 및 그 제조 방법
RU2650660C2 (ru) * 2013-09-20 2018-04-16 Ниппон Стил Энд Сумитомо Метал Корпорейшн Отформованное прессованием изделие, способ изготовления отформованного прессованием изделия и устройство для изготовления отформованного прессованием изделия
CN103667901B (zh) * 2013-11-28 2016-04-20 安徽银力铸造有限公司 一种汽车桥壳用热轧钢的制备方法
US20170051377A1 (en) * 2014-04-30 2017-02-23 Jfe Steel Corporation High-strengh steel sheet and method sheet for manufacturing the same
CN104060071B (zh) * 2014-06-18 2016-06-15 攀钢集团攀枝花钢铁研究院有限公司 冷轧钢板及其制备方法和热镀锌钢板及其制备方法
CN104181053A (zh) * 2014-09-04 2014-12-03 北京航空航天大学 一种厚向应力作用下的板材起皱性能试验装置及方法
JP6210177B2 (ja) * 2015-03-27 2017-10-11 Jfeスチール株式会社 缶用鋼板およびその製造方法
CN104946978B (zh) * 2015-07-07 2017-03-01 新余钢铁集团有限公司 一种用于家电面板的彩涂冷轧基板及其制造方法
DE102015116186A1 (de) * 2015-09-24 2017-03-30 Thyssenkrupp Ag Halbzeug und Verfahren zur Herstellung einer Fahrzeugkomponente, Verwendung eines Halbzeugs und Fahrzeugkomponente
US11299798B2 (en) 2017-05-22 2022-04-12 Jfe Steel Corporation Steel plate and method of producing same
CN110695093B (zh) * 2019-10-09 2021-01-01 西藏克瑞斯科技有限公司 一种高性能钢材轧制方法
KR102468036B1 (ko) * 2020-11-12 2022-11-17 주식회사 포스코 성형성이 우수한 고강도 아연계 도금강판 및 그 제조방법
CN113523731A (zh) * 2021-08-12 2021-10-22 东台耀强机械制造有限公司 一种高品质花纹钢板卷管工艺
CN114196882B (zh) * 2021-12-08 2022-10-28 北京首钢股份有限公司 一种高表面质量高强度汽车面板用钢带卷及其制备方法
CN115627414B (zh) * 2022-09-23 2023-07-25 马鞍山钢铁股份有限公司 一种抗二次加工脆性及优良表面质量的含磷if钢板及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185834A (ja) * 1986-02-08 1987-08-14 Nisshin Steel Co Ltd プレス加工性に優れた冷延鋼板の製造法
JPS63243225A (ja) * 1987-03-31 1988-10-11 Nisshin Steel Co Ltd 耐ろう接割れ性に優れた冷延鋼板の製造法
JPH0641683A (ja) * 1992-04-06 1994-02-15 Kawasaki Steel Corp 缶用鋼板およびその製造方法
JPH0748649A (ja) * 1994-07-22 1995-02-21 Nkk Corp 亜鉛めっき用鋼板およびその製造方法
JPH09235650A (ja) * 1996-02-29 1997-09-09 Kawasaki Steel Corp 加工用鋼およびその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041354B2 (en) * 1980-05-31 1993-11-03 Kawasaki Steel Corporation Method for producing cold rolled steel sheets having a noticeably excellent formability
US4504326A (en) * 1982-10-08 1985-03-12 Nippon Steel Corporation Method for the production of cold rolled steel sheet having super deep drawability
US4861390A (en) * 1985-03-06 1989-08-29 Kawasaki Steel Corporation Method of manufacturing formable as-rolled thin steel sheets
CN1012144B (zh) * 1985-06-07 1991-03-27 川崎制铁株式会社 冷轧钢板的制造方法
JPS61291924A (ja) * 1985-06-17 1986-12-22 Nippon Steel Corp 加工性の優れたプレス成形用鋼板の製造方法
JPH05112845A (ja) 1991-03-30 1993-05-07 Nippon Steel Corp 成形後の面形状性が良好で優れた耐デント性を有する深絞り用高強度冷延鋼板
US5290370A (en) * 1991-08-19 1994-03-01 Kawasaki Steel Corporation Cold-rolled high-tension steel sheet having superior deep drawability and method thereof
JP3016636B2 (ja) 1991-09-12 2000-03-06 新日本製鐵株式会社 成形性の良好な高強度冷延鋼板
JPH0570836A (ja) * 1991-09-17 1993-03-23 Sumitomo Metal Ind Ltd 深絞り用高強度冷延鋼板の製造方法
JP2503338B2 (ja) 1991-12-24 1996-06-05 新日本製鐵株式会社 スポット溶接部の疲労強度に優れた良加工性高強度冷延鋼板
JP2745922B2 (ja) * 1991-12-25 1998-04-28 日本鋼管株式会社 焼付硬化性に優れた非時効性深絞り用冷延鋼板とその製造方法
JPH05195080A (ja) 1992-01-23 1993-08-03 Sumitomo Metal Ind Ltd 深絞り用高強度鋼板の製造方法
KR960007431B1 (ko) 1992-04-06 1996-05-31 가와사끼 세이데쓰 가부시끼가이샤 캔용강판 및 그 제조방법
TW415967B (en) 1996-02-29 2000-12-21 Kawasaki Steel Co Steel, steel sheet having excellent workability and method of the same by electric furnace-vacuum degassing process
US5853903A (en) * 1996-05-07 1998-12-29 Nkk Corporation Steel sheet for excellent panel appearance and dent resistance after panel-forming
JP3882263B2 (ja) 1996-05-07 2007-02-14 Jfeスチール株式会社 パネル加工後のパネル外観と耐デント性に優れた鋼板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185834A (ja) * 1986-02-08 1987-08-14 Nisshin Steel Co Ltd プレス加工性に優れた冷延鋼板の製造法
JPS63243225A (ja) * 1987-03-31 1988-10-11 Nisshin Steel Co Ltd 耐ろう接割れ性に優れた冷延鋼板の製造法
JPH0641683A (ja) * 1992-04-06 1994-02-15 Kawasaki Steel Corp 缶用鋼板およびその製造方法
JPH0748649A (ja) * 1994-07-22 1995-02-21 Nkk Corp 亜鉛めっき用鋼板およびその製造方法
JPH09235650A (ja) * 1996-02-29 1997-09-09 Kawasaki Steel Corp 加工用鋼およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312009A1 (en) * 2000-06-20 2011-04-20 JFE Steel Corporation Steel sheet and method for manufacturing the same
EP2312010A1 (en) * 2000-06-20 2011-04-20 JFE Steel Corporation Steel sheet and method for manufacturing the same
CN102925796A (zh) * 2012-10-30 2013-02-13 鞍钢股份有限公司 一种非合金化超低碳结构用冷轧板及其生产方法
CN102925796B (zh) * 2012-10-30 2014-07-09 鞍钢股份有限公司 一种非合金化超低碳结构用冷轧板及其生产方法
CN104060066A (zh) * 2013-06-07 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 一种冷轧钢板及其制备方法
CN103924054A (zh) * 2014-04-30 2014-07-16 重庆钢铁(集团)有限责任公司 航空用20a钢管的防锈方法

Also Published As

Publication number Publication date
US6689229B2 (en) 2004-02-10
DE69938265T2 (de) 2009-02-26
CN1300362C (zh) 2007-02-14
CN1223695C (zh) 2005-10-19
CN1492068A (zh) 2004-04-28
EP1669472A3 (en) 2006-09-27
ATE353985T1 (de) 2007-03-15
CN1667152A (zh) 2005-09-14
EP1052302B1 (en) 2007-02-14
DE69935125T2 (de) 2007-10-25
EP1052302B2 (en) 2015-01-07
KR100382414B1 (ko) 2003-05-09
US20020179206A1 (en) 2002-12-05
EP1052302A1 (en) 2000-11-15
CN1289375A (zh) 2001-03-28
DE69935125T3 (de) 2015-05-21
DE69938265D1 (de) 2008-04-10
EP1669472B1 (en) 2008-02-27
EP1669472A2 (en) 2006-06-14
US6494969B1 (en) 2002-12-17
KR20010040682A (ko) 2001-05-15
CN1119428C (zh) 2003-08-27
ATE387516T1 (de) 2008-03-15
US20040020570A1 (en) 2004-02-05
DE69935125D1 (de) 2007-03-29
EP1052302A4 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
WO2000034542A1 (en) High strength cold rolled steel plate and method for producing the same
US8815025B2 (en) High strength steel excellent in uniform elongation properties and method of manufacturing the same
KR102302471B1 (ko) 드로잉 캔용 냉연 강판 및 그 제조 방법
WO2001098552A1 (en) Thin steel sheet and method for production thereof
US20170029914A1 (en) Hot formed steel sheet component and method for producing the same as well as steel sheet for hot forming
TWI545204B (zh) 高強度熔融鍍鋅鋼板及高強度合金化熔融鍍鋅鋼板之製造方法
EP2623622B1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
EP2554699A1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
JP4337764B2 (ja) 高強度冷延鋼板、溶融亜鉛めっき鋼板、それらの製造方法
WO1999053113A1 (fr) Feuille d&#39;acier pour boite boissons et procede de fabrication correspondant
JP4507851B2 (ja) 高強度冷延鋼板およびその製造方法
JP2007231371A (ja) 冷延鋼板および溶融亜鉛めっき鋼板ならびにそれらの製造方法
CA3053896A1 (en) Hot stamped body
JP4687260B2 (ja) 表面性状に優れた深絞り用高張力冷延鋼板の製造方法
KR102440772B1 (ko) 성형성이 우수한 고강도강판 및 그 제조방법
JP4980253B2 (ja) 強度延性バランスと打ち抜き性に優れた高強度熱延鋼板及びその製造方法
JP2001335888A (ja) 軽量2ピース缶用鋼板およびその製造方法
KR102426248B1 (ko) 선영성이 우수한 고강도 아연계 도금강판 및 그 제조방법
JP2008308718A (ja) 高強度鋼板およびその製造方法
JPH11222647A (ja) 耐時効性に優れかつ耳発生率の小さい表面処理鋼板用原板およびその製造方法
JP2002003993A (ja) 高強度薄鋼板および高強度亜鉛系めっき鋼板
KR102398151B1 (ko) 연성이 우수한 초고강도 강판의 제조방법 및 이를 이용하여 제조된 초고강도 강판
KR102468036B1 (ko) 성형성이 우수한 고강도 아연계 도금강판 및 그 제조방법
US20240043952A1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing same
JP3508654B2 (ja) コイル内材質均一性に優れたプレス成形用高強度冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99802559.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09631600

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007008558

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999973310

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999973310

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007008558

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007008558

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999973310

Country of ref document: EP